ahy

Qge == %@
FKTHE

Funded by
VETENSKAP the European Union
29 OCH KONST 2%

Boatt

Harnessing Integrated CPU-GPU System Memory
for HPC: a first look into Grace Hopper [1]

Gabin Schieffer, lvy Peng

KTH Royal Institute of Technology, Sweden
B: {gabins, ivybopeng}@kth.se

[1] Schieffer, G., Wahlgren, J., Ren, J., Faj, J. and Peng, |., 2024, August.
Harnessing Integrated CPU-GPU System Memory for HPC: a first look into Grace Hopper.
In Proceedings of the 53rd International Conference on Parallel Processing.

Julich Supercomputing Centre (JSC), 09 October 2024 — remote presentation

Memory in GPU Applications

Need for large memory capacity in GPU applications:
* Al: large language models (LLMs)
« HPC: quantum computer simulators, particle simulations

Quantum State Vector simulation, 34 qubits 275 GB Nvidia A100 80 GB

GPT3 inference 350 GB Nvidia H100 94 GB

Meta’s LLM (Llama-2-70B) inference 140 GB Grace Hopper 96 GB

Plasma physics (Earth magnetosphere) 250 GB Table: memory capacity for Nvidia GPUs
Table: memory footprint for some GPU workloads GPU memory capacity: ~100 GB

One solution: use CPU memory (>256 GB) - need for large bandwidth
Explicit CPU&GPU data movements;
or Unified Virtual Memory (UVM): single virtual address space

Grace Hopper Superchip (GH200)

Grace CPU NVLink-C2C Hopper GPU
72 Arm Neoverse V2 cores CPU-GPU interconnect (“chip-to-chip”) 144 Streaming Multiprocessors (SM)
480 GB of DDR5 memory (500 GB/s) Cache-coherent, atomics support 96 GB of HBM3 (4 TB/s)
(128 GB in JEDI) 450+450 GB/s

U HBM3

Grace CPU Hopper GPU
HBM3

Figure: Grace Hopper Superchip

Context: 1 JEDI node =4x GH200

— NVLink: 150+150 GB/s

y

Grace CPU

——

B

Grace CPU

— |

HBM3

Hopper GPU
HBM3

HBM3

Hopper GPU
HBM3

+ InfiniBand, + network

HBM3

Hopper GPU
HBM3

HBM3

Hopper GPU
HBM3

Grace CPU

Grace CPU

L

Context: 1 JEDI node =4x GH200

— NVLink: 150+150 GB/s

This presentation’s focus

+ InfiniBand, + network

Unified Memory on Grace Hopper

Access to both physical memory regions by any processor: CPU/GPU

/\\ Still two separate physical memory spaces

NVLink-C2C

Thanks to two hardware features: Grace [asosasoceis Hopper
1. System Memory Management Unit (SMMU) GPU
> manages a system-level page table 500 GB/s 4000 GB/s
> handles translation requests - -
128 GB - DDR5 96 GB - HBM3
2. NVLink-C2C interconnect i i

— o o o o o o e o o ol

> high-bandwidth direct memory access
> cache-coherent

Unified Memory on Grace Hopper

Cache Access mode and
Memory location
coherent granularity
\

malloc CPU/GPU Direct, cacheline
> Unified Memory,
cudaMallocManaged CPU/GPU yes Migration, 2 MB can be migrated
/
cudaMalloc GPU no Explicit copy, 1 byte

cudaMallocHost

numa_alloc_onnode CPU no Explicit copy, 1 byte

Unified Memory:
- Data located on CPU or GPU, code is location-agnostic
- The runtime ensure data can be accessed as needed

Unified Memory on Grace Hopper

New On Grace Hopper*

Managed memory System memory

malloc

Allocation cudaMallocManaged
numa_alloc_onnode

CPU page table :
Page table GPU page table System-wide
Page size System (4/64 KB) or 2 MB System (4/64 KB)
Access Granularity Page Cache line
Automatic migrations When accessed + prefetch Based on access counters
Supported systems CUDAG6.0 Grace Hopper

or *[x86 + Linux 6.1 + CUDA 12.2]

