
M
it
g

lie
d

 d
e

r
H

e
lm

h
o

lt
z
-G

e
m

e
in

s
c
h

a
ft

Debuggers and

Performance Tools

February 2013 | Markus Geimer

 February 2013 JUQUEEN Porting & Tuning Workshop 2

Outline

Make it work,

make it right,

make it fast.

 Kent Beck

Local module setup

Debugger:

• TotalView

Performance Tools:

• Scalasca

• TAU

• Vampir

• HPCToolkit

 February 2013 JUQUEEN Porting & Tuning Workshop 3

UNITE

 UNiform Integrated Tool Environment

 Standardizes tool access and documentation

 Currently in use at JSC, RWTH, ZIH

 Based on “module” command

 Standardized tool and version identification

 <tool>/<version>-<special>

 <special>: optional indicator if tool is specific for a MPI

library, compiler, or 32/64 bit mode

 Tools only visible after

 module load UNITE # once per session

 Basic usage and pointer to tool documentation via

 module help <tool>

 February 2013 JUQUEEN Porting & Tuning Workshop 4

Example

% module load UNITE
UNITE loaded
% module help scalasca
Module Specific Help for scalasca/1.4.2:

Scalasca: Scalable Performance Analysis of Large-Scale
 Parallel Applications
Version 1.4.2

Basic usage:
1. Instrument application with skin
2. Collect & analyze execution measurement with scan
3. Examine analysis results with square

For more information:
- See ${SCALASCA_ROOT}/doc/manuals/QuickReference.pdf
 or type "scalasca -h"
- http://www.scalasca.org
- mailto:scalasca@fz-juelich.de

 February 2013 JUQUEEN Porting & Tuning Workshop 5

Documentation

 Use “module avail” to check latest status

 Websites

 http://www.fz-juelich.de/ias/jsc/juqueen/

 User Info

 Debugging

 Performance Analysis ()

 http://www.vi-hps.org/training/material/

 Performance Tools LiveDVD image

 Links to tool websites and documentation

 Tutorial slides

M
it
g

lie
d

 d
e

r
H

e
lm

h
o

lt
z
-G

e
m

e
in

s
c
h

a
ft

Debugging on JUQUEEN

February 2013 | Alexandre Strube

 February 2013 JUQUEEN Porting & Tuning Workshop 7

 Parallel Debugger

 UNIX Symbolic Debugger

for C, C++, f77, f90, PGI HPF, assembler programs

 “Standard” debugger

 Special, non-traditional features

 Multi-process and multi-threaded

 C++ support (templates, inheritance, inline functions)

 F90 support (user types, pointers, modules)

 1D + 2D Array Data visualization

 Support for parallel debugging (MPI: automatic attach,

message queues, OpenMP, pthreads)

 Scripting and batch debugging

 Memory Debugging

 http://www.roguewave.com

 February 2013 JUQUEEN Porting & Tuning Workshop 8

Debugger Setup

 Compile and link your program with debug option: -g

 Use absolute paths for source code info: -qfullpath

 In case of optimized codes (XL), keep function call parameters:

–qkeepparm

 Load modules

% ssh -X user@juqueen
[...]
juqueen% module load UNITE totalview
UNITE loaded
Totalview/8.11.0-0 loaded

juqueen% mpixlcxx hello.cpp -qfullpath -qkeepparm -g -o helloworld
juqueen%

 February 2013 JUQUEEN Porting & Tuning Workshop 9

Debugger Startup

 Interactively: call the lltv script

 Creates a LoadLeveler batch script with required TotalView

parameters

 If user cancels the script, it cancels the debugging job

(does not eat your computing quota)

 DON’T attach to all ranks! This will be VERY slow.

 February 2013 JUQUEEN Porting & Tuning Workshop 10

Launch Script

 Starts <program> with <nodes> and <num> processes, attaches to

<rank-range>:

 Rank: that rank only

 RankX-RankZ: all ranks, both inclusive

 RankX-RankZ:stride every strideth between RankX and RankZ

 Example:

juqueen% lltv -n <nodes> : -default_parallel_attach_subset= \
<rank-range> runjob -a --exe <program> -p <num>

juqueen% lltv -n 2 : -default_parallel_attach_subset= \
2-6 runjob -a --exe helloworld -p 64

Creating LoadLeveler Job
Submitting LoadLeveler Interactive Job for Totalview
 Wait for job juqueen1c1.32768.0 to be started:...........

