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aForschungszentrum Jülich, Institute of C

Matter, D-52425 Jülich, Germany. E-m
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An electric-field induced dynamical state in
dispersions of charged colloidal rods†

Jan K. G. Dhontab and Kyongok Kanga

The response of concentrated dispersions of charged colloids to low-frequency electric fields is governed

by field-induced inter-colloidal interactions resulting from the polarization of electric double layers and the

layer of condensed ions, association and dissociation of condensed ions, as well as hydrodynamic

interactions through field-induced electro-osmotic flow. The phases and states that can be formed by

such field-induced interactions are an essentially unexplored field of research. Experiments on

concentrated suspensions of rod-like colloids (fd-virus particles), within the isotropic–nematic phase

coexistence region, showed that a number of phases/states are induced, depending on the field

amplitude and frequency [Soft Matter, 2010, 6, 273]. In particular, a dynamical state is found where

nematic domains form and melt on a time scale of the order of seconds. We discuss the microscopic

origin of this dynamical state, which is attributed to the cyclic, electric-field induced dissociation and

association of condensed ions. A semi-quantitative theory is presented for the dynamics of melting and

formation of nematic domains, including a model for the field-induced dissociation/association of

condensed ions. The resulting equation of motion for the orientational order parameter is solved

numerically for parameters complying with the fd-virus system. A limit-cycle is found, with a cycling-

time that diverges at the transition line in the field-amplitude versus frequency plane where the

dynamical state first appears, in accord with experimental findings.
I. Introduction

The response of concentrated dispersions of charged colloids to
external electric elds has been intensively investigated for
frequencies in the sub-MHz to MHz range. In two-dimensional
connement, dielectric polarization of the core of colloidal
polystyrene spheres has been shown to lead to string forma-
tion.1 Later the formation of strings and sheets has been found
in three-dimensional systems (see, for example, ref. 2–4). These
experiments are done at frequencies higher than several tens of
kHz up to a MHz, where the polarization of double layers is
essentially absent for the micron-sized particles that are used.
Structure formation in these experiments is due to dielectric
polarization of the cores of colloidal particles, resulting in
dipolar-like inter-colloidal interactions. Dielectric polarization
requires relatively large eld amplitudes of the order of 100 V
mm�1. Spinodal-like phase separation can be induced in ferro-
uids by such a strong DC electric eld (larger than 750 V
mm�1),5 which can be theoretically described on the basis of a
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thermodynamic approach that includes the eld-induced
dielectric contributions to the free energy.6 There is a large body
of literature on further electric-eld induced instabilities in
other types of so-matter systems, mostly in two-dimensional
connement like in thin polymer lms, which is beyond the
scope of the present study.

The experiments mentioned above relate to dielectric
polarization at relatively high frequencies, where electric double
layers are essentially unpolarized. For micron-sized colloids,
polarization of the double layer (and the layer of condensed
ions) ceases to occur at frequencies beyond 1–10 kHz. The
electro-osmotic ow, however, remains active also for higher
frequencies. Since this cut-off frequency scales with the radius a
of the colloids and the Debye-length k�1 approximately like (a +
k�1)�1.5,7 much higher frequencies are required to exclude
double-layer polarization for smaller colloids, much smaller
than a micron in diameter (for 10 nm colloids, for example, the
typical frequency beyond which double-layer polarization
ceases to occur is of the order of several MHz).

Mesoscopically large zig-zag bands have been found in
suspensions of micron sized spherical colloids, at relatively
small frequencies where electric dipoles are induced through
double-layer polarization. The mechanism of the zig-zag band
formation is most probably as follows. The frequency where
bands appear is sufficiently high to assure a phase-lag between
the eld-induced double layer polarization and the external
Soft Matter, 2014, 10, 1987–2007 | 1987
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eld. The dipole of a colloidal sphere induces a dipole within
the electric double layer of a neighbouring colloid, with the
corresponding additional phase-lag. There is thus a phase-lag
between the dipoles directly induced by the external eld and
the dipoles due to mutual polarization. This phase-lag leads to
a torque on each of the spheres. Two rotating spheres induce a
uid ow that leads to a rotation of the doublet as a whole. In a
crowded suspension, initially formed chains of spheres are
destroyed beyond a critical eld strength due to these rotations,
aer which zig-zag bands are formed. The mutual polarization
need not necessarily be due to double-layer polarization, but
may also be due to, for example, surface-charge polarization.8–12

Polarization of the electric double layer (and the layer of
condensed ions) is dominant for sufficiently low frequencies of
the alternating electric eld and for sufficiently low eld
strengths, such that dielectric polarization is essentially absent.
There are quite some experimental data on anomalous birefrin-
gence in this range of low frequencies and low eld strengths in
suspensions that contain rod-like macromolecules. The rst
experiments on anomalous birefringence date back to the
1920s,13,14 where experiments are reported on vanadium pent-
oxide, gold sols, and other metallic and non-metallic colloids. In
birefringence relaxation experiments onmicellar systems15,16 and
polyelectrolyte solutions,17 there is a relaxation process where the
rod-like entities tend to align perpendicular to the electric eld.
Such an anomalous perpendicular orientation has been found
under oscillatory electric elds in suspensions of fd-virus parti-
cles at very low ionic strength in a certain range of eld ampli-
tudes and frequencies.18 In all cases the anomalous behaviour is
only found for sufficiently high concentrations. The anomalous
orientation is therefore most probably due to eld-induced
interactions through double-layer polarization and/or electro-
osmotic ow, but other mechanisms like the deformation of the
rod due to solvent friction and collective effects cannot be
excluded. The mechanisms underlying the anomalous orienta-
tion are not yet fully understood and are still under debate.19–24 In
microscopy experiments on microtubules,25 the perpendicular
orientation of the longer tubules is probably due to the hydro-
dynamically induced bending of the rods (see in particular
Fig. 3d in ref. 25), and eld-induced interactions do not play a
role. Anomalous orientation is also observed in dilute suspen-
sions of rods and spheres26 and platelets and spheres,27 and is
accompanied by a change in the turbidity of these systems,28

where the spheres are found to form complex structures around
the relatively large rods and platelets. Apart from these birefrin-
gence studies, there are as yet not many experimental data on the
response of concentrated colloidal dispersions to such low-
frequency and low-amplitude electric elds where new phases,
dynamical states and patterns are formed. In a study on
suspensions of low-aspect ratio rods in the 10 kHz range, the
observed structure formation is probably due to dielectric
polarization of the cores of the rod-like colloids, since relatively
high electric eld strengths are applied.29 In concentrated
dispersions of highly charged rod-like colloids (fd-virus particles),
double-layer polarization and the polarization of the layer of
condensed ions, as well as hydrodynamic interactions through
electro-osmotic ow, have recently been shown by the present
1988 | Soft Matter, 2014, 10, 1987–2007
authors to give rise to various phases, dynamical states, and non-
equilibrium critical behaviour.30–32 The fd-concentration in these
experiments is within the isotropic–nematic coexistence region
(without the external eld). In the absence of the electric eld, the
system thus consists of nematic domains in coexistence with an
isotropic background. In particular we found a dynamical state at
low frequencies, where the nematic domains melt and form. In
this paper we aim at an explanation of the microscopic origin of this
dynamical state, and to develop a semi-quantitative description for
the time-dependence of melting and formation of the nematic
domains. The origin of the dynamical state is attributed to eld-
induced dissociation/association of condensed ions, which
changes the ionic strength, and thereby the effective concentra-
tion. As will be seen, the dissociation/association of condensed
ions leads to an effective concentration that oscillates around the
lower isotropic–nematic binodal concentration, so that nematic
domains alternatingly melt and grow. It is to be expected that the
existence of dynamical states is a general feature of any suspen-
sion of highly charged anisometric particles that form a liquid
crystalline phase.

This paper is organized as follows. In the next section the
phase/state diagram is briey discussed, and the origin of the
dynamical state is addressed on an intuitive level. The ingre-
dients to describe the dynamical state are eld-induced torques,
polarization–charge interactions between the rods, and the
eld-induced dissociation of condensed ions. The torques and
polarization–induced interactions are discussed in Section III.
The results are used as an input in the Smoluchowski equation
in Section IV to describe the melting and formation kinetics of
nematic domains. The melting of nematic domains is analyzed
on the basis of a dynamical extension of Onsager's theory for
rods with a thick electric double layer, as derived from the
Smoluchowski equation, including twist interactions. The
growth of nematic domains from a meta-stable state is formu-
lated in terms of an empirical equation of motion that is found
in computer simulations. Another essential ingredient for the
understanding of the origin of the dynamical state is the
eld-induced release of condensed ions. There is so far no
quantitative theory that describes the frequency dependent,
eld-induced release of condensed ions. We therefore discuss
a simple model for the release of condensed ions in Section V.
In a numerical solution of the full set of equations of motion,
it is essential to know the location of binodals and spinodals.
The location of phase boundaries is determined from the
above mentioned equations of motion for the orientational
order parameter, as discussed in Section VI. Numerical results
are presented in Section VII, including a comparison with the
experiments in ref. 30–32.
II. The state diagram and the
mechanism that underlies the
dynamical state

In this section we describe the experimental system and the
phase/state diagram,30–32 and we discuss the mechanism
underlying the dynamical state.
This journal is © The Royal Society of Chemistry 2014
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Experiments are performed on dispersions of fd-viruses,
which are dsDNA strands covered with coat proteins.35–37 Their
length is 880 nm, the thickness of the core is 6.8 nm, while the
persistence length is of the order of 2500 nm. The fd-viruses are
highly charged: the bare charge is �10 e nm�1, of which about
85% is compensated by condensed ions. These model systems
for rod-like colloids have been used in the past to explore the
phase behaviour of lyotropic liquid crystalline phases at rela-
tively high ionic strength (about 5 mM or more),33,34,38–41 and
more recently to study the single particle dynamics within such
phases in the absence of an external eld.42–44 The response of
fd-virus suspensions to external electric elds is explored for fd-
concentrations of 2.0 and 2.8 mg ml�1, which lie within the
isotropic–nematic (I–N) coexistence region for the low ionic
strength of 0.16 mM that is used in experiments, corresponding
to a Debye length of 27 nm. Without the external eld, the
system thus consists of nematic domains oating in an
isotropic background. Contrary to what is seen at high ionic
strength, the nematic domains are now non-chiral, as the large
Debye length screens core–core interactions between fd rods.
The long-ranged electrostatic repulsions render typical
distances between rods sufficiently large that the helical struc-
ture of their cores does not give rise to chirality.

The experimental phase/state diagram in the electric eld
versus frequency plane for a fd-concentration of 2.0 mg ml�1 is
given in Fig. 1. The state where non-chiral nematic domains
coexist with isotropic regions (which we referred to as the
N-state) transforms into a state where the nematic domains
become chiral upon increasing the eld amplitude for
frequencies below about 600 Hz, the N*-state in Fig. 1. At rela-
tively high frequencies (higher than 600 Hz), a uniform state
exists, where the rods are aligned along the external eld,
perpendicular to the electrodes. We termed this phase the
H-phase, where “H” stands for “homeotropic”, as the rods are
aligned perpendicular to the electrodes, along the eld
Fig. 1 The phase/state diagram in the electric-field amplitude versus
frequency plane, for an fd-concentration of 2.0 mg ml�1 at an ionic
strength of 0.16 mM. N is a phase where nematic domains coexist with
an isotropic phase, N* is a chiral nematic phase, H is a uniform
homeotropic phasewhere the rods are aligned along the external field,
and D is a dynamical state where nematic domainsmelt and form. “CP”
indicates the non-equilibrium critical point.

