
Julien Demouth & Mathias Wagner, Developer Technology

MORE SCIENCE WITH FEWER BITS

2

WHY MIXED PRECISION?

There are many reasons to consider mixed precision methods in HPC

Accelerated hardware in current architectures

Reduce memory traffic

Reduce network traffic

Reduce memory footprint

Suitable numerical properties for the problem at hand

Accelerate or even improve the algorithm without compromising quality of science

MORE SCIENCE

3

WHY USE MIXED PRECISION ?

Higher precision needs more memory and is slower

Bandwidth on network and memory

Higher precision is slower (usually 2x for simple ops, >2x for fancy math)

Which precision does my calculation require?

Do all parts need high precision? Or maybe just accumulations / reductions ?

But if I just need high precision ?

Accept it or maybe …?

SPEED, STUPID!

4

for bandwidth bound application

for Deep Learning / AI

for compute bound applications

MIXED PRECISION

MIXED PRECISION FOR

BANDWIDTH

6

QUDA

• Effort started at Boston University in 2008, now in wide use as the GPU backend
for BQCD, Chroma, CPS, MILC, TIFR, tmLQCD, etc.

• Provides:
— Various solvers for all major fermionic discretizations, with multi-GPU support

— Additional performance-critical routines needed for gauge-field generation

• Maximize performance

– Exploit physical symmetries to minimize memory traffic

– Mixed-precision methods

– Autotuning for high performance on all CUDA-capable architectures

– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR)

– Multigrid solvers for optimal convergence Multi-source solvers

– Domain-decomposed (Schwarz) preconditioners for strong scaling

– Strong-scaling improvements

• A research tool for how to reach the exascale

7

QUDA - LATTICE QCD ON GPUS
http://lattice.github.com/quda, BSD license

http://lattice.github.com/quda

8

QUDA CONTRIBUTORS

§ Ron Babich (NVIDIA)

§ Simone Bacchio (Cyprus)

§ Michael Baldhauf (Regensburg)

§ Kip Barros (LANL)

§ Rich Brower (Boston University)

§ Nuno Cardoso (NCSA)

§ Kate Clark (NVIDIA)

§ Michael Cheng (Boston University)

§ Carleton DeTar (Utah University)

§ Justin Foley (Utah -> NIH)

§ Joel Giedt (Rensselaer Polytechnic Institute)

§ Arjun Gambhir (William and Mary)

§ Steve Gottlieb (Indiana University)

§ Kyriakos Hadjiyiannakou (Cyprus)

§ Dean Howarth (LLNL)

§ Bálint Joó (Jlab)

§ Hyung-Jin Kim (BNL -> Samsung)

§ Bartek Kostrzewa (Bonn)

§ Claudio Rebbi (Boston University)

§ Hauke Sandmeyer (Bielefeld)

§ Guochun Shi (NCSA -> Google)

§ Mario Schröck (INFN)

§ Alexei Strelchenko (FNAL)

§ Jiqun Tu (Columbia -> NVIDIA)

§ Alejandro Vaquero (Utah University)

§ Mathias Wagner (NVIDIA)

§ Evan Weinberg (NVIDIA)

§ Frank Winter (Jlab)

10+ years - lots of contributors

9

THE LATTICE QCD STENCIL (DSLASH)

• Assign a single space-time point to each thread

V = XYZT threads, e.g., V = 244 => 3.3x106 threads

• Looping over direction each thread must

– Load the neighboring spinor (24 numbers x8)

– Load the color matrix connecting the sites (18 numbers x8)

– Do the computation

– Save the result (24 numbers)

• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity

• QUDA reduces memory traffic

Exact SU(3) matrix compression (18 => 12 or 8 real numbers)

Use 16-bit fixed-point representation with mixed-precision solver

Dx,x0 =

x x

x

x−

x−

U x



U
x

μ

μ

ν

Solve Ax=b

X[0]

X[1]

10

QUDA’S 16-BIT FIXED-POINT FORMAT

Link field - Defines the sparse matrix elements

SU(3) matrices that live between all adjacent sites on the 4-d grid

All elements => very natural to use 16-bit fixed point representation

Fermion field - the vector that appears in the linear solver

Each 4-d grid point consists of a 12-component complex vector

No a priori bounds the elements

Use per-site Linf norm to normalize the site vector and use 16-bit fixed point

Optimal use of precision: retains global dynamic range with local 16-bit mantissa

Low precision used only as a storage type with computation done in FP32

∈ [−1,1]

In production since 2009

11

LINEAR SOLVERS

LQCD requires a range of sparse iterative linear solvers

CG, BiCGstab, GCR, Multi-shift solvers, etc.

