

JUPYTERLAB - SUPERCOMPUTING IN YOUR BROWSER

Training course "Introduction to the usage and programming of supercomputer resources in Jülich"

2022-11-21 I JENS H. GÖBBERT (J.GOEBBERT@FZ-JUELICH.DE)

TIM KREUZER (T.KREUZER@FZ-JUELICH.DE)

ALICE GROSCH (A.GROSCH@FZ-JUELICH.DE

MOTIVATION

your thinking, your reasoning, your insides, your ideas

Fernando Perez, Berkely Institute for Data Science Founder of Project Jupyter

https://www.youtube.com/watch?v=xuNj5paMuow

MOTIVATION

Rise of Jupyter's popularity

- In 2007, Fernando Pérez and Brian Granger announced
 "Ipython: a system for interactive scientific computing" [1]
- In 2014, Fernando Pérez announced
 a spin-off project from IPython called Project Jupyter.
 - IPython continued to exist as a Python shell and a kernel for Jupyter,
 while the Jupyter notebook moved under the Jupyter name.
- In 2015, GitHub and the Jupyter Project announced native rendering of Jupyter notebooks file format (.ipynb files) on the GitHub
- In 2017, the first JupyterCon was organized by O'Reilly in New York City.
 Fernando Pérez opened the conference with an inspiring talk. [2]
- In 2018, JupyterLab was announced as the next-generation web-based interface for Project Jupyter.
- In 2019, JupyterLab 1.0 ...
 - In 2020, JupyterLab 2.0 ...
 - In 2021, JupyterLab 3.0 ...
 - In 2022, JupyterLab 4.0 planned end of year

Counting how many Monthly Active Users (MAU) on GitHub are using Jupyter Notebooks

https://www.benfrederickson.com/ranking-programming-languages-by-github-users/https://github.com/benfred/github-analysis

[2] Pérez F, Project Jupyter: From interactive Python to open science -> https://www.youtube.com/watch?v=xuNj5paMuow

JUPYTER NOTEBOOK

creating reproducible computational narratives

HISTORY OF JUPYTERLAB AT JSC

2018 2019 2020 2021 2022 **Initial Basis Usage** Redesign Customization **Features** Switch to Kubernetes Project/Community JHubs JupyterLab modules Inplace Dokumentation Remote Desktop Integration Authentication via Unity/IdM Upgrade JHub Entrance-UI R, Julia, C++, Octave, Ruby Optional 2-Factor Auth. Switch to JupyterLab 3 Comp. Resource Permissions Authorization via UNICORE JupyterLabs on OpenStack Use for Workshops **GPFS** through UFTP Orchestration Docker Swarm **Dashboard Development Specialized Functionalities** Redesign Management Maintenance Improvements JupyterLab Usability **Enhanced Data Access** Support for User Extensions Upgrade of Load Balancer Synchronization of User-DBs Basic Data Protection Regulation Kernel for Vis, DL **Extended Logging** Easybuild Modularization **Fulfill Safety Requirements** Testing & Benchmarking Cross-Side Demonstration JLab Beta JLab 2 JLab 3 JLab3+X JLab 1

HISTORY OF JUPYTERLAB AT JSC

JUPYTERLAB EVERYWHERE

JupyterLab everywhere

- JupyterLab on cloud
- 2 JupyterLab on login nodes
- 3 JupyterLab on compute nodes

no. login nodes = In no. compute nodes = cn

- [1] https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html
- [2] https://apps.fz-juelich.de/jsc/hps/jureca/configuration.html
- [3] https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/configuration.html
- [4] https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/DEEP-EST/_node.html
- [5] https://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/OnlineStorage/JUST/Configuration/Configuration_node.html

JUPYTERLAB EVERYWHERE

[3] https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/configuration.html

[4] https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/DEEP-EST/ node.html

[5] https://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/OnlineStorage/JUST/Configuration/Configuration node.html

What is JupyterLab

JupyterLab

- Interactive working environment in the web browser
- For the creation of reproducible computer-aided narratives
- Very popular with researchers from all fields
- Jupyter = <u>Julia + Python + R</u>

Multi-purpose working environment

- Language agnostic
- Supports execution environments ("kernels")
 - For dozens of languages: Python, R, Julia, C++, ...
- Extensible software design ("extensions")
 - many server/client plug-ins available
 - Eg. in-browser-terminal and file-browsing

Document-Centered Computing ("notebooks")

- Combines code execution, rich text, math, plots and rich media.
- All-in-one document called Jupyter Notebook

https://jupyterlab.readthedocs.io

What is a Jupyter Notebook?

