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1 Basic Principles

1.1 Mathematical description of wave motion

1.1.1 Propagation of waves

A wave is a perturbation, i.e. a deviation of a physical property Ψ from it’s average
value 〈Ψ〉,which propagates in space. For instance if you clap your hands you cause a
local deviation of the air density ρ/〈ρ〉 > 1 at the spot where your hands meet. And a
distant observer can hear the sound of your hands clapping, because the perturbation
propagates all the way to the observer. In Fig. 1.1 the evolution of a Gaussian density
perturbation is displayed at different times t. It is obvious from this figure that the value
of the density, i. e. the perturbation is a function of the position variable x and the time t,
that is Ψ = f(x, t). To work out the proper expression for this dependencies, we consider
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Figure 1.1: Propagation of a Gaussian perturbation in space and time

first the perturbation at t = 0 which is Ψ(x, t) |t=0= f(x). After a finite time t we look
at the perturbation in a new coordinate system which has traveled together with the
perturbation with the common velocity v. In this coordinate system the perturbation
is only a function of the position variable x′, i. e. Ψ = f(x′). As can be seen from
Fig. 1.2 the position of the maximum of the perturbation in the coordinate system at
rest, xc, and in the moving system, x′c, are related by
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1 Basic Principles

xc = vt+ x′c. (1.1)

This relation, of course, holds for all pairs of x and x′, which gives

Ψ(x, t) = f(x′) = f(x− vt) (1.2)

� ��

ψ
 (�

)

ψ
 (�

)

��
���

��

Figure 1.2: The propagation of a perturbation in a moving coordinate system

This means that we can describe a wave as the propagation of a perturbation in terms
of a single variable of the form (x− vt).

1.1.2 Harmonic waves

So far we have given our wave a rather unusual shape, commonly one associates with
the term wave something which has a harmonic form. If we apply the above formalism
to a harmonic perturbation we have to write

Ψ(x, t) |t=0= A0 cos(kx) (1.3)

where A0 is the maximum value of the perturbation called its amplitude. The so called
wavenumber k is a positive real number, which for the time being is only required to
bring the dimensions of the argument of the cosine to unity (you can not calculate the
cosine of a physical dimension). We could have taken a sin-function as well to describe
a harmonic perturbation, but we thought it might be less tiring, if we write something
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1 Basic Principles

else than you can read in every text book. To make the perturbation move we have to
substitute x by (x− vt) in eq. 1.3

Ψ(x, t) = A0 cos(k(x− vt)) (1.4)

This function is periodic in space and time, i. e. there is a spatial period the wavelength
λ, and a time period τ for which

Ψ(x, t) = Ψ(x± λ, t) (1.5)

and

Ψ(x, t) = Ψ(x, t± τ)

apply. On the other hand we know that the period of a cosine function is 2π, i. e.
cosα = cosα± (2π). Therefore

cos(k(x− vt)) = cos(k(x− vt)± 2π) = cos(k(x± λ− vt)) (1.6)

and

cos(k(x− vt)) = cos(k(x− vt)± 2π) = cos(k(x− v(t± τ))).

Rearranging the cosine arguments shows that k = ±2π/λ and k = ±2π/(vτ), which
is used to relate the wavelength and the time period

λ = vτ (1.7)

The wavelength is the number of length units per wave and the period is the number of
time units per wave. Consequently we may define the number of waves per unit time, the
frequency as ν = 1/τ . Multiplying the frequency with 2π we obtain the angular velocity
ω = 2πν, a quantity which is also used frequently to describe the time dependent part
of a harmonic wave. Using the definitions of k, τ and ω we may rewrite eq. 1.4

Ψ(x, t) = A0 cos(k(x− vt)) = A0 cos(
2π

λ
(x− vt)) (1.8)

= A0 cos(
2π

λ
x− 2π

τ
t)

= A0 cos(kx− ωt).

The argument of the cosine in eq. 1.8 is called the wave’s phase angle or simply its
phase φ(x, t). However, eq. 1.8 is certainly a special case of a more general description,
since φ(x = 0, t = 0) = 0 and therefore Ψ(x = 0, t = 0) = A0. In general the wave will
be different from it’s amplitude at the origin, i. e.Ψ(x = 0, t = 0) = A0 cos(ε) and the
initial phase is φ(x = 0, t = 0) = ε. Consequently the general expression for harmonic
wave is
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1 Basic Principles

Ψ(x, t) = A0 cos(kx− ωt+ ε) (1.9)

with

φ(x, t) = kx− ωt+ ε

1.1.3 The complex representation

As we will see later it is often handy to describe waves in a complex representation.
This becomes very useful if complicated operations have to be performed on the waves.
According to Euler’s theorem a cosine wave may be identified with the real part of a
complex exponential and it’s imaginary part is identified with sinusoidal waves.

cosα + i sinα = exp{ıα} (1.10)

cosα = < [exp{ıα}]
sinα = = [exp{ıα}]

If we have to perform any arithmetic operation O on a cosine wave Ψ(x, t)we may use
the following scheme:

• 1. identify Ψ(x, t) as the real part of a complex expression F(x, t):
Ψ(x, t) = <[F(x, t)]

• 2. Perform the required operation on F(x, t) to get a new complex expression
G(x, t):
OF(x, t) = G(x, t)

• 3. Identify the real part of G(x, t) with the result of the operation on Ψ(x, t):
<[G(x, t)] = OΨ(x, t)

This formalism can also be applied to sinusoidal waves and the imaginary part of a
complex expression. It seems to be a rather arbitrary and complicated procedure, but
we will see in section 1.3 that it is often much easier to cope with the required arithmetic,
if the complex representation is chosen.

1.1.4 Three dimensional waves

So far we have dealt with one dimensional waves only. For the practical purposes we
will be discussing during this course, we will have to cope with three dimensional plane
waves. At a given time t, the areas of equal phase of such a wave build a set of parallel
planes which are oriented perpendicular to the direction of propagation. For a detailed
mathematical description of these type of waves the reader is referred to the book by E.
Hecht. Here we will stick to a very formalistic description.
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1 Basic Principles

Table 1.1: Formal changes which have to be made to get from the description of a one
dimensional wave to a three dimensional wave

one dimensional wave three dimensional wave
wave number k wave vector k
space coordinate x position vector r
Amplitude A0 A0

Three dimensional plane waves can be treated with the same formalism as the one
dimensional waves discussed so far. However, all position dependent scalar quantities
have to be substituted by three dimensional vectors as outlined in table 1.1.4.

The wave vector k = k̂2π/λ has the magnitude | k |= k = 2π/λ and points into the
direction of k̂ which is the unit vector in the direction of the propagation of the wave. A
three dimensional plane wave is therefore fully characterized by it’s wave vector k and
it’s angular velocity ω. In the complex representation it reads

Ψ(r, t) = A0 exp{i(kr− ωt)} (1.11)

1.2 Light as electromagnetic wave

It is nowadays common understanding that light can be regarded as a transverse elec-
tromagnetic harmonic wave, i. e. an electric field E and a magnetic field B which both
oscillate periodically in directions perpendicular to each other and perpendicular to their
propagation direction. For our purposes we will have to deal mainly with the electric
field, because generally the interaction of matter with magnetic fields is much weaker
than the interaction with E-fields (However, note that there is something like nuclear
magnetic resonance spectroscopy, NMR).

1.2.1 The speed of light

We may thus describe light by a harmonicaly oscillating electric field

E(x, t) = E0 cos(kx− ωt+ ε) (1.12)

= E0 cos(k(x− vt) + ε).

