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1 Introduction 
Our present understanding of the properties and phenomena of condensed matter science is 
based on atomic theories. The first question we pose when studying any condensed matter 
system is the question concerning the internal structure: what are the building blocks (atoms, 
colloidal particles, ...) and how are they arranged? The second question concerns the 
microscopic dynamics: how do these building blocks move and what are their internal degrees 
of freedom? Once these fundamental questions are answered, the macroscopic properties are 
in principle determined by quantum theory and statistical physics. The macroscopic response 
and transport properties such as thermal conductivity, elasticity, viscosity, susceptibility etc. 
are the quantities of interest for applications. A deeper understanding of these properties has 
to be based on a microscopic picture. 
 
For the development of modern condensed matter research, the availability of probes to study 
the structure and dynamics on a microscopic level is therefore essential. Modern scattering 
techniques can provide all the required information. Radiation, which has rather weak 
interaction with a sample under investigation provides a non-invasive, non-destructive probe 
for the microscopic structure and dynamics. This has been shown for the first time by W. 
Friedrich, P. Knipping and M. von Laue in 1912, when interference of x-ray radiation from a 
single crystal was observed. Max von Laue received the Nobel price for the interpretation of 
these observations. One cannot overestimate this discovery: it was the first proof that atoms 
are the elementary building blocks of condensed matter and that they are arranged in a 
periodic manner within a single crystal. The overwhelming part of our present-day knowledge 
of the atomic structure of condensed matter is based on x-ray structure investigations. Of 
course the method has developed rapidly since 1912. With the advent of modern synchrotron 
x-ray sources, the source brilliance has since then increased by 18 orders of magnitude. 
Currently x-ray Free Electron Lasers, e. g. the TESLA project (tesla.desy.de), are proposed 
which will increase this brilliance by another 10 orders of magnitude. Nowadays the structure 
of highly complex biological macromolecules can be determined with atomic resolution such 
as the crystal structure of the ribosome. Extremely weak phenomena such as magnetic x-ray 
scattering can be exploited successfully at modern synchrotron radiation sources. Besides x-
ray scattering, light scattering is an important tool in soft condensed matter research. Light 
scattering is of particular interest for investigations on larger lengths scales, such as of 
colloidal particles in solution. Finally, intense neutron beams have properties, which make 
them an excellent probe for soft condensed matter investigations. In particular, contrast 
variation techniques are possible by selective deuteration of molecules or molecular subunits. 
Neutrons give access to practically all lengths scales relevant in soft condensed matter 
investigations from the atomic level up to about 1000 nm and are particularly well suited for 
the investigations of the movement of atoms and molecules. As with x-rays the experimental 
techniques are in rapid evolution and the proposed new spallation sources such as the 
European Spallation Source ESS (www.ess-europe.de) will increase the capabilities of 
neutron investigations in condensed matter science drastically in the years to come.  
 
In the following we give an elementary introduction into scattering theory in general and 
show some applications in soft condensed matter investigations. More details can be found in 
[1-5].  
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This lecture is organised as follows: first we give a very basic introduction into elementary 
scattering theory for elastic scattering. Then we will discuss which probes are relevant for 
condensed matter investigations (light, x-rays, neutrons), list the properties of the various 
types of radiation and mention the modern radiation sources. Then we will drop the restriction 
of a static arrangement of scatterers assumed in the chapter on elastic scattering and discuss 
time fluctuations and how scattering processes can give information on internal dynamics. 
Examples will be given for high resolution neutron and light scattering experiments.  
 
I have to emphasise that a lecture on scattering for all the different probes and for the static 
and dynamic cases is a subject for a full semester university course. With the limited space 
available it is impossible to deduce the results cited in a strict manner. I will use simple hand 
waving arguments to motivate the form of the equations presented and refer to the literature 
[1-5] for the detailed derivation.  
 
We will frequently make use of the particle-wave dualism of quantum mechanics, which tells 
us that the radiation used in the scattering process can be described in a wave picture, when-
ever we are interested in interference phenomena and in a particle picture, e. g. for the detec-
tion process.  
 

2 Elementary Scattering Theory: Elastic Scattering 
 
2.1 Scattering geometry and scattering cross section 
 
In this chapter we assume that the building blocks within our sample are rigidly fixed on 
equilibrium positions in space. Therefore we only look at those processes, in which the recoil 
is being transferred to the sample as a whole so that the energy change for the radiation is 
negligible and the scattering process appears to be elastic. In chapter 4, we will drop this 
restriction and discuss so-called inelastic scattering processes due to internal fluctuations in 
the sample which give rise to an energy change of the radiation during the scattering process.  
 
A sketch of the scattering experiment is shown in figure 1.  
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Fig. 1: A sketch of the scattering process in the Fraunhofer approximation in which it is 

assumed that plain waves are incident on sample and detector due to the fact that the 
distance source-sample and sample-detector, respectively, is significantly larger 
than the size of the sample. 
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Here we assume the so-called Fraunhofer approximation, where the size of the sample has to 
be much smaller than the distance between sample and source and the distance between 
sample and detector, respectively. This assumption holds in all cases discussed in this lecture. 
In addition we assume that the source emits radiation of one given energy, i. e. so-called 
monochromatic radiation. Then the wave field incident on the sample can be described as a 
plane wave, which is completely described by a wave vector k. The same holds for the wave 
incident on the detector, which can be described by a vector k'. In the case of elastic scattering 
(diffraction) we have 

λ
π==== 2'k'kkk  (1) 

Let us define the so-called scattering vector by 
'kkQ −= . (2) 

The magnitude of the scattering vector can be calculated from wavelength λ and scattering 
angle 2θ as follows 

     θ−+== 2cos'kk22'k2kQQ  ⇒ θ
λ
π= sin4Q . (3) 

A scattering experiment comprises the measurement of the intensity distribution as a function 
of the scattering vector. The scattered intensity is proportional to the so-called cross section, 
where the proportionality factors arise from the detailed geometry of the experiment. For a 
definition of the scattering cross section, we refer to figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Geometry
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scattering angle 2θ
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interested in the ch
detector is not a
dependence by the
 used for the definition of the scattering cross section.  

cattered per second into the solid angle dΩ seen by the detector under the 
 and into the energy interval between E' and E' + dE', then we can define 
e differential cross section by:  

'dEjd
'n

'dEd
2d

Ω
=

Ω
σ . (4) 

e incident beam flux in terms of particles per area and time. If we are not 
ange of the energy of our radiation during the scattering process or if our 

ble to resolve this energy change, then we will describe the angular 
 so-called differential cross section: 
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'dE
0 'dEd

2d
d
d

∫
∞

Ω
σ=

Ω
σ . (5) 

Finally the so-called total scattering cross section gives us a measure for the total scattering 
probability independent of changes in energy and scattering angle:  

Ω∫
π

Ω
σ=σ d

4

0 d
d . (6) 

Our task therefore is to determine the arrangement of the atoms in the sample from the 
knowledge of the scattering cross section Ωσ d/d . The relationship between scattered 
intensity and the structure of the sample is particularly simple in the so-called Born 
approximation, which is often also referred to as kinematic scattering approximation. In this 
case, refraction of the beam entering and leaving the sample, multiple scattering events and 
the extinction of the primary beam due to scattering within the sample are being neglected. 
Following figure 3 the phase difference between a wave scattered at the origin of the 
coordinate system and at position r is given by 

( ) rQrkr'kCDAB2 ⋅=⋅−⋅=
λ
−⋅π=∆Φ . (7) 
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Fig. 3: A sketch illustrating the phase difference between a beam scattered at the origin of 

the coordinate system and a beam scattered at the position r. 
 
