#))OLICH

FORSCHUNGSZENTRUM

Hybrid parallism on BG/Q
with OpenMP

February 3, 2014 | T. Hater | EIC

Member of the Helmholtz-Association

QOutline

= BG/Q hardware

= Shared memory parallelism

= OpenMP tutorial

= Hints for optimization

= BG/Q specific OpenMP topics

February 3, 2014 T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 2

Member of the Helmholtz-Association

February 3, 2014

Motivation

T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 3

#) JOLICH

FORSCHUNGSZENTRUM

The BG/Q Compute Chip

= SoC

» 1.6GHz in-order

= 16 X 4 threads

= 2 pipelines

= 200 GFlop/s

= 30 GB/s (42 GB/s)

<
£
2
s
H
=

February 3, 2014 T. Hater Slide 4

#) JOLICH

FORSCHUNGSZENTRUM

Symmetric multiprocessing

—>
-—

Member of the Helmholtz-Association

February 3, 2014 T. Hater Slide 5

Member of the Helmholtz-Association

OpenMP

= Regularly updated standard

February 3, 2014

T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 6

Member of the Helmholtz-Association

OpenMP

= Regularly updated standard

= Supported by most major compilers

February 3, 2014 T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 6

#) JOLICH

FORSCHUNGSZENTRUM

OpenMP

= Regularly updated standard
= Supported by most major compilers

= Platform independent

Member of the Helmholtz-Association

February 3, 2014 T. Hater Slide 6

Member of the Helmholtz-Association

OpenMP

Regularly updated standard

= Supported by most major compilers
Platform independent
= Supports FORTRAN, C, C++

February 3, 2014 T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 6

sociation

Member of the Helmholtz-Ass

#) JOLICH

FORSCHUNGSZENTRUM

OpenMP

= Regularly updated standard
= Supported by most major compilers
= Platform independent

= Supports FORTRAN, C, C++
= Annotation based

= Non-invasive
= Incremental
= Low development overhead

February 3, 2014 T. Hater Slide 6

Member of the Helmholtz-Association

How does it work?

= Source code annotated by programmer

February 3, 2014 T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 7

Member of the Helmholtz-Association

How does it work?

= Source code annotated by programmer
= Compiler generates calls to OMP runtime

February 3, 2014 T. Hater

9

JULICH

FORSCHUNGSZENTRUM

Slide 7

#) JOLICH

FORSCHUNGSZENTRUM

How does it work?

= Source code annotated by programmer
= Compiler generates calls to OMP runtime

= Runtime abstracts native threading

Member of the Helmholtz-Association

February 3, 2014 T. Hater Slide 7

Member of the Helmholtz-Association

#) JOLICH

FORSCHUNGSZENTRUM

How does it work?

= Source code annotated by programmer
= Compiler generates calls to OMP runtime

= Runtime abstracts native threading
= Abstracts shared memory parallelism

= False sharing
= Race conditions

February 3, 2014 T. Hater Slide 7

#) JOLICH

FORSCHUNGSZENTRUM

Organization

Application

-

Member of the Helmholtz-Association

February 3, 2014 T. Hater Slide 8

Member of the Helmholtz-Association

How do | parallelize my code?

Indentify bottleneck
Annotate hotspot
Profile for gains
Goto 1

February 3, 2014 T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 9

Member of the Helmholtz-Association

February 3, 2014

OpenMP Introduction

T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 10

Member of the Helmholtz-Association

#) JOLICH

FORSCHUNGSZENTRUM

The parallel region

#pragma omp parallel
{

/*.*
}

February 3, 2014 T. Hater Slide 11

sociation

Member of the Helmholtz-Ass

OpenMP Clauses

= Modify OpenMP statements

#pragma omp statement clausel(argl,...

= Example: variable scope

shared/private(x,y,...)
default(shared/private/...)

