<3

NVIDIA

Julien Demouth & Mathias Wagner, Developer Technology

WHY MIXED PRECISION?

There are many reasons to consider mixed precision methods in HPC
Accelerated hardware in current architectures
Reduce memory traffic

Reduce network traffic
Reduce memory footprint

Suitable numerical properties for the problem at han d

Accelerate or even improve the algorithm without compromising quality of scienc e

2 NVIDIA.

WHY USE MIXED PRECISION ?

Higher precision needs more memory and is slower
Bandwidth on network and memory
Higher precision is slower (usually 2x for simple ops , >2x for fancy math)

Which precision does my calculation require?
Do all parts need high precision? Or maybe just accumulations / reductions ?

But if | just need high precision ?
Accept it or maybe E?

\ MIXED PRECISION

for bandwidth bound application

for Deep Learning / Al

for compute bound applications

MIXED PRECISION FOR
BANDWIDTH

ALY
&,l

g% SciDAC & PRACE
BRI <. Discorery shrough Advanced Comparing

QUDA

¥ Effort started at Boston University in 2008, now in wide use as the GPU backend
for BQCD, Chroma, CPS, MILC, TIFR, tmLQCD, etc.
¥ Provides:
Various solvers for all major fermionic discretizations, with multi-GPU support
Additional performance-critical routines needed for gauge-field generation
¥ Maximize performance
b Exploit physical symmetries to minimize memory traff ic

b Autotuning for high performance on all CUDA-capable a rchitectures
b Eigenvector and deflated solvers (Lanczos, EigCG, GMRE-DR)
P Multigrid solvers for optimal convergence Multi-sourc e solvers
b Domain-decomposed (Schwarz) preconditioners for strong scaling
b Strong-scaling improvements

¥ A research tool for how to reach the exascale

6 NVIDIA

QUDA - LATTICE QCD ON GPUS

http://lattice.qgithub.com/quda, BSD license

[]lattice f quda ©watchs 39 *&

$) Code lssues 138 Pul requests 7 O Actions Projecis 4 Wiki 1] Securty 1 Insigh

| Latest release QUDA V1,0.0

O v -) .
ey g Mathiaswagner released this on Jan 30
Werifiesck i
Version 1.0.0 - 10 January 2020
Campere~

« Add support for CUDA 10.2: QUDA 1.0.0 is supported on CUDA 7.5-10.2
using either GCC or clang compilers. CUDA 10.x and either GCC >=
6.x or clang >= 6.x are highly recommended.

« Significant improvements to the Chiake build system and removel of the
lenacy confiaure build.

7 <4NVIDIA

http://lattice.github.com/quda

QUDA CONTRIBUTORS

Ron Babich

Simone Bacchio (Cyprus)
Michael Baldhauf (Regensburg)
Kip Barros (LANL)

Rich Brower (Boston University)
Nuno Cardoso (NCSA)

Michael Cheng (Boston University)

Carleton DeTar (Utah University)

Justin Foley (Utah -> NIH)

Joel Giedt (Rensselaer Polytechnic Institute)
Arjun Gambhir (William and Mary)

Steve Gottlieb (Indiana University)

Kyriakos Hadjiyiannakou (Cyprus)

Dean Howarth (LLNL)

Bilint Jo— (Jlab)

Hyung-Jin Kim (BNL -> Samsung)
Bartek Kostrzewa (Bonn)

Claudio Rebbi (Boston University)
Hauke Sandmeyer (Bielefeld)
Guochun Shi (NCSA -> Google)
Mario Schrsck (INFN)

Alexei Strelchenko (FNAL)

Alejandro Vaqguero (Utah University)

Frank Winter (Jlab)

8

NVIDIA.

THE LATTICE QCD STENCIL (DSLASH)
Solve Ax=Db 19

m
Assign a single space-time point to each thread D X, X ' — 0=0= ,
1 % I " & I
V = XYZT threads, e.g., V = 24* => 3.3x106 threads o " ' III |
Looping over direction each thread must | | 9
Load the neighboring spinor (24 numbers x8) ’ 1 %%

Load the color matrix connecting the sites (18 number s x8)

Do the computation

Save the result (24 numbers)
Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity
QUDA reduces memory traffic

Exact SU(3) matrix compression (18 => 12 or 8 real numbers)

Use 16-bit fixed-point representation with mixed-prec ision solver

X[0]

9 SANVIDIA.

QUDAOS 16-BIT FIXED-POINT FORMAT

Link field - Defines the sparse matrix elements
SU(3) matrices that live between all adjacent sites on the 4-d grid

All elements ! |" 1,1 => very natural to use 16-bit fixed point represent ation

Fermion field - the vector that appears in the linea r solver
Each 4-d grid point consists of a 12-component compl ex vector
No a priori bounds the elements
Use per-site Lint Norm to normalize the site vector and use 16-bit f ixed point
Optimal use of precision: retains global dynamic ran ge with local 16-bit mantissa

Low precision used only as a storage type with compu tation done in FP32

10

NVIDIA.

