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1 Introduction 
Most of our present knowledge of the atomic structure of condensed matter results from x-ray 
diffraction studies, which probe the interaction of the electric field with the electric charge of 
the electron. However, since x-rays represent an electromagnetic radiation and since in mag-
netic materials some electrons carry a magnetic moment due to spin- and angular momentum, 
we naturally would expect a magnetic interaction in addition to the pure charge interaction. 
Even so this interaction was well established in theory [1] since Klein-Nishina 1929, the first 
magnetic diffraction effect was demonstrated only 1972 by de Bergevin and Brunel [2] with a 
commercial x-ray tube. The same authors gave a classical picture of the interaction process, 
deduced the detailed polarisation dependence and presented measurements on ferromagnetic 
compounds in a subsequent paper [3]. However, since the magnetic interaction gives just a 
relativistic correction to the cross section, the amplitudes of magnetic diffraction are down by 
approximately three orders of magnitude as compared to charge scattering, resulting in an 
intensity ratio of about 10-6. Therefore magnetic x-ray scattering was considered an exotic 
topic until the experiments on Ho by Gibbs et al. [4], which took advantage of the high bril-
liance of a synchrotron radiation x-ray source thus compensating by a high photon flux at the 
sample position for the weak magnetic scattered intensities. The polarisation properties and 
the tunability of synchrotron radiation offered new perspectives for magnetic x-ray investiga-
tions. This was again demonstrated on Ho [5] by an attempt to separate spin- and angular 
momentum with polarisation analysis and by the observation of a resonance enhancement of 
the magnetic signal at the absorption edges. 
 
Nowadays, synchrotron radiation techniques for the study of properties of magnetic materials 
are well established. Very widespread is the application of incoherent probes which measure a 
macroscopic ensemble average of local magnetic properties. Among these we mention Kerr-
microscopy, measurements of the Faraday effect and the linear or circular x-ray magnetic di-
chroism. The Kerr- and Faraday effect measure the rotation of the plane of polarisation of an 
electromagnetic wave as it is reflected from or transmitted through a magnetic material, re-
spectively. Magnetic circular dichroism describes the difference in the absorption of right- 
and left circularly polarised x-rays by magnetic materials. It measures essentially the same 
quantities as the Kerr- and Faraday effect, namely the orbital and spin contributions to the 
magnetic moments with element and certain site specifities. Kerr microscopy and x-ray to-
pography are used for magnetic domain imaging. Absorption techniques become local micro-
scopic probes when the spin resolved x-ray absorption fine structure is observed. In analogy 
to classical EXAFS experiments, such measurements provide information about the local en-
vironment, but are explicitly sensitive to the magnetic neighbours only. True microscopic 
spatial resolution is obtained with the coherent probes, namely magnetic x-ray diffraction (as 
well non-resonant as resonance exchange scattering) and nuclear resonant scattering. Mag-
netic scattering provides a wealth of information on magnetic correlation lengths, the local 
magnetic moments and environment, the magnetic structure and phase transitions. Magnetic 
x-ray reflectivity is the corresponding probe for the investigation of magnetic thin films. Nu-
clear resonant scattering yields information on hyperfine fields and might eventually become 
important for the measurement of magnetic excitations. Resonant diffraction and absorption 
techniques are intimately related by the optical theorem, which states that the attenuation 
coefficient is proportional to the imaginary part of the forward scattering amplitude. In this 
sense, diffraction experiments comprise absorption techniques, but in addition they provide 
true atomic resolution. In this impressive list of synchrotron radiation techniques we want to 
finally mention magnetic Compton scattering for the determination of the spin resolved elec-
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tron momentum density and angular- and spin resolved photoemission, which gives the spin 
resolved band structure. 
 
Many of these topics are discussed in detail in a textbook [6]. In what follows I will concen-
trate on magnetic x-ray diffraction. I will introduce the cross section for non-resonant and 
resonant magnetic x-ray scattering in section 2 and discuss experimental considerations in 
section 3. Examples of resonance exchange scattering experiments on bulk antiferromagnets, 
ferromagnets and thin film systems are given in section 4. Section 5 gives some examples for 
non-resonant x-ray scattering, before we summarise in section 6 some important features of 
magnetic x-ray scattering and compare it to magnetic neutron diffraction.  
 

2 The cross section for magnetic x-ray scattering 
A calculation of the cross-section for x-ray scattering including the magnetic terms from a 
quasi-relativistic Hamiltonian for electrons in a quantised electromagnetic field within sec-
ond-order perturbation theory was done by Blume [7] and Blume and Gibbs [8]. Platzman and 
Tzoar [1] and de Bergevin and Brunel [3] started from the Dirac equation and reduced this 
relativistic ansatz using a Foldy-Wouthuysen transformation to a quasi-non-relativistic form 
analogous to that obtained from the non-relativistic Hamiltonian. The expansion of this quasi-
non-relativistic Hamiltonian in dependence of photon energy over electron rest mass  
allows the description of the magnetic scattering process. Grotch, Kazes, Bhatt and Owen [9] 
extended the Foldy-Wouthuysen transformation to second order in 

2mc/ωh

2mc/ωh . Here we follow 
a presentation given by Blume [7] and Blume and Gibbs [8] based on a non-relativistic treat-
ment in second order perturbation theory. We start with the Hamiltonian for electrons in a 
quantised electromagnetic field: 
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Here, the first term corresponds to the kinetic energy of the electrons in the electromagnetic 
field, represented by the vector potential A(r), the second term corresponds to the Coulomb 
interaction between the electrons, the third term to the Zeeman energy -µ⋅H of the electrons 
with spin sj, the fourth term to the spin-orbit coupling and the final term to the self energy of 
the electromagnetic field. From the form of (1), we can immediately guess that the cross-sec-
tion and polarisation dependence of the scattering of an electromagnetic wave from magnetic 
materials is more complex than the corresponding cross-section for neutron scattering - at 
least if we only consider the two main interaction potentials for nuclear scattering and mag-
netic dipole scattering. In the case of neutron scattering, only the magnetic dipole interaction 
of the neutron spin with the magnetic field of the electrons gives rise to magnetic scattering. 
In the case of x-rays, we have several interaction terms as well between the spin of the elec-
trons and the electromagnetic field as between the orbital momentum and the magnetic field. 
In addition, photons are spin 1 particles as compared to spin 1/2 neutrons. Therefore we can 
expect a much more complex polarisation dependence.  
 
The vector potential A(r) in (1) is linear in photon creation and annihilation operators, λ)k(c+  
and λ)kc(  and is given in a plane wave expansion by:  
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Here V is a quantisation volume and )q( σε  is the unit polarisation vector corresponding to a 
wave with wavevector q of polarisation state σ. Two polarisation states 2,1=σ  of the photons 
have to be distinguished. As a basis, we can either use linear polarisation in two perpendicular 
directions or left and right circular polarisation. Since A(r) is linear in the c+ and c-operators, 
scattering occurs in second order for terms linear in A and in first order for quadratic terms. 
We do not want to reproduce the calculation given in [7] in detail. The Hamiltonian (1) is 
written as a sum 

H'HHH r0 ++=  (3) 
where H0 contains only the degrees of freedom of the electron system, Hr is the Hamiltonian 
for the quantised electromagnetic field and H' corresponds to the interaction between the 
electrons and the radiation field. Scattering cross-sections are calculated by assuming that ini-
tially the solid is in a quantum state |a>, which is an eigenstate of H0 with energy Ea, and that 
there is a single photon present. We then calculate the probability of a transition induced by 
the interaction Hamiltonian H' to a state |b> with photon k'λ'. For elastic scattering |b> = |a>. 
The transition probability per unit time can be calculated by the golden rule to second order 
perturbation theory. The fact that we have to go to second order perturbation theory for terms 
linear in A immediately implies that besides the so-called non-resonant magnetic x-ray scat-
tering, resonance phenomena will appear due to the energy denominator found in second or-
der perturbation theory (compare the Breit-Wigner-formula for resonant scattering of the 
neutron from a nucleus). Here we will just quote the final result of this calculation: at 
moderately high x-ray energies and far away from all absorption edges of the elements in the 
sample, the elastic cross-section for scattering of photons with incident polarisation ε into a 
state of final polarisation ε' can written as: 
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Here re=e2/mc2 = 2.818 fm denotes the classical electron radius, λC = h/mc = 2.426 pm the 
Compton length of an electron. The scattering amplitudes <fC> and <fM> are given as matri-
ces which describe the polarisation dependencies of charge and magnetic scattering, respec-
tively. Here we discuss the case of linear polarisation, described by unit vectors perpendicular 
to the wave vectors of incident and scattered photons, k and k'. σ-polarisation corresponds to 
the basis vector perpendicular to the scattering plane, π-polarisation corresponds to the vec-
tors in the k, k' plane. The basis vectors for the components of the magnetic moment of the 
sample and for the polarisation states are defined as follows, see figure 1:  

ˆ u 1 = k + k '( ) k + k'

ˆ u 2 = k ' ×k( ) k' ×k ≡ σ ≡ σ '

ˆ u 3 = k' −k( ) k' −k = Q Q

π = ˆ k × σ    ;     π' = ˆ k ' ×σ '

 (5) 
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σ ' ρ(Q) 0
π' 0 ρ(Q) cos2θ( )

 (7) 

Li = Li(Q) (i=1, 2, 3) denote the components of the Fourier transform of 
nsity due to the spin and orbital angular momentum, respectively. ρ(Q) 
ansform of the electronic charge density distribution.  

