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Abstract

Electronic structure calculations provide insight into the physics behind a large va-
riety of properties of solids, among them transport properties. Density functional
theory has proven to be a very powerful tool for this. Real-space methods of elec-
tronic structure calculations have the advantages that they allow flexible boundary
conditions and, even more importantly, are expected to perform excellent on mas-
sively parallel computers. This opens new opportunities for investigating entire nano
architectures composed of hundreds of atoms. Combining electronic structure and
electronic transport calculations in a consistent formalism provides a framework for
simulating and predicting the functionality of realistic quantum devices. In this work,
real-space finite difference method based on norm-conserving pseudopotentials is pre-
sented as a new tool for electronic structure calculations. The electronic structure
and transport properties have been determined for terephthalic acid, suspended be-
tween Cu(110) surfaces. The zero voltage conductivity vanishes due to the insulating
nature of this molecule, but shifting of the chemical potential in the junction allows
drastic changes of the electron transmission.
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1 Introduction

The electronic structure of an atomic configuration is a major key towards under-
standing and predicting a wide range of material properties. Chemists and physicists
are interested in quantities that can be observed and measured and thus verified in
an experimental manner and calculated by realistic simulations. This includes me-
chanical properties such as bulk-, shear- and torsion-moduli, stiffness and rigidity as
well as optical absorption spectra, thermodynamical properties such as heat capacity,
melting points, structure formation and excitations and electrical properties such as
dielectric response and conductivity. This work will concentrate on the methods to
calculate the electronic structure, focusing on transport properties.

The electronic structure is governed by the Schrödinger equation. For single-electron
systems, this equation can solved analytically(at least for certain potentials); such
solutions have been known since the discovery of quantum mechanics. However, the
interesting effects arise from the interactions of many electrons. An analytical solu-
tion for the many-body Schrödinger has not been found; the only way to determine
electronic structure of atoms and systems of many atoms is numerically. Physics
represented on a computer is always subject to certain constraints and limitations.
The major approximation is that any number, infinite in nature, becomes finite on
the machine. For example real numbers R are truncated to the finite subset of ra-
tional numbers Q, i.e. QComputer ⊂ Q ⊂ R. This effect is small for most applications
and can be neglected with respect to other approximations. Quantum mechanics,
especially considering solutions of the Schrödinger equation, are based on infinite-
dimensional function spaces. The truncation to finite-dimensional subspace carries
certain errors. However, the result of a calculation is assumed to converge with re-
spect to the number of dimensions.

The solution of the many-body Schrödinger equation meets a computational effort
that increases exponentially with the number of dimensions and electrons. This be-
havior can be circumvented by applying mean field approximations to the physics
of a many-body electron system. In the framework of density functional theory, the
local density [1, 2] approximation allows to decouple the enormous sets of non-linear
equations. This works well for a system of weakly interacting electrons.

Density functional calculations have been performed on a vast variety of systems in
the last decades. Many properties of complicated systems have been investigated
that require a relatively small computational effort. The effort mainly depends on
aspects of the system size such as volume, number of atoms, number of electrons,
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but it also depends strongly on the symmetries as well. Every symmetry introduces
constraints that, on one hand, reduce the number of degrees of freedom and, on the
other hand, decouple the equations further. Consequently, given symmetries can al-
ways be exploited to reduce and restructure the computation.

Nowadays, interests point towards calculations of systems of low symmetry and large
number of atoms, thus require a larger effort. Examples such as single impurities in
bulk systems, molecules on surfaces and entire nano devices are challenging tasks.
The growing demand of larger systems is compatible with the development of com-
puter techniques which has grown exponentially in both, the capacity and the speed,
over the last four decades. However, processor technologies will come to a halt in
increasing the clock rate since the physical limits of the materials in use are about
to be exceeded soon. The development of supercomputers has focused on multi-
core systems. Massively parallel machines are dominating the top-ten lists of the
fastest computers of the world. The distribution of tasks and memory constricts
the applications running efficiently on such systems to a certain type of parallel code
architecture. For large setups, the real-space approach towards density functional cal-
culations allows exploitation of the locality of the special operators very efficiently.
The entire real-space region is therefore decomposed into domains so that the task of
each domain can be assigned to one process element. Usually, one process element is
represented by one node, i.e. a set of one or more processors. The parallel efficiency
for totally independent tasks on a massively parallel computer is 100%. Dependencies
between the tasks need additional communication which is not necessary running on
a single processor. This decreases the efficiency on a parallel machine. If the code
architecture provides a restricted communication scheme, the parallel efficiency is
supposed to be very high. It is an intrinsic property of local and localized operations
in real-space to limit the communication to the nearest-neighbors of a process ele-
ment. This promises an efficient usage of the supercomputers.

Nano device engineering tries [3] to find new ways to employ quantum effects for in-
formation technology. The conventional transistor is commonly used as an amplifier
in its linear region. For digital information technology, however, the best character-
istic of a transistor would be a step function rather than a smoothly varying analog
switch. Certain molecules have turned out to be very promising candidates for ex-
pedient digital switches. The underlying mechanism is based on molecules that are
stable in two configurations and can therefore be tuned and switched by external
fields easily. Scanning tunnelling microscopy measurements and density functional
calculations have shown that organic molecules with a carboxylate group easily ad-
sorb to certain surface sites on copper (110) surface. This is a promising basis for
creating a functional device at the surface.

In this work, a novel real-space finite difference method [4] based on norm-conserving
pseudopotentials are applied to compute electronic structures and transport proper-
ties on a transport setup of terephthalic acid. In particular, equidistant real-space
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grids are used to represent wave functions and potentials of the density-functional
calculations. Kleinman-Bylander type norm-conserving pseudopotentials [5, 6, 7] are
applied to describe the properties of valence electrons in absence of core electrons
not relevant for bonding or transport properties.

The real-space finite-difference approximations [4] enables the evaluation of the ki-
netic energy for real-space represented wave functions and is also applied to solve the
Poisson equation in an iterative scheme. In general, iterative solvers [8, 9] dominate
in most points of the real-space electronic structure calculation because the large
number of degrees of freedom affects direct methods to become too expensive. The
eigenvalue equation, for example, is solved by a conjugate gradient algorithm. Ono’s
double-grid technique [10] to treat the norm-conserving pseudopotential enables the
use of relatively coarse grid spacings. This way higher accuracy of the results can be
achieved and unphysical oscillations can be reduced.