LINEAR SOLVERS

while (|re[= £) {
By = (P, Xk) (Xi-1 Yi-1)
P+l = Ik - Pupk

. . . . Qi = A Pr-1
LQCD requires a range of sparse iterative linear solvers i)

CG, BiCGstab, GCR, Multi-shift solvers, etc. i =TIk=0gsi

Xk+1 = Xk + UPk+i

k=k+lI

-

Condition number inversely proportional to mass
Light (realistic) masses are highly singular conjugate gradient
Naive Krylov solvers suffer from critical slowing do wn at decreasing mass

Entire solver algorithm must run on GPUs
Time-critical kernel is the stencil application Als o require BLAS level-1 type operations

11 NVIDIA.

*Sleijpen and Van der Worst, 1996

Clark, Babich, Barros, Brower, Rebbi (2009)

RELIABLE UPDATES FOR MIXED PRECISION

Traditional approach to mixed precision is to use it erative refinement
Disadvantage: each restart means we discard the Kryl ov space

Instead we use reliable updates*

As low-precision solver progresses the iterated resi dual will drift

Occasionally replace the iterated residual with high -precision residual
Retains Krylov space information

Maintain a separate partial-solution accumulator

Aside: reductions are always done in fp64 regardless of the data precision

while (Ir | > €) |
r.= b - Axy
solve Apk = 1k

Xk+1 = Xk t+ pl;

if(Irkl<Olbl){
=b - Axg
b =ry
Y- =¥ K

Xk = ()

12 NVIDIA.

(STABLE) MIXED-PRECISION CG

CG convergence relies on gradient vector being orthogon al to residual vector

Re-project when injecting new residual (Strzodka and GSdekke, 2006)

Precision is lost if we keep the partial solution ve ctor in low precision
Always keep the (partial) solution vectors in high p recision

=112 .

J) LN g, = (rka(7k_"k_1))
Not true in finite precision k—
Polak-Ribie re form is equivalent and self-stabilizing

| computation relies on (l’i, I

2
| 71 |

13 NVIDIA.

LINEAR SOLVERS

while (fk|>!) {
" = (i, F)/(re-1,r e-1)
Pk+1 = 'k - " kPk
Ok+1 = A Pk+1
QUDA supports a wide range of linear solvers #= (Nl)/ (Pret, Q)

CG, BiCGstab, GCR, Multi-shift solvers, etc. Fe1 =k - #Oke1

Xk+1 = Xk + #Pk+1
k =k+1

} conjugate gradient

Condition number inversely proportional to mass
Light (realistic) masses are highly singular
Naive Krylov solvers suffer from critical slowing do wn at decreasing mass

Entire solver algorithm must run on GPUs
Time-critical kernel is the stencil application
Also require BLAS level-1 type operations

14 NVIDIA.

MIXED-PRECISION CG

Apply Dslash in sloppy precision | |
(Single, half) 10000 — double-half (naive) |

[' in hi — double-half
Reliable residual replacement in high dgﬁbl: alf (new)
precision

l TTTITm
Lo

Ensures accuracy of final result

Half-precision storage:
¥ Stencil elements ! [-1,1] (Link):

¥ 16-bit fixed point 0.0001
¥ Grid elements (Spinor):

¥ 16-Dbit fixed point (24 numbers)

¥ float (exponent, 1 number) | 1 | j
Use fp32 for actual arithmetics le-08 20000 20000 60000 80000 1ex05

I Loiim

15 NVIDIA

MIXED-PRECISION CG

double-half | R —
¥ Maintain solution vectors in o i
high precision wot | 1
¥ Including the partial \ '
accumulator .
G e 1
¥ When true residual is injected, \\\
re-project the direction vector g e | TRy :
- AN |
¥ Use Polak-Ribiere formula ‘
g % : |
ZLT.,I (i1 — Tk) '
B = =
Z, T}
k= T | 1
double-half alt]
¥ Residual replacement strategy of
My # 1 1 1 1 1 1 1
van der WO rSt and Ye o # Oott##H &#HH "HHH (# Vi 1%### | &HHH V'HH#H

16 NVIDIA

double-half
¥ Maintain solution vectors in
high precision
¥ Including the partial
accumulator

¥ When true residual is injected,
re-project the direction vector

¥ Use Polak-Ribiere formula

Zy ., (Tk+1 — k)
By == =
Zkl‘k

double-half alt

MIXED-PRECISION CG

"I

"1

"I

¥ Residual replacement strategy of

van der Worst and Ye

'$ L

"# L

T
LN

(O*+,-./012,-

(*+,-.34,5
()*+,-.34,5 4,6

1$%###

1&H###H

1&Y0tt#

Vi

I'Qott#

1%0###
16

1909%0###
NVIDIA

MIXED-PRECISION MILC CG SOLVER

5.0 10.0 15.0 20.0 25.0

solution time in s

Solver lterations

DEFLATION STABILIZES LOW PRECISION
V=48x12, HISQ operator, physical light quarks, tol 10 -10, 2xVV100

16000 @® double-single-single % double-half-single # double-half-half
* double-quarter-half

12000

8000

4000

0 16 32 64 128 256 512 1024

Number of eigenvectors 18 <AnviDia

Conbguration provided by!
HotQCD collaboration (Mukherjee et al)

MIXED-PRECISION DEFLATION

V=48x12, HISQ operator, physical light quarks, tol 10 -10, 2xV100

[CG double [l CG double-single] CG double-half
[l CG double-quarter B defCG double-half-single [defCG double-half-half
B defCG double-quarter-half

62x speedup

(®))
o

Final Solver Speedup
N W A
o O O

=
o

o

Similar setup times

19 <ANVIDIA

NVIDIA.

