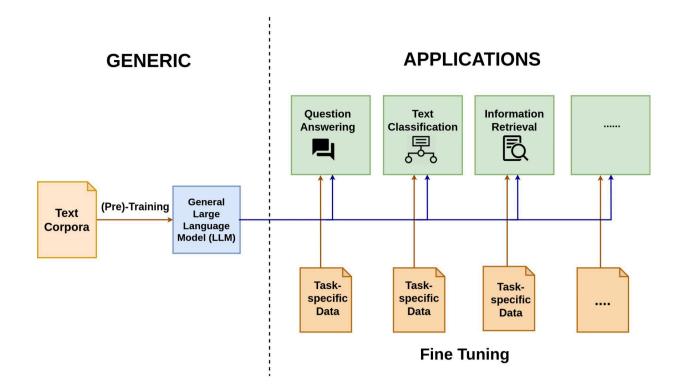
OpenGPT-X: Training Large Language Models on HPC Systems

Chelsea John, Jan Ebert, Stefan Kesselheim, Carolin Penke, Andreas Herten

OpenGPT-X (2022 - 2024) German initiative to build and train large-scale Al language models for innovative language applications Commercialization through Gaia-X d has **Identity & Trust** Project Data Space SPEAKER infrastructure for European Economy AI4EU Compliance Catalogue EUROPEAN LANGUAGE GRID Consortium of 11 partners from industry and academia

Large Language Models (LLM)



LLM Transformer Architecture: Uses stack of encoders/decoders to process data, weighted by attention.

Use Cases:

- Customer service chatbots
- Translation, autocorrect, autocompletion
- Document summarization and generation
- Insurance claims management
- Fraud detection

Language Models:

- **BERT** (2018); by Google
- **GPT** models, GPT-1 (2018), GPT-2 (2019), GPT-3 (2020), GPT-4 (2023); by OpenAI
- **OPT** (2022), by Meta
- **BLOOM** (2022); by BigScience (*HuggingFace*); based on Megatron-Deepspeed
- OGPT-1(?), by OpenGPT-X, TBD

Model Training

Key Technique: Parallelization (memory constraints, large input data)

WDR[®]

KI BUNDESVERBAND

. Distributed Data Parallelism (DP):

ZIH

Fraunhofer

Control€xpert

Full model on each rank

[at]

IONOS

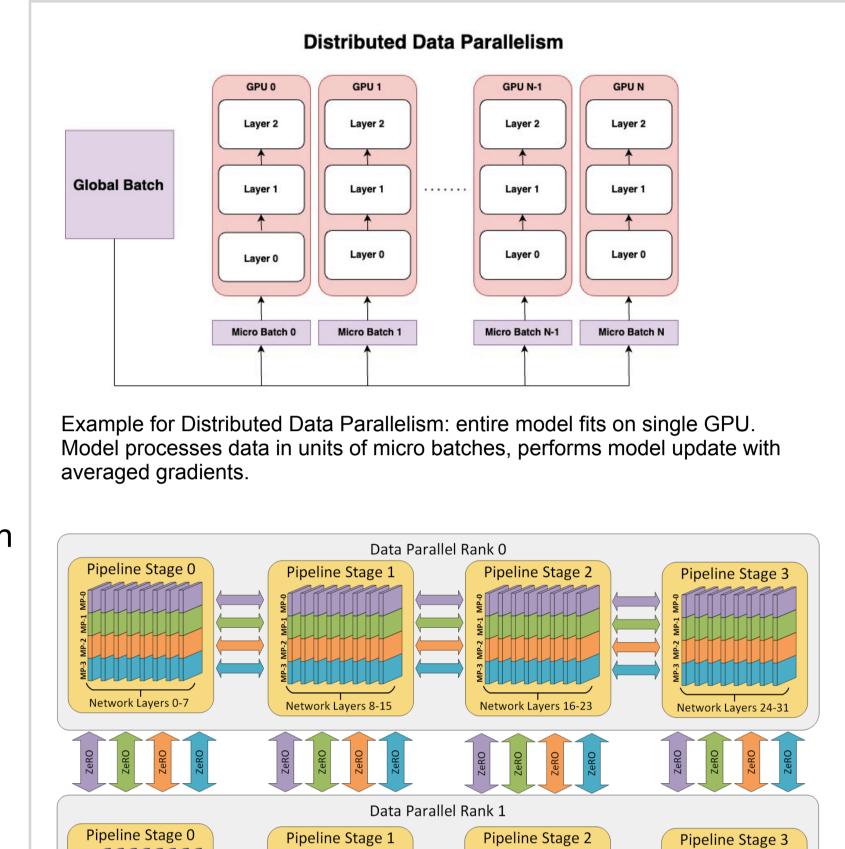
- Training data distributed in microbatches
- Gradients averaged across all ranks via allreduce