 (4), magnetic scattering is a relativistic correction to charge scattering. 
Bragg scattering, the ratio between the magnetic and the charge ampli-
 the momentum transfer and therefore we have written the pre-factor for 
de in the cross-section (4) as λC/d which emphasises that for a given 

ratio between magnetic and charge scattering is virtually independent of 
t to within the approximations leading to (4). 

s: pure Thomson-scattering, purely magnetic scattering and an interfer-
becomes important if charge- and magnetic scattering occur at the same 
l space, which is the case for ferromagnets. Note, however, that the 
 of the magnetic scattering amplitude means that magnetic scattering is 
/2 as compared to charge scattering. Therefore if both amplitudes, <fC> 
e interference term vanishes. The interference can only be observed, if 
s contains an imaginary part (e. g. non centrosymmetric structures or 
o an absorption edge for charge scattering) or if circular polarised radia-
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tion is used. The importance of the interference term for ferromagnets becomes evident, if we 
consider the ratio between magnetic and charge scattering amplitudes. An estimate for this 
ratio can be given as: 

SfN
fN

df
f MMC

C

M ⋅
⋅

⋅
><
>< λ~  (8) 

Here, N(NM) and f(fM) denote the number and the form factor of all (the magnetic) electrons, 
S  the expectation value of the spin quantum number. Using appropriate values for the pa-

rameters in (8), one finds that the amplitude for magnetic scattering is typically three orders of 
magnitude smaller than the amplitude of charge scattering, resulting in an intensity ratio of 
10-6 between pure magnetic and pure charge scattering. It is not practical to measure a 10-6 
effect in intensities. Therefore for ferromagnets, where charge and magnetic scattering coin-
cide in reciprocal space, the interference term between charge and magnetic scattering is the 
leading term after charge scattering. In a very similar way to flipping-ratio measurements in 
neutron scattering, the direction of the magnetisation (or the incident photon polarisation) is 
changed periodically to change the sign of the interference term and thus extract this term 
from the pure charge scattering.  
 
(6) and (7) show that magnetic scattering can be discriminated from charge scattering by a 
polarisation analysis experiment, where the off-diagonal terms σ→π' or π→σ' are being 
measured. Finally, (6) shows that the spin and orbital contributions have different angular- 
and polarisation dependencies and can therefore be distinguished in principle. 
 
We have sketched a derivation of the non-resonant magnetic scattering cross sections starting 
from non-relativistic quantum mechanics and applying perturbation theory up to second order. 
It should be noted that the scattering cross-section can also be derived in a purely classical 
theory [10]. It turns out that the classical calculation reproduces the quantum mechanical 
cross-section for the spin part, but not for the orbital part. De Bergevin and Brunel [3] have 
drawn a simple diagram, representing the various interaction processes in such a classical 
model. This diagram is reproduced as figure 2.  
 
The first process shown in figure 2 is the classical charge or Thompson scattering: an electro-
magnetic wave is incident on a free electron and due to the Coulomb force between the elec-
tric field vector and the charge of the electron, the electron is accelerated into a harmonic os-
cillation and re-radiates electric dipole radiation. The three other processes only appear if the 
electron carries a spin momentum, i. e. these processes give rise to magnetic x-ray scattering. 
The second process in figure 2 arises from the same Coulomb interaction with the incident 
electromagnetic wave. The accelerated spin moment gives rise to re-radiation of magnetic 
quadrupole radiation. In the third and fourth process of figure 2, the interaction with the inci-
dent electromagnetic field is between the spin moment and the magnetic field vector. 
 
From figure 2, the polarisation dependence of charge and magnetic scattering becomes imme-
diately evident. In charge scattering, the polarisation of the incident wave is conserved. From 
our simple classical pictures, it is immediately evident that the matrix (7) has to be diagonal. 
The cos 2θ factor for π→π’-scattering is simply explained by the projection of the accelera-
tion vector onto a plane perpendicular to the observation direction. Figure 2 shows that in 
contrast to charge scattering, the polarisation can indeed change for magnetic x-ray scattering. 
Therefore the existence of off-diagonal terms in the matrix (6) can easily be motivated from 
the classical picture figure 2. Polarisation analysis allows us to clearly distinguish charge and 
magnetic scattering.  
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 it is of interest to examine the high energy limit of the purely magnetic dif-
tion. It can be easily calculated from (6). In this limit, the cross-section be-
dependent of polarisation and is sensitive only to the component of the Fou-

the spin density distribution perpendicular to the scattering plane: 
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ton energies around 100 keV, the pure spin density distribution becomes ac-
polarisation analysis, while in neutron diffraction always the sum L+2S is 

y is tuned to the absorption edge of magnetic elements, resonance phenom-
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anomalous dispersion, i. e. an energy dependence of the charge scattering, as 
t magnetic scattering. The operator (11) can be expanded in a multipole se-

hat in the x-ray regime, the spin and orbital contributions can be neglected in 
nly the electric multipole terms have to be retained. These electric multipole 
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(predominantly dipole and quadrupole) operators induce virtual transitions between core 
levels and unoccupied states above the Fermi energy with subsequent reemission of a photon. 
These processes become sensitive to the magnetic state in exchange split bands due to the 
difference in occupation of minority and majority bands leading to so called resonance ex-
change scattering XRES [12] as illustrated schematically in figure 3.  
 
Due to the resonance denominator in (10), resonance enhancements occur at the absorption 
edges of the magnetic elements. The strengths of these enhancements for XRES depend 
mainly on three factors:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Schem
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ude of the transition matrix element. Dipole transitions between states |a> and 
g in orbital angular momentum quantum number by ∆L = 1 are generally 
n quadrupolar transitions with ∆L = 2. A large overlap of the wave functions 
favours large transition matrix elements. In contrast, transitions from "s" core 
" or "d" excited states do not show large resonance enhancements due to the 
p of the wave functions. 
ce in the density of empty states above the Fermi level for minority and ma-

states. To give an example: in lanthanide metals, the 5d bands are spin po-
to the magnetic 4f states. However, the exchange splitting in the 5d is much 
ompared to the 4f states and dipolar transitions 2p → 5d are sometimes not 
er than quadrupolar transitions 2p → 4f.  
 of the spin-orbit coupling in the ground- and excited states. Only due to this 

 the electric multipole transitions become sensitive to the spin magnetism.  

teria, we can qualitatively categorise the possible transitions according to the 
he resonance enhancement, see Tab. 1. Here we define the term "resonance 
s the ratio between the intensity of magnetic Bragg peaks in the maximum of 
lative to the intensity for non-resonant magnetic scattering.  
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elements edge transition energy range [keV] resonance 
strength 

comment 

3d K 1s → 4p 5 - 9 weak small overlap 
3d LI 2s → 3d 0.5 - 1.2 weak small overlap 
3d LII, LIII 2p → 3d 0.4 - 1.0 strong dipolar, large overlap, 

high spin polarisation of 3d 
4f K 1s → 5p 40 - 63 weak small overlap 
4f LI 2s → 5d 6.5 - 11 weak small overlap 
4f LII, LIII 2p → 5d 

2p → 4f 
6 - 10 medium dipolar 

quadrupolar 
4f MI 3s → 5p 1.4 - 2.5 weak small overlap 
4f MII, MIII 3p → 5d 

3p → 4f 
1.3 - 2.2 medium 

to strong 
dipolar 
quadrupolar 

4f MIV, MV 3d → 4f 0.9 - 1.6 strong dipolar, large overlap, 
high spin polarisation of 4f 

5f MIV, MII 3d → 5f 3.3 - 3.9 strong dipolar, large overlap, 
high spin polarisation of 5f 

 
Tab. 1: Magnitude of the resonance enhancements for XRES for some elements relevant for 

magnetism. Only order of magnitude estimates are given with "weak" corresponding 
to a factor of about "100", "medium" to about "102" and "strong" to ">103".  