 February 2013 JUQUEEN Porting & Tuning Workshop 11

Execution

 Totalview tries to debug “runjob” and shows no source code

 Ignore it and press “GO”

 After some seconds, TotalView will detect parallel execution and

ask if it should stop. Yes, it should stop.

 To find the correct point file/function to debug, use the

“File-Open” command.

 Set your breakpoints, and press “GO” again. Debugging session

will then start.

 To see a variable’s contents, double click on it in the source.

 February 2013 JUQUEEN Porting & Tuning Workshop 12

TotalView: Main Window

Toolbar for

common

options

Local

variables

for

selected

stack frame

Source

code

window

Break

points

Stack

trace

 February 2013 JUQUEEN Porting & Tuning Workshop 13

Totalview: Tools Menu

 Message

queue

graph

 Data visualization Call Graph

M
it
g

lie
d

 d
e

r
H

e
lm

h
o

lt
z
-G

e
m

e
in

s
c
h

a
ft

Performance Analysis Tools

on JUQUEEN

February 2013 | Markus Geimer

 February 2013 JUQUEEN Porting & Tuning Workshop 15

Typical Performance Analysis Procedure

■ Do I have a performance problem at all?

■ Time / speedup / scalability measurements

■ What is the key bottleneck (computation / communication)?

■ MPI / OpenMP / flat profiling

■ Where is the key bottleneck?

■ Call-path profiling, detailed basic block profiling

■ Why is it there?

■ Hardware counter analysis

■ Trace selected parts (to keep trace size manageable)

■ Does the code have scalability problems?

■ Load imbalance analysis, compare profiles at various

sizes function-by-function

 February 2013 JUQUEEN Porting & Tuning Workshop 16

Remark: No Single Solution is Sufficient!

A combination of different methods, tools and techniques

is typically needed!

■ Analysis

■ Statistics, visualization, automatic analysis, data mining, ...

■ Measurement

■ Sampling / instrumentation, profiling / tracing, ...

■ Instrumentation

■ Source code / binary, manual / automatic, ...

 February 2013 JUQUEEN Porting & Tuning Workshop 17

Critical Issues

■ Accuracy

■ Intrusion overhead

■ Measurement itself needs time and thus lowers performance

■ Perturbation

■ Measurement alters program behavior

■ E.g., memory access pattern

■ Accuracy of timers & counters

■ Granularity

■ How many measurements?

■ How much information / processing during each

measurement?

Tradeoff: Accuracy vs. Expressiveness of data

 February 2013 JUQUEEN Porting & Tuning Workshop 18

 Scalable Analysis of Large Scale Applications

 Approach

 Instrument C, C++, and Fortran parallel applications

 Based on MPI, OpenMP, SHMEM, or hybrid

 Option 1: scalable call-path profiling

 Option 2: scalable event trace analysis

 Collect event traces

 Search trace for event patterns

representing inefficiencies

 Categorize and rank inefficiencies found

 http://www.scalasca.org

 February 2013 JUQUEEN Porting & Tuning Workshop 19

What is the Key Bottleneck?

 Generate flat MPI profile using Scalasca

 Only requires re-linking

 Low runtime overhead

 Provides detailed information on MPI usage

 How much time is spent in which operation?

 How often is each operation called?

 How much data was transferred?

 Limitations:

 Computation on non-master threads and outside

of MPI_Init/MPI_Finalize scope ignored

 February 2013 JUQUEEN Porting & Tuning Workshop 20

Flat MPI Profile: Recipe

1. Prefix your link command with

 “scalasca -instrument -comp=none”

2. Prefix your MPI launch command with

 “scalasca -analyze”

3. After execution, examine analysis results using

 “scalasca -examine epik_<title>”

 February 2013 JUQUEEN Porting & Tuning Workshop 21

Flat MPI Profile: Example

juqueen% module load UNITE scalasca
juqueen% mpixlf90 -O3 -c foo.f90
juqueen% mpixlf90 -O3 -c bar.f90
juqueen% scalasca -instrument -comp=none \
 mpixlf90 -O3 -o myprog foo.o bar.o

##########################
In the job script: ##
##########################

module load UNITE scalasca
scalasca -analyze \
 runjob --ranks-per-node p --np n [...] --exe ./myprog

##########################
After job finished: ##
##########################

juqueen% scalasca -examine epik_myprog_nxt_sum

 February 2013 JUQUEEN Porting & Tuning Workshop 22

Flat MPI Profile: Example (cont.)

