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Dear participants,
It is our distinct pleasure to welcome you at Jülich Supercomputing Centre to the 
3rd Workshop on Parallel-in-Time Integration. With 43 registered participants 
coming from 12 different countries this event gives an impressive illustration of 
the enormous interest that the field of time-parallel methods attracts today. This  
meeting is the third in a series that started in 2011 at the Institute of Computational 
Science in Lugano and was continued by a workshop at the School of Mathematics 
at the University of Manchester in 2013. We are confident that this series will go  
on and continue to provide people from all disciplines interested in time paralleli-
zation with a forum to exchange ideas, have exciting discussions and pleasant  
conversations.

Although ideas for algorithms providing concurrency in the time dimension have 
been around for 50 years now, in recent years the field has attracted more and 
more attention and interest as scientists from many disciplines are meeting 
the challenges from the extreme degree of concurrency required by today’s and  
future supercomputers. It is our sincere hope that this workshop will support  
researchers not only in the development, improvement and analysis of novel and  
innovative numerical methods but also in their efficient implementation and ultimately 
their application. Hopefully, this series of workshops can in this way contribute to 
continue advancing timeparallel methods as an efficient and powerful tool in  
modern parallel computing.

We wish you a stimulating and interesting workshop and a pleasant time at JSC. 
We also would like to thankfully acknowledge support from our sponsors, the  
German Research Foundation, particularly the Priority Programme 1648  
“Software for Exascale Computing” (SPPEXA), and the Helmholtz Association  
via Forschungszentrum Jülich GmbH.

Your organizing committee,

Matthias Bolten 
University of Wuppertal
Mathematics and Natural Sciences 
Department of Mathematics
D-42097 Wuppertal

Daniel Ruprecht 
Università della Svizzera italiana 
Institute of Computational Science
Via Giuseppe Buffi 13 
CH-6900 Lugano

PREFACE

Rolf Krause
Università della Svizzera italiana
Institute of Computational Science
Via Giuseppe Buffi 13
CH-6900 Lugano

Robert Speck
Forschungszentrum Jülich GmbH
Institute for Advanced Simulation
Jülich Supercomputing Centre
D-52425 Jülich



4 GENERAL INFORMATION

Welcome to Jülich Supercomputing Centre
The Jülich Supercomputing Centre (JSC) is all about simulations using supercom-
puters of the highest performance class. Not only do the experts at JSC operate 
leading computer systems around the clock, they also support scientific users in 
terms of methods and content. At the same time, they perform intensive research 
on solutions for the grand challenges facing modern society and are involved in 
the development of state-of-the-art computer architectures. 

Scientific challenges are as diverse as the requirements on the computers used 
to address them. While simulations in brain research, such as the Human Brain 
Project, or from the area of climate research primarily require high main memory 
capacity, quantum calculations in nanoelectronics need extremely high computing 
power. Data analysis problems are best solved with cluster computers, some of 
which are accelerated with graphics chips. One example is the analysis at JSC of 
data from the Alpha Magnetic Spectrometer (AMS) experiment on the International 
Space Station, which is designed to detect antimatter in space.

Tailor-made solutions must be developed for use on all these systems. 
Only then is it possible to guarantee the most efficient exploitation of these  
expensive resources. This is made possible on site by the expertise of the  
simulation laboratories specializing in individual subject areas, and interdisciplinary 
teams focusing on methodology, algorithmics, optimization, analysis, and visuali-
zation. Outside of Forschungszentrum Jülich, JSC represents user needs in natio-
nal and international committees and organizations, such as the Gauss Centre for 
Supercomputing (GCS) and the Partnership for Advanced Computing in Europe 
(PRACE). It is precisely this comprehensive user support and the simultaneous 
focus on thematic priorities that have earned the Jülich Supercomputing Centre 
its international reputation.
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About

The Priority Programme "Software for Exascale Computing" (SPPEXA) addres-
sesfundamental research on the various aspects of HPC software, which is par-
ticularly urgent against the background that we are currently entering the era of 
ubiquitous massive parallelism. This massive parallelism only, subsumed to the 
notion of manycore processors and their assembly to systems beyond 107 pro-
cessing units, will smooth the way for extreme computing up to exascale, i.e. 
computations with 1018 floating point operations per second and beyond, and the 
insight resulting from those simulations. Mastering the various challenges related 
to this paradigm shift from sequential or just moderately parallel to massively pa-
rallel processing will be the key to any future capability computing application at  
exascale, but it will also be crucial for learning how to effectively and efficient-
ly deal with commodity systems of the day after tomorrow for smallerscale or  
capacity computing tasks and it is the overall scientific objective of SPPEXA. To 
this end, SPPEXA reconnects several relevant subfields of computer science with 
the needs of Computational Science and Engineering (CSE) and HighPerformance 
Computing (HPC). SPPEXA provides the framework for a much closer cooperati-
on and a much more codesigndriven approach instead of a merely servicedriven 
collaboration of groups focusing on fundamental HPC methodology (computer 
science or mathematics) on the one hand with those working on science applica-
tions and providing the large codes (science and engineering) on the other hand.

Topically, SPPEXA will drive research towards extremescale computing in six 
areas or research directions:

•	 computational algorithms,

•	 system software,

•	 application software,

•	 data management and exploration,

•	 programming,

•	 software tools.

Hardware peak performance is ever increasing, exascale systems are currently 
predicted for around 2018, and insight is growing worldwide that a "racks without 
brains" strategy will not allow the science communities to exploit the huge po-
tential of the computational approach in a massively parallel world. Against this 
background, SPPEXA provides an ideal framework for bundling research activities 
nationwide and enabling the participating groups to significantly advance the state 
of the art in HPC software technology at an international scale.
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Monday, May 26, 2014

13:00* 	 Hotel Kaiserhof à JSC
17:15 	 JSC à Hotel Kaiserhof

Tuesday, May 27, 2014

08:20 	 Hotel Kaiserhof à JSC
17:45 	 JSC à Hotel Kaiserhof
18:30 	 Hotel Kaiserhof à Burg Obbendorf
22:00 	 Burg Obbendorf à Hotel Kaiserhof

Wednesday, May 28, 2014

08:20 	 Hotel Kaiserhof à JSC
17:00* 	 JSC à Hotel Kaiserhof

*registration only

Transfer

Hotel Kaiserhof

Jülich Supercomputing 
Centre (JSC)
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Monday, May 26, 2014

12:00 -13:45 Lunch + Registration

13:45 -14:00 Opening + Welcome 

14:00 -15:00 Martin Gander, University of Geneva (Switzerland)
The History of Time Parallel Methods

15:00 -15:30 Coffee break

15:30 -16:00
Giovanni Samaey, KU Leuven (Belgium)

A Micro-Macro Parareal Algorithm: Application to Singularly
Perturbed Ordinary Differential Equations

16:00 -16:30 Toshiya Takami, Kyushu University (Japan)
Identity Parareal Method and Its Performance
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Tuesday, May 27, 2014

09:00 -10:00 Scott MacLachlan, Tufts University (USA)
Multigrid Reduction Techniques For Parallel-In-Time Integration

10:00 -10:30 Coffee break

10:30 -11:00 Jacob Schroder, Lawrence Livermore National Laboratory (USA)
Multigrid Reduction in Time: A Flexible and Non-Intrusive Method

11:00 -11:30
Felix Kwok, University of Geneva (Switzerland)

Schwarz Methods for the Time-Parallel Solution of Parabolic 
Control Problems

11:30 -12:00
Nabil Nassif, American University of Beirut (Lebanon)
Comparing the Parareal and the Adaptive Parallel Time  

Integration (APTI) methods for a Satellite Problem

12:00 -14:00 Lunch + Photo

14:00 -15:00 Open Questions Session

15:00 -15:30 Coffee break

15:30 -16:00
Vadim Lisitsa, IPGG SB RAS (Russia)

Combining Finite Differences and Discontinuous Galerkin  
method for simulation of seismic waves propagation

16:00 -16:30
Marek Behr, RWTH Aachen (Germany)

Space-Time Finite Elements and Non-Uniform Temporal  
Refinement

16:30 -17:45 Individual Meetings

19:00 -22:00 Workshop Dinner, Burg Obbendorf, Hambach 
www.burgobbendorf.de
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Wednesday, May 28, 2014

09:00 -10:00

Kees Oosterlee, CWI Amsterdam, (The Netherlands)
Handling with the time-wise dimension by Fourier techniques, 

Backward Stochastic Differential Equations and Graphics  
Processing Unit

10:00 -10:30 Coffee break

10:30 -11:00
Stefan Findeisen, Karlsruhe Institute of Technology (Germany)

First step towards Parallel and Adaptive space-time  
Computation of Maxwell’s Equations

11:00 -11:30
Uwe Köcher, Helmut Schmidt University (Germany)

