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1 Interactions

1.1 Molecular Interactions

As the interaction energy between large bodies like colloidal particles is composed of the

interaction between their atomic or molecular constituents we will first briefly discuss

interactions between molecular

• a charge and a permanent dipole

• permanent dipoles

• induced dipoles

• fluctuating dipoles

1.1.1 Interaction between a charge and a dipole

Fixed Orientation

According to Figure 1.1, a point particle with charge Q = Ze (Z is the number of

elementary charges e)at position A shall interact with a permanent dipole at distance
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1 Interactions
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Figure 1.1: For the calculation of the interaction between a point charge and a permanent

dipole

r with the length l and two partial charges of equal magnitude but opposite sign. The

partial charges q− and q+ are located at the positions B and C respectively. The total

interaction is the sum of the Coulombic interactions between the point charge Q and

the partial charges

u(r) =
Qq

4πε0

∣∣∣∣ 1

AB
− 1

AC

∣∣∣∣ (1.1)

The distances are given by

AB =
[
(r − l/2 cos θ)2 + (l/2 sin θ)2

]1/2
(1.2)

AC =
[
(r + l/2 cos θ)2 + (l/2 sin θ)2

]1/2
,

which reduces to

AB ≈ r − l/2 cos θ (1.3)
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1 Interactions

AC ≈ r + l/2 cos θ

for large r/l.

With this the interaction energy is

u(r) =
Qq

4πε0

∣∣∣∣ 1

r − l/2 cos θ
− 1

r + l/2 cos θ

∣∣∣∣ , (1.4)

which can be rewritten as

u(r) =
Qq

4πε0

∣∣∣∣ l cos θ

r2 − (l/2 cos θ)2

∣∣∣∣ (1.5)

and reduces to

u(r) = Q

∣∣∣∣m cos θ

4πε0r2

∣∣∣∣ (1.6)

for small l/2. Here m is the dipole moment m = lq.

According to eq. 1.6 the interaction is zero if the dipole is oriented perpendicular

to r. For positive z it will be repulsive (i.e. u(r) > 0) in the range of −π/2 < θ <

π/2, attractive otherwise and vice versa for negative z. A measure for the interaction

range can be estimated from the distance at which it will decay to one thermal unit

kBT = 4.14 · 10−21 J. For a point charge with Z = 1 and a dipole with the moment

m = 3.33 · 10−30 Cm (i.e. 1 Debye unit) this distance is r = 1.08 nm.

Freely Rotating Dipole

If the interaction potential is smaller than kBT we may assume that the dipole is able to

rotate more or less freely. The potential averaged over all orientations is non–zero since

the orientations with lower potentials will have a higher weight (given by a Boltzmann–

factor) than orientations with high potential. The averaged free energy w(r) of an
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1 Interactions

orientation dependent potential u(Ω, r) is in general given by the so–called potential

distribution theorem (Landau, Lifschitz, 1980, Chap. III)

exp

{
−w(r)

kBT

}
=

〈
exp

{
−u(Ω, r)

kBT

}〉
=

∫
dΩ exp

{
−u(Ω,r)

kBT

}
∫
dΩ

(1.7)

where the integration is over all orientations with dΩ = dφ sin θdθ and accordingly the

normalization is ∫
dΩ =

∫ 2π

0

dφ

∫ π

0

sin θdθ = 4π. (1.8)

At sufficiently high separation distances where u(r,Ω) < kBT the exponentials can be

approximated by a Taylor expansion

exp

{
−w(r)

kBT

}
≈ 1− w(r)

kBT
+ ... =

〈
1− u(r,Ω)

kBT
+ ...

〉
, (1.9)

which leads to

w(r) =

〈
u(r,Ω)− u(r,Ω)2

2kBT
...

〉
. (1.10)

For the interaction of a point charge with a freely rotating dipole we get therefore the

approximation

w(r) ≈ − Qm

4πε0r2
〈cos(θ)〉 −

(
Qm

4πε0r2

)2
1

2kBT

〈
cos2(θ)

〉
=

(
Qm

4πε0r2

)2
1

6kBT
(1.11)

where we made use of the spatial average

〈
cos2(θ)

〉
=

1

4π

∫ 2π

0

dφ

∫ π

0

sin θdθ cos2(θ) = 1/3 (1.12)

(Tabulated integrals:
∫
dx sin(ax) cosm(ax) = − cosm+1(ax)/(ma+ a))

6



1 Interactions

Figure 1.2: For the calculation of the interaction between two permanent dipoles. Note

that the angles are defined differently from Fig.1.1

Note that according to eq. 1.11 the interaction between a point charge and a dipole

is negative, i. e. attractive, it is temperature dependent and it decays with r−4.

1.1.2 Dipole–Dipole Interactions

The interaction energy between two permanent dipoles, which are oriented as sketched

in Figure 1.2, can be calculated in a similar (though more tedious) way. The result is

u(r, θ1, θ2, φ) = −m1m2

4πε0r3
[2 cos θ1 cos θ2 − sin θ1 sin θ2 cosφ] (1.13)

A brief look to eq. 1.13 shows that the interaction energy at constant r is the smallest

when the dipoles are oriented anti–parallel. In this case the energy is exactly half of the

value for the in–line orientation, i. e.

u(r, 0, 0, 0) = 2u(r, 90, 90, 180) (1.14)
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1 Interactions

If the dipoles are allowed to rotate freely in space the energy weighted average of all

possible orientations has to be calculated in a simmilar procedure as in the preceding

section. Eventually the spatially averaged free energy is obtained as

worient(r) = − m2
1m

2
2

3kBT (4πε0)2

1

r6
. (1.15)

The superscript orient refers to the fact that this is the energy a pair of dipoles gains by

orienting with respect to each other, it will be called orientation interaction furthermore.

Note that the interaction is attractive and decays extremely fast in this case with r−6,

and that it is inversely proportional to temperature.

1.1.3 Induced Dipolar Interactions

Additionally to their direct interaction, which is described by equation 1.15 permanent

dipoles will induce additional dipole moments in other molecules if those are polarisable.

This causes a further contribution to the interaction energy, which is proportional to the

permanent moments squared of the interacting molecules, like the orientation interac-

tion. Further the induced dipolar interaction is linearly proportional to the respective

polarizabilities αj. The final expression for the induced dipolar interaction between two

different molecules is given by

wind(r) = −m
2
1α2 +m2

2α1

(4πε0)2

1

r6
. (1.16)

Note that the induced dipolar interaction decays with 1/r6 like the orientation inter-

action. For a comprehensive derivation of eq. 1.16 the reader is referred to the book by
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1 Interactions

Israelachvily.