Execution time on

master thread

Time spent in a

particular MPI

call

Time spent in

selected call as

percentage of

total time

 February 2013 JUQUEEN Porting & Tuning Workshop 23

Where is the Key Bottleneck?

 Generate call-path profile using Scalasca

 Requires re-compilation

 Runtime overhead depends on application characteristics

 Typically needs some care setting up a good measurement

configuration

 Filtering

 Selective instrumentation

 Option 1 (recommended):

Automatic compiler-based instrumentation

 Option 2:

Manual instrumentation of interesting phases, routines, loops

 February 2013 JUQUEEN Porting & Tuning Workshop 24

Call-path Profile: Recipe

1. Prefix your compile & link commands with

 “scalasca -instrument”

2. Prefix your MPI launch command with

 “scalasca -analyze”

3. After execution, compare overall runtime with uninstrumented

run to determine overhead

4. If overhead is too high

1. Score measurement using

“scalasca -examine -s epik_<title>”

2. Prepare filter file

3. Re-run measurement with filter applied using prefix

“scalasca –analyze –f <filter_file>”

5. After execution, examine analysis results using

 “scalasca -examine epik_<title>”

 February 2013 JUQUEEN Porting & Tuning Workshop 25

Call-path Profile: Example

juqueen% module load UNITE scalasca
juqueen% scalasca -instrument mpixlf90 -O3 -c foo.f90
juqueen% scalasca -instrument mpixlf90 -O3 -c bar.f90
juqueen% scalasca -instrument \
 mpixlf90 -O3 -o myprog foo.o bar.o

##########################
In the job script: ##
##########################

module load UNITE scalasca
scalasca -analyze \
 runjob --ranks-per-node p --np n [...] --exe ./myprog

 February 2013 JUQUEEN Porting & Tuning Workshop 26

Call-path Profile: Example (cont.)

 Region/call-path classification

 MPI (pure MPI library functions)

 OMP (pure OpenMP functions/regions)

 USR (user-level source local computation

 COM (“combined” USR + OpeMP/MPI)

 ANY/ALL (aggregate of all region types)

juqueen% scalasca -examine -s epik_myprog_nxt_sum
cube3_score -r ./epik_myprog_nxt_sum/summary.cube
Reading ./epik_myprog_nxt_sum/summary.cube... done.
Est. aggregate size of event trace (total_tbc): 160,338,400,040 bytes
Est. size of largest thread trace (max_tbc): 133,910,372 bytes
(When tracing set ELG_BUFFER_SIZE to avoid intermediate flushes or
 reduce requirements using filter file listing names of USR regions.)

INFO: Score report written to ./epik_myprog_nxt_sum/epik.score

USR

USR

COM

COM USR

USR MPI OMP

 February 2013 JUQUEEN Porting & Tuning Workshop 27

Call-path Profile: Example (cont.)

juqueen% less epik_myprog_nxt_sum/epik.score
flt type max_tbc time % region
 ANY 133910372 49656.65 100.00 (summary) ALL
 MPI 483104 6575.16 13.24 (summary) MPI
 OMP 1620780 27541.42 55.46 (summary) OMP
 COM 343320 4442.51 8.95 (summary) COM
 USR 131511360 10628.25 21.40 (summary) USR

 USR 42219648 4664.19 9.39 binvcrhs
 USR 42219648 2994.22 6.03 matmul_sub
 USR 42219648 2519.26 5.07 matvec_sub
 USR 1891008 156.64 0.32 binvrhs
 USR 1891008 210.20 0.42 lhsinit
 USR 1033416 76.88 0.15 exact_solution
 MPI 201000 37.20 0.07 MPI_Isend
 MPI 184920 33.19 0.07 MPI_Irecv
 MPI 96480 6362.37 6.25 MPI_Waitall
 COM 96480 1330.77 2.68 copy_x_face
 COM 96480 1331.61 2.68 copy_y_face
 OMP 88440 533.11 1.07 !$omp parallel @foo.f90
[...]