 
Tab. 1 only lists some of the most prominent examples. It demonstrates that the resonance 
enhancements for 3d transition metal ions is negligible in the hard x-ray regime (e. g. [13]), 
while it can be strong for soft x-rays. Unfortunately, at wavelengths of 12 to 30 Å, atomic 
resolution cannot be obtained under normal conditions. However, the transition metal LII and 
LIII edges turn out to be extremely important for the investigation of magnetic thin films and 
nanostructures (e. g. [14]). For the 4f elements, resonance enhancements of about two orders 
of magnitude are observed in the hard x-ray range at the LII and LIII edges (e. g. [15]). At 
these edges, dipolar transitions are in general dominant, but quadrupolar transitions can be 
significant. The so-called "branching ratio", i. e. the ratio between resonance enhancement at 
the LII edge and the LIII edge has a tendency for a systematic variation along the rare earth 
series. While it is close to 1 for rare earth ions with seven 4f electrons, the LIII resonance is 
generally stronger for ions with more than seven 4f electrons while the LII resonance tends to 
be stronger for less than half filling of the 4f shell. As in the case of the 3d transition metals, 
the soft x-ray range with the MIV and MV resonances is of importance for magnetic 
nanostructures [16]. At the MIV edge of actinides, the intensity gain due to XRES can be as 
high as seven orders of magnitude [17]. Finally, we have not listed the 4d and 5d transition 
metal elements in Tab. 1, even so resonance enhancements at the LII and LIII edges can be so 
large that surface magnetic x-ray diffraction becomes possible, e. g. in Co3Pt (111) 
( d ) [18]. We can conclude that XRES can provide large intensity 
gains for magnetic x-ray scattering, allows a spectroscopy of the exchange split empty states 
above the Fermi level and renders magnetic diffraction sensitive to the magnetic species. 

5p2:keV5.11L 2/3
Pt
III →≈

 
Let us come back to the explicit form of the cross-section, including resonant magnetic scat-
tering. We start from (10), which gives the general form of the cross-section for anomalous 
scattering. In what follows, we will neglect the spin dependent part and limit ourselves to 
electric dipole transitions. Detailed derivations are given in [11], [12] and the polarisation 
dependence, also for the case of electric quadrupole transitions, is discussed in [19]. Anoma-
lous scattering becomes relevant close to the absorption edges of the elements. Then, an 
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energy dependent amplitude has to be added to the expression (4) for the scattering cross-sec-
tion. In dipole approximation, this amplitude reads:  

)()()()(1 EfEfEfEf lincirco
E

res ++=  (12) 
with 
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f0 is independent of the magnetic state (i. e. the conventional anomalous charge scattering), 
while fcirc and flin are the amplitudes connected for the special case of forward scattering with 
circular and linear dichroism, respectively. All three amplitudes have different polarisation 
properties. fcirc depends linear on the magnetic moment m, while flin depends quadratic on m. 
Therefore for antiferromagnets, only fcirc gives a contribution at positions in reciprocal space 
separated from the main charge reflections by the magnetic propagation vector. Finally, for a 
simple excitation into one atomic-like level, the energy dependence of the amplitudes is con-
tained in the oscillator strengths 

( )
h2

1

Γ−−
=

i
F

res

M
M ωω

α  (14) 

Here  denotes the photon energy, ω ω res the position of the absorption edge and  the reso-
nance width. The phenomenological parameter α

Γ
M gives a measure for the amplitude of the 

resonance and stands for the product of the transition matrix elements. 
 
After this discussion of the cross section for non-resonant magnetic x-ray diffraction and for 
resonance exchange scattering, we will now demonstrate the possibilities of these techniques 
by some illustrative examples. Just for convenience most of these examples are from our own 
research, while we are very well aware of the beautiful work done by other groups. However, 
before presenting these examples, we have to discuss the experimental conditions for obser-
vation of magnetic x-ray scattering. 
 

3 Experimental consideration 
Figure 4 shows the sketch of a synchrotron x-ray source, indicating the special properties of 
the radiation. 
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In a synchrotron x-ray source, electrons or positrons are circulating in bunches in a vacuum 
chamber at a velocity close to the speed of light. They are kept in the curved storage ring by 
magnetic fields that accelerate the charged particles with the Lorentz-force in a direction 
transverse to their propagation direction. The radially accelerated particles emit electromag-
netic radiation. Due to their relativistic movement, this radiation is very much collimated in 
forward direction with an opening angle γθ /2≈ , where  with E = particle 
energy, m

2
0/ cmE=γ

0c2 ≈ 511 keV = energy equivalent of the rest mass of an electron. This is a conse-
quence of the so-called relativistic Doppler effect, which results from the transformation of 
the emitted electromagnetic field distribution from the moving eigenframe of the charged 
particles into the laboratory system. The high collimation of the beam is essential for the ob-
servation of magnetic scattering, since one can conduct the experiment in such a way that 
only the desired scattering channel is excited, which leads to a significant better peak-to-
background ratio as compared to conventional x-ray tubes. Moreover, the beam is highly po-
larised with a linear component in the orbital plane of the storage ring and elliptical polarisa-
tion of opposite sense above and below the orbital plane. Again, this polarisation of the beam 
is essential for magnetic scattering, since it allows one to separate experimentally charge-, 
spin- and orbital contributions to the scattered intensity, see chapter 2. Synchrotron radiation 
exhibits a continuous "white spectrum". This property makes possible investigations, where 
the x-ray energy has to be tuned to the absorption edge of an element in the compound under 
investigation. While at x-ray tubes intense radiation is emitted only for the characteristic lines 
of the anode material, one can choose a narrow energy band width of the synchrotron radia-
tion, just by applying a grating (for soft x-rays) or crystal-Bragg (for hard x-rays) monochro-
mator. Modern synchrotron radiation sources do not just use the radiation of the so-called 
bending magnets, but mainly employ insertion devices, such as wigglers and undulators as 
even more powerful radiation sources. Both types of insertion devices are permanent magnet 
structures, which create an alternating field, perpendicular to the orbital plane of the storage 
ring. This field leads to a sinusoidal movement of the charged particles within the insertion 
devices. At each reversal point, radiation is emitted similar to the radiation from the dipolar 
magnets. The difference between wigglers and undulators lies in the amplitude of the sinusoi-
dal movement. This amplitude is large for wigglers, giving rise to an incoherent superposition 
of the radiation from the various magnet poles. Therefore, the wiggler spectrum resembles the 
spectrum of a bending magnet, but the intensity is amplified by a factor corresponding to the 
number of magnet poles. In an undulator, where the amplitude of the sinusoidal movement is 
smaller, the radiation from the various poles superimposes coherently in forward direction. 
This leads to a line-spectrum in energy with odd harmonics on axis. The intensity within these 
lines is proportional to the square of the number of magnet poles in the undulator. The posi-
tion of the undulator harmonics can be tuned by the strength of the magnetic field or the un-
dulator period. In practical devices, the magnetic structure is realised by permanent magnets 
and the magnetic field strength can be varied by opening or closing the undulator gap. In an 
undulator, coherence is achieved for the following condition:  

⎟
⎠
⎞

⎜
⎝
⎛ ++= 2

0
2

2

2 2
1

2
θγ

γ
λλ Ku  (15) 