Jupyter Notebook

A notebook document (file extension **.ipynb**) is a document that can be rendered in a web browser

- It is a file, which stores your work in JSON format
- Based on a set of open standards for interactive computing
- Allows development of custom applications with embedded interactive computing.
- Can be extended by third parties
- Directly convertible to PDF, HTML, LateX ...
- Supported by many applications such as GitHub, GitLab, etc..

```
▼ 7:
                                "code'
     cell type:
     execution_count:
     metadata:
                                []
     outputs:
   ▼ source:
                                                           bytes, number_of_chunks):\n"
     ₹ 0:
       1:
                                           jupyter
     ₹ 2:
                                                      pi_using a Monte Carlo method.\"\"\n"
        3:
        4:
                                                                                             Books
     ▼ 5:
                                                                         PDF
                                             IP[y]:
                                                                                             Wikis
        6:
        7:
                Online Data
                                                                        HTML
                                                                                             Blogs
        8:
                 CSV/XLS
        9:
                   Files
                                                                       Web/Gist
                                                                                             Email
        10:
                Unstructured
                                       Revision Contro
                   Data
        11:
                                                                       Python
        12:
                                                                                           nbviewer
                                              .ipynb Files
                SQL/HBase
        13:
                                                            y ** 2).sum(axis=1) < 1\n'
        14:
                                     pi = 4 * xy_inside_circle.sum() / xy_inside_circle.size\n"
     15:
        16:
        17:
                                     # start Dask calculation\n"
        18:
                                     pi = pi.compute()\n"
        19:
     https://jupyter-notebook.readthe@fratign\"\\nfrom {xy.nbytes / 1e9} GB randomly chosen positions\")\n"
     https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
        22:
                                                  pi error: {abs(pi - numpy.pi)}\\n\")\n'
        23:
                                     display(xy)\n"
        24:
        25:
                                     return pi"
```

What is a Jupyter Kernel?

Jupyter Kernel

A "kernel" refers to the <u>separate process</u> which executes code cells within a Jupyter notebook.

Jupyter Kernel

- run code in different programming languages and environments.
- can be connected to a notebook (one at a time).
- communicates via ZeroMQ with the JupyterLab.
- Multiple preinstalled Jupyter Kernels can be found on our clusters
 - Python, R, Julia, Bash, C++, Ruby, JavaScript
 - Specialized kernels for deep learning, visualization, quantum computing
- You can easily create your own kernel which for example runs your specialized virtual Python environment.

https://jupyter-notebook.readthedocs.io/ https://github.com/jupyter/jupyter/wiki/Jupyter-kernels https://zeromq.org

What is a JupyterLab Extension?

JupyterLab Extension

JupyterLab extensions can customize or enhance any part of JupyterLab.

JupyterLab Extensions

- provide new file viewers, editors, themes
- provide renderers for rich outputs in notebooks
- add items to the menu or command palette
- add keyboard shortcuts
- add settings in the settings system.
- Extensions can even provide an API for other extensions to use and can depend on other extensions.

The whole JupyterLab itself is simply a **collection of extensions** that are no more powerful or privileged than any custom extension.

The framework of the final factor of the final

https://jupyterlab.readthedocs.io/en/stable/user/extensions.html https://github.com/topics/jupyterlab-extension

With JupyterLab 3 prebuild extensions were introduced (in contrast to source extensions).

You can now (technically) extend a compiled JupyterLab 3+ with without the need to rebuild.

=> That allows a separation of a system-wide JupyterLab core installation and extensions installed by a user.

