Effects of solvation structure on a large-particle diffusion

Yuka Nakamura, Akira Yoshimori, Ryo Akiyama (Kyushu Univ., Japan)

Purpose

To study the validity of the Stokes-Einstein relation when a large-hard sphere is immersed in a binary hard-sphere mixture.

Method

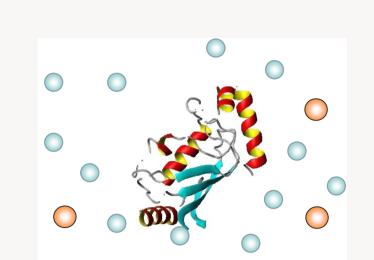
We calculate the diffusion coefficient using a perturbation theory with respect to the size ratio of the solvent and solute particles.

Result

Large deviation from the Stokes-Einstein relation is observed when mixing binary solvent spheres with the size ratio of 1:5. The deviation is caused by the high density of solvent particles around the solute due to entropic effects.

1. Diffusion coefficient

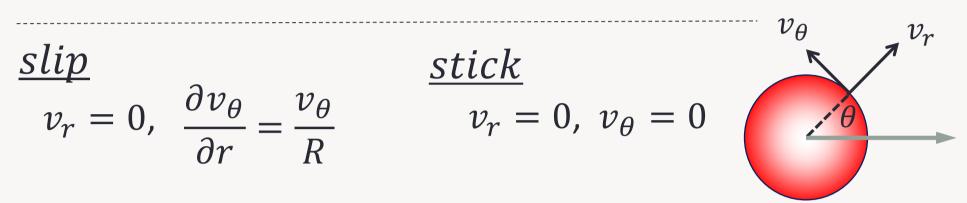
Diffusing particle:
size R ~ biomolecule



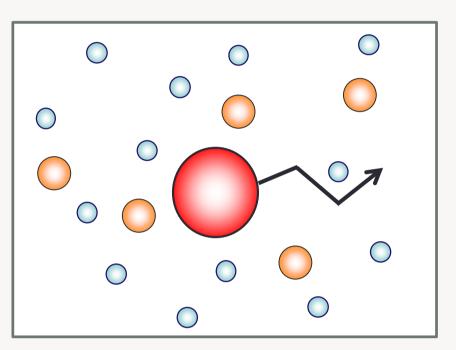
(solvent particle << R < colloidal particle)

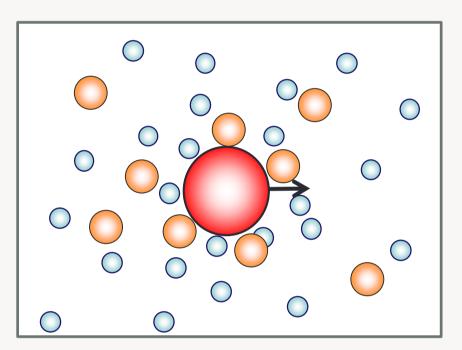
Stokes-Einstein relation

$$D_{SE} = rac{k_B T}{8\pi c \eta R}$$
 η : viscosity R : solute radius c : depending on boundary condition $1/2 \, (slip), 3/4 \, (stick)$



- The effects of solvation structure





D: Large

D: Small

The solvation effects are not included in the SE relation.

Purpose

To study the validity of the SE relation when the solute particle is smaller than macroscopic size.

2. Perturbation theory

- Assuming that a solvent particle is much smaller than a solute, we expand microscopic equations.
- $\epsilon = a/R \ll 1$ (a, R: radii of solvent and solute particles)

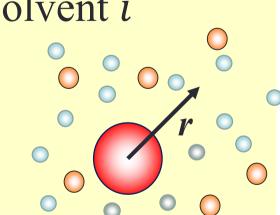
$$D = \frac{k_B T}{8\pi c \eta R} \qquad c = \frac{6 - 3\epsilon \alpha - 3\epsilon \beta}{12 - 4\epsilon \alpha + (\epsilon \beta)^2}$$

