
M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Hybrid parallism on BG/Q
with OpenMP

February 3, 2014 T. Hater EIC

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Outline

BG/Q hardware

Shared memory parallelism

OpenMP tutorial

Hints for optimization

BG/Q specific OpenMP topics

February 3, 2014 T. Hater Slide 2

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Motivation

February 3, 2014 T. Hater Slide 3

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

The BG/Q Compute Chip

SoC

1.6GHz in-order

16× 4 threads

2 pipelines

200 GFlop/s

30 GB/s (42 GB/s)

February 3, 2014 T. Hater Slide 4

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Symmetric multiprocessing

Shared

Thread

Private

Thread

Private
Th
read

Private

Th
re
ad

Pr
iv
at
e

February 3, 2014 T. Hater Slide 5

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

OpenMP

Regularly updated standard

Supported by most major compilers

Platform independent

Supports FORTRAN, C, C++

Annotation based

Non-invasive
Incremental
Low development overhead

February 3, 2014 T. Hater Slide 6

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

OpenMP

Regularly updated standard

Supported by most major compilers

Platform independent

Supports FORTRAN, C, C++

Annotation based

Non-invasive
Incremental
Low development overhead

February 3, 2014 T. Hater Slide 6

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

OpenMP

Regularly updated standard

Supported by most major compilers

Platform independent

Supports FORTRAN, C, C++

Annotation based

Non-invasive
Incremental
Low development overhead

February 3, 2014 T. Hater Slide 6

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

OpenMP

Regularly updated standard

Supported by most major compilers

Platform independent

Supports FORTRAN, C, C++

Annotation based

Non-invasive
Incremental
Low development overhead

February 3, 2014 T. Hater Slide 6

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

OpenMP

Regularly updated standard

Supported by most major compilers

Platform independent

Supports FORTRAN, C, C++

Annotation based

Non-invasive
Incremental
Low development overhead

February 3, 2014 T. Hater Slide 6

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

How does it work?

Source code annotated by programmer

Compiler generates calls to OMP runtime

Runtime abstracts native threading

Abstracts shared memory parallelism

False sharing
Race conditions

February 3, 2014 T. Hater Slide 7

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

How does it work?

Source code annotated by programmer

Compiler generates calls to OMP runtime

Runtime abstracts native threading

Abstracts shared memory parallelism

False sharing
Race conditions

February 3, 2014 T. Hater Slide 7

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

How does it work?

Source code annotated by programmer

Compiler generates calls to OMP runtime

Runtime abstracts native threading

Abstracts shared memory parallelism

False sharing
Race conditions

February 3, 2014 T. Hater Slide 7

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

How does it work?

Source code annotated by programmer

Compiler generates calls to OMP runtime

Runtime abstracts native threading

Abstracts shared memory parallelism

False sharing
Race conditions

February 3, 2014 T. Hater Slide 7

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Organization

Native Threading

OpenMP Runtime

Compiler
omp.h

Application

February 3, 2014 T. Hater Slide 8

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

How do I parallelize my code?

1 Indentify bottleneck

2 Annotate hotspot

3 Profile for gains

4 Goto 1

February 3, 2014 T. Hater Slide 9

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

OpenMP Introduction

February 3, 2014 T. Hater Slide 10

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

The parallel region

#pragma omp parallel
{
 /* ... */
}

Fork

Join
Barrier

February 3, 2014 T. Hater Slide 11

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

OpenMP Clauses

Modify OpenMP statements
#pragma omp statement clause1(arg1,...)

Example: variable scope

shared/private(x,y,...)

default(shared/private/...)

More available, depending on construct

February 3, 2014 T. Hater Slide 12

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

The parallel loop

#pragma omp for
for(i = 1; i <= N; ++i)
{
 /* ... */
}

February 3, 2014 T. Hater Slide 13

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

The parallel loop
Reduction

#pragma omp for reduction(+:c)
for(i = 0; i < N; ++i)
{
 c += a[i]
}

+ +

+

February 3, 2014 T. Hater Slide 14

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

The parallel loop
Scheduling

Parallel loops accept a schedule(...,chunk) clause

Default to static: Divide iterations evenly

If time per work item varies try dynamic.
Each idle thread picks up a new chunk.

If threads start at different times: guided.
Like dynamic, but chunk size decreases exponentially.

February 3, 2014 T. Hater Slide 15

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

The parallel loop
Scheduling

Parallel loops accept a schedule(...,chunk) clause

Default to static: Divide iterations evenly

If time per work item varies try dynamic.
Each idle thread picks up a new chunk.

