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EIGELSOLVER LIBRARIES
Complexity

Problem definition

AX = XΛ A ≡ AH ∈ Cn×n X ∈ Cn×k Λ = diag(λ1, . . . , λk) ∈ Rk×k k < n

Eigensolver algorithms based on direct diagonalization (dense matrices)

Divide&Conquer
MRRR
BXInvIt
. . .

O(n3)

Eigensolver based on iterative algorithms (sparse matrices)

Subspace iteration
Krylov methods
Rayleigh-Ritz projection
(e.g. LOBPCG)
. . .

O(k × n2)
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EIGELSOLVER LIBRARIES
Guiding principles for performance and scaling

Given an algorithm . . .

1 Blocked algorithms to maximize computational intensity.

2 Avoid as much as possible to communicate data across
computing units or processes.

3 Even when communication is unavoidable, maximize memory
bandwidth usage.

Overall algorithm is O(k × n2), some kernels could have lower complexity

One more guiding principle

4 If possible, use for each kernel the appropriate level of parallelism.

=⇒ Subspace iteration powered by spectral filters

Member of the Helmholtz Association December 7, 2023 Slide 2



EIGELSOLVER LIBRARIES
Guiding principles for performance and scaling

Given an algorithm . . .

1 Blocked algorithms to maximize computational intensity.

2 Avoid as much as possible to communicate data across
computing units or processes.

3 Even when communication is unavoidable, maximize memory
bandwidth usage.

Overall algorithm is O(k × n2), some kernels could have lower complexity

One more guiding principle

4 If possible, use for each kernel the appropriate level of parallelism.

=⇒ Subspace iteration powered by spectral filters

Member of the Helmholtz Association December 7, 2023 Slide 2



A KNOWLEDGE-INCLUSIVE OPTIMIZED EIGENSOLVER
License: open source — BSD 3.0

GitHub: https://github.com/ChASE-library/ChASE

Docs:
https://chase-library.github.io/ChASE/index.html

Latest release: v. 1.4.0 – August 7th 2023

Zenodo Key: https://doi.org/10.5281/zenodo.6366000

Reference key: https://doi.org/10.1145/3313828

Reference key: https://doi.org/10.1145/3539781.3539792

Highlights

Solve for Symmetric real/Hermitian complex eigenproblems
Sequences of dense eigenproblems: exploits correlation between adjacent problems
Modern C++ interface: depends only on LAPACK and BLAS functions
Distributed CPU and multi-GPU builds available
Easy-to-integrate: ready-to-use Fortran to C++ interface
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USE CASES AND FEATURES

ChASE is templated for Real and Complex type.

ChASE is also templated to work in Single and Double precision.

ChASE is currently designed to solve for the extremal portion of the eigenspectrum. The

library is particularly efficient when no more than 20% of the eigenspectrum is sought after.

ChASE currently handles standard eigenvalue problems.

ChASE can receive as input a matrix of vector V̂

For a fixed accuracy level (residual tolerance), ChASE can optimize the degree of the

Chebyshev polynomial filter so as to minimize the number of FLOPs necessary to reach

convergence.
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CHEBYSHEV SUBSPACE ITERATION ALGORITHM
v1.2.2
INPUT: Hermitian matrix A, tol, deg — OPTIONAL: approximate eigenvectors V, extreme
eigenvalues {λ1, λNEV, λMAX}.

OUTPUT: NEV wanted eigenpairs (Λ,V).
1 Lanczos DoS step. Identify the bounds for {λ1, λNEV, λMAX} corresponding to the wanted

eigenspace.

REPEAT UNTIL CONVERGENCE:
2 Optimized Chebyshev filter. Filter a block of vectors V ←− p(A)V with optimal degree.
3 Re-orthogonalize the vectors outputted by the filter; V = QR.

4 Compute the Rayleigh quotient G = Q† AQ.

5 Compute the primitive Ritz pairs (Λ,Y) by solving for GY = YΛ.

6 Compute the approximate Ritz pairs (Λ,V ← QY).

7 Compute the residuals of the Ritz vectors ∥AV−VΛ∥.

8 Deflate and lock the converged vectors.

END REPEAT
Legend: Original algorithmic contribution, 2D MPI parallel, executed redundantly on each process
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MATRIX AND VECTORS DISTRIBUTION

Each node gets the appropriate part of A, B and C.
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ENVIRONMENT AND EIGENPROBLEM TYPE
JURECA-DC GPU partition

2× 64 cores AMD EPYC 7742 CPUs @ 2.25 GHz (16× 32 GB DDR4 Memory)
4 NVIDIA Tesla A100 GPUs (4× 40 GB high-bandwidth memory).
ChASE (relase 1.1.2) is compiled with GCC 9.3.0, OpenMPI 4.1.0 (UCX 1.9.0), CUDA 11.0
and Intel MKL 2020.4.304.
All computations are performed in double-precision.