This journal is © The Royal Society of Chemistry 2014
direction. At low frequencies and elevated eld amplitudes a
dynamical state is found, the D-state in Fig. 1, where nematic
domains melt and form. The time scale on which melting and
formation of the nematic domains occurs depends on the
distance from the N*-to-D transition line. The melting–forming
time scale diverges on approach of this transition line, that is,
the dynamics of melting and formation of domains becomes
arbitrarily slow on approach of the N*-to-D transition line. The
size of the nematic domains remains nite at the N*-to-D
transition line, except on approach of the “non-equilibrium
critical point”, indicated by CP in Fig. 1. Here, the maximum
domain size during formation and subsequent melting
diverges. The point indicated with CP is thus a “non-equilib-
rium critical point” in the sense that a time scale and a length
scale diverge (critical exponents are reported in ref. 32 and 45).

Polarization of the electric double layer and the layer of
condensed ions along the long axis of a rod occurs when the
frequency is sufficiently low that the ions are able to diffuse over
a distance comparable to the length of a rod during the time of a
cycle of the external eld. An upper bound for the frequency n

where the polarization is still signicant is therefore estimated
by sDn < 1, where sD ¼ D/L2 is the time required for ions to
diffuse over the length L of the a rod (where D is the diffusion
coefficient of the ions). For a typical value of the diffusion
coefficient it is thus found that polarization charges are
signicant for frequencies below about 1 kHz. This frequency
corresponds to the abrupt change of the phase/state diagram,
above which the uniform H-phase is formed (a more quantita-
tive estimate based on an analysis of the polarization of the
layer of condensed ions will be discussed in Section VII). The
H-phase is therefore believed to be stabilized by “active”
hydrodynamic interactions through electro-osmotic ow that is
induced within the double layers and/or the layer of condensed
ions. Electro-osmotic ow is active up to much higher
frequencies. Hydrodynamic interactions are important when
the time sH for a shear wave to propagate from one rod to a
neighbouring rod is small as compared to the cycle time of the
external eld. Since sH ¼ rl2/h (with r the mass density of the
solvent, l a typical distance between two rods, and h the solvent
viscosity), it is found that n should be smaller than about 1000
kHz for interactions through electro-osmotic ow to be
important.

In an attempt to develop an understanding of the micro-
scopic origin of the stabilization mechanisms of the various
phases and states in the diagram in Fig. 1, one can thus
distinguish two separate regimes. For frequencies higher than
about 1 kHz, a theory could be developed that neglects polari-
zation, and only accounts for electro-osmotic ow. For
frequencies below 1 kHz, polarization is dominant, so that a
theory could be developed that is based on eld-induced
polarization only. In this paper we consider the latter, low-
frequency regime. In particular it is the aim of the present study to
explain the microscopic origin of the dynamical state D, where
nematic domains melt and form.

Based on the theory developed in the present paper, the
existence of the dynamical state can only be explained through
eld-induced dissociation/association of condensed ions.
Soft Matter, 2014, 10, 1987–2007 | 1989
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Fd-virus particles carry many condensed ions, where about 85%
of the bare charge of 8.800 elementary charges is compensated
by condensed ions. As will be seen later in Section VII, where
explicit numerical results will be discussed, this amount of
condensed ions is sufficient to make the following mechanism
underlying the dynamical state feasible. A nematic domain will
be oriented towards the direction of the electric eld by single
particle torques. The layer of condensed ions rods will be
signicantly polarized once the rods are aligned along the eld
(see (I) in Fig. 2). Condensed ions will be repelled into the
solvent when there is an excess amount of condensed ions
(indicated by red in Fig. 2), and ions will be drawn from the
solvent towards the layer of condensed ions when there is a
shortage of condensed ions due to polarization (indicated by
blue). The resulting net release of condensed ions leads aer
some time to an increase of the bulk ionic strength. This
increase of the bulk ionic strength leads to a decrease of the
extent of the electric double layers (see Fig. 2(II)). Dotted blue
lines around the cores are used in Fig. 2 to indicate the extent of
the double layers. In (II) the double-layer thickness is smaller
than in (I) due to the release of condensed ions. The effective
concentration therefore decreases. When the effective concen-
tration becomes smaller than the lower binodal concentration,
the nematic domains become unstable and will melt, so that the
degree of orientational order decreases (as shown in (III)). Due
to the decreasing degree of alignment along the eld direction,
re-condensation will occur (see (III)). Re-condensation leads to a
decrease of bulk ionic strength, so that the double-layer thick-
ness increases (see (IV)). The effective volume fraction increases
accordingly, and the system re-enters the two-phase isotropic–
nematic coexistence region (see (IV)). The orientational order
now increases, and at the same time the domains that form are
orientated along the electric-eld direction due to the torques
with which the electric eld acts on single rods (see (V)). The
degree of polarization of the condensed layer increases as the
Fig. 2 The microscopic mechanism underlying the dynamical state.
The various depicted stages are explained in the main text. The
intensity of the red colour of the core of the rods indicates the amount
of excess condensed ions, blue indicates the depletion of condensed
ions, while the dotted lines around the cores indicate the extent of the
electric double layer. Typical cycling times are 2 s away from the
transition line and diverge on approach of the transition line.

1990 | Soft Matter, 2014, 10, 1987–2007
domains align along the eld direction, leading to the release of
condensed ions (see again (I)), aer which the entire cycle
repeats itself.

The location of the N*–D phase boundary in Fig. 1 (in red) is
thus determined by the amount of dissociated condensed ions
that is needed to bring the system to an effective rod-concen-
tration equal to the lower isotropic–nematic binodal concen-
tration. Clearly there is a minimum electric eld amplitude
necessary to give rise to a sufficient release of condensed ions.
This minimum value for the eld amplitude increases with
increasing frequency, since higher frequencies lead to a
diminished polarization, and thereby to a decrease of the
number of released ions. This explains the larger eld ampli-
tude needed to induce the D-state with increasing frequency.
The transition from the non-chiral N-phase to the chiral N*-
phase can also be understood in terms of release of condensed
ions. The ionic strength at sufficiently large eld amplitudes is
increased through the release of condensed ions, which renders
the nematic chiral, just as for the equilibrium nematic without a
eld at higher ionic strengths, which is due to the helicity of the
DNA strand that constitutes the fd-virus particles.38,46–48 The
eld amplitude within the N*-phase is not yet large enough to
render the nematic domains unstable, but is sufficiently large to
transform the non-chiral nematic into a chiral nematic.

Spatial variations in the dielectric constant can give rise to
electric eld induced instabilities.5,6,9,10 For the present experi-
ments, however, the eld strengths (up to about 5 V mm�1) are
too low to induce sufficient dielectric. Furthermore, the
concentration of fd-virus particles is very low (the volume frac-
tion is about 0.002), whichmost probably leads to a minor effect
due to dielectric polarization even for much higher eld
strengths. In addition, the type of instability described here,
where quasi time-periodic patterns are seen, is of a quite
different nature as compared to the spinodal-like demixing
induced by spatial variations in the dielectric constant.
III. Field-induced torques and
polarization–charge interactions

In this section we describe the frequency dependent torques and
rod–rod pair interactions due to the electric eld induced
polarization charges within the layer of condensed ions. The
assumption here is that the majority of ions is accumulated
around the core of the rods, so that the contributions due to
polarization of the diffuse double layer is of minor importance. It
is important to have a (semi-)quantitative prediction of the
frequency dependence of polarization, in order to understand the
frequency dependence of the location of transition lines, as well
as the D-state dynamics. In the rst subsection the results from
the theory of polarization as described in ref. 49 will be
summarized. On the basis of this theory the torque on a rod due
to the external eld is calculated in subsection III B, and the pair-
interaction potential due to polarization charges is calculated in
subsection III C. The torque and pair-interaction potential will be
used as an input to the Smoluchowski equation in order to
predict the dynamics of the orientational order parameter.
This journal is © The Royal Society of Chemistry 2014
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A. Polarization of the layer of condensed ions

There is a large body of work, sometimes dating many decades
back, where the various polarization mechanisms of colloidal
particles have been addressed. The frequency-dependent
polarization of colloids can be formulated in terms of an
effective dielectric constant, which depends on the bare
dielectric constants and the conductivities of the solvent and
the colloid. This early approach is known as the Maxwell–
Wagner theory,51 which ignores the existence of an electric
double layer containing mobile ions. In the case of a thin
electric double layer, the polarization of the double layer can be
accounted for within such a Maxwell–Wagner approach as an
additional contribution to the surface conductivity, as rst
suggested by O'Konski.50 The double-layer polarization in this
case does not lead to an additional relaxation time of the charge
distribution, as it simply changes the value of the surface
conductivity. The surface conductivity due to the presence of a
thin double layer can be expressed in terms of the surface
potential and the diffusion coefficient of the ions, assuming
that the curvature of the colloidal-core surface is much larger
than the thickness of the double layer.52,53 The Maxwell–Wagner
approach, originally formulated for spherical colloids, can also
be used to approximately predict the polarization of rod-like
colloids.54,55 These theories are limited to thin double layers.
The presence of thick double layers leads to an additional
polarization relaxation process at lower frequencies, and cannot
be accounted for through an effective surface conductivity. The
mathematics involved in the analysis of thick double layers is
much more complicated as compared to that for thin double
layers. Besides a number of theories where specic assumptions
need to be made to arrive at analytical results, there are
numerical solutions of the standard electro-kinetic equations in
which such approximations are not necessary, and which in
particular allow large surface potentials (see, for example, ref.
56–63, and references therein). A recently developed approach
based on the Smoluchowski equation in mode-coupling
approximation, where the small ions are treated as Brownian
particles of nite size and which includes hydrodynamic
coupling between the small ions and the colloidal particle,
allows for the (partly numerical) calculation of transport prop-
erties of charged colloids.64,65 The polarization of the layer of
condensed ions in a DC electric eld has been discussed both
for low and high eld amplitudes by Manning.66,69 The above
cited work is just a small selection from the large body of work
that has been published in this area. For a more extensive
overview we refer to the book of Russel67 and the series of books
by Lyklema68 (in particular Volume II).

As mentioned in Section II, about 85% of the charged
groups, chemically bound to the surface of an fd-virus particle,
is compensated by condensed ions. Only 15% of the ions reside
within the diffuse double layer. The calculations concerning the
dynamical state will therefore be based on the frequency-
dependent solution of the standard kinetic equations applied to
a mobile layer of ions, where the ions are constrained to move
along the surface of a cylindrical rod.49 In this subsection we will
summarize this relatively simple model and state the results for
This journal is © The Royal Society of Chemistry 2014
response functions for the polarization charge. Manning69

developed a similar approach for a discrete bare-charge distri-
bution, which is a more realistic description for polyelectrolytes
and obtains very similar results for the polarization as in ref. 49
for a continuous bare-charge distribution on a cylindrical
colloid. The ions in solution respond to the electric eld that is
produced by the inhomogeneous charge distribution of the
condensed ions. The inhomogeneous surface charge distribu-
tion gives rise to an inhomogeneous diffuse double layer, with a
local charge density that is opposite in sign to the local surface
charge density of the mobile condensed ions. The frequency of
the external eld is assumed to be sufficiently small, such that
this non-homogeneous diffuse double layer is in instantaneous
equilibrium with the condensate. The frequency n of the
external eld is therefore assumed to obey the following
criterion,

n

2D0k2
� 1;

where D0 is the diffusion coefficient of ions in solution and k is
the inverse Debye screening length,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2be2c0

3

r
; (1)

with b ¼ 1/kBT (with kB the Boltzmann's constant and T is the
temperature), e > 0 is the elementary charge, c0 is the concen-
tration of ions in solution outside the double layer, and 3 is the
static dielectric constant of the solvent. It is assumed here that
only monovalent ions are present.

We consider thin and long rods, such that the aspect ratio,

p ¼ L

2a
;

is a large number (with a the radius of the core and L its length).
The polarization surface charge density for rods oriented
parallel to the external eld is typically a factor p larger than the
charge induced in the case of perpendicular orientation. The
perpendicularly induced charge density is therefore neglected,
and only polarization along the long axis of the rod is
considered.

The external electric eld that is considered is spatially
uniform and sinusoidally varying with time,

E(t) ¼ E0 cos{ut},

where n ¼ u/2p is the frequency of the eld. Without loss of
generality, the eld amplitude E0 is taken along the z-direction.

