
Rewriting ICON for scalable 
development on emerging 

architectures
Claudia Frauen1, Jörg Behrens1, Sergey Kosukhin2, Hendryk 

Bockelmann1, Daniel Klocke2 and the (pre)WarmWorld and ICON-C 
teams

ESM User Forum, March 16-17, 2022
1 DKRZ, 2 MPI-M



Overview of projects and initiatives

u WarmWorld: German national project initiative 
proposed to the BMBF hopefully starting in September 
2022. Project partners: DKRZ, DWD, KIT, MPI-M, AWI, 
ECMWF, FZJ, JSC, Uni Köln, Uni Hamburg, Uni Leipzig

u ICON-C: Coordinated effort involving all ICON 
partners (C2SM, DKRZ, DWD, KIT, MPI-M) to rewrite 
ICON for scalable development on emerging 
architectures

u preWarmWorld: Preparatory project for WarmWorld; 
separately funded by BMBF; started in 2021; project 
partners: DKRZ, JSC, MPI-M



ICON (ICOsahedral Nonhydrostatic 
model)

u ICON is a weather and climate model with 
atmosphere, ocean and land components

u Almost 2 decades development; initially by DWD and 
MPI-M, later also KIT and DKRZ and now also in 
collaboration with C2SM

u Mostly written in Fortran using MPI/OpenMP for 
parallelisation

u ~ 2 Million lines of code



ICON at km-scales

u HD(CP)2 project enabled efficient km and hectometre 
(hm) scale applications over large regional domains 

u These efforts enabled the use of ICON to perform the 
first global storm-resolving (SR) simulations in Europe

u ICON is one of only four models worldwide to have 
been run as an SR-ESM, i.e., coupled with km-scale 
resolution in the atmosphere and ocean



Simulation of clouds

Florian Ziemen, DKRZ

MPI-ESM HR, 80km ICON R2B10, 2.5km



ICON on GPUs

u Huge efforts especially by CSCS, Meteo Swiss, Nvidia 
have lead to a GPU-enabled version of ICON-A (e.g. 
through the PASC ENIAC and IMPACT projects)

u Use of OpenACC directives + CLAW tool for the land 
model

u Successfully runs on Piz Daint and JUWELS Booster 
(QUBICC and Monsoon 2.0 projects)



Current ICON performance

∆h Latm Locn Nodes Machine SDPD
5.0 km 90 n/a 300 Mistral (2xIntel BDW 36-cores) 28

2.5 km 90 n/a 510 Mistral (2xIntel BDW 36-cores) 7

2.5 km n/a 112 262 Mistral (2xIntel BDW 36-cores) 51

5.0 km 90 128 420 Mistral (2xIntel BDW 36-cores) 25

5.0 km 90 n/a 77 JUWELS Booster (4xNVIDIA A100) 120

2.5 km 90 n/a 600 Levante (2xAMD 7763 128-cores) 20

5.0 km n/a 128 250 Levante (2xAMD 7763 128-cores) 375

5.0 km 90 128 420 Levante (2xAMD 7763 128-cores) 96

Performance characteristics of ICON for different horizontal (∆h) and 
vertical (Latm and Locn) resolutions.



WarmWorld Goals

Assess the detailed trajectory of global warming and 
the quantitative implications of this warming for 

human and natural systems

u Coupled ICON running with an acceptable simulation 
quality on km scale > 0.5 SYPD by 2026

u ICON-C: A free and open source software 
implementation of the fully (land, ocean, 
atmosphere) coupled ICON to enable scalable 
development

u Integrated workflow to expose information of ICON 
alongside IFS-based solutions and observational data



WarmWorld Modules

u Better: Responsible for defining and testing the 
model configurations

u Faster: Responsible for transforming the ICON code 
base into an open, scalable, modularized and flexible 
code

u Easier: Responsible for developing novel methods to 
make information visible, accessible, and 
interoperable

u Smarter: Aims to involve the applied maths and 
informatics communities, to improve the workflow 
and the model performance



WarmWorld collaborations



Faster objectives

u Transform the ICON code base into an open, scalable, 
modularized and flexible code named ICON-C (“ICON-
consolidated”).

u Refactor ICON with the goal of scalable development 
to enable portable performance improvements –
ultimately making ICON faster

u Initiate target performance ports to meet throughput 
(>0.5SYPD on a 2.5km or finer grid) goals

u Progressively redefine the ICON code structure to 
expose areas of performance improvement for 
targeted exploration of new programming concepts



