
INTRODUCTION TO SUPERCOMPUTING AT JSC

30.05.2023 I ILYA ZHUKOV

HPC IN A NUTSHELL

(with content used with permission from tutorials by Bernd Mohr/JSC)

BUILDING BLOCKS OF HPC

WHAT IS HPC?

• Computer simulation augments theory and experiments
• Needed whenever real experiments would be too

large/small, complex, expensive, dangerous, or simply
impossible

• Became third pillar of science
• Computational science

• Multidisciplinary field that uses advanced computing
capabilities to understand and solve complex problems

• Challenging applications
• In science
• In industry

ð Realistic simulations need
enormous computer resources (time, memory) !

High-performance computing

WHY USE PARALLEL COMPUTERS?

• Parallel computers can be the only way to achieve
specific computational goals in a given time

• Sequential system is too “slow”
• Calculation takes days, weeks, months, years, …
ð Use more than one processor to get
calculation faster

• Sequential system is too “small”
• Data does not fit into the memory
ð Use parallel system to get access to more
memory

• You realize you have a parallel system (ð multicore)
and you want to make use of its special features

• Your advisor / boss tells you to do it ;-)
* https://9gag.com/gag/av5vmzd

HIGH-PERFORMANCE COMPUTER
HPC building blocks

User CN CN CN

CN CN CN

CN CN CN

Login
nodes

Storage

SchedulerSSH

GPU GPUGPU

• Hardware
• Login and compute

nodes (CN)
• Network
• Storage

• Software
• Operating System (OS)
• Compilers
• Libraries
• Scheduler

HIGH-PERFORMANCE COMPUTER

• The Nodes
• Individual computers that compose a cluster are typically

called nodes

Hardware

CN CN CN

CN CN CN

CN CN CN

Login
nodes

GPU GPUGPU

HIGH-PERFORMANCE COMPUTER

• The Nodes
• Individual computers that compose a cluster are typically

called nodes
• Components of the node

• Central Processing Unit (CPU/processor)
• CPU can have a single core or multiple cores

(execution unit of a CPU)
• Memory (RAM, DRAM)
• Disk space (HDD, SDD)
• Optional: GPU (Graphics Processing Unit)

• Nodes can be grouped into partitions: a group of nodes
which are characterised by their hardware or purpose,
e.g. GPU partition, large memory partition, visualisation
partition etc.

Compute node

Compute node with GPU

CPU Memory

Core 0

Core 3

Core 1

Core 2

… …

Core N-1 Core N

GPU Memory
CPU Memory

Core 0

Core 3

Core 1

Core 2

… …

Core N-1 Core N

Hardware
CN

CN
GPU

HIGH-PERFORMANCE COMPUTER

• The Login (head) nodes
• Suited for uploading/downloading files, installing and setting up

software, and running quick tests
• Entry point to the cluster
• Accessible outside the cluster
• Only a few nodes are available and they are

shared among all users
• Please use with respect for other users!

• The Compute (worker) nodes
• Typically dedicated to long or hard tasks that require a lot of computational resources
• Smallest unit available for allocation (use it wisely!)
• Accessible only inside the cluster Note: you’ll learn more during “JSC

systems – JUWELS, JURECA &
JUSUF” talk

Hardware

HIGH-PERFORMANCE COMPUTER

• The Network connects nodes in order to share
resources and data

• Characteristics of a Network
• Latency is the response time a node

experiences when contacting another nodes
(nanoseconds, microseconds)

• Bandwidth is the maximum data rate
(Megabytes or Gigabytes per second)

• Topology is the way how nodes are
interconnected, e.g. ring, mesh, torus, etc.

Hardware

HIGH-PERFORMANCE COMPUTER

• The Storage is a hardware system for storing and
manipulating data

• Login and compute nodes are attached to the
storage

• Storage typically has various file systems which
have different properties, e.g.

• Size
• Backup policies
• Access time
• E.g in JSC: $HOME, $PROJECT, $SCRATCH,

etc
Note: you’ll learn more during “JUST:
Juelich Storage Cluster” talk

Hardware

HIGH-PERFORMANCE COMPUTER

• Operating system (OS) is a system layer that allocates
and manages hardware resources, enforces resource
protection, provides standardized services, and
schedules execution of application

• Compilers, e.g. GNU, Intel, NVHPC
• Libraries, e.g. MPI, FFTW, etc.
• The Scheduler is a special software that manages

which jobs (set of commands to be run the cluster)
run where and when

• The most basic use of the scheduler is to run a
command non-interactively. This process is
called a batch job submission

• An interactive job allows a user to interact with
applications in real time within an HPC
environment

Note: you’ll learn more during “HPC
Software – Modules, Libraries &
Software” talk

Software

Note: you’ll learn more during “Work
load management with Slurm” talk

ALL BLOCKS ARE IN PLACE! HOW TO PLAY WITH THEM?

