Polymers as Long Molecular Chains

 $-CH_2-CH_2-CH_2-CH_2-Poly(ethylene)$ 



 $-CH_2 - CH_2 -$ 

Number of monomer units in the chain N >> 1. For synthetic macromolecules usually

 $N \sim 10^2 \div 10^4.$ 

For DNA macromolecules

 $N \sim 10^9 \div 10^{10}$ 

# Polymers as Long Molecular Chains



Electron microscope picture of bacterial DNA partially released from its native shell. (*Source: Dictionary of Science and Technology*, Christopher Morris, ed., San Diego, CA: AcademicPress, 1992.) Physical properties of polymers are governed by three main factors:

- Number of monomer units in the chain, N, is large: N >> 1.
- Monomer units are connected in the chain.
   ⇒ They do not have the freedom of independent motion (unlike systems of disconnected particles, e.g. low molecular gases and liquids). ⇒ Polymer systems are *poor in entropy*.
- Polymer chains are generally *flexible*.



#### **History of Polymer Physics**

#### • Discovery of chain structure of polymer molecule

H.Staudinger, 1920-1930

• First papers in polymer physics:

*molecular explanation of rubber high elasticity* 

W.Kuhn, E.Guth, H.Mark, 1930-1935 *\*\*Physico-Chemical" Period* (1935-1965) P.Flory, V.A.Kargin *Discovery of DNA double helix* Watson and Crick, 1953 *Penetration of physical methods to polymer science* (from 1965) I.M.Lifshitz (Russia), P.de Gennes (France), S.Edwards (England)

Now polymer physics is an important subfield of condensed matter physics, basis for "Soft Condensed Matter Physics"

#### Flexibility of a Polymer Chain



Rectilinear conformation of a poly(ethylene) chain corresponding to the *minimum of the energy*. All the monomer units are in *transposition*. This would be an equilibrium conformation at T = 0.

At  $T \neq 0$  due to thermal motion the deviation from the minimum-energy conformation are possible. According to the *Boltzmann law* the probability of realization of the conformation with the excess energy U over the minimumenergy conformation is

 $p(U) \sim \exp(-\frac{U}{kT})$ .

#### Rotational-Isomeric Flexibility Mechanism

For carbon backbone the *valency angle*  $\gamma$  is fixed (for different chains 50° <  $\gamma$  <80°),



however the rotation with fixed  $\varphi$  (changing the angle of internal rotation  $\gamma$ ) is possible. Any value  $\gamma \neq 0$  gives rise to the deviations from rectilinear conformation, i.e. to chain flexibility.



Positions corresponding to  $\varphi = 120^{\circ}$  and  $240^{\circ}$ gauche rotational isomers,  $\varphi = 0^{\circ}$  - trans rotational isomers. Gauche isomers induce sharp bends of the chain and give dominant contribution to chain flexibility.

# Persistent Flexibility Mechanism



In the case when rotational isomers are not allowed (e.g. for  $\alpha$ -helical polypeptides or DNA double helix) *small thermal vibrations* around the equilibrium position of atoms are still possible; accumulation of these vibrations over large distances along the chain gives rise to the deviations from the straight conformation  $\Rightarrow$  to the chain flexibility. This is a *persistent flexibility mechanism*, it is analogous to the flexibility of a *homogeneous elastic filament*.

# Freely-Jointed Flexibility Mechanism



The flexibility is located in the freelyrotating junction points. This mechanism is normally not characteristic for real chains, but it is used for model theoretical calculations.

# Portrait of a Polymeric Coil

(freely-jointed chain of **N** segments; interactions between the segments are not taken into account).



A typical conformation of a polymer coil. The freely jointed chain of  $10^4$  segments has been simulated on a computer in threedimensional space.

• Chain trajectory is analogous to the trajectory of a *Brownian particle*.

• The *volume fraction* occupied by the *monomer units* inside coil *is very small*. Inside the coil there are many "*holes*".



Polymer coil conformations can be realized in *dilute polymer solutions* when macromolecules do not overlap.

# **Types of Polymer Molecules**

 <u>Homopolymers</u>: all monomer units are the same.
 <u>Copolymers</u>: monomer units of different types.
 (*for example, proteins - 20 types of units* DNA - 4 types of units ).

Sequence of monomer units along the chain is called primary structure.

2 Branched macromolecules









*a*) Comb-like*b*) Star-like

*c*) Randomly branched*d*) Polymer network

3 <u>Ring macromolecules</u>



- a) unknotted ring macromolecule
- b) knotted ring macromolecule
- c) tangling of two ring macromolecule
- d) olympic gel
- e) tangling of two complementary strands into a double helix

**Topological restrictions** 



# Possible Physical States for Polymer Materials

Traditional classification of physical states (*gases, liquids, crystals*) is not informative for polymer materials.