ICON redesign

u WarmWorld is just one piece of the puzzle towards 
ICON-C; larger coordinated effort involving all ICON 
partners
u Balancing between different needs: Operational numerical 

weather forecast and cutting-edge climate modelling

u EXCLAIM (ETH Zürich): Extreme scale computing and 
data platform for cloud-resolving weather and 
climate modelling
u Approach: Re-write ICON code into a descriptive user code 

based on Python, which is then translated into standard 
imperative language (e.g. C++) for specific architectures 
using a toolchain based on GT4Py (GridTools for Python)



ICON realities

u ICON is largely monolithic: 
u Huge code base is compiled in

u Namelists are used to (de-)activate large tracts of code

u Minimal unit testing

u Git submodules are used, but only few can be 
decoupled from compilation

u Components are not cleanly separated

u Uses complex derived types

u Contains unused code



ICON-C first development steps

u Refining the Development Process

u Implementation of a disable functionality, initially via 
#ifdef, and clean-up

u Modularisation of components: Proposal and 
prototypes

u Prototype Data Management

u Infrastructure Measures

u Testing Hierarchy and Tools



preWarmWorld

u Funded by the BMBF as a separate project to prepare 
for WarmWorld and to facilitate timely coordination 
with external projects such as EXCLAIM

u Provide a technical blueprint in terms of 
modularization and programming paradigms

u Overlap between the latter phase of preWarmWorld
and the start of WarmWorld allows these plans to be 
coordinated before delivering the development 
environment (repository, test structure, licenses) for 
use in WarmWorld



Planned assessment of programming 
paradigms in preWarmWorld

u Evaluation, comparison and prototypical implementation 
of selected modules using modern programming paradigms 
targeting heterogeneous hardware 

u Implement granule using GridTools framework 

u Implement granule using a generic DSL, like AnyDSL

u Implement granule using a domain independent generic 
library, like Kokkos and/or DPC++ / SYCL 

u Implement granule using the concept of an embedded DSL 

u Analyse the applicability and, if suitable, implement the 
interfacing of the above concepts to the front-end 
developed in the ESCAPE2 project 



C++ Data / Memory Management – Why?

u Need to move away from Fortran-centric view of 
memory management to open up ICON for new 
possibilities

u Better compiler support for C/C++ than for Fortran

u Enable easier language interoperability with e.g., 
Gt4Py, Kokkos, …

u But: Legacy Fortran code still needs to be able to 
access data in the same way



C++ Data / Memory Management – Why?

u ICON variables and their meta-data are organized in a 
linked list (varlist) implemented in Fortran

u Current functionality includes adding and removing 
elements and searching the list

u A C++ varlist implementation based on a quasi 
ordered map can make use of existing standard C++ 
functionality

u Future extension of functionality will also be simpler 
than a Fortran implementation



C-Fortran interface

u Exploring the CFI (C-Fortran-Interface) in 
ISO_Fortran_binding.h

u Agnostic creation of arrays in C and their later clean 
use in Fortran

u Using the Fortran Standard (2018) or TS29113 (2012)

u Not yet supported by all compiler vendors



Stand-alone advection

u Atmospheric tracer advection ideal example to test 
new concepts and develop software blueprint:
u Representative for whole ICON, has 3D-stencil operations

u Extensively utilizes ICON infrastructure

u But conceptionally could be own submodule

u OpenACC implementation exists for some methods



Stand-alone advection

u Problems with current implementation:
u More than 100 Fortran module dependencies

u Data flow through global model data is not obvious

u Complex interface, e.g.: step_advection(p_patch, 
p_int_state, + 19 simple args)

u Complexity comes from huge derived types: t_patch, 
t_int_state, but derived type content mostly not used 
or not used directly



Stand-alone advection

u Goals:
u pool together “advection-owned” code and data

u make data flow obvious

u minimize interface complexity

u have a stand-alone version using the same advection code as 
in the full model



Summary and Conclusion

u Significant rewriting and refactoring of ICON is 
needed for scalable development on emerging 
architectures => ICON-C

u preWarmWorld: Assessment of programming 
paradigms and modular software blueprint

u Steps are underway in preWarmWorld together with 
partners in ICON-C and EXCLAIM to 
u rewrite the memory management in C++ with a C-Fortran 

interface

u prepare a stand-alone version of the atmospheric tracer 
advection as a playground, on which to try out different 
programming paradigms



Thank you for your attention!