 $Global\ BatchSize = \#DP \times Micro\ BatchSize$

2. Pipeline Parallelism (PP):

- Model layers partitioned across ranks (vertically)
- Asynchronous pipe scheduling for gradient accumulation and calculation
- 3. <u>Tensor Parallelism (TP):</u>
- Tensor operations partitioned
- across ranks (horizontally) Communication-intensivé with frequent *allreduce*
- → Use all 3 levels to determine number of tasks / number of GPUs

 $\#GPUs = \#DP \times \#PP \times \#TP = \#DP \times \#MP$ #MP

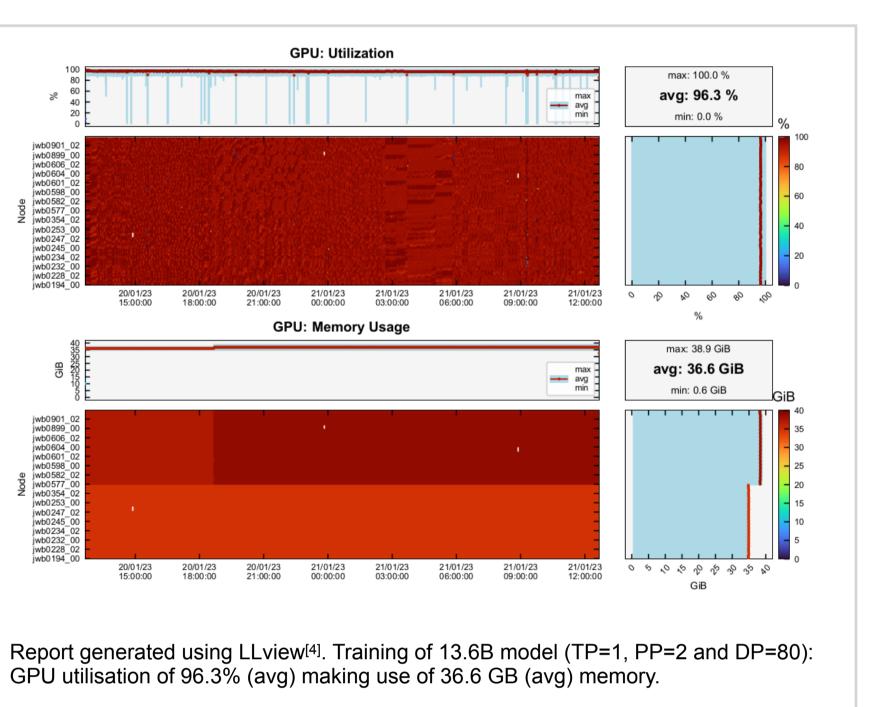


Example of different parallelization schemes. MP (Model Parallel) was

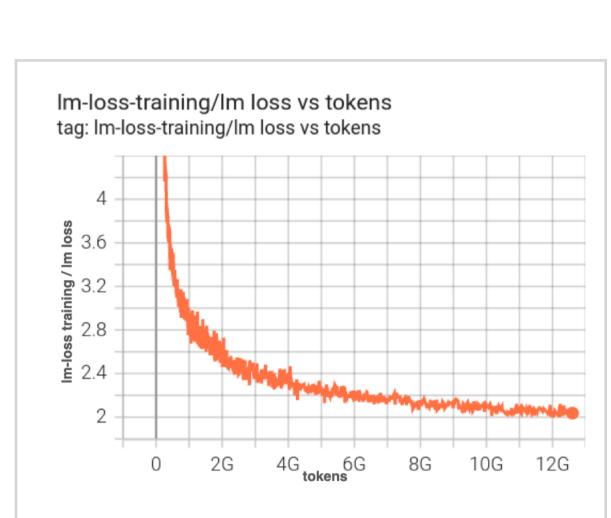
Parallelization using DeepSpeed ZeRO, https://www.deepspeed.ai/tutorials

Training 13.6B Model on JUWELS Booster

- Basis: Megatron-DeepSpeed (fork)[1]
- 16B Model: 16 billion parameters
- Size: 56 GB (Parameters + Gradients + Optimizer states, ZeRO Stage 1[2])
- Partition: #PP=2, to fit 40 GB A100 GPU (→28 GB per GPU)
- Scaling: #DP=80
- Training on German-English data with GlobalBatchSize=960, MicroBatchSize=2 and GradientAccumulationStep=6
- 160 GPUs (40 nodes) on **JUWELS Booster**[3]



[1]: Private repository forked from https:// github.com/bigscience-workshop/Megatron-[2]: ZeRO: Memory Optimizations Toward Training Trillion Parameter Models; arXiv:1910.02054 [cs.LG] [3]: JUWELS Booster: > 3200 Nvidia A100 GPUs, 40 GB; https://apps.fz-juelich.de/jsc/hps/juwels/ ooster-overview.html [4]: https://www.fz-juelich.de/en/ias/jsc/services/ user-support/jsc-software-tools/llview