The scattered amplitude at the position r is proportional to what I will refer to as the scattering 
power density ρs(r). ρs depends on the type of radiation used. Its meaning will be given in 
chapter 3. Assuming a laterally coherent beam, the total scattering amplitude is given by a 
coherent superposition of the scattering from all points within the sample, i. e. by the integral 

( ) r3drQie
sV

rs0AA ⋅⋅∫ ρ⋅= . (8) 

Here A0 denotes the amplitude of the incident wave field. (8) demonstrates that the scattered 
amplitude is connected with the scattering power density ρs(r) by a simple Fourier transform. 
A knowledge of the scattering amplitude for all scattering vectors Q allows us to determine 
via a Fourier transform the scattering power density uniquely. This is the complete 
information on the sample, which can be obtained by the scattering experiment. Unfortunately 
nature is not so simple. On one hand, there is the more technical problem that one is unable to 
determine the scattering cross section for all values of Q. The more fundamental problem, 
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however, is given by the fact that normally the amplitude of the scattered wave is not 
measurable. Instead only the scattered intensity  

2A~I  (9) 
can be determined. Therefore the phase information is lost and the simple reconstruction of 
the scattering power density via a Fourier transform is no longer possible. This is the so-called 
phase problem of scattering.  
 
Before we address the question, which information we can obtain from a scattering 
experiment, let us ask ourselves, which wavelength we have to choose to obtain the required 
real space resolution. For information on a length scale L, a phase difference of about Q⋅L ≈ 2 
π has to be achieved. Otherwise according to (7) k' and k will not differ significantly. 
According to (3) Q ≈ 2π/λ for typical scattering angles (2θ ~ 60°). Combining these two 
estimates, we end up with the requirement that the wavelength λ has to be in the order of the 
real space length scale L under investigation. To give an example: with the wavelength in the 
order of 0.1 nm, atomic resolution can be achieved in a scattering experiment.  
 
2.2 The Patterson or pair correlation function 
 
From (9) we see that the phase information is lost during the measurement of the intensity. 
For this reason the Fourier transform of the scattering power density is not directly accessible 
in most scattering experiments (note however that phase information can be obtained in 
certain cases). In this section, we will discuss which information can be obtained from the 
intensity distribution of a scattering experiment. 
 
Substituting (8) into (9), we obtain for the magnitude square of the scattering amplitude, a 
quantity directly accessible in a scattering experiment: 

( ) ( ) ( ) rQiersr3d'rQie'rs'r3d~
2

QA~I ⋅−
∫ ∗ρ⋅

∫ ρ  

   ( ) ( ) 




 −⋅

∫∫ ∗ρρ=
r'rQiers'rsr3d'r3d  ( ) ( ) RQiersrRsr3Rd3d ⋅

∫∫ ∗ρ+ρ= . 
(10)

This shows that the scattered intensity is proportional to the Fourier transform of a function 
P(R): 

( ) ( ) RQieRPR3d~QI ⋅
∫  (11)

This function denotes the so-called Patterson function in crystallography or more general the 
static pair correlation function:  

( ) ( ) ( )Rrsrsr3dRP +ρ∫ ∗ρ= . (12)
P(R) correlates the value of the scattering power density at position r with the value at the 
position r + R, integrated over the entire sample volume. If, averaged over the sample, no cor-
relation exists between the values of the scattering power densities at position r and r+R, then 
the Patterson function P(R) vanishes. If, however, a periodic arrangement of a pair of atoms 
exists in the sample with a difference vector R between the positions, then the Patterson 
function will have an extremum for this vector R. Thus the Patterson function reproduces all 
the vectors connecting one atom with another atom in a periodic arrangement.  
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2.3 Form-factor 
 
So far we have not specified the nature of our sample. Now we assume an assembly on N 
scatterers of finite size, see figure 4.  
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rj

r

Vj

Vs

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Sketch showing the assembly of N scatterers of finite size and defining the quantities 

needed for the introduction of the form factor. 
 
 
These could be atoms in a solid or colloidal particles in a homogeneous solution. In what fol-
lows, we will separate the interference effects from the scattering within one such particle 
from the interference effects arising from scattering from different particles. With the decom-
position of the vector r into the center-of-gravity-vector rj and a vector r' within the particle, 
the scattering amplitude can be written as:  

( ) ( ) ( ) 'rQie'rS
N

1j 0
jV

'r3djrQierQierS
N

1j jV
r3drQie

SV
rSr3dA ⋅ρ∑

=
∫

⋅=⋅ρ∑
=

∫=⋅
∫ ρ∝

( )

 

( ) jrQieQjf
N

1j
0jA~A ⋅⋅∑

=
⇒ . 

(13)

 
The form-factor is defined as the normalised amplitude of scattering from within one particle:  

( )
( )

( )∫

∫
⋅

≡

0
jV

'rsρr'3d

0
jV

'rQie'rsρr'3d

Qf . (14)

 
For a homogeneous sphere 
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( )




≤
>

=ρ Rr1
Rr0rs , (15)

 
the form-factor can be calculated by using spherical co-ordinates:  

( )
( )3QR

QRcosQRQRsin3Qf ⋅−⋅=⇒ . (16)

 
The function (16) is plotted in figure 5. In forward direction, there is no phase difference 
between waves scattered from different volume elements within the sample (note: we assume 
the Fraunhofer approximation and work in a far field limit). The form-factor takes its maxi-
mum value of one. For finite scattering angles 2θ, the form-factor drops due to destructive 
interference from various parts within one particle and finally for large values of the 
momentum transfer shows damped oscillations around 0 as a function of QR.  

QR

f(Q) 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Form-factor for a homogeneous sphere according to (16). 
 