1.1.4 Dispersion Interactions

The types of interaction described so far are basically electrostatic interactions, which

require that the particle taking part carry charges or dipole moments. There is how-

ever a third type, which contributes to the interaction between all atoms and molecules

even if they are completely non–polar like noble gas atoms: the so–called dispersion

energy. This type of interaction has been first treated by London in 1937. They are of

quantum mechanical origin and a rigorous treatment would require thorough knowledge

of quantum electrodynamics. For our purposes an intuitive description based the on

classical model of a Bohr atom will be sufficient. A Bohr atom consists of a positively

charged nucleus and an electron travelling around it on an orbit with fixed radius RB.

In the classical picture the electron and the nucleus form a dipole, the moment of which

fluctuates depending on the instantaneous position of the electron with respect to the

core. Thus, two nearby Bohr atoms will interact, like induced dipoles, via their fluctu-

ating moments. The instantaneous dipole moment of either atom is mj = eRB and the

polarizabilties are αj = 4πε0R
3
B, thus

wdisp(r) = −R
2
Be

24πε0R
3
B

(4πε0)2r6
(1.17)

The Bohr radius, RB is the radius at which the Coulombic force between core and

electron is balanced by the centrifugal force which the electron experiences.

mv2

RB

=
e2

4πε0R2
B

(1.18)
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Here v is the tangential velocity of the electron and m is its mass. The force balance

may be rewritten as the balance between twice the kinetic and the Coulombic energy of

the electron

mv2 =
e2

4πε0RB

= −EC , (1.19)

which allows us to relate RB to the ionization energy of the Bohr atom, I = Ekin+EC =

EC/2.

RB =
e2

8πε0I
(1.20)

I is the total energy the system gains by the approach of electron and nucleus from

infinite separation distance to RB. With eq. 1.20 the expression for the interaction

energy simplifies to

wdisp(r) = − 4α2I

(4πε0)2r6
. (1.21)

Apart from a factor this is equal to the expression London derived on the basis of quan-

tum mechanical perturbation calculations. For two different atoms London’s expression

is

wdisp(r) = −3

2

α1α2

(4πε0)2r6

I1I2

I1 + I2

(1.22)

which simplifies for two identical atoms to

wdisp(r) = −3

4

α2I

(4πε0)2r6
(1.23)

It is important to note that dispersion energies scale with 1/r6 like orientation inter-

actions and induced dipolar interactions.
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Figure 1.3: Distance profiles for the orientation contribution wo, the contribution of po-

larizability wi and the dispersion contribution wd to van der Waals interac-

tions wvdW between two HCl–molecules.
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larizability wi and the dispersion contribution wd to van der Waals interac-

tions wvdW between two H2O–molecules.
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Table 1.1: Numerical values for the orientation contribution Corient, the contribution

of poarizability Cind and the dispersion contribution Cdisp to van der Waals

interactions of like molecules.

α/(4πε0) m I Corient Cind Cdisp CvdW Cdisp/CvdW

10−30 m Cm 10−18 J 10−79 Jm6

HCl 2.36 3.6 1.35 11 6 106 123 0.86

CH3Cl 4.56 6.24 1.2 101 32 282 415 0.68

NH3 2.26 4.9 1.08 38 10 63 111 0.57

H2O 1.48 6.17 1.34 96 10 33 139 0.24

1.1.5 Van der Waals Interactions

From the preceding sections 1.1.2 through 1.1.4 we saw that there are three types of

interaction contributing to the total interaction energy between two atoms or molecules,

which all scale with 1/r6. The sum of these contributions is called the van der Waals

interaction energy

wvdW (r) = − 1

r6
(Corient + Cind + Cdisp) (1.24)

where the parameters Corient, Cind and Cdisp are defined by eqs. 1.15,1.16 and 1.22

respectively. Numerical values for these parameters are listed in Table 1.1, which show

a maybe unexpected general trend.

Cdisp � Corient > Cind (1.25)

In most cases the dispersion forces are the dominating contribution, as is displayed
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1 Interactions

in the distance profile of the van der Waals interaction shown in Fig. 1.3 for hydrogen

chloride. Only in cases where the permanent molecular dipoles are very large and the

polarizability is very low, like in the case of water, the contribution of the dispersion

forces is smaller than fifty percent. In these cases the orientational contribution will be

the largest one, as shown for the case of water molecule in Fig. ??.

1.2 Van der Waals Interaction Between Colloidal Bodies

1.2.1 Interaction between a single molecule and a wall

In the preceding sections we discussed the attractive interactions between atomic and

molecular constituents of colloidal particles. The forces and energies acting between col-

loidal particles are of the same nature and in a first approach to calculate the interaction

between colloidal particles we assume simple pair wise additivity of the molecular inter-

action potentials. First we will calculate the potential between a single atom or molecule

with a solid wall consisting of the same kind of atoms or molecules. As sketched in Fig-

ure 1.5 r =
√
x2 + z2 is the distance between any molecule in the wall and an outside

molecule which has the shortest distance D from the wall. To calculate the interaction

energy between the outside molecule and the entire wall, WMW (D) we have to sum over

all N molecule–molecule interactions, which is

WMW (D) = −
N∑
j=1

Cvdw
r6
j

. (1.26)

We replace the sum by an integral and define the number density of molecules in the

wall as ρ = N/V = dN/dV , and consider cylindric shells of molecules with radius x,
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thickness dx and length dz. Then the volume element dV = 2πxdxdz and the total

interaction potential may be written as

WMW (D) = −2πρCvdw

∫ ∞
D

dz

∫ ∞
0

dx
x

(z2 + x2)6/2
. (1.27)

In tables one finds the general solution for the integral over dx as
∫
dx x

(a+x2)m+1 =

− 1
2m(a+x2)m

, which in the present case with m = 2 and a = z2 yields

WMW (D) = −2πρCvdw

∫ ∞
D

dz
1

4z4
(1.28)

= −πρC
6

1

D3
.

Note that the interaction of a molecule with a macroscopic body, in this case a planar

wall, decays much slower than the interaction between two molecules.