If threads start at different times: guided.
Like dynamic, but chunk size decreases exponentially.

February 3, 2014 T. Hater Slide 15

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

The parallel loop
Scheduling

Parallel loops accept a schedule(...,chunk) clause

Default to static: Divide iterations evenly

If time per work item varies try dynamic.
Each idle thread picks up a new chunk.

If threads start at different times: guided.
Like dynamic, but chunk size decreases exponentially.

February 3, 2014 T. Hater Slide 15

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

The parallel loop
Scheduling

Parallel loops accept a schedule(...,chunk) clause

Default to static: Divide iterations evenly

If time per work item varies try dynamic.
Each idle thread picks up a new chunk.

If threads start at different times: guided.
Like dynamic, but chunk size decreases exponentially.

February 3, 2014 T. Hater Slide 15

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Limiting parallelism

#pragma omp parallel

{

#pragma omp single

{

// Arbitrary, but unique thread

} // Barrier

#pragma omp master

{

// Master thread

} // No barrier

}

February 3, 2014 T. Hater Slide 16

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Ordering threads

#pragma omp parallel

{

#pragma omp critical

{

// One thread at a time, arbitrary order

} // Barrier

#pragma omp atomic read|write|update|capture

// Atomic access to memory

}

February 3, 2014 T. Hater Slide 17

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Sections
Static worksharing

#pragma omp sections

{

#pragma omp section

{

// Thread 1

}

#pragma omp section

{

// Thread 2

}

}

February 3, 2014 T. Hater Slide 18

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Explicit tasks

Tasks are flexible building blocks for thread creation

#pragma omp task per encountering thread, create a task.

Execution may commence in the creating thread.
or

Deferred and picked by another thread in the team.

#pragma omp taskwait waits for all sibling tasks.

February 3, 2014 T. Hater Slide 19

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Explicit tasks

Tasks are flexible building blocks for thread creation

#pragma omp task per encountering thread, create a task.

Execution may commence in the creating thread.
or

Deferred and picked by another thread in the team.

#pragma omp taskwait waits for all sibling tasks.

February 3, 2014 T. Hater Slide 19

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Explicit tasks

Tasks are flexible building blocks for thread creation

#pragma omp task per encountering thread, create a task.

Execution may commence in the creating thread.

or
Deferred and picked by another thread in the team.

#pragma omp taskwait waits for all sibling tasks.

February 3, 2014 T. Hater Slide 19

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Explicit tasks

Tasks are flexible building blocks for thread creation

#pragma omp task per encountering thread, create a task.

Execution may commence in the creating thread.
or

Deferred and picked by another thread in the team.

#pragma omp taskwait waits for all sibling tasks.

February 3, 2014 T. Hater Slide 19

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Explicit tasks

Tasks are flexible building blocks for thread creation

#pragma omp task per encountering thread, create a task.

Execution may commence in the creating thread.
or

Deferred and picked by another thread in the team.

#pragma omp taskwait waits for all sibling tasks.

February 3, 2014 T. Hater Slide 19

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Explicit tasks

Tasks are flexible building blocks for thread creation

#pragma omp task per encountering thread, create a task.

Execution may commence in the creating thread.
or

Deferred and picked by another thread in the team.

#pragma omp taskwait waits for all sibling tasks.

February 3, 2014 T. Hater Slide 19

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Optimizing OpenMP

February 3, 2014 T. Hater Slide 20

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Fork/Join

Fork/Join take time.

May combine multiple regions.

#pragma omp parallel for

for(i=0; i<n; ++i) a[i] = 2*b[i];

c = 0;

#pragma omp parallel for reduction(+: c)

for(i=0; i<n; ++i) c += a[i];

February 3, 2014 T. Hater Slide 21

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Fork/Join

Fork/Join take time.

Combine multiple regions into one to amortize

#pragma omp parallel

{

#pragma omp for

for(i=0; i<n; ++i) a[i] = 2*b[i];

c = 0;

#pragma omp for reduction(+: c)

for(i=0; i<n; ++i) c += a[i];

}

February 3, 2014 T. Hater Slide 22

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Barriers

Many constructs feature implicit barriers

If unneeded, they can be disabled using the nowait clause

#pragma omp parallel for nowait

for(i=0; i<n; ++i) {

a[i] = 2*b[i];

}

Explicit barriers should be regarded with suspicion

The same holds for critical

But: correctness comes first. Be careful.