- $\checkmark \alpha$ and β are calculated from $g_i(r)$.
- Considering the solvation effect

 $g_i(r)$: radial distribution function of solvent i

$$g_i(r) = \rho_i(r)/\rho_i$$

 $\rho_i(r)$: equilibrium mass density field ρ_i : average mass density



- ✓ analytical expression
- Avoiding the finite-size effect

Derivation

Microscopic equations [1]

Continuity equations $\nabla \cdot \rho_i(r) \boldsymbol{v}_i(\boldsymbol{r}) = 0$

Equations of motion

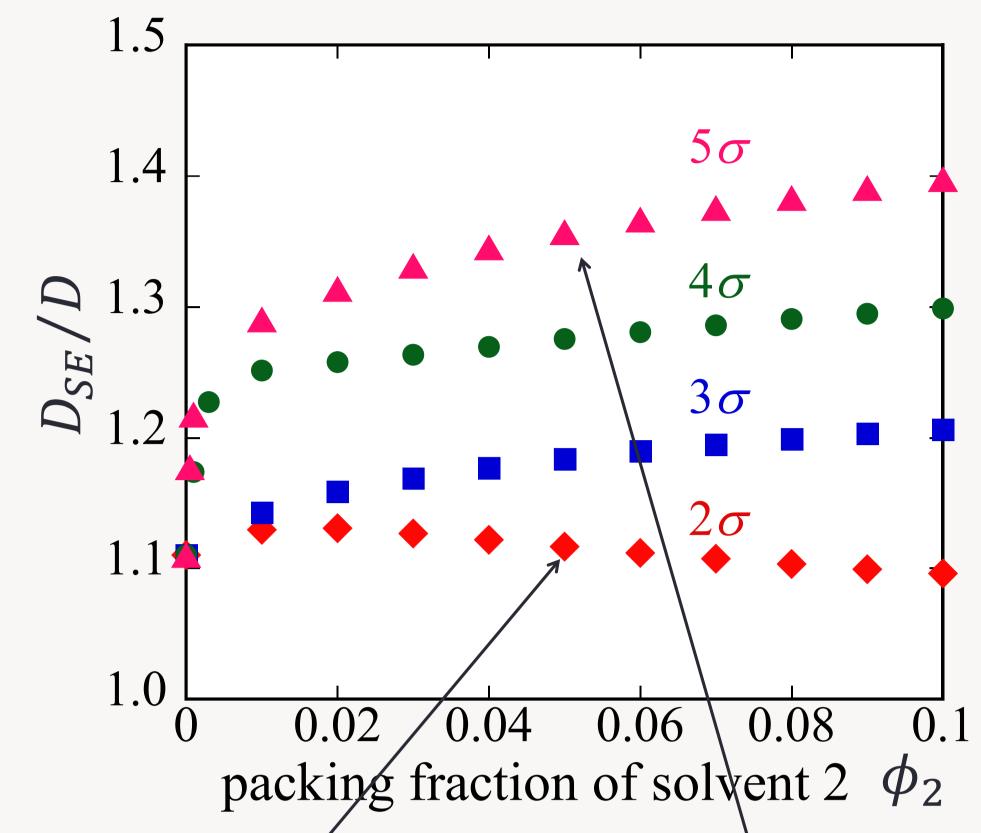
$$-\rho_{i}(r)\nabla\mu_{i}(\mathbf{r}) + \frac{\rho_{i}(r)}{\rho_{T}(r)} \left[\eta \nabla^{2} \mathbf{v}(\mathbf{r}) + \gamma \nabla (\nabla \cdot \mathbf{v}(\mathbf{r})) \right]$$
$$\mp L[\mathbf{v}_{1}(\mathbf{r}) - \mathbf{v}_{2}(\mathbf{r})] = \mathbf{0}$$