Here  denotes the undulator period, uλ γ  the particle beam energy, expressed in units of the 
energy equivalent of the electron restmass mec2 ≈ 511 keV, 0θ  is the angle of emittance and K 
the so-called wiggler or undulator parameter  

w
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cm
eBK θγ

π
λ

⋅== 2  (16) 
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Here, B is the amplitude of the magnetic field on axis and wθ  the maximal angle of deviation 
of the particle against the nominal orbit. In figure 5, the spectra of bending magnet, wiggler 
and undulator are compared. Since the undulator radiation is quasi-monochromatic with a 
energy width inverse proportional to the number of magnetic poles and has a high collimation 
with an opening angle of γ/2  (about 0.1 mrad for a 5 GeV machine) in both directions, 
undulator radiation resembles already very much a laser beam known from optics. Its unique 
properties make the undulator the x-ray source of the choice for magnetic x-ray scattering 
applications. 
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ig. 5: left: comparison of the emittance characteristics for a bending magnet, a wiggler 
and an undulator. right: Frequency spectrum of undulator radiation. The dashed line 
in d corresponds to a wiggler spectrum. (from Saile, 23. IFF-Ferienkurs 1992) 

orldwide, there exist three so-called "third generation synchrotron sources" for the hard x-
ay regime: the European Synchrotron Radiation Facility ESRF in Grenoble, SPRING-8 in 
apan and the Advanced Photon Source (APS) in Argonne, USA. All three facilities have 
torage rings with a circumference of about 1 km and feature beamlines dedicated to magnetic 
cattering. The typical set-up of such a beamline is as follows: the beam from an undulator 
ource is tailored by slit systems. Mirrors are used to suppress higher harmonics in the x-ray 
eam and/or to focus the beam onto the sample in the experimental hutch. The x-ray energy is 
elected by a double crystal Bragg monochromator. To handle the high heatload of several 
undred W/mm2, liquid nitrogen cooled silicon crystals are employed for monochromatisa-
ion. Usually the 111 reflection is chosen, since the second harmonic is largely suppressed for 
he Si crystal structure by the diamond glide planes. This beamline optics is situated in a so-
alled optics hutch with lead walls serving as biological radiation shielding. In the optics 
utch, the x-ray beam is prepared with a desired properties and then enters the experimental 
utch, where the actual scattering experiment is situated. The polarisation of the incident 
eam is monitored with two orthogonal scintillation detectors, which use the emittance 
haracteristic of charge scattering, according to (7). The incident photon flux is being moni-
ored with ionisation chambers. The sample is situated in the center of an Eulerian cradle, 
hich allows arbitrary orientation of the sample in space. On the detector arm, an analyser 
nit is mounted, which serves to suppress background, enhance the resolution in reciprocal 
pace, but also allows an analysis of the polarisation of the scattered beam. Such a polarisa-
ion analyser is shown in some more detail in figure 6.  
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6: Polarisation analyser according to [37] and measurement of the polarisation of a 
wiggler beam. 1: motorized double slit system; 2: evacuated flight tube; 3: base plate 
with three manual degrees of freedom for alignment; 4: goniometer for the α move-
ment (see text); 5: entrance slit; 6: goniometer for the ω movement of the analyser 
crystal; 7: tilt of the analyser crystal; 8: aluminium housing of the analyser; 9: go-
niometer for the analyser 2θ movement; 10: detector aperture slits; 11: NaI detector. 

alyse the polarisation of the scattered beam, one has to find a crystal with a reflection at 
ice d-spacing corresponding to 1/2 of the wavelength of the radiation d = 2/λ , allowing 
0° charge reflection. At 2 θ A = 90°, the formfactor and the Debye-Waller-factor strongly 
e the reflected intensity. Therefore, the analyser crystal should have a very high peak 
tivity. On the other hand, it should accept the whole divergence of the beam, diffracted 

 the sample. Therefore, the best choice is a mosaic crystal, which compromises between 
peak reflectivity and a sufficient width of the rocking curve. Often, pyrolytic graphite 
02 and higher harmonics) is chosen as analyser, which, however, gives only very limited 
e of wavelengths. Under the conditions of 90° charge scattering, only  scattering 

rs. By rotating, the analyser crystal and detector around the beam axis ( α -movement 4 in 
e 6), the degree of polarisation of the x-ray beam can be determined. As an example, 
e 6 shows the measurement of the polarisation of the monochromatic primary beam from 
gler device at the DORIS storage ring in Hamburg. For an x-ray energy of 10.46 keV, a 
8 analyser crystal fulfills the 90° condition. The integrated intensities scattered from this 
ser as a function of the angle α  between the vertical and the scattering plane of the ana-
, are being plotted together with a refinement according to  

σ→σ

)(sin)(cos)( 0
2

0
2 ααααα −+−= VHI  (17) 

, H and V denote the intensities corresponding to horizontal and vertical polarisation, 
ctively.  describes the possible tilt. The degree of horizontal polarisation is given by 0α

)/()( VHVHP +−=  (18) 
e case of this second generation synchrotron radiation source and for complete open en-
e slit, a polarisation P of about 84 (1 %) was determined. Undulator radiation from mod-
rd generation storage ring sources can have a degree of linear polarisation in the orbital 
 above 99.5 %. At these modern beamlines, the incident flux can exceed 1013 pho-
mm2s.  

rding to (6), polarisation analysis in π→σ  geometry is the most efficient way to distin-
 between magnetic and charge scattering and thus also to suppress possible background 
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from the sample. If no polarisation analyser is employed, background from Compton scat-
tering or sample fluorescence has to be suppressed to enhance the peak-to-background ratio. 
A very efficient way to do this is by employing energy dispersive solid state detectors. They 
allow one to set an electronic window for the spectro-amplifier and thus to discriminate the 
elastic scattered photons from the background of inelastic scattering.  
 

4 Resonance exchange scattering 
As an example of the effect of resonance exchange scattering, we show in figure 7 raw data 
taken at the W1 beam line at HASYLAB for the LII resonance of GdS [15]. Due to the high 
absorption cross section of Gd for thermal neutrons, no detailed neutron diffraction studies 
exist for GdS. With x-rays a comfortable count rate of about 3000 photons per second was 
obtained for the 9/2 1/2 1/2 reflection on resonance and we could verify the assumed type II 
antiferromagnetic ordering on the fcc lattice. While resonant exchange scattering can in prin-
ciple give information about the density of unoccupied states above the Fermi level, most 
resonance line shapes can well be approximated with the simple two level model of equation 
(14). This is also true for the resonance shown in figure 7, where only a small asymmetry re-
mains after absorption correction [15]. There are, however, examples of much more structured 
resonances with double and multiple peaks as a function of energy. Examples are the K-edge 
resonance of manganese in the perovskite type compound RbMnF3 [13] or the L-edge reso-
nances in the rare-earth metal Tb [28]. 
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 7: The resonance enhancement of the magnetic signal of the 9/2 1/2 1/2 superstructure 
peak of GdS at the Gd LII edge measured at 4.2 K. The left diagram shows raw data 
of rocking curve scans at various photon energies. The right diagram shows as a 
function of photon energy the peak intensities together with the structure of the ab-
sorption edge. 

strength of resonance exchange scattering that makes it unique compared to all other 
niques is that it combines spatial resolution (in reciprocal Fourier space) with element 
ificity. By choosing a resonance, where an enhancement of several orders of magnitude 
 specific magnetic element is obtained, non-resonant scattering becomes negligible and 
 the magnetic pair correlation functions for this element in question are observed. This 
be nicely demonstrated for the mixed crystal series Gd1-xEuxS. While GdS is an antifer-
gnetic metal, EuS is a ferromagnetic insulator. For some intermediate concentration, a 
l-insulator transition occurs. Moreover, since the system exhibits competing magnetic 
actions (ferromagnetic versus antiferromagnetic), frustration occurs, i. e. not all magnetic 
s can be satisfied simultaneously. Frustration combined with disorder typical for a sto-
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chastic occupancy of the rare earth site in the solid solution, leads to a spin glass phase with-
out magnetic long range order separating the ferromagnetic from the antiferromagnetic phase. 
Some questions that can be tackled with XRES are: can we observe the frustration mechanism 
and what is the magnetic microstructure of the long range ordered and of the spin glass phase? 
The answer to these questions lies in the study of the magnetic correlations with element 
specificity [29, 30]. 
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Absorption corrected energy dependence of the intensity of the 1/2 1/2 9/2 magnetic 
Bragg reflection at the Eu and Gd LII and LIII edges for a Gd0.8Eu0.2S sample at 4 K. 
The solid line is a fit with (14), the dashed line shows the absorption coefficient. 