1.2.2 Interaction between two planar walls

To calculate the interaction between two planar walls at distance D, WWW (D), we

consider the single molecule in Fig. 1.5 to be part of a slice of a second wall as sketched in

Fig. 1.6 with thickness dz. We have now to integrate over the molecule–wall interactions

of all molecules in the second wall, which is

WWW (D) =

∫
dNρWMW (r). (1.29)

If this second wall was infinitely extended like the first one, it is immediately obvious

that the integration would lead to an infinitely large attraction. Therefore, we have

to integrate over slices with a finite extension, h, in the x–direction. In this case all

molecules in the slice have a smallest distance to the first wall r = z, and the volume of

15
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Figure 1.5: For the calculation of the interaction of a molecule with a wall.
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dz

z=D z=0z

h
r=z

Figure 1.6: For the calculation of the interaction between two planar walls.

a slice is dV = 2πxdxdz. With this the integration writes

WWW (D, h) =

∫ ∞
D

dz

∫ h

0

dx2πxρWMW (z)

= −π
2h2ρ2C

6

∫ ∞
D

dz
1

z3
. (1.30)

With the area of the second wall being a = πh2 the wall–wall interaction per unit area

finally is

W a
WW (D) =

WWW (D, h)

a
= −πρ

2C

12D2
. (1.31)

This would hold strictly only for a wall of unit area interacting with an infinitely extended

wall. However, for D << h the same expression holds for the interaction between two

walls of unit area.
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1.2.3 Interaction between a sphere and a wall

The interaction between a sphere and a wall can be calculated in principle along the

same route as the interaction between two planar walls. The difficulty is that the height

of the slice, h, is not a constant but depends on it’s z–position. However, considering

the blue triangle in Fig.1.7 it can be easily shown that h2 = (2R − z′)z′. With this

the volume of a slice with thickness dz at position z′ is dV = 2π(2R − z′)z′dz. Since

every molecule in the sphere has the smallest separation r = D + z′ to the wall and the

Jacobian dz/dz′ = 1 the interaction between the sphere and the (infinitely extended)

wall is now

WSW (D) =

∫
dV ρWMW (D + z′)

= −π
2ρ2C

6

∫ 2R

0

dz′
(2R− z′)z′

(D + z′)3
(1.32)

Since the molecule–wall interaction drops off with the inverse third power of distance we

may assume that only molecules at z′ << 2R contribute significantly to the sphere–wall

interaction. In this case the numerator in the integrand of eq. 1.32 is (2R− z′)z′ ≈ 2Rz′

and the integral attains the general form

∫
dxxm(a+bxn)p =

1

a(m+ 1)

[
xm+1(a+ bxn)p+1 − (m+ n+ 1 + np)b

∫
dxxm+n(a+ bn)p

]
.

(1.33)

Identifying m = n = b = 1, p = −3, a = D and x = z′ we obtain

∫ 2R

0

dz′
z′

(D + z′)3
=

1

2D

z′2

(D + z′)2
|2R0 (1.34)
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Figure 1.7: For the calculation of the interaction of a sphere with a wall.

which reduces to 1/(2D) in the limit of R >> D. Finally the sphere-wall interaction

becomes

WSW (D) = −π
2ρ2CR

6D
. (1.35)

Note that the interaction between a sphere and a wall decays only linearly with the

reciprocal distance.

The van der Waals force between a sphere and a wall is according to eq. 1.35

FSW (D) = −∂WSW (D)

∂D
= −π

2ρ2CR

6D2
(1.36)

Comparison of the r.h.s of eq. 1.36 with the expression for the interaction between

two planar walls of unit area shows that

FSW (D) = 2πRW a
WW (1.37)

This important relation is known as the Derjaguin approximation and holds for D <<

R. It relates the force between curved surfaces to the interaction energy between two

planar walls at the same distance.
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1.2.4 Interaction between two spheres

The formulation of the Derjaguin approximation introduced in the previous section can

be generalized for two curved surfaces. Consider both of the spheres as consisting of

cylindrical shells with which it faces the other sphere with an area a = 2πxdx over

a distance Z. In this case the force between two such shells is 2πxdxfaWW (Z), where

faWW (Z) is the force per unit area between two planar walls. The total force between

the two spheres is obtained by integration over all faWW (Z)

FSS(D) =

∫
dafaWW (Z) =

∫
dxfaWW (Z)2πx (1.38)

For large spheres we assume that only the cylindrical shells at small z1+z2, i. e. x >> z1,2

contribute significantly to the total force. Then we may approximate Z = D+ z1 + z2 ≈

D+ (1/R1 + 1/R2)x2/2, the Jacobian dZ/dx becomes x(R1 +R2)/(R1R2) and the total

force becomes

FSS(D) = 2π
R2R1

R1 +R2

∫ ∞
D

dZfaWW

= −2π
R2R1

R1 +R2

W a
WW (D). (1.39)

Finally, to obtain the interaction energy between two spheres we have to integrate the

force from distance D to infinity which gives the general formulation of the Derjaguin

approximation

WSS(D) = 2π
R1R2

R1 +R2

∫ ∞
D

dZW a
WW (Z) (1.40)

Note that this approximation may be applied to any kind of interaction, as long

as D << R1,2. For the case of van der Wals interaction between two spheres where

W a
WW (D) = −πρ2C/(12D2) it yields

20
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Figure 1.8: For the calculation of the interaction of a sphere with a wall.

WSS(D) = −π
2ρ2C

6D

R1R2

R1 +R2

. (1.41)

Note that the sphere–wall interaction (eq. 1.35) can be obtained from the sphere-

sphere interaction for the limiting case where either of the radii is set to infinity.

1.2.5 The Hamaker constant and the Lifshitz continuum theory

Summarizing the expressions for the van der Waals interaction between macroscopic

bodies

W a
WW (D) = − AH

12πD2
. (1.42)
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WSW (D) = −AHR
6D

. (1.43)

WSS(D) = −AH
6D

R1R2

R1 +R2

. (1.44)

we realize that they all can be expressed in terms of a constant named in the honor of

Hamaker

AH = π2ρ1ρ2C. (1.45)

In deriving these expression we assumed pairwise additivity of the dipole–dipole inter-

actions. This is of course a very strong restriction, for example it neglects the influence

of a third atom on the dispersion interaction between an other pair of atoms. This may

by a valid approximation in highly dilute systems, i. e. gases, but not in condensed ma-

terials. Further this approximation can not be readily extended to the situation where

two large particles are interacting through a dielectric medium. These problems are

avoided in the Lifshitz theory where the particles are treated as a continuum neglecting

their atomic structure. In this theory the forces are calculated on the basis of the par-

ticles’ dielectric bulk properties. Fortunately we do not have to deal with the Lifshitz

theory in detail, because the analytic form of eqs. 1.42 through 1.44 remains the same.