System memory:
- Access at cache line granularity over NVLink-C2C
- Automatic migrations meant to improve locality

Host-to-device bandwidth

% of theoretical

B Measured = = Theoretical
450 |emmmmr et = =
&L
&5 300 85% 85% — 84%
=
jg 150 11%
© 3%
= 0 B
o Pinned Pageable Managed System Managed System
gpu_read(arr_h) cpu_write(arr_d)
cudaMemcpy Unified Memory
Figure: host-to-device bandwidth, baseline cudaMemcpy and unified memory kernels

cudaMemcpy:

- Pageable: malloc

- Pinned: malloc + cudaHostRegister

Unified Memory: host-to-device bandwidth, with direct access kernels:
- GPU reads from CPU memory

- CPU write to GPU memory

10

Host-to-device bandwidth

% of theoretical

B Measured - = Theoretical
B B i R
&L
@ 300 85% 85% 84%
=
jg 150 11%
© 3%
= 0
o Pinned Pageable Managed System Managed System
gpu_read(arr_h) cpu_write(arr_d)
cudaMemcpy Unified Memory

Figure: host-to-device bandwidth, baseline cudaMemcpy and unified memory kernels

@ Pinned provides same performance as pageable

Pinning with cudaHostRegister:

- before GH: allocate physical pages + page-lock + map in GPU space
- on GH: allocate physical pages + map in GPU space

On GH, not necessary to pin memory.

11

Host-to-device bandwidth

% of theoretical

B Measured - = Theoretical
B B i R
&L
@ 300 85% 85% — 84%
=
f% 150 o I 11%
= 0 I
o Pinned Pageable Managed System Managed System
gpu_read(arr_h) cpu_write(arr_d)
cudaMemcpy Unified Memory

Figure: host-to-device bandwidth, baseline cudaMemcpy and unified memory kernels

@ System memory achieves high bandwidth for read/writes over NVLink-C2C

System memory provides low-granularity access to unified, migratable memory.
The achievable bandwidth is on the level of cudaMemcpy.

12

Device-to-host bandwidth

% of theoretical

B Measured - = Theoretical
450
L
S 300
=
o 150
£
= 0
o Pinned Pageable Managed System Managed System
cpu_read(arr_d) gpu_write(arr_h)
cudaMemcpy Unified Memory

Figure: device-to-host bandwidth, baseline cudaMemcpy
and unified memory kernels

Direct memory access can exceed cudaMemcpy performance

13

Profiling Tools

ldentifying the location of physical pages (CPU/GPU)?
For system memory: regular Linux interfaces, NUMA statistics

Memory usage.:
¢ CPU: ReSIdentSGt Slze (RSS) |n /proc/<pid>/smaps_rollup]- regu[ar Linuxinterface
* GPU: Used memory from nvidia-smi

Memory traffic, in Nvidia Nsight Compute:
* Traffic to local GPU memory
* Traffic over NVLink-C2C also available with perf

GPU kernel Runtime:
* (system memory) data migrations should reduce kernel runtime

14

Porting to Unified Memory

Simple example:

arr_d = cudaMalloc()

arr_h = malloc()

init(arr_h)

cudaMemcpy(arr_d, arr_h, N, H2D)
kernel<<< .. >>>(arr_d)
cudaDeviceSynchronize()
cudaMemcpy(arr_h, arr_d, N, D2D)
post process(arr_h);

More complex patterns:

[...]

for(int t = 0; t < T; t++)
cudaMemcpy(arr_d, arr_h, H2D)
kernel<<< .. >>>(arr_d)
cpu_kernel(arr_h)

Direct porting

arr = arr_h

arr_d = malloc()

Concurrent use of arr_d and arr_h!

arr = malloc()
init(arr)

kernel<<< .. >>>(arr)
cudaDeviceSynchronize()

post_process(arr)

