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We explore transitions in suspensions of fd virus at a low ionic strength, induced by external

electric fields at frequencies where double layers are polarized. On the basis of the different

optical morphologies, phase/state diagrams are constructed in the field-amplitude versus frequency

plane and the field-amplitude versus concentration plane. Due to interactions between polarized

double layers, for low frequencies, various phases and dynamical states are found: a nematic phase,

a striped phase and a dynamical state where nematic domains melt and reform. At relatively high

frequencies of a few kHz, a uniform homeotropic phase is induced. The various phases and states are

characterized by means of polarization microscopy, birefringence, dynamic light scattering and

video-correlation spectroscopy. An expression is derived for the attenuation of the electric field due to

electrode polarization, which is tested experimentally. This theory is used to correct phase/state

diagrams for electrode polarization.
I. Introduction

The response of many soft matter systems to an external electric

field results from permanent or dielectrically induced macro-

molecular dipoles. The latter type of polarization is responsible

for field-induced structural transitions in concentrated suspen-

sions of colloidal spheres1–3 and low-aspect ratio rods.4 Here, the

colloidal cores are dielectrically polarized, resulting in interacting

electrical dipoles that lead to anisotropic structures like strings

and sheets of colloidal particles. The frequencies that are used for

such suspensions are in the MHz-range. At these high frequen-

cies the electric double layers of the colloidal particles are not

polarized. Until now, there are only a few experimental studies

that address effects of double-layer polarization of interacting

colloids. Double-layer polarization only occurs at sufficiently

low frequencies, below a few kHz. As far as we know, the first

experiments in electric fields where double-layer polarization is

responsible for the observed response have been performed on

suspensions of fd-virus particles by the Konstanz group.5 For

concentrations larger than a few times the overlap concentration,

the alignment is found to change from parallel to the electric field

to an anomalous perpendicular orientation, depending on the

field amplitude and frequency. This anomalous orientation is

entirely the result of interactions between the polarized double

layers. The applied field amplitudes are too small to induce

sufficiently large dipoles in the dielectric core of the fd-virus

particles that could lead to additional dipole–dipole interactions.

A similar behaviour has been found in Ref. [6] for mixtures of

rod-like and spherical colloids. The anomalous orientation in

these systems is attributed to a possible asymmetric crowding of

spheres, giving rise to electro-osmotic flows that induce a torque

on the rods leading to perpendicular alignment. An anomalous

orientation of a single flexible, charged rod in an electric field is
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found in simulations.7 The perpendicular orientation is due to

the fact that for a bent rod, the center-of-force due to hydrody-

namic friction no longer coincides with that of the electric forces.

This leads to a torque that orients the rod perpendicular to the

electric field. In the experiments in Ref. [5], however, the

observed anomalous orientation has a different origin, and is

clearly due to interactions between the rods. So far it is not

understood why interactions between polarized double layers of

rods give rise to an orientation perpendicular to the electric field.

In this paper we study the response of concentrated suspen-

sions of colloidal rods (fd-virus particles) to external electric

fields at frequencies where electric double layers are polarized.

The concentrations are about thirty times larger than the

overlap concentration, and are such that in the absence of an

electric field there is nematic-isotropic coexistence. At these high

concentrations, and for the fixed low ionic strength, we observe

several phase/state transitions depending on the field amplitude

and frequency. The transitions are reported briefly in Ref. [8]

without detailed characterization. These transitions have not

been observed for the suspensions with much lower concen-

trations investigated by the Konstanz group,5 nor in the elec-

tric-field relaxation experiments in Ref. [9]. It should be

mentioned that anchoring conditions at the electrode surfaces

play no role in the Konstanz experiments nor in our experi-

ments. We make observations in the bulk part of a wide sample

cell. As far as we know, fd-virus suspensions have been used for

the first time as model colloids in Ref. [10], where the response

to magnetic fields is investigated. The magnetic field acts dia-

magnetically with a torque on each individual fd-virus, which is

an entirely different mechanism as compared to the electric

field.

A theory that explains the response of concentrated suspen-

sions to alternating electric fields at low frequencies does not yet

exist. Such a theory should describe (i) the double-layer structure

in alternating electric fields, (ii) colloid-colloid interactions due to

polarization of double layers, (iii) colloid-colloid interactions due

to electro-osmotic flows which are generated within the deformed
Soft Matter, 2010, 6, 273–286 | 273
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Fig. 1 A schematic drawing of the electrical cell in combination with the

microscope: (1) function generator, (2) white-light source, (3) PlasDIC

filter (Carl Zeiss), (4) CCD camera and (5) PC interface. P and A are

crossed polarization sheets. The insulating spacer is depicted as the black

solid regions at both electrodes, and the arrow indicates the location of

the sample that is held in place by surface-tension forces.
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double layers, and (iv) the collective phenomena that arise due to

the electric-field induced colloid-colloid interactions. Double-

layer polarization has been extensively studied for a long time in

connection to electrophoresis. These theories are limited to

spherical colloids (see, for example, the seminal papers by

Overbeek,11 Booth,12 DeLacey13 and O’Brien14). Polarization of

rod-like colloids by steady electric fields has been discussed in

Refs. [15],[16]. Polarization of non-spherical particles by

alternating fields has, as far as we know, only been analyzed, in

part numerically and for thin double layers, in Ref. [17]. So far,

there is no analytical result available for the charge distribution

around a rod-like macro-ion for arbitrary Debye screening

lengths in alternating electric fields that would allow the

construction of a theory that describes the response of concen-

trated suspensions to external electric fields. Polarization

contributions of condensed ions on a rod, which are analyzed in

Refs. [18],[19], may also play a role. It is still an open question as

to what the relative contributions to the total polarization of the

diffuse double layer and the layer of condensed ions are.
II. Fd-virus suspensions and the electrical sample cell

The suspensions of fd-virus were prepared and purified following

standard biological protocols, using the XL1 blue strain of E. coli

as the host bacteria.20 Fd-viruses are stiff, rod-like particles with

a length of 880 nm and a core diameter of 6.7 nm. The persistence

length is about 2200 nm. The surface charge of fd-virus particles

as obtained from titration curves is approximately �8700 e at

pH ¼ 6.9.21 The fd-suspensions are prepared by dialyzing for

2 days against a TRIS/HCl-buffer with an analytical concen-

tration of 1.6� 10�4 M. The appropriate concentrations are then

obtained by dilution with the same buffer. For such a low buffer

concentration, the amount of carbon dioxide that dissolves from

the air must be taken into account for the calculation of the ionic

strength and pH (this is discussed in appendix D of Ref. [22]).

Carbon dioxide increases the ionic strength from 0.7� 10�4 M to

1.5 � 10�4 M, and decreases the pH from 8.2 to 6.9. The corre-

sponding Debye length is 27 nm, which is large in comparison to

the rod diameter. The concentration of fd virus is varied from

1.2 mg/ml to 4.0 mg/ml.

A home-made optically transparent electrical cell is used

to facilitate imaging through a microscope, birefringence

measurements and dynamic light scattering experiments. We use

commercially available custom-designed indium-tin-oxide (ITO)

coated float glass (from Pr€azisions Glas und Optik GmbH,

CEC500S) of dimensions 40 � 70 mm2 with a thickness of

0.7 mm. The ITO layer has a high visible light transmission (90%)

at 633 nm, and the coating thickness is 15 nm. A sketch of the cell

in combination with the microscope is given in Fig. 1. 400 ml of

fd-suspension is loaded on the bottom plate within a rectangle of

insulating PTFE film-spacer (Armbrecht and Matthes GmbH,

AR5038 and AR5038GP). The upper electrode is then gently

placed onto the lower plate. Due to capillary forces, the sample

droplet adopts a circular form, the radius of which is typically

9–10 mm. The precise sample thickness is calculated from this

radius, which is in the range of 1.40 � 0.15 mm. The two plates

are then sealed with the same PTFE tape in order to avoid

evaporation and to fixate the two electrodes. The ITO coatings

are located on the side of the sample. All measurements are
274 | Soft Matter, 2010, 6, 273–286
performed at the center of the sample to ensure a homogeneous

electric field. The ITO layers are then connected to a function

generator (Avtech model AV-151G-B, 1–350 kHz, maximum

�200 V, load resistance $ 50 kU) by means of electronic

connection pins. A sinusoidally varying electric potential is

applied to the electrodes.