JUPYTERLAB - WHEREVER YOU PREFER

Local, Remote, Browser-only

Local installation:

JupyterLab installed using conda, mamba, pip, pipenv or docker.
 https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html

Remote (cluster) installation:

- JupyterLab installed on a remote server
 - in \$HOME (e.g. using pip or miniconda)
 - system-wide (e.g. with Easybuild, Spark) by the admins.

Browser-only installation (experimental!):

JupyterLab local with server + client components in your browser
 JupyterLite includes a browser-ready Python environment named Pyodide.
 https://jupyter.org/jupyter.org/jupyter/lab
 https://jupyter.org/try-jupyter/lab

JUPYTERLAB - WHEREVER YOU PREFER

Local, Remote, Browser-only

Local installation:

JupyterLab installed using conda, mamba, pip, pipenv or docker.
 https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html

Remote (cluster) installation:

- JupyterLab installed on a remote server
 - in \$HOME (e.g. using pip or miniconda)
 - system-wide (e.g. with Easybuild, Spark) by the admins.

Browser-only installation (experimental!):

JupyterLab local with server + client components in your browser
 JupyterLite includes a browser-ready Python environment named Pyodide.
 https://jupyter.org/try-jupyter/lab

JUPYTERLAB - WHEREVER YOU PREFER

Local, Remote, Browser-only

Local installation:

JupyterLab installed using conda, mamba, pip, pipenv or docker.
 https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html

Remote (cluster) installation:

- JupyterLab installed on a remote server
 - in \$HOME (e.g. using pip or miniconda)
 - system-wide (e.g. with Easybuild, Spark) by the admins.

Browser-only installation (experimental!):

JupyterLab local with server + client components in your browser
 JupyterLite includes a browser-ready Python environment named Pyodide.
 https://jupyter.org/jupyter.org/jupyter/lab
 https://jupyter.org/try-jupyter/lab

JUPYTERLAB ON HPC

JUPYTERLAB ON HPC

Prepare

- 1) Register & Login
 - √ https://judoor.fz-juelich.de
- 2) Join a project
 - ✓ Wait to get joined by the project PI
- 3) Sign usage agreement
 - ✓ Wait for creation of HPC accounts
- 4) Check Connected Services:
 - ✓ jupyter-jsc

First time login

=> https://jupyter-jsc.fz-juelich.de

Jupyter-JSC first time login

- Requirements:
 - Registered at judoor.fz-juelich.de
 - (check "Connected Services" = jupyter-jsc)
 - Project membership + signed systems usage agreement
 - Waited ~10 minutes
- 1. Login at https://jupyter-jsc.fz-juelich.de
- 2. Sign in with your JSC account
- 3. Register to Jupyter-JSC
- 4. Accept usage agreement
- 5. Submit the registration
- 6. Wait for email and confirm your email address

Start your JupyterLab

Control Panel

A. Jupyter-JSC – Add new JupyterLab

- **B.** Configuration Dialog
 - set Name, Type, System, Account, Project, Partition
- C. Jupyter-JSC Actions
- Open/Stop a running JupyterLab
- Change/Delete configuration

D. Jupyter-JSC -- Statusbar

E. Jupyter-JSC - Logout

Logout will ask what you want to do with the running JupyterLabs - be careful what you answer!

JupyterLab Configuration

Jupyter-JSC – Configuration

Available options depend on

- user account settings visible in judoor.fz-juelich.de
- system specific usage agreement on JuDoor is signed (!!!)
- currently available systems in all of your projects

Basic options

- Type: multiple versions of JupyterLab are installed
- System: JUWELS, JURECA, JUSUF, DEEP, HDFML, HDF-Cloud
- Account: In general users only have a single account
- Project: project which have access to the selected system
- Partition:
 partition which are accessible by the project
 (this includes the decision for LoginNode and ComputeNode)

Extra options

Partition == compute Nodes, Runtime, GPUs, ...

