
L IGHTWEIGHT FORTRAN EDSL
As applied to 3D MPDATA nonlinear Eulerian advec�on scheme

March 16, 2022 Zbigniew Piotrowski JSC

Member of the Helmholtz Associa�on



Computa�onal challenge for legacy codes
Established legacy codes, o�en employing coding and parallelism paradigms from the previous decade, are
usually not able to exploit efficient hardware chips of modern supercomputers. Available FLOPs are used
only in several percent, and peak memory bandwidth is not always saturated. Common reasons for this
include:

inability to execute on GPUs,
lack of or simplis�c shared memory paralleliza�on,
too frequent MPI communica�on,
lack of overlapping MPI communica�on with computa�on,
poor performance of implementa�on of modern/complex Fortran and MPI constructs.

Member of the Helmholtz Associa�on March 16, 2022 Slide 1



Mi�ga�on strategies and their adverse consequences
1 Use auto-paralleliza�on features of modern compilers.

Does not seem to work for non-trivial codes.
2 Complete code rewrite using performance portability frameworks, e.g. Kokkos, Raja, OpenCL, perhaps

Julia.
Time and resource consuming, may impair domain scien�st produc�vity, subop�mal performance.

3 Introduc�on of OpenACC and OpenMP direc�ves.
Obfuscated code, direc�ves support (and bugs) vary between compilers, some specialized code s�ll needed,
subop�mal performance.

4 Use libraries op�mized for a par�cular architecture.
Typically addresses only a frac�on of numerical formula�on.

5 Mu�ple code ports targe�ng different architectures, e.g. using CUDA or HIP next to the legacy CPU
code,

Lots of code duplica�on, difficult to maintain.
6 Use full Domain Specific Language, e.g. GridTools.

Requires C++ rewrite, may suffer from long compila�on �mes due to lots of work delegated to the C++
compiler, readability is ques�onable, strong dependence on the external project.

Member of the Helmholtz Associa�on March 16, 2022 Slide 2



A couple of remarks on the ESM model development
Regardless of the strategy for performance portability, legacy geophysical codes require substan�al
developments already at the Fortran level.

Code modulariza�on is preferred to a monolithic construc�on, as it facilitates por�ng to new
supercomputers, debugging and community development and teaching.
Code analysis towards increasing memory locality, avoiding intermediate memory stores and
computa�onal intensity needs to be performed by a human rather than delegated to the external
so�ware solu�ons.
Computa�ons in halo to replace the MPI communica�on are o�en not easy to implement, as the
special stencils at the boundaries (especially for regional models) come between the major
computa�ons.
Priori�za�on of the computa�ons at theMPI subdomain boundaries enables overlapping the
computa�ons and communica�on, but its direct encoding obfuscates the code.

Most o�en, itera�on over the domain points is just the technical implementa�on of the abstract
”computa�onal grid” concept. Therefore it seems jus�fied to replace the loop sets with abstract names
represen�ng topological characteris�cs of the computa�on.

Member of the Helmholtz Associa�on March 16, 2022 Slide 3



What if neither the large so�ware engineering teams are available,
nor the domain scien�sts are ready for the paradigm shi� ?

The overarching goal here is to develop a minimal, lightweight strategy to extend code and
performance portability of legacy Fortran codes across modern HPC architectures.
This aims at the op�mal produc�vity of the domain scien�sts, while offering reasonable (but
subop�mal) computa�onal performance on GPUs, and poten�al lightweight strategy to port to
different emerging architectures.
The coding would benefit from the legacy code development ways on the CPU machines, including full
debug capabili�es, while allowing for gradual GPU implementa�on.

Member of the Helmholtz Associa�on March 16, 2022 Slide 4



Tenets of lightweight eDSL
Main design concepts:

Set of Fortran loops around kernels are replaced by preprocessor macros named a�er the scope and
grid of the opera�on (e.g. AgridXYZFullDomain)
Defini�on of memory alloca�on is abstracted to accommodate accelerator-specific a�ributes, e.g.
MANAGED or DEVICE.
In prac�ce, the la�er requires reasonable separa�on of the code modules as the variable types must
match throughout the code at compile �me (so not everything needs to be ported at once).
Due to Fortran seman�c constraints, a couple of search/replace opera�ons, e.g. using sed, are also
needed.
Preprocessing and build processed is controlled externally, e.g. via CMake. Current backend uses pure
MPI CPU or MPI + CUDA Fortran direc�ves. For C-based codes, Kokkos backend is easily achievable
thanks to lambda func�on concept.

