Detection of HONO using Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy (IBBCEAS)

A. A. Ruth

Department of Physics, University College Cork, Cork, Ireland

Hans-Peter Dorn (FZ Jülich, IEK-8)

Ravi Varma (UC Cork)

Outline

- (1) Measurement Principle (IBBCEAS)
- (2) Experimental Setup(s) & Design
- (3) Data Analysis
- (4) HONO Detection (at UCC)
- (5) Instrument for the FIONA Campaign in Valencia (2010)

(1) Measurement Principle

Incoherent Broadband Cavity Enhanced Absorption Spectroscopy (IBB-CEAS)

One Pass $I = I_{in}(1-L)$

 $I = I_{\rm in} (1 - L)$ Lambert-Beer absorption loss $I = I_{in} \exp(-\alpha d)$ α = absorption coefficient absorption losses very small $I \approx I_{\rm in} \left(1 - \alpha d \right)$ $I_{in} \approx I_0 =$ transmitted intensity without sample $I \approx I_0 \left(1 - \alpha d \right)$ $\Rightarrow \alpha(\lambda) \approx \frac{1}{d} \left(\frac{I_0}{I} - 1 \right)$ absorption losses very small

Advantages: • Long optical path length

 \rightarrow high detection sensitivity ($\alpha > 10^{-10} \, \mathrm{cm}^{-1}$)

- $\rightarrow \alpha = n\sigma$ (n=number density, σ =abs. cross-section)
- High temporal (s...min) & spatial (cm...m) resolution
- High spectral resolution possible (~GHz)

Absorption spectroscopy using optical resonators

$$\begin{split} I = I_{\text{in}} \left(1 - R\right) \left(1 - L\right) \left(1 - R\right) + \dots & - \text{ one pass } I_{\text{a}} \\ I_{\text{in}} \left(1 - R\right) \left(1 - L\right) R \left(1 - L\right) R \left(1 - L\right) \left(1 - R\right) + \dots \\ I_{\text{in}} \left(1 - R\right)^2 R^{2n} \left(1 - L\right)^{2n+1} + \dots - n \text{ passes } I_n \end{split}$$

Absorption spectroscopy using optical resonators

$$I = I_{in} \frac{(1-R)^{2}(1-L)}{1-R^{2}(1-L)^{2}}$$

$$\downarrow \qquad \text{Lambert-Beer Absorption Losses} \\ I, I_{0}: \text{ transmitted intensity with, without sample} \\ \alpha = \frac{1}{d} \left| \ln \left(\frac{1}{2R^{2}} \left(\sqrt{4R^{2} + \left(\frac{I_{0}}{I} (R^{2} - 1) \right)^{2}} + \frac{I_{0}}{I} (R^{2} - 1) \right) \right) \right|$$

$$\downarrow \qquad \text{Absorption losses very small.} \\ \text{Mirror reflectivity very high } (R \rightarrow 1)$$

$$\alpha \approx \frac{1}{d} \left(\frac{I_{0}}{I} - 1 \right) (1-R) \qquad \leftarrow \text{Multi pass}$$

(2) Experimental Setup

Incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS)

Measures the transmission of an optically stable cavity consisting of two highly reflecting dielectric mirrors.

Incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS)

Measures the transmission of an optically stable cavity consisting of two highly reflecting dielectric mirrors.

Lab setup (open path):

Mirror calibration with low loss optic

Transmission without optic: $I_0(\lambda)$ Transmission with optic: $I_1(\lambda)$

Calibrated low loss of optic: $L(\lambda)$ (must be known accurately)

Calculate mirror reflectivity: $R(\lambda)$

$$R(\lambda) = 1 - \left[\frac{I_1}{I_0 - I_1}L(\lambda)\right]$$

Intercomparison SAPHIR Jülich (2007) Receiver (NO_3/N_2O_5) Transmitter

Intercomparison SAPHIR Jülich (2007) (NO_3/N_2O_5)