 shows the resonance behaviour for a Gd0.8Eu0.2S sample at all 4 LII and LIII edges to-
ith a fit assuming a simple atomic-like two level dipolar transition [29,30] (compare 

). The resonances for the two different elements are well separated in photon energy 
enhancement amounts to between one and more than two orders of magnitude com-
 non-resonant scattering. This is the reason for the element specificity, as is illustrated 
 9. 
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tion of the effect of XRES for GdxEu1-xS: In the case of non-resonant x-ray 
tion or neutron scattering, the magnetic order is observed independent of the 
tic species. In the maximum of the resonance of Gd, only the ordering of the 
ments is visible due to the large resonance enhancement. At the Eu reso-
, only the order of the Eu moments is visible. 
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emperature dependence of the element specific sublattice magnetisation for 
d0.8Eu0.2S together with neutron data and a model refinement (left). The refinement 
 based on the frustration model illustrated on a 2d lattice on the right. 

 shows the temperature dependence of the sublattice magnetisation determined with 
iffraction (filled triangles), with XRES at the Gd LII edge (small circles) and with 
the Eu LII edge (open squares) [29, 30]. The sublattice magnetisation was obtained 
ing curves as the normalised square root of the integrated intensities. This is the 
ocedure for the case of neutron diffraction. However, in the case of XRES, the in-
pends on transition matrix elements (compare (14)), which can, in principle, change 
erature. Scattering in second order perturbation theory is a priori not directly related 
er parameter. Therefore the neutron data were taken as a cross check: it turns out 
eighted sum of the XRES curves for Eu and Gd matches nicely the neutron curve, 
 that with XRES we measure indeed the sublattice magnetisation for each species 
d3+ individually.  

ising observation is that the sublattice magnetisation has a different temperature de-
for the two ions Eu2+ and Gd3+, even so both have the same 8S7/2 electronic ground 
they both are embedded “in the same sea of conduction electrons”. An explanation 
servation can be given, if we assume frustration effects to occur. In a very simple 
 start from an isotropic Heisenberg Hamiltonian 

∑ ⋅−= ji SSH ijJ  (19) 
st neighbour interactions only, place the two ions at random on a simple cubic lat-

ssume the exchange interaction between pairs of Gd-Gd and Gd-Eu to be antiferro-
and between pairs of Eu-Eu to be ferromagnetic. This will lead to frustration for 
lets etc of Eu spins within the surrounding Gd matrix, see figure 10 (right). To cal-
se frustration effects for the case of small Eu concentrations, we rewrite the Hamil-
) in the form of a sum with one term for the Gd subsystem, including single Eu 
 another term for the Eu “clusters” (pairs, triplets etc.). The size of the Eu “clusters” 
binomial distribution. The Gd subsystem is treated in a mean field theory, while the 
an for the Eu pairs in the mean field of the surrounding Gd ions can be diagonalised 
9,30]. The result is shown in figure 10 (left): we obtain a surprisingly good agree-
een theory and experiment, indicating that the abnormal temperature dependence of 
system is actually due to frustration effects. With Monte Carlo simulations we can 

more realistic interaction model with exchange up to second neighbours on the fcc 
 obtain similar results. We observe a change from a collinear magnetic structure for 
anted structure for the antiferromagnetic mixed crystals, see figure 11. 
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Fig. 11: Antiferromagnetic structure of Gd1-xEuxS for small x as obtained from Monte Carlo 

simulations. While GdS has a collinear antiferromagnetic structure of type II on the 
fcc lattice (i. e. all spins on [111] planes are parallel and the magnetisations for 
neighbouring [111] planes are antiparallel), the doped crystals exhibit a canted spin 
arrangement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Eu: FM Gd: AF

Fig. 12: Linear scan in reciprocal space from (0.3 0.3 4.3) to (0.7 0.7 4.7) around the an-
tiferromagnetic Bragg peak position for Gd0.67Eu0.33S at a temperature of 4 K. The 
energy was tuned to the Gd LII edge. A polarisation analyser with σ→π´ geometry 
was used to suppress the background from charge scattering. The inserts show the 
energy and temperature dependencies. On the right a model for the spin glass state is 
shown. 

 
The combined occurrence of frustration and disorder can result in a spin glass phase for in-
termediate concentrations. In fact, we do not observe long range magnetic order for a x=0.33 
sample. Instead, short range antiferromagnetic correlations are observed for the Gd subsystem 
with correlation lengths of about 40 Å, see figure 12. We could not detect any antiferromag-
netic correlations at the Eu LII or LIII edges. This leads us to the conclusion that a cluster spin 
glass state is formed for intermediate concentrations: while the Gd spins show antiferromag-
netic correlations in regions of typical sizes of 40 Å, the Eu spins develop ferromagnetic cor-
relations. These spin “clusters” freeze in into arbitrary directions, leading to the spin glass be-
haviour. 
 
To conclude this section on Gd1-xEuxS, we have shown which detailed information can be 
obtained with an element-specific probe: for this mixed crystal series we could reveal the 
frustration mechanism and verify that the spin glass state at intermediate compositions con-
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sists of a frozen cluster glass state. Such detailed information is not accessible with any other 
probe. 
 
We can give one other example for the element specific information XRES offers. This 
example concerns thin film magnetism, namely Er/Tb rare earth super-lattices [31]. Such su-
per-lattices, for which the single Er or Tb layers are just a few mono-layers thick, can be 
grown epitaxially with high quality on sapphire substrates. They show a rich magnetic phase 
diagram. Phase transition temperatures are altered compared to the bulk and some phases ap-
pear, which are not present in the bulk materials.  
 
Here we want to discuss only one special feature for a multilayer consisting of 150 double 
layers of 20 mono-layers of Er and 5 mono-layers of Tb: [Er20 / Tb5] x 150. In a temperature 
range between 80 K and 130 K, magnetic satellite peaks appear, which indicate that a helical 
magnetic structure with a propagation vector close to the one for bulk Er is formed throughout 
the multilayer, despite the fact that the Tb layers show basal plane ferromagnetic order. The 
satellite peaks are resolution limited, which shows that the phase information for the magnetic 
helix is carried through the ferromagnetic Tb layers. Can XRES help us to understand the 
coupling mechanism of the Er layers through ferromagnetic Tb layers? Indeed it can: if we 
tune the x-ray energy to the LII or LIII absorption edges of Tb, we enhance its magnetic scat-
tering and can thus observe specifically what happens within the Tb layers. Figure 13 shows a 
plot of a XRES measurement as a function of x-ray energy and a reciprocal space co-ordinate. 
These data tell us that XRES peaks at an energy corresponding to the Tb LIII edge and at a Q-
space position corresponding to the propagation vector of the Er magnetic helix.  
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13: XRES from an [Er20/Tb5]x150 rare earth super lattice measured as a function of x-

ray energy in linear Q-scans along the [000l] axis. The intensity peaks at an energy 
corresponding to the Tb LIII resonance energy and a Q-space position close to the 
magnetic propagation vector of bulk Er. 

 
However, from neutron scattering, we know that the 4f moments of Tb are aligned ferromag-
netically. This apparent contradiction can be resolved, if we consider the XRES process de-
picted schematically in figure 3. Polarisation analysis tells us that the relevant transitions are 
dipolar in nature. Therefore, the intermediate states in the XRES process are the 5d conduc-
tion band states and with XRES, we do not observe the 4f magnetic order, but the spin polari-
sation of the 5d conduction electrons in the Tb layer. Apparently, these conduction band elec-
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trons form a spin density wave within the Tb layers corresponding to the helical magnetic or-
der in the Er layers. They carry the phase information through the Tb interlayers and thus al-
low the Er layers to develop a coherent helical magnetic structure throughout the super lattice. 
 
To conclude this section, we have shown that the information provided by XRES is not only 
element specific, but also specific to the electronic state of this element (4f versus 5d elec-
trons). In the case of rare earth superlattices, XRES allows a direct observation of the inter-
layer coupling mechanism. Spin polarisation in the conduction band is observed, as predicted 
by the RKKY exchange mechanism. 
 
