JUWELS & JURECA {0 ParTec

UUUUUUUUUUUUUUUUUUUUU

JUWELS & JURECA
Tuning for the platform

Usage of ParaStation MPI
May 15%, 2025

Patrick Kuven
ParTec AG

UUUUUUUUUUUUUUUUUUUUU

Outline {0 ParTec

JUWELS & JURECA

Tuning for the platform

TE T ¢

s

ParaStation MPI
Compiling your program
Running your program
Tuning parameters
Resources

o bk

B A
\ \ \ \ \ |

ParaStation History ::§ ParTec

UUUUUUUUUUUUUUUUUUUUU

History of ParaStation

® 1995: University project (— University of Karlsruhe)
® 2005: Open source (— ParaStation Consortium)
® Since 2004: Cooperation with JSC

® various precursor clusters
DEEP-System (MSA prototype)
JUROPAS (J3)

JUAMS

JURECA (Cluster/Booster)
JUWELS (Cluster/Booster)
JURECADC

JUPITER

ParaStation MPI {0 ParTec

UUUUUUUUUUUUUUUUUUUUU

® based on MPICH (4.1.1)
® supports all MPICH tools (tracing, debugging, ...)

® proven to scale up to 3,300 nodes and 136.800 procs per job running ParaStation MPI
® JURECA DC: No. 129 (Top500 Nov 2024), No. 67 (Green500 Nov 2024)
® JUWELS Booster: No. 33 (Top500 Nov 2024), No. 66 (Green500 Nov 2024)
® JETI: No. 18 (Top500 Nov 2024), No. 6 (Green500 Nov 2024)

® supports a wide range of interconnects, even in parallel
® InfiniBand on JURECA DC and JUWELS
® Omni-Path on JURECA Booster (deprecated)
® Extoll on DEEP projects research systems (deprecated)

® tight integration with Cluster Management (e.g. healthcheck)

® MPI libraries for several compilers

® especially for GCC and Intel

ParaStation MPI: Modularity {0 ParTec

UUUUUUUUUUUUUUUUUUUUU

® 2 or more different modules with different hardware
® a job can execute dynamically on all modules

® you can pick the best out of all the worlds in a single job

® e.g. JURECA:
e DC: AMD EPYC + Nvidia A100 + Infiniband
® Booster: Intel KNL + Omni-Path

® how do these modules communicate with each other?

ParaStation MPI: pscom 3:§ ParTec

MPI Applications

MPI Interface
; pscom Interface

MPIR
(hardware-independent)

MPICH
Architecture

® |ow-level communication layer supporting various transports and protocols

® applications may use multiple transports at the same time

ParaStation MPI: pscom :?5 ParTec

UUUUUUUUUUUUUUUUUUUUU

Application Application Application Application

psmpi psmpi psmpi psmpi

pscom pscom pscom pscom

o L osgw o L osgw

PSM

Fabric Fabric

® for the JURECA DC-Booster System, the ParaStation MP| Gateway Protocol bridges between
Mellanox IB and Intel Omni-Path

® in general, the ParaStation MP| Gateway Protocol can connect any two low-level networks supported
by pscom

® implemented using the psgw plugin to pscom, working together with instances of the psgwd

ParaStation MPI: Modular Jobs {0 ParTec

UUUUUUUUUUUUUUUUUUUUU

® two processes communicate through a gateway, if they are not directly connected by a high-speed
network (e.g. IB or OPA)

® static routing to choose a common gateway

® high-speed connections between processes and gateway daemons

® virtual connection between both processes through the gateway, transparent for application
® virtual connections are multiplexed through gateway connections

® further information: apps.fz-juelich.de/jsc/hps/jureca/modular-jobs.html

https://apps.fz-juelich.de/jsc/hps/jureca/modular-jobs.html

ParaStation MPl: CUDA awareness {0 ParTec

UUUUUUUUUUUUUUUUUUUUU

® CUDA awareness supported by the following MPI APIs

® Point-to-point (e.9. MPI SEND, MPI RECV, ...)

