
P6
PROPER PINNING PREVENTS PRETTY POOR PERFORMANCE
January 26, 2021 T. Hater JSC

Member of the Helmholtz Association

Superlinear Speed-Up?

Member of the Helmholtz Association January 26, 2021 Slide 1 24

Superlinear Speed-Up?
No, just a bad baseline…

Default process placement switched between two cases.

Second configuration is better for this benchmark.

Member of the Helmholtz Association January 26, 2021 Slide 2 24

Superlinear Speed-Up?
No, just a bad baseline…

Default process placement switched between two cases.
Second configuration is better for this benchmark.

Member of the Helmholtz Association January 26, 2021 Slide 2 24

STREAM benchmark
Heavily Optimised for Target Architecture,…

1GiB, only triad (3 double per element).
De-activated bindings by MPI and OpenMP.
10 runs each averaged over 5 repetitions, pick top result.
-Ofast -march=native -mtune=native
-std=c++17 -fno-builtin -fno-rtti -fno-exceptions -fopenmp
Cache line blocked and aligned, SIMD, single fork/join, first touch aware, RMW optimised.

Member of the Helmholtz Association January 26, 2021 Slide 3 24

STREAM benchmark
Heavily Optimised for Target Architecture,…

1GiB, only triad (3 double per element).
De-activated bindings by MPI and OpenMP.
10 runs each averaged over 5 repetitions, pick top result.
-Ofast -march=native -mtune=native
-std=c++17 -fno-builtin -fno-rtti -fno-exceptions -fopenmp
Cache line blocked and aligned, SIMD, single fork/join, first touch aware, RMW optimised.

1 2 4 8
Threads

1
2

4
8

10
20

Ta
sk

s

29 63 114 141

57 113 144 153

114 142 151 194

143 160 215 228

173 192 196 200

192 199 202 196

Pinned

1 2 4 8

Threads

30 60 83 95

58 83 95 111

84 108 144 145

91 190 137 117

136 175 163 188

94 167 118 161

Unpinned

Member of the Helmholtz Association January 26, 2021 Slide 3 24

STREAM benchmark
Heavily Optimised for Target Architecture,…

1GiB, only triad (3 double per element).
De-activated bindings by MPI and OpenMP.
10 runs each averaged over 5 repetitions, pick top result.
-Ofast -march=native -mtune=native
-std=c++17 -fno-builtin -fno-rtti -fno-exceptions -fopenmp
Cache line blocked and aligned, SIMD, single fork/join, first touch aware, RMW optimised.

1 2 4 8
Threads

1
2

4
8

10
20

Ta
sk

s

29 63 114 141

57 113 144 153

114 142 151 194

143 160 215 228

173 192 196 200

192 199 202 196

Pinned

1 2 4 8

Threads

30 60 83 95

58 83 95 111

84 108 144 145

91 190 137 117

136 175 163 188

94 167 118 161

Unpinned

Opt
imi

sed
, ye

s, b
ut u

n-

pin
ned

, w
e lo

ose
a fa

cto
r

of t
wo

in per
form

anc
e.

Member of the Helmholtz Association January 26, 2021 Slide 3 24

What is Pinning?
Also: Binding, Affinity, …

Force a process or thread to execute only on a given set of cores.

Increases performance predictability and absolute performance.
Enforced by the OS, driven by user space tools.
In HPC this is (partially!) handled by the scheduler (SLURM) or MPI.
But you can (should?) take control.

Member of the Helmholtz Association January 26, 2021 Slide 4 24

What is Pinning?
Also: Binding, Affinity, …

Force a process or thread to execute only on a given set of cores.
Increases performance predictability and absolute performance.

Enforced by the OS, driven by user space tools.
In HPC this is (partially!) handled by the scheduler (SLURM) or MPI.
But you can (should?) take control.

Member of the Helmholtz Association January 26, 2021 Slide 4 24

What is Pinning?
Also: Binding, Affinity, …

Force a process or thread to execute only on a given set of cores.
Increases performance predictability and absolute performance.
Enforced by the OS, driven by user space tools.