Variational Space-Time Methods for the Elastic Wave  
Equation

11:30 -12:00
Konstantinos Ioakimidis, University of Stuttgart (Germany)
Parallel in Time simulation of the Navier-Stokes equations

using the Finite Finite Element Method

12:00 -14:00 Lunch + Tours

14:00 -15:00 Matt Emmett, Lawrence Berkeley National Laboratory (USA)
Timing and performance of PFASST

15:00 -15:30 Coffee break

15:30 -16:00
Dieter Moser, Forschungszentrum Jülich (Germany)

PyPinT-Towards a framework for rapid prototyping of iterative
parallelintime algorithms

16:00 -16:30 Michael Klöppel, TU Dresden (Germany)
Using time-parallel methods for the simulation of a machine tool

16:30 -16:45 Closing + Farewell
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50 Years of Time Parallel Time Integration

Martin J. Gander Section of Mathematics, University of Geneva

Time domain decomposition methods have received renewed interest over the
last decade because of the advent of massively parallel computers. When solving
time dependent partial differential equations, the time direction is usually not
used for parallelization. When parallelization in space saturates however, the
time direction offers itself as a further direction for parallelization. The time
direction is however special, and for evolution problems there is a causality
principle: the solution later in time is affected (it is even determined) by the
solution earlier in time, but not the other way round. Algorithms trying to use
the time direction for parallelization must therefore be special, and take this very
different property of the time dimension into account. The development of time
parallel time integration methods spans now half a century, and various methods
have been invented and reinvented over this period. Here is a brief account of
major contributions:

Nievergelt 1964: precisely 50 years ago, Nievergelt started the era of time
parallel methods in the visionary paper [1]. To solve an ordinary differential
equation (ODE) in parallel, a process which “by all standard methods, is entirely
serial”, he first partitions the time interval into subintervals. He then computes
a rough initial guess at the beginning of each subinterval, for example using
a coarse integrator. Starting with many initial guesses in the neighborhood of
the rough initial guess, he then computes in parallel many accurate trajectories
across each time interval. Finally, an accurate overall trajectory is obtained by
interpolation sequentially time interval after time interval. For linear ODEs, this
leads to the exact solution, and only two solutions over each time interval would
suffice. Otherwise, and approximate solution is obtained.

Miranker and Liniger 1967: a very different approach was proposed by
Miranker and Liniger [2]. They first note that classical predictor corrector methods
are completely sequential: one first has to compute the predicted value, before one
can compute the corrected value. To “widen this narrow computation front”, they
propose to compute the prediction step using the result of the previous prediction
step, instead of the corrected value, and thus the prediction and correction steps
can now be performed in parallel using two processors. They then generalize this
idea to methods which can use 2n processors. In contrast to Nievergelt’s idea,
this leads to small scale parallelism.

Lelarasmee, Ruehli and Sangiovanni-Vincentelli 1982: in the circuit com-
munity, a further very different time parallel method was developed based on a
decomposition of a large scale circuit into sub-circuits, and an iteration. Each
subcircuit is solved independently over a so called time window, using along
cables which were cut to partition the circuit signals from the previous iteration.
Since such signals are called waveforms, the method was baptized waveform
relaxation method. On bounded time windows, these methods converge typically
superlinearly.
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Hackbusch 1984: the parabolic multigrid method developed in [3] works as
follows: the parabolic problem is first discretized in space time using an implicit
scheme. Then on n time levels, one applies a few smoothing iterations to the
systems that have to be solved, sequentially one time level after the other. Then,
as in multigrid, one computes the residual, restricts it to a coarse grid, and does
again the same thing recursively. If coarsening is only done in space, this leads
to multigrid performance. If one also coarsens in time, the method in general can
not deliver multigrid performance. Parabolic multigrid is not naturally parallel,
but like other multigrid methods, the smoother can be naturally parallelized, and
the restrictions and extensions over many time steps are also naturally parallel.

Axelsson and Verwer 1985: boundary value methods are also a technique to
solve evolution problems in parallel [4]. The idea of boundary value methods is
best described as a discretization of an initial value problem on a given time grid
using a linear multistep method, and then, instead of a starting procedure for the
first few unknown values, one imposes the discretized differential equation as an
’ending procedure’ at the other end, thus obtaining a discretized system that looks
like a boundary value problem and can be solved simultaneously by iteration.
Stability properties of boundary value methods are however very different from
time stepping methods, and care must be taken to obtain convergent schemes.

Lubich and Ostermann 1987: a new idea to use waveform relaxation directly
as the smoothing iteration was proposed in [5]. The algorithm is formulated at the
continuous level in time, and the easiest way to understand it is to imagine to take
a Laplace transform in time to obtain a steady problem depending on the Laplace
parameter, and then formally applying a standard multigrid method to this steady
problem. Once the multigrid algorithm is applied, one simply backtransforms the
algorithm to get the so called multigrid waveform relaxation algorithm. Since
the algorithm is formulated and analyzed at the continuous level in time, it does
not consider time coarsening in its basic variant, and thus delivers multigrid
performance naturally.

Gear 1988: a first review paper on parallel methods for evolution problems is
[6]. Gear divides these methods into two classes: parallelism across space, and
parallelism across time. For parallelism across space, all methods developed for
steady problems can be used. For parallelism across time, Gear distinguishes small
scale parallelism along the lines of Miranker and Liniger, and also small scale
block methods, which compute a few consecutive values in time approximately
by iteration, following Milne’s starting procedure for multistep methods in [7].
For parallelism across time, after reviewing Nievergelt’s method, he proposes for
linear problems to use quadrature and matrix exponential evaluations, with an
interesting speculation for a new method at the end.

Bellen and Zennaro 1989: in [8], the original idea of Nievergelt is picked up
again, but now to formally develop an iterative method to connect trajectories, and
with the concrete idea of multiple shooting. The method is formulated directly
for a discrete problem, i.e. a recurrence relation. To obtain parallelism across
time, the recurrence relation is directly formulated over many time steps as a
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fixed point problem, and the Steffensen method, which is a variant of Newton’s
method with an approximate Jacobian but still quadratic convergence, is applied
to solve the fixed point equation. They discover already the property that each
iteration leads to one more converged value in time. They also state quadratic
convergence locally, but the proof is given in an internal report.

Womble 1990: a different direction investigated in [9] is to use the fact that
implicit time discretizations require the solution of non-linear systems at each
time step. At each time step, the non-linear system to be solved depends on
the converged result of the previous time step. Womble now suggests to start
the iteration already without having the converged result of the previous time
step, and to simply use the most accurate approximation currently available. This
way, the non-linear solver can iterate simultaneously over several time steps.
A convergence result for this iteration stating that this approach has the same
asymptotic convergence factor as the underlying fixed point iteration is however
misleading, since this asymptotic regime is only reached after many iterations,
and the initial convergence factor is not good, and gets worse, the more time
steps iterate simultaneously.

Chartier and Philippe 1993: in [10], the authors propose a time parallel
method very much related to the method of Bellen and Zennaro, but at the
continuous level. They introduce Newton’s method in order to solve the continuity
equations arising from a multiple shooting formulation, and prove locally quadratic
convergence. They also show already that this method is not necessarily effective
on general problems, and restrict their later analysis to dissipative right hand
sides, for which they prove a global convergence result. Finally, also discrete
versions of the algorithm are studied.

Horton and Vandewalle 1995: the difficulty of parabolic multigrid with
time coarsening is due to the strong anisotropy introduced in the fully discrete
problem because of the time direction [11]. This can be overcome using a special
coarsening strategy, and adapted prolongation operators in time, which do not
transfer information backward in time. Using F-cycles (also called full multigrid
schemes), a fully mesh independent space-time parallel multigrid solver is obtained
for the heat equation.

Saha, Stadel and Tremaine 1996: the work of Saha, Stadel and Tremaine is
on the integration of the solar system over very long time [12]. They formulate
the differential equations again as quadrature problems, and solve the associated
fixed point problem using Newton’s method. They mention that the general idea
is related to waveform relaxation, and cite the paper by Bellen and Zennaro. They
show simulations using several thousands of processors for simulating planetary
orbits with 9 planets, and need about 10 iterations for convergence.

Lions, Maday and Turinici 2001: the parareal algorithm invented in [13]
is also based on a decomposition of the time interval into subintervals, and an
iterative method to improve approximations at the beginning of each subinterval.
It was first presented as a method that propagates jumps over a coarse grid, but
later identified as a multiple shooting method with a coarse approximation of the
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Jacobian in the Newton solver. The parareal algorithm sparked a wave of new
research in time parallel methods.