Images are recorded with an inverted microscope (Carl Zeiss,

Axiovert 40CFL model) equipped with a CCD camera

(AxioCam Color A12–312, 1300 � 1030 pixels). Images are

taken in polarization mode in combination with Differential

Interference Contrast. Since the dimensions of morphologies are

of the order of tens of microns, and in order to view a relatively

large field of view of typically 900 � 700 mm2, images are

collected using a 10X objective lens (NA 0.30 EC Plan-Neofluar).
III. Electric phase/state diagrams

In this section we discuss the morphologies that are observed by

means of polarization microscopy. Various phases and dynam-

ical states are identified, of which the characterization will be

discussed in section IV.

Phase/state diagrams are constructed for the two fd-virus

concentrations 2.0 mg/ml and 2.8 mg/ml in the applied electric

field amplitude versus frequency plane. These concentrations are

about 26 and 37 times larger than the overlap concentration,

respectively. The phase/state diagrams for these two fd-virus

concentrations in the field amplitude, E0, versus frequency, n,

plane are given in Fig. 2. The solid lines are phase-transition lines

while the dashed lines are lines where qualitative changes either

in structure or dynamics are observed. In order to define the

various transitions, we shall first discuss what is observed when

the applied field strength E0 is increased at a fixed, low frequency

of 10 Hz for [fd] ¼ 2.8 mg/ml (see Fig. 2b).

Without an applied field, the equilibrium state is a nematic in

coexistence with an isotropic phase, which we refer to as the

N-phase. A typical depolarized microscopy image of this phase is

given in Fig. 3. On increasing the field amplitude to about

1 V/mm, a striped texture is observed, in addition to the
This journal is ª The Royal Society of Chemistry 2010
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Fig. 2 The electric phase/state diagram of fd-virus suspensions in the

field-amplitude versus frequency plane for fd concentrations of (a) 2.0

mg/ml and (b) 2.8 mg/ml. The solid lines refer to phase/state transitions,

while the dashed lines refer to more gradual transitions involving the

texture and dynamics of N-domains. The symbol : refers to the N-toN+

transition, B to the N+-to-N+
D, + to the N+

D-to-Ds, , to the Ds-to-Df,

> to the N-to-H, and A to the Df-to-H transition.

Fig. 4 Depolarized optical morphologies of the various phases at

a medium field amplitude of 4 V/mm on decreasing the frequency (for 2.8

mg/ml): the H-phase (at 4 kHz), high frequency N*-phase (at 800 Hz), and

the ND
*-phase (at 200 Hz). The scale bar is 200 mm, and the electric field is

perpendicular to the field of view.
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N-domains, as can be seen in Fig. 3. As will be discussed in

section IV A, there are strong indications that this striped texture

corresponds to chiral-nematic domains, which is the reason that

we refer to this phase as the N*-phase. On further increasing the

field amplitude above 2.0 V/mm, the N-domains gradually

disconnect from each other and become significantly smaller

within a field-amplitude range of about 0.2 V/mm. The image of

this phase is given in Fig. 3. This phase will be referred to as the
Fig. 3 Typical depolarized optical morphologies of the various phases at low

of 2.8 mg/ml: the N-phase, the stripe-textured N*-phase, the ND
*-phase, and

electric field is perpendicular to the field of view. The field amplitudes are, fr

This journal is ª The Royal Society of Chemistry 2010
ND
*-phase, where the subscript ‘‘D’’ stands for ‘‘disconnected

N-domains’’. The striped texture melts at a field amplitude of

3.3 V/mm, and at the same time the N-domains melt and reform.

There is no sign of macroscopic flow. This dynamical state is

referred to as the Ds-state. A snapshot of this dynamical state

is given in Fig. 3. The subscript ‘‘s’’ stands for ‘‘slow’’, which is

added because a long time (larger than about 5 s) is required for

melting and reforming of N-domains close to the phase/state

transition line. On increasing the field amplitude, the dynamics of

melting and formation becomes faster, and remains essentially

unchanged for field amplitudes above 4.2 V/mm, indicated by the

dashed line. The dynamics of melting and reformation will be

discussed in more detail in subsection IV C. The region in the

phase/state diagram at higher field amplitudes where the time for

melting and formation is relatively fast and essentially indepen-

dent of the field amplitude is referred to as the Df-state, where the

subscript ‘‘f ’’ stands for ‘‘fast’’.

The above described phases and states are found to be inde-

pendent of the way they are reached. For example, N-domains

are formed from the N*-phase on lowering the field amplitude.

This shows that the state where N-domains are in coexistence

with isotropic regions is a stable phase.

At high frequencies, larger than a few kHz, the depolarized

microscopy image is uniform, as shown in the left image in Fig. 4.

As will be seen in subsection IV D, the rods are aligned along the

direction of the electric field in this uniform phase. This phase is

referred to as the H-phase, where ‘‘H’’ stands for homeotropic.

On decreasing the frequency for a given field amplitude of

4 V/mm, the N*-phase is formed, where the striped texture is

quite irregular and the pitch is very large (about 50–100 mm), as

can be seen from the middle image in Fig. 4. The pitch decreases
frequency (10 Hz) on increasing the field amplitude, for a fd-concentration

a snapshot of the dynamical Ds-state. The scale bar is 200 mm, and the

om left to right, 1.0, 1.7, 2.7 and 3.4 V/mm.

Soft Matter, 2010, 6, 273–286 | 275
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on subsequently decreasing the frequency. The ND
*-phase is

entered on further lowering the frequency (see the right image in

Fig. 4).

In Ref. [8] we denoted the H-phase as the isotropic I-phase.

This was erroneously based on birefringence measurements on

the 2.0 mg/ml sample at incident angles of only d ¼ 10� (see

subsection IV D). The resulting phase shift is zero within

experimental error, so that we erroneously concluded that this

phase is isotropic. We now have definite proof, as discussed in

subsection IV D, that this phase is indeed a homeotropic phase.

The same phases and states are found for both fd concentra-

tions (see Fig. 2), with different locations of the transition lines.

For the lower fd concentration of 2.0 mg/ml, a ‘‘critical point’’ is

found within the probed amplitude range (at 300 Hz and

4.5 V/mm), where several transition lines meet. In fact, one might

refer to this point as a ‘‘triple or quadruple point’’, since several

transition lines meet there. Detailed experiments on the nature of

this ‘‘non-equilibrium critical point’’ have been performed.23 For

the higher fd concentration of 2.8 mg/ml, the ‘‘critical point’’ is

located at higher frequency and higher field amplitude (see

Fig. 2b).

We also determined the location of some of the transition lines

discussed above for various fd concentrations at a fixed low

frequency, which are given in Fig. 5. As can be seen, the field

amplitudes where the N-to-N* and the ND
*-to-Ds transitions

occur rapidly decrease with decreasing fd concentration. Below

an fd concentration of about 1.5 mg/ml, an isotropic phase is

observed in the absence of an electric field, with a weak degree of

alignment when an electric field is applied (as discussed in

subsection IV D). This phase is indicated in Fig. 5 by ‘‘I’’. Note

that the field amplitude where the I-phase transition line is

located is a very strong function of concentration. For this

reason, the Df-to-I transition could only be observed at relatively

high field amplitudes for a given fd concentration. Note that no

new phase can be induced when the stable phase is isotropic in

the absence of an electric field (this was verified up to field

amplitudes of 10 V/mm).
IV. Characterization of transition lines, phases and
states

In this section, phases, states and transition lines are further

characterized. It will be shown that the N-phase is a coexistence
Fig. 5 The electric phase/state diagram as a function of fd-concentration

at a fixed frequency of 10 Hz.