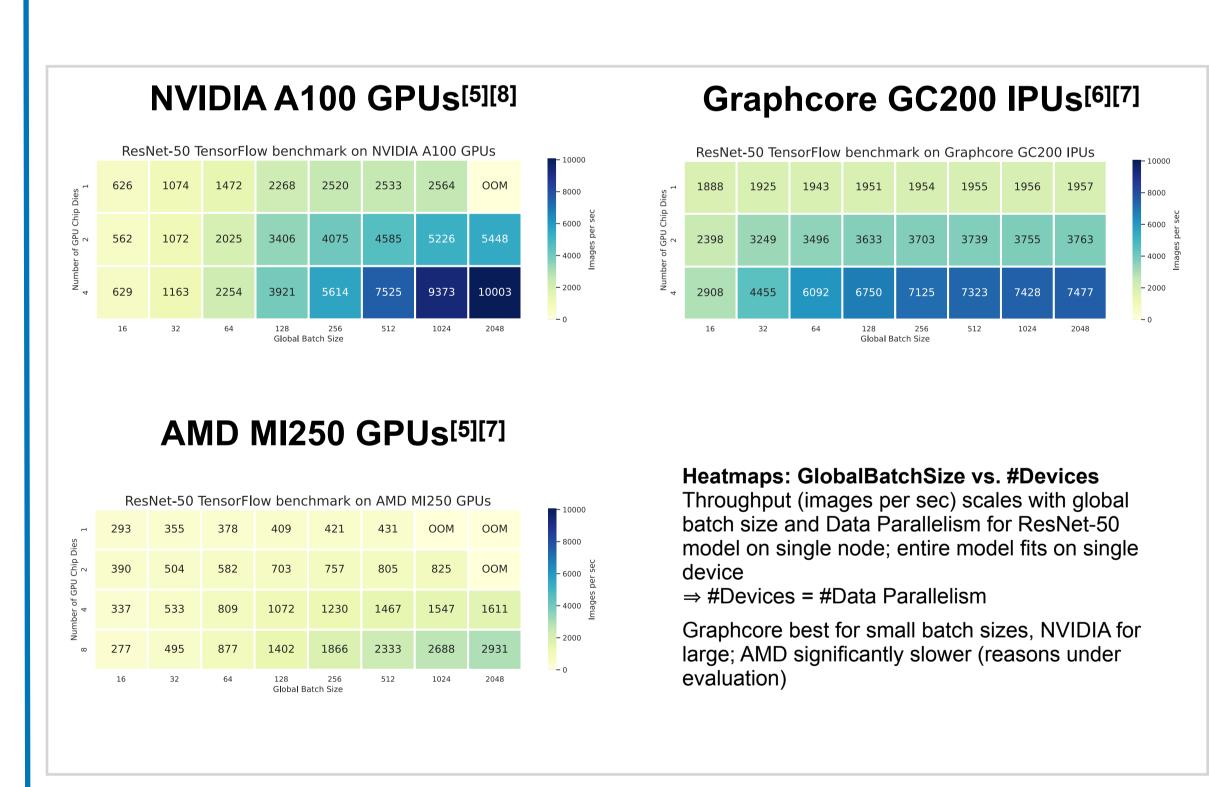


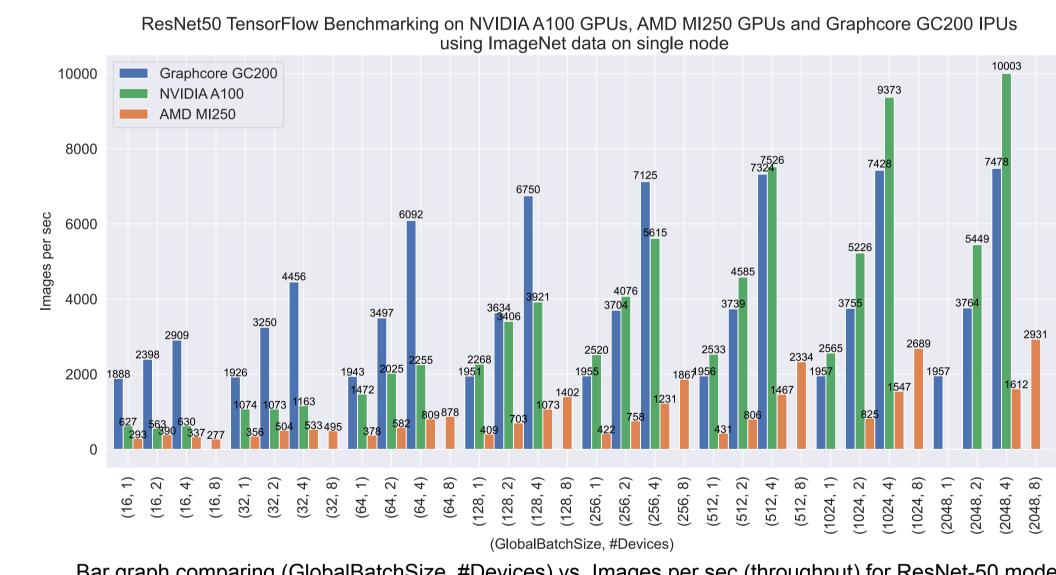
Tensorboard: Tokens vs. Training Loss Plot; for 13.6B

model trained on 12 billion tokens, 160 GPUs, 24 h.

Decreasing loss attests for model quality and

Novel Architecture Exploration





Bar graph comparing (GlobalBatchSize, #Devices) vs. Images per sec (throughput) for ResNet-50 model on NVIDIA^[8], AMD^[7] and Graphcore^[7] devices on single nodes; entire model fits on single device ⇒ #Devices = #Data Parallelism

- Evaluation of new hardware architectures to test suitability for LLM
- Tests with simple TensorFlow ResNet-50 CNN benchmark using ImageNet data
- NVIDIA/AMD: Stock setup^[5]

convergence.