We will now show that this equation fulfills the Maxwell-equation

∂2E

∂x2
= ε0µ0

∂2E

∂t2
(1.13)

for the one dimensional case
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1 Basic Principles

∂2E

∂x2
=

∂ − E0k sin(kx− ωt+ ε)

∂x
= −E0k

2 cos(kx− ωt+ ε) (1.14)

and
∂2E

∂t2
=

∂E0kv sin(k(x− vt) + ε)

∂t
= −E0k

2v2 cos(k(x− vt) + ε)

which reduces to

∂2E

∂x2
=

1

v2
∂2E

∂t2
. (1.15)

If we identify 1/v2 = ε0µ0 we see that eq. 1.12 fulfills the differential equation 1.13. we
can therefore calculate the speed of light since we know the dielectric constant of vacuum
ε0 = 8.85 · 10−12 C2J−1m−1 and the magnetic permeability of free space µ0 = 4π · 10−7

Ns2C−2. Accordingly the speed of light is

v =
1

√
ε0µ0

≈ 3 · 108ms−1 ≡ c (1.16)

1.2.2 The intensity of light

In experiments we are not able to measure the strength of the electric field of light, but
we rather measure it’s intensity, which is the energy flux

A

vΔt

Figure 1.3: Energy flux through an aray A during time∆t

S =
U

A∆t
. (1.17)

If we consider an area A through which light is transmitted as depicted in Fig. 1.3 ,
in the time interval ∆t only the energy U which is in the volume Av∆t is transmitted
through A. Using the definition of an energy density ρU = U/V the energy flux may be
rewritten as

7



1 Basic Principles

S =
ρUV

A∆t
(1.18)

=
ρUAv∆t

A∆t
= vρU

To calculate the intensity of light, we need thus to know the energy density in an
electric and a magnetic field. The energy density of an electric field ρU,E and ρU,B the
energy density in magnetic field can be calculated for a condensator and a pair of coils
respectively to be

ρU,E =
ε0E

2

2
(1.19)

ρU,B =
B2

2µ0

The two energy densities can be related to each other considering a further Maxwell-
equation in it’s one dimensional representation

∂E

∂x
= −∂B

∂t
(1.20)

or in in its integral form

B = −
∫ ∂E

∂x
dt (1.21)

which with eq. 1.12 gives

B = E0k
∫

sin(k(x− ct) + ε)dt (1.22)

= E0k
1

ck
cos(k(x− ct) + ε)

=
1

c
E.

Introducing this relation into eq. 1.19 yields

ρU,B =
1

2µ0c2
E2 (1.23)

=
ε0µ0

2µ0

E2

= ρU,E

Since the total energy density of an electromagnetic wave is ρU = ρU,E + ρU,B =
2ρU,E = ε0E

2, the energy flux S in eq. 1.18 can be rewritten
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S = cε0E
2 = cε0E

2
0 cos2(kx− ct+ ε) (1.24)

Since real detectors are not able to resolve the frequency of light which is typically of
the order of ν ≈ 5 · 1014 Hz we will always measure average values of S such that the
average value of the cos2-term reduces to 1/2 and the intensity is

I ≡< S >= cε0E
2
0 < cos2(kx− ct+ ε) >=

cε0
2
E2

0 (1.25)

1.3 Superposition of waves and interference

According to the superposition principle two harmonically oscillating electric fields add
without disturbing each other at positions where they meet. For two one dimensional
waves the total field strength is

Eg = E1 + E1 = E0,1 cosφ1 + E0,2 cosφ2 (1.26)

If we write for the phases φi = αi−ωt with αi(x, εi) = kix+ εi, we can rewrite eq. 1.26
to give

Eg = E0,1 cos(α1 − ωt) + E0,2 cos(α2 − ωt) (1.27)

where we have assumed for simplicity that ω1 = ω2 = ω which will be the case in
any experiment that we will consider throughout this course. Applying cos(α + β) =
cosα cos β − sinα sin β we get

Eg = E0,1 {cosα1 cos(ωt) + sinα1 sin(ωt)} (1.28)

+ E0,2 {cosα2 cos(ωt) + sinα2 sin(ωt)}

and if we factor out the time dependent terms we obtain

Eg = cos(ωt) {E0,1 cosα1 + E0,2 cosα2} (1.29)

+ sin(ωt) {E0,1 sinα1 + E0,2 sinα2} .

To be further able to cope with this equation we make the Ansatz

E0,1 cosα1 + E0,2 cosα2 = E0 cosα (1.30)

E0,1 sinα1 + E0,2 sinα2 = E0 sinα

which is not a trivial substitution. However it will be justified, if we can find expres-
sions which relate E0 to E0,1,E0,2, α1 and α2 independently of α and vice versa. To this
end we simply divide the two expression in eq. 1.30 to get

α = arctan

{
E0,1 sinα1 + E0,2 sinα2

E0,1 cosα1 + E0,2 cosα2

}
. (1.31)
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1 Basic Principles

An expression for E0 is derived by adding the squared terms of eq. 1.30 which is

E2
0(cos2 α + sin2α) = E2

0,1 cos2 α1 + E2
0,2 cos2 α2 + 2E0,1E0,2 cosα1 cosα2 (1.32)

+ E2
0,1 sin2 α1 + E2

0,2 sin2 α2 + 2E0,1E0,2 sinα1 sinα2

E2
0 = E2

0,1 + E2
0,2 + 2E0,1E0,2 {cosα1 cosα2 + sinα1 sinα2}

= E2
0,1 + E2

0,2 + 2E0,1E0,2 cos(α1 − α2)

For all pairs of E0 and α which satisfy eq. 1.32 and eq. 1.31 respectively, the Ansatz
of eq. 1.30 is correct and we may rewrite eq. 1.29.

Eg = E0 cosα cosωt+ E0 sinα sinωt (1.33)

= E0 cos(α− ωt)

Equation 1.33 tells us that the superposition of two harmonic waves of equal frequency
yields another harmonic wave with the same frequency however with a new amplitude
E0 and a new phase. In Fig. 1.4 we display a numerical example for the above treatment.
E0 is not simply the sum of the amplitudes, but it also depends on the phases of both
constituting waves, as can be seen from eq. 1.32. If the constituting waves are in phase,
α1 = α2, E0 is simply the sum of amplitudes, on the other hand if E1 and E2 have a

phase difference of | α1 − α2 |= π the minimum total amplitude E0 =
√
E2

0,1 + E2
0,2 is

obtained. A special case occurs when E0,1 = E0,2 and | α1 − α2 |= π; then the total
electric field would be zero, as can be seen from eq. 1.27.

This derivation has been rather tedious and things would become much worse, if we
had to cope with many interfering waves. It is much more comfortable to use the complex
representation in this case. Then the total electric field of N waves with equal frequency
is written as

Eg =
N∑
j=1

E0j exp{ı(αj − ωt)} (1.34)

We can now easily extract the time dependent part from the sum

Eg = exp{−ıωt}
N∑
j=1

E0j exp{ıαj} (1.35)

and define a complex amplitude and a phase of the total field

N∑
j=1

E0j exp{ıαj} ≡ E0 exp{ıα} (1.36)

to yield

Eg = E0 exp{ıα} exp{−ıωt} (1.37)
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Figure 1.4: Superposition of two harmonic waves of equal frequency. The red (E0,1 = 1.2,
ε1 = 0.2π) and the black (E0,2 = 0.5, ε1 = π) curve are the constituting
waves, both with constant kx = 2 and ω = 2. Open symbols are their
sum at given times and the green curve is calculated using eq. 1.33 with
α = −1.49549 and E0 = 0.84804 according to eqs. 1.31 and 1.32 respectively

It is a simple task to show that for the case of two waves the real part of the right
hand side of eq. 1.37 reproduces eq. 1.33

<[E0 exp{ı(α− ωt)}] = E0 cos(α− ωt) (1.38)
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2 Static Light Scattering

2.1 The scattering equation: a heuristic derivation

We will now derive a heuristic relation which describes the scattered electric field from
an ensemble of particles, as is sketched in Fig. 2.1 . For an exact derivation the interested
reader is refered to the book of J. Dhont

Figure 2.1: The electric fields scattered from different particles has different phases, de-
pending on the location of the scattering particles in space.

Each dot in this figure is considered as an elastic dipole scatterer, i. e. when exited by
an incident electric field with frequency ω, it will emit a secondary electric field with the
same frequency without any phase delay. The spatial distribution of the field strength
emitted by a single dipole is sketched in the Fig. 2.2 . If observed at quasi infinite
distance the fields which are emitted from different scatterers into the direction defined
by the observation angle θ propagate paralelly (Fraunhofer approximation). We may
thus say that the scattered waves are characterized by a single wave vector kS, while
the incident field has the wave vector kI . As we have seen in chapter 1.3 the total field
strength of superimposed wave depends on their phases. We have therefore to calculate
the phase of the scattered field from each point scatterer. From Fig. 2.1 it is obvious
that the fields scattered from the particles i and j have traveled different distances. This

12



2 Static Light Scattering

results in a phase difference φi − φj = ∆φ at the observer position, since the incoming
field is a plane wave (i. e. it has constant phase in any plane perpendicular to it’s
propagation direction). This phase difference is given by ∆φ = PD2π/λ where the path
difference is PD = AB − CD according to Fig. 2.1 . The distances AB and CD are
related to the wave vectors of the incident field and the scattered field by

Figure 2.2: Spatial distribution of the electric field strength emitted by an oscillating
dipole. The arrow indicates the direction of oscillation. Note that no field is
emitted in the direction of oscillation.