The total concentration c of condensed ions is the sum of the
uniform surface concentration �c of mobile ions that exist in the
absence of the external eld, and a non-uniform contribution
Dc to the concentration of condensed ions that is induced by the
external electric eld,

c ¼ �c + Dc.

In ref. 49 the total charge density is taken to be zero in the case
of the unpolarized rod. Here we assume amore realistic situation
where the rod still carries a net surface charge density s0 when
the rod is not polarized, so that (again for monovalent ions),
Soft Matter, 2014, 10, 1987–2007 | 1991
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s ¼ s0 + sp, sP ¼ eDc,

where sp is the surface charge density resulting from polariza-
tion. The surface charge density sp that results from polariza-
tion of the condensate can be written in terms of the in-phase R0

and out-phase R0 0 response functions,49

sP(r|u,t) ¼ R 0
c, k(r|u)cos{ut} + R

00
c, k(r|u)sin{ut}.

The subscript “c” is used to indicate that these response
functions relate to polarization of the layer of condensed ions,
while the subscript “||” refers to the parallel orientation that
will be considered in the present analysis where perpendic-
ular polarization is neglected. The potential can be similarly
written in terms of in-phase and out-phase response
functions.

The frequency where the out-phase response functions
become signicantly non-zero for polarization along the rod's
long axis is set by the dimensionless frequency,

Lk ¼ uL2

4Deff
;

where Deff is the effective diffusion coefficient of the condensed
ions,

Deff ¼ D[1 + 2kcaK (ka)], (2)

where D is the bare diffusion coefficient of condensed ions, and,

kc ¼ e2bc

23
¼ 2plBc ¼ 2

lB

dL
Nc; (3)

is the inverse “condensate length”, lB is the Bjerrum length, and
Nc is the total number of condensed ions on a rod. Furthermore,

K ðkaÞh 1

2p

ð ​ 2p
0

d4K0

�
ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos4Þ

p �
; (4)

with K0 as the modied Bessel function of the second kind of
zeroth order. This function is plotted in Fig. 3a. For sufficiently
thick double layers where ka ( 0.3–0.4, this function is to a
good approximation equal to �ln{ka} (see the dashed-dotted
line in Fig. 3a).
Fig. 3 (a) The functionK (x¼ ka) in eqn (4). The solid line is obtained by
numerical integration, and the dashed-dotted line is the asymptotic
value�ln{ka} ofK for small ka. (b) The functionB is defined in eqn (10).
The asymptotic form of this function is unity. (c) The functions I and h
are defined in eqn (9) and (40), respectively. The function I describes
the frequency dependence of single particle torques, while the func-
tion h characterizes the interaction strength between polarization
charges. The dimensionless frequency U is defined in eqn (6).
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The effective diffusion coefficient in eqn (2) is larger than the
bare diffusion coefficient D of condensed ions due to their
repulsive interactions. An inhomogeneous condensate distri-
bution, without an external eld, relaxes to the homogeneous
distribution faster as a result of the repulsive inter-ion inter-
actions. The bare diffusion coefficient D of the condensed ions
is generally smaller than that of ions in solution, since the
condensed ions experience an additional friction with the core
of the rod.

The in-phase and out-phase response functions for parallel
orientation are given by,0@R0

c;kðz|uÞ
R00

c;kðz|uÞ

1A ¼ 3kcLE0;k
1þ 2kcaK ðkaÞ

�
 
F ð�ÞðUÞ F ðþÞðUÞ
F ðþÞðUÞ �F ð�ÞðUÞ

!
$

 
cosf2Uz=Lgsinhf2Uz=Lg
sinf2Uz=Lgcoshf2Uz=Lg

!
;

(5)

where z˛ � 1
2
L;
1
2
L

� �
is the coordinate along the long axis of the

rod, and E0,|| is the component of the external eld along the
long axis of the rod. Furthermore the quantity,

U ¼ (Lk/2)
1/2, (6)

is introduced for convenience, and,

F ð�ÞðUÞ ¼ 1

U

cosfUgcoshfUg � sinfUgsinhfUg
cosf2Ug þ coshf2Ug :

It should be noted that the contour variable z varies in the
direction of the electric eld, that is, with increasing z the cor-
responding location on the core changes in the direction of the
external eld.
B. The torque on a rod

The electric eld exerts a torque on each rod that tends to
align them along the direction of the eld. In ref. 49 we
derived an expression for the torque due to polarization of
the layer of condensed ions, both due to polarization parallel
and perpendicular to the long axis of a rod. It is shown
there that the torque due to polarization in the directions
perpendicular to the rod's long axis is a factor p�2 smaller
than the torque due to polarization parallel to the rod.
The torque due to perpendicular polarization can
therefore be neglected for long and thin rods. The parallel-
polarization torque, averaged over a cycle of the external
eld, is equal to,

Tk
�
û; t
� ¼ p

8
L3
�
û� E0

��
û$E0

�
3F1ðUÞF3: (7)

Here,

F1ðUÞ ¼ VðkcaÞ½Wðkca; kaÞ þ 1�IðUÞ;
F3 ¼ 2½1þ kcaBðkaÞ�2 � kca½1þ kcaBðkaÞ�; (8)
This journal is © The Royal Society of Chemistry 2014
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where, V, W and I stand for,

VðkcaÞ ¼ kca

ð1þ kcaBðkaÞÞ2 ;

Wðkca; kaÞ ¼ � 2kcaK ðkaÞ
1þ 2kcaK ðkaÞ ;

IðUÞ ¼ 1

2U3

sinhf2Ug � sinf2Ug
coshf2Ug þ cosf2Ug ;

(9)

and where K is the function dened in eqn (4), while,

BðkaÞh 1

p

ð2p
0

d4 cosf4gK0

�
ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos 4Þ

p �
; (10)

which function is plotted in Fig. 3b. The asymptotic value of B
for small values of ka is unity. The frequency dependent func-
tion I in eqn (9) is plotted in Fig. 3c.
C. Interactions between two rods

When the Debye length is larger than the core diameter d, the
interaction potential between two rods may be approximated by
pair-wise additive interactions between spherical beads that
constitute the two rods (as sketched in Fig. 4). The charge
distribution within the diffuse double layer of a given bead is
essentially unaffected by the presence of a relatively small volume
that is occupied by neighbouring beads.70 The double layer
structure of a rod can thus be represented as a sum of spherical
double layers of beads with radius a. The positions of the beads
on rod number 1 are written as r1 + Ra, where r1 is the center of
the rod and Ra is the position of the center of a bead relative to
the center of the rod, as sketched in Fig. 4. The bead-index
number a ranges from 0 for the bead at the center of the rod to
�N for the beads at the ends of the rod. The number of beads is
thus equal to 2N + 1, and the aspect ratio is equal to p ¼ 2N + 1.
The orientation of rod 1 is specied by the unit vector û1 along
the long axis of the rod (see Fig. 4). The relative bead coordinates
can thus be expressed as Ra ¼ adû1. Similar coordinates are
introduced for rod number 2. In the following we will use the
bead-number indices a and b for rod 1 and 2, respectively.

The charge Qtotal
a on each bead a is the sum of the charge �Q

that would be present without the external eld, and the charge
Qa due to polarization,
Fig. 4 The bead model for the calculation of the interaction potential
between two rods, which is valid in the case of ka( 1. The coordinates r1
and r2are thepositionsof thecentersof the tworods,while theunit vectors
û1 and û2 specify their orientation. The positions Ra of bead a of rod
number 1 and Rb of bead b within rod 2 are taken with respect to the
centersof the rods (for thespecificexampleshownhere,a¼�4andb¼2).
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Qtotal
a ¼ �Q + Qa.

For sufficiently small net charge densities and sufficiently thick
double layers, the instantaneous interaction potential between
two beads is equal to the Debye–Hückel potential VQ(a, b),

VQða; bÞ ¼ expfkdg
4p3ð1þ kaÞ2

	
Qa þQ


	
Qb þQ




�
exp
�� k|Rþ d

�
bû2 � aû1

�
|
�

|Rþ d
�
bû2 � aû1

�
|

;

where R ¼ r2 � r1 is the distance between the centers of the two
rods. The total potential between the two rods is the pair-wise
sum over all beads,

VQ

�
R; û1; û2

� ¼ XN
a;b¼�N

VQða; bÞ: (11)

The index Q is used to indicate that this is the potential due
to charge interactions. The bead-charges due to polarization
can be found from,

Qa hQðz ¼ adÞ ¼ 4pa2

�	R0
c;kðz ¼ ad |uÞcos�ut�þ R00

c;kðz ¼ ad |uÞsin�ut�
;
(12)

where the response functions are given in eqn (5). Rewriting the
double summation in eqn (11) as a double contour integral and
substitution of eqn (11) and (12) lead to a quite complicated
expression for the potential, which is not amenable for further
analytical evaluation. Due to the fact that the bead interactions are
screened over the Debye length k�1, which is very small as
compared to the length scale on which the polarization surface-
charge density signicantly changes along the contour of the rod,
an accurate approximation can be made that leads to a relatively
simple expression for the potential. When the degree of alignment
of the rods is not too high, there are only a few beads on the two
rods which are within a distance of a few times the Debye length.
All other beads are further apart, and essentially do not contribute
to the rod–rod interaction potential. These few interacting beads
on each of the two rods have essentially the same charges. Let a0
and b0 denote the bead index number on rods 1 and 2, respectively,
for which the distance between the two beads is minimal for a
given R, û1 and û2. The potential (11) can then be approximated as,

VQ(R,û1,û2) ¼ NVQ(a0,b0), (13)

where N is the number of interacting beads. For perpendicular
orientation of the two rods, the number of beads that interact is
�1/(ka)2, while this number increases like �1/|û1 � û2| for non-
perpendicular orientations. Hence,

N ¼ 1

ðkaÞ2|û1 � û2|
; ka( 1: (14)

This estimate is to be taken seriously only for orientations
where the rods are not parallel, since in this case the approxi-
mation (13) fails. We will assume that the rods are sufficiently
long and thin, and that the orientational order parameter is
Soft Matter, 2014, 10, 1987–2007 | 1993
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sufficiently low, that contributions from semi-parallel orienta-
tions where |û1 � û2| ( 1/p ¼ d/L � 1 can be neglected.