276 | Soft Matter, 2010, 6, 273–286
between nematic and isotropic regions. We will speculate on the

nature of the striped texture, where there are strong indications

that the striped texture corresponds to a chiral nematic. Pitch

variations on approach of the N-to-N* transition line on lowering

the field amplitude are measured. It will be shown that the

microscopic dynamics exhibit a discontinuity at the ND
*-to-Ds

transition. The dynamics of melting and forming of N-domains

in the dynamical Ds- and Df-states will be discussed. Finally,

birefringence measurements on orientational order in the high-

frequency uniform H-phase are presented.
A. The N-, N*- and ND
*-phases

In the existing literature, the nematic phase of fibrous virus

suspensions (in the absence of an external field) is found to be

chiral-nematic,24–27 as a result of the chiral structure of the core of

fd-virus particles. These studies are all performed at relatively

high ionic strengths (for analytical TRIS/HCl-buffer concentra-

tions larger than about 5 mM). In the present study, a much

lower analytical buffer concentration of 0.16 mM is used. The

corresponding much larger Debye length screens the chiral

structure of the charged core of fd-virus particles to an extent

that renders the nematic phase non-chiral in the absence of an

external field.

A coexistence between a nematic and an isotropic phase in the

absence of a field is confirmed by gentle centrifugation of a bulk

phase (containing the 2.8 mg/ml fd suspension; see left image in

Fig. 6a), in order to macroscopically phase separate the isotropic

and nematic regions. After gentle centrifugation, we find two

stable phases, an upper isotropic phase and a lower nematic

phase, as shown in the right photo in Fig. 6a. The concentration

of the isotropic phase is measured to be 1.33� 0.10 mg/ml, which

is in accordance with the lower binodal concentration that we

found in the phase diagram in Fig. 5. An isotropic-nematic

coexistence is confirmed by taking images of the electric cell

between crossed polarizers with varying orientation of both

polarizers. Such images are shown in Fig. 6b. The solid line

encloses an N-domain, which turns from bright to dark and to

bright again on rotation of the polarizers by 90�. The dashed

lines enclose areas that remain black, independent of the orien-

tation of the crossed polarizers. These correspond to either

isotropic regions or to N-domains that happen to have their

director perpendicular to the field of view.

For our low salt concentration of 0.16 mM, a non-chiral

nematic is observed, while a striped pattern is only found at

finite electric field amplitudes. By applying an electric field, the

double layer is partly destroyed, possibly resulting in a reduc-

tion of the range of electrostatic interactions. Just as for the

high-salt case, this would result in the formation of a chiral

nematic. A microscopic verification of the chiral nature of the

N*-phase requires a separate study that is beyond the scope of

the present paper.

The striped texture extends over regions that exceed the size of

the N-domains, and it does not nucleate within the N-domains.

The N-to-N* transition is therefore not related to a Frederick’s

transition corresponding to anchoring-orientational order at the

boundaries of N-domains. Furthermore, no isotropic regions

were found, by taking images similar to those in Fig. 6.
This journal is ª The Royal Society of Chemistry 2010
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Fig. 6 (a) A bulk sample between crossed polarizers (left, before, and right, after centrifugation) where macroscopic phase separation has been achieved

by gentle centrifugation. The black upper phase is isotropic and the lower phase exhibits the typical nematic texture. (b) Images of the N-phase on

changing the angle of the crossed polarizers in steps of 10 degrees relative to the sample. The dotted areas are regions that remain black for all angles,

while the solid line is an example of a region that contains an N-domain.
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Variation of the optical pitch of the assumed chiral nematic in

the N*- and ND
*-phase on increasing the field amplitude has been

measured directly from depolarized images.8 The variation of

the pitch and its apparent divergence on approach of the

N-to-N*-transition line on lowering the field amplitude, is illus-

trated in the images in Fig. 7. Since the pitch diverges at the

N-to-N*-transition line, this line may be referred to as a line of

Lifshitz points. As discussed in Ref. [8], there is a strong variation

in the measured pitch at low field amplitudes, which becomes

smaller with increasing amplitudes. Just above the N-to-N*

transition line (at 1.1 V/mm) the variation in the measured pitch

ranges from about 12 mm to 32 mm. The large spread at low field

amplitudes can be interpreted as being the result of a random

orientation of the director. The pitch levels off to about 10 mm at

high field amplitudes within the ND
*-phase.
B. Microscopic dynamics at the ND
*-to-Ds transition

A vertically mounted Dynamic Light Scattering (DLS) setup is

used to probe the dynamics of fd-virus particles on a microscopic

length scale (of the order of a mm). The principle set up is

sketched in Fig. 8a. Due to scattering by the glass-water and

glass-air interfaces, there is typically about 20% heterodyning

contribution. It turned out that the use of a lens (with a focal

length of 75 mm) is necessary in order to eliminate contributions

from particles close to the walls of the planar electrical cell.

Without the lens, the long-time part of correlation functions is
Fig. 7 Optical morphologies in the N* and ND
* phase, showing the

variation of the chiral pitch with field amplitude, at a fixed frequency of

10 Hz, and an fd-concentration of 2.8 mg/ml. The scale bar indicated

above the left image is 200 mm. The field amplitudes are, from left to right,

1.1, 1.5, 1.9 and 2.3 V/mm.

This journal is ª The Royal Society of Chemistry 2010
affected through the scattering of particles close to the wall. As

can be seen in Fig. 8b, the diffusion coefficients obtained from

the vertical DLS set up (0) compare well with those obtained

from a standard ALV set up (,). The accuracy of measured

diffusion coefficients is about 10%. In obtaining diffusion

coefficients from measurements with the vertical DLS set up, the

actual scattering vector q is corrected for refraction at the cell

interfaces.

The vertical DLS set up is used to probe the microscopic

dynamics of rods around the ND
*-to-Ds transition line, at 10 Hz

for an fd concentration of 2.8 mg/ml. Typical correlation

functions are shown in Fig. 9. The interpretation of such

correlation functions in terms of relaxation processes is not

possible, since the sample is highly inhomogeneous and, within

the Ds state, melting and forming of N-domains occurs. The

only purpose of the DLS measurements is to obtain a measure

for the average ‘‘mobility’’ of fd-virus particles. As can be seen

from Fig. 9, the correlation functions exhibit a two-stage decay.

The slower mode is fitted to the stretched exponential form in
Fig. 8 (a) A schematic drawing of the vertical DLS setup: (1) He–Ne

laser, (2) polarizers, (3) pinholes (diameter of 500 mm), (4) sample, (5)

achromatic lens (focal length 75 mm), (6) bandpass filter (632 nm), (7)

mono-mode fiber and APD. (b) A comparison of the diffusion coefficient

of a dilute dispersion of silica spheres from a standard ALV DLS set up

(,) and our vertical DLS set up (B), where the sample is contained in

the electrical cell without an electric field.

Soft Matter, 2010, 6, 273–286 | 277
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Fig. 9 Examples of DLS-correlation functions for a fd concentration of

2.8 mg/ml, with increasing field amplitude: ND
+ (,, the right upper

image), Ds (B) and Df (+, the left lower image). The solid lines are fits to

the stretched exponential function for g1 in eqn(2), with B ¼ 0,

accounting for partial heterodyning. The scattering angle is fixed at 21�,

which corresponds to a length scale of 1 mm.