On the basis of the pre-calculated electronic structure, electronic transport prop-
erties of terephthalic acid and similar aromatic molecule are determined using the
over-bridging boundary method. In the Landauer-Büttiker transport picture [11],
incident electron waves are matched to the solutions of the junction region. There-
fore, the equilibriums Green-function of the combined system, the molecule and the
surfaces of the electrodes, is determined. The effect of changing various environmen-
tal parameters on the transport properties are investigated in detail. π-conjugated
molecules show delocalized electronic states forming aromatic bonds. These are cho-
sen for this investigation because their electronic structure is well known [12, 13],
especially their adsorption to the metal surface [14]. These molecules are promising
candidates for applications as molecular nano device, since their functionality can be
tuned almost arbitrarily [15].

Electronic devices of anorganic semiconductors have experienced the top-down scal-
ing, miniaturizing the structures down to the wavelength UV light which is commonly
used for lithography processes. However, these devices where well described by clas-
sical physics. Disregarding the difficulties in the production, even smaller circuit
structure e.g. on a silicon chip will somewhen reach the quantum limit and its clas-
sical behavior will be influenced by steric effects. Molecular devices are the basis for
the so called bottom-up approach for electronics. The single molecule as functional
unit opens new ways of tailoring electronic devices which are several nanometers in
size. The synthesis of organic compounds and their deposition on metallic surfaces
are well known fields of chemistry which promises cheap production costs. Therefore,
the application of properly designed organic molecules evokes an increasing interest.
This work provides insight into the real-space finite-difference formalism for the calcu-
lation of the electronic structure and, based upon that, also transport properties. The
first chapters will explain the approximations applied to the physics of the electronic
structure. In particular, they will focus on the way, the local density approximation
makes it possible to exploit the simplicity of density functional theory. Furthermore,
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the numerical representation of the physical quantities and the numerical methods
that enable the computation are introduced. These are the real-space grid, the finite
difference approximation and the pseudopotential method. Taking these building
blocks as a basis, the computational scheme for the determination of the electronic
structure is outlined in detail. Electronic transport calculations may be performed on
top of an electronic structure calculation. Therefore, the subsequent chapter treats
the transport formalism in the single-particle picture and explains the jellium approx-
imation applied to the molecular transport setup that has been investigated in this
work. The transport properties of terephthalic acid and a set of similar, π-conjugated
molecules, embedded between two copper leads, in various geometries are discussed
in the results section.



2 Density Functional Theory

2.1 The many-body system

Quantum mechanics fully describe the phenomena of the nano world. The most
observed properties of solid materials can be explained by solutions of the non-
relativistic many-body Schrödinger equation i ∂

∂t
|Ψfull〉 = Ĥfull |Ψfull〉, where

Ĥfull =

Ne
∑

i

pi
2

2me
+

Na
∑

k

pk
2

2mk
−

Ne
∑

i

Na
∑

k

Zk

|ri − Rk|
(2.1)

+
Ne
∑

i

∑

j<i

1

|rj − ri|
+

Na
∑

k

∑

l<k

ZlZk

|Rl − Rk|
.

Here the Hamiltonian Ĥfull contains the kinetic energy of the electrons, kinetic energy
of the cores, the interactions of electrons with atom cores, electrons with electrons
and cores with cores (in this order). It treats the atom cores as quantum particles.
However the very different scale of masses mcore ≈ 3676 ·Zme justifies the separation
of the of motions according to the different time scales. Therefore it is possible to
treat only the electronic part of the Hamiltonian quantum mechanically assuming
the atomic positions Rk to be parameters i.e. the atomic motion is treated classi-
cally even though their vibrational motion shows quantum nature as well. This so
called Born-Oppenheimer approximation has shown to hold in most cases. It fails
only in very special scenarios where vibronic (combined vibrational and electronic)
states play a central role.

Density functional theory allows an approach towards solving the many-body Schrödinger
equation for interacting electrons. This equation is the basis for (non-relativistic)
quantum mechanics describing atomic interactions

i
∂

∂t
|ΨMB〉 = ĤMB |ΨMB〉 (2.2)

with the electronic Hamiltonian

ĤMB{Rk} =
Ne
∑

i

pi
2

2me
+

Ne
∑

i

Na
∑

k

Zk

|ri − Rk|
+

Ne
∑

i

∑

j<i

1

|rj − ri|
(2.3)
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The challenge arising from this equation is the dimensionality of the underlying
Hilbert space. Considering for example a system where each particle has two accessi-
ble eigenstates, e.g. a spin- 1

2
system, the many-body Hilbert space is 2N -dimensional.

The exponential growth makes it problematic to find eigensolutions of the Schrödinger
equation, since conventional numerical solvers for eigensystems scale with the third
power of the dimension. This leads to a total workload proportional to ∝ 23N for
finding the exact solutions of a spin system with N particles.
Our problem becomes even more challenging with electrons. Quantum mechanics
tells us to express position and momentum of the electrons by a continuous distribu-
tion function. So we have to consider an entire function space to represent their state.
Most approximations are based on truncating these function spaces to subspaces of
a finite number of dimensions. However there is a constant tradeoff: The number of
basis functions usually has to be kept large to preserve the accuracy of results and
small at the same time because computations using d basis functions would still scale
proportional to ∝ d3N , which makes this practically impossible for a system with a
few electrons.
Electrons interact in many ways, but two interactions are most important: The
Coulomb repulsion which is due to their charge and the exchange mechanism which
is due to the fact that all electrons are identical and therefore cannot be distinguished
from each other. Consider the electronic Hamiltonian of the many body system of
interacting electrons

ĤMB =
Ne
∑

i

pi
2

2me

+
Ne
∑

i

V (ri) +
Ne
∑

j>i

1

|rj − ri|
(2.4)

where V (r) stands for the one-particle external potential of the atom cores like the
electron-core interaction in equation (2.1). Optionally an additional electrical field
can be included. Regarding the third sum, one may recognize the Coulomb energy
from two repelling electrons according to the laws of electrostatics. The other interac-
tion of the electrons, the exchange mechanism, is not directly visible as an expression
in the Hamiltonian. It arises from the fact that the many-body wave function has
to be antisymmetric under exchange of any two identical particles. Consider a two-
particle wave function ΨManyBody(r1, s1; r2, s2) with the spatial coordinates ri and the
spin states si. The Pauli exclusion principle demands that no two fermions are in
the same state. The consequence is a wave function that is antisymmetric under the
exchange of the particles, i.e. simultaneously interchanging r1 ↔ r2 and s1 ↔ s2

gives a factor −1:

ΨMB(r2, s2; r1, s1) = −ΨMB(r1, s1; r2, s2) (2.5)

Now, if r1 = r2 = r and s1 = s2 = s this results in

ΨMB(r, s; r, s) = −ΨMB(r, s; r, s) (2.6)



2.1 The many-body system 9

i.e. Ψmanybody(r, s; r, s) = 0. Therefore no two electrons can have the same position
and spin coordinates. This holds for more than two particles, too. In practice this
means that two electrons with the same spin will avoid being near to each other,
giving a minimum in the spatial electron-electron correlation function known as the
exchange hole. Because the electrons avoid coming close to each other, where the
Hartree energy is high, the exchange hole leads to a lowering of the total energy.