Condition number inversely proportional to mass

Light (realistic) masses are highly singular

Naive Krylov solvers suffer from critical slowing down at decreasing mass

Entire solver algorithm must run on GPUs

Time-critical kernel is the stencil application Also require BLAS level-1 type operations

QCD dominate by sparse Ax=b

conjugate gradient

12

RELIABLE UPDATES FOR MIXED PRECISION

Traditional approach to mixed precision is to use iterative refinement

Disadvantage: each restart means we discard the Krylov space

Instead we use reliable updates*

As low-precision solver progresses the iterated residual will drift

Occasionally replace the iterated residual with high-precision residual

Retains Krylov space information

Maintain a separate partial-solution accumulator

Aside: reductions are always done in fp64 regardless of the data precision

*Sleijpen and Van der Worst, 1996 Clark, Babich, Barros, Brower, Rebbi (2009)

13

(STABLE) MIXED-PRECISION CG

CG convergence relies on gradient vector being orthogonal to residual vector

Re-project when injecting new residual (Strzodka and Gödekke, 2006)

Precision is lost if we keep the partial solution vector in low precision

Always keep the (partial) solution vectors in high precision

β computation relies on (ri, rj) = |ri|
2

δi, j

Not true in finite precision

Polak-Ribière form is equivalent and self-stabilizing

Three key ingredients

14

LINEAR SOLVERS

QUDA supports a wide range of linear solvers

CG, BiCGstab, GCR, Multi-shift solvers, etc.

Condition number inversely proportional to mass

Light (realistic) masses are highly singular

Naive Krylov solvers suffer from critical slowing down at decreasing mass

Entire solver algorithm must run on GPUs

Time-critical kernel is the stencil application

Also require BLAS level-1 type operations

while (|rk|> ε) {

•βk = (rk,rk)/(rk-1,rk-1)

•pk+1 = rk - βkpk

 qk+1 = A pk+1

•α = (rk,rk)/(pk+1, qk+1)

•rk+1 = rk - αqk+1

•xk+1 = xk + αpk+1

•k = k+1

} conjugate gradient

15

MIXED-PRECISION CG

Apply Dslash in sloppy precision
(single, half)

Reliable residual replacement in high
precision

Ensures accuracy of final result

Half-precision storage:

• Stencil elements ∈ [-1,1] (Link):

• 16-bit fixed point

• Grid elements (Spinor):

• 16-bit fixed point (24 numbers)

• float (exponent, 1 number)

Use fp32 for actual arithmetics

16

MIXED-PRECISION CG

1x10-12

1x10-10

1x10-8

1x10-6

0.0001

0.01

1

0 2000 4000 6000 8000 10000 12000 14000 16000

double
double-single
double-half

double-half alt

double-half

• Maintain solution vectors in
high precision

• Including the partial
accumulator

• When true residual is injected,
re-project the direction vector

• Use Polak-Ribière formula

double-half alt

• Residual replacement strategy of
van der Worst and Ye

16

MIXED-PRECISION CG

1x10-11

1x10-10

1x10-9

12500 13000 13500 14000 14500 15000 15500

double
double-single
double-half

double-half alt

double-half

• Maintain solution vectors in
high precision

• Including the partial
accumulator

• When true residual is injected,
re-project the direction vector

• Use Polak-Ribière formula

double-half alt

• Residual replacement strategy of
van der Worst and Ye

17

MIXED-PRECISION MILC CG SOLVER

do
ub

le

do
ub

le
-s
in
gl
e

do
ub

le
-h

al
f

0.0 5.0 10.0 15.0 20.0 25.0
solution time in s

18

DEFLATION STABILIZES LOW PRECISION

S
o
lv

e
r

It
e
ra

ti
o
n
s

0

4000

8000

12000

16000

Number of eigenvectors

0 16 32 64 128 256 512 1024

double-single-single double-half-single double-half-half
double-quarter-half

V=483x12, HISQ operator, physical light quarks, tol 10-10, 2xV100

19

MIXED-PRECISION DEFLATION
F
in

a
l
S
o
lv

e
r

S
p
e
e
d
u
p

0

10

20

30

40

50

60

70

CG double CG double-single CG double-half

CG double-quarter defCG double-half-single defCG double-half-half

defCG double-quarter-half

Configuration provided by  
HotQCD collaboration (Mukherjee et al)

512
evectors

1024
evectors

1024
evectors

Similar setup times

62x speedup

V=483x12, HISQ operator, physical light quarks, tol 10-10, 2xV100

Julien Demouth

DEEP LEARNING AND MIXED

PRECISION

2

REFERENCE

This slide deck was built from two presentations at GTC 2020

Training Neural Networks with Tensor Core [S22082], Dusan Stosic

Accelerating Sparsity in the NVIDIA Ampere Architecture [S22085], Jeff Pool

The presentations are available from https://www.nvidia.com/en-us/gtc/on-demand/

https://www.nvidia.com/en-us/gtc/on-demand/

3

[QUICK REMINDER] TENSOR CORES

Specialized hardware execution units for performing matrix and convolution operations

Compared to scalar FP32 operations, Tensor Cores are:

• 8-16x faster (up to 32x faster with sparsity)

• More energy efficient

D = AB + C

4

[QUICK REMINDER] TENSOR CORES FOR 16-BIT FORMATS

Operation:

Multiply and add FP16 or BF16 tensors

Products are computed without loss of precision,
accumulated in FP32

Final FP32 output is rounded to FP16 or BF16
before writing to memory

NVIDIA Ampere Architecture enhancements:

New tensor core design: 2.5x throughput for dense operations (A100 vs V100)