In HPC this is (partially!) handled by the scheduler (SLURM) or MPI.
But you can (should?) take control.

Member of the Helmholtz Association January 26, 2021 Slide 4 24

What is Pinning?
Also: Binding, Affinity, …

Force a process or thread to execute only on a given set of cores.
Increases performance predictability and absolute performance.
Enforced by the OS, driven by user space tools.
In HPC this is (partially!) handled by the scheduler (SLURM) or MPI.

But you can (should?) take control.

Member of the Helmholtz Association January 26, 2021 Slide 4 24

What is Pinning?
Also: Binding, Affinity, …

Force a process or thread to execute only on a given set of cores.
Increases performance predictability and absolute performance.
Enforced by the OS, driven by user space tools.
In HPC this is (partially!) handled by the scheduler (SLURM) or MPI.
But you can (should?) take control.

Member of the Helmholtz Association January 26, 2021 Slide 4 24

Why Pinning?
A Cartoon CPU

CPU 1 CPU 2 CPU 3 CPU 4

L2$ L2$ L2$ L2$

Global Memory

Many cores, each with its own
memory hierachy.

Shared global memory, but…
…affinitiy to memory partitions.

OSmanages allocation,…
…task placement, and…
…swaps tasks in and out.

Member of the Helmholtz Association January 26, 2021 Slide 5 24

Why Pinning?
A Cartoon CPU

CPU 1 CPU 2 CPU 3 CPU 4

L2$ L2$ L2$ L2$

Global Memory

Many cores, each with its own
memory hierachy.
Shared global memory, but…

…affinitiy to memory partitions.

OSmanages allocation,…
…task placement, and…
…swaps tasks in and out.

Member of the Helmholtz Association January 26, 2021 Slide 5 24

Why Pinning?
A Cartoon CPU

CPU 1 CPU 2 CPU 3 CPU 4

L2$ L2$ L2$ L2$

Global Memory

Many cores, each with its own
memory hierachy.
Shared global memory, but…
…affinitiy to memory partitions.

OSmanages allocation,…
…task placement, and…
…swaps tasks in and out.

Member of the Helmholtz Association January 26, 2021 Slide 5 24

Why Pinning?
A Cartoon CPU

CPU 1 CPU 2 CPU 3 CPU 4

L2$ L2$ L2$ L2$

Global Memory

Many cores, each with its own
memory hierachy.
Shared global memory, but…
…affinitiy to memory partitions.

OSmanages allocation,…

…task placement, and…
…swaps tasks in and out.

Member of the Helmholtz Association January 26, 2021 Slide 5 24

Why Pinning?
A Cartoon CPU

CPU 1 CPU 2 CPU 3 CPU 4

L2$ L2$ L2$ L2$

Global Memory

Many cores, each with its own
memory hierachy.
Shared global memory, but…
…affinitiy to memory partitions.

OSmanages allocation,…
…task placement, and…

…swaps tasks in and out.

Member of the Helmholtz Association January 26, 2021 Slide 5 24

Why Pinning?
A Cartoon CPU

CPU 1 CPU 2 CPU 3 CPU 4

L2$ L2$ L2$ L2$

Global Memory

Many cores, each with its own
memory hierachy.
Shared global memory, but…
…affinitiy to memory partitions.

OSmanages allocation,…
…task placement, and…
…swaps tasks in and out.

Member of the Helmholtz Association January 26, 2021 Slide 5 24

Why Pinning?
Scenario 1: Task Migration

CPU 1 CPU 2

L2$ 1 L2$ 2

T1

T1

Important

Swapping tasks in and out is basically free, but taskmigration leads to data migration.
Granularity is a cache line (often 128B); be aware of false sharing.

Member of the Helmholtz Association January 26, 2021 Slide 6 24

Why Pinning?
Scenario 1: Task Migration

CPU 1 CPU 2

L2$ 1 L2$ 2T1

T1

OS: Context Switch

Important

Swapping tasks in and out is basically free, but taskmigration leads to data migration.
Granularity is a cache line (often 128B); be aware of false sharing.