DEEPLEARNING AND MIXED
PRECISION N

Julien Demouth

REFERENCE

This slide deck was built from two presentations at GTC 2020

Training Neural Networks with Tensor Core [S22082 |, DusanStosic

Accelerating Sparsity in the NVIDIA Ampere Architecture [S22085], Jeff Pool

The presentations are available from htips://www.nvidia.com/en -us/gtc/on -demand/

2 < NVIDIA.

https://www.nvidia.com/en-us/gtc/on-demand/

|QUICK REMINDER] TENSOR CORES

Specialized hardware execution units for performing matrix and convol ution operations
Compared to scalar FP32 operations, Tensor Cores are
8-16x faster (up to 32x faster with sparsity)

More energy efficient

D=AB+C

3 <A NVIDIA.

|QUICK REMINDER] TENSOR CORES FORTLEORMATS

Operation:
Multiply and add FP16 or BF16 tensors

Products are computed without loss of precision,
accumulated in FP32

Final FP32 output is rounded to FP16 or BF16
before writing to memory

NVIDIA Ampere Architecture enhancements:

New tensor core design: 2.5x throughput for dense opera tions (A100 vs V100)

Full precision

product

16-bit input =—

—

16-Dbit input —

Sparsity support: additional 2x throughput for sparse operations

BFloatl6 (BF16). Same rate as FP16

more products

b4

— FP32

T

Sum with

FP32

accumulator

NVIDIA.

MIXED PRECISION TRAINING

Combines single -precision (FP32) with lower precision (e.g. FP16) when tr aining a network

Achieves the same accuracy as FP32 training, uses all the same hyper -parameters

Batch
Norm

FP32
Benefits:

Accelerates math-intensive operations with specialized hardware (GPU Tensor Cores)

Accelerates memory-intensive operations by reducing memory traffic

Reduce memory requirements, enables training of larger models, larger minibatches, larger inputs

NVIDIA.

MIXED PRECISION IS GENERAL PURPOSE

3 years of networks trained with 16 -bit formats

Proven to match FP32 results across a wide range of tasks, problem domains , deep neural network
architectures

o oo ot segnension W oo wses [iongevoing SR,

AlexNet DeeplLab BERT
P DLSS . represents a small
DenseNet 3 TrellisNet .
Faster R-CNN AN sampllng of
Inception Mask RCNN _ — Gated Convolutions networks trained
MobileNet Partial Image Inpainting BigLSTM/mLSTM L .
- SSD Proaress GAN In mixed precision
EfficientNet : 9 RoBERTa
NVIDIA Automotive Pix2Pix
ResNet _ Transformer XL
RetinaNet
ResNext X
Shufiion UNET | Tansiaion
- HHe T\;[t DIEE}D SJEEE0N 2 Convolutional Seq2Seq
ueezeNe
5 _ ~EEjpEr Dynamic Convolutions
VGG DeepRecommender Tacotron GNMT (RNN)
Xception
P NCF Wavezvec Levenshtein Transformer
CHENE Transformer (Self-
WaveGlow Attention)

6 < NVIDIA.

AUTOMATIC MIXED PRECISION FOBITts

Automatic Mixed Precision (AMP) makes mixed precision

training with FP16/BF16 easy in frameworks * ,,f":a*ﬁ:.bfﬁ AV V2
_ NS

) //"1\ o~ .
N 0~ - “ e
b R e Ty ~ \
e S

AMP automates process of training in mixed precision

e.g. Converts matrix multiplies/convolutions to 16 -bits
for Tensor Core acceleration

Works with multiple models, optimizers, and losses

BF16 will be available in future releases

@Xnet PYTHRCH L2

TensorFlow
7 <ANVIDIA.

NATIVE AMP FOR
PYTORCH

WIll be available in future NVIDIA NGC containers

Proven to work on ~40 deep neural network
workloads

NVIDIA Deep Learning Examples have used
PyTorch APEX AMP for over a year and will soon
update all models to PyTorch Native AMP

Import torch

Creates once at the beginning of training

for

data, label in data_iter
optimizer.zero_grad()

Casts operations to mixed precision
loss = model(data)

Scales the loss, and calls backward()
to create scaled gradients

Unscales gradients and calls
or skips optimizer.step()

Updates the scale for next iteration

FEW CODE CHANGES TO ENABLE AMP IN FRAMEWORK

NVIDIA NGC Container 19.07+, TF 1.14+ and TF 2+, explicit optimizer wrapper available:

opt = tf.train.experimental.enable _mixed_precision_graph_rewrite(opt)
TensorFlow Keras mixed precision APl in TF 2.1+ for eager execution

https://tensorflow.org/api_docs/python/tf/train/experimental/enable _mixed_precisio
n_graph_rewrite