Direct time parallel solvers: most of the time parallel solvers are iterative,
but there have also been attempts to devise direct solvers. One idea described in
[14] is to diagonalize the time stepping matrix. This is not an easy task, since for
example for Forward Euler with equal time steps, this matrix is a Jordan block and
thus not diagonalizable. If one uses different time steps however, diagonalization
is possible, and one has to trade off time stepping and conditioning to obtain
a direct time parallel solver. A different approach is the ParaExp algorithm
[15], which is based on a completely overlapping time decomposition, and uses
a Krylov method to propagate the solution of linear homogeneous problems
accurately over long time, while incorporating source term influences by fine
and accurate computations in parallel. For wave propagation, this is currently the
most promising approach for time parallelization.
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Multigrid Reduction Techniques For
Parallel-In-Time Integration

Scott MacLachlan Department of Mathematics, Tufts University, USA
Stephanie Friedhoff Department of Mathematics, Tufts University, USA

Robert Falgout Center for Applied Scientific Computing, Lawrence
Livermore National Laboratory, USA

Tzanio Kolev Center for Applied Scientific Computing, Lawrence
Livermore National Laboratory, USA

Jacob Schroder Center for Applied Scientific Computing, Lawrence
Livermore National Laboratory, USA

I. SUMMARY

We present a family of truly multilevel approaches to parallel time integration
based on multigrid reduction principles. The resulting multigrid-reduction-in-time
(MGRIT) algorithms are non-intrusive approaches, which directly use an existing
time propagator and, thus, can easily exploit substantially more computational
resources than standard sequential time stepping. Furthermore, we demonstrate
that MGRIT offers excellent strong and weak parallel scaling up to thousands of
processors for solving diffusion equations in two and three space dimensions. The
MGRIT approaches are natural multilevel extensions of the parareal algorithm;
thus, they provide techniques that offer parallel scalability for cases where the
“coarse-in-time” grid is still too large to be treated sequentially.

II. THE MGRIT METHODOLOGY

While we typically think of the solution to a linear, time-dependent PDE to
be defined via time-stepping, we can also represent it as the solution of a linear
system, written in block form as




I
−Φ∆t I

−Φ∆t I
. . .

. . .
−Φ∆t I
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

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where Φ∆t represents the time-stepping operator that takes a solution at time
k∆t to that at time (k + 1)∆t, along with a time-dependent forcing term gk.
For such bidiagonal systems, cyclic reduction is a natural and tempting approach
to fast solution, whereby we first solve the Schur complement system,




I
−Φm

∆t I
−Φm

∆t I
. . .

. . .
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
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

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

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
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ĝm
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...
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for the value of the solution at every mth temporal point, with consistently
restricted forcing terms, then define the solution at the remaining temporal points
by local (and parallel) time-stepping between those points defined from the Schur
complement.

Interpreting this as a multigrid reduction algorithm, we can define the coarse
temporal mesh, or C-points, to be those points included in the Schur complement
system, with the remaining temporal points as F-points. We can further define
“ideal” interpolation as the map which takes a solution at the C-points and yields
a zero residual at the F-points, with a similar definition for “ideal” restriction. The
Schur complement then arises as the standard Petrov-Galerkin coarse-grid operator
with these definitions of restriction and interpolation. As is typical in the multigrid
reduction setting, the MGRIT approaches replace the true Schur complement
with a simpler operator (typically of the same form as the original bidiagonal
system, but with time-step m∆t), replace ideal restriction with simple injection,
and compensate by adding relaxation. Furthermore, the two-level method can be
extended to multiple levels in a simple recursive manner.

III. RESULTS

Figure 1 shows weak parallel scaling results for several MGRIT variants applied
to the discretization of the heat equation in two space dimensions, ut = ∆u,
with an implicit Euler discretization for the time derivative and central finite-
difference discretization of the spatial derivatives. We consider the spatial domain
[0, π]2 and the time interval 0 < t < π2/64, with specified initial condition
u(x, y, 0) = sin(x) sin(y), and fix the time-step, δt = (δx)2 = (δy)2 for δx, δy
determined by the spatial grid. The problem size per processor is fixed at (roughly)
27 points in each spatial direction and 28 points in the temporal direction. Thus,
on 1 processor, we use a uniform grid of δx = δy = π/128 and 257 points in
time while, on 4096 processors, we use a uniform grid of δx = δy = π/1024 and
16,385 points in time. Shown are results for three different coarsening schemes:
two coarsen uniformly across all grids, with factors m = 2 or m = 16, while the
third, denoted m = 16/2 in the figure, coarsens by factors of 16 until fewer than
16 temporal points are left on each processor, then coarsens by factors of 2. For
each coarsening scheme, the solid line shows results for standard FCF-relaxation,
while the dashed lines correspond to multigrid schemes that use F-relaxation on
the finest grid, and FCF-relaxation on all coarse grids. Spatial problems are solved
using a parallel spatial multigrid method with a heuristic stopping tolerance. Here,
we see excellent weak scaling, with roughly 50% efficiency at 4096 processors.

Strong scaling results for the heat equation in two space dimensions are shown
in Figure 2. Here, we consider a problem on the spatial domain [0, π]2 and the
time interval 0 < t < π2. The problem is discretized on a 1292 mesh in space,
with 16,385 temporal points. For the time-stepping approach, we parallelize only
in space and use sequential time-stepping. For all three MGRIT variants, we
parallelize over 16 processors in the spatial dimensions, with increasing numbers
of processors in the temporal dimension. Here, we again see slight improvement
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from the MGRIT variant using V-cycles with F-relaxation on the finest grid
and FCF-relaxation on all coarse grids (denoted F-FCF in the figure) over that
with FCF-relaxation on all grids. While an F-cycle variant using F-relaxation on
all grids offers some improvement on smaller numbers of processors, it shows
somewhat poorer parallel scalability. Overall, we see excellent speedup for the
MGRIT results at high processor counts. We note that these results highlight
the fact that the MGRIT framework is largely intended for the case where many
more processors are available than can be effectively utilized by sequential
timestepping. While there is substantial overhead in MGRIT algorithms over the
optimal algorithmic scaling of time-stepping, this extra work can be effectively
parallelized at very large scales.
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Fig. 1: Weak scaling results for MGRIT variants applied to the heat equation in two
space dimensions.
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Handling with the time-wise dimension by
Fourier techniques, Backward Stochastic

Differential Equations and Graphics Processing
Units

Cornelis W. Oosterlee CWI – Center for Mathematics and Computer
Science – Amsterdam, and Delft University of Technology, the

Netherlands

Joint work: This presentation is based on various pieces of research in our
group. Co-authors of this work include: H. Knibbe, C. Vuik (Helmholtz equation),
M. Ruijter (BCOS method), S. Jain, A. Leitao (parallel SGBM).

I. ABSTRACT

In this presentation with its lengthy title we will discuss ”parallel in time” in
a slightly different fashion. We will discuss in detail the latest advancements
regarding Fourier transformation of time-dependent partial differential equation
(PDE) problems. Next to a discussion about efficient solvers for the Helmholtz
equation (ie. the Fourier transform of the wave equation), we will discuss stochastic
approaches for solving time-dependent problems.

This latter issue is closely connected to the Feynman-Kac theorem which
states that we can find the solution of a time-dependent PDE by means of the
computation of a conditional expectation. This theorem has been generalized
to semi-linear and even nonlinear PDEs, where so-called Backward Stochastic
Differential Equations (BSDEs) play an important role for their numerical solution.
We will explain the concept and its applicability. At the same time we have
developed a Fourier technique to deal with these BSDEs highly efficiently called
the BCOS method (is ”BSDE COS method”, based on Fourier cosine series
expansions). So, from a stochastics point-of-view, highly efficient and quite
general Fourier-based solution techniques have recently been developed for time-
dependent, but also for nonlinear, PDEs. These discrete schemes have a close
connection to fundamental solutions of PDEs, and their Fourier transforms, and
also to the characteristic function, which is the Fourier transform of the probability
density function, well-known in probability theory. Next to these Fourier cosine
techniques, we will briefly explain a specific Monte Carlo technique which can
also be used for solving essentially the same PDE problems, and which has been
implemented on Graphics Processing Unit (GPU) parallel hardware. Speed up
numbers are reported.

A. Helmholtz equation

The acceleration of computing time with the help of GPUs also plays a role
in the first part of the presentation which deals with the Helmholtz equation (the
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Fourier transform of the time-dependent wave equation) and efficient solution
methods for this type of equation. This work is based on the shifted Laplacian
preconditioner, and we aim to show that three-dimensional reverse-time migration,
a well-known application in seismic imaging, can be efficiently performed on the
basis of the Helmholtz equation on parallel hardware.

Three-dimensional reverse-time migration with the constant-density acoustic
wave equation requires an efficient numerical scheme for the computation of
wave-fields. An explicit finite-difference scheme in the time domain is a common
choice. However, it requires a significant amount of disk space for the imaging
condition. The frequency-domain approach simplifies the correlation of the source
and receiver wave-fields, but requires the solution of a large sparse linear system
of equations. For the latter, we use an iterative Krylov solver based on a
shifted Laplace multigrid preconditioner with matrix-dependent prolongation.
The question is whether migration in the frequency domain can compete with a
time-domain implementation when both are performed on a parallel architecture.
Both methods are naturally parallel over shots, but the frequency-domain method
is also parallel over frequencies. If we have a sufficiently large number of compute
nodes, we can compute the result for each frequency in parallel and the required
time is dominated by the number of iterations for the highest frequency. As a
parallel architecture, we consider a commodity hardware cluster that consists
of multi-core central processing units (CPUs), each of them connected to two
graphics processing units (GPUs). Here, GPUs are used as accelerators and not as
an independent compute node. The parallel implementation of the 3D migration
in frequency domain is compared to a time-domain implementation.