® Collectives (e.g. MPI Allgather, MPI Reducs, ...)
® One-sided (e.g. MPI Put, MPI Get, ...)
L

Atomics (e.g. MPI Fetch and op, MPI Accumulate, ...)
® CUDA awareness for all transports via staging
® CUDA optimization: UCX

® ability to query CUDA awareness at compile- and runtime

ParaStation MPl: CUDA awareness {0 ParTec

UUUUUUUUUUUUUUUUUUUUU

® activate CUDA awareness by meta modules

® default configurations

® query CUDA awareness:

#if defined (MPI X CUDA AWARE SUPPORT) && MP IX CUDA AWARE SUPPORT
printf () ;
#endif

if (MPIX Query cuda support())
printf () ;

MPI_Info get(MPI_INFO ENV,
sizeof (is_cuda aware)-1, is_ cuda aware,
&api_available) ;

Compiling on JUWELS :?6 ParTec

UUUUUUUUUUUUUUUUUUUUU

® currently MPI-4 version (5.11.0-1) available
® single thread tasks

® module load Intel ParaStationMPI
® module load GCC ParaStationMPI

® multi-thread tasks (mt)
® module load Intel ParaStationMPI/5.11.0-1-mt

® no multi-thread GCC version available

® Changelog available with

® less $(dirname $ (which mpicc))/../Changelog
® Gnu and Intel compilers available
® module spider for getting current versions

® see also the previous talk JUWELS - Introduction

Wrapper 8:§ ParTec

UUUUUUUUUUUUUUUUUUUUU

® \Wrappers
® mpicc (C)
® mpicxx (C++)
® mpif90 (Fortran 90)
® mpif77 (Fortran 77)
® when using OpenMP and the need to use the ,mt" version, add
® -—fopenmp (GNU)
® -—gopenmp (Intel)

Did | use the wrapper correctly? ::§ ParTec

'. MODULAR SUPERCOMPUTING

® libaries are linked at runtime according to LD LIBRARY PATH
® 1dd shows the libraries attached to your binary

® |ook for ParaStation libraries

1dd hello mpi:
libmpi.so.12 => /p/software/juwels/stages/2020/

software/psmpi/5.11.0-1-iccifort-2020.2.254-GCC-9.3.0/
lib/libmpi.so.12 (0x000015471ea43000)

VS.

libmpi.so.12 => /p/software/juwels/stages/2020/
software/psmpi/
5.11.0-1-iccifort-2020.2.254-GCC-9.3.0-mt/1ib/
libmpi.so.12 (0x000014£f110e58000)

UUUUUUUUUUUUUUUUUUUUU

JUWELS: start via srun 8?6 ParTec

® use srun to start MPI processes
® srun -N <nodes> -n <tasks> spawns task

® directly (-A <account>)
® viasalloc
® from batch script via sbatch

® exports full environment

® stop interactive run with (consecutive) ~C
® passed to all tasks

® no manual clean-up needed

® you can log into nodes which have an allocation/running job step
® squeue -u <user>

® sgoto <jobid> <nodenumber>
° e.g.sgoto 2691804 O

hello_mpi.c {0 ParTec

.'. MODULAR SUPERCOMPUTING

/* C Example */
#include <stdio.h>
#include <mpi.h>

int main (int argc, char **argv) {
int numprocs, rank, namelen;
char processor name[MPI MAX PROCESSOR NAME] ;

MPI Init (&argc, &argv);

MPI Comm rank (MPI_COMM WORLD, é&rank) ;

MPI Comm size (MPI_COMM WORLD, &numprocs);

MPI Get processor name (processor name, &namelen);

printf ("Hello world from process %d of %d on %s\n",
rank, numprocs, processor_name) ;

MPI Finalize ();

return O;

Running on JUWELS (Intel chain) {0 ParTec

UUUUUUUUUUUUUUUUUUUUU

® module load Intel

® module load ParaStationMPI

® mpicc -03 -o hello mpi hello mpi.c

® |nteractive:

® salloc -N 2 -A partec # get an allocation
® srun -n 2 ./hello mpi

Hello world from process 0 of 2 on jwc08n188.juwels
Hello world from process 1 of 2 on jwc08n194.juwels

® Batch:
® sbatch ./hello mpi.sh

® |ncrease verbosity:
® PSP DEBUG=[1,2,3,..] srun -n 2 ./hello mpi

Process Placement 8?6 ParTec
%o

UUUUUUUUUUUUUUUUUUUUU

® ParaStation process pinning:
® avoid task switching
® make better use of CPU cache and memory bandwidth
® JUWELS is pinning by default:
® SO —-cpu-bind=threads may be omitted
® manipulate pinning:
® e.g. for Jlarge memory / few task” applications
® manipulate via

® --cpu-bind=threads|sockets|cores|mask cpu:<maskl>,<mask2>,..