Not directly portable

15

Porting to Unified Memory

5 Rodinia benchmarks

1 Qiskit Quantum Computer Simulator

Two flavors for each application:
* CUDA managed memory
* System-allocated memory

allocation

initialization

processing

Original code

@ to
cudaMalloc ()

@ tl
cpu_init_data()

@ t2
cudaMemcpy (H2D)

gpu_kernel<<<>>>()
cudaMemcpy (D2H)
cudaDeviceSynchronize() ;
@ t3

Unified Memory

@ to
malloc()/cudaMallocManaged()
@ tl

cpu_init_data()
@ t2

gpu_kernel<<<>>>()

cudaDeviceSynchronize();
@ t3

(3: CPU-timer

Rodinia <

S—

—

. . Peak

Qiskit Mixed 275 GB
Needle Irregular 4.3 GB
Pathfinder Regular 8.0GB
BFS Mixed 1.1 GB
Hotspot Regular 3.0GB
SRAD Irregular 8.9 GB

Table: applications used for evaluation,
with their memory access patterns

16

Overall Performance Comparison

Rodinia benchmarks

2.5

2.0

1.5

Speedup over explicit
o

Speedup over explicit
© = = N
(@) o (&)} o

o
o

needle

pathfinder

Eexplicit Bmanaged Osystem

hotspot

Quantum Volume Simulation (Qiskit)

Eexplicit Bmanaged Osystem

17 qubits

18 qubits

19 qubits

20 qubits

21 qubits 22 qubits 23 qubits

17

First-touch Page Placement — System memory

* Pages are placed on first-touch: GPU/CPU memory
* First-touch triggers page fault
* CPU-side initialization of page table entries

Page 0 NeHVRC)EEEEE ol <— CPU-located page

Page 1 [EHUBOERI “Elodds S e—— GPU-located page

Page 2 // <—— never-touched = not physically allocated yet

Figure: System page table (simplified)

18

First-touch Page Placement — System memory

Grace CPU NVLink-C2C Hopper GPU
4)
'(3) Page table walk | SMMU TBU |« SM
\& No physical page! | (2) Translation request
(A4) (1) GPU thread generates
ﬁ4)Pagefauu J access to avirtual address
£ I GMMU
(5) Page entry is populated ?
with GPU-located page))
‘ (2bis) Not in GPU page table]

) _

DDR HBM

19

First-touch Page Placement

esCPU memory (managed)
-6-GPU memory usage (managed)
—CPU memory (system)
--GPU memory usage (system) s

30

GPU Memory Usage (GB)
(&)}
o

0 10 20 30 40 50 60 70 80 90
Time (s)

Figure: Qiskit memory usage over time
(system and managed memory, 4 KB pages)

> |n system memory, page table entries are initialized by the CPU
> This can cause significant slowdown

System Memory — Memory Access

Transparent access from both GPU and CPU to each other’s memory

How?

System page table: both CPU- and GPU-located pages
Mechanism 1: adress translation

Mechanism 2: direct remote memory access

(Mechanism 3: Automatic migrations of frequently accessed regions))

21

Mechanism 1

Mechanism 2

System Memory - Translation and Direct Access

Grace CPU NVLink-C2C Hopper GPU
r -~
(2) Translation request (1) GPUtthread generates
physical P d access to avirtual address
TBU SM
—_— ! |(3) Physical address returned
System page table ! Oxffff1234 is [Nag LI

:
|
! L2 cache
|
: (4) Direct memory access i I
:

\{ __/

DDR Oxf00vabcd

> Fully hardware: CPU cores are not involved

HBM

22

Mechanism 3

Migrations in Unified Memory

New On Grace Hopper*

System Managed
Behavior Behavior
1 zero-copy low stall + migrate page% very high
2 zero-copy low local access

local access

3 very high (if access to

N trigger migration migrating page) local access 0
N+i local access 0 local access 0
+ automatic prefetch
J J
| |
Complex, hardly predictable Simple, predictable