AB = k̂S · pij (2.1)

and

CD = k̂I · pij

13



2 Static Light Scattering

Where pij is the separation vector between the positions of point i and j, which may
be written for any two point in space as the difference of their position vectors in an
arbitrarily defined coordinate system pij = ri − rj. The phase difference is then

∆φ = (ri − rj)(kS − kI)k (2.2)

= ri(kS − kI)k − rj(kS − kI)k

where k = 2π/λ. This relation allows to assign a phase to any of the point scatterers
considered

φi = ri(kS − kI)k (2.3)

φj = rj(kS − kI)k

and so forth. Or more generally speaking, we can assign a phase to the field scattered
from any volume element at the position r

φ(r) = rq (2.4)

where we have introduced the so–called scattering vector q ≡
(
k̂S − k̂I

)
k = kS − kI

The field strength of the scattered field further depends on the specific properties of
the regarded volume element, which we summarize as the so–called scattering power
f(r). Further the scattered field strength is of course proportional to the strength of the
incident field, such that the scattered electric field from one volume element is

EV (r, t) = f(r)EI exp{ı(qr− ωt)} (2.5)

To get the total electric field ES scattered from the entire scattering volume VS we
have to integrate over all volume elements

ES ∝
N∑
j=1

〈EVj(rj)〉 = EI

∫
VS
f(r) exp{ıqr}dr, (2.6)

where we have performed the time average and put the resulting constant into the
proportionality.

In most practical situations we are doing experiments on solutions of particles dis-
perged in a solvent, such that we will observe scattered fields from volume elements,
where particles are present and consequently the scattering power within a particle has
to be applied. On the other hand, for dilute solutions the major part of volume ele-
ments contains solvent and there the scattering power of the solvent has to be inserted
into eq. 2.6. Since we are usually interested only in the field scattered by the particle
we separate expression 2.6 into a part originating from the particles, ES,solute, and one
originating from the solvent, ES,solvent.

ES ∝ ES,solute + ES,solvent = EI

∫
VS
fsolute(r) exp{ıqr}dr + EI

∫
VS
fsolvent(r) exp{ıqr}dr

(2.7)

14



2 Static Light Scattering

Experimentally the two parts of the sum in eq. 2.7 are separated by measuring the
scattered intensity from the solution and from the solvent independently. Subsequently
the latter is subtracted from the former to give the contribution of the solute. For the
further mathematical treatment, this is equivalent to the consideration of the solute
particles in vacuum, if the solute scattering power is replaced by the difference between
the scattering power of the solute and the solvent f(r) = fsolute(r)−fsolvent(r) . In what
follows we will therefore drop the solvent contribution and the subscript solute. We may
than rewrite eq. 2.6 as

ES ∝
N∑
j=1

EI

∫
Vj
f(r) exp{ıqr}dr (2.8)

where we have substituted the integration over the whole scattering volume by the
sum of integrals over the volume of all individual particles in the scattering volume.
We are allowed to do so, because the scattered field of the volume elements outside the
particles is set to be zero according to the above consideration.

There is one major problem with eq. 2.8 to overcome. For each particle we have to
integrate with respect to r which makes the integration limits for each particle depend
on it’s position. It is much more convenient to substitute r by the sum of two new
position vectors r = rj + r′, where rj points to the center position of the jth particle and
r′ points from the center position to any arbitrary point within the particle. We may
then rewrite eq. 2.8 to give

ES ∝
N∑
j=1

∫
V 0
j

EIg(r′) exp {ıq(rj + r′)} dr′ (2.9)

= EI

N∑
j=1

exp {ıqrj} ·
∫
V 0
j

g(r′) exp {ıqr′} dr′

where V 0
j is the actual volume of the jth particle. In deriving eq. 2.9 we have made

use of the following simplifications. (i) The scattering power is described in terms of
a function which depends only on r′ and not on r anymore. This is justified since r′

always points to a volume element within the particle. The scattering power outside
the particle is zero. We therefore may write f(r) = g(r′). (ii) The substitution of the
integration variable dr = dr′ seems to be arbitrary at first glance. However r = rj + r′

and therefore dr = drj + dr′ and rj was defined to direct to a fixed point in space, i. e.
the center of particle j. Consequently drj = 0 and dr = dr′

For a solution of identical particles the integrals in eq. 2.9 are equal for each particle
and they can be factored out of the sum. For the scattered intensity from a solution of
identical particles we may thus write

I(q) ∝ E2
S =

∣∣∣∣∣
∫
V 0
j

g(r′)exp{ıqr′}dr′
∣∣∣∣∣
2

·

∣∣∣∣∣∣
N∑
j=1

exp{ıqrj}

∣∣∣∣∣∣
2

(2.10)
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2 Static Light Scattering

We can see immediately that eq. 2.10 contains a factor which depends on the particle
positions only while the other depends on the scattering power and the distances within
a particle. The former

S(q) ≡ 1

N

〈∣∣∣∣∣∣
N∑
j=1

exp{ıqrj}

∣∣∣∣∣∣
2〉

(2.11)

we call the structure factor of the solution, while the latter

P (q) ≡
〈∣∣∣∣∣∣
∫
V 0
j
g(r′)exp{ıqr′}dr′∫
V 0
j
g(r′)dr′

∣∣∣∣∣∣
2〉

(2.12)

is the so called particle scattering factor or form factor. Here the angular brackets
indicate, that in a real experiment we will always probe time averaged quantities, which
in turn means that we integrate over a large number of orientations. Mathematically
spoken the numerator of eq. 2.12 is the Fourier–transform of the scattering power distri-
bution within the particle. Note that the nominator in definition 2.12 is a normalization
constant, which we may put into the proportionality of eq. 2.10 such that we finally may
write

I(q,N) ∝
(∫

V 0
j

g(r′)dr′
)2

P (q)NS(q) (2.13)

where q is the magnitude of the scattering vector. Note that for particles with constant
scattering power the integral in the proportionality becomes g(r′)Vj0 , i. e. the scattered
intensity is proportional to the particle volume squared.

We have to emphasize that this factorization of the scattered intensity is strictly
correct only for a suspension of identical particles with a scattering power of spherical
symmetry. However, it is a very useful and widely applied approximation in certain
limiting cases for all kinds of particles. From the definitions 2.11 and 2.12 it can be seen
that in the limit of N → 0, that is infinite dilution in an experiment, the structure factor
approaches unity and in the limit of q → 0 the particle scattering factor approaches unity.
The same argument holds for the factors constituing eq. 2.10 independent of the particles
shape and scattering power. We may therefore safely apply the following approximations
to experimental data

lim
N→0

I(q,N) ∝ P (q) (2.14)

and

lim
q→0

I(q,N) ∝ S(q = 0)

We shall now calculate the magnitude of the scattering vector as a function of the
observation or scattering angle θ. We had defined the scattering vector as q = kS − kI .
From Fig. 2.3 it is obvious that the magnitude of q is related to |kS| = 2π/λ by
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|q|
2

= sin
θ

2
|kS| (2.15)

which yields

|q| ≡ q =
4π

λ
sin

θ

2
(2.16)

Figure 2.3: The magnitude of the scattering vector is calculated from |q|
2

= sin θ
2
|kS|

Note that kI and kS have the same magnitude.

Here λ is the radiation wave length in the sample λ = lambda0/n with n being the
index of refraction. In order to be able to cope with experimental scattering data on a
quantitative level we will still have to calculate the proportionality constant in eq. 2.13,
which will be done in the chapter 2.2.

In the above derivation of eq. 2.10 we have implicitly made several assumptions which
shall be discussed now.

• First of all we assumed that the incident field is NOT attenuated, neither by
absorption nor by scattering. This requires first that the solution does not have a
resonance frequency in the vicinity of the frequency of the incident field. Secondly,
only a very small portion of the incident field may be scattered.

• We further neglected multiple scattering, i. e. we assume that light scattered once
is not scattered a second time. This assumption is also justified if only a small
fraction of the incident light is scattered.