System: HDF-Cloud

Helmholtz Data Federation (HDF)-Cloud

Any user having

- a JSC account (judoor.fz-juelich.de)
- member of an HPC project or owner of an "fz-juelich.de"-Email
- the Connected Service "jupyter-jsc" enabled (default for HPC accounts)
 can start
- Jupyter-JSC container images (containing JupyterLab) on the HDF-Cloud
 - "JupyterLab 3.4" close to the installation on the clusters

HDF-Cloud – OpenStack Cluster for running Virtual Machines

System: HDF-Cloud

Start JupyterLab on HDF-Cloud

- Requirements:
 - Registered JSC account at judoor.fz-juelich.de
 - Logged in to Jupyter-JSC at jupyter-jsc.fz-juelich.de
 - Named a new JupyterLab configuration
- Start a JupyterLab:
 - Version == "JupyterLab 3.4"
 - System == "HDF-Cloud"

Limitations on JupyterLab on HDF-Cloud

- max. 4 GB memory
 - ATTENTION: the container automatically stops, when this limit is reached.
- Storage in Jupyter-JSC container
 - is local to the HDF-Cloud
 - HPC \$HOMEs are mounted read-only
 - only accessible from a Jupyter-JSC container
- HDF-Cloud has no GPUs

HOW TO MOUNT GPFS ON HDF-CLOUD

Forschungszentrum

JUPYTER-JSC SECRETS

Very important to know

Secret 1: Support button

Let us know, if something does not work.
 We can only fix it, if we know it.

Secret 2: Reload on connection loss

- "Server Not Running"
 means, that your browser just lost connection
 => Just hit "Dismiss" !!!
 (as soon as you are online again)
- "File Save Error for <...>"
 means, that your browser just lost connection
 => Just hit "Dismiss" !!!
 (as soon as you are online again)

You can **always** safely hit the "Reload" button of your browser, if the connection to JupyterLab ever gets lost. (it will just restart JupyterLab on the browser-site)

JUPYTER-JSC SECRETS

For experts only @

Secret 3: Jupyter-JSC logs

- Jupyter-Lab gets started by UNICORE on our HPC systems
- On startup UNICORE created the directory \$SCRATCH_<project>/unicore-jobs/<random-hash>/
 - In the terminal of a running JupyterLab, this directory is \$JUPYTER_LOG_DIR
- In this directory you find
 - stdout -> terminal output of jupyterlab messages
 - stderr -> terminal output of jupyterlab error messages
 - .start -> details how your JupyterLab got started

Secret 4: change to a different JupyterLab version

- In .start you can see, that
 - \$HOME/.jupyter/start_jupyter-jsc.sh

is used to prepare the environment for JupyterLab.

This script must ensure that the command jupyter is available in \$PATH.

It enables you to switch to an older/newer/other version of JupyterLab, if the default one gives you trouble or is missing features.

#!/bin/bash

module purge module load Stages/2022 module load GCCcore/.11.2.0 module load JupyterCollection/2022.3.4

Switch to a customized JupyterLab with
\$HOME/.jupyter/start_jupyter-jsc.sh

Some comments about the UI

Some general information

List the installed JupyterLab extensions

- Open the Launcher
- Start a Terminal
- Run command jupyter labextension list

Extensions are installed in JupyterLab´s Application Directory, which

- stores any information that JupyterLab persists
 - including settings and built assets of extensions
- default location is <sys-prefix>/share/jupyter/lab
- can be relocated by setting \$JUPYTERLAB_DIR
 - contains the JupyterLab static assets
 - (e.g. static/index.html)
 - JupyterLab < 3: any change requires a rebuild of the whole JupyterLab to take effect!
 - JupyterLab >= 3: introduced prebuild extensions, which are loaded at startup time

https://jupyterlab.readthedocs.io/en/stable/user/extensions.html

Hint: JupyterLab Playground

A JupyterLab extension to write and load simple JupyterLab plugins inside JupyterLab.

https://github.com/jupyterlab/jupyterlab-plugin-playground

Installed by default at Jupyter-JSC

IPyVolume

3d plotting for Python in the Jupyter notebook

based on IPython widgets using WebGL

https://github.com/maartenbreddels/ipyvolume

JupyterLab-Git

JupyterLab extension for version control using Git

https://github.com/jupyterlab/jupyterlab-git

Installed by default at Jupyter-JSC

JupyterLab - Visual Debugger

JupyterLab >= 3 ships with a Debugger front-end by default.