Sparsity support: additional 2x throughput for sparse operations

BFloat16 (BF16): Same rate as FP16

FP32

16-bit input

16-bit input

Full precision
product

Sum with
FP32

accumulator

5

MIXED PRECISION TRAINING

Combines single-precision (FP32) with lower precision (e.g. FP16) when training a network

Achieves the same accuracy as FP32 training, uses all the same hyper-parameters

Data Conv
Batch
Norm

ReLU Loss

FP32Lower Precision

Benefits:

• Accelerates math-intensive operations with specialized hardware (GPU Tensor Cores)

• Accelerates memory-intensive operations by reducing memory traffic (16-bit; not tf32)

• Reduce memory requirements, enables training of larger models, larger minibatches, larger inputs (16-bit; not tf32)

6

MIXED PRECISION IS GENERAL PURPOSE

3 years of networks trained with 16-bit formats

Proven to match FP32 results across a wide range of tasks, problem domains, deep neural network
architectures

Image Classification

AlexNet

DenseNet

Inception

MobileNet

EfficientNet

ResNet

ResNeXt

ShuffleNet

SqueezeNet

VGG

Xception

Detection / Segmentation

DeepLab

Faster R-CNN

Mask R-CNN

SSD

NVIDIA Automotive

RetinaNet

UNET

Generative Models

(Images)

DLSS

GauGAN

Partial Image Inpainting

Progress GAN

Pix2Pix

Speech

Deep Speech 2

Jasper

Tacotron

Wave2vec

WaveNet

WaveGlow

Language Modeling

BERT

TrellisNet

Gated Convolutions

BigLSTM/mLSTM

RoBERTa

Transformer XL

Translation

Convolutional Seq2Seq

Dynamic Convolutions

GNMT (RNN)

Levenshtein Transformer

Transformer (Self-

Attention)

Recommendation

DeepRecommender

NCF

The chart only
represents a small
sampling of
networks trained
in mixed precision

7

AUTOMATIC MIXED PRECISION FOR 16-BITS

Automatic Mixed Precision (AMP) makes mixed precision
training with FP16/BF16 easy in frameworks

- AMP automates process of training in mixed precision

- e.g. Converts matrix multiplies/convolutions to 16-bits
for Tensor Core acceleration

Works with multiple models, optimizers, and losses

BF16 will be available in future releases NVIDIA Tensor Cores

NVIDIA AMP

DL Frameworks

Deep Neural Networks

8

NATIVE AMP FOR
PYTORCH
Merged into master end of April

import torch

Creates once at the beginning of training

scaler = torch.cuda.amp.GradScaler()

for data, label in data_iter:

optimizer.zero_grad()

Casts operations to mixed precision
with torch.cuda.amp.autocast():

loss = model(data)

Scales the loss, and calls backward()

to create scaled gradients
scaler.scale(loss).backward()

Unscales gradients and calls

or skips optimizer.step()

scaler.step(optimizer)

Updates the scale for next iteration

scaler.update()

Will be available in future NVIDIA NGC containers

Proven to work on ~40 deep neural network
workloads

NVIDIA Deep Learning Examples have used
PyTorch APEX AMP for over a year and will soon
update all models to PyTorch Native AMP

9

FEW CODE CHANGES TO ENABLE AMP IN FRAMEWORKS

TensorFlow

NVIDIA NGC Container 19.07+, TF 1.14+ and TF 2+, explicit optimizer wrapper available:

opt = tf.train.experimental.enable_mixed_precision_graph_rewrite(opt)

Keras mixed precision API in TF 2.1+ for eager execution

https://tensorflow.org/api_docs/python/tf/train/experimental/enable_mixed_precisio
n_graph_rewrite

PyTorch

Native support in PT, see official docs for usage:

https://pytorch.org/docs/stable/amp.html

https://pytorch.org/docs/stable/notes/amp_examples.html

MXNet

NVIDIA NGC Container 19.04+, MXNet 1.5+, few lines of code:

amp.init()

amp.init_trainer(trainer)
with amp.scale_loss(loss, trainer) as scaled_loss:

autograd.backward(scaled_loss)

https://mxnet.apache.org/api/python/docs/tutorials/performance/backend/amp.html

10

SAMPLE OF ACHIEVED TRAINING SPEEDUPS

Mixed precision training on A100 is up to 12x faster than V100 FP32

2-3 days on A100 using
next-gen Tensor Cores

1 month to train
on Volta using FP32

12

INTRODUCING TENSOR
FLOAT 32 (TF32)

13

DL TRAINING OPTIONS

FP16 and BF16 Tensor Cores

Best choice for performance

Both are well established formats with proven success across a wide breadth of AI networks

Does require model changes (FP32 weight storage, loss scaling, per-layer precision choices)

Automatic Mixed Precision (AMP) makes it easy

TF32 Tensor Cores

New default for A100 – no model changes required

10x peak rate of Volta FP32 (but ½ of peak rates of FP16/BF16)

FP32 – non-Tensor Core

Default for Volta (on A100 it is 1/16 of peak rate of FP16, 1/8 of peak of TF32)

