

Virtual Institute –

6 February 2013

Brian Wylie Jülich Supercomputing Centre b.wylie@fz-juelich.de

awrence Livermore

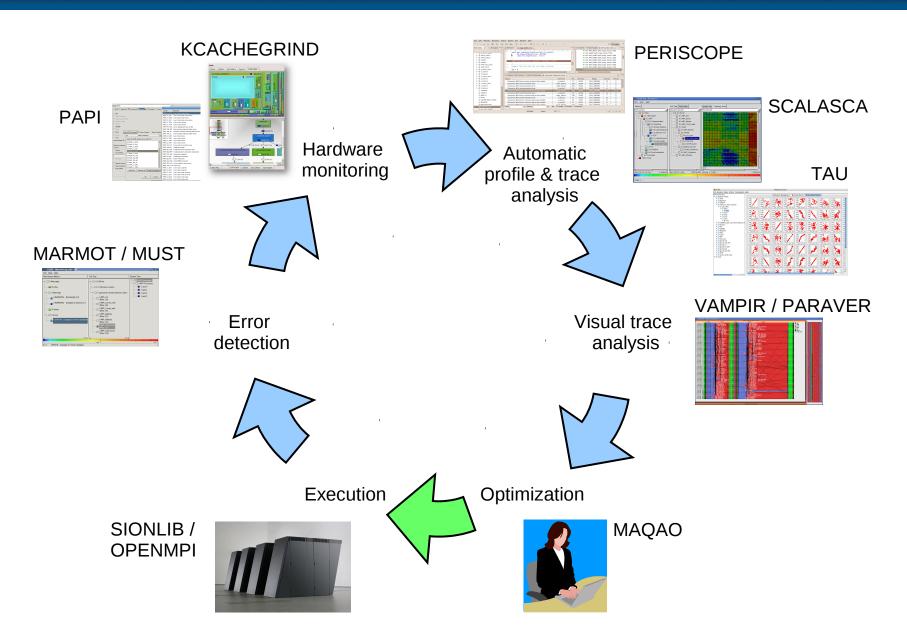
ational Laboratory

UNIVERSITY OF OREGON

- **Goal**: Improve the quality and accelerate the development process of complex simulation codes running on highly-parallel computer systems
- Start-up funding (2006-2011) by Helmholtz Association of German Research Centres
- Activities
 - Development and integration of HPC programming tools
 - Correctness checking & performance analysis
 - Training workshops
 - Service
 - Support email lists
 - Application engagement
 - Academic workshops

www.vi-hps.org

Marmot/MUST


- MPI correctness checking
- PAPI
 - Interfacing to hardware performance counters
- Periscope
 - Automatic analysis driven by on-line distributed search
- Scalasca
 - Large-scale parallel performance analysis
- TAU
 - Integrated parallel performance system
- Vampir/VampirTrace
 - Event tracing and graphical trace visualization & analysis
- Score-P
 - Common instrumentation & measurement infrastructure

- KCachegrind
 - Callgraph-based cache analysis [x86 only]
- MAQAO
 - Assembly instrumentation & optimization [x86 only]

- mpiP/mpiPview
 - MPI profiling tool and analysis viewer
- ompP
 - OpenMP profiling tool
- OpenMPI
 - Memory checking
- Open|SpeedShop
 - Integrated parallel performance analysis environment
- Paraver/Extrae
 - Event tracing and graphical trace visualization & analysis

Technologies and their integration

- Goals
 - Give an overview of the programming tools suite
 - Explain the functionality of individual tools
 - Teach how to use the tools effectively
 - Offer hands-on experience and expert assistance using tools
 - Receive feedback from users to guide future development
- For best results, bring & analyse/tune your own code(s)!
- VI-HPS Tutorial series
 - SC'08, ICCS'09, SC'09, Cluster'10, SC'10, SC'11, EuroMPI'12
- VI-HPS Tuning Workshop series
 - 2008 (Aachen & Dresden), 2009 (Jülich & Bremen), 2010 (Garching & Amsterdam/NL), 2011 (Stuttgart & Aachen) 2012 (St-Quentin-en-Yvelines/F & Garching)

3rd VI-HPS Tuning Workshop (JSC)