• Additionally we neglected the effect that a wave which travels through a particle
has a wavelength different from the wavelength in the solvent because of the dif-
ference of refractive index ∆n = |nparticle− nsolvent|. This may cause an additional
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phase shift with respect to the incident wave, which we neglected. This approxi-
mation is justified when 2π∆na/λ0 < 0.1, where a is the particle radius and λ0 is
the vacuum wave length of the incident field. In other words this approximation
holds if the particle is significantly smaller than the wave length.

• Finally we assumed the the propagation direction of the incident field is the same
throughout the sample. This condition ignores refraction at the particle solvent
interface, which is justified if ∆n < 0.1 roughly.

The scattering theory with the above approximations is called the Rayleigh Gans
Debye scattering theory.

2.2 The Rayleigh scattering equation

2.2.1 Ideal gas

We shall consider the particles of an ideal gas as electric dipoles, which may be caused
to oscillate by an incident electric field. The dipoles will then scatter, that is emit three
dimensional secondary fields with the same frequency as the incident field and a spatial
field strength characteristic as depicted in Fig. 2.2 . The strength of the field scattered
from a single dipole ED at a distance R from the dipole is

ED(t) =
ω2µ(t)

4πε0c2
sin δ

R
(2.17)

where µ(t) is the time dependent moment of the dipole and δ is the angle between
the dipole’s oscillation direction and the observation direction. In modern scattering
experiments we usually use polarized laser light as the primary electric field, which
allows to set δ = 90 and consequently sin δ = 1. We will consider only this case in what
follows. The time averaged intensity can be calculated according to eq. 1.25

ID =
k4 < µ2(t) >

16π2ε20R
2
cε0 (2.18)

where we made use of definition of the wave number k = ω/c. The moment of an
induced dipole is the product of it’s polarizability, α and the exciting field strength,
which in our case is a harmonic wave.

µ(t) = αEI,0 cos(ωt) (2.19)

where EI,0 is the amplitude of the exciting field. Consequently the time averaged
squared moment is

< µ2(t) >= α2E2
I,0 < cos2(ωt) >=

α2E2
I,0

2
(2.20)

Introducing eq. 2.20 into 2.18 yields
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ID
II
R2 =

k4α2

16π2ε20
(2.21)

where we used cε0E
2
I,0/2 = II for the intensity of the incident light. In the case of an

ideal gas we may use the Clausius–Mosotti equation to write the polarizability

α =
3ε0
N

(
εr − 1

εr + 2

)
(2.22)

≈ n2 − 1

N
ε0.

Here N = N/V is the particle number density and the refractive index for non–
magnetic media is n =

√
εr, with εr the relative dielectricity constant of the gas. Since

the refractive index of an ideal gas is not much different from unity we have approximated
the denominator in the first part of eq. 2.22 by εr + 2 ≈ 3. To obtain the scattered
intensity IS from an ensemble of N dipoles we multiply ID by the number of particles
and introduce eq. 2.22 into 2.21.

IS
II
R2 = N

k4

16π2ε20

(n2 − 1)2

N 2
ε20 (2.23)

We will now substitute the particle number density in a convenient way, i. e.

N 2 = N2/V 2 =
N

V

NAn

V
=
N

V

NAm

MrV
=
N

V

NA

Mr

ρ (2.24)

where NA is Avogadro’s constant, n is the number of moles of particles (not to be
mixed up with refractive index), m is their total mass, Mr is their molar mass and ρ is
their mass density. Together with eq. 2.23 this gives.

IS
II

R2

V
=
k4(n2 − 1)2

NAρ16π2
Mr (2.25)

The expression on the left hand side of this equation is usually referred to as the
Rayleigh–ratio R to the honor of Lord Rayleigh who was the first to write down the
scattering equation for an ideal Gas in 1871

R =
k4(n2 − 1)2

16π2NAρ
Mr (2.26)

Note that according to k = 2π/λ, the scattered intensity from an ideal gas depends
on λ−4, that is blue light is scattered much more strongly than red light. This is the
reason why the sky above is blue. On the other hand sun downs are red because the
blue part of the white sunlight is scattered off the observation direction most strongly,
if you look directly into the sun.
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2.2.2 Infinitely dilute solutions of small particles

The formalism for the calculation of the scattered intensity from an ideal gas can be easily
adopted to dilute solutions of small particles. We have to perform three modifications
to eq. 2.26.

• 1. We have to account for the dielectric properties of the solvent and the solution,
when writing down the Clausius–Mosotti equation. Instead of eq. 2.22 we have to
write

α =
3ε0
N

(
εr,solution − εr,solvent
εr,solution + 2εr,solvent

)
(2.27)

The denominator of eq. 2.27 can be rewritten by factoring out the εr,solvent, which
yields εr,solvent (εr,solution/εr,solvent + 2), which may be approximated by 3εr,solvent
if εr,solution ≈ εr,solvent. With this approximation the Clausius–Mosotti equation
reads

α =
ε0
N

(
n2
solution − n2

solvent

n2
solvent

)
(2.28)

• 2. Also the relation for the moment of the induced dipole (eq. 2.19) has to be
modified taking into account the relative dielectric constant of the solvent

µ(t) = αεr,solventEI,0 cos(ωt) (2.29)

This modification will cause an additional factor n4
solvent in the numerator of

eq. 2.26.

• 3. The particle number density in a solution is N = c · NA/Mr, where c is the
solute mass per unit volume (not to be mixed up with the speed of light), which
in light scattering is often called concentration.

Applying these modifications to eq. 2.26 leads to

R =
k4(n2

solution − n2
solvent)

2

16π2NAc
Mr (2.30)

The difference of squared refractive indexes may be approximated in the Rayleigh–
Gans–Debye limit as

n2
solution − n2

solvent = (nsolution − nsolvent) (nsolution + nsolvent) (2.31)

≈ (nsolution − nsolvent) · 2nsolvent
≡ 2nsolvent∆n.
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The refractive index difference ∆n can be written as c∂n/∂c, if the refractive index
increment ∂n/∂c is a constant. Thus n2

solution − n2
solvent ≈ 2nsolventc∂n/∂c, which can be

introduced into eq. 2.30 to yield

R =
k44n2

solvent

16π2NA

(
∂n

∂c

)2

Mrc (2.32)

If we substitute k = 2π/λ0, were λ0 is the vacuum wavelength of the incident light,
and summarize all constants in K = (2πnsolvent∂n/∂c)

2 /(NAλ
4
0) we obtain the simple

expression for the scattered intensity from a dilute solution, which you will find most
frequently in text books on light scattering.

R = KcMr (2.33)

It is thus possible to determine the molar mass Mr of solute particles by a light
scattering experiment. It is important to notice that light scattering is one of the few
experimental techniques to determine the molar mass of polymers in solution on absolute
scale.

We have so far added up the scattering intensity of all dipoles in the solution to get the
total scattered intensity. This simple procedure neglects any interference, which strictly
speaking can only be correct for infinite dilution and zero scattering angle or scattering
vector. In the next two sections we will introduce further improvements to eq. 2.33,
which account for the effect of finite concentration and and finite scattering angle.

2.2.3 Interparticle interference

Because we have so far simply added the intensities stemming from single dipoles, any
kind of interference has to reduce the total scattered intensity. In light scattering it is
very common to express the scattered intensity in terms of the inverse Rayleigh–ratio,
which depends on the scattering vector and the solute concentration.