Cost of access spread Cost of access paid once

23

System Memory — Access-counter Based Migration
Grace CPU NVLink-C2C Hopper GPU

(2) Interrupt

SM
handles the interrupt

{ (3) Nvidia-UVM driver

N

(1) Number of accesses to tracked
region exceeds a set threshold
N > N_THRESHOLD

| virtual [physical

<——-l

s
A\

HBM

DDR

[(4) Driver migrates the tracked region]

> By default, N_THRESHOLD = 256, for each 2MB regions (sysadmin configuration)
> Goal: improve performance 24

Managed Memory — On-demand Migration

|

Grace CPU NVLink-C2C Hopper GPU
é (3) Page fault { (1) GPU thread generates
(4) Driver/OS handles GMMU | acoess o v;:\::al address
the page fault
(2) Not in GPU page table A\ ’ I
== ‘ (6) Access from GPU memory ’
I
v
- 7 7 |/
DDR vt 7 HBM

‘ (5) Driver migrates the access pages ’

> By default, performed at access
> Goal: ensure locality

25

Observing Automatic Migrations

(1) (2 (3)

| g

512
g 256 =+-system -m=-managed
g 64
= 32
o
S 16 e—eo—o—=
° 4
-
o 2
X1
0 1 2 3 4 5 6 7 8 9 10 11

iteration

Access-counter based migrations:
> Temporary latency increases

12

13

Application: srad (iterative process)

cpu_init(data)
for(int 1 = 0; i < n; i++)
kernel<<<..>>>(data)

Three phases:
(1) Initialization:
high runtime, mostly remote reads

(2) Transition:
varying runtime, distributed remote/local reads

(3) Stable phase:
all data has been migrated, local GPU reads

> Runtime affected, in a non-predictable way (migrations are complex) 26

Oversubscription

Natural
oversubscription

application working set: x GB
A

_-

Qiskit (= 34 qubits)

Simulated
oversubscription

cudaMalloc allocation -

GPU Memory

application Working set: x GB

CPU Memory
on- GPU. vy GB

. . . X
Oversubscription ratio: S

Rodinia,
Qiskit (< 34 qubits)

27

Oversubscription

35 350

B computation @ computation

w
o

minitialization

Einitialization

25 250
o)
o 20 o 200
£ =
5 15 5 150
10 100
5 50
0 0
4K pages 64K pages 4K pages 64K pages
Qiskit, 30 qubits Qiskit, 34 qubits
(200% oversubscription, simulated) (125% oversubscription)
cucatalo: | I s |
GPU CPU GPU CPU

28

Some Key Takeaways

* Page migration: managed vs. system
Managed migrated when accessed first accessed - one-time cost
System: migrated when accessed enough times - spread cost

* cudaHostRegister is still usefull:
No pinning, but populates page table
Avoid page faults when accessing system-allocated memory.

* Does it replace cudaMalloc? No

cudaMalloc: no cache coherency, no adress translation - higher performance
on-GPU initialization of system memory is very expensive

30

Future — Scaling to JEDI node (4xGH200)?

More heterogeneous hardware...

* 4x CPU memory, 4x GPU memory
e Two tiers of NVLink interconnect: NVLIink-C2C + NVLink-P2P

... but similar software!
e 8x NUMA nodes

Limited oversubscription: CPU memory = GPU memory

31

Conclusions

* Grace Hopper Superchip: hardware support for Unified Memory

* System memory can improve performance, induced by
1. low access granularity (cache line)
2. automatic access-counter based migrations

* Simpler programming interfaces, native profiling tools

* Use case of system memory:
X when access pattern is well-known and already finely-tuned
When access pattern is unknown/unpredictable/involves both CPU+GPU

32

Thanks!

ahe

N kY
FKTH®

VETENSKAP
28 OCH KONST 2%

Dot

* 4 Kk

Funded by
the European Union

33