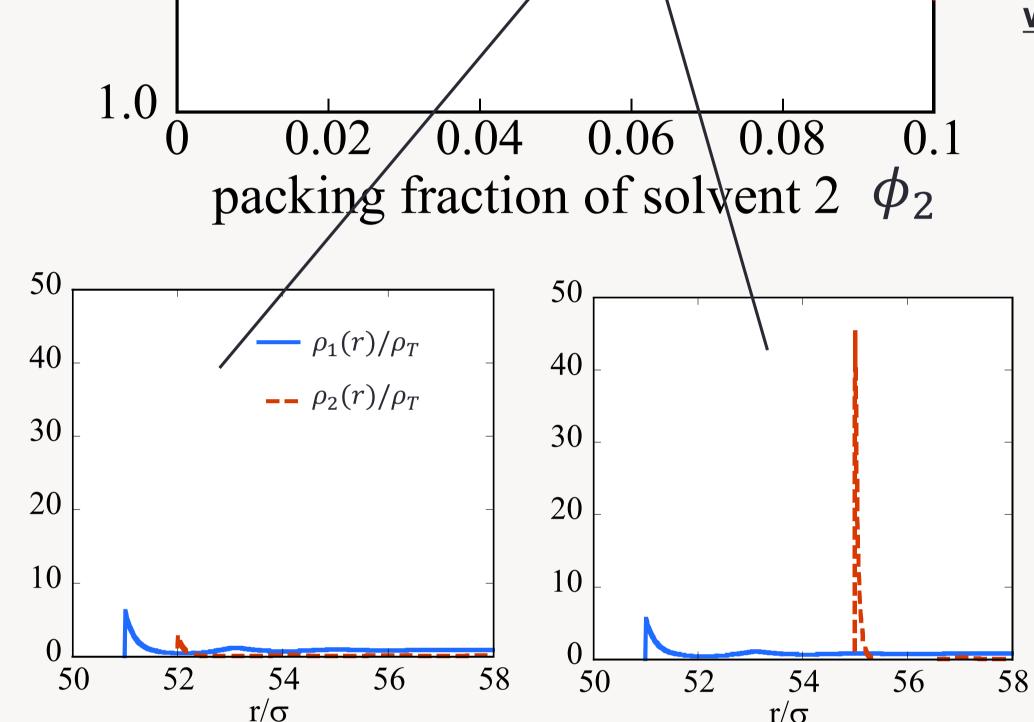
Irreversible terms are approximated by the long wavelength limit.

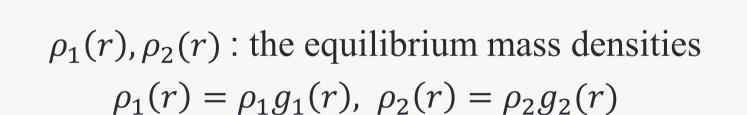
 $\boldsymbol{v_i(r)}$: velocity, $\mu_i(\boldsymbol{r})$: chemical potential, $\rho_T(r) = \rho_1(r) + \rho_2(r)$

- $\boldsymbol{v}(\boldsymbol{r}) = (\rho_1(r)\boldsymbol{v}_1(\boldsymbol{r}) + \rho_2(r)\boldsymbol{v}_2(\boldsymbol{r}))/\rho_T(r),$
- η : share viscosity, $\gamma = \zeta + \eta/3$, ζ : balk viscosity
- L: the strength of the friction between solvents 1 and 2.
 - [1] T. Yamaguchi et al. J. Chem. Phys. 123, 034504 (2005)