Member of the Helmholtz Association January 26, 2021 Slide 6 24

Why Pinning?
Scenario 1: Task Migration

CPU 1 CPU 2

L2$ 1 L2$ 2

T1

T1

Important

Swapping tasks in and out is basically free, but taskmigration leads to data migration.
Granularity is a cache line (often 128B); be aware of false sharing.

Member of the Helmholtz Association January 26, 2021 Slide 6 24

Why Pinning?
Scenario 1: Task Migration

CPU 1 CPU 2

L2$ 1 L2$ 2

T1

T1

Important

Swapping tasks in and out is basically free, but taskmigration leads to data migration.
Granularity is a cache line (often 128B); be aware of false sharing.

Member of the Helmholtz Association January 26, 2021 Slide 6 24

Why Pinning?
Scenario 2: NUMA

NUMA: Non-UniformMemory Access, ie memory performance depends on relative location.

CPU 1 CPU 2

RAM 1 RAM 2

T1

T1

Important

All modern CPUs are NUMA architectures; might even have more than one NUMA domain!
Memory is actually allocated on initialisation, use same parallel configuration as consumer.
There will be no automatic migration.

Member of the Helmholtz Association January 26, 2021 Slide 7 24

Why Pinning?
Scenario 2: NUMA

NUMA: Non-UniformMemory Access, ie memory performance depends on relative location.

CPU 1 CPU 2

RAM 1 RAM 2

T1

T1

OS: Context Switch

Important

All modern CPUs are NUMA architectures; might even have more than one NUMA domain!
Memory is actually allocated on initialisation, use same parallel configuration as consumer.
There will be no automatic migration.

Member of the Helmholtz Association January 26, 2021 Slide 7 24

Why Pinning?
Scenario 2: NUMA

NUMA: Non-UniformMemory Access, ie memory performance depends on relative location.

CPU 1 CPU 2

RAM 1 RAM 2

T1

T1
low

ban
dwid

th

Important

All modern CPUs are NUMA architectures; might even have more than one NUMA domain!
Memory is actually allocated on initialisation, use same parallel configuration as consumer.
There will be no automatic migration.

Member of the Helmholtz Association January 26, 2021 Slide 7 24

Why Pinning?
Scenario 2: NUMA

NUMA: Non-UniformMemory Access, ie memory performance depends on relative location.

CPU 1 CPU 2

RAM 1 RAM 2

T1

T1
low

ban
dwid

th

Important

All modern CPUs are NUMA architectures; might even have more than one NUMA domain!
Memory is actually allocated on initialisation, use same parallel configuration as consumer.
There will be no automatic migration.

Member of the Helmholtz Association January 26, 2021 Slide 7 24

Why Pinning?
Scenario 3: Sharing Resources

CPU 1 CPU 2

RAM 1 RAM 2

T2

T2T1

T1

In some instances resources might be shared
Hardware Threads (HWT) on a core might share computational units.
Cores on a socket might share memory bandwidth, caches, …

This can lead to sub-optimal performance by leaving some parts idle and others saturated.
The inversemight also be true, eg it might be beneficial to share caches for read-only data.

Member of the Helmholtz Association January 26, 2021 Slide 8 24

Why Pinning?
Scenario 4: Specialisation

Socket 1 Socket 2

GPU NIC

T2

T2

T1

T1

Accelerators/network interfaces might be attached to a specific socket.
If tasks/threads have specialised jobs, like MPI communication, …
…scheduling them close to the relevant hardware can improve performance.
Again: Beware the context switch.

Member of the Helmholtz Association January 26, 2021 Slide 9 24

This Talk

✓ Motivation: Suboptimial and/or unpredictable performance
✓ Definition: What is pinning?
✓ Mechanism: Why does it improve performance?

Learn to know your hardware.
How to pin your processes.
How to bind your threads.