1. Write proposal and get compute time on preferred HPC system or join existing project
2. Login to the system
3. Transfer your data to the HPC system
4. Use available software or build your own
5. Make sure your software works and provides correct results! (Hint: start with a small testcase)
6. Optimise it for the available hardware, e.g. set pinning, use high-performance storage, GPUs, etc
7. Analyse and optimise performance with performance analysis tools if necessary
8. Run production jobs to get results and monitor them for correctness
9. Analyse and visualise the results
This is the general cycle. In your individual case some steps
may be redundant, some can require several iterations.

Note: some of these topics will be
covered during our lectures and
practical exercises. Do not miss them!

Typical Workflow

TIPS AND TRICKS

• Always read documentation and manuals!
• Status page: https://status.jsc.fz-juelich.de
• JUWELS: https://apps.fz-juelich.de/jsc/hps/juwels/
• JURECA: https://apps.fz-juelich.de/jsc/hps/jureca/
• JUSUF: https://apps.fz-juelich.de/jsc/hps/jusuf/

• Be gentle with login nodes
• Never use login nodes for doing actual/production work
• Do not spawn too many threads, e.g. do not use “make -j” use “make -j 4” instead
• Do not use too much memory (can be verified with “ps ux” or “top” commands)
• You can use “kill” with the PID to terminate any of your intrusive processes

• Have a backup plan
• Use version control (e.g. git)
• Use backup file systems for important and frequently used data
• Archive data that is not used frequently
• Transfer your data off the system before your access finishes

• Test your setup before running at a big scale or for a long time
• Do you have questions? Just ask! sc@fz-juelich.de

https://status.jsc.fz-juelich.de/
https://apps.fz-juelich.de/jsc/hps/juwels/
https://apps.fz-juelich.de/jsc/hps/jureca/
https://apps.fz-juelich.de/jsc/hps/jusuf/

INTRODUCTION TO PARALLEL PROGRAMMING

• Application programmer needs to

• Distribute data and work
• Domain decomposition: different processors do

similar (same) work on different pieces
• Functional decomposition: different processors

work on different types of tasks

• Organize and synchronize work and dataflow
• Balance load

• Extra HPC constraint
• Do it with least resources most effective way!

PROGRAMMING PARALLEL COMPUTERS

• Determine maximum value of polynomial 4th grade

• y = a × x3 + b × x2 + c × x + d
• Infinitive number of possible values

• Discretization: select huge but finite number of numerical values representing a specific resolution
determining accuracy

• Program
1. Read coefficients (a, b, c, d), domain (xmin, xmax), resolution (numsteps)

2. maximum = smallest-possible-value
3. For x = xmin to xmax in numsteps

Calculate polynomial y(x)
If y larger than maximum, then maximum = y

4. Print maximum

SIMPLE PROGRAMMING EXAMPLE

• Determine maximum value of polynomial 4th grade

• On selected master processor
1. Read coefficients (a, b, c, d), domain (xmin, xmax), resolution (numsteps)
2. Distribute values to all processors

• Concurrently for all processors P
3. processor-maximum = smallest-possible-value
4. For processor-subset-of x = xmin to xmax in numsteps # work distribution

Calculate polynomial y(x)
If y larger than processor-maximum
then processor-maximum = y

• On selected master processor
5. Collect all maximums from processors

6. Determine global maximum
7. Print maximum

POSSIBLE PARALLEL PROGRAM

• For a given problem A, let
• T(N,1) = Time of the best serial algorithm to solve A for input of size N
• T(N,P) = Time of the parallel algorithm + architecture to solve A for input size N,

using P processors

Speedup

Parallel efficiency

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑁, 𝑃 =
𝑇(𝑁, 1)
𝑇(𝑁, 𝑃)

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑁, 𝑃 =
𝑇(𝑁, 1)

𝑃 4 𝑇(𝑁, 𝑃)
=
𝑆(𝑁, 𝑃)
𝑃

PERFORMANCE METRICS I

• In general, expect
• 0 ≤ Speedup(P) ≤ P
• 0 ≤ Efficiency ≤ 1

• Linear speedup: if there is a constant c > 0 so that speedup is at least c • P.
• Many use this term to mean c = 1.