= More available, depending on construct

February 3, 2014 T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 12

The parallel loop

#pragma omp for
for(i=1;i<=N; ++i)
{

/* . %

Member of the Helmholtz-Association

February 3, 2014 T. Hater

#) JOLICH

FORSCHUNGSZENTRUM

Slide 13

#) JOLICH

FORSCHUNGSZENTRUM

The parallel loop

Reduction

#pragma omp for reduction(+:c)
for(i = 0; i < N; ++i)
{

c+=al[i]

}

Member of the Helmholtz-Association

February 3, 2014 T. Hater Slide 14

Member of the Helmholtz-Association

J

The parallel loop
Scheduling

= Parallel loops accept a schedule(...,chunk) clause

February 3, 2014 T. Hater

JULICH

FORSCHUNGSZENTRUM

Slide 15

Member of the Helmholtz-Association

#) JOLICH

FORSCHUNGSZENTRUM

The parallel loop
Scheduling

= Parallel loops accept a schedule(...,chunk) clause

= Default to static: Divide iterations evenly

February 3, 2014 T. Hater Slide 15

Member of the Helmholtz-Association

#) JOLICH

FORSCHUNGSZENTRUM

The parallel loop
Scheduling

= Parallel loops accept a schedule(...,chunk) clause
= Default to static: Divide iterations evenly

= If time per work item varies try dynamic.
Each idle thread picks up a new chunk.

February 3, 2014 T. Hater Slide 15

#) JOLICH

FORSCHUNGSZENTRUM

The parallel loop
Scheduling

= Parallel loops accept a schedule(...,chunk) clause
= Default to static: Divide iterations evenly

= If time per work item varies try dynamic.
Each idle thread picks up a new chunk.

= |If threads start at different times: guided.
Like dynamic, but chunk size decreases exponentially.

E
2
‘s
5
=

February 3, 2014 T. Hater Slide 15

Member of the Helmholtz-Association

Limiting parallelism

#pragma omp parallel

{
#pragma omp single
{
// Arbitrary, but unique thread
} // Barrier

#pragma omp master

{
// Master thread

} // No barrier
}

February 3, 2014 T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 16

Member of the Helmholtz-Association

#) JOLICH

FORSCHUNGSZENTRUM

Ordering threads

#pragma omp parallel
{

#pragma omp critical
{

// One thread at a time, arbitrary order
} // Barrier

#pragma omp atomic read|write|update|capture
// Atomic access to memory

February 3, 2014 T. Hater Slide 17

Member of the Helmholtz-Association

Sections
Static worksharing

#pragma omp sections

{
#pragma omp section
{
// Thread 1
}
#pragma omp section
{
// Thread 2
}
X

February 3, 2014 T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 18

Member of the Helmholtz-Association

Explicit tasks

= Tasks are flexible building blocks for thread creation

February 3, 2014 T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 19

Member of the Helmholtz-Association

J

Explicit tasks

= Tasks are flexible building blocks for thread creation

JULICH

FORSCHUNGSZENTRUM

= #pragma omp task per encountering thread, create a task.

February 3, 2014 T. Hater

Slide 19

#) JOLICH

FORSCHUNGSZENTRUM

Explicit tasks

= Tasks are flexible building blocks for thread creation
= #pragma omp task per encountering thread, create a task.
= Execution may commence in the creating thread.

Member of the Helmholtz-Association

February 3, 2014 T. Hater Slide 19

Member of the Helmholtz-Association

J

Explicit tasks

= Tasks are flexible building blocks for thread creation

JULICH

FORSCHUNGSZENTRUM

= #pragma omp task per encountering thread, create a task.

= Execution may commence in the creating thread.
or

February 3, 2014 T. Hater

Slide 19

#) JOLICH

FORSCHUNGSZENTRUM

Explicit tasks

= Tasks are flexible building blocks for thread creation
= #pragma omp task per encountering thread, create a task.
= Execution may commence in the creating thread.

or
* Deferred and picked by another thread in the team.