Kc

R(q, c)
=

1

Mr

(2.34)

This quantity has to increase with increasing concentration, and for moderate con-
centrations it is reasonable to assume that it will increase linearly with c, that is

Kc

R(q, c)
=

1

Mr

+Kc (2.35)

This is an expansion in c, and a closer look reveals that the right hand side of the
equation is related to the virial expansion of the osmotic pressure of a solution. For
an ideal solution, i. e. a solution of particles which do not have any interactions, the
osmotic pressure is

Π =
n

V
RT =

m

MrV
RT (2.36)
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=
1

Mr

cRT

where R is the gas constant an T the temperature. For real solutions particle inter-
action has to be accounted for, which can be done to a first approximation by a virial
expansion

Π ≈ RT
(

1

Mr

c+ A2c
2 + A3c

3 + ...
)

(2.37)

Truncating the expansion after the quadratic term and taking the derivative yields
the osmotic compressibility as

dΠ

dc
≈ RT

(
1

Mr

+ 2A2c
)
. (2.38)

If we identify K from eq. 2.35 with 2A2 we get

Kc

R(q, c)
=
dΠ

dc

1

RT
(2.39)

From statistical thermodynamics it is known that the osmotic compressibility is related
to S(q = 0) the zero scattering vector limit of the solution structure factor by

S(q = 0) =

(
dΠ

dc

)−1
RT. (2.40)

With this relation we have finally established the missing proportionality constant in
eq. 2.13 for the zero q limit as

Kc

R(q = 0, c)
=

1

S(q = 0, c)
(2.41)

=
1

Mr

+ 2A2c

2.2.4 Intraparticular interference

In this section we will introduce a further improvement to eq. 2.41 to account for the
angular dependence of the scattering. How we have to do that is immediately obvious
from eq. 2.13. From the corresponding discussion in chapter 2.1 we now that

lim
c→0

I(q, c) ∝ P (q) (2.42)

In the preceding section we established the proportionality constant according to
eq. 2.33. Thus we can write
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lim
c→0
R(q, c) = KcMrP (q) (2.43)

or
Kc

R(q, c = 0)
=

1

MrP (q)

To account also for the concentration dependence we have to substituteMr by S(q = 0)
according to eq. 2.41, which gives

lim
c→0,q→0

Kc

R(q, c)
=

1

S(q = 0, c)P (q)
(2.44)

=
1

P (q)

(
1

Mr

+ 2A2c
)

This limiting relation is however often used to evaluate static light scattering data as
will be discussed in chapter 2.3. For this purpose the particle scattering factor is written
in the form derived by Debye

P (q) =
1

N2

N∑
i

N∑
j

sin qrij
qrij

. (2.45)

This expression can be related to the radius of gyration of the particle in the following
way. Expanding the sin–term in P (q) as a Taylor–series yields

P (q) =
1

N2

N∑
i

N∑
j

{
1− (qrij)

2

3!
+

(qrij)
4

5!

}
. (2.46)

If the sum is truncated after the square term it can be rewritten as

P (q) = 1− q2

N2

N∑
i

N∑
j

r2ij
3!
. (2.47)

As the radius of gyration Rg is defined as

< S2 >= 1− 1

2N2

N∑
i

N∑
j

r2ij ≡ R2
g. (2.48)

the form factor is approximately

P (q) ≈ 1−
q2R2

g

3
. (2.49)

A further approximation can be applied for
q2R2

g

3
<< 1, than

1

P (q)
≈ 1 +

q2R2
g

3
, (2.50)
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which now can be introduced into eq. 2.44 and we obtain

Kc

R(q, c)
≈
(

1

Mr

+ 2A2c
)(

1 +
q2R2

g

3

)
(2.51)

According to Figs. 2.4 and 2.5 the above above approximations hold only for (qRg)
2 <

0.1. Consequently eq. 2.51 can be further simplyfied to

Kc

R(q, c)
=

1

Mr

(
1 +

q2R2
g

3

)
+ 2A2c. (2.52)

This is justified, because the second cross term 2A2cq
2R2

g/3 is at least 30 times smaller
than 2A2c, if q2R2

g < 0.1. Eq. 2.52 is the so–called Zimm equation, which was suggested
by B. Zimm in 1949, and is the most widely used formalism to evaluate static light
scattering data.
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x2

 sin(x)/x
 1-x2/3!

Figure 2.4: Comparison of sinx/x with the corresponding Taylor–expansion truncated
at the quadratic term

2.3 Data evaluation

2.3.1 The Zimm plot

From eq. 2.52 it is evident that there are three basic parameters which can be determined
by static light scattering (SLS) experiments, i. e. the particle molar mass, Mr, it’s radius
of gyration Rg and the second osmotic virial coefficient A2 of the solution. In this section
we will see how these parameters are extracted from experimental data, where we will
neglect polydispersity effects except from stating that for polydisperse samples the molar
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Figure 2.5: Comparison of 1/(1−x2/3) with the approximation 1 +x2/3. Note that the
approximation deviates from the exact expression at x2 > 0.1

mass determined by SLS is the mass average MW and the radius of gyration is the z–
average. For a thorough treatment of polydispersity effects the reader is referred to
the book by J. Dhont. Before we start the detailed discussion please note that in light
scattering almost all the time so–called cgs–units, i. e. centimeter, gram, seconds, are
used instead of SI–units. That is the scattering vector is expressed in units of cm−1,the
molar mass has the unit g/mol, the ragdius of gyration is expressed in nm and the virial
coefficient has the unit cm3/(gmol).
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Figure 2.6: Scattering data from a hypothetic particle solution with molar mass MW =
9.5×105 g/mol, radius of gyration Rg = 95 nm and osmotic virial coefficient
A2 = 10−4 cm3/(g mol). The data were ’recorded’ at a concentration of
c = 10−3 g/mL as a function of the scattering vector
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Typically SLS measurements are performed on a dilution series of at minimum four
concentrations. The q–dependence of the scattered intensity is detected for each solution
and converted into values of Kc/R(q, c) at fixed c. These are plotted and approximated
with a linear least squares fit, as is sketched in Fig. 2.6 . The linear extrapolation yields
the so–called apparent molar mass Mapp as the intercept

Kc

R(q = 0, c)
=

1

MW

+ 2A2c (2.53)

≡ 1

Mapp

and the slope is

slope =
R2
g

3MW

. (2.54)

In a second step the obtained values of 1/Mapp are plotted vs. concentration and again
extrapolated linearly. According to eq. 2.53 this will yield 1/MW as the intercept and
2A2 as the slope. Knowing the molar mass, it is also possible to calculate the radius of
gyration according to eq. 2.54
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(1+q2R2

g
/3)=1/P(q)

Figure 2.7: Scattering data from a hypothetic particle solution with molar mass MW =
9.5×105 g/mol, radius of gyration Rg = 95 nm and osmotic virial coefficient
A2 = 10−4 cm3/(g mol). The data were ’recorded’ at a constant angle, i. e.
scattering vector, as a function of the solute concentration.

Instead of first extrapolating the angular dependence at fixed c and subsequently
extrapolating the zero–q results, the order of extrapolations can be inverted as well.
The data obtained at a given scattering vector are than plotted versus concentration as
shown in Fig. 2.7 and extrapolated linearly. This gives

26



2 Static Light Scattering

Kc

R(q, c = 0)
=

1

MW

(
1 +

q2R2
g

3

)
(2.55)

≈ 1

P (q)

as the intercept and the slope is 2A2. In the second step the obtained values for P (q)
are plotted versus q2 and extrapolated linearly to give again 1/MW as the intercept while
the slope is again given by eq. 2.54.

This procedure is rather tedious, but B. Zimm has suggested an elegant method to
do all the necessary extrapolations in one graph, which is usually referred to as the
Zimm–plot.
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Figure 2.8: Zimm-plot of the scattering data from a hypothetic particle solution with
molar mass Mr = 9.5 × 105 g/mol, radius of gyration Rg = 95 nm and
osmotic virial coefficient A2 = 10−4 cm3/(g mol).

In this representation the data are plotted on an expanded x–axis which is q2+kc. The
parameter k has no physical meaning and is chosen arbitrarily in order to get a convenient
spacing between sets of data which belong to samples of different concentration. As to
be seen from Fig. 2.8 , data points fall on an oblique grid. In the present case we have
chosen k such that data at variable q and constant concentration lie at the lines with
larger slope, while the data at variable c and constant q lie on the lines with smaller
slopes. Now linear extrapolations can be performed both at constant concentration and
at constant scattering vector. However there are some important details to be taken
into account.

The data at variable scattering vector and constant c are NOT extrapolated to zero,
but to q2 = 0, which is a vertical line at kc. This sketched as an example for the
concentration c3 where the green dotted line corresponds to q2 = 0. Accordingly the
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intercept of the angular dependence with this line is 1/Mapp(c3). The open squares in
Fig. 2.8 are obtained in an analogue manner for the other concentrations. The slopes of
these extrapolations is again related to the radius of gyration by eq. 2.54.

The data at variable concentration and constant q are also NOT extrapolated to zero,
but to c = 0, which for every q is a vertical line at q2. The intercept of the concentration
dependence with this line is 1/P (q). The open circles in Fig. 2.8 were obtained in this
manner. This is a very important feature since it is possible to get the complete angular
dependence of the particle scattering factor by this procedure. We have now two new
set of data, that is 1/Mapp vs kc and P (q) vs. q2, which both can be again linearly
extrapolated finally to zero. The slope of the former is 2A2k and the slope of the latter
is again given by eq. 2.54. Both regression lines should intersect the ordinate at 1/MW .