 
2.4 Scattering from a periodic lattice in three dimensions 
 
As an example for the application of (8) and (9), we will now discuss the scattering from a 
three dimensional lattice of point-like scatterers. As we will see later, this situation 
corresponds to the scattering of thermal neutrons from a single crystal. More precisely, we 
will restrict ourselves to the case of a Bravais lattice with one atom at the origin of the unit 
cell. To each atom we attribute a scattering power α. The single crystal is finite with N, M 
and P periods along the basis vectors a, b and c. The scattering power density, which we have 
to use in (8) is a sum over δ-functions for all scattering centers:  

( ) ( )(∑
−

=
∑
−

=
∑ )−

=
⋅+⋅+⋅−δ⋅α=ρ

1N

0n

1M

0m

1P

0p
cpbmanrrs . (17)

 
The scattering amplitude is calculated as a Fourier transform:  

( ) ∑
−

=
⋅

∑
−

=
⋅

∑
−

=
⋅α

1P

0p
cQipe

1M

0m
bQime

1N

0n
aQine~QA . (18)

Summing up the geometrical series, we obtain for the scattered intensity:  
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( ) ( )
cQ2

12sin

cQP2
12sin

bQ2
12sin

bQM2
12sin

aQ2
12sin

aQN2
12sin2α

2
QA~QI

⋅

⋅
⋅

⋅

⋅
⋅

⋅

⋅
⋅= . (19)

The dependence on the scattering vector Q is given by the so-called Laue function, which 
separates according to the three directions in space. One factor along one lattice direction a is 
plotted in figure 6.  
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Fig. 6: Laue function along the lattice direction a for a lattice with five and ten periods, re-

spectively. 
 
 
The main maxima occur at the positions Q = n ⋅ 2π/a. The maximum intensity scales with the 
square of the number of periods N2, the half width is given approximately by ∆Q = 2π/(N⋅a). 
The more periods contribute to coherent scattering, the sharper and higher are the main peaks. 
Between the main peaks, there are N-2 site maxima. With increasing number of periods N, 
their intensity becomes rapidly negligible compared to the intensity of the main peaks. The 
main peaks are of course the well known Bragg reflections, which we obtain when scattering 
from a crystal lattice. From the position of these Bragg peaks in momentum space, the metric 
of the unit cell can be deduced (lattice constants a, b, c and unit cell angles α, β, γ). The width 
of the Bragg peaks is determined by the size of the coherently scattering volume (parameters 
N, M, and P) - and some other factors for real experiments (resolution, mosaic distribution, 
internal strains, ...). 
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3 Probes for Scattering Experiments in Condensed Mat-
ter Science 

In this chapter, we will discuss which type of radiation is suitable for condensed matter inves-
tigations. For each radiation, we will then discuss the relevant interaction processes with 
matter separately. Finally, we will mention the radiation sources.  
 
3.1 Suitable types of radiation 

 
A list of requirements for the type of radiation used in condensed matter investigations will 
look as follows:  
 
1. The achievable spatial resolution should be in the order of the inter-particle distances, 

which implies (see section 2.1) that the wavelength λ is in the order of the inter-particle 
distance L.  

2. If we want to study volume effects, the scattering has to originate from the bulk of the 
sample, which implies that the radiation should be at most weakly absorbed within matter.  

3. For a simple interpretation of the scattering data within the Born approximation (see 
chapter 2), multiple scattering effects should be negligible, i. e. the interaction of the ra-
diation with matter should be weak.  

4. For the sake of simplicity, the probe should have no inner degrees of freedom, which 
could be excited during the scattering process (i. e. avoid beams of molecules, which have 
internal vibrational or rotational degrees of freedom).  

5. If, in addition to structural studies, we want to investigate elementary excitations, we 
would like the energy of the probe to be in the order of the excitation energies, so that the 
energy change during the scattering process is easily measurable. 

 
This list of requirements leads us to some standard probes in condensed matter research. First 
of all, electromagnetic radiation governed by the Maxwell equations can be used. Depending 
on the resolution requirements, we will use x-rays with wavelength λ about 0.1 nm to achieve 
atomic resolution or visible light (λ ~ 350 - 700 nm) to investigate e. g. colloidal particles in 
solution. Besides electromagnetic radiation, particle waves can be used. It turns out that 
thermal neutrons with a wavelength λ ~ 0.1 nm are particularly well adapted to the above list 
of requirements. The neutron beams are governed by the Schrödinger equation of quantum 
mechanics. An alternative is to use electrons, which for energies of around 100 keV have 
wavelengths in the order of 0.005 nm. As relativistic particles, they are governed by the Dirac 
equation of quantum mechanics. The big drawback of electrons as a condensed matter probe 
is the strong Coulomb interaction with the electrons in the sample. Therefore neither the 
absorption, nor the multiple scattering effects can be neglected. However the abundance of 
electrons and the relative ease to produce optical elements predestinates them to imaging 
purposes (electron microscopy). Scattering experiments with electrons will not be further 
discussed here.  
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3.2 X-rays: Thomson scattering 
 
X-rays are electromagnetic waves with wavelengths typically shorter than 1 nm. For electro-
magnetic waves, the relation between energy and wavelength is given by 

λ
⋅=ν= chhE  (20)

or in practical units 

[ ] [ ]nm
24.1keVE

λ
=  (21)

i. e. x-rays with a wavelength of 0.1 nm have an energy of 12.4 keV. The corresponding ele-
mentary particle - the photon - is massless, has no charge, but spin 1. For a massless particle 
of spin 1, two polarisation states can be distinguished, corresponding to left or right circular 
polarised light. According to de Broglie, the relation between momentum p and wavelength λ 
is given by 

λ== /hp;kp h . (22)
 
Electromagnetic radiation has a very complex interaction with matter, as discussed in many 
quantummechanics, electrodynamics or atomic physics textbooks. Here we consider only the 
simplest interaction mechanism, which is also the one most relevant for x-ray scattering: the 
interaction of the electromagnetic wave via the Coulomb force with a free electron without 
spin. This interaction gives rise to the so-called classical Thomson scattering. The process is 
sketched in figure 7. The incident electromagnetic wave gives rise to an oscillating electric 
field at the position of the electron. Due to the Coulomb force, the electron will start an 
oscillatory movement. The accelerated charge gives rise to the re-radiation of electric dipole 
radiation. 
 
It is straightforward to calculate the scattering cross section, starting from the classical 
equation of motion 

xmEe &&⋅=⋅−  (23)

and inserting the correct time dependence for the electric field vector 




 ⋅−ω

⋅=
rktie0EE . 

The cross section can be written in the form  

( )θ⋅=
Ω
σ P2

0rd
d  (24)

where r0 denotes the classical electron radius, r0 = e/mec2 = 2.82fm and P(θ) is a polarisation 
dependent factor, corresponding to the typical Hertz dipole characteristic. For an unpolarised 
x-ray beam P(θ) = 1 + cos2 2θ.  
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Fig. 7: Sketch showing the interaction of a free electron without s
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3.3 Light scattering 
 
Light is electromagnetic radiation with a wavelength in the range 
(22) hold correspondingly. Quite in contrast to x-rays, the wavelen
orders of magnitude larger than a typical diameter of an atom. The
atomic structure and work in a continuum description. The propag
governed by the Maxwell equations and for a scattering process, w
vacuum sources:  

( ) ( ) 0D;t,rD
t

t,rH =⋅∇
∂
∂=×∇  

( ) ( ) 0B;t,rB
t

t,rE =⋅∇
∂
∂=×∇ . 