E
2
‘s
5
=

February 3, 2014 T. Hater Slide 19

#) JOLICH

FORSCHUNGSZENTRUM

Explicit tasks

= Tasks are flexible building blocks for thread creation
= #pragma omp task per encountering thread, create a task.
= Execution may commence in the creating thread.

or
* Deferred and picked by another thread in the team.

= #pragma omp taskwait waits for all sibling tasks.

E
2
‘s
5
=

February 3, 2014 T. Hater Slide 19

Member of the Helmholtz-Association

February 3, 2014

Optimizing OpenMP

T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 20

sociation

Member of the Helmholtz-Ass

#) JOLICH

FORSCHUNGSZENTRUM

Fork/Join

= Fork/Join take time.

= May combine multiple regions.

#pragma omp parallel for

for(i=0; i<n; ++i) ali] = 2*b[i];

c = 0;

#pragma omp parallel for reduction(+: c)
for(i=0; i<n; ++i) c += a[il;

February 3, 2014 T. Hater Slide 21

sociation

Member of the Helmholtz-Ass

#) JOLICH

FORSCHUNGSZENTRUM

Fork/Join

= Fork/Join take time.
= Combine multiple regions into one to amortize

#pragma omp parallel

{
#pragma omp for
for(i=0; i<n; ++i) alil = 2*b[il;
c =0;
#pragma omp for reduction(+: c)
for(i=0; i<m; ++i) c += alil;

February 3, 2014 T. Hater Slide 22

Member of the Helmholtz-Association

Barriers

= Many constructs feature implicit barriers

February 3, 2014 T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 23

Member of the Helmholtz-Association

#) JOLICH

FORSCHUNGSZENTRUM

Barriers

= Many constructs feature implicit barriers
= If unneeded, they can be disabled using the nowait clause

#pragma omp parallel for nowait
for(i=0; i<n; ++i) {

alil = 2xb[il;
b

February 3, 2014 T. Hater Slide 23

sociation

Member of the Helmholtz-Ass

#) JOLICH

FORSCHUNGSZENTRUM

Barriers

= Many constructs feature implicit barriers
= If unneeded, they can be disabled using the nowait clause

#pragma omp parallel for nowait
for(i=0; i<n; ++i) {

alil = 2xb[il;
b

= Explicit barriers should be regarded with suspicion

February 3, 2014 T. Hater Slide 23

sociation

Member of the Helmholtz-Ass¢

#) JOLICH

FORSCHUNGSZENTRUM

Barriers

= Many constructs feature implicit barriers
= If unneeded, they can be disabled using the nowait clause

#pragma omp parallel for nowait
for(i=0; i<n; ++i) {

alil = 2xb[il;
b

= Explicit barriers should be regarded with suspicion

= The same holds for critical

February 3, 2014 T. Hater Slide 23

#) JOLICH

FORSCHUNGSZENTRUM

Barriers

= Many constructs feature implicit barriers
= If unneeded, they can be disabled using the nowait clause

#pragma omp parallel for nowait
for(i=0; i<n; ++i) {

alil = 2xb[il;
b

= Explicit barriers should be regarded with suspicion

= The same holds for critical

= But: correctness comes first. Be careful.

E
2
‘s
5
=

February 3, 2014 T. Hater Slide 23

Member of the Helmholtz-Association

Workloads

= OpenMP constructs are not for free

February 3, 2014 T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 24

Member of the Helmholtz-Association

Workloads

= OpenMP constructs are not for free

= Amortize overhead by offering enough work

February 3, 2014 T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 24

#) JOLICH

FORSCHUNGSZENTRUM

Workloads

= OpenMP constructs are not for free
= Amortize overhead by offering enough work
= Either number of iterations or effort per iteration