- Graphcore: Vendor/device-optimized setup^[6]
- Using novel devices of JURECA DC Evaluation Platform^[7] and JURECA DC^[8]

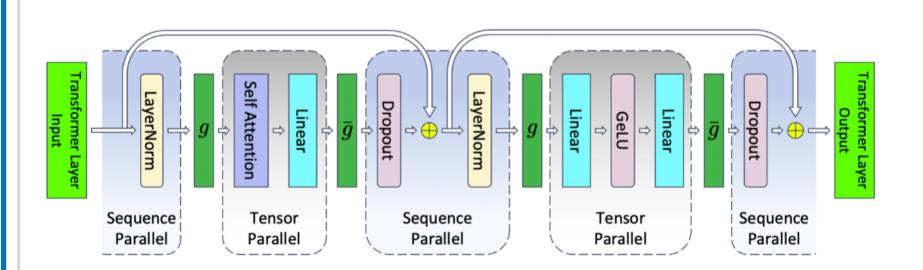
[5]: https://github.com/HelmholtzAI-FZJ/tf_cnn_benchmarks [6]: https://github.com/graphcore/examples.git [7]: JURECA Evaluation Platform: Additional hardware for benchmarking and testing at JSC

[8]: JURECA DC: Pre-Exascale Modular Supercomputer at JSC

Recent Advancements

Sequence Parallelism:

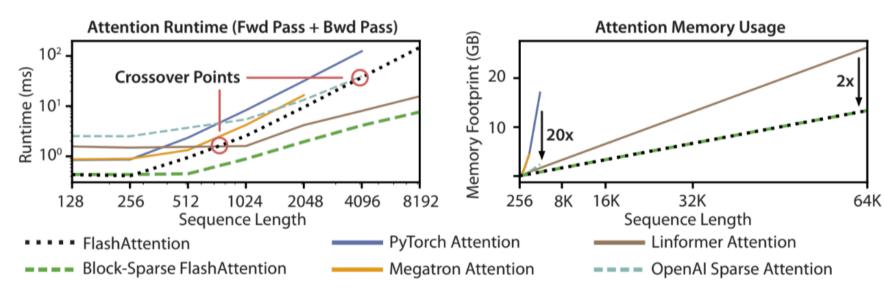
- Non-tensor parallel regions of transformer layer are independent along sequence dimension
- Prevent redundant storage of activations
- Selective re-computation of activation
- 5× memory reduction with over 90% compute recovery from full activation re-computation.



Transformer layers with tensor and sequence parallelism. Reducing Activation Recomputation in Large Transformer Models; https://arxiv.org/abs/2205.05198

Flash Attention:

- Attention algorithm with memory tiling between GPU high bandwidth memory (HBM) and GPU on-chip SRAM
- 20× memory efficient and faster than exact attention without I/O optimisation
- Block-sparse flash attention is faster than all implementations across all sequence lengths



<u>Left</u>: Runtime of forward pass + backward pass. **<u>Right</u>**: Attention memory usage. FlashAttention:Fast and Memory-Efficient Exact Attention with IO-Awareness; https://arxiv.org/abs/2205.14135

Challenges

- Scarcity of evaluation tasks in languages other than English
- Availability of quality data
- Potential model biases
- Limited preprocessing filters for data
- Hardware robustness for large runs
- Energy consumptions: GPT-3 model training used approximately 936 MWh

Next Steps

- Ablation studies on training objectives, optimizers and training parameters
- GPU communication and offloading using libraries (SHARP, UCC)
- CUDA Graphs
- High Performance Storage Tier NVMe cache^[9]
- Implement Recent Advancements

[9]: https://apps.fz-juelich.de/jsc/hps/juwels/ cscratch.html#high-performance-storage-tier-cscratch

Acknowledgements

OpenGPT-X is funded by the Federal Ministry for Economic Affairs and Climate Action (BMWK) of Germany for the period 2022-2024. Compute time on the GCS Supercomputer JUWELS Booster at JSC is provided through the Gauss Centre for Supercomputing e.V.