In our case of soft matter investigations, we can usually neglect the m
( ) ( ) ( )t,rErt,rD ⋅ε=  

( ) ( )t,rH0µt,rB ⋅=  

and thus describe the properties of matter by the tenser of the
Inhomogeneities are described by the spatial variation of the dielec
lead to the fact, that the dielectric displacement vector D may not 
field strength E. Our task is now to solve the Maxwell equations fo

([ rktiexpEE 0 ⋅−ω⋅= )]. Here we will just quote the solution for t
from colloidal particles in a homogeneous solvent. For a detailed d
The scattered amplitude is given by: 
 θ

pin with the incident elec-
s the origin of the polari-

the direction of movement 
e electron and does not 
cular to the motion of the 
maximum intensity of re-

350 - 750 nm and (20) - 
gth of light is about three 
refore we can neglect the 
ation of light in matter is 
e assume that there are no 

(25)

agnetic response 

(26)

 dielectric constant ( )rε . 
tric constant. Anisotropies 
be parallel to the electric 
r the incident plane wave 
he case of light scattering 
erivation we refer to [5]. 
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( ) ( ) ( ) 0EjrQie
N

1j
QjB'kP

r
ikre

4
2kQ,rsE ⋅⋅⋅∑

=
⋅

π
= . (27)

E0 is the amplitude of the incident wave. The scattering amplitude of a given particle j is de-

noted by ( )QjB . jrQie ⋅  is the phase factor for particle number j. ( )'kP  is a polarisation factor 

and eikr/r corresponds to the decrease of intensity with distance from the sample in the far field 
spherical wave limit. 
 
If we refer to our simple scattering theory explained in chapter 2, we recognise all the factors 
appearing in (27). The main difference to our simple scaler scattering theory is the vector 
nature of the electromagnetic wave giving rise to polarisation effects. The polarisation can be 
changed during the scattering from each single particle and therefore, the scattering amplitude 
of the jth particle, as well as the polarisation factor have to be tensors. Their explicit form is 
given by 

( ) 2k
'k'k'kP −= 1  (28)

( ) ( ) rQie
f

fr

0
jV

r3dQjB ⋅
ε

ε−ε
∫=

1
. (29)

The quantity that we have called in chapter 2 "scattering strength density" corresponds to the 

expression ( ) ( )( ) ffs /r~r εε−ε 1ρ , where  is the dielectric constant of the solvent.  fε

 
The scattering theory for light under the Born approximation is referred as the Rayleigh-
Gans-Debye-scattering theory and in what follows, we will refer to the process as Rayleigh 
light scattering. (Note: the factor k2 gives rise to a dependence of the emitted power on the 
fourth power of the frequency, which provides the explanation for the blue sky).  
 
3.4 Neutron scattering 
 
We mentioned in the introduction that neutron beams provide a particularly useful probe for 
condensed matter investigations. The neutron is an elementary particle, a nucleon, consisting 
of three valance quarks, which are hold together by gluons. It thus has an internal structure, 
which, however, is irrelevant for condensed matter physics. Keeping in mind the difference in 
lengths scales (diameter of an atom: about 0.1 nm = 10-10 m; diameter of a neutron: about  
1 fm = 10-15 m), we can safely consider the neutron as point-like particles without internal 
structure for our purposes. Due to the weak interaction, the neutron is not a stable particle. A 
free neutron undergoes a β-decay after an average lifetime of about 15 minutes:  

ν+−+ → epmin15n  (30)weak interaction 
This leaves ample time for scattering investigations. In contrast to the massless photon, the 
neutron has a mass m of about one atomic mass units ~ 1.675 ⋅ 10-27 kg. The finite neutron 
mass is comparable to the mass of a nucleus and thus an appreciable amount of energy can be 
transferred during the scattering process. The neutron is a chargeless particle and thus does 
not show the strong Coulomb interaction with matter which results in large penetration 
depths. The neutron has a nuclear spin 1/2 giving rise to a magnetic dipolar moment of  
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T/J271005.5N;91.1;Nn −⋅=µ=γγµ=µ . (31)
Due to this magnetic moment, the neutron can interact with the magnetic field of unpaired 
electrons in a sample leading to strong magnetic scattering. Thus magnetic structures and 
excitations can be studied by neutron scattering, a very important application outside of soft 
condensed matter research. To calculate the interference effects during the scattering process, 
a neutron has to be described as a matter wave with momentum 

λ==⋅= /hkvmp h  (32a)

and energy 

eqTBk2m2

2h
m2

2k22mv2
1E ≡

λ
=== h  

(32b)

where v is the velocity of the neutron and Teq defines the temperature equivalent of the kinetic 
energy of the neutron. In practical units, (32) leads to:  

[ ] [ ]
[ ]

[ ]nm2
818.0meVE
s/mv
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λ
=

=λ
. (33)

Let us consider the example of so-called thermal neutrons, which are defined by Teq ~ 300 K. 
According to (33), their wavelength is 0.18 nm, matching perfectly the distance between 
atoms. The energy of thermal neutrons is around 25 meV, which matches well the energy of 
elementary excitations, such as spin waves (magnons) or lattice vibrations (phonons). 
Together with the usually large penetration depths (charge = 0) and the magnetic interaction, 
these properties make neutrons so extremely useful for condensed matter investigations.  
 
We will now look at the neutron scattering cross section in some more detail. The dominant 
interactions of the neutron with matter are the magnetic dipole interaction of the neutron with 
the magnetic field of unpaired electrons, which we will no longer discuss in this lecture, and 
the strong interaction of the neutron with the nuclei. To calculate the cross section for neutron 
scattering, we are looking for a pertubative solution of the Schrödinger equation for the 
system "sample plus neutron beam". Here we cannot reproduce the full derivation of the form 
of the cross section and have to refer to [1, 2, 4] or to textbooks of quantum mechanics, e. g. 
[6]. An elegant way is the expansion into a Born series, which separates single, double, triple 
etc. scattering events. For a sufficient weak interaction, we can neglect all multiple scattering 
events and write the cross section in the first Born approximation:  

( )∑ −+∑





=

∂∂
∂

a a'EaEωδ
a'

2
,akV',a'kaP

2

2π2
m

k
k'

ωΩ
σ2

h
h

. (34)

The various terms in this cross section can be understood as follows. The δ-function ensures 
energy conservation: the energy transfer onto the neutron h  has to be equal to the energy 
change within the sample . The term in front of the δ-function can be interpreted in 

terms of Fermis' Golden Rule. It's the magnitude square of the transition matrix element of the 
interaction potential V (nucleus ↔ neutron) between the initial state of the system (neutron 
with wave vector 

ω
aE'aE −

k, sample in the quantum state a) and the final state (neutron with wave 
vector k', sample in the state a'). In general, neither the initial nor the final state of the sample 
are pure states. Therefore we have to sum over all processes leading to different final states, 
but also to sum over the initial states with a weight Pa corresponding to the thermodynamical 
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occupation of state a of the sample. Finally the prefactor k'/k results from the density-of-state 
consideration in Fermis' Golden Rule.  
 