The only thing that changes is the Hamaker constant which becomes a function of the

dielectric constants of the media involved. For two particles of refractive index n1 and
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n2 interacting across a dielectric medium with n3 this is given approximately as

AH ≈
3

4
kBT

(
ε1 − ε3

ε1 + ε3

)(
ε2 − ε3

ε2 + ε3

)
+

3hνe

8
√

2

(n2
1 − n2

3) (n2
2 − n2

3)

(n2
1 + n2

3)
1/2

(n2
2 + n2

3)
1/2
[
(n2

1 + n2
3)

1/2
+ (n2

2 + n2
3)

1/2
] .

(1.46)

For the simple case of two particles consisting of the same material with refractive index

n1 this simplifies to

AH ≈
3

4
kBT

(
ε1 − ε3

ε1 + ε3

)2

+
3hνe

16
√

2

(n2
1 − n2

3)
2

(n2
1 + n2

3)
3/2
. (1.47)

As a rough estimate, the Hamaker constant for most materials is in the range of 10−19 to

10−21 J, that is between 25 and 0.25 kBT at ambient temperature.It is very instructive

to have a look at certain limiting cases of eq. 1.46. As can be seen from table 1.2 the

potential between two bodies interacting through vacuum is always attractive, as is the

potential between to bodies of the same material interacting across any medium. Repul-

sive van der Waals attraction are found between particles with different refractive index

n1 and n2 interacting through a medium, the refractive index of which is intermediate

between n1 and n2. This is very often the case when a vapor phase n1 ≈ 1 interacts

across a liquid phase 1.3 . n3 . 1.5 with glass n2 & 1.5. The repulsive van der Waals

potential between the vapor/liquid and the liquid/glass interface is the reason why most

liquid tend to form a positive meniscus at the glass wall of a beaker or a test tube.

1.3 Repulsive interaction and Colloidal Stability

In section 1.2.5 we have seen that the van der Waals potential between colloidal bodies

consisting of the same material is attractive across any medium. This would lead to an
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Table 1.2: Limiting cases for eq. 1.46

AH WvdW

n1 6= n2,n3 = 1 > 0 < 0

n1 = n2 6= n3 > 0 < 0

n1 < n3 < n2 < 0 > 0

aggregation and eventual precipitation of any colloid in solution. Since a lot of biological

material, like proteins, red blood cells etc., is of colloidal size, this would be fatal for any

living organism. However, our every day experience luckily shows that these materials

form stable suspensions in body fluids, i. e. water, which forces the conclusion that there

has to be an additional contribution to colloidal interaction, which is repulsive and by

this prevents aggregation. There are basically two types of repulsive interaction: steric

repulsion and electrostatic repulsion. In this course we will mainly discuss electrostatic

interactions, while the steric interactions will be described only very briefly.

1.3.1 Electrostatic Repulsion in the Debye–Hückel Limit

Electrostatic interaction without electrolyte

Imagine a particle carrying ionizable surface groups, i. e. chemical groups which are

able to dissociate if immersed in water, as sketched in Figure 1.9 for two planar surfaces.

In this case the surface groups dissociate positive counter–ions into the solution leaving

negative charges at the wall’s surface. Between two plates a density profile ρ(δ) will

24



1 Interactions

build up which is determined by the electrostatic potential, ψ(δ), acting from the plates

on the counterions via Botzman’s law. Note that δ is the distance from either of the

plates while their separation distance is z = D with z = 0 at the surface of one of the

plates. For symmetry reasons, the electric field E = dψ(δ)/dδ in the midplane is zero.

For this reason we will call the counterion density and the electric potential in the mid

plane ρ0 and ψ0 respectively. It is important to note that ρ0 6= 0 and ψ0 6= 0 in general.

For the sake of clarity we will discuss the details of the potential and the density

profile at a later stage, and calculate the interaction potential between the two walls

first. For this purpose we start with calculating the osmotic pressure Π between the

parallel plates, from which we can calculate the interaction energy by integration over

distance. In an equilibrium system the osmotic pressure is related to the the chemical

potentials µi of the components by the Gibbs–Duhem equation. For the one component

system, which we are considering, this reads:

µN = U + ΠV − TS (1.48)

where N is the number of counter–ions, U the internal energy, V the system volume and

S the entropy. At constant temperature, volume and composition, the total differential

of eq. 1.48 reduces to dµN = dΠV or dΠ = ρdµ. In the problem at hand ρ is the density

of the counterions ρ(δ). With the definition of the chemical potential of the counterions

µ(δ) = Zeψ(δ) + kBT ln ρ(δ) (1.49)

we obtain

dΠ = ρ(δ)

[
Zedψ(δ) + kBT

1

ρ(δ)
dρ(δ)

]
(1.50)
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Figure 1.9: Two walls with ionizable groups immersed in a solvent without additional

ions
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where Z is the valency of the ions. To calculate the pressure between the two plates at

distance z = D we have to integrate eq. 1.50 from z →∞ to D

∫ z=D

z→∞
dΠ(δ) = Ze

∫ D

∞
dzρ(δ)

dψ(δ)

dδ
+ kBT

∫ z=D

z→∞
dρ(δ). (1.51)

Here we used dψ(δ) = dψ(δ)/dδdz, because dδ/dz = 1. To solve the first integral on the

r.h.s. we have to relate the counterion density to the electric field, dψ(δ)/dδ, which can

be done using the one dimensional form of the Poisson equation

d2ψ(δ)

dδ2
= −Zeρ(δ)

εε0

. (1.52)

With this we obtain

Ze
∫ D

∞
dzρ(δ)

dψ(δ)

dδ
= −εε0

2

∫ D

∞
d

(
dψ(δ)

dδ

)2

(1.53)

where we used the general relation

d
(
df(u)
du

)2

du
= 2

df(u)

du

d2f(u)

du2
. (1.54)

Now the pressure at separation distance z = D can be calculated for any position δ

between the plates as

Π(δ)z=D = −εε0

2

(
dψ(δ)

dδ

)2

z=D

+ kBTρ(δ)z=D (1.55)

because Π(δ)∞ = 0 and ρ(δ)∞ = 0. To calculate the squared electric field we use again

the Poisson equation, which in combination with Botzmann’s law gives the Poisson–

Boltzman differential equation

d2ψ(δ)

dδ2
= −Zeρ0

εε0

exp

{
−Ze(ψ(δ)− ψ0)

kBT

}
. (1.56)
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Using the derivative of Boltzmann’s law (note that dψ0/dδ = 0) we can replace the

factor

Zeρ0 = −dρ(δ)

dδ
kBT exp

{
+
Ze(ψ(δ)− ψ0)

kBT

}(
dψ(δ)

dδ

)−1

(1.57)

in eq. 1.56 to obtain

dψ(δ)

dδ

d2ψ(δ)

dδ2
=
dρ(δ)

dδ

kBT

εε0

(1.58)

which relates the total differential of the counterion density to the total differential of

the squared electric field by

dρ(δ) =
εε0

2kBT
d

(
dψ(δ)

dδ

)2

. (1.59)