Member of the Helmholtz Associa�on March 16, 2022 Slide 5



Challenges and lessons learned
The first a�empt relied on the fully automa�c GPU memory management via ’MANAGED’ a�ribute.
However, this resulted in unexpected Host - Device memory transfers that were difficult to control.
A simple solu�on was to force the auxiliary variables to stay at the device using DEVICE a�ribute.
A second non-trivial task was to adapt MPI layer to use the device. So far, only 1D MPI decomposi�on
in the slowest-varying dimension is coded efficiently, so the con�nuous GPU memory buffer can be
passed directly to the MPI call. 3D MPI decomposi�on requires addi�onal tuning effort.
CPU version can s�ll use the 3D MPI memory decomposi�on.
Most of the prepara�on, like increasing compu�ng intensity or though�ul implementa�on of
boundary condi�ons is s�ll on the pure Fortran size, as opposed to the full-blown DSL a�empts like
GridTools, where we hope that some work will be done by the library.

Member of the Helmholtz Associa�on March 16, 2022 Slide 6



Tes�ng framework
Standard experiment reproducing 3D passive tracer (sphere) rota�on in box.
The advec�on is performed using a fully three-dimensional, nonlinear iterated upwind scheme called
MPDATA, used opera�onally in the latest dynamical core of COSMO NWP framework. MPDATA, in a
form of a dwarf formed originally for the ESCAPE project is now cast in the eDSL form and executed on
CPU+MPI and GPU+MPI scenarios.
Reference results with integra�on accuracy (error norm a�er a full signal revolu�on in the domain) are
known, so consistency between CPU and GPU implementa�on can be easily assessed.
This test typically employs the same number of gridpoints in each three dimensions, standard for
atmospheric DNS studies, but different from mesoscale applica�ons.
Reference result exists for the computa�onal grid size of 593. For strong scalability, we test 7-,14- and
21-fold grid refinement, i.e. 4133, 8263 and 12393 grids, respec�vely.

Member of the Helmholtz Associa�on March 16, 2022 Slide 7



Single node eDSL performance - Fortran and C codes

106 107 108

Total number of cells

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 (c

el
ls/

s)

1e10
GPUs w/CUDA
CPUs only
Relative performance

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Re
la

tiv
e 

pe
rfo

rm
an

ce
(m

ul
tip

le
)

Member of the Helmholtz Associa�on March 16, 2022 Slide 8



Strong scalability

10 1 100 101 102

no. of CPU nodes(2x24 EPYC 7402 cores)/GPU nodes(4xA100)

100

101

102

103

104

tim
e-

to
-s

ol
ut

io
n 

[s
]

GPU 12393

GPU 8263

GPU 4133

CPU 12393

CPU 8263

CPU 4133

5

10

15

20

25

30

Re
la

tiv
e 

pe
rfo

rm
an

ce
(m

ul
tip

le
)

Rel. perf. 4133

Rel. perf. 8263

Rel. perf. 12393

Member of the Helmholtz Associa�on March 16, 2022 Slide 9



Conclusions
Very reasonable speedup is achieved, similar to the original effort in JSC on the Parflow GPU
implementa�on (a hydrological code wri�en in C).
Scalability on the very large number of GPU nodes is not great, work on op�mizing MPI
communica�on is needed to improve it.
Code remains fully debuggable, overhead from the perspec�ve of domain scien�st is minimal.
Future work should extend the eDSL implementa�on to full fluid solver. In this exercise, an itera�ve
GCR Krylov solver would be ported.
Likely, a memory pool would have to be implemented in Fortran to mi�gate limited amount of the
GPU memory.
A couple of other backends seem straigh�orward, e.g. OpenMP, OpenACC.
Loop abstrac�on provides clean possibility to compu�ng border regions needed for halo on priority
GPU stream.
The whole effort on eDSL implementa�on with C and Fortran-based is now summarized in the dra� of
the eDSL publica�on, close to submission.

Member of the Helmholtz Associa�on March 16, 2022 Slide 10