- 16-20 Feb 2009, Jülich
 - Jugene IBM BlueGene/P + JUMP p5-575 AIX cluster + RWTH Intel Linux cluster + Sun Niagara2 + SGI Altix
 - Scalasca, Vampir, PAPI, Marmot
 - 28 participants
 - ▶ (D, BG, DK, UK)
 - mostly MPI codes, but several MPI+OpenMP
 - scaling runs analysed with up to 16k processes
 - participants greatly appreciated advance access to workshop systems to install and prepare their application codes

- 23-27 Apr 2012, St-Quentin/France
 - TGCC Curie Bullx x86_64 Linux cluster
 - Scalasca, Vampir, TAU, Periscope, Kcachegrind, MAQAO
 - + Likwid, MPC & VTune
 - 35 participants
 - ► (F, B, BG, E, I, IRL, N)
 - mostly MPI+OpenMP application codes, few MPI only
 - "The workshop was quite a boost for me in my work to optimize [our] main application, which is a MPI+OpenMP parallel code."

- 11th VI-HPS Tuning Workshop (22-25 Apr 2013)
 - PRACE ATC event hosted by MdS, Saclay (S. Paris), France
 - using Intel x86_64 Linux cluster (and perhaps TGCC Curie)
 - Score-P, Scalasca, Vampir, TAU, MAQAO, ...
- Further events to be determined
 - (one-day) tutorials
 - with guided exercises usually using Live DVD
 - (multi-day) training workshops
 - ► with your own applications on actual HPC systems

Check www.vi-hps.org/training for announcements

• Contact us if you might be interested in hosting an event

- 12th VI-HPS Tuning Workshop (Sept/Oct 2013)
 - PRACE ATC event hosted by JSC/GCS, Jülich, Germany
 - using Juqueen BlueGene/Q
 - Score-P, Scalasca, Vampir, TAU, Periscope, ...
 - Iots of time for coaching with participants' own applications
- TBD
 - 4 or 5 days?
 - introductory and/or more advanced level?
 - include debugging/correctness tools?
 - classroom workstations or participants' notebook computers?
 - only BG/Q or also include Linux cluster (e.g., Juropa)?
 - Iarge-scale runs?

- VI-HPS
- Bootable Linux installation ISO (on DVD or USB drive)
- Includes everything needed to try out our parallel tools on an x86-architecture notebook computer
 - VI-HPS tools: KCachegrind, Marmot, PAPI, Periscope, Scalasca, TAU, VT/Vampir*
 - Also: Eclipse/PTP, TotalView*, etc.
 - time/capability-limited evaluation licences provided for commercial products
 - GCC (w/ OpenMP), OpenMPI
 - Manuals/User Guides
 - Tutorial exercises & examples
- Produced by U. Oregon PRL
 - Sameer Shende

http://nic.uoregon.edu/point http://www.vi-hps.org

- ISO image approximately 4GB
 - distributed on DVD or USB drive
 - or download from VI-HPS website
- Boot directly from disk
 - enables hardware counter access and offers best performance
- Boot within virtual machine
 - faster boot time and can save/resume state, but no hardware counter access
- Boots into Linux environment
 - supports building and running provided MPI and/or OpenMP parallel application codes
 - and experimentation with VI-HPS (and other) tools

BlueGene Extreme Scaling Workshops

2012-12-06 | Wolfgang Frings, Bernd Mohr & Brian J. N. Wylie Jülich Supercomputing Centre

b.wylie@fz-juelich.de

BlueGene Extreme Scaling Workshops

Workshops held by JSC in Jülich in 2009, 2010 & 2011

- organized by Wolfgang Frings & Bernd Mohr
- scaling assistance and tuning advice from JSC & IBM experts
- 3 day access to entire *Jugene* BlueGene/P to run scaling tests
 on-the-fly daytime scheduling
- 8-10 teams of application developers
 - selected from open competitive call
 - demonstrate reasonable scaling on BG to 100,000+ cores
 - expected to execute within available compute node memory
 - I/O requirements not excessive
- report required from each team documenting achievements: successes and difficulties/limitations

2009 Jülich BlueGene/P Extreme Scaling Workshop

- 26-28 October 2009
- 10 participating teams from Harvard University, MIT, ANL, Rensselaer Polytechnic Institute, University of Edinburgh, Swiss Fed. Inst. of Technology, Instituto Superior Técnico (Lisbon) RZG MPG, DESY Zeuthen and JSC