Integration from zero to any value of δ yields

ρ(δ)− ρ0 =
εε0

2kBT

(
dψ(δ)

dδ

)2

, (1.60)

which can be introduced into eq. 1.55 to obtain the final expression for the pressure

Π(D) = kBT (ρ0)z=D (1.61)

The subscript z=D indicates that the density in the midplane is a function of the sep-

aration distance. It is important to note that the r.h.s. expression does not anymore

depend on the position δ, which is expected, since the osmotic pressure in a solution

should be a constant. On the basis of the latter argument the pressure could also be

calculated in a more heuristic way. If we treat the counterions as an ideal gas, the os-

motic pressure is directly given by the ideal gas law. Due to symmetry reasons, we can

argue that the electrostatic force between the two plates is zero at δ = 0, because the

two half systems at δ < 0 and δ > 0 are electroneutral on average. Consequently the
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force between the two plates in the midplane is the osmotic pressure multiplied with the

plates’ surface area. Since the pressure is independent of position we arrive directly at

eq. 1.61. This is an important finding because is shows that the repulsion is an entropic

effect governed by the counterion distribution, although it is generally referred to as

electrostatic repulsion.

Electrostatic interaction in the presence of additional electrolyte

So far we have considered the pressure between two plates for the case when only coun-

terions are present in the gap between the surfaces. This is however a very unrealistic

scenario, because even if pure water was used as a solvent, the self dissociation would lead

to an ion concentration of 2×10−7 mol/L. Therefore, in the following, we shall calculate

the interaction between two surfaces in the presence of additional electrolyte, applying

commonly used approximations. In this case we have to consider that ρ(δ)∞ 6= 0, it is

rather the density of the additional electrolyte ρsalt. Therefore we obtain

Π(δ)z=D = −εε0

2

(
dψ(δ)

dδ

)2

z=D

+ kBT (ρ(δ)z=D − ρsalt) (1.62)

when solving the integrals of eq. 1.51

If we define the electric potential outside the gap as ψ∞ = 0 and noting that the

electric field outside the plates (dψ(δ)/dδ)∞ = 0, we get the final equation for the

osmotic pressure

Π(D) = kBT (ρ0(D)− ρsalt) . (1.63)

along the same line of argumentation as in the previous section. We have however to

note that the ion density is now governed by the additional electrolyte and that either
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Figure 1.10: Two walls with ionizable groups immersed in a solution containing addi-

tional electrolyte

species of ions contributes to the pressure by

ρsalt =
∑
i

ρi (1.64)

ρ0(D) =
∑
i

ρi exp

{
−Zieψ0

kBT

}
.

For the latter expression we used Botzmann’s law to relate the ion density outside the

gap to the density at the midplane. Here the index i refers to the individual species of

ions. Combining eqs. 1.63 and 1.64 gives

Π(D) = kBTρsalt

[(
exp

{
− eψ0

kBT

}
− 1

)
+

(
exp

{
+
eψ0

kBT

}
− 1

)]
(1.65)

for a 1 : 1 electrolyte. The first term in the curled brackets refers to the cation–

contribution while the second term is due to the anions. If the electric potentials are

small enough to grant that ψ0 << 25 mV, the argument of the exponential is small

compared to 1 and we may approximate this expression as a Taylor series truncated
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after the second terms

Π(D) ≈ ρsaltkBT

[(
1− eψ0

kBT
+

(eψ0)2

2(kBT )2
− 1

)
+

(
1 +

eψ0

kBT
+

(eψ0)2

2(kBT )2
− 1

)]
. (1.66)

This is the essential approximation in the Debye–Hckkel theory of electrolyte solutions.

The linear terms cancel due to the electroneutrality condition and we obtain

Π(D) ≈ ρsalt
(eψ0)2

kBT
. (1.67)

According to the Gouy–Chapman theory the electric potential at any distance δ from a

charged surface is

ψ(δ) ≈ 4kBT

e
γ exp {−κδ} (1.68)

with

γ = tan h

(
eψS

4kBT

)

where ψS is the potential at the surface. The meaning of the constants γ and the

so–called screening length κ, will be discussed in the following section in detail. If we

assume that the potential between two plates can be regarded as the superposition of two

potentials originating from either of the surfaces, the potential in the midplane will be

twice the Gouy–Chapman value for symmetry reasons. Thus, we obtain for the pressure

between two plates

Π(D) ≈ ρsalte
2

kBT

[
8kBT

e
γ exp

{
−κD

2

}]2

(1.69)

= 64ρsaltkBTγ
2 exp {−κD} .

Integrating the pressure with respect to distance we obtain the electrostatic interaction

31



1 Interactions

potential per unit area between two flat walls as

W a,es
WW = 64ρsaltkBTγ

2 1

κ
exp {−κD} , (1.70)

and with the Derjaguin approximation we can easily calculate the interaction potential

between two spheres

W es
SS =

2πR1R2

R1 +R2

64ρsaltkBTγ
2 1

κ2
exp {−κD} . (1.71)

The surface potential and the Gouy–Chapman theory

In this section we shall discuss the parameters γ and κ, and their relation to experimen-

tally accessible quantities. As we have shown above, the counterion density at a given

position between two charged surfaces is related to the square of the electric field at this

position by

ρ(δ) = ρ0 +
εε0

2kBT

(
dψ(δ)

dδ

)2

(1.72)

where ρ0 is the density at a position where the electric field is zero. If we transfer this

definition to a single surface in the presence of additional electrolyte, we have to realize

that the electric field goes to zero at infinite distance and there the ion density of each

species is that of the additional electrolyte. Thus

∑
i

ρi(δ) =
∑
i

ρi,∞ +
εε0

2kBT

(
dψ(δ)

dδ

)2

, (1.73)

which with Boltzmann’s law gives

εε0

2kBT

(
dψ(δ)

dδ

)2

= ρsalt

(
exp

{
−eψ(δ)

kBT

}
− 1 + exp

{
+
eψ(δ)

kBT

}
− 1

)
(1.74)
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for a 1:1 electrolyte. With the definition of the hyperbolic cosine and the relation

(2cosh(u)− 2) = (2sinh(u/2))2 we can rewrite this relation as

dψ(δ)

dδ
= ±

√
8kBTρsalt

εε0

sinh

(
eψ(δ)

2kBT

)
. (1.75)

It is important to note that only the solution with the negative sign is physically mean-

ingful, because sinh is an asymmetric function and the gradient of ψ has to be positive

for ψ < 0 and vice versa. This differential equation enables to relate the electric poten-

tial at any position to the potential at the surface, ψS, by integration. For this purpose

we substitute eψ(δ)/(2kBT ) ≡ Φ(δ) the derivative of which is

dΦ(δ)

dδ
=

dΦ(δ)

dψ(δ)

dψ(δ)

dδ
(1.76)

= − e

2kBT

√
8kBTρsalt

εε0

sinh(Φ(δ)).