Member of the Helmholtz-Association

February 3, 2014 T. Hater Slide 24

Member of the Helmholtz-Association

#) JOLICH

FORSCHUNGSZENTRUM

Workloads

= OpenMP constructs are not for free
= Amortize overhead by offering enough work
= Either number of iterations or effort per iteration

= If workload varies: try to tune schedule

February 3, 2014 T. Hater Slide 24

Member of the Helmholtz-Association

February 3, 2014

OpenMP on BG/Q

T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 25

Member of the Helmholtz-Association

#) JOLICH

FORSCHUNGSZENTRUM

Compiling for OpenMP

= Use the XL compilers
mpixlc_r
mpixlcxx.r
mpixlf r
mpix1f90_r

February 3, 2014 T. Hater Slide 26

Member of the Helmholtz-Association

Compiling for OpenMP

= Use the XL compilers
mpixlc_r
mpixlcxx.r
mpixlf r
mpix1f90_r
= Add -gsmp=omp to compiler and linker flags.

February 3, 2014 T. Hater

9

JULICH

FORSCHUNGSZENTRUM

Slide 26

Member of the Helmholtz-Association

#) JOLICH

FORSCHUNGSZENTRUM

Compiling for OpenMP

= Use the XL compilers
mpixlc_r
mpixlcxx.r
mpixlf r
mpix1f90_r
= Add -gsmp=omp to compiler and linker flags.

= Automatically enables -02 -ghot, suppress with
-gsmp=omp : noopt.

February 3, 2014 T. Hater Slide 26

sociation

Member of the Helmholtz-Ass

#) JOLICH

FORSCHUNGSZENTRUM

Compiling for OpenMP

= Use the XL compilers
mpixlc_r
mpixlcxx.r
mpixlf r
mpix1f90_r
= Add -gsmp=omp to compiler and linker flags.
= Automatically enables -02 -ghot, suppress with
-gsmp=omp :noopt.

= Automatically parallelizes on top of OpenMP if given —gsmp

February 3, 2014 T. Hater Slide 26

Member of the Helmholtz-Association

XL OpenMP

= Standard version 3.1

February 3, 2014

T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 27

Member of the Helmholtz-Association

XL OpenMP

= Standard version 3.1
= (OMP_NUM_THREADS = OMP_THREAD_LIMIT = L

February 3, 2014 T. Hater

J

64

JULICH

FORSCHUNGSZENTRUM

RanksPerNode J

Slide 27

#) JOLICH

FORSCHUNGSZENTRUM

XL OpenMP

= Standard version 3.1
= OMP_NUM_THREADS = OMP_THREAD LIMIT = |58t —|

= May oversubscribe, but be careful.

Member of the Helmholtz-Association

February 3, 2014 T. Hater Slide 27

Member of the Helmholtz-Association

#) JOLICH

FORSCHUNGSZENTRUM

XL OpenMP

= Standard version 3.1
= OMP_NUM_THREADS = OMP_THREAD LIMIT = |58t —|
= May oversubscribe, but be careful.

= OMP_PROC_BIND = True due to CNK limitation

February 3, 2014 T. Hater Slide 27

sociation

Member of the Helmholtz-Ass

#) JOLICH

FORSCHUNGSZENTRUM

XL OpenMP

= Standard version 3.1

= OMP_NUM_THREADS = OMP_THREAD LIMIT = |58t —|
= May oversubscribe, but be careful.

= (OMP_PROC_BIND = True due to CNK limitation

= No nested OpenMP

February 3, 2014 T. Hater Slide 27

Member of the Helmholtz-Association

Exploiting BG/Q features

= omp barrier and lock use L2 atomics.

February 3, 2014 T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 28

Member of the Helmholtz-Association

Exploiting BG/Q features

= omp barrier and lock use L2 atomics.

= omp atomic exploits hardware atomics

February 3, 2014 T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 28

#) JOLICH

FORSCHUNGSZENTRUM

Exploiting BG/Q features

= omp barrier and lock use L2 atomics.
= omp atomic exploits hardware atomics

= Waiting threads go to sleep.