Fig. 10 Intensity time traces of a selected camera pixel in the dynamical

state (a) Df and (b) Ds, showing the significantly faster dynamics in the

Df-state as compared to the Ds-state. (c) Video-correlation functions CV

of intensity traces for four field amplitudes (the numbers in the figure

indicate the applied field amplitude in V/mm). The solid lines are fits to

a stretched exponential (see eqn(2)). (d) The decay times as obtained from

fits of video-correlation functions to a stretched exponential as a function

of the field amplitude. The different phases and states are indicated.
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eqn (2) for the electric-field correlation function g1 (with B ¼ 0),

including partial heterodyning. The decay time s is taken as

a measure for the mobility of the rods. The solid lines in Fig. 9a

are fits to this form for g1. The resulting values for the time

constant s as a function of the field amplitude exhibit a

discontinuity at the ND
*-to-Ds-transition line.8 The microscopic

dynamics of fd rods thus becomes faster in a discontinuous

fashion when the dynamic state is entered. The time scale on

which melting and forming of N-domains just inside the

Ds-state occurs is an order of magnitude larger than the decay

time of the corresponding DLS correlation function. This

implies that the observed discontinuity in the microscopic

dynamics is not connected to the dynamical features of the

Ds-state, but is due to differences in microstructural order

in the ND
*-phase and the Ds-state. It is possibly connected to the

sudden disappearance of the striped texture on entering the

Ds-state. Further investigations are needed to clarify the differ-

ences in microscopic ordering that lead to the sudden increase

of the mobility of the rods.
C. The dynamics of melting and formation of N-domains in the

Ds- and Df-states

The dynamics of melting and formation of N-domains are

accelerated on increasing the field amplitude just above the ND
*-

to-Ds transition line. Time traces of the transmitted intensity

through crossed polarizers, as detected by the CCD camera for

a single pixel, are shown in Fig. 10a,b. As can be seen, the

variations in the intensity trace within the Df-state in Fig. 10a are

much faster as compared to the Ds-state in Fig. 10b. A quanti-

tative measure for the average time s for N-domains to melt and

form can be obtained from correlation functions of such time

traces. The video-intensity correlation function CV that is

obtained from CCD images is defined as,
278 | Soft Matter, 2010, 6, 273–286
CV ðtÞ ¼
\½ IðtÞ �\IðtÞ. � ½ Ið0Þ �\Ið0Þ. �.

\½ Ið0Þ �\Ið0Þ. �2.
(1)

where I(t) is the intensity of a pixel at time t, while the brackets

< / > indicate averaging over all pixels. Examples of such

correlation functions are shown in Fig. 10c, for various field

amplitudes. The solid lines in this figure are fits to the stretched

exponential function,

F(t) ¼ B + A exp{�(t/s)b} (2)

where B, A, b and s are fitting parameters. The time constant s is

a measure for time with which N-domains melt and form. The

time constant is plotted in Fig. 10d as a function of the field

amplitude, where the ND
*-to-Ds phase transition is indicated, as

well as the Ds-to-Df transition line. As can be seen, s diverges on

approach of the ND
*-to-Ds phase transition on lowering the field

amplitude. The transition from the Ds- to the Df-state is defined

as the point where the sharp decrease of s with increasing field

amplitude ceases to occur, and the dynamics becomes essentially

independent of the field amplitude.
D. Orientational order in the H-phase

In view of the uniformity of the left image in Fig. 4, there are two

possible rod orientations in the high frequency H-phase. One

possible orientation is homeotropic, where rods are aligned

perpendicular to the electrodes, that is, along the electric field.

The other is planar orientation, where rods are aligned perpen-

dicular to the field, with an isotropic distribution within the plane

parallel to the electrodes.
This journal is ª The Royal Society of Chemistry 2010
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Fig. 11 (a) The experimental scheme of the electric birefringence set up:

(1) a diode laser (wavelength 663 nm), (2) pinhole, (3) Glan-Thompson

polarizer, (4) electrical sample cell, (5) l/4-platelet, (6) Glan-Thompson

polarizer mounted on a 360� motorized stage, and (7) the detector. The

optical train makes an angle d with the normal to the electrical cell. (b)

The transmitted light intensity i (normalized to the maximum intensity

imax) as a function of the analyzer angle a, for an angle of incidence of d¼
20�. The solid line is the function in eqn(3) with DF ¼ 0. (c) The analyzer

angle amin where the minimum intensity is found as a function of the

angle of incidence d, where the electrical cell is filled with water. The

‘‘apparent birefringence’’ is due to refraction at the glass-air and glass-

water interfaces.

Fig. 12 The measured transmitted intensity of a pre-sheared sample

with a fd concentration of 6.4 mg/ml, which is in the one-phase nematic

region, without an electric field. For the curve marked ||, the direction of

alignment of the rods is within the plane in which the detector can move

(on changing d). For the curve marked t, the rods are aligned in the

direction perpendicular to that plane. The middle curve is pure buffer.
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Orientational order in the high-frequency H-phase is probed

with the vertical birefringence set up as depicted in Fig. 11a. A

laser beam passes through a Glan-Thompson polarizer, which is

oriented at 45� with respect to the direction that is perpendicular

to the plane in which the entire optical train can be rotated.

Below the horizontally placed electrical sample cell, a l/4-platelet

is positioned with one of its optical axes parallel to that of the

polarizer. The transmitted intensity is measured as a function of

the angle a of the orientation of a second Glan-Thompson

polarizer. When a birefringent sample leads to a phase shift DF,

the transmitted intensity i varies with the angle a of the analyzer

as,

i ¼ ½imax[1 + sin(2a + DF)] (3)

where imax is the maximum transmitted intensity. This variation

of the intensity is verified in Fig. 11b, in the absence of the sample

cell.

In order to be able to measure birefringence due to possible

homeotropic or planar alignment, it is necessary to rotate the

entire optical train. The laser beam then makes an angle d with

the normal to the flat electrodes of the sample cell (see Fig. 11a).

Measurements on the H-phase at normal incidence (with d ¼ 0)

show that there is no birefringence within directions parallel to

the electrodes, in accord with the uniform intensity distribution

under crossed polarizers in the left image in Fig. 4. Due to

refraction at the water-glass and glass-air interfaces of the

sample cell, an ‘‘apparent birefringence’’ is measured, which

increases with increasing angle of incidence d. The analyzer

angle amin where the measured transmitted intensity through the

sample cell filled with water attains its minimum value is plotted

in Fig. 11c against the angle of incidence. The shift of amin due to

the cell interfaces is seen to be less than about 0.2� for d not

larger than about 20�. This is sufficiently small to perform

accurate birefringence measurements at d ¼ 20�. From the phase

shift DF, the ‘‘measured birefringence’’ Dnmeas can be calculated

from,
This journal is ª The Royal Society of Chemistry 2010
Dnmeas ¼
1

2p

l

d
DF (4)

where l ¼ 663 nm is the laser wavelength in vacuum and

d ¼ d0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n�2 sin2ðdÞ

q
is the optical path length, with d0 the

distance between the two electrodes and n the refractive index of

the suspension. Note that the sign of the measured phase shift Df

depends on the orientation of the fast axis of the l/4-platelet as

well as the direction of alignment of the rods. As shown in

appendix A, the difference Dn between the refractive indices in

the sample along its optical axis perpendicular and parallel to the

electrodes is related to the measured birefringence as,

Dn ¼ Dnmeas/sin2(d) (5)

provided that Dn is small compared to the mean refractive index.

In order to establish whether a positive or negative phase shift

corresponds to homeotropic or planar orientation of the rods,

measurements are performed on a shear-aligned suspension of

a high nematic concentration (6.4 mg/ml). The rods are shear-

aligned by gently moving the upper plate of the sample cell

relative to the lower plate. The direction of shear alignment of the

rods is parallel to the electrodes and along the direction of

shearing. The birefringent intensity is measured, without an

electric field, for two orientations of the sample cell under normal

incidence (with d ¼ 0): one where the direction of orientation of

fd is parallel to the plane in which the detector can move, which is

the plane of the paper in the schematic drawing in Fig. 11a, and

one perpendicular to that plane. The measured intensities are

shown in Fig. 12 for these two cases, as well as for the pure

buffer. As expected, the sign of Dnmeas changes on rotating the

sample over 90�, but the magnitude of the phase shift remains the

same. From the thus observed sign of the shift of the analyzer

angle amin where the intensity attains a minimum value, it follows

that a negative angular shift corresponds to homeotropic align-

ment, while a positive shift corresponds to planar orientation.

Details can be found in appendix A.

