

Harnessing Integrated CPU-GPU System Memory for HPC: a first look into Grace Hopper [1]

Gabin Schieffer, Ivy Peng

KTH Royal Institute of Technology, Sweden

☑:{gabins,ivybopeng}@kth.se

[1] Schieffer, G., Wahlgren, J., Ren, J., Faj, J. and Peng, I., 2024, August. Harnessing Integrated CPU-GPU System Memory for HPC: a first look into Grace Hopper. In *Proceedings of the 53rd International Conference on Parallel Processing*.

Memory in GPU Applications

Need for large memory capacity in GPU applications:

- AI: large language models (LLMs)
- HPC: quantum computer simulators, particle simulations

Application	Memory
Quantum State Vector simulation, 34 qubits	275 GB
GPT3 inference	350 GB
Meta's LLM (Llama-2-70B) inference	140 GB
Plasma physics (Earth magnetosphere)	250 GB

Table: memory footprint for some GPU workloads

GPU	GPU Memory
Nvidia A100	80 GB
Nvidia H100	94 GB
Grace Hopper	96 GB

Table: memory capacity for Nvidia GPUs

GPU memory capacity: ~100 GB

One solution: use CPU memory (>256 GB) - need for large bandwidth Explicit CPU↔GPU data movements;

or Unified Virtual Memory (UVM): single virtual address space

Grace Hopper Superchip (GH200)

Figure: Grace Hopper Superchip

Context: 1 JEDI node = 4× GH200

Context: 1 JEDI node = 4× GH200

Unified Memory on Grace Hopper

Access to both physical memory regions by any processor: CPU/GPU

Still two separate physical memory spaces

Thanks to two **hardware** features:

- 1. System Memory Management Unit (SMMU)
 - > manages a system-level page table
 - > handles translation requests
- 2. NVLink-C2C interconnect
 - > high-bandwidth direct memory access
 - > cache-coherent

Unified Memory on Grace Hopper

Interface	Memory location	Cache coherent	Access mode and granularity	
malloc	CPU/GPU	yes	Direct, cacheline	Linifical Managama
cudaMallocManaged	CPU/GPU	yes	Migration, 2 MB	Can be migrated
cudaMalloc	GPU	no	Explicit copy, 1 byte	
cudaMallocHost numa_alloc_onnode	CPU	no	Explicit copy, 1 byte	

Unified Memory:

- Data located on CPU or GPU, code is location-agnostic
- The runtime ensure data can be accessed as needed

Unified Memory on Grace Hopper

New On Grace Hopper*

	Managed memory	System memory
Allocation	cudaMallocManaged	malloc numa_alloc_onnode
Page table	CPU page table GPU page table	System-wide
Page size	System (4/64 KB) or 2 MB	System (4/64 KB)
Access Granularity	Page	Cache line
Automatic migrations	When accessed + prefetch	Based on access counters
Supported systems	CUDA 6.0	Grace Hopper or *[x86 + Linux 6.1 + CUDA 12.2]

System memory:

- Access at cache line granularity over NVLink-C2C
- Automatic migrations meant to improve locality

Host-to-device bandwidth

Figure: host-to-device bandwidth, baseline cudaMemcpy and unified memory kernels

cudaMemcpy:

- Pageable: malloc
- Pinned: malloc + cudaHostRegister

Unified Memory: host-to-device bandwidth, with direct access kernels:

- GPU reads from CPU memory
- CPU write to GPU memory

Host-to-device bandwidth

Figure: host-to-device bandwidth, baseline cudaMemcpy and unified memory kernels

① Pinned provides same performance as pageable Pinning with cudaHostRegister: - before GH: allocate physical pages + page-lock + map in GPU space - on GH: allocate physical pages + map in GPU space On GH, not necessary to pin memory.

Host-to-device bandwidth

Figure: host-to-device bandwidth, baseline cudaMemcpy and unified memory kernels

2 System memory achieves high bandwidth for read/writes over NVLink-C2C

System memory provides low-granularity access to unified, migratable memory.

The achievable bandwidth is on the level of cudaMemcpy.

Device-to-host bandwidth

Figure: device-to-host bandwidth, baseline cudaMemcpy and unified memory kernels

Direct memory access can exceed cudaMemopy performance

Profiling Tools

Identifying the location of physical pages (CPU/GPU)?