14

[QUICK REMINDER] TENSOR FLOAT 32

A Tensor Core math mode for single-precision training

Multiply and add of FP32 tensors

Tensor Core inputs are rounded to TF32

Products are computed without loss of precision, accumulated in FP32

FP32FP32 output

FP32

Convert to
TF32

FP32

Sum with
FP32

accumulator

Full precision
product

15

TF32 DETAILS

8-bit exponent:

Matches FP32, covers the same range of values

10-bit mantissa:

Higher precision than BF16

The only difference from FP32

TF32 will match FP32 results for any network
trained with FP16 or BF16 mixed precision

Shown to have sufficient margin for DL training by
networks trained in 16-bits over the past 3 years

FP32

TENSOR FLOAT 32 (TF32)

FP16

BFLOAT16 (BF16)

8 BITS 23 BITS

8 BITS 10 BITS

5 BITS 10 BITS

8 BITS 7 BITS

Sign Range Precision

TF32 Range

TF32 Precision

17

TF32 VERIFICATION

Further verification based on unmodified model scripts for 80+ networks

• Model architectures: Convnets, MLPs, RNNs, Transformers, BERT, GANs, etc.

• Various tasks, including:

• image tasks (classification, detection, segmentation, generation, gaze)

• language tasks (translation, modeling, question answering)

• Recommenders

• Meta learning

• More niche tasks (logic reasoning, combinatorial problems)

• First and second order methods

Matches FP32 accuracy and loss values

18

SINGLE PRECISION TRAINING WITH TF32

Default mode for A100 in next release of NVIDA NGC containers

• Supported frameworks: TensorFlow, PyTorch, MXNet

• Operation:

• TF32 acceleration is enabled for single-precision convolution and matrix-multiply layers:

• Including linear/fully-connected layers, recurrent cells, attention blocks

• TF32 acceleration is not enabled for:

• Convolutions or matrix-multiply layers that operate on non-FP32 tensors

• Any layers that are not convolutions or matrix-multiplies

• Optimizer/solver operations

• No tensor storage is changed – remains in FP32 (or whichever format is specified in the script)

Support in mainline frameworks coming soon

19

GLOBAL PLATFORM CONTROL FOR TF32

Global variable NVIDIA_TF32_OVERRIDE to toggle TF32 mode at system level (and override
libraries/frameworks)

Debugging tool - quick way to rule out any concern regarding TF32 libraries and look for other issues

NVIDIA_TF32_OVERRIDE=0 Not Set

Disables TF32 so that FP32 is used Defaults to library and framework settings

20

SAMPLE OF ACHIEVED TRAINING SPEEDUPS

A100 single precision training is up to 5x faster because of TF32 acceleration

A100 mixed precision gives an additional 2x

21

CHOOSING TRAINING OPTIONS ON A100

Mixed-precision with FP16 or BF16:

Option to use if you:

• Use mixed-precision training (FP16 or BF16) on Volta and other processors

• Are using single-precision on A100 training and want further speedup

Fastest options for training: up to 2x faster than single-precision with TF32

Requires minimal additions to training scripts with AMP (detailed in previous sections)

Single-precision with TF32:

Great starting point if you used FP32 training on Volta and other processors

Default math mode for AI, does not require changes to training scripts

Uses Tensor Cores (10X over Volta default)

22

SPARSITY SUPPORT INTRODUCED IN
NVIDIA AMPERE ARCHITECTURE

23

SPARSITY: ONE OF MANY OPTIMIZATION TECHNIQUES

Optimization goals for inference:

Reduce network model size

Speed up network model execution

Observations that inspire sparsity investigations

Biology: neurons are not densely connected

Neural networks:

Trained model weights have many small-magnitude values

Activations may have 0s because of ReLU

Figure: “DSD: Dense-Sparse-Dense Training for Deep Neural Networks” S. Han et al.

24

SPARSITY AND PERFORMANCE

Do not store or process 0 values -> smaller and hopefully faster model

• Eliminate (prune) connections: set some weights to 0

• Eliminate (prune) neurons

• Etc.

But, must also:

• Maintain model accuracy

• Efficiently execute on hardware to gain speedup

25

SPARSITY TAXONOMY

Structure:

Unstructured: irregular, no pattern of zeros

Structured: regular, fixed set of patterns to choose from

Granularity:

Finest: prune individual values

Coarser: prune blocks of values

Coarsest: prune entire layers

26

SPARSITY IN A100 GPU

Fine-grained structured sparsity for Tensor Cores

50% fine-grained sparsity

2:4 pattern: 2 values out of each contiguous block of 4 must be 0

Addresses the 3 challenges:

Accuracy: maintains accuracy of the original, unpruned network

Medium sparsity level (50%), fine-grained

Training: a recipe shown to work across tasks and networks

Speedup:

Specialized Tensor Core support for sparse math

Structured: lends itself to efficient memory utilization

= zero value

2:4 structured-sparse matrix

28

2:4 COMPRESSED MATRIX FORMAT
At most 2 non-zeros in every contiguous group of 4 values

Compressed Matrix:

Data: ½ size

Metadata: 2b per non-zero element

16b data => 12.5% overhead

8b data => 25% overhead

C/2

Sparse matrix W Compressed matrix W

C/2

Non-zero

data values

2-bits

indices

RR

C

29

TENSOR CORE MATH THROUGHPUT

INPUT OPERANDS ACCUMULATOR TOPS

Dense Sparse

vs. FFMA Vs. FFMA

FP32 FP32 19.5 - -

TF32 FP32 156 8X 16X

FP16 FP32 312 16X 32X

BF16 FP32 312 16X 32X

FP16 FP16 312 16X 32X

INT8 INT32 624 32X 64X

INT4 INT32 1248 64X 128X

BINARY INT32 4992 256X -

2x with Sparsity

30

SPARSE TENSOR CORES
Measured GEMM Performance with Current Software

M N K Speedup

1024 8192 1024 1.44x

1024 16384 1024 1.73x

4096 8192 1024 1.53x

4096 16384 1024 1.78x

GEMM sizes selected from BERT-Large

31

SPARSE TENSOR CORES
Measured Convolution Performance With Current Software

N C K H,W R,S Speedup

32 1024 2048 14 1 1.52x

32 2048 1024 14 1 1.77x

32 2048 4096 7 1 1.64x

32 4096 2048 7 1 1.75x

256 256 512 7 3 1.85x

Kernel sizes selected from ResNeXt-101_32x16d/ResNet-50

32

NETWORK DATA TYPE SCENARIO PERFORMANCE

BERT-Large INT8
BS=256, SeqLen=128 6200 seq/s

BS=1-256, SeqLen=128 1.3X-1.5X

ResNeXt-101_32x16d

FP16
BS=256 2700 images/second

BS=1-256 Up to 1.3X

INT8
BS=256 4400 images/second

BS=1-256 Up to 1.3X

NETWORK PERFORMANCE
End to End Inference Speedup

33

2) Prune for 2:4 sparsity

RECIPE FOR 2:4 SPARSE NETWORK TRAINING

1) Train (or obtain) a dense network

Dense weights

2:4 sparse weights

Retrained 2:4 sparse
weights

1) Train (or obtain) a dense network

2) Prune for 2:4 sparsity

3) Repeat the original training procedure
• Same hyper-parameters as in step-1

• Initialize to weights from step-2

• Maintain the 0 pattern from step-2: no need to recompute the mask

34

IMAGE CLASSIFICATION

Network

Accuracy

Dense FP16 Sparse FP16 Sparse INT8

ResNet-34 73.7 73.9 0.2 73.7 -

ResNet-50 76.6 76.8 0.2 76.8 0.2

ResNet-101 77.7 78.0 0.3 77.9 -

ResNeXt-50-32x4d 77.6 77.7 0.1 77.7 -

ResNeXt-101-32x16d 79.7 79.9 0.2 79.9 0.2

DenseNet-121 75.5 75.3 -0.2 75.3 -0.2

DenseNet-161 78.8 78.8 - 78.9 0.1

Wide ResNet-50 78.5 78.6 0.1 78.5 -

Wide ResNet-101 78.9 79.2 0.3 79.1 0.2

Inception v3 77.1 77.1 - 77.1 -

Xception 79.2 79.2 - 79.2 -

VGG-16 74.0 74.1 0.1 74.1 0.1

VGG-19 75.0 75.0 - 75.0 -

ImageNet

35

IMAGE CLASSIFICATION

Network

Accuracy

Dense FP16 Sparse FP16 Sparse INT8

ResNet-50 (SWSL) 81.1 80.9 -0.2 80.9 -0.2

ResNeXt-101-32x8d (SWSL) 84.3 84.1 -0.2 83.9 -0.4

ResNeXt-101-32x16d (WSL) 84.2 84.0 -0.2 84.2 -

SUNet-7-128 76.4 76.5 0.1 76.3 -0.1

DRN-105 79.4 79.5 0.1 79.4 -

ImageNet

WSL = Weakly Supervised Learning
SWSL = Semi-Weakly Supervised Learning

36

SEGMENTATION/DETECTION

Network

Accuracy

Dense FP16 Sparse FP16 Sparse INT8

MaskRCNN-RN50 37.9 37.9 - 37.8 -0.1

SSD-RN50 24.8 24.8 - 24.9 0.1

FasterRCNN-RN50-FPN-1x 37.6 38.6 1.0 38.4 0.8

FasterRCNN-RN50-FPN-3x 39.8 39.9 -0.1 39.4 -0.4

FasterRCNN-RN101-FPN-3x 41.9 42.0 0.1 41.8 -0.1

MaskRCNN-RN50-FPN-1x 39.9 40.3 0.4 40.0 0.1

MaskRCNN-RN50-FPN-3x 40.6 40.7 0.1 40.4 -0.2

MaskRCNN-RN101-FPN-3x 42.9 43.2 0.3 42.8 -0.1

RetinaNet-RN50-FPN-1x 36.4 37.4 1.0 37.2 0.8

RPN-RN50-FPN-1x 45.8 45.6 -0.2 45.5 -0.3

COCO 2017, bbox AP

RN = ResNet Backbone
FPN = Feature Pyramid Network
RPN = Region Proposal Network

37

NLP - TRANSLATION

Network Metric

Accuracy

Dense FP16 Sparse FP16 Sparse INT8

GNMT BLEU 24.6 24.9 0.3 24.9 0.3

FairSeq Transformer BLEU 28.2 28.5 0.3 28.3 0.1

Levenstein Transformer Validation Loss 6.16 6.18 -0.2 6.16 -

EN-DE WMT’14

38

NLP – LANGUAGE MODELING
Transformer-XL, BERT

Network Task Metric

Accuracy

Dense FP16 Sparse FP16 Sparse INT8

Transformer-XL enwik8 BPC 1.06 1.06 - - f

BERT-Base SQuAD v1.1 F1 87.6 88.1 0.5 88.1 0.5

BERT-Large SQuAD v1.1 F1 91.1 91.5 0.4 91.5 0.4

39

SUMMARY (MIXED PRECISION)