After separation of variables and integration we get

ln

(
tanh(Φ(δ)/2)

tanh(ΦS/2)

)
= −δ

√
2ρsalte2

εε0kBT
(1.77)

where ΦS = eψS/(2kBT ) and we used the tabulated integral∫
du

sinh(u)
= ln

[
tanh

(u
2

)]
. (1.78)

With the definition of the area hyperbolic tangent tanh−1(u) = 0.5 ln((1 + u)/(1− u)),

γ ≡ tanh(ΦS/2) (compare eq. 1.68) and κ =
√

2ρsalte2/(εε0kBT ) we get

Φ(δ) = ln

(
1 + γ exp {−κδ}
1− γ exp {−κδ}

)
(1.79)

If γ exp {−κδ} << 1 the argument of the logarithm is approximately 1 + 2γ exp {−κδ},

and a Taylor expansion of the logarithm, truncated after the linear term gives

Φ(δ) ≈ 2γ exp {−κδ} . (1.80)

33



1 Interactions

After resubstitution of Φ we obtain the final expression of the Gouy–Chapman theory

ψ(δ) ≈ 4kBT

e
tanh

(
eψS

4KBT

)
exp {−κδ} , (1.81)

which relates the potential at any distance δ to the potential at the surface. Note that

ψ(δ) depends on the salt concentration only through the parameter κ, which has the

units of an inverse length. Therefore κ−1 is often referred to as the (Debye–) screening

length. Note that tanh(u) ≈ u for small arguments. In this case eq. 1.81 reduces to the

so called Debye–Hückel equation

ψ(δ) ≈ ψS exp {−κδ} , (1.82)

and κ−1 is the relaxation distance of the potential.

With equations 1.81 and 1.82 it is possible to express the the electrostatic interaction

potential between colloids as a function of surface potential. By replacing γ2 in eq. 1.70

we obtain

W a,el
WW = 2εε0ψ

2
Sκ exp {−κD} (1.83)

and for the interaction potential between two spheres of equal radius we get

W el
SS = 2πRεε0ψ

2
S exp {−κD} (1.84)

from eq. 1.71.

The surface charge density and the Grahame equation

Instead of expressing the the electrostatic interaction potential between colloids as a

function of the surface potential it can be written as a function of the surface charge
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density, σ. For this purpose we have to establish a relation between ψS and σ. If we

define σ as the number of elementary charges per unit area we can identify

σ = −
∫ D/2

0

dδρ(δ)Ze, (1.85)

because the number of charges in the volume defined by 0 < δ < D/2 has to be equal to

the number of opposite charges on the surface. Note that ρ(δ) and Z are the counterion

density and valency respectively. The properties of the additional electrolyte do not

enter into this consideration. According to the Poisson equation the integrand can be

replaced by εε0d
2ψ(δ)/dδ2, which gives

σ = εε0

(
dψ(δ)

dδ

)
δ=D/2

(1.86)

Introducing this result into eq. 1.73 results

∑
i

ρ(δ) =
∑
i

ρi,∞ +
σ2

2εε0kBT
(1.87)

and applying Boltzmann’s law to each kind of ions we find for a 1:1 electrolyte

σ2 = 2εε0ρsaltkBT

[
exp

{
− eψS
kBT

}
+ exp

{
+
eψS
kBT

}
− 2

]
(1.88)

= 2εε0ρsaltkBT

[
2cosh

(
eψS
kBT

)
− 2

]
= 8εε0ρsaltkBT

[
sinh

(
eψS

2kBT

)]2

.

Finally the relation between the surface charge density and the surface potential becomes

σ =
√

8εε0ρsaltkBT sinh

(
eψS

2kBT

)
, (1.89)

which is known as the Grahame equation.
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For electrolytes other than 1:1, the Grahame equation becomes more complicated,

though it can be still written in an analytically closed form. However, for small poten-

tials, if the exponentials in eq. 1.88 may be approximated by a Taylor–series which is

truncated after the quadratic term we get for the general case

σ2 = 2εε0kBT
∑
i

ρi,∞

[
exp

{
−ZieψS
kBT

}
− 1

]
(1.90)

≈ 2εε0kBT

[∑
i

ρanionsi,∞
1

2

(
ZieψS
kBT

)2

+
∑
i

ρcationsi,∞
1

2

(
ZieψS
kBT

)2
]
.

Note that the linear terms cancel due to the electroneutrality condition. Thus, in the

Debye–Hückel approximation, we get for all kinds of additional electrolytes

σ = ψSεε0

√∑
i ρi,∞Z2

i e
2

εε0kBT
(1.91)

= ψSεε0κ.

With this approximation we can also write the interaction potential per unit area be-

tween two flat surfaces as

W a,el
WW = 2

σ2

εε0κ
exp {−κD} (1.92)

and the interaction potential between two spheres of equal radius as

W el
SS = 2πR

σ2

εε0κ2
exp {−κD} (1.93)

according to eqs. 1.83 and 1.84 respectively.

It is important to note, that the electrolyte concentration does enter into these equa-

tions only via the Debye screening length. It is therefore useful to memorize a rule of

thumb for the calculation of κ. If the electrolyte concentration, c, is expressed in mol/L
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Table 1.3: Rules of thumb for the calculation of κ for different types of electrolytes. The

salt concentration, c has to be introduced in the unit mol/L

Type of electrolyte example κ−1/ nm

1:1 NaCl 0.304√
c

1:2 or 2:1 CaCl2
0.176√

c

2:2 MgSO4
0.152√

c

and the constants entering into κ are given in SI–units, one obtains the screening length

in nanometers as

κ−1 =
0.304√

c
[nm]. (1.94)

For some other types of electrolytes the corresponding results are listed in Table 1.3.