The choice of the numerical scheme is motivated by complexity analysis.
Consider a 3-D problem of size N = n3, with ns shots, nt time steps, nf

frequencies, nit iterations. The number of shots is usually ns ∼ n2, the number
of time steps nt ∼ n, the number of frequencies is nf ∼ n at most, and the
number of iterations for the iterative frequency-domain method is nit ∼ nf .

B. Feynman-Kac Theorem

One of the targets of our research is to combine the different research lines
(solvers for Seismics and solvers for Computational Finance problems) in our
group. In other words, it should be possible to also solve the Helmholtz equation,
with spatially-dependent wave numbers, by means of fundamental solutions,
Fourier cosine expansions, a discrete version of the characteristic function, and
the Feynman-Kac relation or the connection with BSDEs.

The Feynman-Kac theorem states that the solution of the linear partial differ-
ential equation:

vt(t, x) + Lv(t, x) + g(t, x) = 0, v(T, x) = h(x),

with operator

Lv(t, x) = µ(x)vx(t, x) +
1

2
σ2(x)vxx(t, x),
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can be obtained as a conditional expectation, ie.

v(t, x) = E
[∫ T

t

g(s,Xs)ds+ h(XT )

]
,

where Xs is the solution to the forward stochastic differential equation (FSDE):

dXs = µ(Xs)ds+ σ(Xs)dωs, Xt = x.

A pricing approach originating from this relation is based on quadrature,

v(t0, x0) = e−r(T−t0)

∫

R
v(T, xT )f(xT , x0)dxT

The transitional probability density function, f(xT , x0), is typically not available,
but the characteristic function often is. The COS method has been developed
(targeting applications in Computational Finance) based on the availability of the
characteristic function. The commonly known continuous characteristic function
is however not available in the case of spatially-dependent wave numbers, but the
COS method has recently been generalized to work with characteristic functions
for discrete SDE schemes. We will report upon this development, as well as on
the generalization of these concepts towards BSDEs.

In recent years, also different Monte Carlo simulation techniques for valuation
of high-dimensional conditional expectations were developed in order to deal
with this challenging problem. In principle, these techniques can also be used for
our purpose here. One of these Monte Carlo pricing techniques is the Stochastic
Bundling Grid Method (SGBM), proposed by Jain and Oosterlee for pricing
Bermudan financial options with several underlying assets. The method is a
hybrid of regression- and bundling- based approaches, and uses regressed value
functions, together with bundling of the state space to approximate numerical
solutions at different time steps. The method’s applicability has been extended
by increasing the number of bundles and the problem dimensionality, which,
together also imply a drastic increase of the number of Monte Carlo paths. As
the method becomes much more time-consuming then, we propose a parallel
SGBM method taking advantage of the General-Purpose computing on Graphics
Processing Units (GPGPU) paradigm.
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Timing and Performance of PFASST

Matthew Emmett Center for Computational Sciences and Engineering,
Lawrence Berkeley National Laboratory, Berkeley USA

I. PFASST

The parallel full approximation scheme in space and time (PFASST) algorithm
was first introduced in [1], and is an extension of earlier work that combines the
spectral deferred correction (SDC) algorithm with the Parareal algorithm (see
[2], [3] and references therein). I will present a brief overview of PFASST and
how it operates.

PFASST has been used to solve a growing number of problems on a variety of
machines, including various PDEs and particle systems (please see, e.g., [1], [4],
[5], [6], [7] and references therein). Modest speedups have been attained on large
machines, perhaps most notably a 50% speedup across 32 processors for a pseudo-
spectral implementation of the 3d Navier-Stokes equation (using parallel FFTW
operators); and the now quintessential PFASST+PMG run of the 3d heat equation
on JUQUEEN using all 458,752 of its cores, where a speedup of 15.12 was
achieved across 28 time ranks. Most of these applications are implemented using
the LIBPFASST library, which is a pure Fortran 90 implementation of PFASST.
I will present some scaling and timing results obtained using LIBPFASST and
highlight how these results should be interpreted with respect to PFASSTs critical
path [8].

II. IMPLEMENTATION

Early versions of LIBPFASST were relatively concise and implemented the
basic PFASST algorithm. As new features have been added, LIBPFASST has
become increasingly complex especially with regards to: stopping criteria, looping
strategies, and how status information is communicated to other processors. I
will present how LIBPFASST handles these complexities, and contend that some
of these complexities are best addressed outside of the MPI framework.

III. BENCHMARKS

Various time-parallel algorithms have begun to mature and it is time for our
community to build a set of common benchmarks. This is a tricky endeavour, and
should be done collaboratively with the understanding that particular techniques
are (most likely) better suited for different classes of problems. If our field is
to move beyond a proof-of-concept stage and into an export stage, where a
broader set of scientists begin leveraging and using our algorithms, we must
provide compelling evidence to show that our techniques will provide (additional)
speedup; and we must be able to guide informed decisions on which algorithms
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are appropriate for a particular problem. I contend that some set of benchmarks
are necessary for this to happen.
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Parallel-in-Time Integration for Atmospheric
Gas-Phase Chemistry

Teresa Beck Engineering Mathematics and Computing Lab, University of
Heidelberg, Germany

High performance computing has become an indispensable tool for numerical
weather prediction. To employ parallel architectures, adequate parallelization
strategies are required, that optimally utilize the existing hardware architectures
for the scenario considered. Most of the approaches in use address a parallelization
in space only. In view of future computing architectures with extreme scales
of processing units, I investigate the potential of additionally considering a
parallelization in time. By means of the regional climate and air quality prediction
code COSMO-ART [1], I examine a parallelization in time for its most time-
consuming sub-model in combination with a model reduction technique of intrinsic
low dimensional manifolds.

I. MOTIVATION FOR A PARALLELIZATION IN TIME

COSMO-ART is a coupled climate model, that bases on the numerical weather
prediction model COSMO and is being supplemented by an Aerosols and
Reactive Trace gases (ART) extension, developed by Institute of Meteorology and
Climate Research at Karlsruhe Institute of Technology. COSMO-ART allows for
a calculation of the interdependency between atmospheric gases and aerosols with
the state of the atmosphere. The current approach to parallelize the meteorological
core COSMO is based on a two dimensional domain decomposition method.
Within the ART extension, the chemical kinetics of the gas phase chemistry is
decoupled from the meteorological core, advection and diffusion. Conceptually,
chemistry is considered to take place in isolated boxes, which are coupled to the
meteorological core by mutual updates at distinct time intervals. As individual
chemistry boxes do not couple with each other during one such integration interval,
the decoupling allows for a trivial parallelization: Each chemistry box can be
solved individually on one processing unit.

Gas phase chemistry is being modeled by a nonlinear system of ordinary
differential equations. As processes on a wide range of temporal scales are being
considered, the required time step size to solve these systems numerically is very
small. Despite the trivial parallelization, this sub-model accounts for approximately
33% of the total computing time of COSMO-ART. The level of parallelization
for this approach however is constrained by the number of chemistry boxes to be
solved in parallel, as increasing the number of processing units above the number
of chemistry boxes, will leave performance unaffected.

Even though the currently employed computing resources do not yet support
an exploitation of the full potential of the trivial parallelism, I take one step ahead
exascale computing and investigate the additional potential of a supplementary
parallelization in time. Employing such approaches will be related to a higher
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total process time compated to a serial model, still, it may be very promising
for certain scenarios for which an extremely fast prediction is in pursuit. This
could be the case for the forecast of the air quality after a massive pollution
of the atmosphere induced by a volcanic eruption or a chemical disaster. In
such cases, fast numerical forecasts can save both money and lives and therefore
justify the usage of extreme computing power. Heading for an optimal benefit
from future extreme-scale architectures, I examine the parareal algorithm for
atmospheric chemistry in combination with a reduced model composed of intrinsic
low dimensional manifolds.

The parareal algorithm has already been applied to chemical kinetic systems
by e.g. Maday [2] and Blouza et al. [3]. Most of these investigations employed
reduced models based on quasi-steady states assumptions for certain species,
or a classification of slow or fast reactions according to the magnitude of the
respective rate constants. Although these are widely used approaches, they have
certain drawbacks: A chemical species can for example contribute to both fast
and slow reactions and a fast reaction may have no turnover due to missing
species contributions, same as a slow one. Differently than classifying species or
reactions, I consider an approach, that relies on a classification of modes, where
each mode is associated to one single time scale amongst the multiplicity of time
scales present in such a system.