- 398 jobs with 135.6 rack days (out of 169.3 rack days provided): 80% utilization during workshop!
- All but 1 team succeeded in executing their code on full machine (294,912 cores)
- FZJ-JSC-IB-2010-02: http://juser.fz-juelich.de/record/8924

2009 Scaling Workshop Applications

- QCD, EPCC, UK
- Gyrokinetic turbulence simulation, RZG/IPP, DE
- Neutron transport simulations, ANL, US

Gordon Bell Finalist

- Astrophysics (particle-in-cell), UTL, PT
- Simulation of coronary arteries, EPFL, CH
- Parallel Evolutionary Biology Suite, Harvard Uni., US
- Adaptive computational fluid dynamics, RPI, US

Gordon Bell Finalist

- Mesoscopic particle dynamics, JSC, DE
- QCD, Hungary/France/German HMC Collaboration
- QCD, DESY/Bonn Uni., DE

2010 Jülich BlueGene/P Extreme Scaling Workshop

- 22-24 March 2010
- 10 participating teams from Harvard University, ANL, CORIA (France), ETH Zurich, KIT, LRZ, ZIB, JSC, and the Universities of Chemnitz, Erlangen and Marburg

- 392 jobs with 138.7 rack days (out of 164 rack days provided): 84% utilization
- 6 teams succeeded in executing their code on full machine (including team that failed 2009)
- 3 teams could "only" scale to 64 racks (262,144 cores) due to the need to run with a power-of-two number of processes
- 1 team got stuck at 32 racks (131,072 cores) due to program bug
- FZJ-JSC-IB-2010-03: http://juser.fz-juelich.de/record/9600

2010 Scaling Workshop Applications

- Particle flow simulation, Erlangen Uni., DE
- Simulation of fluid flow and mass transport, Marburg Uni., DE
- Turbulent flows in complex geometries, CORIA, FR
- Spectral element code, ETH, CH / ANL, US
- Simulation of coronary arteries, Harvard/EPFL
 - Gordon Bell Finalist
 - George Michael Memorial PhD Fellowship (A. Peters)
- Parallel Fast Fourier Transform, Chemnitz Uni., DE
- QCD, ZIB/LRZ, DE
- Mesoscopic particle dynamics, JSC, DE
- Hydrodynamic turbulence, KIT, DE
- Large-scale density-functional calculations, JSC, DE

2011 Jülich BlueGene/P Extreme Scaling Workshop

- 14-16 February 2011
- 8 participating teams from KTH (SE), KAUST (SA), Princeton PPL, RZG MPG, University of Heidelberg, Mickiewicz University (PL), University College London (UK), Euskal Herriko Unibertsitatea (ES)

- Selected from 15 proposals
- 308 jobs with 122 rack days (out of 157 rack days provided): 77% utilization
- Teams succeeded in executing 11(!) codes on full machine
- FZJ-JSC-IB-2011-02: http://juser.fz-juelich.de/record/15866

2011 Scaling Workshop Applications

- 2 x Neuronal network simulations, KTH, SE
- Molecular dynamics (BBMD), KAUST, SA
- Gyrokinetic PIC simulations (GTC-P), Princeton PPL, US
- Eigenvalue solver (ELPA) + Ab-initio molecular simulation, RZG MPG, DE
- Molecular nanomagnets (QTM), Mickiewicz University, PL
- Lattice Boltzmann (LB3D), University College London, UK
- Time-dependent density functional theory (Octopus), Euskal Herriko Unibertsitatea, ES
- Algebraic Multigrid Solver (Muphi/DUNE-ISTL), University of Heidelberg, DE

Lessons from Scaling Workshops

Applications from a wide range of subject areas successfully scale to very large numbers of processes (O(300k))

- Weak scaling is easiest, but good strong scaling is possible
- Most employ MPI, often combined with OpenMP threading (and other hybrid parallelizations)
- Message-passing needs to be local (close neighbours) and appropriate placement (rank-reordering) may be necessary
- Asynchronous communication is generally beneficial
 - Even with limited overlap of computation
- Implicit collective communication synchronizations and inherent computation/communication imbalances grow to dominate at scale
- Effective parallel file I/O is critical

Each doubling of scale exposes a new bottleneck or bug!

Future Extreme Scaling Workshops

2013 BlueGene Extreme Scaling Workshop?

- October?
- require demonstrated scalability to 128k processes/threads and potential to run with 1 million and more?