Classification for polymer materials:

- 1 Partially crystalline state
- 2 Viscoelastic state (polymer melt)
- 3 Highly elastic state (*e.g. rubbers*)
- 4 Glassy state (*e.g. organic glasses from poly(styrene), poly(methylmethacrylate), poly(vinyl chloride)).*

# **Polymer Solutions**



- a) Dilute polymer solution;
- b) Crossover from dilute to semidilute solution;
- c) Semidilute solution;
- d) Concentrated solution;
- e) Liquid-crystalline solution;

*Ideal polymer chain*: interactions of monomer units which are far from each other along the chain are neglected.

Polymer chains behave as ideal ones in the socalled  $\Theta$ - *conditions* (see below).

Let us consider ideal *N*-segment *freely-jointed chain* ( each segment of length *l* ).



$$\boldsymbol{R} \propto \sqrt{\left\langle \boldsymbol{R}^2 \right\rangle}$$

$$\vec{u}_{1} \qquad \vec{u}_{2} \qquad \vec{u}_{3} \qquad \vec{u}_{4} \qquad \vec{u}_{N}$$

$$R^{2} = \left(\sum_{i=1}^{N} \vec{u}_{i}\right) \left(\sum_{j=1}^{N} \vec{u}_{j}\right) = \sum_{i=1}^{N} \sum_{j=1}^{N} \vec{u}_{i} \vec{u}_{j}$$

$$\left\langle R^{2} \right\rangle = \sum_{i=1}^{N} \sum_{j=1}^{N} \langle \vec{u}_{i} \vec{u}_{j} \rangle = \sum_{i=1}^{N} \langle \vec{u}_{i}^{2} \rangle + \sum_{i=1}^{N} \sum_{j=1}^{N} \langle \vec{u}_{i} \vec{u}_{j} \rangle$$

$$\sum_{\substack{i=1,j=1\\j\neq i}}^{N} \langle \vec{u}_{i} \vec{u}_{j} \rangle = 0 \quad (different segments are uncorrelated) \implies$$

$$\left\langle R^{2} \right\rangle = \sum_{i=1}^{N} \langle \vec{u}_{i}^{2} \rangle = Nl^{2} = Ll, \quad L = Nl$$

$$L - contour length of the chain$$

$$\overline{R} \propto \sqrt{\langle R^{2} \rangle} = N^{\frac{1}{2}}l, \quad R << L$$

Thus, the conformation of an ideal chain is far from the rectilinear one. Ideal chain forms an *entangled coil*. The chain trajectory is equivalent to the trajectory of a *Brownian particle*. Model with fixed valency angle

The conclusion  $R \sim N^{1/2}$  is valid for *ideal chain* with *any flexibility mechanism*. E.g., let us consider *the model with fixed valency angle* 

 $\gamma$  between the segments of length *b* and free internal rotation ( $u(\varphi) = 0$ ).

$$\frac{b}{\gamma}$$
As before  $\langle \mathbf{R}^2 \rangle = \sum_{i=1}^N \langle \mathbf{u}_i^2 \rangle + \sum_{\substack{i=1 \ j=1 \ j\neq i}}^N \langle \mathbf{u}_i \mathbf{u}_j \rangle, \ \langle \mathbf{u}_i^2 \rangle = b^2$   
but now  $\langle \mathbf{u}_i \mathbf{u}_j \rangle \neq 0$   
 $\langle \mathbf{u}_i \mathbf{u}_j \rangle = b^2 \langle \cos \theta_{ij} \rangle, \ \theta_{ij}$  - angle between segments  
 $i \text{ and } j$   
 $\downarrow$   
 $\langle \mathbf{R}^2 \rangle = \mathbf{N}b^2 + b^2 \sum_{i=1}^N \sum_{j=1}^N \langle \cos \theta_{ij} \rangle$ 



By continuing these arguments, we have

$$\left\langle \cos \theta_{i,i+k} \right\rangle = (\cos \gamma)^{k}$$

$$\left\langle \mathbf{R}^{2} \right\rangle = \mathbf{N}\mathbf{b}^{2} + 2\mathbf{b}^{2} \sum_{i=1}^{N} \sum_{k=1}^{N-i} \left\langle \cos \theta_{i,i+k} \right\rangle =$$

$$= \mathbf{N}\mathbf{b}^{2} + 2\mathbf{b}^{2} \sum_{i=1}^{N} \sum_{k=1}^{N-i} \left( \cos \gamma \right)^{k} =$$

$$= \mathbf{N}\mathbf{b}^{2} + 2\mathbf{b}^{2} \sum_{i=1}^{N} \frac{\cos \gamma}{1 - \cos \gamma} =$$

$$= \mathbf{N}\mathbf{b}^{2} + 2\mathbf{N}\mathbf{b}^{2} \frac{\cos \gamma}{1 - \cos \gamma} \Longrightarrow$$

$$\left\langle \mathbf{R}^{2} \right\rangle = \mathbf{N}\mathbf{b}^{2} \frac{1 + \cos \gamma}{1 - \cos \gamma}$$