II. PLANNED WORK

Within my PhD, I want to design and test an efficient parallel-in-time algorithm
for atmospheric gas-phase chemistry by means of a cascade of scenarios of
increasing complexity. The scenarios being considered range from both one very
simple linear and one more complex nonlinear three-variable system, a six-variable
nonlinear system, and finally a highly non-linear system as it arises in COSMO-
ART, composed of 80 chemical species that interact in approx. 200 reactions. In the
first phase of my PhD, I investigated model reduction techniques for atmospheric
chemistry, especially focusing on the idea of intrinsic low dimensional manifolds.
In the following, I want to give you a short idea of what I plan to do next.

A. Draft of an Algorithm

I plan to follow the basic idea of a parallel-in-time integration and start
with a first approximation over an interval using a coarse model. Consequently,
the interval is partitioned into several timeslabs, and the coarsly predicted
approximation can be used as seed values for each of the timeslabs. Then,
the problem on the fine timeslabs is solved locally, in parallel and using a fine
model, while iteratively updating the seed values for each timeslab.

B. The Reduced Model

As a coarse model, I intend to use a reduced model adopting the idea of
describing the long term behaviour of a kinetic system in terms of intrinsic low
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dimensional manifolds (ILDM), as introduced by [4]. The approach bases on
describing the long term development of the chemical system in terms of slow
modes only, which can be identified via an eigenvalue analysis. Fast modes are
treated as functions of the slow modes. A description in terms of slow manifolds
decreases the numbers of unkowns in the system of ODEs to be solved, as well
as it relaxes its stiffness. With the fast timescales completely being removed from
the system, one can use larger timesteps for its numerical approximation. Once
the integration step of the low-dimensional manifold has been carried out, the
contributions of fast modes, that had been neglected so far, are being updated
in terms of the slow ones. The approach assumes that fast modes are in a local
equilibrium on a long term view. By assuming their temporal change to be
negligible, the slow modes implicitely define the fast ones in terms of a nonlinear
problem. The update step therefore mainly consists of solving a nonlinear problem,
which in practice and especially for the scenario under investigation, turns out to
be time consuming.

The idea of the ILDM goes back to Maas et al. [4] and has been successfully
applied to the simulation of combustion proccesses for more than two decades. In
combustion simulation, kinetic systems can be reduced to one- or two-dimensional
manifolds, which enables the usage of tabulation strategies for pre-calculated
updates, instead of directly computing the update steps. The existence of such
low-dimensional manifolds in tropospheric chemical systems, with 80 chemical
species reacting in approx. 200 chemical reactions, has been studied by e.g. Tomlin
et al. [5]. In general, such systems seem to inhere low-dimensional manifolds with
sizes significantly below the original problem size. As most of the reactions are
highly sensitive to the radiation-depending photolysis rate, these low-dimensional
manifolds show a diurnal variation. So far, my investigation for the gas-phase
chemistry within COSMO-ART shows a minimal dimension of the ILDM ranging
from 2 (at night) up to 16 (at day), which technically disables the usage of a
tabulation strategy instead of an on-the-fly computation of the ILDM.
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First step towards Parallel and Adaptive
space-time Computation of Maxwell’s Equations

Stefan Findeisen Institute for Applied and Numerical Mathematics,
Karlsruhe Institute of Technology (KIT), Germany

Christian Wieners Institute for Applied and Numerical Mathematics,
Karlsruhe Institute of Technology (KIT), Germany

I. MAXWELL PROBLEM

An electromagnetic wave consists of two fields, the electric E and the magnetic
H. In a linear material they can be computed by the first–order Maxwell system

µ∂tH+∇×E = 0, ε∂tE−∇×H = 0,

∇ · (µH) = 0, ∇ · (εE) = 0,

with permeability µ and permittivity ε for all t ∈ [0, T ]. For a given initial
condition u0 this can be written as an evolution equation of the form

Lu(t) := M∂tu(t) +Au(t) = 0 t ∈ [0, T ] , u(0) = u0 .

Here, we present a fully implicit parallel space–time approach in Q := Ω× [0, T ]
as an alternative to estabilshed time stepping methods (see [1]). In the examples
in IV we considered a 2D reduction of Maxwell’s equations for the TM mode.

II. DISCRETIZATION

We use discontinuous Galerkin finite elements with upwind flux for the spatial
discretization (see [2, Ch. 6.5]) and a Petrov-Galerkin discretization in time with
continuous ansatz space and discontinuous test space. For discretization we define
space–time cells τ := Kτ × Iτ which consists of a spatial element Kτ and
a local time interval Iτ = (tmin

τ , tmax
τ ). Hence, the space–time cylinder can be

decomposed into a finite set T of open space–time elements τ ⊂ Q such that
Q =

⋃
τ∈T τ . Hence our ansatz, test and local test spaces Uh, Hh and Hh,τ are

given as

Uh =
{
uh ∈ H1(0, T ; L2(Ω)

3) : uh(0) = u0 and for all x ∈ Ω

uh(x, t) =
tmax
τ − t

tmax
τ − tmin

τ

wτ,h(x, t
min
τ ) +

t− tmin
τ

tmax
τ − tmin

τ

vτ,h(x)

where (x, t) ∈ τ and wτ,h ∈ Uh|[0,tmin
τ ] and vτ,h ∈ Hτ,h

}
,

Hh =
{
vh ∈ L2(Q)3 : vh|τ ∈ Hτ,h} and Hτ,h = (Ppτ (Kτ )× Pqτ−1(Iτ ))

3.

Lemma 1. Let Ah be the discontinuous Galerkin operator with upwind flux
approximating A and Lh := Mh∂t + Ah and f ∈ L2(Q)3. Then a unique
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discrete solution uh ∈ Uh exists and is characterized by the variational equation

(Lhuh,vh)Q = (f ,vh)Q , vh ∈ Hh .

By using hash map containers to store the space–time cells, it is easy to
distribute the space–time cells among the different processes and solve the
complete problem in parallel. Since this discretization is implicit in time, no CFL
limitation applies. The arising linear system is solved with a parallel multigrid
method on a space-time mesh hierarchy. It consists of a GMRES solver and
a multigrid preconditioner. The preconditioner uses l meshes Ql, . . . , Q0 and
different polynomial degrees in space and time. Furthermore we use a few steps
of the Gauß–Seidel method as a pre– and postsmoother (see [3]).

III. ADAPTIVITY

In every space–time cell τ we can select a polynomial degree pτ in time
and qτ in space. We use a so called dual error estimator to estimate the error
e := u−uh with respect to a given linear error functional J (v) := (j,v)Q and
density function j(x, t) (see [4, Ch. 9.3]). Now, the aim is to minimize J (e).
We use the duality argument

(Lv − f ,u∗)Q = J (v) ∀v ∈ L2(Q)3

with dual solution u∗ ∈ L2(Q)3 to get the error representation

E = J (e) = (Le− f ,u∗ − u∗
h)Q = (L(u− uh)− f ,u∗ − u∗

h)Q.

The error can be estimated as

|E| = |J (e)| ≤ |E0|+
∑
τ∈T

ητ = |E0|+
∑
τ∈T

(
ρ(1)τ ω(1)

τ + ρ(2)τ ω(2)
τ

)

with initial discretization error E0 and residuals ρ
(1)
τ (uh), ρ

(2)
τ (uh) and weights

ω
(1)
τ (u∗ − u∗

h), ω
(2)
τ (u∗ − u∗

h). The unknown exact dual solution u∗ is approxi-
mated from the computed solution u∗

h via a polynomial recovery of higher order
in space and time. The estimated error on each cell ητ is used in a marking
strategy, where for example 25% of the cells with the highest estimated error are
marked. In a second step the polynomial degrees on these cells are increased.
Hence high polynomial degrees are used in areas where it is necessary to minimize
the error with respect to J . Whereas lowest polynomial degrees are used in areas
which do not effect J (e).

IV. NUMERICAL RESULTS

A. Travelling Wave

We test the method for a u(x, t) = a(x · k− ct) with an amplidude profile
a ∈ C2(Q)3 in Q = [0, 2] × [0.5, 0.5] × [0, 2]. The linear error functional is
given as J (e) := |S|−1

∫
S
ey d(x, t) with region of interest S := [1.75, 2] ×

[0.5, 0.5] × [1.75, 2]. In the adaptive case we achieve the same accuracy as in
the uniform case, but we saved over 50% of the degrees of freedom (see table I).
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level of adaptive uniform
refinement #DoFs |J (e)| #DoFs |J (e)|

0 50.688 1.9359e-1 50.688 1.9359e-1
1 178.518 6.2293e-3 304.128 6.2307e-3
2 469.308 1.6033e-4 912.584 1.4979e-4
3 978.459 7.3783e-5 2.027.520 7.3686e-5

TABLE I: Accuracy of the adaptive and the uniform case

B. Double-slit

In this example we consider the well known double-slit experiment, where we
are only interested in the location of the first minimum on the right boundary
of our computational domain (see 1a). Only parts which take influence to the
minimum are refined (see 1b)–d)).

a b (t = 2)

c (t = 4) d (t = 6)

Fig. 1: Double-slit experiment: a) location of the first minimum, b)–d) distribution of
the polynomial degrees (bright: lowest, dark: highest)
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Jörg Wensch TU Dresden, Institute of Scientific Computing

I. INTRODUCTION

The last decade has seen an ever increasing availability of processor cores
even on consumer hardware. On the other hand, the computation power of single
cores seems to have hit a limit. This development leads to new challenges when
implementing numerical software, where one of the major challenges is the
invention and implementation of efficient parallel algorithms. For the solution of
ODEs and PDEs several approaches exist. Whereas parallelization in the spatial
domain is rather common, parallization in the time domain is a relatively new
development. Our work concentrates on how these latter ones can be used to
further speed up our computations.