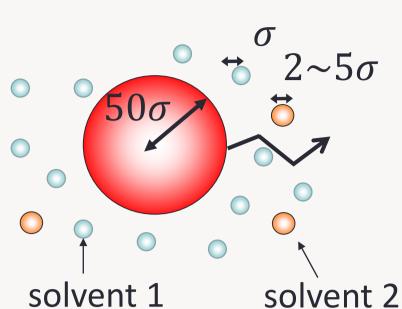
3. Binary hard spheres







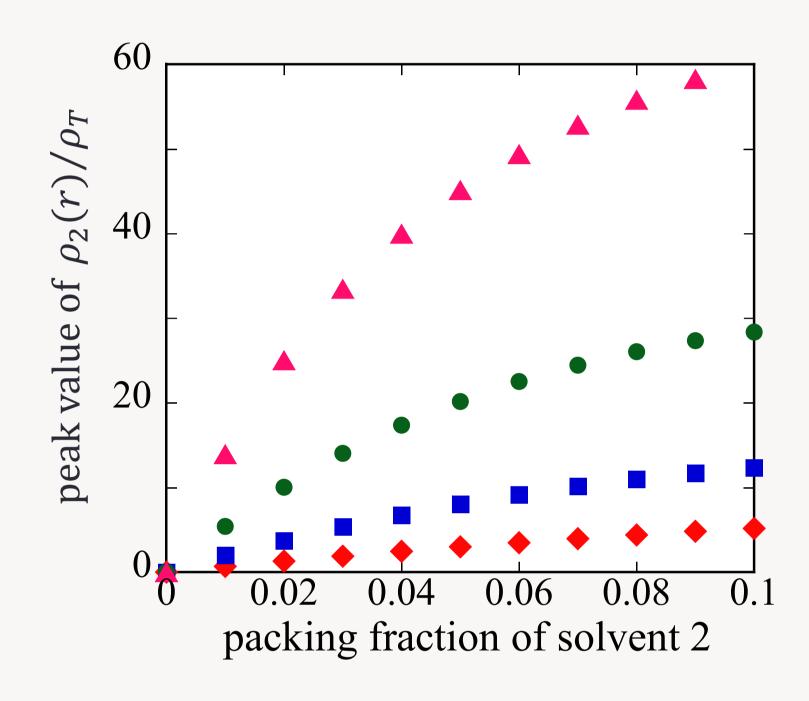
[3] We thank Professor Masahiro Kinoshita for software program used in the numerical calculations of $g_1(r)$ and $g_2(r)$.



Total packing fraction of solvent mixture is 0.38.

 D_{SE} : diffusion coefficient obtained by the SE relation (slip condition)

The deviation from the SE relation increases with the packing fraction of solvent 2.



The increase in the density of solvent 2 causes the large deviation from the SE relation.