The distance D between two beads a on rod 1 and b on rod 2
is equal to,

D ¼ R + bdû2 � adû1. (15)

For very long and thin rods, the probability for a tip–body or
tip–tip interaction is very small, except in phases like a smectic
phase or a columnar phase. Here we shall only consider
isotropic and nematic phases, where body–body interactions
determine the behaviour of concentrated suspensions. Hence,
we assume that the two beads with the minimum distance are
located within the body of both rods. In that case, the minimal
distance D0 is of the form,

D0 ¼ Cv̂, (16)

where the prefactor C depends on R, û1 and û2, and,

v̂ ¼ û1 � û2

|û1 � û2|
; (17)

is the unit vector perpendicular to both û1 and û2. The prefactor
is immediately found from eqn (15)–(17),

C ¼ (R$v̂),

while the bead index number a0 is found to be equal to,

a0 ¼ 1

d

R$û1 �
�
R$û2

��
û1$û2

�
|û1 � û2|

2
; (18)

and similarly,

b0 ¼
1

d

�R$û2 þ
�
R$û1

��
û1$û2

�
|û1 � û2|

2
: (19)

Putting all the above results together, the pair-interaction
potential can be written as a sum of a contribution VEE due to
interactions between polarization charges, the potential V�Q�Q

due to interactions in the absence of the electric eld, and VE�Q
due to interactions between charged beads in the absence of the
eld and charges due to polarization,

VQ(R,û1,û1) ¼ VEE(R,û1,û1) + V �Q �Q(R,û1,û1) + VE �Q(R,û1,û1). (20)

The interaction potential VEE is found to be given by,

bVEE

�
R; û1; û2

� ¼ KEE 0
2 û1;zû2;z

|û1 � û2|

�
exp
�� k



R$�û1 � û2
�

=

û1 � û2



�
k


R$�û1 � û2

�

=

û1 � û2




� ½GðS1Þcosfutg þHðS1Þsinfutg�
� ½GðS2Þcosfutg þHðS2Þsinfutg�; (21)

where the dimensionless external eld is introduced,
E 0 ¼ beLE0, which is the energy required to displace an ion
over the rod length against the electric eld in units of the
thermal energy, and where,
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KE ¼ ðkc=kÞ2expfkdg
4ð1þ kaÞ2ð1þ 2kcaK ðkaÞÞ2

kd2

lB

¼ expfkdg
ð1þ kaÞ2ð1þ 2kcaK ðkaÞÞ2

lB

kL2
Nc

2;

(22)

is a dimensionless constant, where again Nc is the number of
condensed ions per rod. Furthermore,

GðSÞ ¼ F ð�ÞðUÞcosfSgsinhfSg þ F ðþÞðUÞsinfSgcoshfSg;
HðSÞ ¼ F ðþÞðUÞcosfSgsinhfSg � F ð�ÞðUÞsinfSgcoshfSg;

with S either equal to S1 or S2,

S1 ¼ 2U

L

R$û1 �
�
R$û2

��
û1$û2

�
|û1 � û2|

2
;

S2 ¼ � 2U

L

R$û2 �
�
R$û1

��
û1$û2

�
|û1 � û2|

2
:

(23)

The potential V�Q�Q is equal to,

bVQQ

�
R; û1; û2

� ¼ KQ

1

|û1 � û2|

�
exp
�� k



R$�û1 � û2
�

�

û1 � û2



�
k


R$�û1 � û2

�

�

û1 � û2


 ; (24)

with,

KQ ¼ 4Z2 expfkdg
ð1þ kaÞ2

lB

kL2
¼ 4 expfkdg

ð1þ kaÞ2
lB

kL2
ðN0 �Nc;0Þ2; (25)

with Z the valency of the entire rod, that is, the total excess
number of elementary charges of the unpolarized rod, N0 is the
number of immobile charges on the surface of the rod and Nc,0

is the number of condensed ions in the absence of the electric
eld. Note that Ze(N0 � Nc,0) is the total charge of the rod. We
will not specify the potential VE�Q for reasons given below. The
validity of the above expressions is limited to those combina-
tions of relative positions and orientations where a0 and b0 in
eqn (18) and (19) are in [�p/2, p/2], whereas before, p is the
aspect ratio. When for given values of the position and orien-
tations a0 and/or b0 are outside this range, the potential is
understood to be zero by construction.

For sufficiently high frequencies the conguration of rods
does not change during a cycle of the external eld. For fd-virus
this is the case for frequencies higher than a few tens of Hz. We
can therefore time-average the potential VQ over one cycle of the
external eld, which nally leads to (with the overbar denoting
averaging over a cycle of the external eld),

�VQ(R,û1,û1) ¼ �VEE(R,û1,û1) + V �Q �Q(R,û1,û1),

where,

bVEE

�
R; û1; û2

� ¼ 1

2
fGðS1ÞGðS2Þ þHðS1ÞHðS2ÞgKEE 0

2 û1;zû2;z

|û1 � û2|

�
exp
�� k



R$�û1 � û2
�

=

û1 � û2



�
k


R$�û1 � û2

�

=

û1 � û2


 ; (26)
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while V�Q�Q is not affected by averaging, and �VE�Q ¼ 0 (this
potential is �[G(S)cos{ut} + H(S)sin{ut}], which vanishes upon
averaging). The important implication of the slow response of
the conguration of rods is that congurational probability
functions are essentially equal to those in equilibrium, with the
potential between the rods equal to �VQ. This is essential for the
derivation of the equation of motion for the orientational order
parameter tensor.
IV. Melting and formation kinetics of
nematic domains

The larger part of this section is concerned with the kinetics of
melting of nematic domains when the ionic strength is suffi-
ciently large that the nematic state is unstable, that is, when the
effective concentration is lower than the lower binodal
concentration. Equations of motion for the orientational order
parameter are derived, which not only describe the kinetics of
melting, but are also essential to determine the location of
isotropic–nematic phase boundaries. The kinetics of formation
of domains is described on the basis of a simple, empirical
equation of motion that is found in computer simulations.
Since the nematic domains are large compared to the size of
single rods, and the interfaces between nematic domains and
isotropic regions seem quite diffuse (as seen experimentally),
the kinetics will be described on the basis of equations of
motion for a homogeneous system.
A. Melting kinetics

The starting point for the analysis of melting kinetics is the
Smoluchowski equation for an assembly of N uniaxial, stiff
rods, which is the fundamental equation of motion for the
probability density function (pdf) P(r1,.,rN,û1,.,ûN,t) of all the
positions rj and orientations ûj of the rods (with particle
number index j ¼ 1, 2,., N) in the overdamped limit. The
Smoluchowski equation for very long and thin rods reads,

vP

vt
¼
XN
j¼1

�
3

4
DtVj$

	
Î þ ûj ûj



$
�
VjPþ bP

	
VjJ� F

ð1Þ
j


�
þDrR̂ j$

n
R̂ jPþ bP

h
R̂ jJ� T

ð1Þ
j

io�
; (27)

where Dt and Dr are the orientationally averaged translational
diffusion coefficient and the rotational diffusion coefficient of a
single, non-interacting rod, respectively, with Î as the identity
tensor, and J is the total energy due to rod–rod interactions.
The force and torque due to the action of the external electric
eld on single rods are denoted as F(1)j and T(1)

j , respectively. The
forces and torques due to rod–rod interactions are incorporated
through the total potential energyJ. Note that the orientational
dependence of the single-particle translational diffusion coef-
cient is described by the tensor Î + ûjûj, which assumes long
and thin rods. Furthermore, Vj is the gradient operator with
respect to rj and,

R̂ j (/) ¼ ûj � Vûj(/) ,
This journal is © The Royal Society of Chemistry 2014
is the “rotation operator”, with Vûj the gradient operator with
respect to the Cartesian coordinates of ûj.

The one-particle pdf P(û,t) for the orientation û of a rod can
be found from the N-particle pdf by integration with respect to
all position coordinates and orientations, except for û1 h û,

P
�
û; t
� ¼ ð ​ dr1ð ​ dr2/ð ​ drN

�
þ
dû2/

þ
dûNPðr1; r2;/; rN ; û; û2;/; ûN ; tÞ:

Assuming a pair-wise additive potential,

J ¼
X
i. j

V
�
ri � rj ; ûi; ûj ; t

�
;

where V is the pair-interaction potential, and integration of the
Smoluchowski eqn (27) gives,

v

vt
P
�
û; t
� ¼ DrR̂ $

�
R̂ Pðû; tÞ � bPðû; tÞ

h
T effðû; tÞ þ Tð1Þðû; tÞ

io
;

(28)

with R̂ the rotational operator with respect to û, and where the
effective torque is equal to,

Teff
�
r; û
� ¼ �

ð ​
dr0
þ
dû0r

�
r0; û0; t

�� gðr; r0; û; û0ÞR̂Vðr� r0; û; û0Þ:
(29)

Here, the pair-correlation function g is dened as,

P(r,r0,û,û,t) ¼ P(r,û,t)P(r0,û0,t)g(r,r0,û,û0,t),

with P(r,r0,û,û0,t) the two-particle pdf for the coordinates {r,û}
and {r0,û0} of two rods (for mathematical details of the deriva-
tion of eqn (28), see ref. 71). The effective torque on a rod with
its center at r and with orientation û is the torque exerted by the
second rod, averaged over its position r0 and orientation û0.

Onsager showed that the expression,

g(r,r0,û,û0) ¼ exp{�bV(r � r0,û,û0)}, (30)

which is generally valid for very dilute colloidal systems, is also
asymptotically exact for concentrated systems of very long and
thin, hard rods in equilibrium, to within the nematic phase,
provided that the degree of alignment is not very high72,73 (see
also the appendix in ref. 71). Onsager's arguments for the val-
idity of eqn (30) also holds for repulsive charged rods, as long as
the Debye length is very small as compared to the rod length
(but not necessarily small compared to the core diameter).
Using eqn (30) as an approximation for the present analysis
assumes (i) that attractive electrostatic interactions resulting
from polarization charges are weaker than the repulsive inter-
actions of non-polarized rods and (ii) that non-equilibrium
contributions are small. Assumption (ii) relies on the fact that
during a cycle of the external eld, the relative positions and
orientations of the rods are essential unchanged. For suffi-
ciently high frequencies, the time dependent interaction
potential can be averaged over a cycle of the external eld, as
already discussed before. The time-averaged interaction
Soft Matter, 2014, 10, 1987–2007 | 1995



Soft Matter Paper
potential can then be treated as an equilibrium potential, for
which Onsager's result in eqn (30) applies. The evaluation of
non-equilibrium contributions to the approximation (30) is a
formidable task by itself, and is beyond the scope of the present
analysis.

Substitution of the approximation (30) into eqn (29) leads to,

Teff(û,t) ¼ �R V̂eff(û,t), (31)

where the effective potential Veff is equal to (with R ¼ r0 � r),

bV eff
�
û; t
� ¼ �

ð ​
dR

þ
dû0P

�
R; û0; t

�
exp
�� bV

�
R; û; û0

��
: (32)

The interaction potential is equal to,

V
�
R; û; û0

� ¼ N; for core overlap;

¼ VEE

�
R; û; û0

�þ VQQ

�
R; û; û0

�
; no core overlap;

where “core overlap” refers to the overlap of the hard cores of two
rods, and �VEE is the cycle-averaged electrostatic potential (26) that
results from polarization charge interactions, and V�Q�Q is the
potential (24) due to unpolarized charge interactions. Since,Ð

dR
Þ
dû0P(R,û0) ¼ 1,

while the effective torque is a derivative of the effective poten-
tial, eqn (32) for this potential can be rewritten as,

V eff(û,t) ¼ V eff
hc(û,t) + V eff

Q (û,t), (33)

where,

bV eff
hc(û,t) ¼

Þ
dû0
Ð
Vc(û,û0)dRP(R,û

0,t) (34)

is the contribution due to hard-core interactions, while,

bV eff
Q

�
û; t
� ¼ þ dû0ð

Vc û;û0ð Þ
dRP

�
û0; t
�

� 	1� exp
��b

	
VEE

�
R; û; û0

�þ VQQ

�
R; û; û0

�
�

;

(35)

is the effective potential arising from charge interactions. Here,
Vc(û,û0) is the volume in R-space where the cores of two rods
with orientations û and û0 overlap, and �V c(û,û0) where there is
no overlap. Note that the effective potentials are time dependent
as a result of melting of nematic order, and do not refer to the
frequency with which the external eld oscillates. As mentioned
before, the frequency of the external eld is sufficiently high
that rods do not change their conguration during a cycle of the
external eld, so that instantaneous interaction potentials can
be time-averaged over a cycle-time.
B. Evaluation of the potentials V eff
hc and V eff

Q

In the derivation of equations of motion for the order-param-
eter density from the Smoluchowski equation, further approx-
imations have to be made. Upon evaluation of the integrals in
eqn (34) and (35) for the effective potentials, the combinations
|û � û0| and |û � û0|ln|û � û0| are encountered (see appendices
A and B for mathematical details). These functions are
1996 | Soft Matter, 2014, 10, 1987–2007
expanded with respect to the orientational order parameter,
with the neglect of terms of fourth-order. Such an expansion
allows for the evaluation of the effective potentials in terms of
the orientational order parameter tensor S (the brackets denote
ensemble averaging),

S ¼ hûûi ¼ ÞdûûûP(û,t), (36)

which is the central quantity of interest. An equation of motion
for this tensor is derived in the next subsection from the Smo-
luchowski equation, aer the present evaluation of the effective
potentials. The largest eigenvalue l of S measures the degree of
orientational order. The Ginzburg–Landau type of expansion
gives rise to the well-know Maier–Saupe approximation for the
effective hard-core interaction potential,71 and reproduces the
lower- and upper-spinodal concentrations as obtained by Ons-
ager for hard-core rods.72,73 The mathematical details for the
explicit evaluation of the effective hard-core potential in terms
of the orientational order parameter are given in Appendix A,
and for the charge interactions in Appendix B.