We currently work on two different projects, which both could benefit from
parallel-in-time integration. The first project is the DFG-founded SFB/Transregio
961, which deals with the thermo-elastic simulation of certain machine tools
(see Fig. 1 for an example). The second project is the BMBF-founded High
Performance Computing Open Modelica2 (HPCOM). Goal of this project is to
enable the simulation of multibody systems on HPC infrastructure using the
OpenModelica3 simulation environment.

II. FINDINGS AND PROBLEMS

To familiarize ourselves with parallel-in-time integrators we implemented
our own versions of Parareal [1] and ParaEXP [2]. One especially noteworthy
problem we met was calculating the matrix exponential in the ParaEXP method.
According to Moler and Van Loan [3], expokit [4] is the most extensive software
for evaluating this quantity. Nevertheless, it turned out that expokit is actually
too computationally demanding to be used within ParaEXP. In our talk we
give an account of this and further difficulties we encountered in the course of
implementation.

A. Machine tool

The underlying problem in the machine tool simulation is linear, allowing the
usage of Parareal as well as ParaEXP. With both methods we could observe

1transregio96.de
2hpc-om.de
3openmodelica.org
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Fig. 1: Machine tool with FEM mesh

moderate speed ups ranging from 1.6 to 1.7 using 4 cores. Achieving higher
speed ups in this example was limited by the given time scale, i.e., using more
processors would have meant to use smaller time intervalls than in a serial solution
approach.

B. Multibody Systems

Our standard test case for multibody systems is an N-pendulum, consisting of
50 linked parts. Using ParaReal, we simulated the motion of the pendulum and
observed speed ups of about 1.5 using 4 cores. We discuss the influence of several
different parameters (e.g., number of time intervals, coarse/fine integrator steps,
ParaReal iterations, etc.) on the speed up and stability in our talk. Furthermore,
we present results for more difficult test cases.
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Variational space-time methods for the elastic
wave equation

M. Bause Num. Meth. Comput. Eng., Helmut Schmidt Univ., Hamburg
U. Köcher Num. Meth. Comput. Eng., Helmut Schmidt Univ., Hamburg

The accurate and reliable numerical approximation of the hyperbolic wave
equation is of fundamental importance to the simulation of acoustic, electromag-
netic and elastic wave propagation phenomena. Here, we study the elastic wave
equation

ρ(x) ∂tv(x, t)−∇ · σ(u(x, t)) = f(x, t) in Ω× I ,

ρ(x) ∂tu(x, t)− ρ(x)v(x, t) = 0 in Ω× I ,
(1)

written as velocity-displacement formulation and equipped with appropriate initial
conditions and boundary conditions, where we denote by v the velocity, by u the
displacement, by ρ the mass density, by f the body forces, by σ = C : ε the
stress and finally by ε the strain. Elastic waves appear in the design of integrated
structural health monitoring systems for composites. For this, it is strictly necessary
to understand phenomenologically and quantitatively wave propagation in layered
fibre reinforced composites and the influene of the geometrical and mechanical
properties of the system structure. Therefore, the ability to solve numerically the
wave equation in three space dimensions is particularly important from the point
of view of physical realism.

Recently, variational space-time discretisation schemes were proposed and
studied for challenging problems, such as the nonstationary incompressible flow;
cf. [3].

In this contribution we will focus on the presentation of variational time
integration methods from the variational space-time approach for the hyperbolic
elastic wave equation. For the spatial discretisation a symmetric interior penalty
discontinuous Galerkin method for anisotropic media is used; cf. [2], [4].

Fig. 1: Guided ultrasonic waves in carbon fibre composite.
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As common starting point, we choose the weak formulation of Eq. (1), yielding

∫

I

(ρ ∂tv,w) + (σ(u), ε(w)) dt =

∫

I

(f ,w) dt , ∀w ∈ L2(I,V ) ,

∫

I

(ρ ∂tu,w)− (ρv,w) dt = 0 , ∀w ∈ L2(I,V ) ,

(2)

with V = H1
0 (∂ΩD; Ω)3. We denote by (·, ·) the vector-valued L2 inner product

in space. Next, we discretise the time interval I into N disjoint elements In =
(tn−1, tn]. Finally, we derive variational time integration methods by choosing
boundary conditions in time, numerical quadrature in time and the test function
space. By choosing a discontinuous test space in time, we can rewrite the resulting
finite element in time method as time marching scheme over one or several
elements In. Doing this, we can easily derive numerous well known schemes,
such as the second order in time Crank-Nicolson scheme, which is equivalent to
the unconditionally stable second order in time Newmark scheme (cf. [5]), as
well as various new higher order continuous and discontinuous Galerkin schemes
in time; cf. [1], [2].

From these classes of uniform Galerkin discretisations in space and time an
approach of fourth-order accuracy is analysed carefully. More precisely, we
use a continuous Petrov-Galerkin method of third order accuracy in time and
apply an inexpensive post-processing step, which makes the numerical solution
continuously differentiable in time. Further, the efficient solution of the resulting
block-matrix system and inherently parallel numerical simulation through domain
partioning is adressed. The performance properties of the schemes are illustrated
by sophisticated and challenging numerical experiments with complex wave
propagation phenomena in heterogeneous and anisotropic media.
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PyPinT — Towards a framework for rapid
prototyping of iterative parallel-in-time

algorithms

Torbjörn Klatt, Dieter Moser, Robert Speck Juelich Supercomputing Centre,
Juelich, Germany

I. MOTIVATION

With growing interest in parallel-in-time methods many different and new
solvers for ordinary differential equations have gained the attention of researchers
from various fields. In order to clearly estimate the potential and limitations of
these mostly iterative solvers, a modular prototyping framework not only helps to
understand their properties and various facets but also allows to easily implement
and test new ideas.

As an example, the “parallel full approximation scheme in space and time”
(PFASST [1]) and its serial counterpart, multi-level spectral deferred corrections
(MLSDC [2]) are composed of multiple levels and even types of spectral deferred
correction sweeps which are coupled by space-time restriction and interpolation
operators. These modular and interchangeable combinations of different techniques
already generate a vast amount of variations with different effects on solvability
and efficiency towards a diverse set of problems.

II. PYPINT

For a thorough and systematic analysis of methods like PFASST or Parareal
[3] we take the path of a well-planned and fully modular implementation
of these algorithms. By following the object-oriented programming paradigm
we create an abstract decomposition of the methods’ functional components
combined in a framework for parallel-in-time algorithms. Different methods
implemented in a single framework using a unified base functionality enables
detailed qualitative and quantitative analysis without paying too much attention
to underlying implementation details.
As a proof of concept and intermediate step, we show results for a two-dimensional
parabolic test equation solved with a MLSDC solver coupled with a multigrid
algorithm in space.

Due to its flexibility, extensibility and rather comfortable learning curve Python
has an ever growing world-wide community within science, academia and industry.
For PyPinT, it provides the building block for a flexible and unified framework,
allowing fast prototyping of iterative parallel-in-time algorithms. Well-maintained
and open-source third party modules such as NumPy and SciPy offer high-level
interfaces to performant low-level functionalities for matrix and vector arithmetics,
common mathematical methods and plotting capabilities. In addition, current
efforts leave the door open for enabling PyPinT to be applied on HPC clusters.



37ABSTRACTS

III. GOALS

Accompanying the development of parallel-in-time algorithms, new ideas can
be implemented in PyPinT immediately. Utilizing the framework’s analysis tools
such as calculation and plotting of stability regions, runtime and characteristic
values (e.g. residuals), new algorithms can easily be studied in detail. Clearly
defined interfaces, a strictly modular concept and different levels of abstraction
enable the user to exchange certain parts of the algorithms and add his or her
own methods to enrich the whole framework.