Member of the Helmholtz Association January 26, 2021 Slide 10 24

Exploring a Node
> ml hwloc
> hwloc-ls # IMPORTANT: Run this on the *compute node*, eg via srun!
Machine (754GB total)

Package L#0
NUMANode L#0 (P#0 376GB)
L3 L#0 (28MB)
L2 L#0 (1024KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0
PU L#0 (P#0)
PU L#1 (P#40)

L2 L#1 (1024KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1
PU L#2 (P#1)
PU L#3 (P#41)

[...]
HostBridge
PCIBridge
PCI 3b:00.0 (InfiniBand)

Net "ib0"
OpenFabrics "mlx5_0"

Package L#1
NUMANode L#1 (P#1 378GB)
L3 L#1 (28MB)

[...]

hwloc documentation

Member of the Helmholtz Association January 26, 2021 Slide 11 24

https://www.open-mpi.org/projects/hwloc/

Exploring a Node
ASCII Art Edition

> hwloc-ls --output-format ascii # IMPORTANT: Run this on the *compute node*, eg via srun!
+---+
| Machine (504GB total) |
| +---+ |
| | Package L#0 |
| | +---+ |
| | | NUMANode L#0 P#0 (252GB) | |
| | +---+ |
| | +---+ +---+ | |
| | | L3 (16MB) | ... | L3 (16MB) | | |
| | +---+ +---+ | |
| | +-------------+ +-------------+ +-------------+ +-------------+ +-------------+ +-------------+ | |
| | | L2 (512KB) | | L2 (512KB) | | L2 (512KB) | | L2 (512KB) | | L2 (512KB) | | L2 (512KB) | | |
| | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | |
| | +-------------+ +-------------+ +-------------+ +-------------+ +-------------+ +-------------+ | |
| | +-------------+ +-------------+ +-------------+ +-------------+ +-------------+ +-------------+ | |
| | | Core L#0 | | Core L#1 | | Core L#2 | | Core L#21 | | Core L#22 | | Core L#23 | | |
| | | +---------+ | | +---------+ | | +---------+ | | +---------+ | | +---------+ | | +---------+ | | |
| | | | PU L#0 | | | | PU L#2 | | | | PU L#4 | | | | PU L#42 | | | | PU L#44 | | | | PU L#46 | | | |
| | | | PU L#1 | | | | PU L#3 | | | | PU L#5 | | | | PU L#43 | | | | PU L#45 | | | | PU L#47 | | | |
| | | +---------+ | | +---------+ | | +---------+ | | +---------+ | | +---------+ | | +---------+ | | |
| | +-------------+ +-------------+ +-------------+ +-------------+ +-------------+ +-------------+ | |
| +---+ |
+---+

Member of the Helmholtz Association January 26, 2021 Slide 12 24

Exploring a Node
Accelerators and Network Devices

hwloc-ls --output-format=pdf > node.pdf
Machine (503GB total)

Package L#0

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#0

PU L#0
P#0

PU L#1
P#48

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#1

PU L#2
P#1

PU L#3
P#49

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#2

PU L#4
P#2

PU L#5
P#50

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#3

PU L#6
P#3

PU L#7
P#51

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#4

PU L#8
P#4

PU L#9
P#52

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#5

PU L#10
P#5

PU L#11
P#53

0.5 0.5 PCI 62:00.0

NUMANode L#0 P#0 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#6

PU L#12
P#6

PU L#13
P#54

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#7

PU L#14
P#7

PU L#15
P#55

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#8

PU L#16
P#8

PU L#17
P#56

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#9

PU L#18
P#9

PU L#19
P#57

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#10

PU L#20
P#10

PU L#21
P#58

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#11

PU L#22
P#11

PU L#23
P#59

32 32 32

32

32

32 PCI 43:00.0

Net ib0

OpenFabrics mlx5_0

16 PCI 44:00.0

GPU nvml1

32 PCI 45:00.0

NUMANode L#1 P#1 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#12

PU L#24
P#12

PU L#25
P#60

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#13

PU L#26
P#13

PU L#27
P#61

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#14

PU L#28
P#14

PU L#29
P#62

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#15

PU L#30
P#15

PU L#31
P#63

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#16

PU L#32
P#16

PU L#33
P#64

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#17

PU L#34
P#17

PU L#35
P#65

NUMANode L#2 P#2 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#18

PU L#36
P#18

PU L#37
P#66

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#19

PU L#38
P#19

PU L#39
P#67

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#20

PU L#40
P#20

PU L#41
P#68

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#21

PU L#42
P#21

PU L#43
P#69

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#22

PU L#44
P#22

PU L#45
P#70

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#23

PU L#46
P#23

PU L#47
P#71

32 32 32

32

32

16 PCI 03:00.0

CoProc opencl0d0
108 compute units
39 GB

CoProc cuda0
39 GB
L2 (40 MB)