To evaluate the cross section (34), we have to specify the interaction potential with the 
nucleus. To derive this interaction potential is one of the fundamental problems of nuclear 
physics. Fermi has proposed a phenomenological potential based on the argument that the 
wave length of thermal neutrons is much larger than the nuclear radius. This means that the 
nuclei are pointlike scatterers and lead to isotropic, Q-independent, (so-called s-wave) 
scattering. The same argument holds for classical Thomson scattering, where the only angular 
dependence came from a polarisation factor. We will therefore use the so-called Fermi-
pseudo-potential:  

( ) ( )Rrb
m

22rV −δπ= h  (35)

to evaluate the cross section (34).  
 
Note, that despite the fact that the strong interaction of high energy physics is responsible for 
the scattering of the neutron with the nucleus, the scattering probability is small due to the 
small nuclear radius. Therefore, we can apply the first Born approximation. The quantity b 
introduced in (35) is a phenomenological quantity describing the strength of the interaction 
potential and is referred to as the scattering length. The total cross section of a given nucleus 

is 2b4π=σ , corresponding to the surface area of a sphere with radius b. Since the interaction 
potential obviously depends on the details of the nuclear structure, b is different for different 
isotopes of the given element and also for different nuclear spin states. This fact gives rise to 
the appearance of so-called coherent and incoherent scattering.  
 
When calculating the scattering cross section, we have to take into account that the different 
isotopes are distributed randomly over all sides. Also the nuclear spin orientation is random 
except for very low temperatures in external magnetic fields. Therefore we have to average 
over the random distribution of the scattering length in the sample:  
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. (36)

The scattering cross section is the sum of two terms. Only the first term contains the phase 
factors eiQr, which result from the coherent superposition of the scattering from pairs of scat-
terers. This term takes into account interference effects and is therefore named coherent scat-
tering. Only the scattering length averaged over the isotope and nuclear spin distribution en-
ters this term. The second term in (36) does not contain any phase information and is propor-
tional to the number N of atoms (and not to N2!). This term is not due to the interference of 
scattering from different atoms. It corresponds to the scattering from single atoms, which sub-
sequently super impose in an incoherent manner (adding intensities, not amplitudes!). For this 
reason, the intensity is proportional to the number N of atoms. Therefore, the second term is 
called incoherent scattering. This situation is illustrated graphically in figure 8.  
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ing equations:  

2b4coh π=σ  (37)

( )2bb4inc −π=σ . (38)

ent example for isotope incoherence is elementary nickel. The scattering 
kel isotopes are listed together with their natural abundance in table 1. The 
herent scattering cross sections can be calculated according (37) and (38) 

n in table 1. The large incoherent cross section of nickel is mainly due to 
ce. 

g lengths for the nickel isotopes and resulting cross sections for natural Ni.  
barn2.5;barn3.13:Ni inccoh28 =σ=σ⇒

Isotope Natural Abundance Nuclear Spin Scattering Length [fm]
58Ni 68.27 % 0 14.4(1)
60Ni 26.10 % 0 2.8(1)
61Ni 1.13 % 3/2 7.60(6)
62Ni 3.59 % 0 -8.7(2)
64Ni 0.91 % 0 -0.37(7)
Ni 10.3(1)
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The most prominent example for nuclear spin incoherent scattering is elementary hydrogen. 
The nucleus of the hydrogen atom - the proton - has the nuclear spin I = 1/2. The total nuclear 
spin of the system H + n can therefore adopt to values: J = 0 and J = 1. Each state has its own 
scattering length: b- = - 47.5 fm for the singlet state (J = 0) and b+ = 10.85 fm for the triplet 
state (J = 1). With the relative weight 1/4 and 3/4 for the singlet and triplet state, respectively, 
the cross sections can be calculated according to (37) and (38) to be:  

barn26.80inc;barn76.1coh:H1 =σ=σ⇒ . (39)
(39) shows that hydrogen scatters mainly incoherently. As a result, we observe a large back-
ground for all samples containing hydrogen.  
 
3.5 Comparison of probes 
 
Figure 9 shows a double logarithmic plot of the dispersion relation "wave length versus 
energy" for the three probes neutrons, electrons and photons (compare (20) and (32)). The 
plot demonstrates, how thermal neutrons of energy 25 meV are ideally suited to determine 
interatomic distances in the order of 0.1 nm, while the energy of x-rays or electrons for this 
wavelength is much higher. However with modern techniques at a synchrotron radiation 
source, energy resolutions in the meV-region become accessible even for photons of around 
10 keV corresponding to a relative energy resolution ∆E/E≈ 10-7! The graph also shows that 
colloids with a typical size of 100 nm are well suited for the investigation with light of energy 
around 2 eV. These length scales can, however, also be reached with thermal neutron 
scattering in the small angle region. While figure 9 thus demonstrates for which energy-wave-
length combination a certain probe is particularly useful, modern experimental techniques 
extend the range of application by several orders of magnitude.  
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It is therefore useful to compare the scattering cross sections as it is done in figure 10 for x-
rays and neutrons.  
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Fig. 10: Comparison of the scattering crosssections for x-rays and neutrons for a selection of 

elements throughout the periodic table. The area of the coloured circles represent 
the scattering cross section, where in the case of x-rays a scale factor 10 has to be 
applied. For neutrons, the green and blue coloured circles distinguish the cases 
where the scattering occurs with or without a phase shift of π. 

 
 
Note that the x-ray scattering cross sections are in general a factor of 10 larger as compared to 
the neutron scattering cross sections. This means that the signal for x-ray scattering is stronger 
for the same incident flux and sample size, but that caution has to be applied that the condi-
tions for kinematical scattering are fulfilled. For x-rays, the cross section depends on the num-
ber of electrons and thus varies in a monotonic fashion throughout the periodic table. Clearly 
it will be difficult to determine hydrogen positions with x-rays in the presence of heavy ele-
ments such as metal ions. Moreover, there is a very weak contrast between neighbouring ele-
ments as can be seen from the transition metals Mn, Fe and Ni in figure 10. For neutrons the 
cross sections depend on the details of the nuclear structure and thus varies in a non-sys-
tematic fashion throughout the periodic table. As an example, there is a very high contrast 
between Mn and Fe. The hydrogen atom is clearly visible even in the presence of such heavy 
elements as uranium. Moreover there is a strong contrast between the two hydrogen isotopes. 
This fact can be exploited for soft condensed matter investigations by selectively deuterating 
certain molecules or functional groups and thus varying the contrast within the sample.  
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3.6 Radiation sources 
State of the art scattering studies require very well adapted radiation sources. Just like in a 
light scattering experiment lasers are used instead of simple light bulbs, modern x-ray scat-
tering experiments are often performed at high brilliance synchrotron radiation sources in-
stead of the conventional laboratory x-ray tube. Synchrotron radiation is produced in a circu-
lar accelerator. Highly relativistic electrons or positrons, which are stored in a storage ring, 
are being accelerated radially and as any accelerated charge emit electromagnetic radiation. 
Due to the Lorentz transformation, this radiation is highly collimated in the direction of the 
movement of the electron bunches. This leads to a number of excellent properties of syn-
chrotron radiation depicted in figure 11. The synchrotron radiation beams have a broad wave 
length spectrum and thus allow to tune the wave length to the optimum conditions for the 
scattering experiment. The beams are highly collimated with divergencies in the order of  
0.1 mrad and have a time structure in the 100 ps range. The synchrotron radiation beams are 
polarised (linearly in the orbital plane, elliptically above and below). Wigglers and undulators 
are magnet structures that force the electron beam into a sinusoidal movement and since syn-
chrotron radiation is emitted at every magnet pole, the intensity is largely enhanced due to the 
number of poles.  
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wiggler clean ultra-high 
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.
.
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Fig. 11: Schematic sketch of a synchrotron radiation source. 
 