Applying the above mentioned Ginzburg–Landau expansion
with respect to the orientational order parameter to eqn (34) for
the hard-core potential leads to the Maier–Saupe potential (see
Appendix A),

bV eff
hc

�
û; t
� ¼ 21p

32
dL2r� 15p

32
dL2rûû : SðtÞ: (37)

The next higher order contribution is of fourth order in the
orientational order parameter l. As before, d is the diameter and
L is the length of the core of the rods, while �r is the number
density of rods.

The potential in eqn (35) due to charge interactions consists
of three contributions (see Appendix B),

V eff
Q ¼ DV eff

Q,hc + V eff
twist + V eff

pol.

The physical interpretation and the mathematical form of
these potentials are as follows.

(i) The term DV eff
Q,hc is a contribution that is of the form of an

effective hard-core potential, as described in eqn (37). This
contribution, added to the “bare” effective hard-core potential
(37), gives rise to an effective diameter of the rods due to charge
interactions, in the same spirit of Onsager72,73 and ref. 74 and 75
for thin double layers. Within the approximations discussed
in Appendix B, the effective diameter for thick double layers
(kd ( 1) is given by,

deff

d
¼ 1

kd

	
ln
�
KQ

�þ C


; (38)

where Cz�3/4. This contribution can thus be accounted for by
replacing d by deff in eqn (37). Scaling of the effective diameter
with the Debye length has also been found for line charges in
ref. 76, with a very similar prefactor that also depends loga-
rithmically on the charge of the rod.

(ii) There is a “twisting potential” V eff
twist that is due to inter-

actions between the unpolarized charge density. This term
accounts for the increase in energy when rods are aligned, due
This journal is © The Royal Society of Chemistry 2014
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to an increased overlap of the electrical double layers, and is
given by,

bV eff
twist

�
û; t
�
¼ � 21p

32

�
57

84
� ln 2

�
L2

k
rþ 15p

32

�
5

4
� ln 2

�
L2

k
rûû : S:

(39)

Note that this is of the same form as the hard-core contri-
bution in eqn (37), within the approximations discussed in
Appendix B. As will turn out in Section VII, the twist effect never
destabilizes the nematic state. It merely leads to a torque that
will decrease the nematic order. The “twisting effect” has been
discussed for thin double layers in detail in ref. 74 and 75.

(iii) The third contribution is related to interactions between
the polarization charges. This contribution V eff

pol varies like �E40,
and is equal to,

bV eff
pol

�
r; û
�
¼ � 7p

192
r
L2

k

�
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with,
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5
U8

�
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The frequency dependent function h is plotted in Fig. 3c.
This function vanishes at high frequencies as ions cannot
follow the electric eld anymore.

C. The equation of motion for the order parameter tensor S

The equation of motion for the orientational order parameter
tensor S is obtained by substitution of the potentials discussed
in the previous subsection into the Smoluchowksi eqn (28), in
combination with eqn 31 and 33 and the expression (7) for the
single-particle torque. Multiplying both sides of the resulting
equation of motion with û û and subsequent integration with
respect to û lead to an equation of motion for S, which however,
also contains the fourth order average S(4) ¼ hûûûûi. To obtain a
closed equation of motion for S, we used the following the
closure relation,

Sð4Þ : M ¼ 1

5
½S$MþM$S� S$S$M

�M$S$Sþ 2S$M$Sþ 3SS : M� (41)

with M as an arbitrary matrix. This closure relation is derived
and discussed in ref. 77. The mathematical details for the
derivation of the explicit equation of motion for S are discussed
in Appendix C. The equation of motion for S can be written in
the form,

vS

vs
¼ Did þDQ;hc þDtwist þDpol þDtorque; (42)

with,

s ¼ Drt,

where Did is the contribution from free diffusion, DQ,hc stems
from hard-core interactions (with an effective hard-core
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diameter that accounts for unpolarized charge interactions),
Dtwist is the twist contribution, Dpol is the contribution due to
interactions from polarization charges, and Dtorque is the
contribution of single-particle torques.

The contributions are given by (see Appendix C for mathe-
matical details),
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; (43)

where Ê0 is the unit vector along the direction of the external
eld, where the effective diameter is given in eqn (38),
and where the corresponding effective volume fraction is
dened as,

4eff ¼
p

4
deff

2Lr;

where, as before, �r is the number density of rods. The effective
diameter and volume fraction are larger than their corre-
sponding bare values for the hard-core diameter and hard-core
volume fraction, respectively, due to charge–charge interactions
(in the absence of the external eld). These effective parameters
depend crucially on the ionic strength through their depen-
dence on the Debye length, which will turn out to be essential
for the existence of the dynamical state. Furthermore, the
frequency-independent quantity ~F is dened as (with F1(U), F3,
and I(U) given in eqn (9)),

~F ¼ F1(U)F3/I(U),

while,

F
�
S; Ê0

�
h

3

2
S$Ê0Ê0 þ 3

2
Ê0Ê0$Sþ S$S$Ê0Ê0

þ Ê0Ê0$S$S� 2S$Ê0Ê0$S� 3SS : Ê0Ê0;

(44)

is introduced for brevity.
The above equations of motion can be used to calculate the

location of binodals and spinodals (see Section VI), and
describe the melting dynamics of the nematic below the lower-
binodal concentration.

D. Domain growth within the meta-stable two-phase region

As the Debye length increases due to re-condensation the
system enters the two-phase region and becomes meta-stable. It
would be an enormous task to set up a (semi-)quantitative
theory for the growth kinetics of nematic domains from the
meta-stable region with a precision that is comparable to the
melting kinetics as described in the previous subsections.
Higher order terms in an expansion with respect to the orien-
tational order parameter are required in a description of phase
separation kinetics starting in the meta-stable region. Such an
Soft Matter, 2014, 10, 1987–2007 | 1997
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endeavor is beyond the scope of the present work. We will be
satised with a simple semi-empirical approach. In ref. 78 (see
especially Fig. 3 in this reference) it has been shown that the
growth of the order parameter is in good approximation expo-
nentially in time, up to times where the order parameter
approaches its saturation value quite closely. During this time,
the interface is quite diffuse, so that anchoring effects can be
neglected. In fact, anchoring effects at domain walls can prob-
ably be neglected in the experiments on fd-virus suspensions at
low ionic strength, also at the very late stages of growth, as the
observed interface is quite diffuse.30,31 The exponential growth
kinetics is captured by the simple kinetic equation,

vS

vs
¼ S� S

T
þDpol þDtorque; (45)

where �S is the order parameter tensor of the nematic phase in
equilibrium, without the electric eld, and where T is the time
scale on which domains increase their internal nematic order.
The time scale T serves, within the present approach, as a free
parameter that should attain values that are in agreement with
growth rates observed experimentally. The rst term in eqn (45)
describes the growth kinetics in the absence of the eld (similar
to the rst three terms in eqn (42) for the melting kinetics),
while the last two terms incorporate the effect of eld-induced
torques and interactions.
Fig. 5 (a) Polarization of the layer of condensed ions parallel to the rod
long axis leads to an internal electric field that drives condensed ions
into the solvent when there is an excess of ions (indicated in red). In the
case of a shortage of condensed ions (indicated in blue), ions from the
solution tend to condense in order to restore equilibrium. (b)
Perpendicular polarization creates an internal electric field that pulls
the excess condensed ions back to the rod surface, as indicated by the
green arrows.
V. A model for dissociation/
association of condensed ions and its
effect on ionic strength

As already indicated in Section II, the above equations of
motion do not exhibit oscillatory behaviour (also when
reasonable approximations for the hydrodynamic torque due to
bending22 are added), and always give rise to a time-indepen-
dent, stationary solution for S. What is neglected so far is the
possibility that condensed ions can dissociate from, and asso-
ciate to, the surfaces of rods. As argued in Section II, the release
and re-condensation of ions are essential for the observed
melting and formation of nematic domains in the D-state.

Due to the eld-induced polarization of the layer of condensed
ions, there is an excess of condensed ions as compared to the
unpolarized state on one half of the rod, while at the same instant
there is a reduction on the other half of the core of the rod.
Condensed ions tend to dissociate into the solvent when there is
an excess concentration of condensed ions, while condensation
will occur when there is a reduction as compared to the surface
concentration in the absence of the external eld. When the
concentration of condensed ions differs from the equilibrium
concentration, the resulting polarization induced electric eld
perpendicular to the rod either pushes condensed ions into the
solvent, or attracts ions from the solvent towards the condensed
layer (see the sketch in Fig. 5a). The same mechanism of associ-
ation/dissociation of condensed ions has been proposed in ref. 79,
on the basis of which the saturation of the induced dipole
moment in a DC electric eld of DNA strands with different
lengths can be understood.
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The amount of ions that is released per unit time is
proportional to the local excess concentration of condensed
ions and the local electric eld strength perpendicular to the
cylindrical axis (except for a small contribution at the tip of the
rod). The latter eld strength is proportional to the excess
charge density. The ux of condensed ions towards the solvent
at positions where there is an excess of condensed ions, aver-
aged over a cycle of the external eld, is therefore proportional
to the total squared excess charge density (R 0

c, k)
2 + (R 0 0

c, k)
2. The

same holds for the association of condensed ions on that part of
the core where there is a shortage of condensed ions. The eld
strength that pulls ions to the rod surface as well as the
concentration near the outer part of the condensed layer is
proportional to the excess charge density. The proportionality
constants for dissociation and association are different, also
because the concentrations in the inner part and the outer part
of the condensed layer are not the same. The rate-of-change of
the number of condensed ions, averaged over a cycle of the
external eld, is thus found from integration of the expressions
(5) for the induced charges densities to be equal to (using eqn
(3) for kc) (as before, s ¼ Drt),

dNc

ds
¼ �C dNc

2

�
z2lB

L½1þ 2kcaK ðkaÞ�
�2

E 0
2 �

�
Ê0Ê0 : SðtÞ

�
IðUÞ;

(46)

where the function I(U) (that also describes the frequency
dependence of single-particle torques) is given in eqn (9). This
function is plotted in Fig. 3c. The constant Cd will be referred to
as the (effective) dissociation constant. As there is no micro-
scopic theory available that allows for the calculation of Cd, this
constant will be used as an adjustable parameter when a
comparison to experiments is made.

When a rod is to some extent oriented perpendicular to the
external eld, the layer of condensed ions will also be polarized
in the direction perpendicular to the long axis of the rod (see
Fig. 5b). This leads to an internal electric eld that pulls the
condensed ions that are in excess, back towards the surface of
This journal is © The Royal Society of Chemistry 2014
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the rod (as indicated by the green arrows in Fig. 5b). The release
of condensed ions due to parallel polarization therefore
diminishes as the perpendicular polarization increases. We
account for this by introducing a threshold for the orientational
order along the eld direction, below which no ion release
occurs, but re-condensation takes place (a similar threshold
eld amplitude has been introduced in ref. 79, although on the
basis of different arguments related to thermal uctuations of
the number of condensed ions). Formally this is implemented
by replacing S in eqn (46) by S � athrÊ0Ê0, where the numerical
(positive) value of athr sets the threshold for dissociation. What
is observed experimentally is that the dynamical state persists
on increasing the electric eld strength. Without the orienta-
tional threshold (athr ¼ 0), there will be a certain eld strength
above which the system becomes isotropic, contrary to what is
observed. The ionic strength then increased to an extent that
the nematic remains unstable, and the isotropic state persists.