Native support in PT, see official docs for usage:

PyTorch https://pytorch.org/docs/stable/amp.html
https://pytorch.org/docs/stable/notes/amp_examples.html

NVIDIA NGC Container 19.04+, MXNet 1.5+, few lines of code:

amp.init()

amp.init_trainer(trainer)

with amp.scale_loss(loss, trainer) as scaled_loss
autograd.backward (scaled loss)

https://mxnet.apache.org/api/python/docs/tutorials/performance/backend/amp.html oia

SAMPLE OF ACHIEVED TRAINING SPEEDUPS

Mixed precision training on A100 is up to 12x faste r than V100 FP32

Speedup

A100 speedup over V100 FP32

14

12 12X
. 10x

8

8x

6

4

2

0

BERT Pretrain BERT Finetune Transformer Transformer XL

= A100 TF32

1 month to train 2-3 days on A100 using
on Volta using FP32 next-gen Tensor Cores

10

<ANVIDIA.

12 <ANVIDIA.

DL TRAINING OPTIONS

FP16 and BF16 Tensor Cores
Best choice for performance
Both are well established formats with proven success across a wide breadth of Al networks

Does require model changes (FP32 weight storage, loss scaling, per-layer precision choices)

Automatic Mixed Precision (AMP) makes it easy

TF32 Tensor Cores

New default for A100 Bno model changes required

10x peak rate of Volta FP32 (but ! of peak rates of FP16/BF16)
FP32 bnon-Tensor Core
Default for Volta (on A100 it is 1/16 of peak rate of FP16, 1/8 of peak of TF32)

|QUICK REMINDER] TENSOR FLOAT 32

A Tensor Core math mode for single -precision training
Multiply and add of FP32 tensors
Tensor Core inputs are rounded to TF32

Products are computed without loss of precision, acc umulated in FP32

Convert to

TRz Fulpreciior
FP32 []
FP32 output
FP32 []

Sum with
FP32
accumulator

TF32 DETAILS

8-bit exponent:

Sign Range Precision
— \ AN
Matches FP32, covers the same range of values FP32

—

|
.] |
10-bit mantissa: TE32 Range

TENSOR FLOAT 32 (TF32) |l

Higher precision than BF16

TF32 Precision
|

1

The only difference from FP32
FP16

TF32 will match FP32 results for any network
trained with FP16 or BF16 mixed precision

BFLOAT16 (BF16) 8 BITS

—

Shown to have sufficient margin for DL training by
networks trained in 16 -bits over the past 3 years

15

TF32 VERIFICATION

Further verification based on unmodified model scripts for 80+ networks
Model architectures: Convnets, MLPs, RNNs, Transforners, BERT, GANS, etc.

Various tasks, including:

Image tasks (classification, detection, segmentation, generation, gaze)
language tasks (translation, modeling, question answering)
Recommenders

Meta learning

More niche tasks (logic reasoning, combinatorial problems)

First and second order methods

Matches FP32 accuracy and loss values

SINGLE PRECISION TRAINING WITH TF32

Default mode for A100 in next release of NVIDA NGC conta Iners
Supported frameworks: TensorFlow, PyTorch, MXNet

Operation:

TF32 acceleration is enabled for single-precision convolution and matrix -multiply layers:

Including linear/fully -connected layers, recurrent cells, attention blocks
TF32 acceleration is not enabled for:

Convolutions or matrix -multiply layers that operate on non -FP32 tensors
Any layers that are not convolutions or matrix -multiplies

Optimizer/solver operations

No tensor storage is changed bremains in FP32 (or whichever format is specified in the script)

Support in mainline frameworks coming soon

GLOBAL PLATFORM CONTROL FOR TF32

Global variable NVIDIA TF32 OVERRIDHKo toggle TF32 mode at system level (and override
libraries/frameworks)

NVIDIA_ TF32 OVERRIDE=0 Not Set

Disables TF32 so that FP32 is used Defaults to library andframework settings

Debugging tool - quick way to rule out any concern regarding TF32 libraries an d look for other issues

19

SAMPLE OF ACHIEVED TRAINING SPEEDUPS

A100 single precision training is up to 5x faster because of TF 32 acceleration

A100 mixed precision gives an additional 2x

CHOOSING TRAINING OPTIONS ON A100

Mixed-precision with FP16 or BF16:

Option to use If you:

Use mixed-precision training (FP16 or BF16) on Volta and other processors
Are using single-precision on A100 training and want further speedup

Fastest options for training: up to 2x faster than singl e-precision with TF32

Requires minimal additions to training scripts with AMP (detailed in previous sections)
Single-precision with TF32:

Great starting point if you used FP32 training on Vo lta and other processors

Default math mode for Al, does not require changes to training scri pts

Uses Tensor Cores (10X over Volta default)

22

SPARSITY: ONE OF MANY OPTIMIZATION TECHNIQUES

Optimization goals for inference:

Reduce network model size
Speed up network model execution

Observations that inspire sparsity investigations

Biology: neurons are not densely connected
Neural networks:

Trained model weights have many small-magnitude values

Activations may have Os because of ReLU

Figure: ODSD: Denséparse Dense Training for Deep Neural NetworksO S. Han et al. 23

SPARSITY AND PERFORMANCE

Do not store or process 0 values -> smaller and hopefully faster model
Eliminate (prune) connections: set some weights to O
Eliminate (prune) neurons
Etc.