February 3, 2014 T. Hater Slide 23

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Barriers

Many constructs feature implicit barriers

If unneeded, they can be disabled using the nowait clause

#pragma omp parallel for nowait

for(i=0; i<n; ++i) {

a[i] = 2*b[i];

}

Explicit barriers should be regarded with suspicion

The same holds for critical

But: correctness comes first. Be careful.

February 3, 2014 T. Hater Slide 23

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Barriers

Many constructs feature implicit barriers

If unneeded, they can be disabled using the nowait clause

#pragma omp parallel for nowait

for(i=0; i<n; ++i) {

a[i] = 2*b[i];

}

Explicit barriers should be regarded with suspicion

The same holds for critical

But: correctness comes first. Be careful.

February 3, 2014 T. Hater Slide 23

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Barriers

Many constructs feature implicit barriers

If unneeded, they can be disabled using the nowait clause

#pragma omp parallel for nowait

for(i=0; i<n; ++i) {

a[i] = 2*b[i];

}

Explicit barriers should be regarded with suspicion

The same holds for critical

But: correctness comes first. Be careful.

February 3, 2014 T. Hater Slide 23

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Barriers

Many constructs feature implicit barriers

If unneeded, they can be disabled using the nowait clause

#pragma omp parallel for nowait

for(i=0; i<n; ++i) {

a[i] = 2*b[i];

}

Explicit barriers should be regarded with suspicion

The same holds for critical

But: correctness comes first. Be careful.

February 3, 2014 T. Hater Slide 23

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Workloads

OpenMP constructs are not for free

Amortize overhead by offering enough work

Either number of iterations or effort per iteration

If workload varies: try to tune schedule

February 3, 2014 T. Hater Slide 24

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Workloads

OpenMP constructs are not for free

Amortize overhead by offering enough work

Either number of iterations or effort per iteration

If workload varies: try to tune schedule

February 3, 2014 T. Hater Slide 24

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Workloads

OpenMP constructs are not for free

Amortize overhead by offering enough work

Either number of iterations or effort per iteration

If workload varies: try to tune schedule

February 3, 2014 T. Hater Slide 24

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Workloads

OpenMP constructs are not for free

Amortize overhead by offering enough work

Either number of iterations or effort per iteration

If workload varies: try to tune schedule

February 3, 2014 T. Hater Slide 24

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

OpenMP on BG/Q

February 3, 2014 T. Hater Slide 25

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Compiling for OpenMP

Use the XL compilers
mpixlc r

mpixlcxx r

mpixlf r

mpixlf90 r

Add -qsmp=omp to compiler and linker flags.

Automatically enables -O2 -qhot, suppress with
-qsmp=omp:noopt.

Automatically parallelizes on top of OpenMP if given -qsmp

February 3, 2014 T. Hater Slide 26

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Compiling for OpenMP

Use the XL compilers
mpixlc r

mpixlcxx r

mpixlf r

mpixlf90 r

Add -qsmp=omp to compiler and linker flags.

Automatically enables -O2 -qhot, suppress with
-qsmp=omp:noopt.

Automatically parallelizes on top of OpenMP if given -qsmp

February 3, 2014 T. Hater Slide 26

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Compiling for OpenMP

Use the XL compilers
mpixlc r

mpixlcxx r

mpixlf r

mpixlf90 r

Add -qsmp=omp to compiler and linker flags.

Automatically enables -O2 -qhot, suppress with
-qsmp=omp:noopt.

Automatically parallelizes on top of OpenMP if given -qsmp

February 3, 2014 T. Hater Slide 26

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Compiling for OpenMP

Use the XL compilers
mpixlc r

mpixlcxx r

mpixlf r

mpixlf90 r

Add -qsmp=omp to compiler and linker flags.

Automatically enables -O2 -qhot, suppress with
-qsmp=omp:noopt.

Automatically parallelizes on top of OpenMP if given -qsmp

February 3, 2014 T. Hater Slide 26

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

XL OpenMP

Standard version 3.1

OMP NUM THREADS = OMP THREAD LIMIT =
⌊

64
RanksPerNode

⌋
May oversubscribe, but be careful.

OMP PROC BIND = True due to CNK limitation

No nested OpenMP

February 3, 2014 T. Hater Slide 27

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

XL OpenMP

Standard version 3.1

OMP NUM THREADS = OMP THREAD LIMIT =
⌊

64
RanksPerNode

⌋

May oversubscribe, but be careful.

OMP PROC BIND = True due to CNK limitation

No nested OpenMP

February 3, 2014 T. Hater Slide 27

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

XL OpenMP

Standard version 3.1

OMP NUM THREADS = OMP THREAD LIMIT =
⌊

64
RanksPerNode

⌋
May oversubscribe, but be careful.