There is an unphysical feature of the equation of motion
(46). Since the right hand-side is always negative, this equation
implies that for a xed orientation of a rod, all condensed ions
will eventually dissociate. What has not been taken into account
in the arguments leading to this result is that when sufficient
ions are dissociated there will be a quasi-stationary state where
the association of condensed ions on one half of the rod is as
fast as the dissociation at the other half of the rod. The equation
of motion (46) only describes the initial stages of ion release.
The limiting number Nlim of condensed ions aer a long time,
keeping the orientation of the rods xed, will decrease with the
squared external eld strength component along the rods' long
axis, since that eld strength sets the potential perpendicular to
the rod surfaces which drives the overall dissociation. On
average, the quantity that sets the limiting number of
condensed ions is therefore �E 2

0(Ê0Ê0:S)I(U), where, according
to eqn (46), I(U) describes the effectiveness of the eld due to
the nite diffusivity of the ions. In addition, the number of
condensed ions should be equal to Nc,0 (the number of ions
without the eld) for very low eld amplitudes, while it should
become formally equal to zero for large eld strengths. The
simplest form for the limiting number of condensed ions that
complies with these requirements is,

Nlim ¼ alimNc;0

alim þ E 0
2ðÊ0Ê0 : SÞIðUÞ

;

where alim is an adjustable parameter. To ensure that, for a given
orientation, the number of condensed ions indeed takes the
value Nlim aer long times, Nc

2 in eqn (46) is replaced by Nc
2 �

Nlim
2. Note that this expression for the limiting number of

condensed ions is only applicable for orientations towards the
electric eld for which the above described threshold for disso-
ciation is reached. For orientations below the threshold we have,

Nlim ¼ Nc,0, when, (S:Ê0Ê0) < athr,

since for such orientations no dissociation occurs, by
denition.

We thus nally arrive at the following expression for the
time-rate of change of the number of condensed ions,
This journal is © The Royal Society of Chemistry 2014
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(47)

where the “+” applies when (S:Ê0Ê0) < athr, and the “�” applies
otherwise.

It needs some time before the ion concentration within the
bulk of the solvent is affected by the released condensed ions.
Ions that dissociate from the condensed layer need to diffuse
over typical distances of a few rod lengths in order to render a
change in the homogeneous bulk concentration of ions. Simi-
larly, it takes some time for ions to diffuse from the bulk
towards the rod surface from the solvent bulk as ions associate
to the condensed layer. The change of the bulk concentration of
ions at time t is, in rst approximation, therefore proportional
to the number DNc ¼ Nc,0 � Nc of released ions at time t � sdif,
where sdif is of the order of the time needed for ions to diffuse
over distances equal to a few rod lengths. The time-dependent
(inverse) Debye length at time t is therefore taken to be equal to
(see eqn (1)),

kðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2be2

	
c0 þ rDNc

�
t� sdif

�

3

s
; (48)

where �r is the number density of rods. The effective diameter in
eqn (38) is now also a time-dependent quantity equal to,

deffðtÞ
d

¼ 1

kðtÞd
	
ln
�
KQðkh kðtÞÞ�þ C



; (49)

where the interaction strength KQ in eqn (25) is to be evaluated
with an inverse Debye length equal to k(t).

The Debye length thus changes due to the release of
condensed ions with a certain time lag, which affects the
effective diameter with the same time lag. The change of the
effective diameter changes the location of phase boundaries in
a cyclic manner as release and re-condensation occur, which is
at the origin of the dynamical state as explained on an intuitive
level in Section II.
VI. Binodal and spinodal
concentrations

To solve the equations of motion, with the inclusion of dissocia-
tion of condensed ions, it is necessary to know the location of the
lower binodal concentration. Below the effective lower binodal
concentration, melting occurs according to the equations of
motion derived in Section IV, while above the binodal, the nematic
order increases as discussed in subsection IV D. The location of
phase boundaries is therefore essential for the numerical solution
of the equations of motion that we derived above.

For uncharged rods, the upper spinodal concentration can
be found analytically from a stability analysis of the equation of
motion (43), where only the terms Did and DQ,hc contribute, and
where deff ¼ d and 4eff ¼ 4. The upper spinodal concentration is
found to be equal to (L/d)4 ¼ 4, in accordance with Onsager's
exact asymptotic result for long and thin hard rods.72,73 The
Soft Matter, 2014, 10, 1987–2007 | 1999



Fig. 6 (a) The location of the lower spinodal (dashed lines) and binodal
(solid lines) concentrations as a function of the Debye length for
various values of N0 � Nc. (b) The same as in (a), but now for the upper
spinodal and binodal concentrations. (c) The width of the I–N coex-
istence region. The parameters chosen here relate to fd-virus particles.
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lower spinodal concentration can be obtained numerically from
the same equation of motion (43), and is found to be equal to
(L/d)4 ¼ 3.556..

For charged rods, a numerical solution of the equation of
motion (43) for the order parameter reveals that the electric-
eld contributions Dpol and Dtorque change spinodal concen-
trations less then 0.5% for the maximum electric eld strengths
of 10 V mm�1 that are applied in the experiments. This very
small effect of the electric eld on the location of phase-
boundary concentrations can be neglected.

To obtain the lower and upper spinodal and binodal
concentrations for charged rods, including the twist effect, we
make use of the fact that the twist contribution and the effective
hard-core contribution to the equation of motion (43) have the
same dependence on the order parameter. This allows calcu-
lation of the binodal concentrations directly from the Onsager
binodal concentrations ((L/d)4 ¼ 3.290 and 4.191, respec-
tively75), by the identication,�

L

d
4

�
Onsager

¼ L

deff
4eff

�
1�

�
5

4
� ln 2

�
1

kdeff

�
: (50)

The spinodal and binodal fd-virus concentrations in units of
mg ml�1 can be obtained from a simple numerical evaluation of
the right hand-side using eqn (38), together with the length L ¼
880 nm and thickness d¼ 6.8 nm of the fd-virus particles, as well
as the connection 4¼ 0.0011� [fd] between the hard-core volume
fraction 4 and the fd-concentration [fd] in mgml�1. The spinodal
concentrations can be obtained from the numerical solution of
the equation of motion for S, which gives the same result.

Since deff depends on the Debye length k�1 and the difference
N0 � Nc between the total number N0 of immobile charges on the
rod minus the number Nc of condensed ions, the location of
spinodal and binodal concentrations depends on these two
independent parameters. The location of the upper spinodal and
binodal concentrations is given in Fig. 6a (the dashed and solid
lines, respectively), as a function of the Debye length for various
values ofN0� Nc. Similar plots for the lower spinodal and binodal
concentrations are given in Fig. 6b, while the width of the coex-
istence region is given in Fig. 6c. As can be seen, the width of the
coexistence region increases when the Debye length is decreased,
in accordance with what is seen experimentally. The twist effect
has a pronounced effect on the width of the coexistence region, as
has been predicted before for thin double layers.74,75

Detailed experiments on the location of isotropic–nematic
binodals for fd-viruses and their mutants, as a function of the
persistence length and ionic strength (larger than 5mM), can be
found in ref. 41. Note that the present theory cannot be applied
at these relatively high ionic strengths, as our expressions for
the effective diameter and the twist effect are only applicable for
thick double layers.
VII. Numerical results and
comparison to experiments

The length of the fd-core is L ¼ 880 nm, the bare core thickness
is d ¼ 6.8 nm, and the number of negative bare charges is equal
2000 | Soft Matter, 2014, 10, 1987–2007
to 8800. The number of monovalent positively charged
condensed ions as obtained from Manning's condensation
theory is equal to 7500.80,81 This amount of condensed ions is in
reasonable agreement with the experimentally determined
location of the lower and upper binodal concentrations (1.5 �
0.2 and 3.4 � 0.5 mg ml�1, respectively82) and the calculated
locations in Fig. 6. The concentrations of fd-virus particles for
the experiments in ref. 30 and 31 are 2.0 and 2.8 mg ml�1,
corresponding to bare values of (L/d)4 ¼ 0.28 and 0.39,
respectively (where 4 is the bare volume fraction). The Tris/HCl
buffer concentration is 0.16 mM, corresponding to a total ion
This journal is © The Royal Society of Chemistry 2014



Fig. 7 Oscillations of the orientational order parameter l for various
field amplitudes at a fixed frequency of 200 Hz and a fd-concentration
of 2.0 mg ml�1 (see the movies Movie-Ds for the slow dynamics and
Movie-Df for the fast dynamics in the ESI†).
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concentration of 0.25 mM (without the electric eld), and a
Debye length of 27 nm (CO2 that dissolves from the air has to be
taken into account for these low buffer concentrations83). The
value of the orientational order parameter (the largest eigen-
value of S) at the binodal concentration is found in experiments
to be equal to l¼ 0.93, which is used in eqn (45) for the domain-
growth dynamics.41,83 Numerical results turn out to be quite
insensitive to the threshold value athr in eqn (47) that sets the
orientation of the rod along the eld direction beyond which
ion release occurs, which is chosen as athr ¼ 1/2. The time sdif
between ion-release and the resulting increase of the bulk ionic
strength is taken to be equal to the time needed for ions in
solution to diffuse over ten rod lengths. The parameters that
critically determine the location of the N*-to-D transition lines
in the eld-amplitude versus frequency plane, as well as the time
scale on which melting and domain growth occur as a function
of the distance from the transition lines, are the time scale for
domain growth T in eqn (45), the parameters alim and Cd in eqn
(47) that set the dynamics of dissociation and association of
condensed ions, and the bare diffusion coefficient D in eqn (2)
for diffusion of condensed ions that includes friction with the
core of the rod. A good comparison with experiments30–32 is
found when these values are chosen as T ¼ 100, alim ¼ 1.2 �
10�4, Cd ¼ 2.0� 105, and D ¼ D0/290 (where D0 ¼ 2.0 � 10�9 m2

s�1 is the diffusion coefficient of ions in solution). Note that the
value for T ¼ 100 corresponds to a domain growth time of 100/
Dr ¼ 5 s, which is within the range of experimentally observed
growth rates. The value of D ¼ D0/290 is not the same, but of
similar order, as determined in ref. 49 from a t to birefringence
experiments on fd-virus suspensions at very low fd-concentra-
tion and very low ionic strength, corresponding to a reported
Debye length of 300 nm.18

The appropriate measure for the binodal and spinodal
concentrations is the quantity on the right hand-side in eqn
(50), to which we shall refer to as Ceff. When Ceff is smaller than
the corresponding value of 3.290 for the lower binodal, the
dynamics is governed by the equation of motion (42) and (43)
that describes the melting of nematic domains, while for larger
values the dynamics is described by the domain-growth eqn
(45). Note that the isotropic state is meta-stable up to Ceff ¼ 4,
which corresponds to an effective concentration that is never
reached during a cycle of melting and formation of nematic
domains in the dynamical D-state. Hence, Ceff is calculated
from the instantaneous ionic strength, on the basis of which
either eqn (42) and (43) or (45) is used in a time step. For a given
Debye length, the value of Ceff at the lower binodal concentra-
tion corresponds to an effective rod-concentration, which, for
the fd-virus particles, we shall refer to as the critical fd-
concentration [fd]crit. This is the fd-concentration below which
nematic domains melt, and above which nematic domains are
formed. Since the Debye length is time dependent through the
dissociation/association of condensed ions, this critical
fd-concentration is also time dependent. In the dynamical state,
the critical fd-concentration oscillates around the bulk fd-con-
centration of the dispersion.

With the above introduced values of the various parameters
we nd oscillations of the orientational order parameter l
This journal is © The Royal Society of Chemistry 2014
(the largest eigenvalue of S), as can be seen in Fig. 7. The eld
amplitudes indicated in the gure are corrected for the dielec-
tric polarization of the ITO–water interface, which renders the
actual eld amplitudes a factor of 0.096 smaller than the
applied eld amplitudes. There is a growth of orientational
order when the fd-concentration is higher than [fd]crit, and a
relatively fast decay towards the isotropic state (where l ¼ 1/3)
otherwise. In addition, the period of oscillation strongly
depends on the distance from the N*-to-D transition line, which
is located at 0.30 V mm�1, and saturates to about 2 s for high
eld amplitudes (this will be discussed in more detail below).

