Small angle neutron scattering studies of the skyrmion lattice in chiral MnSi

S. Mühlbauer^{1,2,3}, C. Pfleiderer², F. Jonietz², T. Adams², A. Neubauer², A. Bauer², W. Münzer², R. Georgii³, P. Böni², K. Everschor⁴, M. Garst⁴ and A. Rosch⁴

² Technische Universität München, Physik Department E21, D-85748 Garching, Germany

⁴ Institute of Theoretical Physics, Universität zu Köln, D-50937 Köln, Germany

In this presentation we intend to demonstrate that small angle neutron scattering (SANS) is a unique probe of large scale textures in superconductors and magnetic materials. In fact, using SANS we have identified a new form of magnetic order composed of spin vortices, so-called skyrmions, in MnSi [1] and other B20 compounds [2]. A rigorous account of this state shows that it is stabilized by thermal fluctuations. Similar to the vortex lattice of a superconductor, the skyrmion lattice in MnSi can be regarded as a macroscopic lattice, formed by topological entities with particle-like properties, emerging from continuous fields. The topological properties of the skyrmion lattice lead to an additional contribution to the anomalous hall effect caused by the Berry phase [3]. The long range crystalline nature of the skyrmion lattice has been proven by recent high resolution neutron diffraction studies [4].

The identification of the skyrmion lattice sets the stage for the current induced motion of the skyrmion lattice at ultra-low current densities [5], which is akin to the current induced flux lattice motion in superconductors. In this presentation, further emphasis will be laid on future neutron scattering experiments in the time-domain exploiting the time-resolution of the stroboscopic SANS technique TISANE [6] and the neutron resonance spin echo technique MIEZE [7].

- [1] S. Mühlbauer et al., Science 323, 915 (2009);
- [2] W. Münzer et al., Phys. Rev. B 81, 041203 (2010).
- [3] A. Neubauer, et al. Phys. Rev. Lett., 102, 186602 (2009).
- [4] T. Adams, et al. submitted to Phys. Rev. Lett., (2011), arXiv:1107.0993.
- [5] F. Jonietz, et al., Science 330, 1648 (2011).
- [6] A. Wiedenmann, et al., Phys. Rev. Lett., 97, 057202 (2006).
- [7] G. Brandl, et al., NIMA 654, 394-398 (2011), arXiv:1107.1568.

¹ Neutron Scattering and Magnetism Group, Institute for Solid State Physics, ETH Zürich, Switzerland

³ Technische Universität München, Forschungsneutronenquelle Heinz Maier-Leibnitz, D-85748 Garching, Germany