- Velocity field

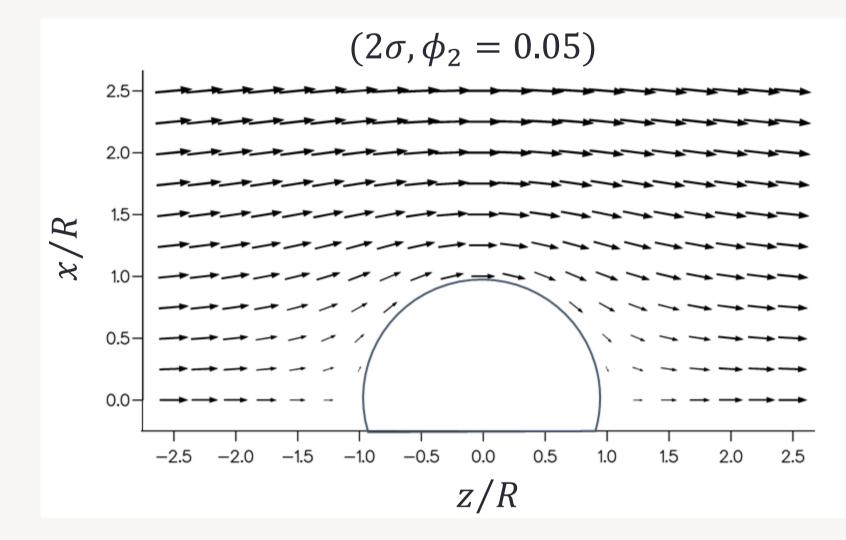
perturbation expansion

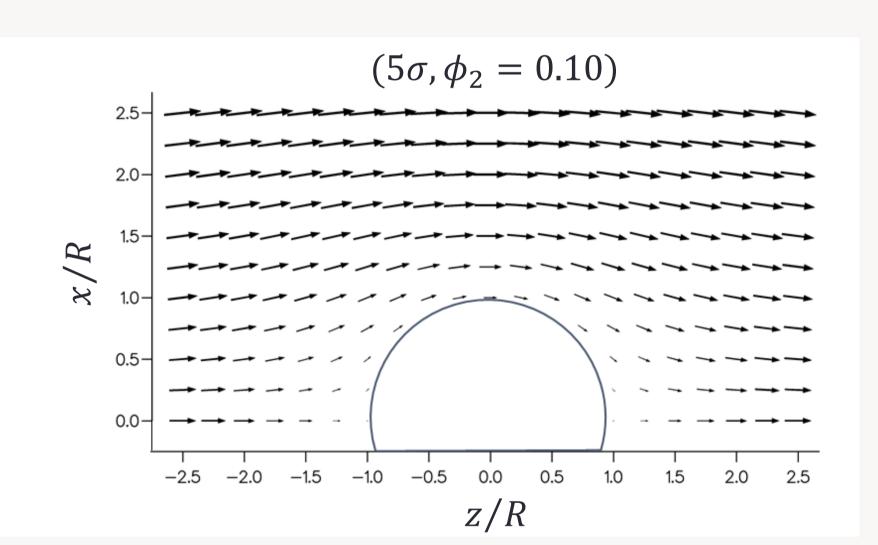
 $\epsilon = a/R \ll 1$

[2] Y. Nakamura et al.

J. Phys. Soc. Jpn.

83, 064601 (2014)





High density around the solute surface makes a solvent sticky.

- Hydrodynamic equations

$$\nabla \cdot \boldsymbol{v}(\boldsymbol{r}) = 0$$
, $-\nabla P(\boldsymbol{r}) + \eta \nabla^2 \boldsymbol{v}(\boldsymbol{r}) = 0$

P(r): pressure

These equations are solved analytically.

- Boundary conditions

$$v_r = -\epsilon \beta v_\theta \cot \theta, \quad \frac{\partial v_\theta}{\partial r} = \frac{1 - \epsilon \alpha}{R} v_\theta - \frac{\epsilon \beta}{2\eta} P \tan \theta$$

 α, β are calculated from $g_i(r)$

$$\begin{split} &\epsilon\alpha = \frac{1}{R} \left[\int_{R+a}^{R+b} \Delta v_1(r) dr + \int_{R+b}^{\infty} \Delta v_T(r) dr \right. \\ &- \left(1 + \frac{\gamma}{\eta} \right) \left\{ \int_{R+a}^{R+b} \rho_1(r) \int_r^{\infty} \frac{\omega_1(r')}{\rho_1(r')} \Delta v_1(r') dr' dr + \int_{R+a}^{R+b} \rho_T(r) \int_r^{\infty} \frac{\omega_T(r')}{\rho_T(r')} \Delta v_T(r') dr' dr \right\} \\ &- \left(1 + \frac{\gamma}{\eta} \right) \int_{R+a}^{R+b} \rho_1(r) dr \left\{ \int_r^{\infty} \frac{\omega_T(r)}{\rho_T(r)} \Delta v_T(r) dr + \Delta v_1(R+b) \left(\frac{1}{\rho_1(R+b)} - \frac{1}{\rho_T(R+b)} \right) \right\} \right] \\ &\epsilon\beta = \frac{1}{R} \int_R^{\infty} \left[\frac{\rho_T(r)}{\rho_T} - 1 \right] dr , \ \Delta v_j(r) = \frac{2\omega_j(r)}{\rho_j(r)} \int_R^r \rho_j(r') dr' , \quad \omega_j(r) = \frac{1}{\rho_j(r)} \frac{d\rho_j(r)}{dr} \end{split}$$

a, b: radii of solvent 1 and solvent 2 particles