In Fig. 13a,b, the analyzer angle Da relative to that of pure

buffer for the H-phase is shown for two fd concentrations 2.0 and

2.8 mg/ml, respectively, where at a fixed frequency the field

amplitude is either small (just inside the H-phase) or large. First
Soft Matter, 2010, 6, 273–286 | 279
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Fig. 13 (a) Birefringence measurements at d ¼ 20� incidence in the H-state at 1 kHz for an fd concentration of 2.0 mg/ml. Plotted is the transmitted

intensity i, normalized to the maximum transmitted intensity imax, as a function of the analyzer angle Da relative to that of the angle where the buffer

attains its minimum transmitted intensity. The solid curves are fits to a second order polynomial, from which the location of minimum is calculated. The

curve marked as ‘‘buffer’’ is taken for the cell filled with pure buffer, without fd, while the other curves are taken with fd at the indicated applied voltages.

(b) The same as in (a) but now for the fd concentration of 2.8 mg/ml, at 4 kHz. (c) The same as in (b), where now the field amplitude is fixed at 6.4 V/mm

and the frequency is varied.
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of all, the angular shift is negative in all cases. As discussed

above, this implies that the rods align along the applied electric

field. Secondly, the shift is essentially independent of the applied

field amplitude. Moreover, the degree of alignment is indepen-

dent of the frequency, as can be seen from Fig. 13c. No signifi-

cant differences of the degree of alignment have been found on

increasing the frequency from 4 kHz up to 20 kHz for the 2.8 mg/

ml and a field amplitude of 6.4 V/mm. These measurements imply

that within the probed range of field amplitudes and frequencies

in the phase diagrams in Fig. 2, the degree of homeotropic

alignment is essentially constant. There is, however, a

pronounced fd-concentration dependence, as can be seen by

comparing Fig. 13a and b. The angular shift for 2.0 and 2.8 mg/

ml in the analyzer angle a where the intensity attains its minimum

vales is�1.2� and�2.9�, respectively (with an experimental error

of about 0.2�). The orientational order parameter S can be

obtained from,

S ¼ |Dn|/Dnmax (6)

where Dnmax¼ [3.8� 0.3]� 10�5� c, with c the fd concentration

in units of mg/ml.28 The order parameter in the H-phase as
Fig. 14 The orientational order parameter in the H-phase as a function

of fd-concentration. The measured order parameter at the lowest

concentration (the open circle) is just beyond experimental error, and

relates to the I-phase in the phase diagram in Fig. 5.

280 | Soft Matter, 2010, 6, 273–286
a function of concentration is given in Fig. 14. As can be seen

from Fig. 14, there is a strong increase of the degree of homeo-

tropic alignment with increasing fd concentration. For the lower

fd concentration of 1.2 mg/ml, where there is only a single

uniform phase, we observed a very small order parameter, just

within experimental error, that is essentially independent of the

field amplitude and the frequency in the probed range of 0.1–10

V/mm and up to 20 kHz, similar to the H-phase. Because of the

very small degree of orientational order in this phase, we

preferred to refer to it as the isotropic phase I.
V. Electrode polarization

When a time-independent electric field is employed, double layers

will be present at both electrodes which screen the electric field over

a distance of the order of the Debye length. The electric field in the

bulk of the solution is therefore zero, so that the double layers act as

‘‘perfect insulators’’. The charges within the double layers

compensate the charges that are externally applied to the electrodes.

Due to the finite diffusivity of the salt ions, the double layer at the

electrodes will not fully develop when an oscillatory external field is

applied. The electric field in the bulk is now non-zero. Due to the

charges near the electrodes within the partly developed double

layers, however, the electric field in the bulk is not equal to the

applied field. This screening of the electric field by electrode double

layers is commonly referred to as ‘‘electrode polarization’’. At very

high frequencies, where ions are not able to respond to electrical

forces, the electric field in the bulk becomes equal to the applied

field, and renders electrode polarization insignificant.

We consider the geometry that is used in our experiments,

where two flat electrodes confine the suspensions. The externally

applied electric field Eext to the electrodes is given by,

Eext ¼ E0cos{ut} (7)

where E0 is the applied field amplitude and u the frequency. Due

to electrode polarization, the actual electric field Ebulk in the bulk

of the suspension, in the absence of the colloids, has an amplitude
This journal is ª The Royal Society of Chemistry 2010
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E that is different from the applied amplitude E0 and is phase

shifted by an angle 4 as compared to the applied field,

Ebulk ¼ Ecos{u t + 4} (8)

The ratio of the field amplitude E in the bulk and the applied

amplitude E0 defines the ‘‘attenuation factor’’ g,

E ¼ gE0 (9)

Both 4 and g depend on the frequency, the Debye screening

length, the cell thickness and the diffusion coefficient of the small

ions.

In any theory for the polarization of double layers of colloids,

the input is the electric field strength experienced by the colloids,

that is, the field strength Ebulk in the bulk of the solution. In an

experiment, however, the input is the applied field Eext.

Comparing theory and experiment thus requires an explicit

expression for the attenuation factor g. For a future comparison

of our phase diagrams in Fig. 2 to theory, the applied field

strength E0 should therefore be corrected for electrode polari-

zation by multiplication with the attenuation factor g in eqn (9)

in order to obtain the phase diagram in terms of the field that is

experienced by the colloidal particles.

In recent publications29,30 partly numerical solutions of the

standard electro kinetic equations are presented in order to

describe electrode polarization. No fully analytical expressions

for ion densities and the electric potential in terms of the

frequency, the Debye length, the cell thickness and the diffusion

coefficient of small ions have been reported so far. Corrections

for electrode polarization up to now therefore rely on numerical

procedures. In the present section we shall derive a very simple

expression for the attenuation factor, which requires no numer-

ical procedures to correct data for electrode polarization. The

Debye–H€uckel approximation that we will make is shown to be

valid for the typical values of the applied external field ampli-

tudes. The point of departure is the same standard electro-kinetic

equations for the ion concentrations and electric potential as

used in the above mentioned references. For completeness, and

to clearly state the approximations, the derivation of these well-

known equations (see, for example,11–14) is briefly discussed in

subsection V A. The solution of the equations of motion, and the

resulting expression for the attenuation factor and the phase shift

will be presented in subsection V B. Mathematical details are

given in appendix B.
A. The basic equations

The ions experience a direct force F�which sets them into motion

with a velocity equal to v� ¼ F�/z, where z is the solvent friction

coefficient of the ions. Note that for the two-plate geometry,

where the applied field is perpendicular to the electrodes, there is

no contribution to the ion velocities due to electro-osmotic flow.

Electric body forces are now compensated by gradients in pres-

sure. The direct force F� has two contributions. First of all, there

is a force due to the local electric field, resulting from the external

field as well as charges within the electric double layers. This

force on the � -ions is equal to HevF(z,t)/vz, where e > 0 is the

elementary charge and F is the local electric potential. Here, z is
This journal is ª The Royal Society of Chemistry 2010
the distance from the mid-plane between the two electrodes,

where z varies from �L/2 to +L/2, with L the distance between

the two electrodes. Secondly, there is the Brownian force FBr
� ¼

�kBTvln{r�(z,t)}/vz, where r� is the local number density of

ions, kB is Boltzmann’s constant and T the temperature. The

Brownian force describes the diffusive motion induced by

concentration gradients. Hence,

F�ðz; tÞ ¼ �kBT
v

vz
ln
�

r�ðz; tÞ
�

H e
v

vz
Fðz; tÞ (10)

Substitution into the conservation equation vr�(z,t)/vt ¼
�v[r�v�(z,t)]/vz for the concentration thus leads to the well-

known equations of motion (we do not denote position and time

dependence explicitly for brevity),

vr�
vt
¼ D

v2

vz2
r� �D b e

v

vz

�
r�

v

vz
F

�
(11)

where b ¼ 1/kBT and D ¼ kBT/z is the Einstein diffusion coef-

ficient of the ions.