Density functional theory for systems of interacting electrons was first introduced by
Hohenberg and Kohn(1964) [16] who investigated on the Thomas-Fermi model. It
was found that the electronic ground state energy only depends on the total electron
density. From that point on, many different attempts towards finding the predicted
unique mapping (called functional) between the total ground state density n(r) and
the total energy E{n(r)} have been made. Under the assumption that the exact
functional is known, density-functional theory is an exact method and should re-
produce realistic ground state properties. The functional may be divided into the
following parts

E{n(r)} = Te{n(r)} + Eee{n(r)} + Eext{n(r)} (2.7)

with the total kinetic energy Te{n(r)}, the energy from electron-electron interactions
Ee−e{n(r)} and the contribution from external potentials Eext{n(r)} including the
attractive atom core potentials. The simplest part of this expression is the energy
contribution due to the external potential

Eext{n(r)} =

∫

V

d3rn(r)Vext(r) (2.8)

The electron-electron interaction energy may be evaluated according to

Eee{n(r)} =

∫

V

d3r

∫

V

d3r′
n(r)n(r′)

r − r′
+

∫

V

d3rn(r)εxc{n(r)} (2.9)

Herein the electrostatic repulsion of the electrons is included. Additionally the con-
tributions εxc enter here that will be discussed later.
More complicated is the evaluation of the kinetic energy out of the density. Given
the exact many-body wave-function, the kinetic energy could be evaluated via the
Laplacian, in reciprocal space or real space. The latter becomes

Te{n(r)} = −1

2

∫

V

N
∏

k=1

d3rk Ψ∗
MB(r1; . . . ; rN)

[

N
∑

i=1

∆ri

]

ΨMB(r1; . . . ; rN) (2.10)

The mapping ΨMB −→ n(r) is well known because the density is just the probability
of finding a particle at position r, so n(r) = 〈ΨMB| r〉 〈r|ΨMB〉. However the inverse
is totally unknown.
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An attempt towards finding the correct many-body wave function is the Hartree-Fock
method using a determinant of single particle wave functions proposed by Slater [17]

Ψ
(n)
manybody(r1, . . . , rn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(r1) φ2(r1) · · · φn(r1)
φ1(r2) φ2(r2) φn(r2)

...
. . .

...
φ1(rn) φ2(rn) · · · φn(rn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.11)

The mathematical construct of determinants intrinsically satisfies the antisymmetry
constraint imposed by the Pauli principle. The single particle states φi(r) have to
obey the Hartree-Fock equation

(

−1

2
∆ + V̂loc(r)

)

|φi〉 +

(

∑

k

〈φk|
1

|r− r′| |φk〉
)

|φi〉

−
∑

k

(

〈φk|
1

|r− r′| |φi〉
)

|φk〉 = Ei |φi〉 (2.12)

which follows from the many-body Schrödinger equation with the ansatz of a Slater-
determinant for the many-body wave function. This leads to a very costly compu-
tational scheme that turned out not to contain the full electron-electron interaction.
Even though the exchange interaction is treated in an exact manner, the correlation
effect is not included in this.
Correlations in the statistical meaning are cross dependencies between the particles
coordinates. Assuming the many body wave function as a product of single particle
states gives a totally uncorrelated description for the electrons i.e. their probability
distributions are independent of each other.

Similar to the single-particle wave functions of the Hartree-Fock method, single-
particle wave functions are constructed in density functional calculations which en-
able to evaluate the kinetic energy functional. Kohn and Sham(1965) [1] showed that
these single-particle states have to obey the Kohn-Sham equation which takes the
form of a one-particle Schrödinger equation with an additional term representing the
interaction of the single electron with the total density of all electrons

ĤKS |ψKS〉 =

{

p2

2me
+ V̂eff{n}

}

|ψKS〉 = εKS |ψKS〉 . (2.13)

Here the right hand side term εKS has the unit of an energy but does not necessarily
represent a physically measurable quantity because it is the single-particle energy of
the non-interacting system. From the mathematical point of view it rather must be
understood as a Lagrange multiplier that arises due the conservation of the particle
number. Nevertheless the Kohn-Sham energies εKS are often treated as physically
meaningful and so are derived quantities such as the density of states.
The effective potential operator V̂eff includes all interactions of the single electron;
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the electrostatic interaction with the electron density (Hartree potential), the ion
potential and any external potential are treated classically. Corrections for the ne-
glected exchange mechanism mentioned above, corrections for the kinetic energy and
a special effect called correlation are included in the exchange-correlation potential
Vxc{n}(r).

2.2 Mean-field approximation

The usage of density functionals has turned out to be a very successful application of
a mean field method. The mean field approximation reduces a many body problem to
a single particle system by creating an effective interaction. Here it can be considered
as mapping a system with N interacting electrons to N systems of non-interacting
electrons.

exact complexity d3N −→ N d3 mean field complexity

It is easy to see that this, on the one hand reduces the complexity but on the other
hand truncates interactions in a certain way. Density functional calculations for ex-
ample do not reproduce the effects observed in materials whose electronic structure
is known to be strongly correlated.

2.3 Local density approximation

The simplest kind of approximation gives a potential Vxc{n(r′)}(r) that includes
interactions with the total density n(r′) only at the position r′ = r. Therefore it is
called the local density approximation (LDA). It is based on the assumption that the
exchange interaction can be approximated by the exchange of a single electron with
constant density of electrons all over space that has the value n(r). The exchange
energy then is given as

Ex{n} =

∫

V

d3r n(r)εx(n(r)) εx(n) = − 3

4π
(3π2 n)

1
3 (2.14)

calculated in the Hartree-Fock model. The potential arising from this is the functional
derivative with respect to the density

Vx{n(r)} =
δεx(n)

δn(r)
= − 1

4π
(3π2)

1
3 n− 2

3 (2.15)

The contributions from correlation are evaluated by a numerically approximated
function that has been fitted to exact many-body results achieved from Quantum
Monte-Carlo simulations. For magnetic systems, the exchange-correlation poten-
tial depends on the total density n(r) and the magnetization density m(r) where



12 Density Functional Theory

n(r) = n↑(r) + n↓(r) and m(r) = n↑(r) − n↓(r) and is then called local spin density
approximation (LSDA).

0 5 10 15 20
density /Angstrom^3

-50

-40

-30

-20

-10

0

[
e
V
]

V_xc(up)[n,m]
V_xc(dn)[n,m]
V_xc[n]
E_xc[n]
m = 10%

Exchange-correlation potential and energy LDA/LSDA

Figure 2.1: Exchange-correlation potential Vxc(n) and energy εxc(n) for the local den-
sity approximation. Including spin (LSDA), the potential depends on the
local magnetization. Here a 10% magnetization is shown.