1.3.2 Addition of Van der Waals and Electrostatic Potential: The

DLVO Theory

In calculating the electrostatic potential between particles, we have neglected van der

Waals interactions completely, which is of course incorrect, since we have seen how

charges interact with dipoles in section 1.1.1. However instead of calculating the in-

teractions of individual charges with the spheres, we assume that the ions are evenly

distributed and consequently produce a net zero mean force onto the particles. Further

the electrostatic and the van der Waals potential between the particles are assumed to

be additive. This is the basis of the so called DLVO–theory (named in the honor of
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Figure 1.11: Contributions to the total interaction energy between two spheres

Derjaguin, Landau, Vervey and Overbeeck) of colloidal stability. The basic features of

this theory are displayed in Figures 1.11 through 1.13.

Due to the fact that the electrostatic contribution increases epxonentially on approach-

ing the interface and the van der Waals potential decay with 1/D, the latter will always

dominate at very small distances. However, if the repulsion is strong enough the to-

tal interaction may have a high barrier, which prevents the particles from coming close

enough for the van der Waals attraction to be effective. In this case the suspension

is considered to be stable. The barrier may be lowered by either increasing the salt

concentration (see Figure 1.12) or by decreasing the surface charge (see Figure 1.13) of

the particles. In both cases the solution is considered to be unstable if the barrier is not

any more higher than several kBT .
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Figure 1.12: DLVO–potentials at constant surface charge density with varying salt con-

centration. The particle parameters are the same as in Fig. 1.11
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Figure 1.13: DLVO–potentials at constant salt concentration with varying surface charge

density. The other particle parameters and the salt concentration are the

same as in Fig.1.11
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1.4 Non DLVO Interactions

1.4.1 Depletion interaction

Spherical depletants

If colloidal particles are dispersed in a solution which contains further a kind of solute,

which has a typical length scale in the colloidal regime, an additional interaction has to

be considered. Imagine two plates immersed in a solution containing small spheres of

radius r as sketched in Figure 1.14. Then, the center of mass of any sphere can not get

closer than a separation distance r to the plate. In other words in front of either plate

there is a zone of thickness r which is depleted from spheres. The total volume, which

for this is reason is not accessible to the spheres is called the excluded volume Vex. We

will see in the following that this depletion leads to an attractive interaction between

the two plates, which for obvious reasons is referred to as depletion interaction.

The effective interaction potential between the two plates W depl
WW may be regarded

as the change in Helmholtz free energy ∆H of the whole system, when the plates are

brought from an infinite distance to their final separation D. For a system at constant

temperature and composition, ∆H = −Π∆V , with Π the osmotic pressure and ∆V the

negative change of excluded volume, ∆Vex. If we treat the spheres as an ideal gas, we

may immediately write down an expression for the depletion interaction between the

two plates.

W depl
WW = ρkBT [Vex(D)− Vex(D →∞)] (1.95)

where we made use of Π = ρkBT with ρ the sphere number density. The excluded volume
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�
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Figure 1.14: Two plates in a solution of spheres. The small spheres can enter the gap

between the plates.

at a given separation distance is easily calculated from geometrical considerations. If

the plates are further apart than a sphere diameter

Vex(D →∞) = 4Ar (1.96)

where A is the area of a single plate surface (note that there are four surfaces). If the two

plates get closer together then D < 2a their depletion zone overlap and the spheres can

not get into the gap between the plates. This leads to a density difference, which causes

an osmotic pressure imbalance that presses the plates together. For the quantitative

description of the resulting interaction potential we need to calculate Vex(D). Which is

Vex(D) = 2Ar +DA (1.97)

as can be easily seen from Fig.1.15. Note, that the gain in accessible volume, is equal to

the volume where the two depletion zones overlap (see green and red hatched areas in
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�
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Figure 1.15: Two plates in a solution of spheres. The small spheres can not enter the

gap between the plates if their distance is D < 2r
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Fig. 1.15, i. e. Vol = −∆Vex. The combination of eqs. 1.95, 1.96 and 1.97 gives

W depl,a
WW (D)

kBT
= −ρ (2r −D) . (1.98)

Although, this equation yields finite values for the interaction if D > 2r, it is important

to note that this is not a physical meaningful result. From Figs. 1.14 and 1.15 it is

evident that ∆Vex = 0, if D > 2r and consequently eq. 1.95 results W depl
WW = 0 in this

case.

It is important to note that eq. 1.95 holds in general independently whether the sur-

faces under consideration are curved or not. Consequently there are two ways to calculate

the sphere–sphere depletion interaction. First we use the Derjaguin approximation for

two spheres, which gives

W depl
SS (D)

kBT
≈ −2π

R1R2

R1 +R2

ρ

∫ 2r

D

dZ (2r − Z) (1.99)

= −2π
R1R2

R1 +R2

ρ

(
2r2 − 2rD +

D2

2

)
.

The upper limit for the integration has to be 2r because, the depletion interaction

between two flat surfaces is zero beyond this separation distance.

It is very instructive to compare the approximate solution of eq. 1.99 to the exact

solution, which one obtains, if the overlap volume between two spherical depletion zones

is calculated from exact geometrical considerations. For two large spheres of equal radius

R we get

V SS
ol = −∆V SS

ex =
2πr3

3

(
1− D

2r

)2(
2 +

3R

r
+
D

2r

)
, (1.100)

which with we can immediately write

WSS(D)

kBT
= −ρ2πr3

3

(
2 +

3R

r
+
D

2r

)(
1− D

2r

)2

(1.101)
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Figure 1.16: Comparison of the exact sphere–sphere depletion interaction with the Der-

jaguin approximation for two sphere sizes.

= −2πρR

(
2r3

3R
+ r2 +

Dr2

6R

)(
1− D

2r

)2

,

For Large R/D and R/r this gives the same expression as eq. 1.99 for the case of

R1 = R2 = R.

The effect of the Derjaguin approximation is illustrated in Figure 1.16. If R >> r the

approximation gives good agreement with the exact solution, while for smaller spheres

the approximation gives values which are significantly too small.

From eqs. 1.99 or1.101 it can be seen that the depth of the potential depends on the

volume fraction φ = ρ4πr3/3 of the small spheres at constant R/r. This is shown in

Figure 1.17. If the volume fraction is fixed, the depth of the potential increases with
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Figure 1.17: Depletion interaction between two spheres mediated by small spheres for

different size ratios of the two species and different volume fractions of the

small spheres

R/r and the range of the potential increases with r in any case.

Rod-shaped depletants

The depletion potential between two flat walls mediated by an ensemble of rods, W depl
WW , is

the change in free energy ∆F due the approximation of two wall from infinite separation

to a distance D smaller than the rod length L. At constant temperature ∆F = −Π∆V

where Π is the osmotic pressure in the system and ∆V is the change of the volume which
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Figure 1.18: For the calculation of the depletion interaction between two walls mediated

by a stiff rod.

is available to the rods. The latter is the negative change of excluded volume, thus

W depl
WW = F (D)− F (D →∞) = Π(Vex(D)− Vex(D →∞)) (1.102)

and Vex is the volume from which the rods are excluded by hard body interaction with

the walls.