We will limit ourselves to small electrostatic potentials. Since

screening is entirely due to variation of ion concentrations close

to the electrodes, within a region extending over distances equal

to or less than the Debye length, the assumption is that the

variation DF of the potential over this distance away from the

electrodes is small in the sense that beDF is small. Accounting for

the significant dielectric screening of the applied potential in case

of aqueous solvents, this condition is satisfied even for rather

large applied potentials, as will be verified later experimentally

(see subsection V C). Within this Debye–H€uckel approximation,

the excess density Dr� h r� � �r, with �r the overall density of

ions, is proportional to the potential. Linearization of eqn(11)

with respect to Dr � and F gives,

vDr�
vt

¼ D
v2

vz2
Dr�HD

1

2
k2 ½ Drþ � Dr� � (12)

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 b e2 �r=3

p
is the inverse Debye screening length.

This equation of motion is the one-dimensional form of a well-

known electro-kinetic equation in the absence of electro-osmotic

flow, which plays no role in the present plate geometry (see, for

example,11–14).

The boundary condition for the potential between the elec-

trodes reads,
F(z ¼ ½L,t) � F(z ¼ �½L,t) ¼ E0L cos{ut} (13)

The second boundary condition specifies that ions can not

penetrate the electrodes, that is, the ion fluxes r�v� must vanish

at the electrodes. Since ion velocities are proportional to the force

in eqn (10), this implies that,

v

vz

�
� Dr�ðz; tÞH 3 k2Fðz; tÞ

�
¼ 0 ;

for z ¼ � 1

2
L ; and all t . 0

(14)

where the linearization discussed above has been invoked.
Soft Matter, 2010, 6, 273–286 | 281
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For 1–1 electrolytes, the above equations can be used to

derive equations of motion and boundary conditions for the

free charge density r ¼ e[Dr+ � Dr�] due to differences in ion

concentrations. Subtraction of the equation of motion (12) for

Dr+ and Dr– leads to a single equation of motion for the free

charge density,

vr

vt
¼ D

�
v 2

vz2
� k2

�
r (15)

This equation of motion can be traced back to Ferry,31 who

used it to describe the capacitance of a single double layer at a flat

interface. The potential is connected to the free charge density

through the Poisson equation,

v2

vz2
F ¼ �r

3
(16)

Subtraction of the boundary condition for Dr+ from that of

Dr– leads to,

v

vz

�
rþ 3 k2 F

�
¼ 0 ; for z ¼ � 1

2
L ; and all t . 0 (17)

The set (13,15,16,17) of equations and boundary conditions

describe electrode polarization within the Debye–H€uckel

approximation for 1–1 electrolytes.

The overall density of ions, in the case of a fd-suspension, is

the concentration outside the double layers of the fd-viruses.

This is the concentration that should be used to calculate the

Debye length, and is equal to the concentration in the osmotic

reservoir that is used in establishing osmotic equilibrium prior

to the experiments. Even if the total amount of ions that

dissociate from the fd surfaces exceeds the reservoir concen-

tration, ion exchange in establishing osmotic equilibrium

ensures an overall ion concentration that is set by the ion

concentration in the osmotic reservoir. The number of ions

that dissociate from the fd surfaces is rather limited, since about

80 to 90 percent of the bare charge is neutralized by condensed

ions.
B. The attenuation factor and phase shift

Although the differential eqn (15), (16) have a quite simple

appearance, their solution is not easily found and turns out to

be quite complicated. The solution of these equations for the

potential and the free charge density is constructed in the

appendix B. As shown there, the in-phase and out-phase

response functions for the electric field strength can be written

as additive contributions P0bulk and P0 0bulk that describe the

electric field within the double layers near the electrodes, and

contributions P0bulk and P00bulk that describe the field within the

bulk, away from the electrodes. Explicit expressions for both

contributions are given in appendix B. The contributions P0dl

and P0 0dl decay exponentially fast away from the electrodes over

a distance that is at most equal to the Debye length. The electric

field in the bulk of the solution, away from the electrodes, is

thus written as,

Ebulk(z,t) ¼ E0[P
0

bulk(z) cos(ut) + P
0 0

bulk(z) sin(ut)] (18)

The bulk response functions are given by,
282 | Soft Matter, 2010, 6, 273–286
P
0
bulk ¼ 1� 2

3 k2 L
	
1þL2


½Aðr�L sÞ þ Bð sþL rÞ�

P00bulk ¼ � 2

3 k2 L
	
1þL2


½Að sþL rÞ � Bð r�L sÞ�
(19)

where L ¼ u/Dk2 is a dimensionless frequency, while explicit

expressions for the constants A, B, r and s are given in

eqn(37)–(39) in appendix B. For zero frequency, the bulk

response functions vanish, that is, the electric field in the bulk

solution is completely screened by the double layers at the elec-

trodes. For very large frequencies, P0bulk tends to unity while

P00bulk vanishes, that is, the electric field in the bulk of the solu-

tion is now equal to the applied field. The double layers at the

electrodes have no time to develop for these high frequencies, and

therefore do not screen the applied electric field.

In experiments, the Debye length is very much smaller than the

distance L between the electrodes. Only the leading asymptotic

form of the response functions in eqn (19) for large values of kL is

therefore of interest. This leading order expansion is discussed in

appendix B, leading to,

P
0
bulk ¼ U2=

	
4þ U2



;

P00bulk ¼ �2 U=
	

4þ U2

 (20)

where the dimensionless frequency U is defined as,

U ¼ uL/Dk (21)

A similar expression for the relevant frequency has been

derived in Ref. [30]. The physical meaning of this dimensionless

frequency is as follows. Suppose that the distance L between the

electrodes is increased by a factor of two. In order to retain the

same bulk electric field strength, the total potential difference

between the electrodes, including the effects of ion-polarization

charges, should be doubled. This requires a doubling of both the

externally applied charges to the electrodes as well as the ion-

polarization charges. Doubling the polarization charges requires

typically twice as long. The frequency should therefore be half of

the original frequency to retain the same bulk electric field

strength. This explains why the frequency in the dimensionless

group U in eqn (21) scales like u � L. This feature renders

electrode polarization dependent on the distance between the two

plates, a fact that is used in electrophoresis experiments to

measure essentially zero-frequency electrophoretic velocities

using large electric cells.

Comparing the expressions (8) and (18) for the bulk electric

field, the attenuation factor is found to be equal to,

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
P
0
bulk


2þðP00bulkÞ
2

q
¼ U=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ U2

p
(22)

while the phase shift between the applied field and the bulk

electric field is given by,

4 ¼ arctan(�P
0 0

bulk/P
0

bulk) ¼ arctan(2/U) (23)

The bulk response functions for the electric field, the attenu-

ation factor and the phase angle are plotted in Fig. 15). Note that

the attenuation is significantly below unity for U < 10. This
This journal is ª The Royal Society of Chemistry 2010
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Fig. 15 (a) The bulk response functions P0 and P0 0, (b) the attenuation

factor g and (c) the phase angle (in degrees) as functions of the dimen-

sionless frequency U.

Fig. 16 The externally applied transition field amplitudes E0 for the
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implies that electrode polarization becomes significant for

frequencies below 10 Dk/L.
transitions N-to-N* (,) and ND
*-to-Ds (B) as a function of the cell-

thickness L, for an fd concentration of 2.0 mg/ml. The solid lines are fits

to the theory (see eqn (24)).

Fig. 17 The corrected N-to-N*-transition lines (left two figures) and the

ND
*-to-Ds-transition line (right two figures) for the lower (upper two

figures) and higher (lower two figures) fd concentrations. The open circles

are the transition lines in Fig. 2 corrected for dielectric polarization only.