At the N*-to-D transition line the period of oscillation
diverges, and no oscillations occur upon lowering the eld
amplitude. That the location N*-to-D transition line for the two
fd-concentrations of 2.0 and 2.8 mg ml�1 is correctly repro-
duced by theory is shown in Fig. 8 (the solid red lines). Due to
the assumption that the conguration of rods is essentially
unaltered during a cycle of the external eld, the theory is only
valid for frequencies higher than a few tens of Hz. The transi-
tion lines are therefore calculated only for frequencies higher
than 50 Hz. The open data points are corrected for ITO–solvent
polarization only, while the lled data points are also corrected
for electrode polarization.

In view of the frequency dependence of the polarization
response functions an estimate can be made of the frequency
beyond which polarization essentially ceases to occur (a possibly
over-simplied estimate has been discussed in Section II). From
the frequency dependence of the polarization response functions
in Fig. 3c it is found that polarization ceases to occur when
U ¼ (L||/2)

1/2 T 2, where L|| ¼ uL2/4Deff, with the effective
diffusion coefficient given in eqn (2), and with the bare diffusion
coefficient of the condensed ions being equal toDzD0/290 (with
D0 as the diffusion coefficient of ions in solution, while the factor
290 has been established in Section 7, being due to the friction of
condensed ions with the core of the fd-virus). For typical
parameters applying to fd-virus particles, with a Debye length of
27 nm, it follows that the critical frequency beyond which
polarization ceases to occur is n z 670 Hz. This is in agreement
with the experimentally observed frequency of z400–700 Hz
where the state diagram changes its form (see Fig. 1), and again
Soft Matter, 2014, 10, 1987–2007 | 2001



Fig. 8 The experimental and theoretical transition lines in the field-
amplitude versus frequency plane, for fd-concentrations of (a) 2.0 and
(b) 2.8 mgml�1. The open circles are experimental data only corrected
for the ITO–water interface polarization, while the solid data are also
corrected for electrode polarization. The red lines are the theoretical
transition lines.

Fig. 9 (a) Limit cycles in the eigenvalue l versus D[fd] ¼ [fd] � [fd]crit
plane, with [fd] ¼ 2.0 mg ml�1 the analytical fd-concentration, and
[fd]crit the time-dependent concentration where the lower binodal is
located. Limit cycles are shown for a frequency of 200 Hz, for various
field amplitudes (corrected for the ITO–solvent interface polarization).
Points are at equal time intervals of 0.05 s, and the cycles are traversed
anti-clockwise. (b) The time-constant s of limit cycles as a function of
the field amplitude. The points correspond to the limit cycles shown in
(a), and the line corresponds to the power-law given in the main text.
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suggests that the homeotropic H-phase is stabilized by hydro-
dynamic interactions through electro-osmotic ow.

Limit cycles in the orientational order parameter l versus D
[fd] plane are given in Fig. 9a, where D[fd] ¼ [fd] � [fd]crit, with
[fd] ¼ 2.0 mg ml�1. Limit cycles are shown for various values of
the electric eld amplitude, up to eld amplitudes very close to
the N*-to-D transition line. The time interval between the points
shown is 0.05 s. When D[fd] < 0 nematic domains melt, and the
orientational order parameter drops relatively fast to a value
close to the isotropic value l ¼ 1/3. Re-condensation occurs for
these low degrees of orientational order so that D[fd] becomes
positive and nematic order increases. Above the threshold value
for the order parameter, dissociation of condensed ions takes
places. The accompanied decrease of the Debye length leads to
an increase of [fd]crit and hence to a decrease of D[fd]. When D

[fd] becomes negative the cycle repeats itself. This is the cycle
that has been discussed on an intuitive level in Section II. For
eld amplitudes close to the transition line the cycling times
become large. From the form of the limit cycle in Fig. 9a and the
oscillatory behaviour shown in Fig. 7 for the smallest eld
amplitude it can be concluded that the rate-limiting step is the
release of condensed ions just before the domain becomes
unstable. When the number of dissociated ions does not suffice
to render the nematic unstable, the oscillations cease to occur,
and the stable state is the N*-phase. The divergence of the
cycling time on approach of the N*-to-D transition line that is
observed experimentally is also seen in the theory, as shown in
Fig. 9b. The data points correspond to the limit cycles shown in
Fig. 9a, while the solid line is the power law dependence s ¼
2.20 + 0.18 � (E � 0.300)�1.15 for the cycling time s. The expo-
nent 1.15 and the saturation cycling time at high eld strengths
of 2.2 s are in accordance with values found in experiments.

VIII. Summary and conclusions

In a recent experiment where an oscillating external electric
eld is applied to a dispersion of rod-like colloids (fd-viruses) in
the isotropic–nematic biphasic region, a dynamical state is
observed.30,31 In this dynamical state, nematic domains melt
2002 | Soft Matter, 2014, 10, 1987–2007
and form on a seconds time scale. The origin of the dynamical
state is attributed to the cyclic dissociation and association of
condensed ions. When a nematic domain is aligned along the
electric-eld direction, the layer of condensed ions of each rod-
like colloid is polarized, leading to an electric eld perpendic-
ular to the long axes of the rods that drive the condensed ions
into solution. This leads to an increase of the ionic strength that
renders the nematic domain unstable as the Debye length, and
thereby the effective concentration, is decreased. The nematic
domain thusmelts, so that the alignment along the electric eld
is lost, leading to association of condensed ions. The subse-
quent increase of the effective concentration renders the molten
isotropic state meta-stable. A nematic domain is thus formed
which aligns along the eld direction, leading again to the
release of condensed ions. This cycle of increased and
decreased ionic strengths is at the origin of the dynamical state.

A quantitative theory is developed that describes the melting
of the nematic state. This theory is based on the Smoluchowski
equation, including the eld-induced rod–rod interactions and
torques. These torques and rod–rod interactions are obtained
from a theory for the polarization of the layer condensed ions,
where it is assumed that the ions are essentially constrained to
move over the surface of the rod-like colloids. An empirical
equation of motion is used that describes the growth of nematic
domains, based on what is observed in simulations in the
absence of an external eld,78 and a simple model is proposed
for the eld-induced dissociation and association of condensed
ions. A comparison is made with experiments for two fd-virus
concentrations. The numerical solution of the coupled equa-
tions of motion reproduces the experimentally observed char-
acteristics of the dynamical state, including the location of the
transition line from the chiral–nematic state to the dynamical
state in the eld-amplitude versus frequency plane, and the
power-law divergence of cycling time for melting and formation
of domains on approach of the transition line. In forthcoming
This journal is © The Royal Society of Chemistry 2014
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work we plan to compare the present theory with experiments at
different ionic strengths and fd-concentrations.

The release of condensed ions on increasing the eld
amplitude also explains the N-to-N* transition, where the
normal (non-chiral) nematic transforms into a chiral nematic.
At low ionic strength, the helical nature of the core of the
fd-virus particles is screened by the relatively long-ranged elec-
trostatic interactions, leading to a non-chiral nematic state. As
the eld amplitude is increased, the accompanied release of
condensed ions leads to a decrease of the Debye length, so that
the core–core interactions become signicant. The helical
structure of the fd-cores now gives rise to a chiral nematic,
which is the equilibrium nematic state at higher ionic strengths
in the absence of an electric eld. Within the N* phase the ionic
strength is not large enough to render the nematic unstable.
This occurs once the dynamical state is entered.

There are three points where the present theory can be
improved. First of all, the nematic-domain growth could be
analyzed on the basis of the Smoluchowski equation as well.
This requires the extension of the Smoluchowski approach to
include higher-order contributions in orientational order,
which is necessary to describe growth kinetics from the
meta-stable state. Secondly, we used a simple model for the
dissociation/association of condensed ions. There is so far no
(Poisson–Boltzmann) theory that quantitatively describes the
dissociation/association of condensed ions due to electric-eld
induced polarization. Thirdly, the present theory neglects
spatial gradients in orientational order, and is therefore not
capable of predicting the domain-size dependence on the eld
amplitude and frequency, which is found in ref. 32 to diverge at
the critical point CP in Fig. 1. In principle such gradient
contributions can be included in the Smoluchowski-equation
approach. Possible alternatives to a Smoluchowski-equation
and Poisson–Boltzmann approach to address these issues could
be an analysis based on Ornstein–Zernike integral equations for
nematics with an appropriate closure relation (see, for example,
ref. 84 and 85), or a dynamical density-functional approach (see,
for example, ref. 86–88).
Appendix A: approximate evaluation of
Veff
hc

In order to evaluate the R-integral in eqn (34), the coordinates
{a, x, x0} are introduced,

Rða; x; x0Þ ¼ ad
û� û0

|û� û0|
þ 1

2
Lxûþ 1

2
Lx0û0:

The new integration variables a, x and x0 vary within
(�1, 1). The Jacobian of the coordinate transformation is
d(L/2)2|û � û0|, so that,

bV eff
hc

�
û; t
� ¼ 2dL2r

þ
d û0|û� û0|P

�
û0; t
�
: (51)

The cross-product is expanded in terms of Legendre poly-
nomials P2n(x), with x ¼ û$û0,
This journal is © The Royal Society of Chemistry 2014


û� û0


 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

¼ p

4
P0ðxÞ � 5p

32
P2ðxÞ � 9p

256
P4ðxÞ þ/: (52)

Since P2 is on average rst order in the orientational order
parameter for both û and û0, it is in total of second order.
Similarly, P4 is of fourth order and is therefore neglected.

Hence, using that P0(x) ¼ 1 and P2ðxÞ ¼ 1
2
ð3x2 � 1Þ, it is found

that with the neglect of fourth order contributions,

û� û0


 ¼ 21p

64
� 15p

64
ûû : û0û0:

Substitution into eqn (51) leads to eqn (37).
Appendix B: approximate evaluation of
V eff

Q

In order to evaluate the potential VeffQ in eqn (35), the R-inte-
gral is evaluated in terms of the coordinates {a, x, x0}, dened
as,

Rða; x; x0Þ ¼ ak�1 û� û0

û� û0


þ 1

2
Lxûþ 1

2
Lx0û0:

The variable a ranges from (�N, �kd) and (kd, N) for a
non core-overlap, while�1 < x, x0 < 1. The latter assures that a0

and b0 in eqn 18 and 19 remain within the range (�p/2, p/2).
The Jacobian of the transformation to these new coordinates
is equal to k�1(L/2)2|û �û0|. It is readily veried from eqn (23)
that,

S1 ¼ Ux,

S2 ¼ �Ux0.