Member of the Helmholtz-Association

February 3, 2014 T. Hater Slide 28

Member of the Helmholtz-Association

#) JOLICH

FORSCHUNGSZENTRUM

Exploiting BG/Q features

= omp barrier and lock use L2 atomics.
= omp atomic exploits hardware atomics
= Waiting threads go to sleep.

= Thread local storage using
#pragma ibm threadlocal

February 3, 2014 T. Hater Slide 28

sociation

Member of the Helmholtz-Ass

#) JOLICH

FORSCHUNGSZENTRUM

Exploiting BG/Q features

= omp barrier and lock use L2 atomics.
= omp atomic exploits hardware atomics
= Waiting threads go to sleep.

= Thread local storage using
#pragma ibm threadlocal

= For hard to parallelize loops: speculation & TM (later talk)

February 3, 2014 T. Hater Slide 28

Member of the Helmholtz-Association

Overheads
Experimental values

= {lock|barrier|critical} < lus

February 3, 2014 T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 29

#) JOLICH

FORSCHUNGSZENTRUM

Overheads
Experimental values

= {lock|barrier|critical} < lus
= parallel 1lus (1 thread) — 50us (64 threads)

Member of the Helmholtz-Association

February 3, 2014 T. Hater Slide 29

Member of the Helmholtz-Association

#) JOLICH

FORSCHUNGSZENTRUM

Overheads
Experimental values

= {lock|barrier|critical} < lus
= parallel 1lus (1 thread) — 50us (64 threads)
= for loops 1us (1 thread) — 50us (64 threads)

February 3, 2014 T. Hater Slide 29

Member of the Helmholtz-Association

#) JOLICH

FORSCHUNGSZENTRUM

Overheads
Experimental values

{lock|barrier|critical} < lus

parallel lus (1 thread) — 50us (64 threads)

= for loops 1us (1 thread) — 50us (64 threads)

= Task {createlwait} 2us (1 thread) — 50us (16 threads)

February 3, 2014 T. Hater Slide 29

Member of the Helmholtz-Association

#) JOLICH

FORSCHUNGSZENTRUM

Overheads
Experimental values

{lock|barrier|critical} < lus

parallel lus (1 thread) — 50us (64 threads)

= for loops 1us (1 thread) — 50us (64 threads)

= Task {createlwait} 2us (1 thread) — 50us (16 threads)

Rule of thumb
100us for tasks, 10us for loops and 1us everything else.

February 3, 2014 T. Hater Slide 29

Member of the Helmholtz-Association

Tuning

= Experiment with ntphreads © NRanksPerNode

February 3, 2014 T. Hater

J

JULICH

FORSCHUNGSZENTRUM

Slide 30

Member of the Helmholtz-Association

J

Tuning

= Experiment with ntphreads © NRanksPerNode

JULICH

FORSCHUNGSZENTRUM

= BG_SMP_FAST_WAKEUP=YES + OMP_WAIT_POLICY=active

February 3, 2014 T. Hater

Slide 30

#) JOLICH

FORSCHUNGSZENTRUM

Tuning

= Experiment with ntphreads © NRanksPerNode
= BG_SMP_FAST_WAKEUP=YES + OMP_WAIT_POLICY=active

= Keep loops small if > 16 Threads (L1 cache)

Member of the Helmholtz-Association

February 3, 2014 T. Hater Slide 30

sociation

Member of the Helmholtz-Ass

#) JOLICH

FORSCHUNGSZENTRUM

Tuning

= Experiment with ntphreads © NRanksPerNode
= BG_SMP_FAST_WAKEUP=YES + OMP_WAIT_POLICY=active

= Keep loops small if > 16 Threads (L1 cache)