GPU nvml0

32 PCI 04:00.0

Net ib1

OpenFabrics mlx5_1

32 PCI 05:00.0

NUMANode L#3 P#3 (63GB)

Package L#1

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#24

PU L#48
P#24

PU L#49
P#72

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#25

PU L#50
P#25

PU L#51
P#73

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#26

PU L#52
P#26

PU L#53
P#74

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#27

PU L#54
P#27

PU L#55
P#75

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#28

PU L#56
P#28

PU L#57
P#76

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#29

PU L#58
P#29

PU L#59
P#77

0.5 0.5

0.5

PCI e1:00.0

Net enp225s0f0

PCI e1:00.1

Net enp225s0f1

NUMANode L#4 P#4 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#30

PU L#60
P#30

PU L#61
P#78

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#31

PU L#62
P#31

PU L#63
P#79

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#32

PU L#64
P#32

PU L#65
P#80

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#33

PU L#66
P#33

PU L#67
P#81

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#34

PU L#68
P#34

PU L#69
P#82

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#35

PU L#70
P#35

PU L#71
P#83

32

32

32 32

32

32

32 PCI c3:00.0

Net ib2

OpenFabrics mlx5_2

16 PCI c4:00.0

GPU nvml3

32 PCI c5:00.0

32 PCI c8:00.0

NUMANode L#5 P#5 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#36

PU L#72
P#36

PU L#73
P#84

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#37

PU L#74
P#37

PU L#75
P#85

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#38

PU L#76
P#38

PU L#77
P#86

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#39

PU L#78
P#39

PU L#79
P#87

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#40

PU L#80
P#40

PU L#81
P#88

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#41

PU L#82
P#41

PU L#83
P#89

NUMANode L#6 P#6 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#42

PU L#84
P#42

PU L#85
P#90

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#43

PU L#86
P#43

PU L#87
P#91

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#44

PU L#88
P#44

PU L#89
P#92

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#45

PU L#90
P#45

PU L#91
P#93

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#46

PU L#92
P#46

PU L#93
P#94

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#47

PU L#94
P#47

PU L#95
P#95

32 32 32

32

32

32 PCI 83:00.0

Net ib3

OpenFabrics mlx5_3

16 PCI 84:00.0

GPU nvml2

32 PCI 85:00.0

NUMANode L#7 P#7 (63GB)

Host: jwb1244.juwels
Date: Wed Nov 18 09:02:24 2020

Member of the Helmholtz Association January 26, 2021 Slide 13 24

Exploring a Node
Accelerators and Network Devices

Machine (503GB total)