But, must also:

Maintain model accuracy

Efficiently execute on hardware to gain speedup

SPARSITY TAXONOMY

Structure:

Unstructured: irregular, no pattern of zeros 1
Structured: regular, fixed set of patterns to choose from
Granularity:

Finest: prune individual values

Coarser: prune blocks of values

Coarsest: prune entire layers

"y

SPARSITY IN A10GPU

Fine-grained structured sparsity for Tensor Cores

50% fine-grained sparsity
2:4 pattern: 2 values out of each contiguous block of 4 must be 0

Addresses the 3 challenges:
Accuracy: maintains accuracy of the original, unpruned network
Medium sparsity level (50%), fine-grained

Training: a recipe shown to work across tasks and networks
Speedup:

Specialized Tensor Core support for sparse math

Structured: lends itself to efficient memory utilization

2:4 structured-sparse matrix

zero value

] -

26

2:4 COMPRESSED MATRIX FORMAT

At most 2 non-zeros In every contiguous group of 4 values
R

Sparse matrix W Compressed matrix W

I

Er
|

—) e C[2 =—b ey C[2
Compressed Matrix: Non-zero z-gkj
data values Indices

Data: ! size
. 2b per non-zero element
16b data => 12.5% overhead
8b data => 25% overhead

28

TENSOR CORE MATH THROUGHPUT

2X with Sparsity

Dense Sparse

INPUT OPERANDS ACCUMULATOR TOPS vs. FFMA Vs. FFMA

FP32

TF32 FP32 156 8X

FP16 FP32 312 16X
BF16 FP32 312 16X
FP16 FP16 312 16X
INT8 INT32 624 32X
INT4 INT32 1248 64X
BINARY INT32 4992 256X

SPARSE TENSOR CORES

Measured GEMM Performance with Current Software

1024 8192 1024 1.44x
1024 16384 1024 1.73x
4096 8192 1024 1.53x
4096 16384 1024 1.78x

GEMM sizes selected from BERTarge

SPARSE TENSOR CORES

Measured Convolution Performance With Current Software

32 1024 2048 14 1 1.52x
32 2048 1024 14 1 1.77X
32 2048 4096 7 1 1.64x
32 4096 2048 7 1 1.75x
256 256 512 7 3 1.85x

Kernel sizes selected from ResNeXt101 32x16d/ResNet50

NETWORK PERFORMANCE

End to End Inference Speedup

NETWORK DATATYPE SCENARIO PERFORMANCE
BS=256,SeqlLenr=128 6200 seq/s
BER{Large INTS
BS=1256, SeqlLen=128 1.3X-1.5X
BS=256 2700 images/second
FP16
BS=1256 Up to 1.3X
ResNeXt101 32x16d _
N NTE BS=256 4400 images/second

BS=1256 Up to 1.3X

32

RECIPE FOR 2:4 SPARSE NETWORK TRAINING

Dense weights

1) Train (or obtain) a dense network

2) Prune for 2:4 sparsity

2.4 sparse weights

3) Repeat the original training procedure

Same hyperparameters as in step-1

Initialize to weights from step -2 |
Retrained 2:4 sparse

Maintain the O pattern from step -2: no need to recompute the mask weights

IMAGE CLASSIFICATION

ImageNet
Accuracy

Network Dense FP16 FP16

ResNet34 73.7 73.9 0.2 73.7 -
ResNet50 76.6 76.8 0.2 76.8 0.2
ResNet101 7.7 78.0 0.3 77.9 -
ResNeXt50-32x4d 77.6 7.7 0.1 7.7 -
ResNeXt101-32x16d 79.7 79.9 0.2 79.9 0.2
DenseNet121 75.5 75.3 -0.2 75.3 -0.2
DenseNet161 /8.8 /8.8 - 78.9 0.1
Wide ResNet50 78.5 78.6 0.1 78.5 -
Wide ResNet101 78.9 79.2 0.3 79.1 0.2
Inception v3 /7.1 /7.1 - 77.1 :
Xception 79.2 79.2 - 79.2 -
VGG16 74.0 74.1 0.1 74.1 0.1

VGG19 75.0 75.0 - 75.0 -

IMAGE CLASSIFICATION

ImageNet
Accuracy

Network Dense FP16 FP16

ResNet50 (SWSL) 81.1 80.9 -0.2 80.9 -0.2
ResNeXt101-32x8d (SWSL) 84.3 84.1 -0.2 83.9 -0.4
ResNeXt101-32x16d (WSL) 84.2 84.0 -0.2 84.2 -
SUNet7-128 76.4 76.5 0.1 76.3 -0.1
DRN105 79.4 79.5 0.1 79.4 -