This means that notebooks, code consoles and files can now be debugged from JupyterLab directly! For the debugger to be enabled and visible, a kernel with support for debugging is required.

https://jupyterlab.readthedocs.io/en/stable/user/debugger.html

JupyterLab-S3-browser

A JupyterLab extension for browsing S3-compatible object storage

https://github.com/IBM/jupyterlab-s3-browser

Installed by default at Jupyter-JSC

PyThreeJS

A Python / ThreeJS bridge utilizing the Jupyter widget infrastructure. https://threejs.org - lightweight, 3D library with a default WebGL renderer.

```
In [9]: f = """
function f(origu, origy) {
    // scale u and v to the ranges I want: [0, 2*pi]
    var u = 2*Math.Pi*origu;
    var v = 2*Math.Pi*origu;
    var v = Math.sin(u);
    var v = Math.cos(u*v);
    var v = Math.cos(u*v);
    return new THREE.Vector3(x,y,z)
}
**

surf = Mesh(geometry=surf_g, material=LambertMaterial(color='green', side='FrontSide'))
surf = Mesh(geometry=surf_g, material=LambertMaterial(color='green', side='BackSide'))
scence = Scence(hildren=[usrf_surf2, AmbintLight(color='9*7777')])
c = PerspectiveCamera(position=[5, 5, 3], up=[0, 0, 1], "white', children=[DirectionalLightcoline=[3, 5, 1], intennity=0.6])
renderer = Renderer(camera=c, scene=scene, controls=[OrbitControls(controlling=c)])
display(renderer)
```

https://github.com/jupyter-widgets/pythreejs

IPyLeaflet

A Jupyter / Leaflet bridge enabling interactive maps in the Jupyter notebook.

https://github.com/jupyter-widgets/ipyleaflet

Installed by default at Jupyter-JSC

IPyMPL - matplotlib

Leveraging the Jupyter interactive widgets framework, ipympl enables the interactive features of matplotlib in the Jupyter notebook and in JupyterLab.

https://github.com/matplotlib/ipympl

NBDime

Tools for diffing and merging of Jupyter notebooks.

https://github.com/jupyter/nbdime

Installed by default at Jupyter-JSC

Plotly

JupyterLab extension for the interactive and browser-based graphing library Plotly. https://plotly.com/python/

JupyterLab-Sidecar

A sidecar output widget for JupyterLab.

https://github.com/plotly/plotly.py

https://github.com/jupyter-widgets/jupyterlab-sidecar

Installed by default at Jupyter-JSC

NVDashboard

NVDashboard is an open-source package for the real-time visualization of NVIDIA GPU metrics in interactive Jupyter Lab environments.

https://github.com/rapidsai/jupyterlab-nvdashboard https://developer.nvidia.com/blog/gpu-dashboards-in-jupyter-lab/

Voilà

Voilà turns Jupyter notebooks into standalone web applications.

https://github.com/voila-dashboards/voila

JUPYTERLAB EXTENSIONS

Installed by default at Jupyter-JSC

Extensions	old version	new version	type
Core			
@jupyterlab/server-proxy	v2.1.0	v3.1.0	prebuild
@jupyter-widgets/jupyterlab-manager	v2.0.0	v3.0.1	prebuild
<u>jupyterlab-datawidgets</u>	v6.3.0	v7.0.0	source
UI Enhancements			
@jlab-enhanced/recents		v3.0.1	prebuild
@jlab-enhanced/favorites	v2.0.0	v3.0.0	prebuild
jupyterlab-topbar-extension	v0.5.0	v0.6.1	
jupyterlab-system-monitor	v0.6.0	v0.8.0	prebuild
@jupyter-server/resource-usage		v0.6.0	n/a
jupyterlab-theme-toggle	v0.5.0	v0.6.1	source
<u>jupyterlab-controlbtn</u>	<u>jupyterlab-control</u>	v0.5.0	n/a
@jupyterlab/toc	v4.0.0	integrated into JupyterLab 3	
Developer Tools			
@jupyterlab/git	v0.23.3	v0.32.4	prebuild
<u>jupyterlab-gitlab</u>	v2.0.0	v3.0.0	prebuild
@krassowski/jupyterlab-lsp	v2.1.3	v3.9.0	prebuild
nbdime-jupyterlab	v2.1.0	v3.1.0	prebuild
@ryantam626/jupyterlab_code_formatter	v1.3.8	v1.4.10	prebuild
@ijmbarr/jupyterlab_spellchecker	v0.2.0	v0.7.2	prebuild
jupyterlab-nvdashboard		v0.6.0	prebuild