#### **Conclusions**

• 
$$\boldsymbol{R} \propto \sqrt{\langle \boldsymbol{R}^2 \rangle} = \boldsymbol{N}^{1/2} \boldsymbol{b}_{\sqrt{\frac{1+\cos \gamma}{1-\cos \gamma}}}$$

Average size of the macromolecule is proportional to  $N^{1/2} \Rightarrow$  for this model we have *entangled coil* as well. This is a *general property* of *ideal polymer chains independently* of the model.

• At  $\gamma < 90^{\circ}$  the value of *R* is larger than for the freely-jointed chain. At  $\gamma > 90^{\circ}$  the relationship is reverse.

#### **Persistent Length of a Polymer Chain**

Let us return to the formula derived for the *model with fixed valency angle* 

$$\langle \cos \theta_{i,i+k} \rangle = (\cos \gamma)^k = \exp(k \ln \cos \gamma) =$$
  
=  $\exp(-k |\ln \cos \gamma|) = \exp\left(-\frac{kb}{b/|\ln \cos \gamma|}\right) =$   
=  $\exp(-s/\tilde{l}), \qquad \tilde{l} = b/|\ln \cos \gamma|$ 

Here *s=kb* is *the contour distance* between two monomer units along the chain.



 $\langle \cos \theta_{\vec{u}(o),\vec{u}(s)} \rangle \propto \exp(-s/\tilde{l})$ 

This formula was derived for the model with *fixed valency angle*  $\gamma$ , but it is valid for *any* model: orientational correlations decay exponentially along the chain. The characteristic length of this decay,  $\tilde{I}$ , is called a *persistent length* of the chain.

At  $s \ll \tilde{l}$  the chain is approximately rectilinear, at  $s \gg \tilde{l}$  the memory of chain orientation is lost. Thus, different chain segments of length  $\tilde{l}$  can be considered as independent, and

$$\boldsymbol{R} \propto \sqrt{\langle \boldsymbol{R}^2 \rangle} \propto \sqrt{\frac{\boldsymbol{L}}{\boldsymbol{\tilde{l}}}} \, \boldsymbol{\tilde{l}}^2 \propto \sqrt{\boldsymbol{L}\boldsymbol{\tilde{l}}}$$

Therefore, *R* is always proportional to  $L^{1/2}$ .

### Kuhn Segment Length of a Polymer Chain

We know that for ideal chain  $\langle \mathbf{R}^2 \rangle \sim \mathbf{L}$  *Kuhn segment length* l is defined as  $l = \langle \mathbf{R}^2 \rangle / L$  (at large L)

Thus the equality  $\langle \mathbf{R}^2 \rangle = \mathbf{L}\mathbf{l}$  is exact by definition.

<u>Advantage of</u> *l* : it can be directly experimentally measured.

<u>Advantage of</u>  $\tilde{l}$ : it has a direct microscopic meaning.

We always have  $l \propto \tilde{l}$ . Let us examine this relationship for the model with *fixed valency angle*.

Since 
$$\langle \mathbf{R}^2 \rangle = N b^2 \frac{1 + \cos \gamma}{1 - \cos \gamma} = L b \frac{1 + \cos \gamma}{1 - \cos \gamma} \implies$$
  
 $\mathbf{l} = b \frac{1 + \cos \gamma}{1 - \cos \gamma}$   
On the other hand,  $\widetilde{\mathbf{l}} = \frac{b}{|\ln \cos \gamma|} \implies$   
 $\mathbf{l}/\widetilde{\mathbf{l}} = |\ln \cos \gamma| \frac{1 + \cos \gamma}{1 - \cos \gamma}$ 

### Stiff and Flexible Chains

Now we have a quantitative parameter that characterizes the chain stiffness: *Kuhn segment length l* (or *persistent length*  $\tilde{l} \propto l$ ). The value of *l* is normally larger than the contour length per monomer unit  $l_0$ . The ratios  $l/l_0$  for most common polymers are

shown below.

| 2.5 |
|-----|
| 3   |
| 3.5 |
| 4   |
| 4   |
| 5   |
| 6.5 |
| 26  |
| 200 |
| 300 |
| 500 |
|     |



From macroscopic viewpoint a polymer chain can be represented as a filament characterized by two lengths:

- Kuhn segment l
- characteristic chain diameter d

Stiff chains: 1 >> d

(DNA, helical polypeptides, aromatic polyamides etc.)