For system memory: regular Linux interfaces, NUMA statistics

Memory usage:

- CPU: Resident set size (RSS) in /proc/<pid>/smaps_rollup | regular Linux interface
- GPU: Used memory from nvidia-smi

Memory traffic, in Nvidia Nsight Compute:

- Traffic to local GPU memory
- Traffic over NVLink-C2C also available with perf

GPU kernel Runtime:

(system memory) data migrations should reduce kernel runtime

Porting to Unified Memory

Simple example:

```
arr d = cudaMalloc()
                                                                  arr d = cudaMalloc()
|arr h = malloc()
                                                                  arr = malloc()
                                           Direct porting
init(arr h)
                                                                  init(arr)
cudaMemcpy(arr d, arr h, N, H2D)
                                                                  cudaMemcpy(arr d, arr h, N, H2D)
                                   arr = arr_h = arr_d = malloc()
kernel<<< ... >>>(arr d)
                                                                  kernel<<< ... >>>(arr)
cudaDeviceSynchronize()
                                                                  cudaDeviceSynchronize()
                                                                  cudaMemcpy(arr_h, arr_d, N, D2D)
cudaMemcpy(arr_h, arr_d, N, D2D)
post process(arr h);
                                                                  post process(arr)
```

More complex patterns:

Not directly portable

Porting to Unified Memory

5 Rodinia benchmarks1 Qiskit Quantum Computer Simulator

Two flavors for each application:

- CUDA managed memory
- System-allocated memory

	Original code	Unified Memory
allocation	Ůt0 cudaMalloc() Ůt1	<pre></pre>
initialization	cpu_init_data() ① t2	cpu_init_data() ① t2
processing	<pre>cudaMemcpy(H2D) gpu_kernel<<<>>>() cudaMemcpy(D2H) cudaDeviceSynchronize();</pre>	<pre>gpu_kernel<<<>>>() cudaDeviceSynchronize(); ① t3</pre>

Application	Pattern	Peak Memory
Qiskit	Mixed	275 GB
Needle	Irregular	4.3 GB
Pathfinder	Regular	8.0 GB
BFS	Mixed	1.1 GB
Hotspot	Regular	3.0 GB
SRAD	Irregular	8.9 GB

Table: applications used for evaluation, with their memory access patterns

்: CPU-timer

Rodinia

Overall Performance Comparison

First-touch Page Placement – System memory

- Pages are placed on first-touch: GPU/CPU memory
- First-touch triggers page fault
- CPU-side initialization of page table entries

Virtual	Physical	
Page 0	CPU: 0xffffabcd	CPU-located page
Page 1	GPU: 0xff00abcd	← GPU-located page
Page 2	///	\leftarrow never-touched \Rightarrow not physically allocated yet

Figure: System page table (simplified)

First-touch Page Placement – System memory

First-touch Page Placement

Figure: Qiskit memory usage over time (system and managed memory, 4 KB pages)

- → In system memory, page table entries are initialized by the CPU
- → This can cause significant slowdown

System Memory – Memory Access

Transparent access from both GPU and CPU to each other's memory

How?

System page table: both CPU- and GPU-located pages

Mechanism 1: adress translation

Mechanism 2: direct remote memory access

(Mechanism 3: Automatic migrations of frequently accessed regions)

Mechanism 1 Mechanism 2

System Memory – Translation and Direct Access

→ Fully hardware: CPU cores are not involved

Mechanism 3

Migrations in Unified Memory

New On Grace Hopper*

	System		Man	aged
Access	Behavior	Cost	Behavior	Cost
1	zero-copy	low	stall + migrate page 💥	very high
2	zero-copy	low	local access	0
•••			local access	0
N	trigger migration ***	very high (if access to migrating page)	local access	0
N+i	local access	0	local access	0
			+ automatic prefetch	
	Complex, hardly predictable Cost of access spread		Simple, pro Cost of acces	

System Memory – Access-counter Based Migration

- → By default, N_THRESHOLD = 256, for each 2MB regions (sysadmin configuration)
- → Goal: improve performance

Managed Memory – On-demand Migration

- → By default, performed at access
- → Goal: ensure locality

Observing Automatic Migrations

Application: **srad** (iterative process)

```
cpu_init(data)
for(int i = 0; i < n; i++)
    kernel<<<<...>>>(data)
```

Three phases:

- (1) Initialization: high runtime, mostly remote reads
- (2) Transition: varying runtime, distributed remote/local reads
- (3) Stable phase: all data has been migrated, local GPU reads

Access-counter based migrations:

- → Temporary latency increases
- → Runtime affected, in a non-predictable way (migrations are complex)

Oversubscription

Oversubscription

Some Key Takeaways

Page migration: managed vs. system
 Managed migrated when accessed first accessed → one-time cost
 System: migrated when accessed enough times → spread cost

- cudaHostRegister is still usefull:
 No pinning, but populates page table
 Avoid page faults when accessing system-allocated memory.
- Does it replace cudaMalloc? No cudaMalloc: no cache coherency, no adress translation → higher performance on-GPU initialization of system memory is very expensive

Future – Scaling to JEDI node (4×GH200)?

More heterogeneous hardware...

- 4× CPU memory, 4× GPU memory
- Two tiers of NVLink interconnect: NVLink-C2C + NVLink-P2P

... but similar software!

8× NUMA nodes

Limited oversubscription: CPU memory ≈ GPU memory

Conclusions

- Grace Hopper Superchip: hardware support for Unified Memory
- System memory can improve performance, induced by
 - 1. low access granularity (cache line)
 - 2. automatic access-counter based migrations
- Simpler programming interfaces, native profiling tools

- Use case of system memory:
- × when access pattern is well-known and already finely-tuned
- when access pattern is unknown/unpredictable/involves both CPU+GPU

Thanks!