 February 2013 JUQUEEN Porting & Tuning Workshop 28

Call-path Profile: Filtering

 In this example, the 6 most fequently called routines are

of type USR (max_tbc is proportional to visit count)

 These routines contribute around 21% of total time

 However, much of that is most likely measurement overhead

for a few frequently-executed small routines

 Avoid measurements to reduce the overhead

 List routines to be filtered in simple text file

 juqueen% cat filter.txt
binvcrhs
matmul_sub
matvec_sub
binvrhs
lhsinit
exact_solution

 February 2013 JUQUEEN Porting & Tuning Workshop 29

Call-path Profile: Example (cont.)

To verify effect of filter:

juqueen% scalasca -examine -s -f filter.txt \
 epik_myprog_nxt_sum

##########################
In the job script: ##
##########################

module load UNITE scalasca
scalasca -analyze -f filter.txt \
 runjob --ranks-per-node p --np n [...] --exe ./myprog

##########################
After job finished: ##
##########################

juqueen% scalasca -examine epik_myprog_nxt_sum

 February 2013 JUQUEEN Porting & Tuning Workshop 30

Call-path Profile: Example (cont.)

 February 2013 JUQUEEN Porting & Tuning Workshop 31

Call-path Profile: Example (cont.)

Distribution of

selected metric

across call tree

When expanding,

value changes

from inclusive to

exclusive
Selection updates

columns to the

right

 February 2013 JUQUEEN Porting & Tuning Workshop 32

Call-path Profile: Example (cont.)

Split base

metrics into more

specific metrics

 February 2013 JUQUEEN Porting & Tuning Workshop 33

Why is the Bottleneck There?

 This is highly application dependent!

 Might require additional measurements

 Hardware-counter analysis

 CPU utilization

 Cache behavior

 Selective instrumentation

 Manual/automatic event trace analysis

 February 2013 JUQUEEN Porting & Tuning Workshop 34

HW Counter Measurements w/ Scalasca

 Scalasca supports both PAPI and native counters

 Available counters:

 Specify using “-m” option of “scalasca -analyze”:

juqueen% module load UNITE papi
juqueen% less $PAPI_ROOT/doc/papi-5.0.1-avail.txt
juqueen% less $PAPI_ROOT/doc/papi-5.0.1-native_avail.txt
juqueen% less $PAPI_ROOT/doc/papi-5.0.1-avail-detail.txt

##########################
In the job script: ##
##########################

module load UNITE scalasca
scalasca -analyze -f filter.txt \
 -m PAPI_FP_OPS:PAPI_TOT_INS:PAPI_TOT_CYC \
 runjob --ranks-per-node p --np n [...] --exe ./myprog

 February 2013 JUQUEEN Porting & Tuning Workshop 35

Manual Instrumentation w/ Scalasca

 Can be used to mark initialization, solver & other phases

 Annotation macros ignored by default

 Enabled with “-user” flag of “scalasca -instrument”

 Appear as additional regions in analyses

 Distinguishes performance of important phase from rest

 Fortran (requires C preprocessor) C / C++

#include “epik_user.inc”

subroutine foo(…)

 ! Declarations

 EPIK_USER_REG(solve, “<solver>”)

 ! Some code…

 EPIK_USER_START(solve)

 do i=1,100

 [...]

 end do

 EPIK_USER_END(solve)

 ! Some more code…

end subroutine

#include “epik_user.h”

void foo(…) {

 /* Declarations */

 EPIK_USER_REG(solve, “<solver>”);

 /* Some code… */

 EPIK_USER_START(solve);

 for (i=0; i<100; i++) {

 [...]