Throughout this work the local density approximation of
Perdew and Zunger (1981) [2] has been used.



3 Real-Space Finite-Difference

3.1 Uniform grids

The kinetic energy operator appears in the Schrödinger equation in the form of the
Laplacian, i.e. the second derivative with respect to all three spatial directions.
The central finite difference method (FD) truncates this derivative to a difference
quotient. Consider an analytical function f(x) and its representation on a uniform
grid with a constant grid spacing h. The values fi = f(xi) correspond to the function
evaluated at the grid points xi. By using a Taylor expansion up to second order we
can express the value of the analytical function at neighboring points to both sides.

fi−1 = f(xi−1) = f(xi − h)
Taylor
= f(xi) − hf ′(xi) +

1

2
h2f ′′(xi) + O(h3)

fi = f(xi) (3.1)

fi+1 = f(xi+1) = f(xi + h)
Taylor
= f(xi) + hf ′(xi) +

1

2
h2f ′′(xi) + O(h3)

This can be rewritten in matrix form as




fi−1

fi

fi+1



 =





1 −1 1
2

1 0 0
1 1 1

2









f(xi)
hf ′(xi)
h2f ′′(xi)



 (3.2)

This is a matrix relation between the vector of function values (fi−1, fi, fi+1) and the
derivatives (f(xi), hf

′(xi), h
2f ′′(xi)) of the function f(x) at the central grid points

xi. The corresponding powers of h have been kept for simplicity of the notation.
Inversion of this matrix shows that the zeroth, first and second derivative of f can
be expressed as a linear combination of the values fi−1, fi and fi+1





0 1 0
−1

2
0 1

2

1 −2 1









fi−1

fi

fi+1



 =





f(xi)
hf ′(xi)
h2f ′′(xi)



 (3.3)

(Nf = 1) ⇒ f ′′(xi) =
1

h2
(fi−1 − 2fi + fi+1) (3.4)

Thus, the coefficients for the second derivative are c
′′

−1 = 1, c
′′

0 = −2 and c
′′

1 = 1.
It is easy to see that even derivatives (zeroth, second, fourth...) have a symmetric
coefficient scheme while the symmetric coefficient is antisymmetric for odd derivatives
(first, third...). To calculate higher derivatives than the second, one has to perform
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the Taylor expansion for more than one neighboring site. With this method an even
more accurate approximation for the second derivative can be achieved. Table 3.1
shows the coefficients for different numbers of considered neighbors, Nf .
The general case reads

f(xi+j) = f(xi + jh) = fi+j =

2Nf
∑

k=0

(jh)k

k!

∂kf(xi)

∂xk
+ O(h2Nf+1) , j ∈ [−Nf , Nf ]

(3.5)

The matrix of Taylor coeffients then is tjk = jk/k!. So the coefficient scheme for the
first 2Nf derivatives are given by the rows of the inverse matrix of tjk. For the m-th
derivative, one finds

f
(m)
FD (xi) =

1

hm

Nf
∑

l=−Nf

{

[tjk]
−1}

ml
fi+l (3.6)

An explicit formula for high order coefficients of the first and second derivatives that
does not require the inversion of a (2Nf + 1) × (2Nf + 1) matrix can be found later
(Chapter 3.3).

i− j 0 ±1 ±2 ±3 ±4 ±5 ±6
Nf=1 -2.000 1.000
Nf=2 -2.500 1.333 -0.083
Nf=3 -2.722 1.500 -0.150 0.011
Nf=4 -2.847 1.600 -0.200 0.025 -0.0018
Nf=5 -2.927 1.667 -0.238 0.040 -0.0050 0.00032
Nf=6 -2.982 1.714 -0.268 0.053 -0.0089 0.00103 -0.00006

Table 3.1: Finite difference coefficients for the second derivative. The number of
finite difference neighbors 2Nf determines the order of approximation.
Zero-valued coefficients are not shown. The error from this approach is of
the order h2Nf .

The second derivative relates the grid points xi and xj for all |i − j| < Nf so the
Laplacian operator is not local (diagonal in spatial representation) and is represented
by a symmetric banded matrix. In the case of one spatial dimension these bands en-
close the diagonal from the upper and lower site as depicted in Figure 3.1.

The sparsity of these matrices enables a banded storage form. If one includes the
3-dimensional case, these bands are not necessarily close to the diagonal any more.
Periodic boundary conditions cause non-zero matrix elements relating the first and
last grid points. The second picture in Figure 3.1 differs from the first only by an
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entry in the upper left and lower right corner.
The absolute value of these matrix element is as before determined from the finite
difference coefficients but there is one degree of freedom in the complex phase. The
physics behind it is a phase modulation of a complex wave function which extends
over an infinite number of unit cells. Therefore the Bloch-theorem can be applied
and the complex phase factor of the upper right element is set to c1 e

−ikL where L
denotes the extend of the one-dimensional unit cell. The kinetic energy operator is
an observable and so its matrix representation is hermitian. This fully determines
the lower left element to be c1 e

ikL, where c1 is real.

Figure 3.1: Matrix scheme for finite difference representation of the second derivative
for Nf = 1 on a one-dimensional equidistant grid with Ng=8 grid points.
On the left side, finite boundary conditions are depicted, assuming that
any function f(x) vanishes outside the super cell. On the right hand
side, a matrix with periodic boundary conditions is depicted. The matrix
representation in general is very sparse, i.e. the ratio of nonzero entries

is
(2Nf +1)

Ng
in the one-dimensional case.

3.2 Error estimate

Again the function represented on the grid is expanded into the Taylor polynomial.
This time two orders more then requested to set up the matrix are taken into account.
This gives an estimate for the error of the finite difference approach towards the
second derivative:

f(xi − h)
Taylor
= f(xi) − hf ′(xi) +

h2

2
f ′′(xi) −

h3

6
f (3)(xi) +

h4

24
f (4)(xi) + O(h5) (3.7)

f(xi + h)
Taylor
= f(xi) + hf ′(xi) +

h2

2
f ′′(xi) +

h3

6
f (3)(xi) +

h4

24
f (4)(xi) + O(h5) (3.8)

f ′′(xi) ≈
1

h2
[1,−2, 1] ·





f(xi − h)
f(xi)

f(xi + h)



− h2

12
f (4)(xi) (3.9)
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Obviously the error in the second derivative enters as h2. It can be shown that for
Nf > 0 the error enters with h2Nf multiplied by the (2Nf+2)-th derivative and an
exponentially decreasing coefficient. Essentially, there are two ways to improve the
quality of these derivatives. On one hand, the grid spacing h can be decreased which
leads to an enormous increase of the computational costs. The other possibility is
employing a higher order finite difference formula.