Free neutrons are normally produced by fission processes in nuclear reactors. Through beam 
holes in the biological shieldings, neutrons are guided to the scattering experiments. Taking 
advantage of external total reflection, neutrons can be guided over long distances in so-called 
neutron guides, thus allowing a very efficient use of a neutron reactor by arranging further 
instruments in a neutron guide hall. The research center Jülich operates such a research 
reactor. The layout of the experimental facilities is depicted schematically in figure 12.  
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ig. 12: Instrument arrangement for the research reactor FRJ-2 DIDO at the research center 
in Jülich. The neutron flux in the DIDO reactor operating at 20 MW is the order of  
2⋅1014 n/s cm2. Elastic (red colour) and inelastic (yellow colour) neutron scattering 
experiments are arranged around the reactor core within the reactor hall. In a so-
called cold source, the neutron spectrum is shifted to longer wave lengths and these 
neutrons are guided into an external guide hall, where they deserve again elastic 
(green) and inelastic (blue) neutron scattering experiments. 

his facility is open to the use by guest groups from universities, industry and other research 
enters through a proposal system. Non-neutron-experts are supported by the instrument re-
ponsibles during a neutron scattering experiment at such a service facility. Details for the 
ccess to neutron beams are described in the internet page "www.neutronscattering.de", where 
ne finds detailed instrument descriptions, a list of instrument responsibles as contact persons, 
 description of the beamtime application procedure, conditions for travel reimbursement for 
U-supported projects and a proposal form to download. The Forschungszentrum Jülich is 
lso participating in an European project for a next generation neutron source, the so-called 
uropean Spallation Source (ESS). In such a source, neutrons are not produced in a nuclear 
hain reaction as fission products, but they are produced by the so-called spallation process, 
here a high energy proton beam hits a heavy metal target. When a proton of energy about  
 GeV is absorbed in a nucleus, the nucleus will evaporate about 10 - 20 neutrons per proton. 
eak fluxes can be achieved, which are more than two orders of magnitude higher than at 
resent day reactor sources. More information about the ESS-project can be found on the 
nternet (www.ess-europe.de). 

 Fluctuations 
o far, we have assumed a fixed static arrangement of scatterers. This gives rise to elastic 
cattering, where the intensity or cross section is directly proportional to the spatial pair cor-
elation function or Patterson function of crystallography (compare (11) and (12)). In this 
hapter, we will generalise these results to the more realistic case, where density fluctuations 
n time are allowed. One example are colloidal particles in Brownian motion. Not 
urprisingly, we will have to deal with auto correlation functions in time and a general 
iscussion of their properties is given in appendix A1.  
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4.1 Van Hove theory 
 
In what follows, we will quote results of the so-called Van Hove theory for correlation func-
tions in the case of neutron scattering. The derivation starts from the general form of the cross 
section (34). By rewriting the δ-function in an integral representation (Fourier transform) and 
introducing time-dependent Heisenberg operators, one can show [1, 2, 4] that the cross sec-
tion for inelastic or quasielastic scattering takes the following form:  

( ) ( )
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As discussed for the case of elastic scattering in section 3.4, the cross section separates into a 
coherent and incoherent part. In ( 0), we have introduced the so-called coherent and 
incoherent scattering functions S

4
( )ω,Qcoh  and S ( )ω,Qinc . These functions depend solely on 

the system under investigation and not on the detailed interaction between its constituents and 
the probe. The strength of this interaction is represented by the coupling constants in front of 
the scattering functions. The scattering function is given by 
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i. e. is a double Fourier transform of the spatial and temporal pair correlation function:  

( ) ( )( ) ( )( ) ( ) ( )∑ ∫ +ρρ∫ =−+δ⋅−δ=
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1t,rG . (42)

Here, <...> denotes the thermal average. (42) shows that ( )t,rG  can be interpreted as the cor-
relater of the particle density. Thus (40) - (42) represent a natural generalisation of the con-
cept of a Patterson function discussed in section 2.2. Besides the scattering functions, which 
depend on scattering vector and energy transfer, it is often useful to introduce the 
intermediate scattering functions  
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which are related to the scattering function by a Fourier transform:  
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The incoherent scattering function is given by a double Fourier transform 
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of the self correlation function 

( ) ( )( ) ( )( )∑ ∫ −+δ⋅−δ=
i

tirr'r0ir'r'r3d
N
1t,rsG . (46)

In a natural generalisation of the situation for static scattering, the coherent scattering arises 
from the correlation of a pair of particles, while the incoherent scattering arises from 
scattering from single particles (see figure 13).  
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Fig. 13: Illustration of the correlations responsible for coherent scattering (left) and 

incoherent scattering (right). In the case of coherent scattering, the position of 
particle j at time 0 is correlated with the position of particle i at time t, while in 
incoherent scattering the movements of the individual particles are visible. 

 
 
Let us finally discuss the case of so-called integral scattering, where the experimental 
conditions are such that the energy change during the scattering process is not resolved, but 
instead an integration over all energies is being performed. This scattering function for 
integral scattering S(Q) is given by (here we drop the distinction between coherent and 
incoherent scattering for simplicity):  
 

)0,r(GrQier3d)t,r(GrQier3dtieddt2
1d),Q(S)Q(S ∫
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⋅ω−ωπ=∫

∞

∞−
ωω=

h
 (47)

 
(47) shows that with integral scattering, the instantaneous correlations are being measured: a 
snap shot of the sample at time t = 0 is observed. 
 
Correlation functions are rather abstract concepts and we want to illustrate them for the exam-
ple of a simple liquid. The constituents of this liquid (atoms, molecules) are assumed to be 
spherical particles, which have a strong repulsive interaction potential for short distances and 
an attractive one for larger distances (see figure 14). The minimum in the interaction potential 
will give rise to a preferred nearest neighbour distance. Due to the hardcore potentials, the 
spheres cannot penetrate into each other and produce the excluded region in the pair 
correlation function for small distances r. This naturally explains the shape of the t = 0 
correlation function, depicted in figure 14. The scattering function for integral scattering is 
obtained via a Fourier transform and is also depicted in figure 14.  
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Fig. 14: Snap shot (top right), pair interaction potential (top left), t = 0 correlation function 

(bottom left) and the scattering function for integral scattering (bottom right) for a 
simple liquid. 