A100 introduces wide variety to Tensor Cores for DL training - FP16/BF16/TF32

• TF32 is the default on A100

• FP16/BF16 options are for maximum performance

To enable Tensor Cores:

• No code changes for TF32

• AMP for FP16/BF16

To maximize perf:

• Make use of DL Profilers

• Ensure training time spent on GPU and math-bound layers, as well as TC utilization

40

SUMMARY (SPARSITY)

We moved fine-grained weight sparsity from research to production

Fine-grained structured sparsity is:

- 50% sparse, 2 out of 4 elements are zero

- Accurate with our 3-step universal fine-tuning recipe

- Simple recipe: train dense, prune, re-train sparse

- Across many tasks, networks, optimizers

- Fast with the NVIDIA Ampere Architecture’s Sparse Tensor Cores

- Up to 1.85x in individual layers

- Up to 1.5x in end-to-end networks

20

MIXED PRECISION FOR COMPUTE

21

PROGRAMMING NVIDIA AMPERE ARCHITECTURE
Deep Learning and Math Libraries using Tensor Cores (with CUDA kernels under the hood)

• cuDNN, cuBLAS, cuTENSOR, cuSOLVER, cuFFT, cuSPARSE

• “CUDNN V8: New Advances in Deep Learning Acceleration” (GTC 2020 - S21685)

• “How CUDA Math Libraries Can Help you Unleash the Power of the New NVIDIA A100 GPU” (GTC 2020 – S21681)

• “Inside the Compilers, Libraries and Tools for Accelerated Computing” (GTC 2020 – S21766)

CUDA C++ Device Code

• CUTLASS, CUDA Math API, CUB, Thrust, libcu++

CUDA device code

CUDA-accelerated math
libraries with host-side API

GPU

GPU-accelerated
application

22

cuBLAS
3rd GENERATION TENSOR CORES ADD SUPPORT FOR FP64 & NEW TYPE BF16 & COMPUTE TYPE TF32

0

4

8

12

16

20

0 1024 2048 3072 4096 5120 6144 7168 8192

T
F
L
O

P
S

Matrix Size (m=n=k)

FP64 Matrix Multiply: A100 vs V100

A100 FP64 Tensor Core (DMMA)

V100 FP64

0

40

80

120

160

200

240

280

0 1024 2048 3072 4096 5120 6144 7168 8192

T
F
L
O

P
S

Matrix Size (m=n=k)

Mixed Precision Matrix Multiply on A100

FP16 Tensor Core

BF16 Tensor Core

TF32 Tensor Core

FP32

23

cuBLAS

AlignN means alignment to 16bit multiplies of N. For example, align8 are problems aligned to 128bits or 16 bytes.
(*) In some cases if heuristics determine it will result in better performance kernels that do not use the tensor cores might be selected

NO MORE ALIGNMENT RESTRICTIONS FOR TENSOR CORE EXECUTION ELIBIGILITY OF MATRIX MULTIPLIES*

24

cuTENSOR
PERFORMANCE IMPROVEMENTS FROM FP64 AND TF32 COMPUTE TENSOR CORES

25

TENSOR CORE ACCELERATED

ITERATIVE REFINEMENT SOLVER

26

cuSOLVER
DENSE LINEAR ALGEBRA PERFORMANCE ON THE NEW NVIDIA A100 & DGX-A100™

0.0

0.5

1.0

1.5

2.0

2.5

2
0
4
8

4
0
9
6

6
1
4
4

8
1
9
2

1
0
2
4
0

1
2
2
8
8

1
4
3
3
6

1
6
3
8
4

1
8
4
3
2

2
0
4
8
0

2
2
5
2
8

2
4
5
7
6

2
6
6
2
4

2
8
6
7
2

3
0
7
2
0

3
2
7
6
8

3
4
8
1
6

3
6
8
6
4

S
p
e
e
d
-U

p

Matrix Size

Dense Linear Algbra Performance Comparison Between GA100 and GV100

DGETRF (LU)

DGEQRF (QR)

DPOTRF (Cholesky)

DSYEVD (Symm. Eigensolver)

Results comparing CUDA 11.0 cuSOLVER NVIDIA A100 to CUDA 10.2 on V100.