Hence, from eqn (35),

bV eff
Q

�
û; t
� ¼ L2

2k
r

þ ​
dû0


 û� û0



P�û0; t�
�
ð ​1
�1

dx

ð ​1
�1

dx0
ð ​N
kd

da½1� expf �A expf�ag=ag�;

where,

A ¼ 1

|û� û0|

�
KQ � 1

2
KEE 0

2ûzû
0
z½GðUxÞGðUx0Þ þHðUxÞHðUx0Þ�g

(53)

We thus have to nd an approximation for the integral,

IðAÞh
ð ​N
kd

da½1� expf� A expf�ag=ag�

z� kd þ
ð ​N
0

da½1� expf� A expf�ag=ag�: (54)

For the case of thick double layers, typical values of A are
large due to the overlap of double layers of several beads. We
thus have to nd an approximation for this integral for
large values of A. For thin double layers, where the
Soft Matter, 2014, 10, 1987–2007 | 2003



Fig. 10 The integral in eqn (54) (the solid line), the first iterated
approximation (55) (the dotted line), and the second iterated approx-
imation (56) (the dashed-dotted line). For this numerical comparison
we took kd ¼ 0 in these plots.
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interaction between the two sections of the cores of the two
rods on closest approach can be approximated as two at
plates, the interaction potential “per bead-pair” is equal to
A exp{�a}, where a is the distance between the two surfaces,
instead of A exp{�a}/a for the thick double layers under
consideration here. The corresponding integral for the
effective potential in the Smoluchowski equation for thin
double layers is,ð ​N

0

da½1� expf� A expf�agg�zlnfAg þ gE;

where gE ¼ 0.5772. is Euler's constant. The approximation
on the right hand-side is an asymptotic expansion for large
values of A, and is accurate to within 1% for A > 2.72–75 The
reason why the leading term for large values of A scales like ln
{A} is that the combination A exp{�a} in the exponent is order
unity when a( ln{A}, and rapidly tends to zero for larger values
of a. In a very crude approximation one could replace the
integrand by a step function that is unity for a < ln{A} and zero
otherwise, which indeed leads to the leading order �ln{A}
contribution. Similar to the case of a thin double layer, we can
replace the integrand in eqn (54) by a step function which
jumps from unity to zero for A exp{�a}/a ¼ 1. The iterated
solution of this equation is,

a ¼ lnfA=lnfA=lnfA=/ggg
¼ lnfAg � lnflnfAgg þ lnflnflnfAggg �/:

In analogy with the thin double layer, we infer that I(A) z
constant + ln{A/ln{A/ln{A//}}}. By numerical integration, it is
found that to rst iteration,

I(A) z ln{A} + C � kd, (55)

where C ¼ � 3
4
, while to second iteration,

I(A) z ln{A} � ln{ln{A}}+C 0 � kd, (56)

where C0 ¼ p

4
. The exact value if I(A) as obtained by numerical

integration is plotted in Fig. 10 (the solid line), together with the
approximations (55) and (56) (the dotted and dashed-dotted
lines, respectively). Note that the constant A for thick double
layers is generally much larger than for thin double layers, since
more “beads” interact simultaneously in the former case, as
quantied by the prefactor 1/(ka)2 > 1 in eqn (14). For the semi-
quantitative description we will be satised with the rst-order
iterative approximation in eqn (55).

We thus arrive at,

bV eff
Q

�
û; t
� ¼ L2

2k
r

þ
d û0|û� û0|P

�
û0; t
�

�
ð ​1
�1

dx

ð ​1
�1

dx0½lnfAg þ C � kd�:

From the denitions (22) and (25), with typical parameters
that apply for fd-virus rods, we have KE/KQ � 1 up to very high
degrees of condensation, so that,
2004 | Soft Matter, 2014, 10, 1987–2007
KQ[
1

2
KEE 0

2


ûzû0

z½GðUxÞGðUx0Þ þHðUxÞHðUx0Þ�

;
and we can approximate, from eqn (53),

lnfAgz� ln
�
|û� û0|

�þ ln
�
KQ

�
� KE

2KQ

E 0
2ûzû

0
z½GðUxÞGðUx0Þ þHðUxÞHðUx0Þ�

� 1

2

�
KE

2KQ

�2
E 0

4
h
ûzû

0
z

i2
½GðUxÞGðUx0Þ þHðUxÞHðUx0Þ�2:

(57)

The reason why the rst two terms in the expansion of
the logarithm are included will become clear later. The effective
potential therefore consists of three distinct contributions,

Veff
Q (û,t) ¼ DVeff

Q,hc(û,t) + Veff
twist(û,t) + Veff

pol(û,t),

where the rst term is equal to,

DV eff
Q;hc

�
û; t
� ¼ 	ln�KQ

�� kd þ C

 2L2

k
r

�
þ
d û0|û� û0|Pðû0; tÞ;

the second contribution is given by,

bV eff
twist

�
û; t
� ¼ � 2L2

k
r�

þ
d û0


û� û0



 ln�

û� û0


�Pðû0; tÞ;

and,

bV eff
pol

�
û; t
� ¼ �L2

4k
r

�
KE

2KQ

�2
E 4

0 �
þ ​
dû0|û� û0|

	
ûzû

0
z


2
Pðû0; tÞ

�
ð1
�1

dx

ð1
�1

dx0½GðUxÞGðUx0Þ þHðUxÞHðUx0Þ�2:
(58)

Note that the term�E 2
0 in eqn (57) vanishes upon integration,

which is the reason that the second order term �E 4
0 is included.
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The potential DVeffQ,hc has the same form as the effective hard-
core interaction energy (see eqn (51)). This contribution can
thus be used, in the spirit of Onsager,72,73 to dene an “effective
core thickness” deff. The interaction energy Veffhc + DVeffQ,hc can be
written as a hard-core interaction potential, with a prefactor
equal to 2deffL

2 instead of 2dL2 as for a pure hard-core interac-
tion potential in eqn (51), with,

2deffL
2 ¼ 2dL2 þ 	ln�KQ

�� kd þ C

 2L2

k
;

or,

deff

d
¼ 1

kd

	
ln
�
KQ

�þ C


:

This is a semi-quantitative extension to thick double layers of
Onsager's expression for the effective diameter for thin double
layers.72,73

An asymptotic expression for the effective diameter for
line charges (representing worm-like micelles) can be found
in ref. 76. The effective diameter is also found to scale like the
Debye length, with a quite similar prefactor that scales with
the logarithm of the charge of the rod (see eqn 11 and 34 in
ref. 76).

The potential V eff
twist describes the “twist effect”.74,75 This

potential is expanded with the neglect of the fourth order terms
in the orientational order parameter, by means of the Legendre
polynomial expansion, with x ¼ û$û0,

| û� û0 |ln
�
| û� û0 |

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

¼ p

4

�
1

2
� ln 2

�
P0ðxÞ � 5p

32

�
5

4
� ln 2

�
P2ðxÞ þ/:

As before, the contributions “/” are on average of the
fourth order in the orientational order parameter (second
order with respect to û$û and û0$û0), which are neglected. Hence,

| û� û0| ln
�
|û� û0|

� ¼ 21p

64

�
57

84
� ln 2

�
� 15p

64

�
5

4
� ln 2

�
ûû : û0û0;

so that,

bV eff
twist

�
û; t
� ¼ � 21p

32

�
57

84
� ln 2

�
L2

k
r

þ 15p

32

�
5

4
� ln 2

�
L2

k
r

þ
d û0ðûû : û0û0ÞPðû0; tÞ

¼ � 21p

32

�
57

84
� ln 2

�
L2

k
rþ 15p

32

�
5

4
� ln 2

�
L2

k
rûû : S:

Finally the potential Veffpol describes the effective interac-
tions as induced by the eld, through polarization charges.
The x- and x0-integrations in eqn (58) give rise to a factor
equal to, �

M2ðUÞ þN2ðUÞ þ 1

2
Q2ðUÞ

�
;

where,
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MðUÞ ¼
ð1
�1

dxG2ðUxÞ;

NðUÞ ¼
ð1
�1

dxH2ðUxÞ;

QðUÞ ¼ 2

ð1
�1

dxGðUxÞHðUxÞ:

These functions are accurately approximated by,

MðUÞ ¼ 4

3
~hðUÞ;

NðUÞ ¼ 6

7
U4 ~hðUÞ;

QðUÞ ¼ 50

23
U2 ~hðUÞ;

where ~h(U) is equal to,

~hðUÞ ¼ 1

U

sinfUg þ sinhfUg
½cosf2Ug þ coshf2Ug�2 ;

so that,

bV eff
pol

�
û; t
� ¼ �L2

9k
r

�
K

KQ

�2
~h
2ðUÞ

�
1þ 4

3
U4 þ 2

5
U8

�
E 4

0

�
þ ​
dû0


û� û0



	ûzû0z
2Pðû0; tÞ:
With the expansion (53), and with the neglect of terms of the

order l4, it is thus found that,

bV eff
pol

�
r; û
� ¼ � 7p

192
r
L2

k

�
K

KQ

�2
~h
2ðUÞ

�
1þ 4

3
U4 þ 2

5
U8

�
E 4

0

� �Ê0Ê0 : ûû
��
Ê0Ê0 : Sðr; tÞ

�
;

where a small term that on average is �S(4)�S(4) has been
neglected.

This concludes the calculation of the instantaneous effective
potentials.

Appendix C: derivation of the equation
of motion for the order parameter
tensor S(t)

For the evaluation of the equation of motion for S, two types of
integrals are encountered,

I
ð1Þ
ij ¼ Mpq

þ ​
d ûûiûjR̂ n

	
r
�
r; û
�
R̂ nûpûq



;

I
ð2Þ
ij ¼ Mpqrs

þ ​
d ûûi ûjR̂ n

	
r
�
r; û
�
R̂ nûpûqûrûs



;

where R̂ n is the nth component of the rotation operator, Mpq

and Mpqrs are arbitrary matrices, while summation over
repeated indices is understood. Using Stokes's theorem in the
form (with f(û) and h(û) differentiable functions of û),Þ

dûf(û)R ĥ(û) ¼ �Þdûh(û) R f̂(û), (59)

and using the identity,
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[R̂ nûiûj]R̂ n(/) ¼ {ûivj + ûjvi � 2ûiûjûnvn}(/),

these two integrals are evaluated as,

I
ð1Þ
ij ¼ � sinMnj �Minsnj � sjnMni �Mjnsni þ 4s

ð4Þ
ijnmMmn;

I
ð2Þ
ij ¼ � s

ð4Þ
ikmnMjnmk � s

ð4Þ
iknmMnjmk � s

ð4Þ
ikmnMnmjk

� s
ð4Þ
ikmnMnmkj � s

ð4Þ
jkmnMinmk � s

ð4Þ
jknmMnimk

� s
ð4Þ
jkmnMnmik � s

ð4Þ
jkmnMnmki þ 8s

ð6Þ
ijklmnMnmlk:

Multiplying both sides of the Smoluchowski equation with û
û and integration, and applying these two identities, it is found
that the evolution equation of S can be written as,

vS

vt
¼ ~D id þ ~D Q;hc þ ~D twist þ ~D pol þ ~D torque;

where ĉid is the contribution from free diffusion, ĉQ,hc stems
from hard-core interactions (with an effective hard-core diam-
eter), ĉtwist is the twist contribution, ĉpol is the contribution
from interactions between polarization charges, and ĉtorque is
the contribution from single particle torques. The free-diffusion
contribution is equal to,

~Did ¼ 6Drr

�
1

3
Î� S

�
:

The effective hard-core contribution ĉQ,hc is equal to,

~DQ;hc ¼ 15p

8
deffL

2Drr
2
�
S$S� Sð4Þ : S

�
:

The twist-contribution is similarly found to be equal to,

~Dtwist ¼ � 15p

8

�
5

4
� ln 2

�
L2

k
Drr

2
�
S$S� Sð4Þ : S

�
;

and the polarization–charge interaction contribution is,

~Dpol ¼ 7p

48

L2

k
r2
�
KE

KQ

�2
hðUÞE 4

0 Dr

��S : Ê0Ê0

��
Ŝ
�
S$Ê0Ê0

�� �Sð4Þ : Ê0Ê0

��
;

where the symmetrizing operator bS is dened as,

ŜM ¼ 1

2

	
MþMT



;

where “T ” stands for “transpose”.
The contribution ĉtorque from single-particle torques is

evaluated as follows. Multiplying the Smoluchowski eqn (28) by
ûû and integration with respect to û, using Stokes's theorem in
the form (59), and using that,�

û$Ê0

��
û� Ê0

�
$R̂
�
ûû
� ¼ 2Ŝ

�
ûû$Ê0Ê0

�� 2
�
û$Ê0

�2
ûû

it is found that,

~Dtorque ¼ p

4
bL3r3F1ðUÞF3E0

2Dr �
�
Ŝ ðS$Ê0Ê0Þ � Sð4Þ : Ê0Ê0

�
:

To obtain a closed equation of motion for S, contributions
containing S(4) must be expressed in terms of S. We will use the
closure relation (41) for S(4):M, with M as an arbitrary matrix.
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Introducing the effective volume fraction, 4eff ¼ (p/4)deff
2L�r

and the frequency independent constant ~F ¼ F1(U)F3/I(U) (with
F1(U), F3, and I(U) dened in eqn (9)) thus leads to the equation
of motion in eqn (43) and (44).
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