In many real cases however, 1/Mapp vs kc and/or 1/P (q) vs. q2 are not simple linear
dependencies. In this cases the initial slopes for c→ 0 and q2 → 0 respectively have to
be taken to determine A2 and Rg.

We shall now discuss the limitations of determining particle parameters by SLS. We
have already seen in chapter 2.1 that the Rayleigh–Gans–Debye scattering is only valid
for particles which are significantly smaller than the wave length of the applied radiation
source. As we have further seen, the approximation P−1(q) ≈ 1 + q2R2

g/3 holds only
if q2R2

g < 0.3. On the other hand the particles have to be large enough to produce a
significant deviation of P (q) from unity over the accessible range of scattering vectors.
It is common understanding that a deviation from unity of five percent can be reliably
detected. Thus

q2R2
g

3
> 0.05 (2.56)

Rg >

√
0.15

4π sin(θ/2)
λ

Rg > 0.025λ,

i. e. in a light scattering experiment, where the scattering angle is typically limited to
150 degree, the particles’ radius of gyration should be larger than λ/40 to be detectable.
Note that in most older monographs state a minimum value of λ/20.

2.3.2 Particle scattering factors

As we have seen in the preceding section, it is possible to determine the particle scattering
factor from SLS experiments if the angular dependence of the scattered intensity is
extrapolated to infinite dilution in a Zimm–plot. The most complete list of particle
scattering factors is given by J. S. Pedersen Adv. Coll. Interf. Sci. 1997, 70, 171. Here
we shall only discuss the properties of the three mostly used particle scattering factors,
namely for a sphere, a random coil and a rigid infinitely thin rod.

Psphere(q) =

{
3

sin(qR)− qR cos(qR)

(qR)3

}2

(2.57)

28



2 Static Light Scattering

0.00 0.05 0.10 0.15

10-6

10-5

10-4

10-3

10-2

10-1

100

q
min,2

 Rod
 Coil
 Sphere

 P
(q

)

q / nm-1

q
min,1

Figure 2.9: Particle scattering factors of a rod, a random polymer coil and a sphere with
Rg = 50 nm.

where R is the sphere radius, which is related to the radius of gyration by Rg =
√

3/5R.

Pcoil(q) =
2

u2
(exp{−u}+ u− 1) (2.58)

with u = (qRg)
2.

Prod(q) =
2

qL

∫ qL

0

sin s

s
ds− 4

(
sin(qL/2)

qL

)2

(2.59)

where L is the rod length, which is related to the rod’s radius of gyration by Rg =√
L2/12. Examples of these form factors for particles with Rg = 50 nm are displayed

in Fig. 2.9 . Usually the experimental data are evaluated quantitatively by linear least
squares fitting to an appropriate model form factor. Where the most difficult task is the
proper choice of the model function. However, there is a large amount of information,
which can be deduced very easily from the experimental form factors, without any
sophisticated data fitting. The form factor of the rod decays slower than that of a coil
with the same Rg, and the form factor of a sphere decays even faster than that of a
coil. The latter has very characteristic pronounced minima, which are actually real
zero, as can be seen from eq: 2.57. This zero positions can numerically be found to be
qmin,1 = 4.49/R and qmin,2 = 7.73/R ... In other words, the radius of the sphere can be
determined rather exactly from the position of the minima in the P (q) vs q– curve. Note
that the radius of the sphere and the scattering vector at which the minimum occurs are
related inversely. This is an important general feature of scattering experiments: small
distances will show up at large scattering vectors and vice versa.
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Figure 2.10: Particle scattering factors of a rod, a random polymer coil and a sphere
with Rg = 50 nm.

Further information can be obtained if the data are plotted differently. In a log–log
representation as depicted in Fig. 2.10 , the form factor of a rod has a final slope of −1,
while that of a coil has a final slope of −2. Both values are highly characteristic for the
respective shape of the scatterers as can be seen from eq. 2.59 and 2.58 respectively. In
the high q–limit the form factor of a rod approaches

lim
q→∞

Prod =
π

qL
(2.60)

because the integral in eq. 2.59 approaches π/2 if q tends to infinity.
The high q–limit of the form factor of a coil is

lim
q→∞

Pcoil =
2

q2R2
g

(2.61)

Eqs. 2.60 and 2.61 cause the observed values of the final slopes in the log–log repre-
sentation of the form factor.

Further it is evident from eq. 2.60 that the length of a rod L can be determined from
the high q–behavior of the form factor. If the particle scattering factor is plotted in
a so–called Cassasa–Holtzer plot as qP (q) vs q the curve will level off to a plateau at
sufficiently high q, as is shown in Fig. 2.11 . The hight of this plateau is π/L.
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Figure 2.11: Cassasa–Holtzr plot of the particle scattering factor of a rod with Rg = 50
nm, corresponding to a length of L = 173 nm.
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3 Dynamic Light Scattering

3.1 The effect of particle motion

Up to now we have treated our particle solution as if the particles were fixed in space,
which is obviously not the case, but which is justified, if we measure the time average
of the scattered intensity. In this case we measure besides the particle scattering factor,
the time average of the structure factor which is determined by the average relative
positions of particles with respect to each other.

This consideration does not hold anymore, if we measure the scattered intensity with
a time resolution of milliseconds or even tenths of nanosecond, which is possible with
modern instrumentation. In chapter 2.1 we have seen that the fields scattered from
two particles in general have a phase shift due to the different paths the waves have to
travel. Lets consider the field scattered from the green and the red particle in Fig. 3.1 .
At t = 0 (top part) the two particles shall be located such that their separation vector
is perpendicular to kI . In this case the scattered fields will have no phase shift. At
some time t > 0 the red (and the green) particle shall have moved to a new position.
Therefore the path difference of the two waves is now AB − CD, which causes a finite
phase shift. The superposition of the two waves will now result in a total field strength
which is smaller than at t = 0. The random movement of all particles in solution will
thus cause a fluctuation of the scattered intensity as is sketched in Fig. 3.2.

3.2 Time–auto correlation functions (TACF)

The simplest method to analyze such fluctuations is tu use the time auto–correlation
functions of the fluctuating quantity. For the scattered intensity this is defined as

gI(q, t) ∝ 〈IS(q, 0)IS(q, t)〉 (3.1)

where the pointed brackets refer to an ensemble average an I(q, 0) is the observed
scattered intensity at a given scattering vector and at time t = 0, while I(q, t) is the
scattered intensity at an later stage t > 0. At this point, it is important to note that,
for ergodic systems, the correlation function will not depend on the state of the system
at the starting time of the experiment. In other words, the time t = 0 can be chosen
arbitrarily. This allows for a very efficient way to construct gI(q, t) experimentally, just
by calculating the following sums at different times

gI(q, 0×∆t) =
1

M + 1

M∑
n=0

〈I(q, n×∆t)I(q, n×∆t)〉 (3.2)
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Figure 3.1: Variation of the phase shift of the fields scattered from two particles in de-
pendence of the relative particle position.

gI(q, 1×∆t) =
1

M + 1

M∑
n=0

〈I(q, n×∆t)I(q, (n+ 1)×∆t)〉

gI(q, 2×∆t) =
1

M + 1

M∑
n=0

〈I(q, n×∆t)I(q, (n+ 2)×∆t)〉

gI(q, 3×∆t) =
1

M + 1

M∑
n=0

〈I(q, n×∆t)I(q, (n+ 3)×∆t)〉

...

gI(q,M ×∆t) =
1

M + 1

M∑
n=0

〈I(q, n×∆t)I(q, (n+M)×∆t)〉

where we have dropped the subscript S for convenience. Time is expressed in multi folds
of ∆t and M×∆t is some maximum time, which has to be significantly smaller than the
total length of the intensity trace. According to eq. 3.2 the first value of the correlation
function would be a summ of squared intensity values, which could become a very large
number leading to numerical overflows in the case of a long time experiment. Therefore,
a normalized time auto correlation function ĝI(q, t) = gI(q, t)/ < I >2 is calculated,
where < I > is the time-average of the scattered intensity, i. e. the static scattering
intensity. To extract information on the dynamics of the scattering particles we have
to calculate the ĝI(q, t) explicitly. For this purpose, we first calculate the time auto
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Figure 3.2: Intensity fluctuations caused by random particle motion.The verticals lines

indicate time intervals of width ∆t.