0 1 2 3 4 5 6 7 8 pi
0 

.067

.174

.264

.335

.391

.436

.474

.505

Ecut

Figure 3.2: Error estimate of the finite-difference approximation for the second
derivative applied to plane waves. Since eikx is an eigenstates of the
derivative operator, its second derivative is known analytically. For the
allowed k-values in [0, π

h
], the FD-approximated 2nd derivative has been

evaluated at the orders 2 to 16. The dispersion relation matches the exact
derivative quite well as long as the k values stay below a certain fraction
of the nominal cutoff wave vector π

h
. The lowest black curve corresponds

to the lowest order FD approximation (2nd order). A higher order finite
difference approximation exploits the cutoff energy more efficiently. The
vertical lines indicate a deviation of the derivative value of 1% and the
horizontal lines the corresponding cutoff energy.

Figure 3.2 shows the dispersion relation of a plane wave where the kinetic energy is
computed with finite difference approximations of various orders and analytically for
comparison. It can be seen that the 2nd derivative deviates more from the analytical
solution 1

2
k2 for low order finite difference sets (lower curves). This means that the

FD approximation is only accurate up to a certain fraction of the nominal cutoff

energy 1
2

(

π
h

)2
. A very efficient way to reduce this error is by increasing the number

of finite difference neighbors such that a larger fraction of the nominal cutoff energy
can be exploited.
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3.3 Lagrange interpolation

The Taylor expansion technique and so the central finite difference formula is equiv-
alent with Lagrange interpolation: a polynomial Q(x) of degree 2Nf is fitted such
that it matches the values fi at the grid points xi perfectly i.e. Q(xi) = fi for all
i ∈ [−Nf , Nf ]. Since a polynomial of degree m has exactly m+1 degrees of freedom,
we have to fit it to exactly 2Nf+1 pairs of point and value (xi, fi). To keep it sym-
metric we choose one central point x0 and Nf neighboring points to each side i.e.
x−Nf

, x−Nf+1, ..., x0, ...xNf−1, xNf
. The generic solution for the Lagrange interpolated

polynomial centered around x0 reads

Q(x) =
∑

i

fi

∏

k 6=i

x− xk

xi − xk
=
∑

i

fi c
(0)
i (x) (3.10)

(all indices in
∑

or
∏

run from −Nf to Nf). The expansion coefficients for the
interpolated function are thus given by

c
(0)
i (x) =

∏

k 6=i

x− xk

xi − xk
(3.11)

So the first derivative of the polynomial reads

Q′(x) =
∑

i

fi
∂

∂x
c
(0)
i (x) =

∑

i

fi c
(1)
i (x) (3.12)

c
(1)
i (x) =

∑

j 6=i

1

xi − xj

∏

k 6=i,j

x− xk

xi − xk

(3.13)

and the second derivative

Q′′(x) =
∑

i

fi
∂2

∂x2
c
(0)
i (x) =

∑

i

fi c
(2)
i (x) (3.14)

c
(2)
i (x) =

∑

j 6=i

1

xi − xj

∑

l 6=i,j

1

xi − xl

∏

k 6=i,j,l

x− xk

xi − xk
(3.15)

This yields a direct formula to compute high order central FD coefficients for the
second derivative c

(2)
i (x = 0) without inverting the Van-der-Monde matrix. On an

equidistant grid, the difference in the denominator xj − xk is an integer multiple of
the grid spacing h and never zero because the case k = j is explicitly excluded such
that equation (3.15) can be simplified to

c
(2)
i (0) =

1

h2

∑

j 6=i

1

i− j

∑

l 6=i,j

1

i− l

∏

k 6=i,j,l

k

i− k
(3.16)

The coefficents c
(2)
i (0) h2 are displayed in Table 3.1 for Nf in [1, 6].

The consistency of the finite difference approach with the Lagrange interpolation
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technique is important because in later sections of this work, Lagrange interpolation
will be applied to find values of a wave function in between two grid points. Figure
3.3 shows the effect of interpolation with a finite number of grid points onto sharp-
featured functions. The interpolation operator Î applies Lagrangian interpolation to
find the translate from a coarse grid to a finer grid. This operator shows a sparse
matrix representation if the order of interpolation is finite. The operators matrix
representation does not even require an explicit storage if the coarse grid spacing,
hcoarse, is an integer multiple of the fine grid spacing, hfine. The ’inverse’ operation Î†

reverts the translation from a finer grid to the coarse grid. However, this operator may
not be called the inverse of Î because both matrices are not square. The consequent
execution of both operations, Î†Î, will be the unity operation and let the function
on the coarse grid unchanged as long as the order of interpolation is equal to the
number of grid points. Any truncated formula with 2Nitp < Ng will introduce an
error to sharp features of the function as depicted in Figure 3.3.

coarse grid points

0

0.2

0.4

0.6

0.8

1

Gaussians on coarse grid
Coarse grid after I dagger I
Analytical Gaussians

Interpolation Error     

Figure 3.3: Interpolation technique error estimate. Gaussians of different width on
a coarse grid after their treatment with an I†I operation, interpolating
these onto a 3× finer grid and back using 2Nitp = 10 values to fit the
polynomials. Obviously a sharper peak causes stronger deviations from
the original function. This means that I†I resembles the unity operator
for slowly varying functions but introduces errors for high frequencies.
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3.4 The grid choice

The different scales of potential - very deep in the core region but shallow in the
interstitial region - lead to a difficulty representing potentials and wave functions
on a grid with equal grid spacing in the entire space. The 1

r
-singularity of the core

potentials can not be treated properly on a grid with constant grid spacing since its
structure has no proper scale and thus needs a very high basis density (grid points
or plane waves) to resolve it in a sufficiently accurate manner. The deep potential
corresponds to a high kinetic energy and so all electronic wave functions will oscillate
in high frequency modes in the vicinity of the nuclei. The maximum frequency to be
represented on a equidistant grid with a grid spacing of h is kmax = π

h
. This is called

sampling theorem and where kmax denotes the Nykvist-frequency. The theoretical
maximum of kinetic energy π2

2h2 will further on be called ’nominal cutoff energy’. In
order to represent highly oscillating functions the grid spacing h must be decreased.
The increasing costs (∝ 1

h3 ) for computational resources attached to this have been
mentioned before. This motivates the usage of pseudopotentials (see Chapter 4).
Alternatively the grid spacing can adopt to the local potential which leads to a non-
uniform grid and entails difficulties of another kind (see Chapter 3.5).