Students, undergraduate and graduate, with a basic knowledge of iterative
solvers and some programming skills will be able to use and extend PyPinT and
discover, learn and understand the mechanics of parallel-in-time methods. PyPinT
is open-source licensed and available on GitHub [4], thus fostering collaboration
and ease contribution of amplifications by interested people.
Ultimately, PyPinT should not only represent a package for applying and study-
ing parallel-in-time methods but also provide a development environment for
enhancing existing and inventing new methods. Finally, PyPinT can also provide
valuable insight and guidance for future, performance-oriented implementations
in other programming languages.
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A micro-macro parareal algorithm: application
to singularly perturbed ordinary differential

equations

Giovanni Samaey Department of Computer Science, KU Leuven, Belgium
Frédéric Legoll Laboratoire Navier, École Nationale des Ponts et

Chaussées, Université Paris-Est and INRIA Rocquencourt, MICMAC
team-project, France

Tony Lelièvre CERMICS, École Nationale des Ponts et Chaussées,
Université Paris-Est, and INRIA Rocquencourt, MICMAC team-project,

France

We introduce a micro-macro parareal algorithm for the time-parallel integration
of multiscale-in-time systems. The algorithm first computes a cheap, but inaccurate,
solution using a coarse propagator (simulating an approximate slow macroscopic
model), which is iteratively corrected using a fine-scale propagator (accurately
simulating the full microscopic dynamics). This correction is done in parallel
over many subintervals, thereby reducing the wall-clock time needed to obtain the
solution, compared to the integration of the full microscopic model. We provide a
numerical analysis of the algorithm for a prototypical example of a micro-macro
model, namely singularly perturbed ordinary differential equations. We show
that the computed solution converges to the full microscopic solution (when the
parareal iterations proceed) only if special care is taken during the coupling of the
microscopic and macroscopic levels of description. The convergence rate depends
on the modeling error of the approximate macroscopic model. We illustrate these
results with numerical experiments. These results have been published in [1].
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Multigrid Reduction in Time

J. B. Schroder Center for Applied Scientific Computing, Lawrence
Livermore National Laboratory† (LLNL)
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S. P. MacLachlan Department of Mathematics, Tufts University

U. M. Yang Center for Applied Scientific Computing, LLNL†

N. A. Petersson Center for Applied Scientific Computing, LLNL†

I. OVERVIEW

The need for parallel-in-time approaches is being driven by current trends in
computer architectures where performance improvements are coming from greater
parallelism, not faster clock speeds. This leads to a bottleneck for sequential
time integration methods because they lack parallelism in the time dimension. To
address this issue, we examine an optimal-scaling multigrid method applied to the
time dimension by solving the (non)linear systems that arise when considering
the solution to multiple time steps simultaneously. Targeting an early impact on
existing simulation codes (which can be extremely complex), we consider an
approach based on multigrid reduction methods (MGR) that is designed to be as
non-intrusive as possible, while maintaining a high degree of versatility. From one
perspective, this approach is a generalization of the popular parareal algorithm
[1] from a two-level setting to a multilevel setting with additional options relating
to choices of relaxation and interpolation. A critical facet of the approach is the
extra parallelism available through the addition of coarse grids.

In this talk, we will focus on practical aspects of our multigrid-reduction-in-
time algorithm (MGRIT) [2]. The non-intrusiveness allows users to wrap existing
time stepping codes into our code and the versatility allows the user to drive
adaptive refinement and coarsening in both time and space. Applicability to non-
linear problems is achieved through a full approximation scheme (FAS) multigrid
approach.

II. APPLICATION

To highlight the non-intrusiveness of MGRIT, we will present some practical
experience and results, with the focus being on wrapping a serial nonlinear 2D
Euler flow simulation code [3] inside of our MGRIT code. The target problem
exhibits an unsteady vortex shedding as a fluid flows around a cylinder in the

†This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-
ABS-653803)
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center of the domain. While our work is in a preliminary state, MGRIT converges
and in some settings can exhibit a speedup over sequential time stepping. MGRIT
convergence is depicted in Figure 1, where the magnitude of the velocity is
plotted for the region surrounding the cylinder. The four plots depict the final
time value t = 2.56s (the 1280th time step) over various MGRIT iterations, in
order to show how the method quickly captures the nature of the flow at the end
of the simulation domain.

Fig. 1: Zoomed plot of velocity magnitude at final time value as MGRIT converges,
t = 2.56s, 1280th time step, Unsteady vortex shedding problem around
cylinder.

However, significant challenges remain for this problem. In particular, the
MGRIT iteration count can grow as the time domain is increased (i.e., ∆t is
fixed and the number of time steps increases). One approach under consideration
is to leverage the periodic nature of the vortex shedding to provide improved
residual corrections at later time steps.
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Potential for Parallel-in-time Computations in
Climate Research

Thomas Slawig Research Group Algorithmic Optimal Control,
Christian-Albrechts-Universität Kiel, 24098 Kiel, Germany

I. MOTIVATION

Since some decades, the discussion about the observable climate change and
its reasons is a main topic in scientific and political discussions in our society.
Since it is not possible to conduct experiments with the Earth’s climate all
investigations and prognoses have to rely on models and their evaluation, i.e.,
numerical simulations.

II. THE CLIMATE SYSTEM

In order to conduct numerical simulations to predict climate change scenarios,
the rather complex climate system has to be understood and its numerous internal
interactions has to be analyzed and modeled. The climate climate system usually
is separated into the following five components (see e.g. [1]):

• The hydrosphere (ocean and all water on land),
• the atmosphere,
• the cryosphere, separated in land and sea ice,
• the land surface,
• and the biosphere, basically incorporating marine biota and land vegetation.

The so-called anthroposhere can be added to take account for human influence
and/or interactions, for example when considering economical questions or climate
(change) impact. These parts of the climate system have to be represented in a
more or less detailed way in climate models, where the complexity level of the
models can vary in

• spatial and temporal resolution,
• the number of represented processes and
• the complexity of the coupling between them and the different components.

III. CLIMATE MODELS

Climate models usable to perform climate predictions or so called ”hind-casts”
of climate variations or change in the past are nowadays called Earth System
Models (ESMs). They consist of coupled systems of partial differential(-algebraic)
equations. From the history of the climate model development, a typical ESM
has the components

• ocean component or model with coupled marine biogeochemical (or marine
ecosystem) and sea-ice models
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• atmosphere model with coupled vegetation and land ice models.

Both components are coupled

• physically by the ocean surface where many exchange processes take place
• in the software by a special coupling software.

Since climate time scales for the Earth system are ranging to 100’000 years (e.g.
for the simulation of the past glacial cycle) and more, the simulation of long time
intervals is often performed using so-called Earth System Models of Intermediate
Complexity (EMICs, see [2]), where many processes are parametrized, often
using statistical assumptions and quantities. As a result, the computational time
is significantly reduced, but spatial and temporal resolution is coarsened.

IV. CLIMATE SIMULATIONS

Model runs with ESMs are performed on massive-parallel hardware, whereas
EMIC runs often can be done on smaller machines in reasonable time. The
parallelization in ESMs is only performed w.r.t. space, i.e., by some domain
decomposition ansatz. It is a rather new approach to use a paralyzation also in
time. It is motivated by

• the aim to perform very long runs (100’000 years and more model time)
with a finer resolution than EMICs provide,

• and the limit in the expected gain of performance of today’s CPU kernels.

Another way to gain performance is usage of hardware accelerators as GPGPUs.

V. PARALLEL-IN-TIME STRATEGY USING REDUCED MODELS OF

INTERMEDIATE COMPLEXITY

Since there are some EMICs that have been proven to perform quite well in
the simulation of long time periods (for example the Climber model [3]), one
promising approach for a parallel-in-time scheme is to use of of these EMICs
as ”coarse” models and finer resolving ESMs parallel on shorter time slices,
following the so-called ”para-real” method presented by Lions et al., see [4].
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Identity Parareal Method and its Performance

Toshiya Takami Research Institute for Information Technology, Kyushu
University, Japan

I. IDENTITY PARAREAL METHOD

The standard implementation of a parareal-in-time algorithm [1] is usually
based on the use of a coarse integrator Gk as an approximation of an original
fine integrator Fk, i.e., the original sequence {x0, x1, ..., xk, ...} is defined by
xk+1 = Fk(xk). By these integrators, we can introduce a parareal iteration,

x
(r+1)
k+1 = G(x(r+1)

k ) + F(x
(r)
k )− G(x(r)

k ). (1)

This procedure is often explained as a predictor-corrector scheme, and an approx-
imate sequence {x(r)

k } is expected to converge to the exact one for a sufficiently
large r. However, it is known that there are several drawbacks in this algorithm: a
tailor-made approximate solver is necessary, and its property affects convergence
and speed-up ratio, i.e., total performance of the time-parallel method.

We showed that a simplified implementation called ‘Identity Parareal’ is
available for time-evolution problems [2], [3], where the iteration is given by

x
(r+1)
k+1 = x

(r+1)
k + F(x

(r)
k )− x

(r)
k . (2)

An identity transformation, i.e., nothing is changed, is used as a coarse integrator.
Formal validation of this formula is given as follows. Suppose x(t) is a vector
of dynamical variables and is differentiable by t. Then, we can write

x(t+ δt) = x(t) +
∂x

∂t
δt+ · · · , (3)

which means that the integrator F(x(t)) is approximated by an identity transfor-
mation. It is also seen that the leading error by this approximation is linear to δt
when we use sufficiently small δt.

II. PROPERTIES OF THE IDENTITY PARAREAL AND SPEED-UP

Since the formal validity does not mean general applicability of this method
to actual problems, we must analyze convergence properties numerically. We
have shown that our implementation shows good convergence properties for
those problems described by ordinary differential equations [2], [3]. We will
present numerical convergence properties for molecular dynamics simulations
and quantum time-evolutions.