2.4X Speed-up per
GPU performance

27

TENSOR CORE ACCELERATED LIBRARIES

LU factorization is used to solve a
linear system Ax=b

A x = b

LUx = b

Ly = b

then
Ux = y

A x b

U
L

x b

L
y b

U x y

Multi-precision numerical methods

Solving linear system of dense equations Ax=b

28

TENSOR CORE ACCELERATED LIBRARIES

Multi-precision numerical methods

Solving linear system of dense equations Ax=b

29

TENSOR CORE ACCELERATED LIBRARIES

Multi-precision numerical methods

Solving linear system of dense equations Ax=b

9 .7 19.5 19.5

156

312 312

0

50

100

150

200

250

300

350

F
P
6
4

F
P
6
4-T

C

F
P
3
2

T
F
3
2
-T

C

F
P
1
6-T

C

B
F
1
6
-T

C

GA100 Tflops

30

TENSOR CORE ACCELERATED LIBRARIES

9 .7 19.5 19.5

156

312 312

0

50

100

150

200

250

300

350

F
P
6
4

F
P
6
4-T

C

F
P
3
2

T
F
3
2
-T

C

F
P
1
6-T

C

B
F
1
6
-T

C

GA100 Tflops

How about a multi-precision LU then ?

Can it be accelerated using Tensor Cores
and still get fp64 accuracy?

Multi-precision numerical methods

Solving linear system of dense equations Ax=b

31

2k4k6k8k10k 14k 18k 22k 26k 30k 34k 40k

Matrix size

0

4

8

12

16

20

24

28

32

36

40

44

T
fl

o
p

/s

FP16 getrf

BF16 getrf

TF32 getrf

FP64 getrf

3.5X

TENSOR CORE ACCELERATED LIBRARIES
Performance of the LU factorization with different precisions

Performance of the LU with different precisions

Flops = 2n3/(3 time) e.g.,twice higher is twice faster

➢ LU using FP64-TC

➢ LU using FP16-TC

➢ LU using BF16-TC

➢ LU using TF32-TC

Results obtained using CUDA 11.0 and A100 GPU.

32

TENSOR CORE ACCELERATED LIBRARIES
Accuracy just after the reduced precision LU factorization

Accuracy of the obtained solution

➢ FP64-TC provide a solution down to

the FP64 accuracy

➢ TF32 and FP16 provide a solution to

around 1E-05 accuracy

➢ Obtained solution has 11 digits loss
compared to the FP64 one,

➢ can we do better and achieve the
FP64 accuracy?

Results obtained using CUDA 11.0 and A100 GPU.

33

TENSOR CORE ACCELERATED LIBRARIES

E. Carson, N. J. Higham, Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions, SIAM J. Sci. Comput., 40(2), A817–A847.

A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers, SC-18 Dallas, 2018

A.Haidar, H. Bayraktar, S. Tomov, J. Dongarra, N. J. Higham Mixed-Precision Iterative Refinement using Tensor Cores on GPUs to Accelerate Solution of Linear Systems, submitted Royal Society Journal UK 2020.

How can we get to FP64 accuracy?

Idea: use reduced precision to compute the expensive flops (LU O(n3)) and then iteratively refine the
solution (O(n2)) in order to achieve the FP64 level of accuracy

Iterative refinement for solving Ax = b:

Perform a factorization in reduced precision A = LU

34

Iterative refinement for solving Ax = b:

Perform a factorization in reduced precision A = LU

refine
WHILE || r || > eps_FP64
1. Find correction c such that Ac = r, c = U\(L\r)
2. x = x + c

3. r = b – Ax (with original A).
END

TENSOR CORE ACCELERATED LIBRARIES
How can we get to FP64 accuracy?

Idea: use reduced precision to compute the expensive flops (LU O(n3)) and then iteratively refine the
solution (O(n2)) in order to achieve the FP64 level of accuracy

E. Carson, N. J. Higham, Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions, SIAM J. Sci. Comput., 40(2), A817–A847.

A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers, SC-18 Dallas, 2018

A.Haidar, H. Bayraktar, S. Tomov, J. Dongarra, N. J. Higham Mixed-Precision Iterative Refinement using Tensor Cores on GPUs to Accelerate Solution of Linear Systems, submitted Royal Society Journal UK 2020.

35

2k4k6k8k10k 14k 18k 22k 26k 30k 34k 40k

Matrix size

0

4

8

12

16

20

24

28

32

36

40

44

T
fl

o
p

/s

FP64 on V100

FP16->64 on V100

TENSOR CORE ACCELERATED LIBRARIES

Flops = 2n3/(3 time)
meaning twice higher is twice faster

➢ solving Ax = b using FP64 LU

➢ solving Ax = b using FP16 Tensor
Cores LU and iterative refinement to

achieve FP64 accuracy

➢ FP16 is about 4X faster within a
solution to the FP64 accuracy.

VOLTA V100

Problem generated with Hilbert matrices.

Performance Behavior, Hilbert matrices, V100

Results obtained using CUDA 11.0 and V100 GPU.