3.5 Non-uniform grids

Non-uniformity of the grid implies that the spacing between grid points differs and
therefore is a function of the grid point index. In principle one can determine the
coefficients for the finite difference representation by the same technique as out-
lined above but the coefficients as well become functions of the grid index. This is
quite easy on a one-dimensional grid but three spacial dimensions require mathemat-
ical construct like non-diagonal Riemann tensors. This in general includes so called
adaptive coordinates [18] and finite element methods [19]. Another consequence is
that even derivatives do not result in symmetric coefficients any more. The matrix
representation is neither symmetric nor hermitian any longer. Diagonalizing such a
non-symmetric matrix (e.g. second derivative on a non-uniform one-dimensional grid
with exponentially growing grid spacing) produces as expected only real eigenvalues.
This shows that physical significance of the observable has been kept, but simply the
underlying mathematics has changed.
The advantage of a non-uniform grid is the possibility of increasing the grid point
density in the vicinity of atomic cores. This enables all-electron calculations where
fast oscillating core states and slowly varying valence wave functions are represented
on the same grid. Also in the case of a widely extended vacuum region inside the
super cell, this could help to save resources such as computational time and memory.
Although it does produce a computational overhead: the least of which is determin-
ing and setting up the grid. This costs time once in the beginning of a computation
of the electronic structure plus some additional memory but the major factor is the
determination and storage of the spatially dependent operators and their application
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to wave functions in each iterative cycle. Parallelization of an adaptive coordinate
grid in real space requires that a domain decomposition has to be chosen in a sophis-
ticated way to provide an effective load balance.
Despite the advantages of nonuniform grids, the advantages of simple formulas and
easy implementations on a uniform grid are the striking reasons to use a constant
grid spacing in this work.



4 Pseudopotentials

Density functional calculations aim to simulate the chemical environment inside a
finite volume. For the chemical binding process the valence states are the most
important while core states inside closed shells contribute fairly little and can so be
considered inert. This justifies the frozen core approximation where the relaxed core
states and the interaction of valence states with core states are integrated out and only
the screened core potential becomes visible. This approximation has proven to be
valid for most chemical environments. The full potential and the all-electron valence
wave function are hardly representable with a reasonably small number of grid points
or plane waves. Neither the singularity of the full potential at the core position can
be resolved nor the rapid oscillations of the valence functions in the vicinity of the
cores. For this reason a pseudization is performed: An augmentation sphere centered
around the atom is introduced. Inside the sphere the strong core potential is replaced
by weak and smooth pseudo potential. The valence wave function are replaced by a
pseudo wave function with just the same logarithmic derivative at the augmentation
radius as the all electron wave function [7]. The pseudo wave function is supposed
to be very smooth (no high frequency components) and contain no nodes but it has
to fulfill the radial Kohn-Sham equation containing the smooth pseudized potential.
Furthermore the norm of the pseudized wave function has to be preserved. The
advantage of this technique is the removal of the divergent core potential and the fast
oscillations of the valence wave function due to it. The radial Kohn-Sham equation
is the radial single particle Schrödinger equation with a potential that depends on
the total electron density.

[

−1

2

d2

dr2
+
`(`+ 1)

2r2
+ V {%(r)}(r)

]

rRn`(r) = εn` rRn`(r) (4.1)

%new(r) =
∑

n`

fn` Rn`(r) (4.2)

where fn` are the occupation numbers for the orbitals with principle quantum number
n and angular momentum quantum number `. This equation is to be solved self-
consistently i.e. the new density %new(r) that is gained from the radial wave functions
has to coincide with the density %(r) that has been used to construct the potential
V {%(r)}(r).
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4.1 Kleinman-Bylander norm-conserving

pseudopotentials

Analogous to the Schrödinger equation the effective potential from the angular mo-
mentum part in the radial Kohn-Sham equation (4.1) depends on the quantum num-
ber `. So the pseudopotential differs with respect to the `-channel. Kleinman and
Bylander [5] suggested a separable form for the pseudopotential which splits into a
nonlocal part and a local part.

V̂pseudo(r) = Vloc(r) +
∑

`

Vnonloc,` P̂`(r) (4.3)

The local part contains the pseudized core potential and contributions from the in-
teractions with the electron density. The nonlocal part consists of coefficients Vnl,`

which are different for each particular `-channel whereas the spatial dependency is
included in the projectors P̂`(r). These enable the specific treatment of s, p and d
states such that the nonlocal pseudopotential acts onto the proper part of the wave
function. Therefore the projection operation is performed inside the augmentation
sphere with radius rcut centered around the ion core. The local pseudopotential and
the radial part of the projector functions are depicted in Figure 4.1 for hydrogen,
carbon, nitrogen and oxygen. Here the shape of the Coulomb potential − 1

r
is ap-

proximated by a smooth linear combination of two error functions divided by r. Z (s)

is the core charge of the respective species minus the number of core electrons, so the
(positive) ionic charge.

V
(s)
loc.(r − R(a)) = −Z (s) ·



C
(s)
1

erf(

√

α
(s)
1 r)

r
+ C

(s)
2

erf(

√

α
(s)
2 r)

r



 (4.4)

In the limit of r → ∞ the approximate function erf(
√

αr)
r

approximates 1
r

quite well.
Already at r = 2.0/

√
α their values deviate only by 0.5%. The values for C1,2 and

α1,2 have to be determined in the generation of the pseudopotential such that the
local potential is converged to the all electron potential within the cutoff radius, rcut.
The long range Coulomb potential far away from the core must be exactly −Z(s)

r
.

This leads to the constraint

C
(s)
1 + C

(s)
2 = 1.0. (4.5)

Assume, that α
(s)
1 > α

(s)
2 . Then the contributions to the local pseudopotential can

be divided into a localized ’hard’ part and a smooth part (the species index (s) is
suppressed in the following).

Vloc.(r) = − Z
r

[C1erf(
√
α1r) + C2erf(

√
α2r)]

= − Z
r
C1 [erf(

√
α1r) − erf(

√
α2r)] hard part (4.6)

− Z
r

[C2 − C1] erf(
√
α2r) smooth part
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The hard part and the projectors for the nonlocal part cannot be represented accu-
rately on the coarse grids. Therefore the double-grid technique is applied to it. A
second grid is introduced with a smaller grid spacing than the coarse grid but only
localized within the sphere. The projectors can be considered as sums of dyads i.e.

P̂` =
∑

m

|p`m〉 〈p`m| (4.7)

The notation 〈 .| .〉 stands for bra and ket meaning that an integration of the product
of both functions is performed in real space. These integrals are evaluated numerically
on a the fine grid, only inside the augmentation sphere (see Chapter 5.6 for details
of the double-grid technique).
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Figure 4.1: Local and non-local part of the pseudopotentials. Plotted are the local
pseudopotential as a function of the radius and the 1/r-ion potential for
comparison. Furthermore the shape of the s and p projectors is depicted
in dotted lines.