The filled symbols are data points that are also corrected for electrode

polarization. The solid lines are guides to the eye. For frequencies higher

than about 100 Hz, electrode polarization for the 1.4 mm thick cells

becomes irrelevant.
C. An experimental test of the theory and corrected phase

diagrams

The above theory for electrode polarization can be tested

experimentally as follows. The value of electric field strength

Etr
bulk in the bulk of the suspension where a phase/state transition

occurs is set by the response of the colloidal suspension, and is

independent of the thickness of the cell. According to eqn(22) for

the attenuation factor, the corresponding applied field amplitude

E0 is related to Etr
bulk as,

E0 ¼ Ebulk
tr =g ¼ Ebulk

tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ U2

p
=U (24)

The applied field depends on the gap width L of the electrical

cell through the L-dependence of the dimensionless frequency U

in eqn (21). The theory for electrode polarization can thus be

tested by measuring the applied field strength that is necessary to

induce a phase/state transition for several gap widths. The gap-

width dependence of the applied field can then be fitted to

eqn (24) with two fitting parameters: Etr
bulk and the diffusion

coefficient D of the small ions (which should be in the range of

1 to 3 � 10�9 m2/s). Probing several transitions, Etr
bulk is an

independent fitting parameter for each transition, while D is

a global fitting parameter that must be the same for all

measurements. The externally applied transition field amplitudes

E0 for the transitions N-to-N* (,) and ND
*-to-Ds (B) as

a function of the cell-thickness L, for an fd concentration of

2.0 mg/ml, is shown in Fig. 16. The solid lines are fits to eqn (24).

The value for D is found to equal to 2.1 � 10�9 m2/s for both

transition lines, which is perfectly within the expected range of

literature values. The two transition field strengths are equal to

0.23 and 0.90 V/mm, respectively. Notice that these transition

field strengths are yet to be corrected for dielectric polarization of

the electrode-water interface. Since the static, relative dielectric

constant of ITO (the electrode material) is approximately 7.5 and

that of water is 78, the actual transition field amplitudes are

a factor 7.5/78 z 0.096 smaller. Note that the applied field

amplitudes corrected for dielectric polarization in Fig. 16 varies

from about 50 to 300 mV, which is beyond the Debye–H€uckel

limiting value of about 25 mV. However, since inhomogeneities

in free charge density only exist within the double layers, the

theory is valid whenever the potential drop over the double layers

is small compared to 25 mV. Since the Debye length is of the
This journal is ª The Royal Society of Chemistry 2010
order of a few nm, it follows that the theory can be applied to

seemingly quite high applied voltages, far above the maximum

applied voltage of about 14 V in the present experiments. The

bulk field amplitude E ¼ 0.096 � g � E0 is the field amplitude

that is experienced by the colloids in the bulk of the solution.

For the 1.4 mm thick cells used in the present study, electrode

polarization is significant for frequencies below about 100 Hz.

The corrected N-to-N*- and ND
*-to-Ds-transition lines, up to

300 Hz, are given in Fig. 17, where the above given value for D is

used. As can be seen, the field amplitudes for both transitions
Soft Matter, 2010, 6, 273–286 | 283
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become quite small at very low frequencies, much smaller than

the measured values. The corrected phase diagrams in Fig. 17

should be compared to the measured phase diagram in Fig. 2. In

any theory that aims at the calculation of the N-to-N*- and ND
*-

to-Ds-transition lines, the corrected phase diagrams in Fig. 17 are

the relevant diagrams.
Fig. 18 (a) The polarizability in the xy-plane is isotropic and equal to

at, while in the direction of the external electric field, the z-direction, it is

equal to a||. (b) The polarizability that is probed by a laser beam that is

incident under an angle d is anisotropic in the plane perpendicular to the

beam. The polarizability along the x-direction is at while it is equal to

a along the direction ê of the plane spanned by the z-axis and the beam

direction.
VI. Summary and conclusions

A number of phases and states can be induced by an external

electric field, depending on the field amplitude and frequency.

The phase/state diagrams have been constructed by means of

polarization microscopy. A more quantitative characterization

has been performed for a number of the phases, states and

transitions. It is shown that the N-phase is a coexistence

between isotropic and nematic regions, and it is speculated that

the striped texture is a chiral nematic. The pitch of the striped

texture is shown to diverge at the N*-to-N transition line on

lowering the field amplitude. The pitch diminishes at larger

amplitudes, and takes the value that has been observed for the

chiral texture under high salt conditions in the absence of an

electric field. This indicates that the range of the electrostatic

interactions decreases with increasing electric field amplitudes.

The dynamics of melting and forming of N-domains in the

dynamical Ds- and Df-states is characterized by means of video-

correlation spectroscopy. The time for melting and reformation

of N-domains diverges on approach of the N*
D-phase. Within

the Ds-state this time decreases with increasing field amplitude

and remains essentially constant beyond a reasonably sharply

defined amplitude, within the Df-state. Dynamic light scattering

experiments that probe the dynamics on a micrometre length

scale reveal a discontinuity at the N*
D-to-Ds transition. This

might be due to the abrupt change in microstructural order at

this transition due to melting of the chiral texture. Birefrin-

gence measurements show that the uniform phase at high

frequencies (the H-phase) is homeotropically aligned. The

orientational order parameter is essentially independent of the

field amplitude and frequency, but is a strong function of the fd

concentration.

Electrode polarization has to be considered at the low

frequencies of interest. A theory is presented for the attenua-

tion of the electric field due to electrode polarization.

The theory is tested experimentally and phase diagrams are

corrected for electrode polarization. It turns out that electrode

polarization, for the typical gap width of our electrical

sample cell of 1.4 mm, is important for frequencies below

about 100 Hz.

It would also be interesting to investigate the response to

electric fields at even lower ionic strengths as well as much higher

ionic strengths. Time-resolved confocal microscopy experiments

might be helpful to reveal the nature of the dynamic states, and to

confirm the 3D chiral structural order of the striped texture.

Besides these possible future experiments, theory should be

developed. Such a theory should include a description of the

deformation of double layers in alternating external fields, the

interaction of rods with such deformed double layers (possibly

including interactions through electro-osmotic flows), and

a prediction of the cooperative behaviour resulting from these

interactions.
284 | Soft Matter, 2010, 6, 273–286
A. Interpretation of birefringence measurements

Both for homeotropic and planar alignment of the rods, the

refractive index of the suspension is isotropic within the plane

parallel to the electrodes. Let at denote the macroscopic

polarizability within that plane, the xy-plane in Fig. 18a,

and a|| in the direction perpendicular to that plane, in the

z-direction.

The incident laser beam makes an angle d with the z-axis.

Within the plane perpendicular to the laser beam, which is the

xy-plane rotated over an angle d along the y-axis, the optical

axes are along the y-direction and along the unit vector ê, as

depicted in Fig. 18b. The polarizability along the y-axis is equal

to at, as before, while the polarizability a along ê depends on

at, a|| and d. In order to express a in terms of these quantities,

consider an electric field E within the xz-plane, as shown in

Fig. 18a,b. The electric field has a component Et ¼ E cos(d)

along the x-direction and E|| ¼ E sin(d) along the z-direction,

where E is the magnitude of E. The corresponding induced

dipole moments are,

Pt ¼ at E cosðdÞ êx

Pk ¼ ak E sinðdÞ êz
(25)

where êx and êz are the unit vectors along the x- and z-direction,

respectively. The total induced dipole moment P along the

ê-direction is thus equal to,

P ¼ ê$P ¼ ê$[atcos(d)êx + aksin(d)êz]E (26)

Using ê ¼ cos(d)êx + sin(d)êz, the macroscopic polarizability

along the ê-axis is found to be given by,

a ¼ atcos2(d) + a||sin2(d) (27)

The refractive index n along the ê-direction is related to the

polarizability as n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
30 þ a
p

, where 30 is the dielectric constant

of a vacuum (for convenience we omit the magnetic suscepti-

bility, which is assumed to be that of a vacuum). Let �n¼ (n + nt)/

2 denote the average refractive index, where n is the component

of the refractive index along the unit vector ê. We define the

average polarizability �a as �n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
30 þ �a
p

. When the difference in
This journal is ª The Royal Society of Chemistry 2010
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refractive indices in the two directions is small compared to the

average refractive index, we can write,

n ¼ �n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a� �a

�n2

r
z

a� �a

2 �n
(28)

A similar relation holds between nt and at. Subtracting these

two expressions gives, again up to leading order in differences in

polarizability,

n� nt ¼ a� at

2 �n
(29)

Substitution of eqn (27) into eqn (29) immediately gives,

n� nt ¼ ak � at

2 �n
sin2ðdÞ (30)

Similarly we have, nk � nt ¼ [ak � at]/2�n where nt is the

refractive index within the xy-plane and, as before, n|| in the z-

direction (see Fig. 18). Hence,

n � nt ¼ [nk � nt]sin2(d) (31)

This relates the birefringence as measured under an angle of

incidence d to the true birefringence.