Our simple implementation also shows effective performance if we parallelize
the program with bucket-brigade communications [4]. Then, we have no limitations
of speed-up ratio coming from a rate of computational times, Tf/Tg . In usual
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implementations, a speed-up ratio by the parareal-in-time method is described by
the formula,

Spara(P,R) =
(P +R− 1)Tf

(P − 1)(Tg + Tc) +R(Tg + Tf + 2Tc)
, (4)

where P is the number of parallel resources and R is the number of iterations.
Tf , Tg , and Tc are costs for a fine computation, a coarse computation, and com-
munications, respectively. On the other hand, the speed-up of our implementation,

Sipara(P,R) =
(P +R− 1)Tf

(P − 1)Tc +R(Tf + 2Tc)
, (5)

can be higher than Spara(P,R), when we use the same parameters P and R.

In addition to this, communication performance can be optimized by segmenting
transferred data into small pieces and overlapping with computations. Thus, the
new implementation with an identity approximation is efficiently used in time-
parallel computations on massively parallel computers [4].

III. DISCUSSION

The ‘identity parareal’ is aimed at high-performance in large parallel computers.
The strategy we used was different from the standard one while convergence
properties are considered the most important. Another important property is
stability in systems described by partial differential equations. We will discuss
these properties including stability analysis of the ‘identity parareal’.
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Comparing the Parareal and the Adaptive Parallel Time Integration 
(APTI) methods for a Satellite Problem 

Nabil Nassif   Mathematics Department, American University of Beirut, Lebanon 
 

In this work, we tackle the orbit's computations of a satellite using 2 parallel approaches on a                                 
system of Ordinary Differential Equations modeling the J_2 perturbed Keplerian motion. The                       
main points of the presentation consist of: 

1. Implementing Lions Parareal Algorithm to the satellite problem. 
2. Presenting the main features of the APTI method and its implementation for satellite                         

computations. 
3. Evaluating and comparing speed­ups through tests conducted on specific orbits cases 

 
 
 

Space­Time Finite Elements and Non­Uniform Temporal Refinement 
Marek Behr   RWTH Aachen, CATS, Germany 

 
Space­time approaches offer some not­yet­fully­exploited advantages when compared to                 
standard discretizations (finite­difference in time and finite­element in space, using either                     
method of Rothe or method of lines); among them, the potential to allow some degree of                               
unstructured space­time meshing. A method for generating simplex space­time meshes is                     
presented, allowing arbitrary temporal refinement in selected portions of space­time slabs. The                       
method increases the flexibility of space­time discretizations. The resulting tetrahedral (for 2D                       
problems) and pentatope (for 3D problems) meshes are tested in the context of                         
advection­diffusion equation, and are shown to provide reasonable solutions, while enabling                     
varying time refinement in portions of the domain. 
 
 
 

Combining Finite Differences and Discontinuous Galerkin method for 
simulation of seismic waves propagation 

Vadim Lisitsa   Institute of Petroleum Geology and Geophysics SB RAS, Russia 
 

Presence of the complex near­surface parts in geological modes, especially irregular                     
high­contrast interfaces, such as free­surface and sea­bed, makes it troublesome to simulate                       
seismic wave propagation with the use of finite differences where a stair­step approximation of                           
the interfaces is typically applied. To overcome this effect an irregular tetrahedral (triangular)                         
mesh is suggested to be used with further discontinuous Galerkin (DG) approximation of the                           
elastic wave equation. However, discontinuous Galerkin method is highly computationally                   
intense and memory consuming compared to finite differences on a staggered grid. What is                           
suggested in this paper is the coupling of the two methods, so that DG is used in the                                   
near­surface part of the model, thus ensuring high accuracy of the high­contracts interfaces                         
treatment. Whereas, the standard staggered grid finite difference scheme is used elsewhere,                       
making the overall algorithm efficient. 
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Comparing the Parareal and the Adaptive Parallel Time Integration 
(APTI) methods for a Satellite Problem 

Nabil Nassif   Mathematics Department, American University of Beirut, Lebanon 
 

In this work, we tackle the orbit's computations of a satellite using 2 parallel approaches on a                                 
system of Ordinary Differential Equations modeling the J_2 perturbed Keplerian motion. The                       
main points of the presentation consist of: 

1. Implementing Lions Parareal Algorithm to the satellite problem. 
2. Presenting the main features of the APTI method and its implementation for satellite                         

computations. 
3. Evaluating and comparing speed­ups through tests conducted on specific orbits cases 

 
 
 

Space­Time Finite Elements and Non­Uniform Temporal Refinement 
Marek Behr   RWTH Aachen, CATS, Germany 

 
Space­time approaches offer some not­yet­fully­exploited advantages when compared to                 
standard discretizations (finite­difference in time and finite­element in space, using either                     
method of Rothe or method of lines); among them, the potential to allow some degree of                               
unstructured space­time meshing. A method for generating simplex space­time meshes is                     
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Schwarz Methods for the Time­Parallel Solution of Parabolic Control 
Problems 

Felix Kwok   University of Geneva, Section de mathematiques, Switzerland 
 

Discretized parabolic control problems lead to very large systems of equations, because                       
trajectories must be approximated forward and backward in time. It is therefore of interest to                             
devise parallel solvers for such systems, and a natural idea is to apply Schwarz preconditioners                             
to the large space­time discretized problem. The performance of Schwarz preconditioners for                       
elliptic problems is well understood, but how do such preconditioners perform on discretized                         
parabolic control problems ? We present a convergence analysis for a class of Schwarz                           
methods applied to a model parabolic optimal control problem. We show that just applying a                             
classical Schwarz method in time already implies better transmission conditions than the ones                         
usually used in the elliptic case, and we propose an even better variant based on optimized                               
Schwarz theory.  
 
 
 

Parallel in Time simulation of the Navier­Stokes equations using the 
Finite Finite Element Method 

Konstantinos Ioakimidis   Institute of Fluid Mechanics and Hydraulic Machinery, University of 
Stuttgart, Germany 

 
The numerical solution of the Navier Stokes Equations (NSE) is an important workload in the                             
present high performance computing systems. It is well known that parallelization by domain                         
decomposition is by now a standard technique in engineering applications. While this approach                         
is able to issue very good parallel scale to a large numbers of cores, it nevertheless saturates at                                   
some critical number of processors beyond which the subdomains become too small. Besides                         
that, engineering applications encounter complex fluid flow phenomena like turbulence. For                     
such flows very small time steps and very long simulation times are needed in order to resolve                                 
them accurately and to get accurate statistical turbulence quantities. It seems that the Parareal                           
algorithm for parallel­in­time integration is a promising approach to overcome the problems                       
mentioned above. In this work it is attempted to combine the Parareal algorithm with the Finite                               
Element Characteristic Based Split method, which has been first introduced by Zienkiewicz, for                         
solving practical applications in the field of hydropower engineering. 



Schwarz Methods for the Time­Parallel Solution of Parabolic Control 
Problems 

Felix Kwok   University of Geneva, Section de mathematiques, Switzerland 
 

Discretized parabolic control problems lead to very large systems of equations, because                       
trajectories must be approximated forward and backward in time. It is therefore of interest to                             
devise parallel solvers for such systems, and a natural idea is to apply Schwarz preconditioners                             
to the large space­time discretized problem. The performance of Schwarz preconditioners for                       
elliptic problems is well understood, but how do such preconditioners perform on discretized                         
parabolic control problems ? We present a convergence analysis for a class of Schwarz                           
methods applied to a model parabolic optimal control problem. We show that just applying a                             
classical Schwarz method in time already implies better transmission conditions than the ones                         
usually used in the elliptic case, and we propose an even better variant based on optimized                               
Schwarz theory.  
 
 
 

Parallel in Time simulation of the Navier­Stokes equations using the 
Finite Finite Element Method 

Konstantinos Ioakimidis   Institute of Fluid Mechanics and Hydraulic Machinery, University of 
Stuttgart, Germany 

 
The numerical solution of the Navier Stokes Equations (NSE) is an important workload in the                             
present high performance computing systems. It is well known that parallelization by domain                         
decomposition is by now a standard technique in engineering applications. While this approach                         
is able to issue very good parallel scale to a large numbers of cores, it nevertheless saturates at                                   
some critical number of processors beyond which the subdomains become too small. Besides                         
that, engineering applications encounter complex fluid flow phenomena like turbulence. For                     
such flows very small time steps and very long simulation times are needed in order to resolve                                 
them accurately and to get accurate statistical turbulence quantities. It seems that the Parareal                           
algorithm for parallel­in­time integration is a promising approach to overcome the problems                       
mentioned above. In this work it is attempted to combine the Parareal algorithm with the Finite                               
Element Characteristic Based Split method, which has been first introduced by Zienkiewicz, for                         
solving practical applications in the field of hydropower engineering. 



48

www.fz-juelich.de/ias/jsc/pintws2014


