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Outline

BG/Q hardware

Shared memory parallelism

OpenMP tutorial

Hints for optimization

BG/Q specific OpenMP topics
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Motivation
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The BG/Q Compute Chip

SoC

1.6GHz in-order

16× 4 threads

2 pipelines

200 GFlop/s

30 GB/s (42 GB/s)
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Symmetric multiprocessing

Shared

Thread

Private

Thread

Private
Th
read

Private

Th
re
ad

Pr
iv
at
e
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OpenMP

Regularly updated standard

Supported by most major compilers

Platform independent

Supports FORTRAN, C, C++

Annotation based

Non-invasive
Incremental
Low development overhead
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How does it work?

Source code annotated by programmer

Compiler generates calls to OMP runtime

Runtime abstracts native threading

Abstracts shared memory parallelism

False sharing
Race conditions
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Organization

Native Threading

OpenMP Runtime

Compiler
omp.h

Application
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How do I parallelize my code?

1 Indentify bottleneck

2 Annotate hotspot

3 Profile for gains

4 Goto 1
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OpenMP Introduction
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The parallel region

#pragma omp parallel
{
    /* ... */
}

Fork

Join
Barrier

February 3, 2014 T. Hater Slide 11
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OpenMP Clauses

Modify OpenMP statements
#pragma omp statement clause1(arg1,...)

Example: variable scope

shared/private(x,y,...)

default(shared/private/...)

More available, depending on construct

February 3, 2014 T. Hater Slide 12
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The parallel loop

#pragma omp for
for(i = 1; i <= N; ++i)
{
    /* ... */
}

February 3, 2014 T. Hater Slide 13
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The parallel loop
Reduction

#pragma omp for reduction(+:c)
for(i = 0; i < N; ++i)
{
    c += a[i]
}

+ +

+

February 3, 2014 T. Hater Slide 14
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The parallel loop
Scheduling

Parallel loops accept a schedule(...,chunk) clause

Default to static: Divide iterations evenly

If time per work item varies try dynamic.
Each idle thread picks up a new chunk.

If threads start at different times: guided.
Like dynamic, but chunk size decreases exponentially.

February 3, 2014 T. Hater Slide 15
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Limiting parallelism

#pragma omp parallel

{

#pragma omp single

{

// Arbitrary, but unique thread

} // Barrier

#pragma omp master

{

// Master thread

} // No barrier

}

February 3, 2014 T. Hater Slide 16
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Ordering threads

#pragma omp parallel

{

#pragma omp critical

{

// One thread at a time, arbitrary order

} // Barrier

#pragma omp atomic read|write|update|capture

// Atomic access to memory

}

February 3, 2014 T. Hater Slide 17
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Sections
Static worksharing

#pragma omp sections

{

#pragma omp section

{

// Thread 1

}

#pragma omp section

{

// Thread 2

}

}

February 3, 2014 T. Hater Slide 18
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Explicit tasks

Tasks are flexible building blocks for thread creation

#pragma omp task per encountering thread, create a task.

Execution may commence in the creating thread.
or

Deferred and picked by another thread in the team.

#pragma omp taskwait waits for all sibling tasks.

February 3, 2014 T. Hater Slide 19
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Optimizing OpenMP
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Fork/Join

Fork/Join take time.

May combine multiple regions.

#pragma omp parallel for

for(i=0; i<n; ++i) a[i] = 2*b[i];

c = 0;

#pragma omp parallel for reduction(+: c)

for(i=0; i<n; ++i) c += a[i];

February 3, 2014 T. Hater Slide 21
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Fork/Join

Fork/Join take time.

Combine multiple regions into one to amortize

#pragma omp parallel

{

#pragma omp for

for(i=0; i<n; ++i) a[i] = 2*b[i];

c = 0;

#pragma omp for reduction(+: c)

for(i=0; i<n; ++i) c += a[i];

}

February 3, 2014 T. Hater Slide 22
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Barriers

Many constructs feature implicit barriers

If unneeded, they can be disabled using the nowait clause

#pragma omp parallel for nowait

for(i=0; i<n; ++i) {

a[i] = 2*b[i];

}

Explicit barriers should be regarded with suspicion

The same holds for critical

But: correctness comes first. Be careful.