As a second step, the relation between the refractive index

difference n|| – nt of the suspension must be related to the

refractive index difference nrod
|| – nrod

t of single colloidal rods

along and perpendicular to their long axis. That relation depends

on whether the rods have a homeotropic or planar alignment.

Here we will only be interested in the sign of the proportionality

constant between n|| – nt and nrod
|| – nrod

t. For the determination

of the sign of the proportionality constant it suffices to consider

perfect alignment.

For the homeotropic case, the rods are aligned along the

applied electric field, that is, along the z-direction in Fig. 18. In

that case we trivially have, n|| ¼ n||
rod and nt ¼ nt

rod, except for

a prefactor that is related to the colloid concentration. For

planar alignment, where the rods align with their long axis within

the xy-plane, with an isotropic distribution within that plane, n||

¼ nt
rod, and nt ¼ (nt

rod + n||
rod)/2. Hence, apart from a positive

prefactor,

nk � nt ¼ nrod
k � nrod

t ; homeotropic

nk � nt ¼ 1

2

h
nrod

t � nrod
k

i
; planar

(32)

The homeotropic and planar alignments thus lead to bire-

fringence of opposite sign. The sign of the measured phase shift

also depends on the relative orientation of the fast axis of the l/4-

wavelength platelet.
B. The analytical form of the free charge density and
potential

The solution of eqn (13,15,16,17) for the free charge density can

be written as,

r(z,t) ¼ E0[R0(z) cos(ut) + R00(z) sin(ut)] (33)

where R0and R00 are the in-phase and out-of-phase response

functions for the free charge density, which are equal to,
This journal is ª The Royal Society of Chemistry 2010
R0(z) ¼ Asin(z/l0)cosh(z/le) + Bcos(z/l0)sinh(z/le)

R00(z) ¼ �Bsin(z/lo)cosh(z/le) + Acos(z/lo)sinh(z/le) (34)

The two length scales lo > 0 and le > 0 are connected to spatial

oscillatory behaviour (hence the index ‘‘o’’) and to exponential

decay (hence the index ‘‘e’’) away from the electrodes, respec-

tively. The oscillatory behaviour of the free charge density is due

to the finite propagation time of the charge buildup in the double

layer as the applied field changes. These length scales depend on

the Debye screening length, the ion-diffusion coefficient and the

frequency as,

l2
e ¼ 2 k�2 L�2

�
� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þL2

p �
;

l2
o ¼ 1=

	
l�2
e � k2



¼
�

D

u

�2
4

l2
e

(35)

where L is the dimensionless frequency,

L ¼ u/Dk2 (36)

Note that 0 # le # k�1 while lo can take any value from 0 for

very high frequencies to N for zero frequency. Furthermore, the

constants A and B are equal to,

A ¼ a

a2 þ b2
3 k2 ;

B ¼ b

a2 þ b2
3 k2

(37)

where a and b are defined as,

a ¼ L

1þL2

�
L

�
p

lo
þ q

le

�
þ
�

p

le

� q

lo

�
þ 2

L L
ðr�LsÞ

�
;

b ¼ L

1þL2

�
L

�
p

le

� q

lo

�
�
�

p

lo

þ q

le

�
þ 2

LL
ðsþLrÞ

� (38)

and we abbreviated,

p ¼ cosð L=2 l0Þ coshð L=2 leÞ ;
q ¼ sinð L=2 l0Þ sinhð L=2 leÞ ;
r ¼ sinð L=2 l0Þ coshð L=2 leÞ ;
s ¼ cosð L=2 l0Þ sinhð L=2 leÞ

(39)

Note that the free charge density is essentially zero for

distances a few times le # k�1 away from the electrodes.

According to Poisson’s equation, the electric field within the bulk

of the suspension, a few times k�1 away from the electrodes, is

therefore constant, independent of position. The amplitude and

phase of this electric field is, however, different from the applied

field due to the intervening charges within the (partially devel-

oped) double layers near the electrodes.

Similarly to the free charge density, the local electric field Elocal

is written as,

Elocalðz; tÞ ¼ � v Fðz; tÞ
vz

¼ E0

�
P
0 ðzÞ cosðutÞ þ P00ðzÞ sinðutÞ

� (40)

The response functions P0 and P0 0 can be decomposed into

contributions P0dl and P0 0dl that describe the electric field within

the double layers near the electrodes, and contributions P0bulk
Soft Matter, 2010, 6, 273–286 | 285
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and P0 0bulk that describe the field within the bulk, away from the

electrodes,

P
0 ðzÞ ¼ P

0
dlðzÞ þ P

0
bulkðzÞ ;

P00ðzÞ ¼ P 00dlðzÞ þ P 00bulkðzÞ
(41)

where the double-layer contributions are found to be equal to,

P
0
dlðzÞ ¼

d

dz

�
AþL B

3 k2
	
1þL2


 sinðz=l0Þ coshðz=leÞ

þ B�L A

3 k2
	
1þL2


 cosðz=l0Þ sinhðz=leÞ
�

P00dlðzÞ ¼
d

dz

�
L A� B

3 k2
	
1þL2


 sinðz=l0Þ coshðz=leÞ

þ AþL B

3 k2
	
1þL2


 cosðz=l0Þ sinhðz=leÞ
�

(42)

while the bulk part of the response functions is given in eqn

(19). As for the free charge density, the response functions P0dl

and P00dl are essentially zero for distances a few times le # k�1

away from the electrodes, while the response functions P0bulk

and P0 0bulk describe the electric field in the bulk of the salt

solution. Only the latter contributions are of interest for the

calculation of the attenuation factor g and the phase shift 4 of

the field that is experienced by colloidal particles in the bulk of

the salt solution.

For zero frequency, the above expressions for the free charge

density and electric field reduce to,

rðzÞ ¼ 1

2
3 k2 E0 L sinhðk zÞ=sinhðk L=2Þ ;

ElocalðzÞ ¼ 1

2
E0 L

d

dz
½ sinhðk zÞ �=sinhðk L=2Þ :

(43)

This shows that the electric field is zero at distances a few times

k�1 away from the electrodes, that is, the double layers act as

‘‘perfect insulators’’.

For finite frequencies, terms like �sinh(z/le), cosh(z/le) in the

expression (42) for the response functions P0dl and P00dl for the

electric field decay exponentially fast over a distance le # k�1

away from the electrodes. These terms are essentially zero in the

bulk. Therefore, in the bulk of the salt solution, only the

response functions in eqn (19) contribute. The asymptotic

expansion of P0bulk and P00bulk with respect to large values of kL

is somewhat subtle. In order to obtain an explicit expression for

the bulk response functions, first of all note that if kL [ 1, the

quantity p in eqn (39) is equal to ½cos(L/2l0)exp(L/2le), up to

exponentially small contributions. Similar approximations can

be used for q, r and s. From eqn (34)–(38) the following

expression for the response functions in the bulk of the salt

solution is found,

P
0
bulk ¼ 4 U2 �L U W 3 ð 4�L U W Þ

U2
	

4þL2 W 4


� 8 U L W 3 þ 16 W 2

;

P 00bulk ¼ � 8 U W

U2
	

4þL2 W 4


� 8 U L W 3 þ 16 W 2

(44)

where the dimensionless frequency U is defined as,

U ¼ u L/D k (45)
286 | Soft Matter, 2010, 6, 273–286
and where W is an abbreviation for,

W ðLÞhk le ¼ 21=2 L�1
h
� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þL2

p i1=2

(46)

Since L¼U/kL, the dimensionless frequency L can be considered

a small parameter in the frequency range of interest, where U � 1,

provided that kL [ 1, that is, when the distance between the plates is

much larger than the Debye screening length. Since W z 1 for L� 1,

this leads to the expressions (20) for the bulk response functions.
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