 }

 EPIK_USER_END(solve);

 /* Some more code… */

}

 February 2013 JUQUEEN Porting & Tuning Workshop 36

Selective Measurement w/ Scalasca

 Can be used to temporarily disable measurement for certain intervals

 Annotation macros ignored by default

 Enabled with “-user” flag of “scalasca -instrument”

 Appear as synthetic PAUSED region in analyses

 Fortran (requires C preprocessor) C / C++

#include “epik_user.inc”

subroutine foo(…)

 ! Some code…

 EPIK_PAUSE_START()

 ! Loop will not be measured

 do i=1,100

 [...]

 end do

 EPIK_PAUSE_END()

 ! Some more code…

end subroutine

#include “epik_user.h”

void foo(…) {

 /* Some code… */

 EPIK_PAUSE_START();

 /* Loop will not be measured */

 for (i=0; i<100; i++) {

 [...]

 }

 EPIK_PAUSE_END();

 /* Some more code… */

}

 February 2013 JUQUEEN Porting & Tuning Workshop 37

Scalasca API Limitations

 START and END calls must be correctly nested

 That is, you cannot start a region in one routine and end

it in another

 Measurement control API calls are not allowed within OpenMP

parallel regions

 Behavior of automatic trace analysis is undefined when

PAUSING skips recording MPI events on subsets of processes

 Examples:

 A collective operation is excluded only on some ranks

involved

 A send/receive on one rank is excluded w/o the

corresponding send/receive on the matching rank

 Will generally lead to a deadlock

 February 2013 JUQUEEN Porting & Tuning Workshop 38

Trace Generation & Analysis w/ Scalasca

 Identifies inefficiency patterns in communication and

synchronization operations

 Specify using “-t” option of “scalasca -analyze”:

 ATTENTION:

 Traces can quickly become extremely large!

 Remember to use proper filtering & selective instrumentation

 Ask us for assistance

##########################
In the job script: ##
##########################

module load UNITE scalasca
scalasca -analyze -f filter.txt -t \
 runjob --ranks-per-node p --np n [...] --exe ./myprog

 February 2013 JUQUEEN Porting & Tuning Workshop 39

TAU

 Very portable tool set for

instrumentation, measurementand analysis

of parallel multi-threaded applications

 http://tau.uoregon.edu/

 Supports

 Various profiling modes and tracing

 Various forms of code instrumentation

 C, C++, Fortran, Java, Python

 MPI, multi-threading (OpenMP, Pthreads, …)

 February 2013 JUQUEEN Porting & Tuning Workshop 40

TAU Instrumentation

 Flexible instrumentation mechanisms at multiple levels

 Source code

 manual

 automatic

 C, C++, F77/90/95 (Program Database Toolkit (PDT))

 OpenMP (directive rewriting with Opari)

 Object code

 pre-instrumented libraries (e.g., MPI using PMPI)

 statically-linked and dynamically-loaded (e.g., Python)

 Executable code

 dynamic instrumentation (pre-execution) (DynInst)

 virtual machine instrumentation (e.g., Java using JVMPI)

 Support for performance mapping

 Support for object-oriented and generic programming

 February 2013 JUQUEEN Porting & Tuning Workshop 41

TAU: Recipe

1. module load UNITE tau # once per session

2. Specify programming model by setting TAU_MAKEFILE

to one of $TAU_MF_DIR/Makefile.tau-*
 MPI: Makefile.tau-bgqtimers-papi-mpi-pdt

 OpenMP/MPI: Makefile.tau-bgqtimers-papi-mpi-pdt-openmp-opari

3. Compile and link with

 tau_cc.sh file.c ...

 tau_cxx.sh file.cxx...

 tau_f90.sh file.f90 ...

4. Execute with real input data

Environment variables control measurement mode

 TAU_PROFILE, TAU_TRACE, TAU_CALLPATH, …

5. Examine results with paraprof

 February 2013 JUQUEEN Porting & Tuning Workshop 42

TAU: Basic Profile View

 February 2013 JUQUEEN Porting & Tuning Workshop 43

TAU: Callgraph Profile View

Box width and

color indicate

different metrics

 February 2013 JUQUEEN Porting & Tuning Workshop 44

TAU: 3D Profile View
Height and color

indicate different

metrics

 February 2013 JUQUEEN Porting & Tuning Workshop 45

Vampir Event Trace Visualizer

 Offline trace visualization for

 VampirTrace OTF trace files

 Scalasca EPILOG trace files

 Visualization of MPI, OpenMP
and application events:

 All diagrams highly customizable (through context menus)

 Large variety of displays for ANY part of the trace

 http://www.vampir.eu

 Advantage:

 Detailed view of dynamic application behavior

 Disadvantage:

 Requires event traces (huge amount of data)

 Completely manual analysis

 February 2013 JUQUEEN Porting & Tuning Workshop 46

Vampir Displays

 February 2013 JUQUEEN Porting & Tuning Workshop 47

Vampir: Timeline Diagram

 Functions

organized

into groups

 coloring

by group

 Message

lines can

be colored

by tag or

size

 Information about states, messages, collective and I/O

operations available through clicking on the representation

 February 2013 JUQUEEN Porting & Tuning Workshop 48

Vampir: Process and Counter Timelines

 Process

timeline

show

call stack

nesting

 Counter

timelines

for

hardware

or

software

counters

 February 2013 JUQUEEN Porting & Tuning Workshop 49

Vampir: Execution Statistics

 Aggregated

profiling

information:

execution time,

number of calls,

inclusive/exclusive

 Available for all / any

group (activity) or

all routines (symbols)

 Available for any part of the trace

 selectable through time line diagram

 February 2013 JUQUEEN Porting & Tuning Workshop 50

Vampir: Process Summary

 Execution statistics

over all processes

for comparison

 Clustering mode

available for large

process counts

 February 2013 JUQUEEN Porting & Tuning Workshop 51

Vampir: Communication Statistics

 Byte and message count,

min/max/avg message length

and min/max/avg bandwidth

for each process pair

 Message length

statistics

• Available for any part

of the trace

 February 2013 JUQUEEN Porting & Tuning Workshop 52

Vampir: Recipe (JUQUEEN)

1. module load UNITE vampirserver

2. Start Vampir server component using

 “vampirserver start smp”

 Check output for port and pid

3. Connect to server from remote machine (see next slide)

and analyze the trace

4. vampirserver stop <pid>

 See above (2.)

 February 2013 JUQUEEN Porting & Tuning Workshop 53

Vampir: Recipe (local system)

1. Open SSH tunnel to JUQUEEN using

 “ssh -L30000:localhost:<port>”

2. Start Vampir client component using

 “/usr/local/zam/unite/bin/vampir”

3. Select

1. “Open other…”

2. “Remote file”

3. “Connect” (keep defaults)

4. File “epik.esd” from Scalasca trace measurement

directory

 February 2013 JUQUEEN Porting & Tuning Workshop 54

 (Rice University)

 Multi-platform sampling-based call-path profiler

 Works on unmodified, optimized executables

 http://hpctoolkit.org

 Advantages:

 Overhead can be easily controlled via sampling interval

 Advantageous for complex C++ codes with many small

functions

 Loop-level analysis (sometimes even individual source lines)

 Supports POSIX threads

 Disadvantages:

 Statistical approach that might miss details

 MPI/OpenMP time displayed as low-level system calls

 February 2013 JUQUEEN Porting & Tuning Workshop 55

HPCToolkit: Recipe

1. Compile your code with “-g -qnoipa”

 For MPI, also make sure your application calls
MPI_Comm_rank first on MPI_COMM_WORLD

2. Prefix your link command with “hpclink”

 Ignore linker warnings ;-)

3. Run your application as usual, specifying requested metrics
with sampling intervals in environment variable
 “HPCRUN_EVENT_LIST”

4. Perform static binary analysis with
 “hpcstruct --loop-fwd-subst=no <app>”

5. Combine measurements with
 “hpcprof –S <struct file> \
 -I “<path_to_src>/*” <measurement_dir>”

6. View results with
 “hpcviewer <hpct_database>”

 February 2013 JUQUEEN Porting & Tuning Workshop 56

HPCToolkit: Metric Specification

 General format:

 “name@interval [;name@interval ...]”

 Possible sample sources:

 WALLCLOCK

 PAPI counters

 IO (use w/o interval spec)

 MEMLEAK (use w/o interval spec)

 Interval: given in microseconds

 E.g., 10000 → 100 samples per second

 February 2013 JUQUEEN Porting & Tuning Workshop 57

Example hpcviewer

Callpath to

hotspot

associated

source code