Package L#0

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#0

PU L#0
P#0

PU L#1
P#48

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#1

PU L#2
P#1

PU L#3
P#49

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#2

PU L#4
P#2

PU L#5
P#50

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#3

PU L#6
P#3

PU L#7
P#51

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#4

PU L#8
P#4

PU L#9
P#52

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#5

PU L#10
P#5

PU L#11
P#53

0.5 0.5 PCI 62:00.0

NUMANode L#0 P#0 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#6

PU L#12
P#6

PU L#13
P#54

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#7

PU L#14
P#7

PU L#15
P#55

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#8

PU L#16
P#8

PU L#17
P#56

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#9

PU L#18
P#9

PU L#19
P#57

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#10

PU L#20
P#10

PU L#21
P#58

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#11

PU L#22
P#11

PU L#23
P#59

32 32 32

32

32

32 PCI 43:00.0

Net ib0

OpenFabrics mlx5_0

16 PCI 44:00.0

GPU nvml1

32 PCI 45:00.0

NUMANode L#1 P#1 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#12

PU L#24
P#12

PU L#25
P#60

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#13

PU L#26
P#13

PU L#27
P#61

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#14

PU L#28
P#14

PU L#29
P#62

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#15

PU L#30
P#15

PU L#31
P#63

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#16

PU L#32
P#16

PU L#33
P#64

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#17

PU L#34
P#17

PU L#35
P#65

NUMANode L#2 P#2 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#18

PU L#36
P#18

PU L#37
P#66

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#19

PU L#38
P#19

PU L#39
P#67

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#20

PU L#40
P#20

PU L#41
P#68

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#21

PU L#42
P#21

PU L#43
P#69

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#22

PU L#44
P#22

PU L#45
P#70

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#23

PU L#46
P#23

PU L#47
P#71

32 32 32

32

32

16 PCI 03:00.0

CoProc opencl0d0
108 compute units
39 GB

CoProc cuda0
39 GB
L2 (40 MB)

GPU nvml0

32 PCI 04:00.0

Net ib1

OpenFabrics mlx5_1

32 PCI 05:00.0

NUMANode L#3 P#3 (63GB)

Package L#1

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#24

PU L#48
P#24

PU L#49
P#72

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#25

PU L#50
P#25

PU L#51
P#73

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#26

PU L#52
P#26

PU L#53
P#74

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#27

PU L#54
P#27

PU L#55
P#75

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#28

PU L#56
P#28

PU L#57
P#76

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#29

PU L#58
P#29

PU L#59
P#77

0.5 0.5

0.5

PCI e1:00.0

Net enp225s0f0

PCI e1:00.1

Net enp225s0f1

NUMANode L#4 P#4 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#30

PU L#60
P#30

PU L#61
P#78

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#31

PU L#62
P#31

PU L#63
P#79

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#32

PU L#64
P#32

PU L#65
P#80

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#33

PU L#66
P#33

PU L#67
P#81

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#34

PU L#68
P#34

PU L#69
P#82

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#35

PU L#70
P#35

PU L#71
P#83

32

32

32 32

32

32

32 PCI c3:00.0

Net ib2

OpenFabrics mlx5_2

16 PCI c4:00.0

GPU nvml3

32 PCI c5:00.0

32 PCI c8:00.0

NUMANode L#5 P#5 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#36

PU L#72
P#36

PU L#73
P#84

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#37

PU L#74
P#37

PU L#75
P#85

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#38

PU L#76
P#38

PU L#77
P#86

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#39

PU L#78
P#39

PU L#79
P#87

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#40

PU L#80
P#40

PU L#81
P#88

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#41

PU L#82
P#41

PU L#83
P#89

NUMANode L#6 P#6 (63GB)

Group0

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#42

PU L#84
P#42

PU L#85
P#90

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#43

PU L#86
P#43

PU L#87
P#91

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#44

PU L#88
P#44

PU L#89
P#92

L3 (16MB)

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#45

PU L#90
P#45

PU L#91
P#93

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#46

PU L#92
P#46

PU L#93
P#94

L2 (512KB)

L1d (32KB)

L1i (32KB)

Core L#47

PU L#94
P#47

PU L#95
P#95

32 32 32

32

32

32 PCI 83:00.0

Net ib3

OpenFabrics mlx5_3

16 PCI 84:00.0

GPU nvml2

32 PCI 85:00.0

NUMANode L#7 P#7 (63GB)

Host: jwb1244.juwels
Date: Wed Nov 18 09:02:24 2020

Member of the Helmholtz Association January 26, 2021 Slide 14 24

Options for Binding
Usually, a hybrid model is used: MPI tasks× threads (OpenMP/pthreads/…)

Processes
Resource Managers: SLURM,…
MPI implementations: OpenMPI, PSMPI, …
Linux: taskset, numactl, …
HWLoc CLI tools

Threads
OpenMP Environment variables (if used)
Linux Kernel API
OpenMP API (if used)
HWLoc API

Member of the Helmholtz Association January 26, 2021 Slide 15 24

Processes: SLURM
Bind

--bind=[options] Enable binding
verbose Print binding masks.

cores|threads Use preset masks.
rank Bind tasks to CPU IDs matching to task rank.

rank_ldom Like rank, but distribute across NUMA domains.
mask_cpu=0x.. List of bit masks, can be generated by hwloc tools.