Receiver

Transmitter

Met Éireann Station Roches Point, Ireland 51.795N / 8.252W

Transmitter unit

Target species NO₃

Receiver unit

(3) **Data Analysis**

Incoherent broadband cavity-enhanced absorption spectroscopy

$$\varepsilon(\lambda) = \sum_{i} \sigma_{i}(\lambda) \int_{0}^{d} n_{i}(x) dx = \frac{1}{d} \left(\frac{I_{0}}{I} - 1 \right) \left(1 - R \right)$$

- ε = extinction [cm⁻¹]
- $\sigma_{\rm i}$ = cross-section [cm² molecule⁻¹] ($\sigma_{\rm abs}$, $\sigma_{\rm Ray}$, $\sigma_{\rm Mie}$, ...)
- n_i = number density [molecule cm⁻³]
- d = "effective" cavity length [cm]
- I_0 = transmitted intensity without sample (rel. units)
- I = transmitted intensity with sample (rel. units)
- $R = \sqrt{R_1 R_2}$ mirror reflectivity

Fit function for HONO retrieval (range 363-377 nm)

$$\varepsilon(\lambda) = n_{\text{HONO}} \sigma_{\text{HONO}}(\lambda) + n_{\text{NO}_2} \sigma_{\text{NO}_2}(\lambda) + a_3 \lambda^2 + a_2 \lambda + a_1$$
$$\lambda = \lambda' - \Delta \lambda'$$

<u>Nonlinear least-square fit</u> parameters varied: n_i (i = HONO, NO₂), $\Delta \lambda$ ', a_j (j = 1, 2), a_3 =0

Reference spectra σ_i convoluted for 0.5 nm resolution: HONO: J. Stutz et al., *J. Geophys. Res.* 2000, **105**, 14585. NO₂: J.P. Burrows et al., *JQSRT* 1998, **60**, 1025.

FIONA: Linear singular value decomposition fit. n_i (i = HONO, NO₂), a_j (j = 1...3). Separate $\Delta \lambda$ ' minimization.

Systematic Errors

Measurement errors:

- $\Delta(1-R) \approx 5-8\%$
- $\Delta \sigma \approx 1 10 \%$
- $\Delta d \approx 2 \%$
- $\Delta I_0 \approx 5\%$

Fit errors:

Choice of fit range: ~2 % Max uncertainty of various analysis approaches: ~10 %

(4) HONO detection in Cork

IBBCEAS for chamber studies –

Simulation chamber at the Centre for **Research** into **Atmospheric** Chemistry (CRAC) $4 \,\mathrm{m}^3$

HONO formation:

(R1) $NO_2 + NO + H_2O \leftrightarrow 2 HONO$ (R2) $2 NO_2 + H_2O (+hv) \leftrightarrow HONO + HNO_3$

(5) Instrument for the FIONA campaign at EUPHORE

FIONA = Formal Intercomparison of Observations of Nitrous Acid

Estimated Detection Limits

Based on:

- Integration time of 1 min
- 7.5 m cavity length
- *R* = 0.9995
- Signal-to-noise ratio of 2:1

HONO: ~ 0.25 ppbv NO₂: ~ 0.66 ppbv

Estimated Precision (from fit)

HONO: <10 pptv , NO₂: <10 pptv

Estimated Systematic Errors

Measurement errors:

Fit errors:

Choice of fit range: $\sim 2\%$ $\Delta(1-R) \approx 8\%$ $\Delta \sigma_{\rm NO_2} \approx \Delta \sigma_{\rm HONO} \approx 5\%$ $\Lambda d \approx 1\%$ $\Delta I_0 \approx 3\%$ $\sqrt{\Delta(1-R)^2 + \Delta\sigma_{HONO}^2 + \Delta d^2 + \Delta I_0^2} + 0.02^2 = 0.102$

Overall systematic error: ca. ±10 %

Acknowledgement

Staff at Forschungszentrum Jülich (ICG-2):

Irish Environmental Protection Agency (EPA): STRIVE programme: 2008-FS-EH-2-S5

Science Foundation Ireland (SFI):

STTF programme: 06/RFP/ CHP055