Data	Visual	lization

jupyter-matplotlib	v0.7.4	v0.9.0	prebuild
@bokeh/jupyter_bokeh	v2.0.4	v3.0.4	prebuild
jupyterlab-plotly	v4.14.3	v5.3.1	
bqplot	v0.5.22	v0.5.32	prebuild
@pyviz/jupyterlab_pyviz	v1.0.4	v2.1.0	prebuild
<u>jupyter-leaflet</u>	v0.13.3	v0.14.0	prebuild
<u>ipyvolume</u>	v0.6.0-alpha.5	v0.6.0-alpha.8	prebuild
<u>jupyter-threejs</u>	v2.2.0	v2.3.0	prebuild
@jupyter-widgets/jupyterlab-sidecar	v0.5.0	v0.6.1	prebuild
Framework Integrations			
dask-labextension	v3.0.0	v5.1.0	prebuild
@jupyterlab/latex	v2.0.1	v3.1.0	prebuild
<u>jupyter-webrtc</u>	v0.5.0	v0.6.0	prebuild
Dashboard Developement			
<u>jupyter-vue</u>	v1.5.0	v1.6.1	
<u>jupyter-vuetify</u>	v1.6.1	v1.8.1	
@voila-dashboards/jupyterlab-preview	v1.1.0	v2.1.0-alpha.2	prebuild
<u>jupyterlab-dash</u>	v0.4.0	v0.4.0	prebuild
Welcome			
jupyterlab_iframe	v0.3.0	v0.4.0	source
<u>jupyterlab-tour</u>		v3.1.3	prebuild

How to create your own Juypter Kernel

You can easily **create your own kernel** which for example runs your specialized virtual Python environment.

How to create your own Juypter Kernel

Jupyter Kernel

A "kernel" refers to the separate process which executes code cells within a Jupyter notebook.

Jupyter Kernel

- run code in different programming languages and environments.
- can be connected to a notebook (one at a time).
- communicates via ZeroMQ with the JupyterLab.
- Multiple preinstalled Jupyter Kernels can be found on our clusters
 - Python, R, Julia, Bash, C++, Ruby, JavaScript
 - Specialized kernels for visualization, quantum computing

You can easily **create your own kernel** which for example runs your specialized virtual Python environment.

How to create your own Juypter Kernel

Jupyter Kernel

A "kernel" refers to the separate process which executes code cells within a Jupyter notebook.

Jupyter Kernel

- run code in different programming languages and environments.
- can be connected to a notebook (one at a time).
- communicates via ZeroMQ with the JupyterLab.
- Multiple preinstalled Jupyter Kernels can be found on our clusters
 - Python, R, Julia, Bash, C++, Ruby, JavaScript
 - Specialized kernels for visualization, quantum computing

You can easily **create your own kernel** which for example runs your specialized virtual Python environment.

Building your own Jupyter kernel is a three step process

- 1.Create/Pimp new virtual Python environment venv
- 2.Create/Edit launch script for the Jupyter kernel kernel.sh
- 3.Create/Edit Jupyter kernel configuration kernel.json

How to create your own Juypter Kernel

Jupyter Kernel

A "kernel" refers to the separate process which executes code cells within a Jupyter notebook.

Jupyter Kernel

 run code in different programming languages and environments.

Building your own Jupyter kernel is a three step process

1.Create/Pimp new virtual Python environment

https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_general.ipynb

clusters

- Python, R, Julia, Bash, C++, Ruby, JavaScript
- Specialized kernels for visualization, quantum computing

You can easily **create your own kernel** which for example runs your specialized virtual Python environment.

Run your Jupyter kernel configuration

Run your Jupyter Kernel

- https://jupyter-jsc.fz-juelich.de
- 2. Choose system where your Jupyter kernel is installed in ~/.local/share/jupyter/kernels
- 3. Select your kernel in the launch pad or click the kernel name.