4.2 Convergence

Employing pseudopotentials in a calculation always requires convergence tests to
ensure its accuracy. This means that a quantity such as the total energy here, is
calculated at different grid spacings to determine the maximum grid spacing that
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produces accurate results and, to get an error estimate for the calculated quantity.
The results of convergence tests of the total energy of an isolated atom are shown in
Figure 4.2.

It can be read off that around Ecut = 70 Ry the total energy for H and C differs only
slightly from its final value at 177 Ry which means a quite accurate representation of
these species. Nevertheless nitrogen and oxygen still lower their total energy consid-
erably when increasing the ’cutoff energy’ above 70 Ry. The fact that the total energy
decreases monotonously with an increasing number of basis element (grid points in
this particular case) points out the variational nature of this approach towards the
ground state. A more precise description always gets closer to the real (continuously
defined) ground state wave functions because it gives access to a larger number of
degrees of freedom.
The special case of nitrogen shows here an unpredictable behavior of the total energy
for small cutoff energies. This can be explained by a quite hard (rapidly varying)
local part of the pseudopotential that cannot be displayed with sufficient accuracy
on a grid with a low cutoff energy. The pseudo wave functions are not orthogonalized
to the core states, so it is not guaranteed that they will fall into a lower, unphysical
state. These states are called ghost states and are the unwanted side-effect of the
pseudization. Apparently this appears mainly at very large grid spacings.

Density-functional calculations are often used to find differences of the total en-
ergy e.g. a reaction enthalpy or barrier. The systematic error on the total energy is
strongly related to the level of convergence when pseudopotentials are used. Fortu-
nately the error on energy differences can be much smaller due to error cancellation.

4.3 New generation pseudopotentials

In order to speed up ab inito calculations a pseudopotential technique is required
which gives the same accuracy at lower costs i.e. less plane waves or larger grid
spacings. Vanderbuilt [20] discovered that loosening the norm-conserving constraint
gives way to much smoother pseudo wave functions. The physics are maintained by
introducing augmentation charges that countervail the charge difference.
Blöchl [21] constructed an interface to an all-electron method. The projector aug-
mented wave(PAW) method is quite promising to be used with small cutoff energies.
Though making use of the frozen core approximation it enables to retrieve the all-
electron energies and all-electron wave functions and densities. An extension, the
gauge including projector augmented wave (GIPAW), even provides shielding tensors.
These help to understand the results of nuclear magnetic resonance spectroscopy
(NMR) [22].
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Figure 4.2: Convergence of the pseudopotentials. Plotted is the total energy against
the ’cutoff energy’ (compare Chapter 3.2) for one atom of hydrogen, car-
bon, nitrogen and oxygen, respectively. Each atom is calculated in a

5 × 5 × 5 Å
3

box with isolated boundary conditions. For a cutoff energy
of 70 Ry, H and C are well converged whereas the total energy differ-
ence Etot(70 Ry) − Etot(∞) for N and O is about one magnitude larger.
Etot(∞) has here been approximated by Etot(177 Ry). Nitrogen obviously
requires a minimum cutoff energy of 60 Ry to ensure that no ghost states
appear from the norm-conserving pseudopotential. Above 60 Ry, the be-
havior of the total energy is monotonous so that error cancellation can
be expected.
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5 Electronic structure calculation

Real-space techniques for density functional calculations of the electronic structure
have a lot in common with those methods that have been developed in the last
decades for density functional calculators using plane waves or other basis functions,
despite the fact, that the equidistant real-space grid allow a simple and efficient
parallelization of the unit cell. In the following, the parallelization will be kept in the
background whereas the focus will be set to the essential steps of the determination
of the electronic structure.

5.1 Self consistency scheme

Real-space methods make use of iterative solvers on various levels. Especially because
of the vast numbers of grid points, direct methods and explicit matrix operators are
disadvantageous for larger system sizes due to the enormous memory consumption.
The highest level of iterative solvers for the determination of the electronic structure is
the self-consistency iteration scheme introduced here. Its aim is to calculate the self-
consistent density i.e. a density that causes an effective potential, thus an effective
single-particle Hamiltonian whose eigenstates lead again to exactly the same density.
This flowchart will give only a brief introduction to what kinds of calculations are
preformed and which techniques are applied for this. The single steps of one cycle
are explained further in the referenced chapters.

• Given a total density n(k)(r) in the k-th cycle we can evaluate the effective
potential Veff(r) as the sum of the exchange-correlation potential (see Chapter
2.3), Hartree potential VH[n](r)(see Chapter 5.4), ion potentials Vions(r) and
external potential Vext(r), if e.g. an electrical field is present.

• The Kohn-Sham Hamiltonian is set up as ĤKS = −1
2
∆ + Veff(r), where the ki-

netic energy operator is approximated by a higher order finite difference formula
replacing the second spatial derivatives.

• The lowest Nbands eigenvalues ε
(i)
KS and eigenstates ψ

(i)
KS(r) of the Hamiltonian

are calculated (see Chapter 5.2). Nbands also includes some unoccupied states.

• The occupation numbers fi are computed according to the Fermi-Dirac distri-
bution, where EF is to be determined before. f (i) = 1

e(ε(i)−EF)/kBT +1
(see Chapter

5.9).
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• A new density is created from the wave functions of the occupied bands/molecular

orbitals n
(k)
new(r) =

∑

i f
(i)|ψ(i)(r)|2.

• The next density n(k+1)(r) is combined from n
(k)
new(r) and n(k)(r) by density

mixing (see Chapter 5.7).

This algorithm needs an initial density guess ninit(r). A very simple choice is to as-
sume spherical gaussian distributions around the ion cores where the charge of each
cloud corresponds to the number of valence electrons of that particular atom.

The self-consistency is reached when the density does not change more than a certain
threshold. The change of the total density is measured via a spatial average over the
square deviation of the new density from the old i.e.

σ
(k)
n(r) =

[

1

V

∫

V

d3 r(n(k)
new(r) − n(k)(r) )2

]
1
2

(5.1)

Another possible way to check for convergence is the change of the total energy
∆E

(k)
total = E

(k)
total − E

(k−1)
total .

5.2 The eigenvalue solver

The kinetic energy functional T{n(r)} can only be evaluated via auxiliary wave func-
tions, the Kohn-Sham states. The lowest Nbands eigenstates of the Kohn-Sham Hamil-
tonian are required. Given the Hamiltonian matrix explicitly, a common numerical
solver can produce all eigenvalues and eigenvectors within a number of operations
that scales cubically with the matrix size (proportional to N 3

tot, where Ntot is the to-
tal number of grid points). However, for an Hamiltonian that is not given explicitly
but whose action on a state vector is well defined, eigenvalues and eigenstates can
be be found employing iterative algorithms. Especially the fact is exploited that the
number of requested eigenvectors Nbands is small against the dimension Ntot. Sev-
eral methods apply for this task. Krylov-subspace methods can compute the lowest
(or highest) eigenvalue and the corresponding eigenvector from a given action of a
hermitian operator with the Lanczos algorithm. However some higher (in energy)
eigenvalues are needed. The class of generalized minimal residual methods has turned
out to work well.