So far, we have only discussed XRES from antiferromagnetic structures, for which magnetic 
and charge scattering are well separated in reciprocal space. Due to the high brilliance of the 
modern synchrotron radiation sources, even a small magnetic signal can be readily observed. 
Polarisation analysis helps to distinguish charge and magnetic scattering and allows to sup-
press the charge background.  
 
For ferromagnetic samples, the situation is quite different. Here charge and magnetic 
scattering coincide. Since magnetic scattering is typically orders of magnitude weaker as 
compared to charge scattering, it becomes difficult to observe. Combining (4) and (12), the 
cross section for magnetic scattering takes the form: 

22 )(Efffd
d

RC +==
Ω
σ  (20) 

Here, fC denotes the amplitude for charge scattering, fR the amplitude for resonance exchange 
scattering, and we have neglected non-resonant magnetic scattering close to a relevant ab-
sorption edge. Let us now chose the scattering geometry depicted in figure 14.  
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gg intensities: 
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echzzmag ImImII argint
2 ++=  (21) 

There are three contributions to the scattered intensity I: a pure charge term Icharge, a pure 
XRES term Imag and an interference term between charge and XRES scattering Iint. By 
switching the direction of the external magnetic field, an asymmetry ratio 

↓↑

↓↑

+
−≡

II
IIRa  (22) 

can be measured.  
 
In the case of EuS and with the scattering geometry of figure 14, this asymmetry ratio is as 
large as 67 % [32]. In fact, magnetic scattering, interference term and charge scattering be-
come quite comparable in magnitude. Figure 15 shows the LII resonance of EuS at 4 K. 
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x-ray diffraction stu
transition metal ions,
orrected energy dependence of the (115) reflection measured at the Eu-
o measurements with magnetic fields of +0.5 T and –0.5 T were per-
K and one measurement at 40K well above the Curie temperature of 17 
 line represents a refinement, see text. 

d to obtain spectroscopic information about the electronic states at the 
] a model has been refined to the data, which assumes that the empty 
pin-up and spin down electrons are narrow, but shifted by an exchange 
or this exchange splitting was determined to ε = 0.27(1) eV.  

tion, we have shown that XRES can also be measured from ferromag-
llows one to measure element specific hysteresis loops. Spectroscopic 

e intermediate states close to the Fermi energy can be obtained from the 
ce curves. In order to determine values such as the exchange splitting 
however, not sufficient to just measure the asymmetry ratio (22). Instead, 
h the energy dependencies for positive and negative field and for pure 
e to be refined. 

ant magnetic x-ray diffraction 
-ray scattering has the convenience of easily detectable signals due to the 
nt and provides element specific information. Therefore many magnetic 

dies nowadays deal with resonance exchange scattering. However, for 
 only K-edges lie in the range of hard x-ray wavelengths, where atomic 
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resolution is achievable. Due to the dipolar and quadrupolar selection rules and the small 
overlap between core 1s-states and the magnetic sensitive 3d or 4p energy bands, resonance 
enhancements are negligible at transition metal K-edges and one is left with neutron- or non 
resonant magnetic x-ray scattering. These techniques have the advantage that they measure 
directly the order parameter, in contrast to resonant scattering, where transition matrix ele-
ments are involved, which are not known a priori. Moreover, the form of the cross section (6) 
suggests that spin S and orbital L angular momentum can be determined separately by means 
of polarisation analysis. Take the example of a collinear antiferromagnet for which charge – 
and magnetic reflections are well separated in reciprocal space and for which we can align the 
moments along the û2 – axis, i.e. S(Q) = (0,S(Q),0) and L(Q) = (0,L(Q),0). At the antiferro-
magnetic reflections charge scattering vanishes and, according to (6), magnetic scattering only 
occurs in the σ→σ’ and the π→π’ polarisation channels. In the former, scattering is sensitive 
to S(Q) only, in the latter, it is sensitive to a linear combination of S(Q) and L(Q), thus al-
lowing a unique determination of the ratio between both contributions. While such a model 
independent separation of S and L cannot be achieved with neutron scattering due to the fact 
that the neutron cross section is proportional to L+2S, it provides very important information 
e.g. to verify band structure calculations. Such a separation of S and L by means of polarisa-
tion analysis of non-resonant magnetic x-ray diffraction has for example been done in Ho [5], 
NiO [20] or Cr [21]. 
 
When discussing non-resonant magnetic x-ray diffraction, one has to start with the beautiful 
pioneering work by Gibbs et al. [4] and Bohr et al. [34] on Ho metal. Together with the fol-
lowing work [35], this is one of the most comprehensive studies of magnetic x-ray scattering 
so far undertaken. The basic magnetic structures in the heavy rare-earth metals are known for 
quite a long time from the pioneering experiments by Koehler et al. The results are illustrated 
in figure 16.  
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he left, the hexagonal close packed hcp crystal structure realised in the heavy 
-earth metals is illustrated. On the right, the magnetic structures of the heavy 
-earth metals are sketched. From left to right: basal-plane ferromagnet, helix 
ture, cone structure and the c-axis modulated CAM structure. 

 in any particular hexagonal base-layer are parallel and only the relative align-
rent planes, when propagating along the hexagonal c-direction are illustrated. In 
helix structure is realised below the Néel temperature of 132 K down to 20 K, 
 structure develops. In the high temperature region, the modulation period in-
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creases continuously with decreasing temperature, which indicates that the helix is incom-
mensurate with the crystal lattice, i. e. the ratio between magnetic period and lattice period 
cannot be expressed as a simple rational number. At 20 K, a lock-in transition occurs and the 
magnetic modulation becomes commensurate with the chemical lattice with a period of 6 unit 
cells, i. e. 12 atomic layers, corresponding to τ = 1/6. The beauty of the x-ray experiment was 
to show that much of what was originally thought to be an incommensurate phase in fact 
contains a series of subtle lock-in transitions. These details could be revealed because of the 
high wavevector resolution of 10-3 Å-1 for the synchrotron x-ray experiments. Subsequently, 
these observations have led to a new model of magnetism in Holmium and other rare-earth 
metals. In the experiments by Gibbs et al. the scattering vector Q was aligned parallel to the 
axis of the helical magnetic structure. In this case, we expect that the main charge peaks along 
c* are accompanied by a pair of satellites at positions Qhelix=Gn±τ, where the turn angle from 
plane to plane of the helix is given by Φ = τ·d. Figure 17 shows the original measurement by 
Gibbs et al. in the vicinity of the 0004 Bragg peak in Ho.  
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 17: Scattering in t

cles show the 
the scattering
scattering (fro

 
Without polarisation an
which is significantly 
commensurate structur
the help of a polarisati
experiment is shown b
gin, while the broader 
ture, no strain wave sh
we can look at the tem
deduced from x-ray an
several lock-in transitio
ture. Figure 19 shows s
 
 
 

he vicinity of the 0004 Bragg peak in Holmium at 17 K. The open cir-
scattering without polarisation analysis, while the filled circles show 
 observed with a polarisation analyser aligned to observe only σ-π' 
m [4]).  

alysis two peaks are visible: one sharper satellite reflection and one, 
broadened. Both reflections occur at rational positions indicating a 

e. According to (6) and (7), magnetic scattering can be identified with 
on analyser, aligned to observe the off-diagonal σ-π' scattering. This 
y the filled circles. Obviously, only the sharp peak is of magnetic ori-
feature has to be assigned to charge scattering. For a pure spiral struc-
ould occur due to magnetoelastic interactions. To resolve the puzzle, 
perature dependence of the magnetic modulation vector in holmium, 
d neutron data (see figure 18). With the high resolution x-ray data, 
ns as well as a hysteresis behaviour can be observed at low tempera-

everal scans in the low temperature range. 
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om [34]). The diagram on the right illustrates the model for magnetic 
can describe the observations. 

t can describe these observations assumes the existence of discommen-
 structure depicted on the right of figure 19 results from a competition 
gy and the sixfold basal plane anisotropy. According to this model, the 
 determines the orientation of the magnetic moment of two adjacent 
parallel magnetisation. The magnetisation of the next double layer is 
s again along an easy in-plane axis. This pattern repeats until at one 
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point exchange energy wins and a spin slip is introduced with only one layer and not a double 
layer pointing along the easy axis. The change in magnetoelastic coupling at spin slip sides 
causes a small distortion of the chemical lattice, with a period equal to the spin slip period λS. 
As figure 19 shows, the magnetic period λM and the spin slip period λS are different, giving 
rise to the two peaks observed. While the magnetic period is long range ordered, the broad 
charge peak indicates that the spin slip structure is short ranged with a finite correlation 
length. With this spin slip model, Bohr et al. [34] could calculate the allowed wavevectors for 
magnetic and spin slip scattering and there is a remarkable agreement with the experimental 
data. We do not want to discuss this example in more detail, but conclude that the high reso-
lution of magnetic x-ray scattering compared to magnetic neutron scattering immediately 
gave rise to a much deaper understanding of magnetic structures and interactions in rare-earth 
metals. 
 