#### <u>Flexible chains: $l \propto d$ </u>

(most carbon backbone polymers)

# Polymer Volume Fraction Inside Ideal Coil

End-to-end vector is  $R \propto \sqrt{\langle R^2 \rangle} \propto (Ll)^{1/2} \Rightarrow$ 

the volume of the coil 
$$V \propto \frac{4}{3}\pi R^3 \propto (Ll)^{3/2}$$
.

Polymer volume fraction within the coil is very small for long chains.

$$\Phi \propto \frac{\pi d^2 L/4}{(Ll)^{3/2}} \propto \frac{d^2}{L^{1/2} l^{3/2}} \propto \left(\frac{l}{L}\right)^{1/2} \left(\frac{d}{l}\right)^2 <<1$$

Radius of Gyration of Ideal Coil

Center of mass of the coil  $\vec{r}_0 = \frac{1}{N} \sum_{i=1}^{N} \vec{r}_i$ , where  $\vec{r}_i$  is the coordinate of the *i*-th monomer unit.

Radius of gyration, by definition, is

$$S^{2} = \frac{1}{N} \sum_{i=1}^{N} (\vec{r}_{i} - \vec{r}_{0})^{2}.$$

It can be shown that for ideal coils

$$\langle S^2 \rangle = \frac{1}{6} \langle R^2 \rangle = \frac{1}{6} Ll$$

The value of  $\langle S^2 \rangle$  can be directly measured in the light scattering experiments (see below).

# <u>Gaussian Distribution for the End-to-End</u> <u>Vector for Ideal Chain</u>

 $P_{N}(\vec{R})$ -probability distribution for the end-toend vector of N- segment freely-jointed chain. Since each step gives *independent* contribution to  $\vec{R}$ , by analogy with the trajectory of a Brownian particle

$$P_N(\vec{R}) = \left(\frac{3}{2\pi N l^2}\right)^{3/2} \exp\left(-\frac{3R^2}{2N l^2}\right)$$

-Gaussian distribution. Therefore, the ideal coil is sometimes called a Gaussian coil. Since  $P_{N}(\vec{R})$  is a probability distribution,

 $\int P_N(\vec{R}) d^3 R = 1.$ 

Also,  $P_N(\vec{R}) = P_N(R_x)P_N(R_y)P_N(R_z)$ .



*For other models*, since orientational correlations decay exponentially, *Gaussian distribution* is still valid:

$$P_{N}(\vec{R}) = \left(\frac{3}{2\pi N l^{2}}\right)^{\frac{3}{2}} \exp\left(-\frac{3R^{2}}{2N l^{2}}\right) = \left(\frac{3}{2\pi \langle R^{2} \rangle}\right)^{\frac{3}{2}} \exp\left(-\frac{3R^{2}}{2\langle R^{2} \rangle}\right).$$

This form of  $P_{N}(\vec{R})$  is independent of *any* specific model.

#### Elasticity of a Single Ideal Chain



For crystalline solids the elastic response appears, because external stress changes the equilibrium inter-atomic distances and increases the *internal energy* of the crystal *(energetic elasticity).* 



Since the energy of ideal polymer chain is equal to zero, the elastic response appears by purely entropic reasons *(entropic elasticity)*. Due to the stretching the chain adopts the less probable conformation  $\Rightarrow$  *its entropy decreases.* 

# According to Boltzmann, the entopy $S(\vec{R}) = k \ln W_N(\vec{R})$

Where *k* is the Boltzmann constant and  $W_N(\vec{R})$  is the number of chain conformations compatible with the end-to-end distance  $\vec{R}$ .

 $W_N(\vec{R}) = const \cdot P_N(\vec{R}) \implies$  $S(\vec{R}) = k \ln P_N(\vec{R}) + const$ 

But, 
$$\boldsymbol{P}_{N}(\boldsymbol{\vec{R}}) = \left(\frac{3}{2\pi Ll}\right)^{3/2} \exp\left(-\frac{3\boldsymbol{R}^{2}}{2Ll}\right)$$

Thus,  $S(\vec{R}) = -\frac{3kR^2}{2Ll} + const$ 

The free energy F:  $F = E - TS = -TS = \frac{3kTR^2}{2Ll} + const$  $\vec{f}d\vec{R} = dF \implies \vec{f} = \frac{\partial F}{\partial \vec{R}} = \frac{3kT}{Ll}\vec{R}$