 
Let us now look at the time dependence of the pair correlation and self correlation functions 
(see figure 15).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15: Schematic plot of the pair correlation (solid line) and self correlation functions 

(dotted line) on the left and the resulting intermediate scattering functions on the 
right for a simple liquid at different times. 
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For t = 0 the self correlation function is given by a δ-function at r = 0. The pair correlation 
function follows the static correlation function. For intermediate times, the self correlation 
function broadens to a bell-shaped function due to the diffusion process, while the pair corre-
lation function loses its structure. Finally in the long time limit, the self correlation simply 
vanishes for a liquid while the pair correlation function assumes a constant value. The inco-
herent intermediate scattering function as the Fourier transform of the self correlation function 
is Q-independent at t = 0, decays for intermediate t with respect to the t = 0 value, where the 
decay is faster for higher Q, and finally vanishes in the long time limit. The coherent 
scattering function is given by the static coherent scattering function for t = 0. It decays for 
intermediate times with respect to the t = 0 value, but the decay is less pronounced at the 
structure factor maximum. In the long time limit, the coherent scattering function decays to 
zero for any Q just as the incoherent scattering function. 
 
Let us return to the case of integral scattering from a simple liquid. We make the 
simplification that the liquid consists of identical spherical and isotropic particles. Then it is 
easy to show [1, 4] that the intensity is given by 

   ( ) ( )
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

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

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∫
⋅ρ+⋅⇒

sV
RQieRgR3d12Qf~staticI  ( ) ( )QS2Qf ⋅≡  (48)

i. e. the intensity for static scattering separates into a pre-factor depending on the experimental 
geometry and the type of radiation, the square of a form factor, which describes scattering 
from a single particle, and the scattering function (for the static case often referred to as struc-
ture factor), which contains information on the particle correlation and is independent of the 
type of radiation used. The structure factor gives an average snap shot picture g(R) of the 
sample. As an example, figure 16 shows the structure factor of liquid 36Ar at 85 K. The points 
are deduced from a neutron scattering experiment, the curve is generated by a molecular dy-
namics calculation using a Lennard-Jones potential. The insert shows the pair correlation 
function g(R) of liquid Ar calculated by a Fourier transform of the data [7]. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16: Static scattering function for liquid 36Ar at 85 K and resulting pair correlation 

function (insert) [7]. 



Scattering  A1.25 

4.2 Inelastic light scattering 
 
We have seen in section 4.1 that inelastic or quasielastic scattering is related to density fluc-
tuations. An instructive example is given by a sound wave in a simple liquid. The sound wave 
will give rise to periodic density modulations travelling through the sample (see figure 17 for 
a static snap shot). For static density modulations, we expect with a hand waving argument 
"diffuse Bragg scattering" to occur under an angle giving by Q soundwave/2sin/4 Λπ=θ⋅λπ= . 
The soundwave can be understood as a moving pattern of periodic density modulations. In a 
wave picture, this will give rise to a Doppler shift of the emitted wave. In a particle picture, 
the scattered particles will receive the recoil energy from the sound wave particles. We can 
determine the dispersion relation by considering momentum- and energy conservation for this 
collective excitation:  

Qk'k hhh −=  

CE' ω−ω=ω hhh  (49)

Such elementary excitations can be measured with different probes. Here, we will discuss the 
case of inelastic light scattering. Visible light has a characteristic frequency of 1014 - 1015 Hz. 
The frequency shift in the scattered light can be analysed either by an optical grating 
monochromator, if the frequency shifts are rather large (> 1011 Hz) or a Fabry-Perot-inter-
ferometer for rather small frequency shifts (107 - 1012 Hz). The technique using optical 
gratings is referred to as Raman spectroscopy, while the technique employing an interferome-
ter is referred to as Brillouin spectroscopy. A typical energy spectrum for an elementary exci-
tation such as a sound wave would then for a given momentum transfer consist in a central 
elastic Rayleigh line accompanied by two inelastic lines for energy loss and energy gain, re-
ferred to as the Stokes and Anti-Stokes line, respectively.  
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want to give two examples most relevant for soft condensed matter research: time-of-flight 
(TOF) and neutron spin echo (NSE) spectroscopy.  
 
A neutron time-of-flight spectrometer is depicted schematically in figure 18.  
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Fig. 18: A schematic sketch of a neutron time-of-flight spectrometer.  
 
 
The white continuous neutron beam from a reactor source is monochromatised by Bragg re-
flection from a single crystal. By means of a rotating neutron absorbing drum with one slit 
opening, the beam is chopped into small portions in time. Such a device, which opens the 
beam pass periodically for a short moment, is called a neutron chopper. These neutron pulses 
travel to the sample, are scattered from the sample and are detected in a detector bank, cover-
ing as large solid angle around the sample as possible. From the travelling time of the neutron 
from the chopper to the detector, the average speed of the neutron and from (32), the energy 
change of the neutron during the scattering process can be determined. Finally from the 
positions in the detector and the energy transfer, the momentum transfer for each given 
neutron can be calculated. The histogram "neutron countrate versus energy and momentum 
transfer" finally gives us a measure for the double differential neutron scattering cross section.  
 
The limitation of the time-of-flight method arises from the finite energy resolution determined 
by the uncertainties in the distances and the monochromaticity of the beam. Slow movements 
of large molecules evidently give rise to relatively small energy transfers. To measure small 
energy transfers, we have to increase the energy resolution by increasing the 
monochromaticity and reducing the sample size. Evidently, we will reduce the neutron 
countrate, which poses a natural limit to the energy resolution of a time-of-flight machine. 
Typically the energy resolution ∆E/E of a time-of-flight spectrometer amounts to some 1 %. 
 
How can we improve the energy resolution without reducing the neutron flux? The solution is 
to use the property that the neutrons carry a magnetic dipole moment and thus undergo a 
neutron spin precession in a magnetic field. If we can conceive a time-of-flight method, where 
we use the neutron spin precession as an individual clock for each individual neutron, we can, 
in principle, use a broad wave length band (about 10 %) and still obtain an energy resolution 
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up to the neV range. This principle is realised in the so-called neutron spin echo (NSE) 
spectrometer. A sketch of the experimental set up is shown in figure 19.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 19: Spin rotations and set up of a NSE spectrometer (from Monkenbusch in [2]). In the 

upper part, the spin precession in the magnetic field shown in the middle part is 
depicted schematically. The lower part shows a schematic set up of the neutron spin 
echo spectrometer realised at Forschungszentrum Jülich.  