correlation function of the scattered field, which we will relate to the intensity TACF in
a second step. The scattered field from an ensemble of particles can be written as

ES ∝
N∑
i=1

B(q) exp {ıqri} (3.3)

where the proportionality constant contains the scattering power of the particles and
the particle scattering amplitude is related to the form factor by P (q) = |B(q)|2. If we
define the time auto correlation function of the scattered field in the same way as that
of the scattered intensity, i. e.

gE(q, t) ∝ 〈ES(q, 0)E∗S(q, t)〉 (3.4)
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3 Dynamic Light Scattering

where the asterisk refers to the complex conjugate, the normalized field TACF is

ĝE(q, t) =
1

N

N∑
i=1

N∑
j=1

〈
exp {ıqri(0)} exp

{
−ıqrj(t)

}〉
(3.5)

Here we made use of the fact that S(q)N ∝ 〈I(q)〉 ∝ 〈ES(q, 0)E∗S(q, 0)〉 with S(q) = 1 for
dilute suspensions and that the form amplitude as well as all proportionality constants
cancel by normalization, if all particles are identical. The term on the r. h. s of eq. 3.5
is often referred to as the dynamic structure factor.

For the simple case of non–interacting particles ri(0) and rj(t) are statistically inde-
pendent and the average over the product in eq. 3.5 may be replaced by the product of the
averages 〈exp {ıqri(0)}〉

〈
exp

{
−ıqrj(t)

}〉
, which are both of the form

∫
drP (r) exp {ıqr}

in their integral representation. For dilute suspensions of particles the probability den-
sity P (r) of finding a particle at position r is P (r) = 1/V , where V is the system volume.
It can be shown that these integrals tend to zero vor infinitely large V except for q = 0.
We will not provide a rigorous proof for this statement but rather show graphically for
the one dimensional case, that this is true. Consider the integral

f(qx) =
∫ L

−L
dx exp {ıqxx}. (3.6)

the solution of which is

f(qx) =
exp {ıqxx}

ıqx
|L−L=

xı sin qxx

ıqxx
|L−L= 2L

sin qxL

qxL
(3.7)

It is evident that f(qx) has it’s first zero at qx = π/L and the maximum value is 2L at
qx = 0. Consequently for infinite L, f(qx) becomes infinitely narrow and infinitely high
at qx = 0. Therefore we may safely assume that

lim
L→∞

f(qx) =
∫ ∞
−∞

dx exp {ıqxx} ∝ δ(qx), (3.8)

which is zero everywhere except for qx = 0 and therefore also 〈exp {ıqri(0)}〉 = 0 for
q 6= 0 q. e. d. In other word all terms with i 6= j vanish in the average of eq. 3.5, and
we remain with

ĝE(q, t) =
1

N

N∑
i=1

〈exp {ıqri(0)} exp {−ıqri(t)}〉 (3.9)

= 〈exp {ıqr0} exp {−ıqrt}〉

=
∫
dr0

∫
drt exp {ıq(r0 − rt)P (r0, rt, t)}.

For convenience we have replaced the symbols r(0) by r0 and r(t) by rt.
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Figure 3.3: Approximation of a δ–distribution by a sinx/x–function with x = qxL

3.3 Brownian motion and the field TACF

To solve thew final integral in eq. 3.9 we use some properties of probability density
functions (termed pdf hereafter) and and the Smoluchowsky–equation of motion for
freely diffusing Brownian particles. To understand the properties of pdfs we have first
to clarify what an ensemble is. Imagine a large number of systems consisting of colloidal
particles suspended in a solvent, which are macroscopically identical in terms of there
thermodynamic variables. However, the local arrangement of particles will be different
in each system. Such a collection of systems is called an ensemble. Now the probability
density function P (rt) of rt is defined by

P (rt)dr = the probability that there are particles

in the volume element dr around the position defined by rt

This pdf is normalized such that
∫
drtP (rt) = 1, wich leads immediately to P (rt) = 1/V

for dilute suspensions of noninteracting particles, where V is the system volume. An
intuitive understanding of the pdf–concept can be gained by supposing to take a snapshot
of the ensemble at two times t = 0 and t > 0. The probability P (r0)dr is given by the
number of systems which show a particle in the volume dr (let’s call these positive)
divided by the total number of systems (see figure 3.3. The probability P (rt)dr can be
visualized accordingly. To calculate the integrals in eq. 3.9 we use the pdf P (r0, rt, t)
which is defined by the probability that there are particles in dr around r0 at t = 0 and in
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Figure 3.4: Illustration of probability density functions.
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3 Dynamic Light Scattering

dr around rt at a later time t > 0, i. e. P (r0, rt, t) dr0dr. In terms of the snapshot model
this is the number of positive systems on the picture taken at t = 0 plus the number
of positive systems on the photograph taken at t > 0 divided by the total number of
systems.

The property of this pdf, which we are going to exploit, is that it can be related
to P (r0) by P (r0, rt, t) = P (r0)Pc(rt, t|r0, 0) where the conditional pdf Pc(rt, t|r0, 0) is
defined by

Pc(rt, t|r0, 0)drt = the probability that there are particles

in the volume element dr around the position defined by rt at time t

provided that at t = 0, there was a particle at r0.

The conditional pdf can formally be determined from the Smoluchowsky equation of
motion

∂Pc(rt, t|r0, 0)

∂t
= L̂Pc(rt, t|r0, 0) (3.10)

where the operator working on the pdf L̂ = D0∇2 for a dilute suspension of non–
interacting spherical particles with D0 their Einstein diffusion coefficient. Under the
initial condition that at time t = 0 Pc(rt, t|r0, 0) = δ(rt− r0) the differential eq. 3.10 has
the formal solution

Pc(rt, t|r0, 0) = exp
{
L̂t
}
δ(rt − r0), (3.11)

with which we can rewrite the integral of eq. 3.9 as

ĝE =
∫

dr0 exp {ıqr0}P (r0)
∫
drt exp

{
L̂t
}
δ(rt − r0) exp {−ıqrt} (3.12)

=
∫
drt exp

{
L̂t
}

exp {−ıqrt}
∫

dr0 exp {ıqr0}P (r0)δ(rt − r0)

=
1

V

∫
drt exp {ıqrt} exp

{
L̂t
}

exp {−ıqrt}.

Here we used that P (r) = 1/V for dilute solutions and the definition of the δ–distribution∫
dx′f(x′)δ(x− x′) = f(x). For convenience, we will drop the subscript t further on. To

solve the remaining integral we replace the exponential operator by it’s Taylor–expansion

exp
{
L̂t
}

=
∞∑
n=0

1

n!
tnL̂n (3.13)

where L̂n means the n-fold application of L̂, which gives

L̂n exp {−ıqr} = −
(
D0q

2
)n

exp {−ıqr}. (3.14)

Reintroducing this result into the Taylor-Expansion results

exp
{
L̂t
}

exp {−ıqr} = exp
{
−D0q

2t
}

exp {−iqr} (3.15)

and the field TACF attains it’s final form

ĝE =
exp {−D0q

2t}
V

∫
dr (3.16)

= exp
{
−D0q

2t
}
.
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3.4 The Siegert–relation

In the previous section we derived an expression for the scattered field TACF from a
dilute suspension of noninteracting identical spheres. This has now to be related to
scattered intensity TACF which was introduced in section 3.2. In terms of the scattered
field, gI(q, t) is an average of the product of four Gaussian variables

gI(q, t) ∝ 〈ES(q, 0)E∗S(q, 0)ES(q, t)E∗S(q, t)〉 , (3.17)

which according to Wick’s theorem can be written in terms of averages of products of
only two variable, i. e.

〈ES(q, 0)E∗S(q, 0)ES(q, t)E∗S(q, t)〉 = 〈ES(q, 0)E∗S(q, 0)〉 〈ES(q, t)E∗S(q, t)〉 (3.18)

+ 〈ES(q, 0)ES(q, t)〉 〈E∗S(q, 0)E∗S(q, t)〉
+ 〈ES(q, 0)E∗S(q, t)〉 〈E∗S(q, 0)ES(q, t)〉 .