The volume which is excluded for a single rod of length L by a single surface can be

calculated as

Vex =

∫
d3r

∫
dΩ

1

4π

(
1− exp

{
−u(r,Ω)

kBT

})
(1.103)

where u(r,Ω)/kBT is the hard body potential between the rod and the wall. Conse-
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quently, the Meyer–like function (1 − exp {−u/kBT} = 1) if the rod would touch the

wall and zero otherwise. The conditions for the rod touching the wall are z ≤ L/2 and

0 ≤ θ ≤ θl or θu ≤ θ ≤ π. The first integral in eq.1.103 represents the integration over all

possible positions of the rod center and the second integral is the fraction of a spherical

unit volume, which is not accessible to the rod, because of the restricted rotation around

the angles θ and φ (see area marked red in Fig. 1.18.

Thus, the excluded volume caused by two walls is

Vex(D) = 2
A

4π

∫ L/2

0

dz2π

[∫ θl

0

dθ sin θ +

∫ π

θu

dθ sin θ

]
forD > L

Vex(D) =
A

4π

∫ D

0

dz2π

[∫ θl

0

dθ sin θ +

∫ π

θu

dθ sin θ

]
forD ≤ L. (1.104)

Here A is the wall area resulting from the integrations over x and y and the factor

2π results from the integration over dφ, because of the cylindrical symmetry of the

problem. For z < D/2 cosθl,u = 2z/L, while cosθl,u = 2(D−)z/L for z > D/2. This

would make the z–integration a unnecessary complicated. It is more convenient replace

the integration up to D by twice the integration up to D/2, which is allowed because

the problem is mirror–symmetrical. With this the integration over dz yields 2(1−2z/L)

in both cases. Therefore

Vex(D) = 2A(z − z2

L
)|L/20 = A

L

2
forD > L

Vex(D) = 2A(z − z2

L
)|D/20 = A

(
D − D2

2L

)
forD ≤ L. (1.105)

Introducing this into eq. 1.102 we find

W depl
WW (D) = −ΠA

(
L

2
−D +

D2

2L

)
, (1.106)
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which can be rewritten as

W a,depl
WW (D)

kBT
= −ρ

(
L

2
−D +

D2

2L

)
, (1.107)

if we treat the rods as an ideal gas, i. e. Π = ρkBT where ρ is the number density of the

rods. Note that eq. 1.107 yields finite attractive potentials for D > L, but this is a non–

physical mathematical artifact. Actually, W a,depl
WW = 0, because Vex(D) = Vex(D → ∞)

for D > L.

The depletion interaction between two spheres can again be calculated using Der-

jaguin’s approximation according to

W depl
SS (D)

kBT
= 2π

R1R2

R1 +R2

∫ L

D

dZ
W a,depl
WW (Z)

kBT
. (1.108)

The upper limit of the integration is chosen to be L because the range of the depletion

interaction between flat walls levels off to zero at Z = L according to eq. 1.107. With

this we finally obtain

W depl
SS (D)

kBT
= −2πρ

R1R2

R1 +R2

L

2
(L−D)− 1

2

(
L2 −D2

)
+

1

6L

(
L3 − d3

)
= −2πρ

R1R2

R1 +R2

L2

(
1− D

L

)3

(1.109)
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1.5 Exercises

1. Consider a charged sphere in aqueous NaCl solution, which is large enough to

sediment significantly in the field of gravity. If this sphere approaches the bottom

of a vessel, which we shall approximate as a planar wall of the same material as the

sphere carrying like charges, electrostatic repulsion will prevent the sphere from

settling completely. The sphere will rather float at a distance zmin above the glass,

which corresponds to the position of a minimum in the potential curve that is given

by a superposition of gravitational energy and electrostatic repulsion as sketched in

Figure 1.19. Assume that zmin = 120 nm and that van der Waals interactions may

be neglected a this distance. The spheres has a radius R = 5µm, and a density

difference to the solvent of ∆ρ = 0.5 mg/mL, the salt concentration is c = 0.5

mmol/L. The dielectric constant of the solution is ε = 80 and ε0 = 8.85 · 10−12

C2(Jm)−1. Calculate the number of elementary charges on the surface of the

sphere. Use the Debye–Hückel expression for the electrostatic repulsion (is this

justified ?) and make use of the fact that the potential has a single minimum

2. The depletion interaction between two planar walls immersed in a solution of small

spheres at distance D is given by

W a
WW (D)

kBT
= −ρ(2r −D) (1.110)

where r is the radius of the small spheres, i. e. the thickness of the depletion zone

and ρ is the number density of the spheres.

The exact expression for the depletion interaction between two large spheres of
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Figure 1.19: Superposition of gravitational energy and electrostatic repulsion of a sphere

floating above the bottom of a vessel
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equal radius R is given by

WSS(D)

kBT
= −φp

(
3R

2r
+ 1 +

D

4r

)(
1− D

2r

)2

(1.111)

where the volume fraction of the small spheres φ = ρ4πr3/3. Calculate the sphere–

sphere interaction in the Derjaguin approximation and show that the approximate

solution is a limiting case of the exact expression for R >> D and R >> r.
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1.6 Solutions to Exercises

1. The expression for the repulsive part of the potential hast the form

WER
SW = B exp {−κD} (1.112)

where the amplitude

B = 4πR
σ2

εε0κ2
. (1.113)

The net weight of the sphere is G = mg = g4πR3∆ρ/3 and the total potential is

therefore

WSWB = B exp {−κD}+GD. (1.114)

By the minimum definition ∂(WSW (D))/∂D = 0 the position of the potential

minimum is related to B by

zmin = κ−1 ln
κB

G
. (1.115)

Introducing the given numbers one obtains G = 0.257 pN, κ−1 = 13.6 nm and

B = 2.38 · 10−17 J = 5789kBT and finally

σ =

√
Bεε0κ2

4πR
= 1.2 · 10−3Cm−2, (1.116)

which correspond to a number density of elementary charges per square meter of

N ≈ 7.5 · 1015 m−2 and the net number of charges per sphere is N = N 4πR2 =

2.36 · 106.

With ψ0 = σ/(εε0κ) the calculated charge density corresponds to a surface poten-

tial of ψ0 = 23 mV, that is the Debye–Hückel approximation is just valid.

2. See section 1.4.1
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