Note: binding a process with threads still allows migration between the available HWT.

Warning

SLURMmight still generate bad distributions, see examples later on.

Member of the Helmholtz Association January 26, 2021 Slide 16 24

Processes: SLURM
Distribute

-N n -n t -c k Request n nodes for t tasks× k CPUs per task
--distribution=L:M:N Distribute tasks across

L=block|cyclic Nodes
M=block|cyclic|fcyclic Sockets
N=block|cyclic|fcyclic HWT

where
block keep tasks as close together as possible

cyclic round-robin distribution of requested tasks
fcyclic round-robin distribution of requested CPUs
slurm documentation

Member of the Helmholtz Association January 26, 2021 Slide 17 24

https://slurm.schedmd.com/mc_support.html#srun_dist

Processes: SLURM
Examples: Single-node

System JUWELS GPU
Node 2 sockets× 20 cores× 2 HWT

Request 1 node with 8 tasks× 3 CPUs
Goal: Optimise for using as much of the hardware as possible, assuming the application does
not benefit from co-locating tasks.

bind=rank
7 Task 6 is split over two sockets.
7 Uneven load across sockets.

Member of the Helmholtz Association January 26, 2021 Slide 18 24

Processes: SLURM
Examples: Single-node

System JUWELS GPU
Node 2 sockets× 20 cores× 2 HWT

Request 1 node with 8 tasks× 3 CPUs
Goal: Optimise for using as much of the hardware as possible, assuming the application does
not benefit from co-locating tasks.

bind=rank_ldom
7 Tasks share cores
7 SMT used before filling HWT

Member of the Helmholtz Association January 26, 2021 Slide 18 24

Processes: SLURM
Examples: Single-node

System JUWELS GPU
Node 2 sockets× 20 cores× 2 HWT

Request 1 node with 8 tasks× 3 CPUs
Goal: Optimise for using as much of the hardware as possible, assuming the application does
not benefit from co-locating tasks.

bind=cores
7 Tasks split over sockets.
Each requested CPU acquires a full physical core.

Member of the Helmholtz Association January 26, 2021 Slide 18 24

Processes: SLURM
Examples: Single-node

System JUWELS GPU
Node 2 sockets× 20 cores× 2 HWT

Request 1 node with 8 tasks× 3 CPUs
Goal: Optimise for using as much of the hardware as possible, assuming the application does
not benefit from co-locating tasks.

bind=threads
3 Goal achieved

Member of the Helmholtz Association January 26, 2021 Slide 18 24

Processes: SLURM
Examples: Multi-node

System JUWELS GPUs
Node 2 sockets× 20 cores× 2 HWT

Request 2 nodes with 20 tasks× 2 CPUs

bind=threads
distribution=block:cyclic:fcyclic

Images: PinningWebtool

Member of the Helmholtz Association January 26, 2021 Slide 19 24

https://apps.fz-juelich.de/jsc/llview/pinning/

Processes: SLURM
Examples: Multi-node

System JUWELS GPUs
Node 2 sockets× 20 cores× 2 HWT

Request 2 nodes with 20 tasks× 2 CPUs

bind=threads
distribution=block:cyclic:fcyclic

Images: PinningWebtool

Member of the Helmholtz Association January 26, 2021 Slide 19 24

https://apps.fz-juelich.de/jsc/llview/pinning/

Processes: SLURM
Examples: Advanced Usage

System JUWELS Booster: NIC/GPUs attached to NUMA domains 1, 3, 5, 7
Goal 4 dedicated tasks for driving accelerators and communication each.