FP64 on V100

FP16->64 on V100

FP64 on V100

FP16->64 on V100

35

2k4k6k8k10k 14k 18k 22k 26k 30k 34k 40k

Matrix size

0

4

8

12

16

20

24

28

32

36

40

44

T
fl

o
p

/s

FP64 on V100

FP16->64 on V100

TENSOR CORE ACCELERATED LIBRARIES

4X

Flops = 2n3/(3 time)
meaning twice higher is twice faster

➢ solving Ax = b using FP64 LU

➢ solving Ax = b using FP16 Tensor
Cores LU and iterative refinement to

achieve FP64 accuracy

➢ FP16 is about 4X faster within a
solution to the FP64 accuracy.

VOLTA V100

Problem generated with Hilbert matrices.

Performance Behavior, Hilbert matrices, V100

Results obtained using CUDA 11.0 and V100 GPU.

FP64 on V100

FP16->64 on V100

FP64 on V100

FP16->64 on V100

36

2k4k6k8k10k 14k 18k 22k 26k 30k 34k 40k

Matrix size

0

4

8

12

16

20

24

28

32

36

40

44

T
fl

o
p

/s

FP64 on A100/V100 (solid/dashed)

FP16->64 on A100/V100 (solid/dashed)

BF16->64 on A100 (solid)

TF32->64 on A100 (solid)

TENSOR CORE ACCELERATED ITERATIVE REFINEMENT SOLVER

Flops = 2n3/(3 time)
meaning twice higher is twice faster

➢ Speedup compared to FP64 has same

trend on both hardware.

➢ TF32 is 3.3X faster within a solution

to the FP64 accuracy.

➢ FP16 is 3.5X faster within a solution to
the FP64 accuracy.

➢ A100 provides about 1.8X speedup

over V100 for both FP16 and FP64

variants

Problem generated with Hilbert matrices.

Performance Behavior, Hilbert matrices, V100 v.s. A100

1.9X

Results obtained using CUDA 11.0 and V100, A100 GPU.

1.8X

36

2k4k6k8k10k 14k 18k 22k 26k 30k 34k 40k

Matrix size

0

4

8

12

16

20

24

28

32

36

40

44

T
fl

o
p

/s

FP64 on A100/V100 (solid/dashed)

FP16->64 on A100/V100 (solid/dashed)

BF16->64 on A100 (solid)

TF32->64 on A100 (solid)

TENSOR CORE ACCELERATED ITERATIVE REFINEMENT SOLVER

Flops = 2n3/(3 time)
meaning twice higher is twice faster

➢ Speedup compared to FP64 has same

trend on both hardware.

➢ TF32 is 3.3X faster within a solution

to the FP64 accuracy.

➢ FP16 is 3.5X faster within a solution to
the FP64 accuracy.

➢ A100 provides about 1.8X speedup

over V100 for both FP16 and FP64

variants

Problem generated with Hilbert matrices.

Performance Behavior, Hilbert matrices, V100 v.s. A100

1.9X

3.5X

Results obtained using CUDA 11.0 and V100, A100 GPU.

1.8X

37

Matrices from SuiteSparse, A100

TENSOR CORE ACCELERATED ITERATIVE REFINEMENT SOLVER

38

➢ Solving matrices from the SuiteSparse

collection corresponding to a wide

range of applications in fluid dynamics,

structural mechanics, materials

science, nuclear energy, oil and gas

exploration and others

➢ TF32 converges faster than both FP16

and BF16 and is able to solve wider

range of problems

Results obtained using CUDA 11.0 and A100 GPU.

Matrices from SuiteSparse and other problems, A100

TCAIRS NUMERICAL BEHAVIOR

39

➢ TF32 converges faster than both FP16 and
BF16 and is able to solve wider range of
problems

➢ In terms of performance TF32 provide time
to solution close or better than both BF16
and FP16

➢ In summary, TF32 can be considered the
most robust and the fastest variant

Results obtained using CUDA 11.0 and A100 GPU.

Matrices from SuiteSparse and other problems, A100

	 Performance Fallback	cases Notes

FP32 1x 1 Hard	case

TF32 2x 2 Hard	case

FP16	scaled 2x 3 Scaling	fixes	

many	cases

BF16 2x 6 Loss	of	

precision	is	an	

issue	for	

several	cases

TCAIRS PERFORMANCE BEHAVIOR

40

cuSOLVER

CUDA 11.0

10.2 +
TCAIRS-QR real
TCAIRS-QR complex
TCAIRS-QR NRHS
FP32, FP16-TC
FP64-TC, TF32-TC, BF16-TC
Many other advancements

Mixed Precision Solvers are gaining a lot of attention for their power to

provide a solution up to 4X-5X faster and for their energy efficiency.

January 2019 Nov 2019 May 2020

cuSOLVER
CUDA 10.2

TCAIRS-LU real
TCAIRS-LU complex
TCAIRS-LU NRHS
FP64, FP32, FP16-TC

Magma 2.5.0

TCAIRS-LU real
FP64, FP32, FP16-TC

Tensor Core Accelerated Iterative Refinement Solver (TCAIRS)

TENSOR CORE ACCELERATED ITERATIVE REFINEMENT SOLVER

41

CONCLUSION

Don’t blindly use double precision without considering what precision is required

Judicious use of precision tuning can lead to >4x speedup

Optimal approach may utilize 3 or even more different precisions

Mixed precision can accelerate compute and bandwidth bound parts

use libraries where applicable

design your code so it is easy to play with precision