 
 
A "pink" neutron beam with a wavelength spread of %10/ ≈λλ∆  is being polarised, i. e. all 
the neutron spins point in the same direction, eventually perpendicular to the longitudinal 
magnetic field. The neutrons traverse a region of homogeneous magnetic field, where they 
undergo a number of spin precessions (typically 104 rotations) in one precession coil of about 
3 m length. Neutrons with different velocities spent different times in this field region and 
thus undergo a different number of spin rotations. Therefore the neutron beam arriving at the 
sample positions is depolarised. To illustrate the principle, we first assume elastic scattering at 
the sample. After the scattering events, the spins are flipped by an angle of 180° around a 
vertical axis by the so-called π flipper. Then they traverse a field region of exactly the same 
field strength and length as in the primary arm of the spectrometer. The neutrons now undergo 
the same spin precessions as in the primary arm just in the opposite sense. Therefore all 
neutrons with different velocities have the same spin orientation after the precession field: the 
polarisation is fully restored. By means of a polarisation analyser and detector unit, the 
polarisation of the scattered beam can now be measured. If inelastic scattering occurs at the 
sample, the polarisation will not be recovered for a completely symmetric arrangement of pri-
mary and secondary arm. Only if the field strength in the secondary coil is varied, the reso-
nance condition can be restored. An oscillatory behaviour of the countrate as a function of the 
current in the secondary coil is observed (see figure 20).  
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Fig. 20: Example for a typical echo line shape (Monkenbusch, [2]): countrate as function of 

the magnetic symmetry proportional to the phase current.  
 
 
In fact, a neutron spin echo spectrometer measures the intermediate scattering function with 
the time being proportional to the field integral 
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A typical example of the NSE technique comes from the field of polymer dynamics. In the 
simplest model for the movement of a polymer chain in a melt, one assumes that the different 
chains are not hindering each others movements. Entropic forces determine the movement of 
a single polymer chain. This is the so-called Rouse model. However, for longer times, a given 
chain will feel the restrictions imposed by the other chains encircling it. The motion of a chain 
in a melt is heavily impeated in directions lateral to its own profile. Therefore the dominant 
diffusive motion proceeds along the chain profile. The chain will move through the melt like a 
snake, which gave the name to this reptation model of de Gennes. With neutron spin echo 
techniques, the Rouse dynamic for short times and the cross-over to the reptation model by de 
Gennes for longer times could be observed (see contribution C2 by D. Richter in this lecture 
course and figure 21).  
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Fig. 21: NSE observation of Rouse dynamics for short times (left figure; points are 

experimental, the lines represent the theory for the rouse model) and the cross-over 
to the reptation model for longer times (right hand side; solid line: reptation model; 
dashed line: Rouse model).  

 
4.4 Dynamic light scattering 
 
In section 4.2 we have seen that with inelastic light scattering, where we measure with spec-
troscopic methods the frequency power spectrum of the auto correlation function, we can 
observe dynamics from optical frequencies (1014 Hz) down to some 106 - 107 Hz. With 
neutron spin echo spectroscopy, this frequency range can be extended by about one order of 
magnitude. In this section we want to ask the question how we can observe even slower 
dynamics. 
 
The answer is to measure the time evolution of the instantaneous correlation function, i. e. by 
measuring an integral spectrum at a given time all fast processes have relaxed and we are left 
with the slow dynamics. In dynamic light scattering, one measures the normalised intensity 
auto correlation function (IACF):  

( ) ( ) ( ) 2I/t,QI0,QI:t,QIĝ ⋅= . (51)
In practise the detector is positioned at a given scattering angle corresponding to a momentum 
transfer Q. The intensity fluctuations in the detector are determined and an auto correlation 
function is calculated according to appendix A1. This auto correlation function is normalised 
to the square of the average intensity I in the detector. However, in section 3.3 and 4.1, we 
have learnt that the quantity of interest is actually the auto correlation function of the electric 
field (EACF). The normalised EACF is given by 

( ) ( ) ( ) I/t,QSE0,QSE
0µ
F

2
1:t,QEĝ ∗⋅

ε
= . (52)
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Since the electric field ( )t,QSE∗  is related to the scattering power density via the Fourier 

transform, the EACF is related to the intermediate scattering function. It can be shown that 
the intensity auto correlation function and the electric field auto correlation function are con-
nected by the so-called Siegert relation:  
 

( ) ( )t,QEĝ1t,QIĝ += . (53)

 
Thus by an experimental determination of the intensity auto correlation function, we get ac-
cess to the Fourier transform of the density auto correlation function, which is the quantity of 
interest.  
 
Let us discuss an example for photon correlation spectroscopy. We have chosen the scattering 
of coherent 8.2 keV x-rays from a synchrotron radiation source by porous silica gel. When the 
sample is illuminated by the coherent x-ray beam, we observe on the area detector a so-called 
speckle pattern (figure 22), which is due to the instantaneous density modulations within this 
sample.  
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 22: Speckle pattern from an aerogel recorded with a CCD detector using coherent x-rays 

[8]. The speckle structure becomes better visible, if one pixel row in the horizontal 
direction is plotted (continuums line in the bottom picture).  

 
 
For an inhomogeneous sample with a density distribution constant in time, we will observe a 
static speckle pattern. However for a sample, which has internal slow dynamics, the speckle 
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pattern will change with time and we can observe the intensity in a given direction with a 
small pinhole or within one pixel of an area detector. From the Siegert relation, we can 
deduce the time dependence of the intermediate scattering function. This function is depicted 
for collo al silica, suspended in a solvent (water glycerol mixture) in figure 23.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 23:
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 Intermediate scattering function measured by x-ray photon correlation spectroscopy 
XPS (open circles) and optical photon correlation spectroscopy (closed squares) for 
the same momentum transfer Q = 9⋅10-4 Å-1 in an optically opaque sample of 
colloidal silica [8].  

nential decay can be fitted to the XPCS measurement and the translational diffusion 
nt can be determined. Figure 22 shows that the PCS intermediate scattering function 
faster as compared to the XPCS data. The authors attribute this effect to multiple 
g events, which are present in the optical experiment.  

ummary 
duction into the investigation of soft condensed matter systems by scattering methods 
 given. We have seen that neutrons, light and x-rays are particularly useful for such 
However independent of the probe, coherent scattering always measures pair correla-
ctions and the scattering cross section is proportional to the spatial and temporal Fou-
sform of these correlation functions.  

ed matter investigations face the problem that relevant lengths and time scales cover 
ders of magnitude. Figure 24 gives an overview over the characteristic time scales 
 condensed matter investigations. These time scales range from the fs regime for fast 
ic excitations up to macroscopic time scales for relaxation processes in glasses or spin 
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Fig. 24: Characteristic time scales found in condensed matter research.  
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With appropriate scattering methods, all these processes on different time scales can be in-
vestigated. Which scattering method is appropriate for which region within the "scattering 
vector Q - energy E plane" is plotted schematically in figure 25. A scattering vector Q 
corresponds to a certain length scale, an energy to a certain frequency, so that the 
characteristic lengths and times scales for the various methods can be directly determined 
from figure 25. 
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Fig. 2
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Appendices 
 

A Autocorrelation Functions 
Let us assume a quantity A that fluctuates in time as depicted in the insert of figure A1.  
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 general property depicted in figure A1: it decays 
 0 to the asymptotic value of <A>2 for infinite times 
Often times, this decay follows a simple exponential 
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