The second example we want to discuss deals with the separation of spin and orbital angular 
momentum in the monoxides of 3d transition metals [36] and we have selected in particular 
the example of NiO [20]. Why are we interested in these very simple compounds? After all, 
MnO was the first material for which the antiferromagnetic structure has been determined 
with neutron scattering, a main corner-stone for the nobel prize of Cliff Shull. The reason is 
that electron correlation effects become particularly obvious in the transition metal oxides. 
Prominent examples of systems, which cannot be described in a simple Fermi liquid picture 
are the high TC cuprates or the colossal magnetoresistance manganites, which show some very 
interesting and unexpected behaviour, due to electron correlations. MnO, FeO, CuO, CoO and 
NiO can thus be seen as test samples for band theory models. In the most simple electronic 
band model, the oxygen p-states are fully occupied, while the metal s-states are empty and the 
d-states are partially occupied. With such a picture, one would expect a partially filled band at 
the Fermi level, i. e. the oxides would be expected to be conductors. In reality, they show in-
sulating behaviour, which cannot be reproduced by simple density functional theory. Moreo-
ver it is common believe that the strong crystal field on the 3d orbitals leads to a suppression 
of the orbital momentum, the so-called quenching. For these reasons, it is of interest to per-
form a separation of spin- and orbital moment magnetisation density in NiO. We have already 
mentioned that this is possible, when discussing the amplitude (6) of non-resonant magnetic 
scattering.  
 
NiO has the NaCl fcc-structure with a = 4.177 Å at room-temperature. The ground state con-
figuration of the Ni2+ ion has the 3d8 configuration. Below TN = 523 K, NiO orders in the type 
II antiferromagnetic structure, where ferromagnetic planes are stacked antiferromagnetically 
along the [111] axis with their magnetic moments, aligned in the [111] planes, along one of 
the [ 211 ] directions. The magnetic structure of MnO is depicted in figure 20. 
 
 
 
 
 
 
 
 
 
Fig. 20: Magnetic unit ce
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The separation of spin and orbital contributions can be done by means of polarisation analy-
sis. Here, we assume that the radiation incident on the sample is fully polarised in the hori-
zontal plane. In the actual experiment, performed at the magnetic scattering beamline ID20 at 
ESRF, the degree of polarisation in the horizontal plane was found to be 99.5 %. As men-
tioned in the section on experimental considerations, pyrolytic graphite is an ideal material to 
be used as a polarisation analyser. In the actual experiment, PG006 was used and the incident 
beam energy was tuned to 7.84 keV to fulfill the 90° reflection condition at the analyser crys-
tal. A crystal was prepared with a [111] face. Specular magnetic reflections (1/2 1/2 1/2), (3/2 
3/2 3/2) and (5/2 5/2 5/2) could be measured as a function of the angle of rotation ψ around 
the scattering vector. The scattered magnetic intensity depends on this angle ψ since during 
rotation we change the components of S and L, which enter the scattering cross section. Be-
fore we proceed with the discussion of the results, we have to give some explanation about 
the magnetic domain structure that can develop in such a crystal as it is cooled from the cubic 
paramagnetic phase into the orthorhombic antiferromagnetically ordered low temperature 
phase. Since in the cubic phase 4 symmetric equivalent [111] directions exist ([111], [ 1 11], 
[1 1 1], [11 1 ]) the magnetic propagation vector can align along one of these directions. There-
fore during cooling down, the crystal will be spontaneously develop 4 so-called K-domains 
corresponding to the symmetry equivalent [111] directions, which can be realised in different 
parts of the crystal. In addition the magnetic moments are aligned in the [111] planes along 
one of the [11 2 ] directions. Since in the cubic state, the [111] axis is a three-fold symmetry 
axis, there exist three equivalent possible spin directions perpendicular to the [111] axis, the 
so-called S-domains. Depending on crystal faults (surfaces, small angle grain boundaries, im-
purity atoms etc.), but also on random processes, an arrangement of these K- and S-domains 
develops in the sample in the low temperature phase. During the experiment it turned out that 
the sample just developed a single K-domain with propagation vector parallel to the surface 
normal, at least in the near surface region of roughly 40 micrometer probed in the experiment. 
However, when measuring the scattered intensities from a given K-domain, all contributions 
from the associated S-domains add incoherently. The S-domain distribution within a K-do-
main can be studied by rotating the sample about the surface normal. Such an experiment is 
shown in figure 21. 
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From such experiments, the L/2S ratio can be determined. It is plotted in figure 22 as a func-
tion of sinθ/λ.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 22: Measured variation of L(Q) / 2 S(Q) as a function of sinθ/λ = Q/4π. The continuous 
line is the dependence estimated from theory, adjusted to fit through the data with a 
contraction of the wave function by 17 % (from 20).  

 
By normalising to the charge reflections, the spin and orbital formfactors can be determined. 
They are depicted in figure 23. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 23: Spin and orbital moment form factors of NiO. Again the continous lines are the 

calculated variations of S(Q) and L(Q) with an expansion of the Q-scale by 17 % 
(from 20).  

 
Let us summarise the most important results of this investigation: First of all, there is a rather 
large contribution of orbital moment in NiO. In fact, the extrapolation to Q = 0 gives an ef-
fective ratio L/S = 0.34. This large contribution clearly contradicts the common believe that in 
such transition metal compounds, the orbital angular moment is largely quenched due to the 
crystal field. Furthermore, the results also indicate a contraction of the atomic wave function 
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for Ni in NiO, if the experimental values are compared with the predictions of theory. The 
atomic wave functions are contracted by 17 % as compared to the free ion. We can conclude 
that the magnetisation density in a simple system like NiO is not yet fully understood and the 
results of these studies have to be taken into account, when models for the electronic and 
magnetic structure and properties of transition metal compounds are being made.  
 
So far, we have discussed the magnetic scattering of x-rays in the "conventional energy 
range" between 4 and 20 keV. We now want to discuss an alternative method, namely the 
non-resonant magnetic scattering of very hard x-rays with energies above 80 keV [22-25]. 
From (9) it follows that with high energy x-ray diffraction one can determine the spin density 
distribution independent of the polarisation of the incident beam and without analysis of the 
final polarisation after scattering. While in neutron diffraction only the total magnetic mo-
ment, proportional to the sum L+2S is accessible, x-ray diffraction in the conventional energy 
range requires polarisation analysis to separate the spin momentum S(Q) from the orbital an-
gular momentum density L(Q). The additional principal feature of high energy magnetic x-ray 
diffraction is the drastic increase in penetration depth. For 3d transition metals, the absorption 
length 1 µ  increases from some µm at 8 keV to several mm at 80 keV. This leads to a volume 
enhancement of the signal which is, however, partly compensated by the λ2 term for the re-
flectivity. Moreover, true bulk properties become accessible, a feature especially important 
for studies of magnetic disorder phenomena. Magnetic x-ray scattering can be studied in 
transmission geometry. Corrections for absorption, extinction, beam foot print etc. are simple 
and therefore, by normalising the intensity of the magnetic reflections to the intensity of the 
charge reflections, absolute values for the spin moment can be determined [25]. Neutron and 
photon experiments of bulk properties from the same crystal become possible, where one ad-
vantage of the x-ray study is the high intrinsic resolution of about 10-3 Å-1 longitudinal and 
2·10-4Å-1 transversal. 
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 a typical experimental set-up. The diffractometer of the beamline BW5 at 
ves a white x-ray beam from a 2T high field wiggler. Inclined water cooled 
e beam dimensions to about 4 x 4 mm2. To reduce the heat load on the opti-
ater cooled 1 mm thick Cu window absorbs all radiation of energy smaller 
 the experiments on MnF2 described below, we employed annealed Si 311 
osaic width of 10´´ in Laue (transmission) geometry as monochromator and 
The analyser can be used to increase the momentum space resolution and to 
round, but should not be employed for the collection of integral intensities. 
ith a quadratic cross section of 50 x 50 mm2 and a free bore of 10 x 10 mm2 

tween monochromator and sample, sample and analyser and analyser and 
 the background. With an energy sensitive Ge solid state detector, the ine-
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lastic background from Compton scattering and fluorescence can be efficiently suppressed. 
The sample is mounted inside a cryostat with Al windows and large tails to avoid Al back-
ground scattering to enter the detector. 
 