WSL = Weakly Supervised Learning
SWSL = SeraWeakly Supervised Learning 35

SEGMENTATION/DETECTION

COCO 2017 pbox AP

Accuracy

Network Dense FP16 FP16

MaskRCNMNRN50 37.9 37.9 - 37.8 -0.1
SSDRN50 24.8 24.8 - 24.9 0.1
FasterRCNNRN5GFPN 1x 37.6 38.6 1.0 38.4 0.8
FasterRCNNRN5GFPN 3x 39.8 39.9 -0.1 39.4 -0.4
FasterRCNNRN101FPN3Xx 41.9 42.0 0.1 41.8 -0.1
MaskRCNMNRN5GFPN 1x 39.9 40.3 0.4 40.0 0.1
MaskRCNNRN5GFPN3x 40.6 40.7 0.1 40.4 -0.2
MaskRCNMNRN10XFPN3x 42.9 43.2 0.3 42.8 -0.1
RetinaNet-RN5GFPN1x 36.4 37.4 1.0 37.2 0.8
RPNRN5GFPN 1x 45.8 45.6 -0.2 45.5 -0.3

RN = ResNet Backbone
FPN = Feature Pyramid Network
RPN = Region Proposal Network %5

NLP - TRANSLATION

ENDE WMTO14
Accuracy
Network Metric Dense FP16 FP16
GNMT BLEU 24.6 24.9 0.3 24.9 0.3
FairSeq Transformer BLEU 28.2 28.5 0.3 28.3 0.1
Levenstein Transformer Validation Loss 6.16 6.18 -0.2 6.16

37

NLP D LANGUAGE MODELING

Transformer-XL, BERT

Accuracy
Network Dense FP16 FP16
Transformer-XL enwik8 BPC 1.06 1.06
BERTBase SQuADv1.1 F1 87.6 88.1 0.5 88.1 0.5

BERTLarge SQUADv1.1 F1 91.1 915 04 915 04

38

SUMMARY (MIXED PRECISION)

A100 introduces wide variety to Tensor Cores for DL training - FP16/BF16/TF32
TF32 is the default on A100
FP16/BF16 options are for maximum performance
To enable Tensor Cores:
No code changes for TF32
AMP for FP16/BF16
To maximize pertf:
Make use of DL Profilers

Ensure training time spent on GPU and math-bound layers, as well as TC utilization

SUMMARY (SPARSITY)

We moved fine -grained weight sparsity from research to production
Fine-grained structured sparsity Is:
50% sparse, 2 out of 4 elements are zero

Accurate with our 3 -step universal fine -tuning recipe

Simple recipe: train dense, prune, re -train sparse
Across many tasks, networks, optimizers

Fast with the NVIDIA Ampere ArchitectureOs Sparse Tenso€ores

Up to 1.85x in individual layers
Up to 1.5x in end -to-end networks

20

PROGRAMMINNVIDIAAMPERE ARCHITECTURE

Deep Learning and Math Libraries using Tensor Cores
CuDNN, cuBLAS, cuTENSOR, cuSOLVER, cuFFT, cuSPARSE
OCUDNN V8: New Advances in Deep Learning AcceleratitD (GTC 2020 - S21685)
OHow CUDA Math Libraries Can Help you Unleash thed®ver of the New NVIDIA A100 GPUO (GTC 2020 b S21681)
Olnside the Compilers, Libraries and Tools for Accelerated ComputingO (GTC 2020 B S21766)

CUDA C++ Device Code
CUTLASS, CUDA Math API, CUB, Thrust, libcu++

CUDA-accelerated math
libraries with host-side API

CUDA device code

TFLOPS

CUBLAS

3rd GENERATION TENSOR CORES ADD SUPPORT FOR FP64 & NEWIor&EEBMPUTE TYPE TF32

Mixed Precision Matrix Multiply on A100 FP64 Matrix Multiply: A100 vs V100
20
- M Paiois E:",i\/“
I
Y
L INT
240 X ,'5A~A' a §

—a—FP16 Tensor Core

——A100 FP64 Tensor Core (DMMA)

200 R/ BF16 Tensor Core

| 2
TF32 Tensor Core 1 —*~-V100 FP64
——FP32
Il n
160 i o
o) S
= :
‘\ '_
120 8
J
rn\
80 /
' 4
40
0 0
0 1024 2048 3072 4096 5120 6144 7168 819z 0 1024 2048 3072 4096 5120 6144 7168 819z
Matrix Size (m=n=k) Matrix Size (m=n=k)

22

CUBLAS

NO MORE ALIGNMENT RESTRICTIONS FOR TENSOR CORE EXECBTBONTELOF MATRIX MULTIPLIES*

AlignN means alignment to 16bit multiplies of N. For example, align8 are problems aligned to 128bits or 16 bytes.