= Normally static scheduling is sensible

February 3, 2014 T. Hater Slide 30

sociation

Member of the Helmholtz-Ass

#) JOLICH

FORSCHUNGSZENTRUM

Tuning

= Experiment with NThreads © NRanksPerNode

= BG_SMP_FAST_WAKEUP=YES + OMP_WAIT_POLICY=active
= Keep loops small if > 16 Threads (L1 cache)

= Normally static scheduling is sensible

= On simple loop nests, try collapse(n)

February 3, 2014 T. Hater Slide 30

sociation

Member of the Helmholtz-Ass¢

#) JOLICH

FORSCHUNGSZENTRUM

Tuning

= Experiment with ntphreads © NRanksPerNode
= BG_SMP_FAST_WAKEUP=YES + OMP_WAIT_POLICY=active

= Keep loops small if > 16 Threads (L1 cache)
= Normally static scheduling is sensible
= On simple loop nests, try collapse(n)

= Do not use strict math for reductions

February 3, 2014 T. Hater Slide 30

Member of the Helmholtz-Association

#) JOLICH

FORSCHUNGSZENTRUM

MPI Comm threads

= BG/Q can use idle threads for asynchronous progress on MPI

February 3, 2014 T. Hater

Slide 31

#) JOLICH

FORSCHUNGSZENTRUM

MPI Comm threads

= BG/Q can use idle threads for asynchronous progress on MPI

= Initialize MPI_Init_thread(..., MPI_THREAD MULTIPLE)
(PAMID_CONTEXT_P0OST=1 PAMID_ASYNC_PROGRESS=1)

Member of the Helmholtz-Association

February 3, 2014 T. Hater Slide 31

sociation

Member of the Helmholtz-Ass

#) JOLICH

FORSCHUNGSZENTRUM

MPI Comm threads

= BG/Q can use idle threads for asynchronous progress on MPI

= Initialize MPI_Init_thread(..., MPI_THREAD MULTIPLE)
(PAMID_CONTEXT_P0OST=1 PAMID_ASYNC_PROGRESS=1)

= Compile with —~qsmp

February 3, 2014 T. Hater Slide 31

sociation

Member of the Helmholtz-Ass

#) JOLICH

FORSCHUNGSZENTRUM

MPI Comm threads

= BG/Q can use idle threads for asynchronous progress on MPI

= Initialize MPI_Init_thread(..., MPI_THREAD MULTIPLE)
(PAMID_CONTEXT_P0OST=1 PAMID_ASYNC_PROGRESS=1)

= Compile with —~qsmp
= The rest should happen automagically

February 3, 2014 T. Hater Slide 31

Member of the Helmholtz-Association

#) JOLICH

FORSCHUNGSZENTRUM

Closing words

= Extremely fast and incomplete introduction to OpenMP.
= Deceptively easy looking!

= We did not talk about memory consistency.

= On JUQUEEN you must go hybrid.

February 3, 2014 T. Hater Slide 32

sociation

Member of the Helmholtz-Ass¢

#) JOLICH

FORSCHUNGSZENTRUM

Resources

= XL compiler manuals
http:
//pic.dhe.ibm.com/infocenter/compbg/v121vi41/
= OpenMP standard
http://www.openmp.org/mp-documents/0OpenMP3.1.pdf
= OpenMP overview card
http://openmp.org/mp-documents/
OpenMP3.1-CCard.pdf
OpenMP3. 1-FortranCard.pdf

February 3, 2014 T. Hater Slide 33

http://pic.dhe.ibm.com/infocenter/compbg/v121v141/
http://pic.dhe.ibm.com/infocenter/compbg/v121v141/
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://openmp.org/mp-documents/
OpenMP3.1-CCard.pdf
OpenMP3.1-FortranCard.pdf

	Outline
	Motivation
	OpenMP Introduction
	Basic parallelism
	Loops
	Synchronization
	Other constructs

	Optimizing OpenMP
	OpenMP on BG/Q