The potential of magnetic high energy x-ray diffraction can be demonstrated with experiments 
on the antiferromagnetic model system MnF2 [24]. Its structure is shown in figure 25. With an 
energy of 80 keV, a high peak count rate of 12.000 counts/sec, a good peak-to-background 
ratio of 230:1 and an excellent Q space resolution can be obtained for the magnetic 300 Bragg 
reflection. Figure 26 shows a measurement of the temperature dependence of the sublattice 
magnetisation. In the critical region close to the Néel temperature TN, the reduced sublattice 
magnetisation )0()( == TMTMm  follows very accurately a power law behaviour 

βττ ⋅= Dm )(  (23) 
as a function of the reduced temperature τ = TN − T( ) TN . The value of the critical exponent 
of β=0.333(3) corresponds well to the predictions of the Ising model. 
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MnF2 is a classical model antiferromagnet with localised spin moments and therefore is an 
ideal test material for any new technique in magnetism. The 3d metal Cr on the other hand 
shows very intriguing magnetic properties. Chromium is an itinerant antiferromagnet ex-
hibiting an incommensurate spin density wave (SDW) below TN = 311 K [26]. Above the spin 
flip transition at TSF = 123 K the spin density wave is transversally polarised, whereas below 
TSF the polarisation becomes parallel to the modulation wave vector, which leads to a longitu-
dinally polarised SDW. The SDW gives rise to magnetic satellite peaks at positions corre-
sponding to the magnetic propagation vector qm. These satellites could be readily measured, 
despite the small root-mean-squared moment of 0.43 µB, see figure 27. The temperature de-
pendence of the intensity and propagation vector for the 1- δ  0 0 satellite is plotted in figure 
28. One can clearly see the spin flip transition at 123 K in a drastic drop of the satellite inten-
sity as the spin moment rotates from an orientation perpendicular to the scattering plane to an 
orientation within the scattering plane. Therefore at the spin flip transition, the spin compo-
nent S2 - and according to (9) the Bragg intensity - vanishes. 
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 geometry (left) and 1-δ00 magnetic satellite (right) of Cr. The measure-
e done with photons of energy 100 keV. While above the spin flip transition 
sverse SDW, moments perpendicular to the diffraction plane exist, these 
ome to lie within the diffraction plane as the SDW becomes longitudinal 
elow TSF. 

r study of chromium was, however, to determine the relative contribution 
angular momentum to the SDW. As discussed above, the spin momentum 
le with high energy x-ray diffraction, while neutrons measure the combi-
fore by combining results of measurements of both techniques, spin S and 
m densities can be determined separately. To this end, we measured 5 
 function of momentum transfer. In figure 29 we compare these high en-

th neutron results of Moon et al. [27]. In addition, results of calculations 
istic spin density functional theory for the form factors of spin and orbital 
 are shown. Neutron and x-ray data coincide within the error bars indi-
moment due to spin only. This interpretation is supported by the band 
n. A more detailed analysis gives an orbital contribution of -4(8)%. It is 
that the orbital moment for antiferromagnetic chromium is about an order 
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of magnitude smaller than that calculated for the pure ferromagnetic transition metals Fe, Co 
and Ni. 
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6 Summary; comparison to magnetic neutron scattering 
The above examples clearly demonstrate that x-ray diffraction from magnetic materials has 
become a microscopic probe of magnetism, complementary to the traditional probe of neutron 
scattering. First, it allows the investigation of strongly neutron-absorbing materials, e. g. GdS 
and EuS. Second it stands out by the high momentum-space resolution of typically 10-4Å-1, 
about one to two orders of magnitude better than a standard neutron experiment. This is of 
advantage for the investigation of incommensurate structures (e.g. Ho or Cr), magnetic disor-
der phenomena which involve a broadening of the magnetic Bragg reflection or critical scat-
tering. In critical scattering investigations of the sublattice magnetisation, the magnetic Bragg 
peak can be well separated from critical diffuse scattering (see our example of MnF2). For 
measurements of the critical diffuse scattering, the high Q-space resolution permits a detailed 
line shape analysis and a closer approach of the phase transition. Moreover, due to the high 
incident energy the full integration over the energy spectrum of magnetic fluctuations is 
guaranteed. Third, x-ray diffraction is a perfect tool for the investigation of surface-near phe-
nomena and ultimately of surface magnetism [33, 18]. 
 
Considering non-resonant and resonant scattering, some specific applications are opened for 
each technique. In the case of resonance-exchange scattering, most evidently the resonance-
enhancements at the absorption edges allow the investigation of samples with very small 
magnetic moments. A „magnetic“ spectroscopy of the unoccupied levels above the Fermi 
edge is possible (compare the discussion of the scattering from EuS). Finally the resonance 
effects render magnetic scattering element specific. In alloys and mixed crystals it is now pos-
sible to investigate the magnetic order of the various magnetic elements separately. In addi-
tion to the sensitivity to the magnetic species, a sensitivity to the electronic states can be 
achieved (compare the Er/Tb multilayer). The big draw back of resonant scattering is, how-
ever, that as for any second order perturbation process the scattered intensity is not easily in-
terpretable in a simple and fundamental quantity such as the magnetic moment. This is one 
reason, why non-resonant scattering remains essential. It permits the separate determination 
of the spin- and angular moment contributions to the form factor. The rich cross section of 
non-resonant scattering gives complementary information to neutron diffraction in the case of 
complicated magnetic structures. As a special case of non-resonant scattering we introduced 
the diffraction of high-energy x-rays with energies around or above 100 keV. The large pene-
tration power makes this radiation a true volume probe just like neutron scattering. A simple 
sample environment without specific x-ray transparent windows can be used and x-ray and 
neutron diffraction experiments can be performed from the same bulk crystal. A volume en-
hancement of the signal is obtained, independent of composition. The short wavelength and 
the small cross section eliminate extinction effects, which allows precision measurements of 
structure factors within the first Born approximation. Finally, the simple form of the cross 
section (9) makes possible a mapping of the spin momentum distribution alone without po-
larisation analysis and by combination with neutron diffraction, a determination of L(Q) and 
S(Q) can be achieved. 
 
The experimental techniques for neutron and magnetic x-ray scattering are similar in many 
ways. For both techniques, polarisation analysis allows the separation of magnetic from non-
magnetic scattering. “Flipping ratio” measurements are employed for both probes to measure 
the interference effects between magnetic and non-magnetic contributions.  
 
There are, of course, clear differences between the three probes: 
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• For neutron scattering, nuclear and magnetic scattering are comparable in magnitude, 
while for x-ray scattering the magnetic contribution is generally significantly smaller. 
Therefore, magnetic structure determination from powder samples will remain a typical 
task for neutron scattering.  

• The form factors are quite different for the three techniques: In XRES, the spatial exten-
sion of the core levels is relevant and therefore virtually no decrease of the scattering am-
plitude as a function of momentum transfer is observed. In non-resonant x-ray scattering, 
the form factors of spin and angular momentum can be determined separately, while neu-
trons are sensitive to a combination of both.  

• Angular- and polarisation dependencies are richer for magnetic x-ray scattering. To give 
an example: magnetic neutron scattering is sensitive only to the magnetic moment perpen-
dicular to the scattering vector Q, while x-rays see various components of L and S, com-
pare (6). 

• Due to small cross section for magnetic x-ray scattering, the study of magnetic excitations 
and fluctuations remains a domain of inelastic neutron scattering 

 
To summarise: both neutron and x-ray scattering techniques are important for the investiga-
tion of magnetic structures. They are largely complementary and it is wise for every con-
densed matter scientist to know the strengths and weaknesses of both methods and to chose 
carefully which probe to use to solve a specific problem in magnetism. 
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