(*) In some cases if heuristics determine it will r esult in better performance kernels that do not use the tensor cores might be selected -

CUTENSOR

PERFORMANCE IMPROVEMENTS FROM FP64 AND TF32 COMPUHEJERES

24

25

CUSOLVER

DENSE LINEAR ALGEBRA PERFORMANCE ON THE NEW NVIIZAXSIXOA 1002

Dense Linear Algbra Performance Comparison Between GA10 and GV100

2.5
v —fm
2.0
al5
2 oo s oo
©
(D]
Q
7
1.0
-2-DGETRF (LU)
DGEQRF (QR)
0.5
-o-DPOTRF (Cholesky)
--DSYEVD (Symm. Eigensolver)
0.0
(e} o < o\ o [e¢] [(e] <t AN o [ee] O < N o (s} (] <t
< (2] < (o)) < e8] ™ [e 0] ™ [ee] [9V] N~ (9] N~ AN (] i (o]
o o — — AN N (2] ™ < < Ie} Lo (] O N~ N~ [ee] (s}
N <t © [e] o N < (o} [e0] o N < <] [e0] o AN <t O
— — — i i N AN N (qV N ™ ™ (92] (90}

Matrix Size

Results comparing CUDA 11.0 cuSOLVER NVIDIA A100 to CUIDA on V100.

2.4X Speed-up per
GPU performance

I A

26

TENSOR CORE ACCELERATED LIBRARIES

Multi-precision numerical methods
Solving linear system of dense equations Ax=Db

LU factorization is used to solve a

linear system Ax=b
o =E
o
then ‘ I=I
Ux =y

27

LUx=Db

TENSOR CORE ACCELERATED LIBRARIES

Multi-precision numerical methods
Solving linear system of dense equations Ax=Db

350
300
250
200
150
100

50

TENSOR CORE ACCELERATED LIBRARIES

Multi-precision numerical methods
Solving linear system of dense equations Ax=Db

GA100 Tflops

29

350
300
250
200
150
100

50

TENSOR CORE ACCELERATED LIBRARIES

Multi-precision numerical methods
Solving linear system of dense equations Ax=Db

GA100 Tflops

30

44

&= FP16 getrf
40 | <= BF16 getrf
36 “©=TF32 getrf
FP64 getrf
32 -
28 3.5X
?0124 - 1
E 20
16 -
12 -
8 L
4 -
o LOY

TENSOR CORE ACCELERATED LIBRARIES

Performance of the LU factorization with different p recisions

2k 4k 6k 8K1LOk 14k 18k 22k 26k 30k 34k 40k
Matrix size

' LU using

| LU usingFP16-TC
' LU using BF16-TC
' LU using TF32-TC

Results obtained using CUDA 11.0 and A100 GPU.

31

TENSOR CORE ACCELERATED LIBRARIES

Accuracy just after the reduced precision LU factorization

' FP64-TC provide a solution down to
the FP64 accuracy

' TF32 and FP16 provide a solution to
around 1E-05 accuracy

I Obtained solution has 11 digits loss
compared to the FP64 one,

Results obtained using CUDA 11.0 and A100 GPU.

32

TENSOR CORE ACCELERATED LIBRARIES

How can we get to FP64 accuracy?

ldea: use reduced precision to compute the expensive flops () and then iteratively refine the
solution () in order to achieve the FP64 level of accuracy

Iterative refinement for solving Ax = b:

Perform a factorization in reduced precision A=LU

E. Carson, N. J. Higham, Accelerating the Solution of Linear Systems by Itera tive Refinement in Three Precisions, SIAM J. Sci. Comput., 40(2), AB17DA847.
A. Haidar, S. Tomoy, J. Dongarra, and N. J. Higham, Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement S olvers, SC-18 Dallas, 2018 33
A.Haidar, H. Bayraktar, S. Tomoy, J. Dongarra, N. J. Higham Mixed-Precision Iterative Refinement using Tensor Co res on GPUs to Accelerate Solution of Linear System s, submitted Royal Society Journal UK 2020.

TENSOR CORE ACCELERATED LIBRARIES

How can we get to FP64 accuracy?

ldea: use reduced precision to compute the expensive flops () and then iteratively refine the
solution () in order to achieve the FP64 level of accuracy

Iterative refinement for solving Ax = b:

Perform a factorization in reduced precision A=LU
refine

WHILE || r || > eps_FP64

1. Find correction c such that Ac =r, ¢ = U\(L\r)

2. X=X+¢C
3. r=b b Ax (with original A).
END

E. Carson, N. J. Higham, Accelerating the Solution of Linear Systems by Itera tive Refinement in Three Precisions, SIAM J. Sci. Comput., 40(2), AB17DA847.
A. Haidar, S. Tomoy, J. Dongarra, and N. J. Higham, Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement S olvers, SC-18 Dallas, 2018
A.Haidar, H. Bayraktar, S. Tomoy, J. Dongarra, N. J. Higham Mixed-Precision Iterative Refinement using Tensor Co res on GPUs to Accelerate Solution of Linear System s, submitted Royal Society Journal UK 2020.