OMP PROC BIND = True due to CNK limitation

No nested OpenMP

February 3, 2014 T. Hater Slide 27

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

XL OpenMP

Standard version 3.1

OMP NUM THREADS = OMP THREAD LIMIT =
⌊

64
RanksPerNode

⌋
May oversubscribe, but be careful.

OMP PROC BIND = True due to CNK limitation

No nested OpenMP

February 3, 2014 T. Hater Slide 27

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

XL OpenMP

Standard version 3.1

OMP NUM THREADS = OMP THREAD LIMIT =
⌊

64
RanksPerNode

⌋
May oversubscribe, but be careful.

OMP PROC BIND = True due to CNK limitation

No nested OpenMP

February 3, 2014 T. Hater Slide 27

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Exploiting BG/Q features

omp barrier and lock use L2 atomics.

omp atomic exploits hardware atomics

Waiting threads go to sleep.

Thread local storage using
#pragma ibm threadlocal

For hard to parallelize loops: speculation & TM (later talk)

February 3, 2014 T. Hater Slide 28

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Exploiting BG/Q features

omp barrier and lock use L2 atomics.

omp atomic exploits hardware atomics

Waiting threads go to sleep.

Thread local storage using
#pragma ibm threadlocal

For hard to parallelize loops: speculation & TM (later talk)

February 3, 2014 T. Hater Slide 28

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Exploiting BG/Q features

omp barrier and lock use L2 atomics.

omp atomic exploits hardware atomics

Waiting threads go to sleep.

Thread local storage using
#pragma ibm threadlocal

For hard to parallelize loops: speculation & TM (later talk)

February 3, 2014 T. Hater Slide 28

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Exploiting BG/Q features

omp barrier and lock use L2 atomics.

omp atomic exploits hardware atomics

Waiting threads go to sleep.

Thread local storage using
#pragma ibm threadlocal

For hard to parallelize loops: speculation & TM (later talk)

February 3, 2014 T. Hater Slide 28

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Exploiting BG/Q features

omp barrier and lock use L2 atomics.

omp atomic exploits hardware atomics

Waiting threads go to sleep.

Thread local storage using
#pragma ibm threadlocal

For hard to parallelize loops: speculation & TM (later talk)

February 3, 2014 T. Hater Slide 28

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Overheads
Experimental values

{lock|barrier|critical} ≤ 1µs

parallel 1µs (1 thread) – 50µs (64 threads)

for loops 1µs (1 thread) – 50µs (64 threads)

Task {create|wait} 2µs (1 thread) – 50µs (16 threads)

Rule of thumb

100µs for tasks, 10µs for loops and 1µs everything else.

February 3, 2014 T. Hater Slide 29

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Overheads
Experimental values

{lock|barrier|critical} ≤ 1µs

parallel 1µs (1 thread) – 50µs (64 threads)

for loops 1µs (1 thread) – 50µs (64 threads)

Task {create|wait} 2µs (1 thread) – 50µs (16 threads)

Rule of thumb

100µs for tasks, 10µs for loops and 1µs everything else.

February 3, 2014 T. Hater Slide 29

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Overheads
Experimental values

{lock|barrier|critical} ≤ 1µs

parallel 1µs (1 thread) – 50µs (64 threads)

for loops 1µs (1 thread) – 50µs (64 threads)

Task {create|wait} 2µs (1 thread) – 50µs (16 threads)

Rule of thumb

100µs for tasks, 10µs for loops and 1µs everything else.

February 3, 2014 T. Hater Slide 29

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Overheads
Experimental values

{lock|barrier|critical} ≤ 1µs

parallel 1µs (1 thread) – 50µs (64 threads)

for loops 1µs (1 thread) – 50µs (64 threads)

Task {create|wait} 2µs (1 thread) – 50µs (16 threads)

Rule of thumb

100µs for tasks, 10µs for loops and 1µs everything else.

February 3, 2014 T. Hater Slide 29

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Overheads
Experimental values

{lock|barrier|critical} ≤ 1µs

parallel 1µs (1 thread) – 50µs (64 threads)

for loops 1µs (1 thread) – 50µs (64 threads)

Task {create|wait} 2µs (1 thread) – 50µs (16 threads)

Rule of thumb

100µs for tasks, 10µs for loops and 1µs everything else.