Table: Spectral information for generating test matrices. In this table, we have k = 1, · · · , n.

Matrix Name Spectral Distribution

UNIFORM (UNI) λk = dmax(ϵ+
(k−1)(1−ϵ)

n−1 )

GEOMETRIC (GEO) λk = dmaxϵ
n−k
n−1

(1-2-1) (1-2-1) λk = 2− 2 cos( πk
n+1 )

WILKINSON (WILK) All positive, but one, roughly
in pairs.

PASC22 proceedings: https://doi.org/10.1145/3539781.3539792

Member of the Helmholtz Association December 7, 2023 Slide 7

https://doi.org/10.1145/3539781.3539792


WEAK SCALING
Artificial matrices: type UNIFORM, from n = 30000 until n = 360000, nev = 2250 and nex = 750

CPU scaling
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GPU scaling
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4 × GPUs with 1 MPI task per node;
ChASE scales linearly;
Time doubles every time matrix size quadruples (CPU) and triples (GPU);
Filters scales very well;
Confirm QR, RR, Resid need a revised parallel computational scheme.
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NEW PARALLEL ALGORITHM
for QR, Rayleigh-Ritz and Residuals

Chase Algorithm

Changed workspace design =⇒ reduction in memory consumption
1-D distribution for array of vectors in QR factorization, Rayleigh-Ritz (RR) projection, and
Residual computation
Hiding communication with computation within for RR projection and Residual computation
Hybrid usage of Householder- and Cholesky-QR for the QR factorization
Mechanism to limit polynomial degree to avoid the failure of CholQR
New release: Version v1.3.0 (March 10th 2023)
Much better strong and weak scaling
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1D-MPI VS REDUNDANT ON EACH MPI
1st row: JURECA-DC (1 interconnect) – 2nd row: JUWELS Booster (4 interconnects)
WS: Artificial matrices: type UNIFORM, from n = 30000 until n = 240000, nev = 2250 and nex = 750
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Computation (red) and communication (gray)
ChASE v1.2.1 (solid color) and ChASE v1.3.0 (hatch style color)
Member of the Helmholtz Association December 7, 2023 Slide 10



WEAK AND STRONG SCALING
SS: Artificial matrix: type UNIFORM, n = 130000, nev = 1000 and nex = 300
WS: Artificial matrices: type UNIFORM, from n = 30000 until n = 600000, nev = 2250 and nex = 750
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EXPLOITING NCCL
Memory copying operations for the collective operations can be bypassed by exploring the
GPUDirect technology

Used GPU-driven NCCL library to replace the MPI library for all the collective communication;
2D NCCL communicator has been built on top of the 2D MPI grid;
Each MPI process is mapped to a single GPU device;
All the operations of AllReduce and Bcast are substituted by their equivalents in NCCL;
All the host-device data movement for all major kernels have been eliminated.
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NCCL VS 1D-MPI VS REDUNDANT ON EACH MPI
JUWELS Booster (4 interconnects)
WS: Artificial matrices: type UNIFORM, from n = 30000 until n = 240000, nev = 2250 and nex = 750
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Computation (marked in green), communication (red) and data movement (blue)
ChASE LMS (v1.2.2) — bright color shades
ChASE STD (v1.3.0) — lighter color shades
ChASE NCCL (v1.4.0) — lightest color shades
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WEAK AND STRONG SCALING
SS: MS matrix: In2O3, n = 115000, nev = 1200 and nex = 400
WS: Artificial matrices: type UNIFORM, from n = 30000 until n = 900000, nev = 2250 and nex = 750
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LESSONS LEARNED

1 Design of kernel parallelism has to evolve with the size of the problem;

2 Strategy to avoid communication had to evolve with the evolution of the hardware;

3 Be on the lookout to exploit new algorithms (CholQR)

4 Extracting node-level performance using specialized kernels is not trivial;

5 Avoiding communication may come at the cost of increasing memory usage an decreased

parallelism −→ need to strike a careful trade-off (new 1D parallelization of some kernels);

6 Initialization can become a substantial bottleneck for large scale computations.
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OUTLOOK

Porting to FUGAKU on the way (aim: learn some lessons towards Jupiter exascale modular

booster)

Next bottleneck: solving for n ∼ O(106) and nev> 0.001× n→ mixed 2D distribution

(block-cyclic + element-wise)

Extension to interior eigenproblems through rational spectral filters for sparse matrices

n ∼ O(107 − 108) with flexible 3D distribution

(Adaptive) integration in domain software (FHI-aims, QE);

Explore extension to mixed-precision.

Thank you!
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