* CPU masks are always interpreted as hexadecimal values

® -—-distribution=*|block|cyclic|arbitrary|plane=<options> [:*|block|
cyclic|fcyclic[:*|block]|cyclic]|fcyclic]] [,Pack|NoPack]

® further information: https://apps.fz-juelich.de/jsc/hps/juwels/affinity.html

https://apps.fz-juelich.de/jsc/hps/juwels/affinity.html

Process Placement :?6 ParTec
%o

UUUUUUUUUUUUUUUUUUUUU

® Example:
® --ntasks-per—-node=4
® -—-—cpus-per—-task=3

® ——cpu-bind=threads

IIIII |II 33 |
o 2 Mo

® —--cpu-bind=mask cpu:0x7,0x700,0xE0, 0xE000

Iﬁﬁ
i t ik i AT,

Process Placement :?6 ParTec
%o

UUUUUUUUUUUUUUUUUUUUU

® best practice depends not only on topology, but also on characteristics of application:

® putting threads far apart is
® improving the aggregated memory bandwidth available to your application
® improving the combined cache size available to your application

® decreasing the performance of synchronization constructs

® putting threads close together is
® improving the performance of synchronization constructs

® decreasing the available memory bandwidth and cache size

Hybrid MPI/OpenMP .Q ParTec

' MODULAR SUPERCOMPUTING

#include <stdio.h>

#include <mpi.h> Example.
#include <omp.h> 2 Nodes. 2x2 Procs
int main(int argc, char *argv[]) { 2x2x24 Threads

int numprocs, rank, namelen;
char processor name[MPI MAX PROCESSOR NAME] ;

int iam = 0, np = 1; NOde X NOde y

MPI Init(&argc, &argv);

MPI Comm size (MPI_COMM WORLD, &numprocs);

MPI Comm rank (MPI_COMM WORLD, &rank);

MPI Get processor name (processor_ name, &namelen);

#pragma omp parallel default(shared) private(iam, np)
{
np = omp _get num threads();
iam = omp get thread num();
printf ("Hello from thread %02d out of %d from process %d out of %d on %s\n",
iam, np, rank, numprocs, processor_name) ;

}

MPI Finalize();
}

On JUWELS {0 ParTec

.'. MODULAR SUPERCOMPUTING

® module load Intel ParaStationMPI/5.11.0-1-mt

® mpicc -03 -gopenmp -o hello hybrid hello hybrid.c
® salloc -N 2 -A partec —-cpus-per-task=24

® export OMP NUM THREADS=${SLURM CPUS PER TASK}

® srun -n 4 ./hello hybrid | sort

Hello from thread 00 out of 24 from process 0 out of 4 on jwc01ln238. juwels
Hello from thread 00 out of 24 from process 1 out of 4 on jwc01ln238. juwels
Hello from thread 00 out of 24 from process 2 out of 4 on jwc01ln247.juwels
Hello from thread 00 out of 24 from process 3 out of 4 on jwc01ln247.juwels
Hello from thread 01 out of 24 from process 0 out of 4 on jwc01ln238. juwels
Hello from thread 01 out of 24 from process 1 out of 4 on jwc01ln238. juwels
Hello from thread 01 out of 24 from process 2 out of 4 on jwc01ln247.juwels
Hello from thread 01 out of 24 from process 3 out of 4 on jwc01ln247.juwels
Hello from thread 23 out of 24 from process 0 out of 4 on jwc01ln238. juwels
Hello from thread 23 out of 24 from process 1 out of 4 on jwc01ln238. juwels
Hello from thread 23 out of 24 from process 2 out of 4 on jwc01ln247.juwels
Hello from thread 23 out of 24 from process 3 out of 4 on jwc01ln247. juwels

Pinning {Q ParTec

UUUUUUUUUUUUUUUUUUUUU

® JUWELS:
® 2 Sockets, 24 Cores per Socket
® 2 HW-Threads per Core
® — 96 HW-Threads possible

® normally (SMT):
® HW-Threads 0-23, 48-71 — CPUO

® HW-Threads 24-47, 72-95 — CPU1 - "Package
Node
Socket0 * Socket1 +
Core 0 | Core 1 Core 22| Core 23||| Core 24| Core 25 Core 46| Core 47
HWT 0 HWT 1 HWT 22 HWT 23 HWT 24 HWT 25 HWT 46 HWT 47
HWT 48 HWT 49 HWT 70 HWT 71 HWT 72 HWT 73 HWT 94 HWT 95

