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Background: The status quo New HPC solver - PIPS-IPM++° PIPS-IPM++ scaling

Studying the future is inherently subject to large uncertainties. The state of the * We have designed custom algorithms for distributed High Performance Our open-source solver PIPS-IPM++° outperforms state-of-the-art commercial
art in energy system research is limited by the following three key challenges: Computing (HPC) to keep computing times manageable and to circumvent solvers on massively parallel architectures. A comparison on JUWELS*:
1. These uncertainties are tackled with ensemble modeling of a small subset memory limitations REMix’ instance: PyPSA-eur! converted to REMix:
of all possible scenarios. This has proven to be inadequate as the models * PIPS-IPM++ implements a parallel interior-point method (IPM) for solving * 8.6M rows; 8.8M columns * 234M rows; 213M columns
are highly sensitive to certain input data large-scale linear programs (LPs). It exploits the doubly bordered block * Up to 96 nodes; 4 threads per * 16 nodes; 96 MPI tasks;
2. The widely-used commercial solvers show poor scalability and are limited diagonal matrix structure to parallelize the optimization process via MPI and MPI process 8 threads per task
to single shared-memory compute nodes. Thus, models are defined with a OpenMP 10° o5,

Instances

lower temporal and spatial resolution and a lower technological diversity
than necessary to ensure applicability for real world policy support.
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Fig. 3: Example of a typical energy system block-structured matrix Fig. 6: REMix instance with 109 regional model nodes Fig. 7: REMix instance based on the PyPSA-eur dataset

Fig. 1: The established scenario funnel for decarbonization pathways of energy systems

Scenario analysis

Model coupling

Objective: The theoretical best practice

An optimization model has been coupled with a grid model, and an agent- * Scenario analysis based 3600 REMix instances as in Fig. 6
We have opted to fully inspect the conceivable parameter space for the first based simulation to explore scenarios from different perspectives and to *  Fig. 8: Indicator evaluation: 27 indicators build 3 clusters
time by using a hitherto unattained number of model-based energy scenarios. analyze a variety of indicators.

* Green (1): High share of renewables (fewer CO, emissions and flexibility)

To overcome the above-mentioned limitation we use:
1. Automated parameter sampling based on a broad literature review

Scenario generator | " Indicator models
. B ° Preprocessin
2. A self-developed distributed memory solver, called PIPS-IPM++° Rawdata Sl Sar:p“ng -

* Grid & Security &
3. Coupling of different model types and definition of relevant indicators : / * Fig. 9: Photovoltaic dominates the share of power supply in most of the
Efficiently leveraging the capability of HPC by combining those approaches in scenarios for 2030 with of up to 80%. The power supply by gas power
an automated workflow could be a game changer for the energy-system plants has a wide spread between almost 0% and more than 60%. However,

analysis community. ﬁt most of the scenarios have a rather low power supply my gas power plants.
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* Blue (3): High gas consumption (higher CO, emissions and flexibility)
 Red (2): In between cluster 1 and 3
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» Decarbonized futures
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Dimension 2

Fig. 2: The scenario funnel for decarbonization pathways of energy systems in UNSEEN
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The automated workflow execution on HPC has been implemented based on JUBE Dimension 1

Fig. 8: Scenario cluster plot for 2 main dimensions Fig. 9: Share of electricity production by source for 3600 scenarios
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UNSEEN?2 (grant number FKZ 03EI1004A; duration: 10/2019-03/2023) is an interdisciplinary JUBE 4 & % 10 532 Our next step is to cover more uncertainties, e.g. on weather and demand time series.
consortium of researchers and practitioners from system analysis, mathematics, and high SanRgUeEhon < - — These uncertainties are also considered through stochastic optimization. In this
performance computing. L - - context, PIPS-IPM++ is used to solve the stochastic scenarios. Furthermore, an increase
’ GAMS Supported by: | in model resolution calls for technologically more representative modeling approaches
! v , .- m ‘ fo Economic Afis and thus, solving mixed-integer linear programs on HPC becomes the next challenge.
'J J U L I C H Deutsches Zentrum 5 ZIB e BJENHMEWEG Automatic workflow creation and execution We have prepared our workflow and solver software to solve such problems. We can
Forschungszentrum PR German Actospece Center ﬂﬁ / o HHROTHE therefore build upon our solver PIPS-IPM++ and integrate methods for heuristics such
g;fﬁ:giiigﬁi‘;fiﬁgg Fig. 5: Schematic representation of the HPC workflow implementation by JUBE (manages parallel pipeline flow (Fig. 4))

as those based on a Fix-Propagate-Repair (FPR) approach we are currently developing.
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