Conda

How to base your Jupyter Kernel on a Conda environment: https://gitlab.version.fz-juelich.de/jupyter4jsc/j4j_notebooks/-/blob/master/001-Jupyter/Create_JupyterKernel_conda.ipynb

JUPYTERLAB - REMOTE DESKTOP

Run your X11-Applications in the browser

Jupyter-JSC gives you easy access to a remote desktop

- 1. https://jupyter-jsc.fz-juelich.de
- 2. Click on "Xpra"

Xpra - X Persistent Remote Applications

is a tool which runs X clients on a remote host and directs their display to the local machine.

- Runs in a browser
- allows dis-/reconnection without disrupting the forwarded application
- https://xpra.org

The remote desktop will run on the same node as your JupyterLab does (this includes compute nodes).

It gets killed, when you stop your JupyterLab session.

Hint:

- CTRL + C -> CTRL + Insert
- CTRL + V -> SHIFT + Insert

JUPYTERLAB - REMOTE DESKTOP

Run your X11-Applications in the browser

Jupyter-JSC gives you easy access to a remote desktop

- 1. https://jupyter-jsc.fz-juelich.de
- 2. Click on "Xpra"

Xpra - X Persistent Remote Applications

is a tool which runs X clients on a remote host and directs their display to the local machine.

- Runs in a browser
- allows dis-/reconnection without disrupting the forwarded application
- https://xpra.org

If the connection got lost at some point, just hit the "reload" button of your browser.

Hint:

- CTRL + C -> CTRL + Insert
- CTRL + V -> SHIFT + Insert

JUPYTERLAB – REMOTE DESKTOP

Run your X11-Applications in the browser

JUPYTER CAN DO MORE

JUPYTERLAB – WEBSERVICE PROXY

Extension: jupyter-server-proxy

https://github.com/jupyterhub/jupyter-server-proxy

Member of the Helmholtz Association

JUPYTERLAB – WEBSERVICE PROXY

Extension: jupyter-server-proxy

JUPYTERLAB – WEBSERVICE PROXY

Extension: jupyter-server-proxy

Accessing Arbitrary Ports or Hosts

If you have a web-server running on the server listening on cport>, you can access it through the notebook at cnotebook-base>/proxy/<port>

The URL will be rewritten to remove the above prefix.

You can disable URL rewriting by using <notebook-base>/proxy/absolute/<port> so your server will receive the full URL in the request.

This works for all ports listening on the local machine.

Example:

https://jupyter-jsc.fz-juelich.de/user/j.goebbert@fz-juelich.de/juwels_login/proxy/12345

DASHBOARDS WITH JUPYTER/VOILA

Voilà turns Jupyter notebooks into standalone web applications

with the look-and-feel of a stand-alone web app.

 Voilà disallows execute requests from the front-end, preventing execution of arbitrary code.

Enables HPC users to develop easily web applications from their Jupyter notebooks.

BENEFITS

Why Jupyter is so popular among Data Scientists

Some of the reasons ...

- Jupyter allows to view the results of the code in-line without the dependency of other parts of the code.
- Jupyter mixes easy for users who extend their code line-by-line with feedback attached all along the way
- Jupyter Notebooks support visualization and include rendering data in live-graphics and charts.
- Jupyter is maintaining the state of execution of each cell automatically.
- Supports IPyWidget packages, which provide standard user interface for exploring code and data interactively.
- Jupyter is platform and language **independent** with a well known file format in JSON.
- JupyterLab is build to be extentended, has a hudge community and a long history and is therefore future-proof.

TUTORIALS

Get started with Jupyter/JupyterLab – published 2018 but still a great starting point

Possible start to enter the world of interactive computing with IPython in Jupyter/JupyterLab:

- Leverage the Jupyter Notebook for interactive data science and visualization
- High-performance computing and visualization for data analysis and scientific modeling
- A comprehensive coverage of scientific computing through many hands-on, example-driven recipes with detailed, step-by-step explanations

https://ipython-books.github.io https://github.com/ipython-books/cookbook-2nd

QUESTIONS?