The first term of the r.h.s of eq. 3.18 is the square of the averaged scattered intensity
〈I(q)〉2, while the third term is the absolute square of the field TACF as defined by
eq. 3.4. The second term is the product of two averages of the form

〈exp {ıq(r0 + rt)}〉 =
∫
dr0

∫
drtP (r0)Pc(rt, t|r0, 0) exp {ıq(r0 + rt)} (3.19)

=
∫
dr0

∫
drtP (r0)P (r0 − rt, t) exp {ıq(r0 + rt)}

where we realized that the conditional pdf is only a function of the difference coordinate
r0 − rt for the case under consideration and thus Pc(rt, t|r0, 0) ≡ P (r0 − rt, t). If we
apply a coordinate transformation (r0, rt)→ (r0 + rt, r0 − rt) which gives a Jacobian of
1/8 we can separated integration variables as

〈exp {ıq(r0 + rt)}〉 =
1

8

1

V

∫
d(r0 + rt) exp {ıq(r0 + rt)}

∫
d(r0− rt)P (r0− rt, t). (3.20)

The second integral is well behaved because the pdf is a normalized function, and the
first integral is δ(q) for infinitely large scattering volumes which is zero everywhere except
for q = 0 (see the arguments following eq. 3.6). Consequently we can establish a simple
relation between the scattered field TACF and the scattered intensity TACF

gI(q, t) = 〈I(q)〉2 + |gE(q, t)|2 , (3.21)

which is usually referred to as the Siegert–relation. In terms of the normalized TACFs
this can be expressed as

ĝI(q, t) = 1 + |ĝE(q, t)|2 , (3.22)

According to the definition of the normalized field TACF it will approach unity at very
short times (see eq. 3.5). At very large times the average of products〈

exp {ıqri(0)} exp
{
−ıqrj(t)

}〉
→ 〈exp {ıqri(0)}〉

〈
exp

{
−ıqrj(t)

}〉
because the position of particles will be statistically independent at large times. The
two averages on the r. h. s. are zero for q 6= 0. Thus we find that the normalized field
TACF will start at unity and drop to zero with increasing time, while the normalized
intensity TACF starts at two and decays to one with increasing time.

39
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3.5 Diffusion coefficient and hydrodynamic radius

In a dynamic light scattering experiment we measure the intensity TACF and for simple
case of a dilute suspension of non–interacting identical particles we observe a single
exponential, the decay time of which is related to the Einstein–Diffusion coefficient of
the particles according to eqs 3.16 and 3.22

gI(g, t) = exp {−t/τ} (3.23)

= exp
{
−2D0q

2t
}
.

From the diffusion coefficient the so–called hydrodynamic radius, RH , of the solute
particles can be calculated using the Stokes–Einstein equation

RH =
kBT

6πη0D
. (3.24)

Here kB is the Boltzmann constant and η0 is the viscosity of the solvent. In the cgs–
system the diffusion coefficient has the unit cm2/s. Consequently, kB = 1.38 × 10−16

cm2g/(s2K) is often used to obtain the hydrodynamic radius in cm–units. We have
to emphasize that RH is a hypothetical radius and can be related to the geometric
particle size only in the case of spherical bodies. However, according to eq. 3.23 particles
with large diffusion coefficients cause correlation functions with small decay times. In
combination with eq. 3.24, it follows that particles with large RH cause slowly decaying
TCFs.
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Figure 3.5: Intensity time auto correlation functions with different decay times.

40



3 Dynamic Light Scattering

3.6 Depolarized dynamic light scattering

If particles are anisotropic their random orientational motion will, like translation, con-
tribute to the fluctuation of the scattered intensity. In the case of non–spherical particles,
this effect can be due to their geometrical anisotropy and/or to an anisotropy of their
dielectric properties. For spherical particles, evidently only optical anisotropy will con-
tribute. This is the case we will discuss in the following. If a birefringent sphere is
exposed to an oscillating incident electric field Ei the induced dipole µ will depend on
the orientation of the sphere, characterized by the unit vector û which points in the
direction of the optical main axis of the particle. The dielectric constant along this
direction ic called εp, while εn is the dielectric constant in the direction normal to û (see
Fig. 3.6). The induced dipole is proportional to the incident field strength where the

Figure 3.6: An optically anisotropic sphere in an oscillating electric field.

proportionality constant is the dielectric tensor which depends on the particle orientation

µ = ε(û) · Ei (3.25)

= εpEi,p + εnEi,n

where the components of the incident electric field alon û and normal to it are given by

Ei,p = ûû · Ei (3.26)

and

Ei,n = Ei − Ei,p = Î · Ei − ûû · Ei

with Î the identity matrix. Thus by comparison of coefficients we find

ε(û) = εpûû + εn
(
Î− ûû

)
(3.27)
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Figure 3.7: Illustration of the polarizer settings in a DDLS set up.
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4 Scattering techniques using
evanescent illumination

The techniques described in the preceding chapters are well suited to investigate static
and dynamic properties of colloids or polymer in a bulk solution, far away from any
bounding container wall. However, in the ultimate vicinity of solid surfaces the physical
properties of suspension may differ largely from their bulk behavior. The near wall
dynamics of colloids is slowed down and becomes anisotropic due to hydrodynamic
interactions with the wall, while the static properties may be altered due to the additional
interaction with the solid body. These effects can be quantitatively studied by scattering
experiments with evanescent illumination.

4.1 Evanescent illumination

If a laser beam impinges on an interface between two dielectric media of different refrac-
tive index, the transmitted beam will be refracted according to Snell’s law, as indicated
in Figure 4.1. Here the wave vector of the transmitted light is given by k2 = ky,2 + kz,2
with the corresponding vector amounts given by k2 = 2πn2/λ0 =

√
k2y,2 + k2z,2. In par-

ticular the the

Figure 4.1: Transmission and reflection at a flat interface between two media of different
refractive index.
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5 Further Reading

• For the basics of optics and wave motion see:
Eugene Hecht; Optics; Addison Wesley 1998.

• For a brief review on light scattering see:
C. S. Johnson, Jr. and D. A. Gabriel; Laser Light Scattering; Dover Publications
1993.

• For a very thorough treatment of scattering theory see:
J. K. G. Dhont; An introduction to the dynamics of colloids; Chapter III; Elsevier
1996.
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6 Exercises

Exercise 1

Explain why it is not possible to determine a particle radius of gyration smaller
than roughly 25 nm by static light scattering.

Excercise 2

In Fig. 5.1 the particle scattering factors of spheres with different radii are plotted.
For clarity the the upper curve is displaced on the ordinate by a factor 100.

a) Judge from these curves, which corresponds to the spheres with smaller radius.

b) Determine the radii from the position of the minima.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
10-10

10-5

100

P
(q

)

q / nm-1

Figure 6.1: Particle scattering factor of spheres. The upper curve is shifted by factor of
100 on the ordinate.
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Excercise 3

In Fig. 5.2 time auto–correlation functions of the scattered intensity of from two
solutions spheres with different radii in water are plotted. The scattering angle is
90 degree the wave length of the incident light is 632 nm and the viscosity of water
at 298 K is 0.089 cP.

a) Judge from these curves, which corresponds to the spheres with smaller radius.

b) Estimate the radii from the relaxation times.
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g 2(δ
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Figure 6.2: Time auto–correlation function of the scattered intensity of spheres of dif-
ferent size. The scattering angle is θ = 90 degree.
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6 Exercises

Table 6.1: Scattering data from a polymer in water expressed as Kc/R(q, c)× 106.

Scattering angle c1 c2 c3 c4
degree 10−3 g/mL 2× 10−3 g/mL 4× 10−3 g/mL 8× 10−3 g/mL

20 2,30 2,90 4,10 6,50
30 2,33 2,93 4,13 6,53
40 2,38 2,98 4,18 6,58
50 2,44 3,04 4,24 6,64
60 2,51 3,11 4,31 6,71
70 2,59 3,19 4,39 6,78
80 2,67 3,27 4,47 6,87
90 2,75 3,35 4,55 6,95
100 2,83 3,43 4,63 7,03
11ß 2,92 3,52 4,72 7,12
120 2,99 3,59 4,79 7,19
130 3,06 3,66 4,86 7,26
140 3,12 3,72 4,92 7,32
150 3,17 3,77 4,97 7,37

Excercise 4

In Table 5.1 scattering data from a polymer in aqueous solutions are listed. De-
termine the molar mass, MW , the radius of gyration, Rg and the osmotic virial
coefficient A2 from these data. The wave length of the incident light is 632 nm
and the refractive index of water is 1.33.
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