February 3, 2014 T. Hater Slide 29

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Tuning

Experiment with nThreads : nRanksPerNode

BG_SMP_FAST_WAKEUP=YES + OMP_WAIT_POLICY=active

Keep loops small if ≥ 16 Threads (L1 cache)

Normally static scheduling is sensible

On simple loop nests, try collapse(n)

Do not use strict math for reductions

February 3, 2014 T. Hater Slide 30

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Tuning

Experiment with nThreads : nRanksPerNode

BG_SMP_FAST_WAKEUP=YES + OMP_WAIT_POLICY=active

Keep loops small if ≥ 16 Threads (L1 cache)

Normally static scheduling is sensible

On simple loop nests, try collapse(n)

Do not use strict math for reductions

February 3, 2014 T. Hater Slide 30

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Tuning

Experiment with nThreads : nRanksPerNode

BG_SMP_FAST_WAKEUP=YES + OMP_WAIT_POLICY=active

Keep loops small if ≥ 16 Threads (L1 cache)

Normally static scheduling is sensible

On simple loop nests, try collapse(n)

Do not use strict math for reductions

February 3, 2014 T. Hater Slide 30

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Tuning

Experiment with nThreads : nRanksPerNode

BG_SMP_FAST_WAKEUP=YES + OMP_WAIT_POLICY=active

Keep loops small if ≥ 16 Threads (L1 cache)

Normally static scheduling is sensible

On simple loop nests, try collapse(n)

Do not use strict math for reductions

February 3, 2014 T. Hater Slide 30

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Tuning

Experiment with nThreads : nRanksPerNode

BG_SMP_FAST_WAKEUP=YES + OMP_WAIT_POLICY=active

Keep loops small if ≥ 16 Threads (L1 cache)

Normally static scheduling is sensible

On simple loop nests, try collapse(n)

Do not use strict math for reductions

February 3, 2014 T. Hater Slide 30

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Tuning

Experiment with nThreads : nRanksPerNode

BG_SMP_FAST_WAKEUP=YES + OMP_WAIT_POLICY=active

Keep loops small if ≥ 16 Threads (L1 cache)

Normally static scheduling is sensible

On simple loop nests, try collapse(n)

Do not use strict math for reductions

February 3, 2014 T. Hater Slide 30

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

MPI Comm threads

BG/Q can use idle threads for asynchronous progress on MPI

Initialize MPI Init thread(..., MPI THREAD MULTIPLE)

(PAMID_CONTEXT_POST=1 PAMID_ASYNC_PROGRESS=1)

Compile with -qsmp

The rest should happen automagically

February 3, 2014 T. Hater Slide 31

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

MPI Comm threads

BG/Q can use idle threads for asynchronous progress on MPI

Initialize MPI Init thread(..., MPI THREAD MULTIPLE)

(PAMID_CONTEXT_POST=1 PAMID_ASYNC_PROGRESS=1)

Compile with -qsmp

The rest should happen automagically

February 3, 2014 T. Hater Slide 31

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

MPI Comm threads

BG/Q can use idle threads for asynchronous progress on MPI

Initialize MPI Init thread(..., MPI THREAD MULTIPLE)

(PAMID_CONTEXT_POST=1 PAMID_ASYNC_PROGRESS=1)

Compile with -qsmp

The rest should happen automagically

February 3, 2014 T. Hater Slide 31

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

MPI Comm threads

BG/Q can use idle threads for asynchronous progress on MPI

Initialize MPI Init thread(..., MPI THREAD MULTIPLE)

(PAMID_CONTEXT_POST=1 PAMID_ASYNC_PROGRESS=1)

Compile with -qsmp

The rest should happen automagically

February 3, 2014 T. Hater Slide 31

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Closing words

Extremely fast and incomplete introduction to OpenMP.

Deceptively easy looking!

We did not talk about memory consistency.

On JUQUEEN you must go hybrid.

February 3, 2014 T. Hater Slide 32

M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Resources

XL compiler manuals
http:

//pic.dhe.ibm.com/infocenter/compbg/v121v141/

OpenMP standard
http://www.openmp.org/mp-documents/OpenMP3.1.pdf

OpenMP overview card
http://openmp.org/mp-documents/

OpenMP3.1-CCard.pdf

OpenMP3.1-FortranCard.pdf

February 3, 2014 T. Hater Slide 33

http://pic.dhe.ibm.com/infocenter/compbg/v121v141/
http://pic.dhe.ibm.com/infocenter/compbg/v121v141/
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://openmp.org/mp-documents/
OpenMP3.1-CCard.pdf
OpenMP3.1-FortranCard.pdf

	Outline
	Motivation
	OpenMP Introduction
	Basic parallelism
	Loops
	Synchronization
	Other constructs

	Optimizing OpenMP
	OpenMP on BG/Q

