Colloidal stability

Important practical questions:

- Does dispersion change when T, P or ... is changed?
- If T, P or ... is changed and the dispersion phase separates, what are then the final products?
- How fast does the phase separation take place?

Examples:

- Food processing
- Protein crystal growing
- Rain makers
- Cataract (grauer Star)
- Synthesis of monodisperse colloidal particles
- Percipitation of CaCO₃

Dutch example: Cheese

Depletion of Wey proteins by Extracellular Poly-Saccharides

Phase separation:

System with concentration ρ_0 decomposes in to a phase with a higher concentration ρ_1 and a phase with a lower concentration ρ_2

Two types of phase separation, two types of kinetics :

Liquid-solid or Gas-Solid

Gas-liquid

Molecular systems hard to study:

- Phase separation is too fast
- Particles are too small to be observed with a microscope
- No control on/knowledge of the interaction potential

Use Colloids:

- Mesoscopic Brownian particles dispersed in solvent instead of molecules dispersed in vacuum → consider Π instead of *P*.

Advantages:

- Potential can be tuned by choice of particles and solvent
- Dynamics is slow
- Particles are detectable by microscopy and light scattering

Simple estimation of spinodal

When B₂ becomes sufficiently negative demixing takes place $\frac{\partial (\Pi_c v_c / kT)}{\partial \phi} = 1 + 2(B_2 / v_c)\phi + \dots$

Estimation spinodal:

$$\phi_{spinodal} = \frac{-v_c}{2B_2}$$

Colloid Dispersion with mediated by depletion forces

Second virial coefficient

 B_2 can be computed from depletion potential: $B_2 = 2\pi \int_{0}^{\infty} r^2 \left| 1 - e^{\frac{-\omega(r)}{kT}} \right| dr$ $\omega(r) = \begin{cases} \infty & \text{for } r < \sigma \\ -\Pi_p V_{overlap}(r) & \text{for } \sigma < r < \sigma + 2\delta \\ 0 & \text{for } r > \sigma + 2\delta \end{cases}$ $B_2 = 4V_{HS} + 2\pi \int_{-\infty}^{\sigma+2\delta} r^2 \left| 1 - \exp\left(\frac{\Pi_p V_{ov}(r)}{kT}\right) \right| dr$

Macromolecules 2000, 33, 177-186

Attractions between Hard Colloidal Spheres in Semiflexible Polymer Solutions

Ritu Verma, J. C. Crocker, T. C. Lubensky, and A. G. Yodh*

(a) 0 5µg/ml ° 0 10µg/ml 0 0 CERTIFICATION OF CONTRACTOR OF 0] 0.5 k_sT Interaction Potential, U(r)/k_BT (b) 0 CITATION CONTRACTOR 50ma/ml 0 anna ganan gan Gomg/mi 0 amana //u.a/m! 0 0 09 mm:0000 100µg/ml Q ്ഷ ຺຺຺຺ 0 140µa/ml 190µg/ml 0 0 0 800 0 280µg/ml ò 1 k_BT 1.2 1.4 1.6 1.8 2.0 separation(micron)

Pair interaction and phase separation in mixtures of colloids and excluded volume polymers

Demixing concentrations estimated from B₂

- De Hek and Vrij, 1980:
- 1 wt% HS-like silica a=46 nm
- mixed with PS in CHX

Sphere Rod Mixtures

Example: *stearyl alcohol-coated silica in cyclohexane* Tunable attraction, hard core repulsion

Potential of colloidal particles similar to non-ideal gas \rightarrow van der Waals-like behavior of osmotic pressure Π .

Unstable region

1

Phase separation? Minimize Free Energy

Meta-stable region

A₊₊+A __<A __

Lower free energy for big fluctuations But small probability

Unstable: Spinodal decomposition

- Small fluctuations grow
- Instantaneous start of phase separation
- Phase separation starts throughout the sample

Meta-stable: Nucleation and growth

- Only big fluctuations grow
- Induction time before phase separation
- Phase separation only local

Where does the phase separtion end up?

Concentrations of lowest energy: Equality of chemical potential

..... The line of minimum energy

We found the binodal points (which depend on T or ...)

Attractive potential between particles

gas-liquid

Lennard-Jones

polymer concentration ≈ inversed temperature!

Simulation of the **Spinodal** decomposition followed by domain coarsening

End states after demixing...

Cates and Wagner, Nov. 2000

Thermodynamic Incompatibility and Complex Formation in Pectin/Caseinate Mixtures

Camila F. Rediguieri,[†] Osvaldo de Freitas,[†] M. Paul Lettinga,[‡] and Remco Tuinier^{*,‡}

Attractive potential between particles

Fluid-solid

No attraction, so:

- 1) very simple phase diagram.
- 2) use equation of state for fluid and FCC crystal

Nucleation and growth

Colloidal hard spheres

Shallow quench

Very deep quench

 Δt

Nucleation and growth

Concentrated hard spheres, initial stage: nuclei dissolve

Gasser et al, Science 292, April 2001

Nucleation and growth

Full picture:

Gasser et al, Science 292, April 2001

Hard spheres +freely overlapping spheres

Depletion potential: $W_{dep}(r) = -\Pi V_{overlap}(r)$

larger chains \rightarrow longer range of W

more chains \rightarrow depth, more attractive W

at c=c*, $a_{HS}/a_{FOS}=5/3$, $W_{min}=-2.5$ kT

 \approx inversed temperature!

Compare to atomic/molecular fluids with Lennard-Jones interaction:

Lennard-Jones fluid *n*=12: polymer mixture:

 kT/ε

colloid-

10 1.0 0.9 8 Solid Fluid Fluid S F 0.8 + $1/\phi^R_{
m FOS}$ +6 F Solid S 0.7 4 T_t 0.6 metastable metastable 2 Gas-Liquid 0.5 G + Lq = 0.250.4 0 0.2 0.0 0.1 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.5 0.40.6 0.7 ϕ ϕ

Is
$$dV \cdot \overline{\rho} \rangle 1$$
 true?

$$\Pi = \frac{cT}{(V - V_{red})} - \alpha (N/V)^2$$