February 3, 2014 T. Hater Slide 23
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Workloads

OpenMP constructs are not for free

Amortize overhead by offering enough work

Either number of iterations or effort per iteration

If workload varies: try to tune schedule
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OpenMP on BG/Q
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Compiling for OpenMP

Use the XL compilers
mpixlc r

mpixlcxx r

mpixlf r

mpixlf90 r

Add -qsmp=omp to compiler and linker flags.

Automatically enables -O2 -qhot, suppress with
-qsmp=omp:noopt.

Automatically parallelizes on top of OpenMP if given -qsmp

February 3, 2014 T. Hater Slide 26
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XL OpenMP

Standard version 3.1

OMP NUM THREADS = OMP THREAD LIMIT =
⌊

64
RanksPerNode

⌋
May oversubscribe, but be careful.

OMP PROC BIND = True due to CNK limitation

No nested OpenMP
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Exploiting BG/Q features

omp barrier and lock use L2 atomics.

omp atomic exploits hardware atomics

Waiting threads go to sleep.

Thread local storage using
#pragma ibm threadlocal

For hard to parallelize loops: speculation & TM (later talk)
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M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Exploiting BG/Q features

omp barrier and lock use L2 atomics.

omp atomic exploits hardware atomics

Waiting threads go to sleep.

Thread local storage using
#pragma ibm threadlocal

For hard to parallelize loops: speculation & TM (later talk)

February 3, 2014 T. Hater Slide 28



M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Exploiting BG/Q features

omp barrier and lock use L2 atomics.

omp atomic exploits hardware atomics

Waiting threads go to sleep.

Thread local storage using
#pragma ibm threadlocal

For hard to parallelize loops: speculation & TM (later talk)

February 3, 2014 T. Hater Slide 28



M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Exploiting BG/Q features

omp barrier and lock use L2 atomics.

omp atomic exploits hardware atomics

Waiting threads go to sleep.

Thread local storage using
#pragma ibm threadlocal

For hard to parallelize loops: speculation & TM (later talk)

February 3, 2014 T. Hater Slide 28



M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Exploiting BG/Q features

omp barrier and lock use L2 atomics.

omp atomic exploits hardware atomics

Waiting threads go to sleep.

Thread local storage using
#pragma ibm threadlocal

For hard to parallelize loops: speculation & TM (later talk)

February 3, 2014 T. Hater Slide 28



M
em

b
er

of
th

e
H

el
m

h
ol

tz
-A

ss
o

ci
at

io
n

Overheads
Experimental values

{lock|barrier|critical} ≤ 1µs

parallel 1µs (1 thread) – 50µs (64 threads)

for loops 1µs (1 thread) – 50µs (64 threads)

Task {create|wait} 2µs (1 thread) – 50µs (16 threads)

Rule of thumb

100µs for tasks, 10µs for loops and 1µs everything else.
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Rule of thumb

100µs for tasks, 10µs for loops and 1µs everything else.
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Tuning

Experiment with nThreads : nRanksPerNode

BG_SMP_FAST_WAKEUP=YES + OMP_WAIT_POLICY=active

Keep loops small if ≥ 16 Threads (L1 cache)

Normally static scheduling is sensible

On simple loop nests, try collapse(n)

Do not use strict math for reductions
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MPI Comm threads

BG/Q can use idle threads for asynchronous progress on MPI

Initialize MPI Init thread(..., MPI THREAD MULTIPLE)

(PAMID_CONTEXT_POST=1 PAMID_ASYNC_PROGRESS=1)

Compile with -qsmp

The rest should happen automagically
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Closing words

Extremely fast and incomplete introduction to OpenMP.

Deceptively easy looking!

We did not talk about memory consistency.

On JUQUEEN you must go hybrid.
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Resources

XL compiler manuals
http:

//pic.dhe.ibm.com/infocenter/compbg/v121v141/

OpenMP standard
http://www.openmp.org/mp-documents/OpenMP3.1.pdf

OpenMP overview card
http://openmp.org/mp-documents/

OpenMP3.1-CCard.pdf

OpenMP3.1-FortranCard.pdf
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