> # Compute masks for all HWT in the relevant NUMA domains
> numa=`hwloc-calc numa:1 numa:3 numa:5 numa:7`
> # Generate masks for the distribution of 8 tasks across these
> mask=`hwloc-distrib 8 --single --taskset --restrict $numa | xargs | tr ' ' ','`
> # Run application
> srun --cpu_bind=verbose,cpu_mask=$mask -N 1 -n 8 -c 1 -- app.exe

Warning

Masks can be computed by hand, but keeping track of the numbering and bitsets is tedious
and errorprone. The numbering schememay change by: vendor, CPU generation, OS,…

Member of the Helmholtz Association January 26, 2021 Slide 20 24

Processes: SLURM
Examples: Advanced Usage

System JUWELS Booster: NIC/GPUs attached to NUMA domains 1, 3, 5, 7
Goal 4 dedicated tasks for driving accelerators and communication each.

> # Compute masks for all HWT in the relevant NUMA domains
> numa=`hwloc-calc numa:1 numa:3 numa:5 numa:7`
> # Generate masks for the distribution of 8 tasks across these
> mask=`hwloc-distrib 8 --single --taskset --restrict $numa | xargs | tr ' ' ','`
> # Run application
> srun --cpu_bind=verbose,cpu_mask=$mask -N 1 -n 8 -c 1 -- app.exe

Warning

Masks can be computed by hand, but keeping track of the numbering and bitsets is tedious
and errorprone. The numbering schememay change by: vendor, CPU generation, OS,…

Member of the Helmholtz Association January 26, 2021 Slide 20 24

Processes: SLURM
Examples: Advanced Usage

System JUWELS Booster: NIC/GPUs attached to NUMA domains 1, 3, 5, 7
Goal 4 dedicated tasks for driving accelerators and communication each.

> # Compute masks for all HWT in the relevant NUMA domains
> numa=`hwloc-calc numa:1 numa:3 numa:5 numa:7`
> # Generate masks for the distribution of 8 tasks across these
> mask=`hwloc-distrib 8 --single --taskset --restrict $numa | xargs | tr ' ' ','`
> # Run application
> srun --cpu_bind=verbose,cpu_mask=$mask -N 1 -n 8 -c 1 -- app.exe

Warning

Masks can be computed by hand, but keeping track of the numbering and bitsets is tedious
and errorprone. The numbering schememay change by: vendor, CPU generation, OS,…

Member of the Helmholtz Association January 26, 2021 Slide 20 24

Processes: SLURM
JUWELS Booster Default

Just use the default if your application does not have special requirements.
srun -N 1 -n 4 --gpus=4 --cpu-bind=socket -- app.exe

This does the right thing and also restricts the tasks’ visible GPUs to the closest one.

Member of the Helmholtz Association January 26, 2021 Slide 21 24

Threads

When using threads within tasks, these can use affinitiy as well.
Without, threads will be mobile within the task-level masks.
Consequently, we need to add another level of bindings…
…and take care not to conflict with task-level masks.

Member of the Helmholtz Association January 26, 2021 Slide 22 24

Threads: OpenMP Environment Variables
OMP_PROC_BIND=[...] Inhibit migration, bind threads to

true First location it runs on.
spread Spread over allowable set.
close Block threads together.

OMP_PLACES=[...] Bind threads to a set of places
threads Individual hardware threads
cores All HWT of a core

sockets All cores of a socket
{1, …} List of HWT ids

Migration is still allowed within a placewhen binding is not enabled.
Using threads|cores|socketswith task binding is safe.

OpenMP specification

Member of the Helmholtz Association January 26, 2021 Slide 23 24

https://www.openmp.org/spec-html/5.0

Summary

Be aware of your application, we cannot provide a general solution.
Binding for more performance andmore predictability.
Tools like hwloc allowmapping node topologies.
High-level settings for performance and portability.
Example: SLURM and OpenMP.
Low-level tools, eg hwloc-API, for ultimate control.

Member of the Helmholtz Association January 26, 2021 Slide 24 24

Summary

Be aware of your application, we cannot provide a general solution.
Binding for more performance andmore predictability.
Tools like hwloc allowmapping node topologies.
High-level settings for performance and portability.
Example: SLURM and OpenMP.
Low-level tools, eg hwloc-API, for ultimate control.

Happy Pinn
ing

t.hater@fz-juelich.de

Member of the Helmholtz Association January 26, 2021 Slide 24 24

mailto:t.hater@fz-juelich.de

	Motivation
	Introduction
	HWLOC