34

S~~~

g—

Tflop/s

44
40
36
32
28
24
20
16
12

TENSOR CORE ACCELERATED LIBRARIES

Performance Behavior, Hilbert matrices,

“© FP16->64 on V100
FP64 on V100

a7 | |

2k4k 6k 8KIOk 14k 18k 22k 26k 30k 34k 40k
Matrix size

Problem generated with Hilbert matrices.

solving Ax = b using

solving Ax = b using FP16 Tensor
Cores LU and iterative refinement to
achieve FP64 accuracy

FP16 is about 4X faster within a
solution to the FP64 accuracy.

Results obtained using CUDA 11.0 and V100 GPU.

S~~~

g—

Tflop/s

44
40
36
32
28
24
20
16
12

TENSOR CORE ACCELERATED LIBRARIES

Performance Behavior, Hilbert matrices,

“© FP16->64 on V100
FP64 on V100

a7 | |

2k4k 6k 8KIOk 14k 18k 22k 26k 30k 34k 40k
Matrix size

Problem generated with Hilbert matrices.

solving Ax = b using

solving Ax = b using FP16 Tensor
Cores LU and iterative refinement to
achieve FP64 accuracy

FP16 is about 4X faster within a
solution to the FP64 accuracy.

Results obtained using CUDA 11.0 and V100 GPU.

TENSOR CORE ACCELERATED ITERATIVE REFINEMENT SO

Performance Behavior, Hilbert matrices,

44 T T T T T T T T
FP64 on A100/V100 (solid/dashed)

40 / «@=FP16->64 on A100/V100 (solid/dashed)
| =%=BF16->64 on A100 (solid)

36)

“©= TF32->64 on A100 (solid)

' Speedup compared to FP64 has same

32
08 >1.8X trend on both hardware.
Dogl ! TF32is 3.3X faster within a solution
3 to the FP64 accuracy.
=20+
= ' FP16 is 3.5X faster within a solution to
161 the FP64 accuracy.
12 - :
' A100 provides about speedup
8 1 over V100 for both FP16 and FP64

variants

2k4k 6k 8KIOk 14k 18k 22k 26k 30k 34k 40k
Matrix size

Problem generated with Hilbert matrices. 36

Results obtained using CUDA 11.0 and V100, A100 GPU.

TENSOR CORE ACCELERATED ITERATIVE REFINEMENT SO

Performance Behavior, Hilbert matrices,

44 T T T T T T T T
FP64 on A100/V100 (solid/dashed)

40 / «@=FP16->64 on A100/V100 (solid/dashed)
| =%=BF16->64 on A100 (solid)

36)

“©= TF32->64 on A100 (solid)

' Speedup compared to FP64 has same

32
08 >1.8X trend on both hardware.
Dogl ! TF32is 3.3X faster within a solution
3 to the FP64 accuracy.
=20+
= ' FP16 is 3.5X faster within a solution to
161 the FP64 accuracy.
12 - :
' A100 provides about speedup
8 1 over V100 for both FP16 and FP64

variants

2k4k 6k 8KIOk 14k 18k 22k 26k 30k 34k 40k
Matrix size

Problem generated with Hilbert matrices. 36

Results obtained using CUDA 11.0 and V100, A100 GPU.

TENSOR CORE ACCELERATED ITERATIVE REFINEMENT SO

Matrices from SuiteSparse,

TCAIRS NUMERICAL BEHAVIOR

Matrices from SuiteSparse and other problems,

Solving matrices from the SuiteSparse
collection corresponding to a wide
range of applications in fluid dynamics,
structural mechanics, materials
science, nuclear energy, oil and gas
exploration and others

TF32 converges faster than both FP16
and BF16 and is able to solve wider
range of problems

Results obtained using CUDA 11.0 and A100 GPU.

38

TCAIRS PERFORMANCE BEHAVIOR

Matrices from SuiteSparse and other problems,

TF32 converges faster than both FP16 and
BF16 and is able to solve wider range of
problems

In terms of performance TF32 provide time
to solution close or better than both BF16
and FP16

In summary, TF32 can be considered the
most robust and the fastest variant

Results obtained using CUDA 11.0 and A100 GPU.

39

TENSOR CORE ACCELERATED ITERATIVE REFINEMENT SO

Tensor Core Accelerated lterative Refinement Solver (TCAIRS)

January 2019 Nov 2019 May 2020
Magma 2.5.0

TCAIRS-LU real
FP64, FP32, FP16-TC

TCAIRS-LU real
TCAIRS-LU complex
TCAIRS-LU NRHS

10.2 +
TCAIRS-QR real
TCAIRS-QR complex

FP64, FP32, FP16-TC TCAIRS-QR NRHS

FP32, FP16-TC
FP64-TC, TF32-TC, BF16-TC
Many other advancements

Mixed Precision Solvers are gaining a lot of attention for their power to
provide a solution up to 4X-5X faster and for their energy efficiency.

40

CONCLUSION

DonOt blindly use double precision without considering what precision is required
Judicious use of precision tuning can lead to >4x spe edup

Optimal approach may utilize 3 or even more different precisions

Mixed precision can accelerate compute and bandwidth bound parts

use libraries where applicable
design your code so it is easy to play with precisio n

41 SANVIDIA.