Pinning {Q ParTec

UUUUUUUUUUUUUUUUUUUUU

® JURECADC:
® 2 Sockets, 64 Cores per Socket
® 2 HW-Threads per Core
® — 256 HW-Threads possible

® normally (SMT):
® HW-Threads 0-63, 128-191 — CPUO

[11 b
e HW-Threads 64-127, 192-255 — CPU1 ~ "Package
Node
Socket0 < Socket1 4
Core 0 | Core 1 Core 62| Core 63||| Core 64| Core 65| ... | Core 126| Core 127
HWT 0 HWT 1 HWT 62 | HWT 63 HWT 64 | HWT65 | ... HWT 126 | HWT 127
HWT 128 | HWT 129 HWT 190 | HWT 191 ||| HWT 192 | HWT 193 | ... HWT 254 | HWT 255

Pinning {Q ParTec

UUUUUUUUUUUUUUUUUUUUU

® no thread pinning by default on JURECA and JUWELS

® allow the Intel OpenMP library thread placing

® cxport KMP AFFINITY=[verbose,modifier, ..]
* compact: place threads as close as possible
* scatter: as evenly as possible

® full environment is exported via srun on JURECA and JUWELS

Large Job Considerations {0 ParTec

UUUUUUUUUUUUUUUUUUUUU

® every MPI process talks to all others:

® (N-1)x 0.55 MB communication buffer space per process!

® example 1 on JUWELS:
® job size 256 x 96 = 24,576 processes
® 24575x0.55MB — ~ 13,516 MB / process
® X 96 processes / node — ~ 1,267 GB communication buffer space

® Dbut there is only 96 GB of main memory per node

® example 2 on JURECA DC:
® job size 256 x 256 = 65,536 processes
® 65,535x0,55MB — ~ 36,044 MB / process
® X 256 processes / node — ~ 9,011 GB communication buffer space
® but there is only 512 GB of main memory per node

On Demand / Buffer Size {0 ParTec

UUUUUUUUUUUUUUUUUUUUU

® Three possible solutions: t

® 1. Try using alternative meta modules 1 6k

® 2. Create buffers on demand only:
® cxport PSP ONDEMAND=1 1 6k

® activated by default!

® 3. Reduce the buffer queue length: 1 6k
® (default queue length is 16)

export PSP OPENIB SENDQ SIZE=3

yibus| ananb

export PSP OPENIB RECVQ SIZE=3

do not go below 3, deadlocks might occur!

trade-off. performance penalty 1 6k

* (sending many small messages) v

On Demand / Queue Size Guidelines :?5 ParTec

UUUUUUUUUUUUUUUUUUUUU

® On-Demand works best with nearest neighbor communications
® (Halo) Exchange
® Scatter/Gather
® All-reduce
°
® but for All-to-All communication:

® queue size modification only viable option...

® example

rank 0: for (; ;) MPI Send ()

rank 1: for (; ;) MPI Recv ()
PSP _OPENIB SENDQ/RECVQ SIZE=4: 1.8 seconds
PSP _OPENIB SENDQ/RECVQ SIZE=16: 0.6 seconds
PSP _OPENIB SENDQ/RECVQ SIZE=64: 0.5 seconds

o
Resources £ Q ParTec
%o

UUUUUUUUUUUUUUUUUUUUU

® www.par-tec.com

® www.fz-juelich.de/en/ias/jsc/systems/supercomputers
® /opt/parastation/doc/pdf

® by mail: sc@fz-juelich.de

® by mail: support@par-tec.com
® download ParaStation MPI at github:

® htips://github.com/ParaStation/psmgmt
® htips://github.com/ParaStation/pscom

® https://github.com/ParaStation/psmpi

http://www.par-tec.com/
http://www.fz-juelich.de/en/ias/jsc/systems/supercomputers
mailto:sc@fz-juelich.de
mailto:support@par-tec.com
https://github.com/ParaStation/psmgmt
https://github.com/ParaStation/pscom
https://github.com/ParaStation/psmpi

Summary

® you now should be able to

compile
run your application
tune some runtime parameters

diagnose and fix specific errors

know where to turn to in case of problems

o®

K

@)
%

ParTec

UUUUUUUUUUUUUUUUUUUUU

UUUUUUUUUUUUUUUUUUUUU

Thank you for your attention! ::§ ParTec

Questions?