• Perfect or ideal speedup: Speedup(P) = P
• Superlinear speedup: Speedup(P) > P (Efficiency > 1)
• Typical reason: Parallel computer has P times more memory (cache), so higher

fraction of program data fits in memory instead of disk (cache instead of memory)

PERFORMANCE METRICS II

• Assumption
• total problem size stays the same as the number of processors

increases (strong scaling)
• a is a completely serial fraction
• parallel part is 100% efficient

• Parallel runtime

• Parallel speedup

• Our software is fundamentally limited by the serial fraction
• a=0, Speedup=P
• a=0.1, max speedup is 10, e.g. Speedup(N,10)=5.26,

Speedup(N,1000)=9.91

𝑇 𝑁, 𝑃 = α𝑇 𝑁, 1 +
1 − α 𝑇(𝑁, 1)

𝑃

Speedup 𝑁, 𝑃 = !(#,%)
!(#,')

= %

() !"#
$

AMDAHL‘S LAW

• Assumption

• the problem size increases at the same rate as the number of processors,
keeping the amount of work per processor the same (weak scaling)

• a is a completely serial fraction
• parallel part is 100% efficient

• Runtime on single process

• Parallel runtime

• Parallel speedup

• Limitation by the serial fraction becomes less
• a=0, Speedup=P

• a=0.1, e.g. Speedup(N,10)=9.10, Speedup(N,1000)=900.10

Speedup 𝑁, 𝑃 = !(#,%)
!(#,')

= α + 1 − α 𝑃

𝑇 𝑁, 1 = α𝑇 𝑁, 1 + 1 − α 𝑃𝑇(𝑁, 1)

𝑇 𝑁, 𝑃 = α𝑇 𝑁, 1 + 1 − α 𝑇(𝑁, 1)

GUSTAFSON‘S LAW

HARDWARE ARCHITECTURE

• Interconnected nodes (processor + memory)
• All memory is associated with processors

• Advantages
• Memory is scalable with number of processors
• Can build very large machines (10000's of nodes)

• Each processor has rapid access to its own memory
without interference or cache coherency problems

• Cost effective and easier to build: can use commodity parts

Interconnect

M0 M1 Mn
...

P0 P1 Pn...

PARALLEL ARCHITECTURES: DISTRIBUTED MEMORY I

• Disadvantages
• To retrieve information from another processor’s memory a message must be sent over the network to the

home processor

• Programmer is responsible for many of the details of the communication;
easy to make mistakes
• Explicit data distribution

• Explicit communication via messages
• Explicit synchronization

• May be difficult to distribute the data structures, often additional data structures needed (ghost cells,
location tables, …)

• Programming Models

• Message passing: MPI, PVM, shmem, ...

PARALLEL ARCHITECTURES: DISTRIBUTED MEMORY II

• More exact: shared address space accessible by all processors
• physical memory modules may be distributed

• Processors may have local memory (e.g., caches) to hold copies
of some global memory. Consistency of these copies is usually
maintained by special hardware (cache coherence)

• Programming Models
• Automatic parallelization via compiler
• Explicit threading (e.g. POSIX threads)
• OpenMP
• [MPI]

Interconnect

P0 P1 Pn

Memory

...

M0 M1 Mn
...Memory

PARALLEL ARCHITECTURES: SHARED MEMORY

• Special hardware for accelerating computations has long tradition in HPC
• Floating-point units
• SIMD/vector units

• MMX, SSE (Intel), 3DNow! (AMD), AltiVec (IBM)
• FPGA (Field Programmable Gate Arrays)
• General Purpose computing on Graphics Processing Units (GPGPU)

ACCELERATORS

• Modern GPUs
• Have a parallel many-core architecture

• Each core capable of running 1000s of threads simultaneously
• Independent blocks with fine-grain data-parallelism (SIMT)
• Highly parallel structure makes them more effective than general-purpose CPUs for some

(vectorizable) algorithms
• More difficult to use hardware effectively than “standard” CPUs

• High-level portable programming interfaces still evolving
• OpenACC, OpenMP 5.0

• Main disadvantage: data must be moved to and from main memory to GPU memory
• Data locality important, otherwise performance degrades significantly

CPU
GPU

Note: you’ll learn more during “Using GPU accelerators of JURECA and JUWELS” talk

GPGPU

Distributed memory

Shared memory Accelerator

FROM THEORY TO PRACTICE I

FROM THEORY TO PRACTICE II

MPI

OpenMP OpenACC, CUDA

TYPICAL PARALLELISATION WORKFLOW

1. Identify what you want to parallelise

• What is your common testcase?

• Where do you spend most of your time?
2. Identify what hardware do you want to use (CPU, GPU, CPU+GPU, …)

3. How do you want parallelise

• Library, MPI, OpenMP, OpenACC, CUDA, MPI+X, …
4. Implement your choices

5. Validate correctness
6. Evaluate scalability (speedup and efficiency, strong vs. weak scaling)

7. Tune and optimise

Repeat the cycle if necessary! Note: some of these topics will be covered during our
lectures and practical exercises. Do not miss them!

