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• German initiative to build and train 
large-scale AI language models for 
innovative language applications


• Commercialization through Gaia-X 
infrastructure for European Economy


• Consortium of 11 partners from 
industry and academia

OpenGPT-X (2022 - 2024) Large Language Models (LLM)

Use Cases:

• Customer service chatbots

• Translation, autocorrect, autocompletion

• Document summarization and generation

• Insurance claims management

• Fraud detection

LLM Transformer Architecture: Uses 
stack of encoders/decoders to 
process data, weighted by attention.

Model Training
Key Technique: Parallelization (memory constraints, large input data)

1. Distributed Data Parallelism (DP): 


• Full model on each rank 

• Training data distributed in micro-

batches

• Gradients averaged across all ranks 

via allreduce


2. Pipeline Parallelism (PP):


• Model layers partitioned across 
ranks (vertically)


• Asynchronous pipe scheduling for 
gradient accumulation and calculation


3. Tensor Parallelism (TP): 


• Tensor operations partitioned 
across ranks (horizontally)


• Communication-intensive with 
frequent allreduce


→Use all 3 levels to determine number 
of tasks / number of GPUs

#GPUs = #DP × #PP × #TP
#MP

= #DP × #MP

Example of different parallelization schemes. MP (Model Parallel) was 
reformulated to TP, with MP=PPxTP.

Parallelization using DeepSpeed ZeRO, https://www.deepspeed.ai/tutorials

• Basis: Megatron-DeepSpeed (fork)[1]

• 16B Model: 16 billion parameters

• Size: 56 GB (Parameters + Gradients + Optimizer 

states, ZeRO Stage 1[2])

• Partition: #PP=2, to fit 40 GB A100 GPU (→28 GB 

per GPU)

• Scaling: #DP=80

• Training on German-English data with 

GlobalBatchSize=960, MicroBatchSize=2 and 
GradientAccumulationStep=6


• 160 GPUs (40 nodes) on JUWELS Booster[3]

Training 13.6B Model on JUWELS Booster

Tensorboard: Tokens vs. Training Loss Plot; for 13.6B 
model trained on 12 billion tokens, 160 GPUs, 24 h. 
Decreasing loss attests for model quality and 
convergence.

Report generated using LLview[4]. Training of 13.6B model (TP=1, PP=2 and DP=80): 
GPU utilisation of 96.3% (avg) making use of 36.6 GB (avg) memory.

[1]: Private repository forked from https://
github.com/bigscience-workshop/Megatron-
DeepSpeed 

[2]: ZeRO: Memory Optimizations Toward 
Training Trillion Parameter Models; 
 arXiv:1910.02054 [cs.LG]

[3]: JUWELS Booster: > 3200 Nvidia A100 GPUs, 
40 GB; https://apps.fz-juelich.de/jsc/hps/juwels/
booster-overview.html

[4]: https://www.fz-juelich.de/en/ias/jsc/services/
user-support/jsc-software-tools/llview 

Novel Architecture Exploration

[5]: https://github.com/HelmholtzAI-FZJ/tf_cnn_benchmarks 

[6]: https://github.com/graphcore/examples.git

[7]: JURECA Evaluation Platform: Additional hardware for benchmarking 
and testing at JSC

[8]: JURECA DC: Pre-Exascale Modular Supercomputer at JSC

Recent Advancements 
Sequence Parallelism:
• Non-tensor parallel regions of transformer layer 

are independent along sequence dimension

• Prevent redundant storage of activations 

• Selective re-computation of activation

• 5× memory reduction with over 90% compute 

recovery from full activation re-computation.

Transformer layers with tensor and sequence parallelism.

Reducing Activation Recomputation in Large Transformer Models; 

https://arxiv.org/abs/2205.05198

Flash Attention:

• Attention algorithm with memory tiling between GPU 

high bandwidth memory (HBM) and GPU on-chip SRAM

• 20× memory efficient and faster than exact attention 

without I/O optimisation

• Block-sparse flash attention is faster than all 

implementations across all sequence lengths

Left: Runtime of forward pass + backward pass. Right: Attention memory usage.

FlashAttention:Fast and Memory-Efficient Exact Attention with IO-Awareness; 

https://arxiv.org/abs/2205.14135

Challenges Next Steps
• Scarcity of evaluation tasks in 

languages other than English 

• Availability of quality data

• Potential model biases

• Limited preprocessing filters 

for data

• Hardware robustness for 

large runs

• Energy consumptions: GPT-3 

model training used 
approximately 936 MWh

• Ablation studies on training 
objectives, optimizers and training 
parameters 


• GPU communication and offloading 
using libraries (SHARP, UCC) 


• CUDA Graphs 

• High Performance Storage Tier 

NVMe cache[9]


• Implement Recent Advancements

• Evaluation of new hardware architectures to 
test suitability for LLM


• Tests with simple TensorFlow ResNet-50 CNN 
benchmark using ImageNet data


• NVIDIA/AMD: Stock setup[5]

• Graphcore: Vendor/device-optimized setup[6]

• Using novel devices of JURECA DC 

Evaluation Platform[7] and JURECA DC[8]

Language Models:

• BERT (2018); by Google

• GPT models, GPT-1 (2018), GPT-2 (2019), GPT-3 (2020), GPT-4 (2023); by OpenAI

• OPT (2022), by Meta 

• BLOOM (2022); by BigScience (HuggingFace); based on Megatron-Deepspeed

• OGPT-1(?), by OpenGPT-X, TBD

[9]: https://apps.fz-juelich.de/jsc/hps/juwels/
cscratch.html#high-performance-storage-tier-cscratch 

Example for Distributed Data Parallelism: entire model fits on single GPU. 
Model processes data in units of micro batches, performs model update with 
averaged gradients.

Global BatchSize = #DP × Micro BatchSize
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Heatmaps: GlobalBatchSize vs. #Devices

Throughput (images per sec) scales with global 
batch size and Data Parallelism for ResNet-50 
model on single node; entire model fits on single 
device 
⇒ #Devices = #Data Parallelism

Graphcore best for small batch sizes, NVIDIA for 
large; AMD significantly slower (reasons under 
evaluation) Bar graph comparing (GlobalBatchSize, #Devices) vs. Images per sec (throughput) for ResNet-50 model 

on NVIDIA[8], AMD[7] and Graphcore[7] devices on single nodes; entire model fits on single device 
⇒ #Devices = #Data Parallelism
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