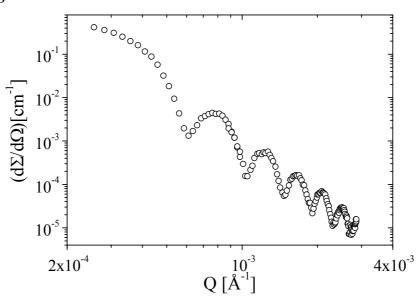
Light Scattering (SLS/DLS)

In addition to the neutron scattering experiments described elsewhere a state-of.-the-art light scattering laboratory is available. The use of light scattering is necessary if additional information from another Q and t range is required. The existing experimental equipment allows to carry out static as well as dynamic measurements in the same experiment.

Instrument Details

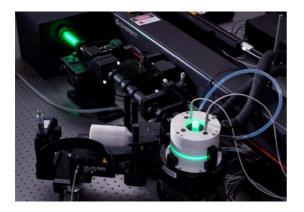

light source:	Coherent Innova 90/4 Ar ⁺ -ion laser, $\lambda = 488$ nm, 514.5nm (max. 1.9W TEM00), etalon mode possible Uniphase HeNe laser, $\lambda = 632.8$ nm (22mW)
polarizers:	Glan-Thompson prism (B. Halle, Berlin)
goniometer:	ALV/SP125 compact goniometer, $Q = 10^{-1}$
detectors:	fiber optical detection system operating with ALV/SO-SIPD detector systems ("pseudo"-cross correlation) ALV high QE APD (autocorrelation, SLS) EMI 9130/100S B03 (autocorrelation, SLS)
correlator:	ALV-5000E fast version, 319 channel (multi-tau)
time range:	12.5 x 10 ⁻⁹ - 5.47 10 ³ s
Q-range:	2.3 x 10 ⁻⁴ - 3.8 x 10 ⁻³ Å ⁻¹
Intensity	14kHz (toluene, θ =90°)
coherence factor:	0.92
sample volume:	minimum 250 µl
sample environment:	cryostat 260420K
	rotating sample holder for nonergodic samples (e.g. gels, glasses)

Instrument Decription

In static light scattering (SLS) the integrated intensity of the scattered light is measured as a function of the scattering vector Q, i.e. S(Q). A classical field of application is the characterisation of polymers (radius of gyration R_g , weight average of molecular weight M_W , 2nd virial coefficient A_2).


Dynamic light scattering (DLS), also called quasi-elastic light scattering (QUELS) or photon correlation spectroscopy (PCS) works as a pectroscopic method in time domain; the measured quantity is the autocorrelation function of the scattered light intensity $g^2(Q,t) = \langle I(Q,0)I(Q,t) \rangle / \langle I(Q) \rangle^2$. The large time range (about 10 decades) covered by this method as well as its characteristic length scale ($Q^{-1} \sim 100$ nm) make PCS an important method for the investigation of dynamic processes in the melt and in solution (D_{trans} , D_{rot} , R_h , polydispersity). Typical applications range from biological systems (DNA fragments, microorganisms) to the internal dynamics of polymer networks.

Examples of Measurements


Form factor P(Q) of a hard-sphere colloid, Poly(Methylmethacrylat) in cis-Dekalin, with R=760nm, $10^{\circ} < \Theta = 154^{\circ}$, T=293K.

b. DLS

The intensity autocorrelation functions $g^2(Q,t)$ shown here from samples with extremely different relaxation times demonstrate the large time window of dynamical light scattering.

- a. $\tau=2.5$ s; Polystyrene Latex Standard (d=304nm) in H₂O/Glycerin (23:87), 10⁻⁴ weight-%, $\Theta=30^{\circ}, T=283$ K.
- b. τ_1 =68ms, τ_2 =8.6µs; 18-arm Polyisoprene star polymer (M_W =152000 g/mol) in Methylcyclohexan, c=0.309g/ml, Θ =90°, T=293K
- c. $\tau=3.3\mu$ s; Polystyrene ($M_W=3300$ g/mol) in Benzene, c=0.1g/ml, $\Theta=150^\circ$, T=293K.

Light scattering set-up