The eigenstates of the Kohn-Sham Hamiltonian are found by applying a steepest
descent (SD) method to minimize their residual. The eigenvalue equation to be
solved is

Ĥk |ψnk〉 − εnk |ψnk〉 = 0 (5.2)
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where k labels the different Bloch-states and n is the band index. Therefore the
residual norm is minimized. The residual is defined as

[

Ĥ − ε(m)
]

∣

∣ψ(m)
〉

=
∣

∣r(m)
〉

(5.3)

where ε(m) is set to the expectancy value of the Hamiltonian
〈

ψ(m)
∣

∣ Ĥ
∣

∣ψ(m)
〉

. The

residual norm R(m) is defined as

R(m) =
〈

ψ(m)
∣

∣ r(m)
〉

=
〈

ψ(m)
∣

∣

[

Ĥ − ε(m)
]

∣

∣ψ(m)
〉

(5.4)

is assumed to have a quadratic minimum around 0. Consequently its gradient with
respect to the approximate eigenstate is

∣

∣∇R(m)
〉

=
δR(m)

δ 〈ψ(m)| =
[

Ĥ − ε(m)
]

∣

∣ψ(m)
〉

. (5.5)

The steepest descent (SD) is an iterative algorithm finding the minimum of the scalar
r(m) performing a line search in the direction opposite to the gradient.

∣

∣ψ(m+1)
〉

=
∣

∣ψ(m)
〉

− λ
∣

∣∇R(m)
〉

(5.6)

λ =

〈

∇R(m)
∣

∣∇R(m)
〉

〈∇R(m)| Ĥ − ε(m) |∇R(m)〉
. (5.7)

A more sophisticated scheme is called conjugate gradients (CG). There the search
direction is determined to be a linear combination of the new gradient and previous
search directions i.e. a memory about previous steps is set up. Of course the first
step of CG is equivalent to the steepest descent since there is no previous step. In
fact it has turned out that a few CG steps are enough to get sufficiently accurate
eigenvectors. The subspace diagonalization method (Chapter 5.8) helps to suppress
the errors introduced by not converging the eigenstates fully.
The eigenstates of the Hamiltonian being a hermitian operator are orthogonal to each
other. The steepest descent algorithm described above will converge an approximate
eigenstate to its nearest exact eigenstate of the Hamiltonian. In the beginning of
a calculations, starting from initial guess vectors, one has to ensure that the first
wave function corresponds to the energetically lowest state. Any state with a higher
energy is constraint to be orthogonal to the lower ones so when SD or CG are applied
the state and the search direction have to be orthogonalized to the previous states by
Schmidt-orthonormalization. Otherwise errors could affect, that two states approach
each other and converge to the same eigenvector.

|φi,orthog〉 = |φi〉 −
∑

j<i

|ψj〉 〈ψj|φi〉 (5.8)

|φi,orthon〉 =
|φi,orthog〉

√

〈φi,orthog|φi,orthog〉
(5.9)
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In addition to the conjugate gradients methods, preconditioning is applied to the
search direction in order to speedup the convergence. The preconditioner K̂ ap-
plied onto the discretized search direction ψi is a broadening operator, that relates
neighboring grid points. A simple one-dimensional broadening could be described as
follows.

K̂ |ψ〉 :
∑

j

Kijψj =
1

4
ψi−1 +

1

2
ψi +

1

4
ψi+1. (5.10)

5.3 Boundary conditions

The great advantage of real-space representation of wave functions and densities is
the possibility to arbitrarily combine periodic and finite boundary conditions (BCs).
Out of this, eight (= 23) cases can be constructed in three dimensions. However,
only four of them are unique with respect to spatial rotations.

periodic BCs finite BCs Example Equivalence
none 3 molecules, clusters 000

1 2 wires, nanotubes 100 010 001
2 1 surfaces, films 011 101 110
3 none bulk 111

The implementation of these four cases is quite simple, regarding the fact, that the
decomposition of the real space unit cell into calculation domains for parallelization
requires data exchange at the boundaries of each domain. This will be explained
further in Chapter 6.1. Periodic boundary conditions will therefore enforce data
exchange also across the cell boundaries, whereas it is assumed for insolated BCs
that the values of the wave functions outside of the cell are exactly zero.

Apart from these straightforward cases, realizations of very special boundary condi-
tions can be set. The implementation of the real-space finite-difference method on a
parallelepiped-shaped unit cell (non-orthogonal base vectors) is in principle feasible
but the simplicity of the finite-difference second derivative stencil will be lost. Much
simpler and faster is still the rectangular unit cell. Nevertheless some crystal structure
(e.g. hexagonal) require a larger super cell than their unit cell when computed with
a rectangular cell shape. The uneven boundary conditions enable to exploit these
symmetries and keep the cell small though using a rectangular calculation domain.
Figure 5.1 shows the example of uneven boundaries on a graphene sheet. The next
unit cell in e.g. y-direction is shifted in x-direction. Usually the smallest rectangular
cell would contain 4 atoms but the shift reproduces the rhomboid geometry of the
lattice and so enables a calculation with only 2 atoms contained in the cell. Instead
of taking a shift of half the cell length, one could think of any fraction s as shift and
so compute a shear modulus. Certain values for this fraction are advantageous, i.e.
if the shift s is an integer multiple of the grid spacing h, because then, data can be
sent across the boundary without additional interpolation.
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Figure 5.1: Uneven boundary conditions. The shift enables a calculation of a
graphene sheet with two instead of four atoms per unit cell.

A very special case is the twist boundary condition. The case of periodicity in one
direction and a chiral symmetry along that axis can be represented and calculated
with a reasonably small super cell in axis direction. This is very useful for calculating
e.g. the electronic structure of certain carbon nanotubes (CNTs). Armchair-wrapped
(n, n) or zigzag-wrapped (n, 0) CNTs show high translational symmetry and can so
be represented in a short super cell (4.62 Å for armchair and 2.67 Å for zigzag). For
other (n,m)-wrapped nanotubes [n > m > 0] the symmetry is lower and so a very
long super cell is required in principle. Twist boundary conditions are able to exploit
their chiral symmetry, though. Figure 5.2 shows a (11, 5) CNT. At the boundaries
a screw operator is applied in the plane perpendicular to the axis. This operator
is based on interpolation between the grid points according to the Lagrange inter-
polation technique introduced in Chapter 3.3. Applications for finding the torsion
modulus of a system with one-dimensional periodicity can be realized by computing
the total energy dependence of the twist angle.

Figure 5.2: Twist boundary conditions. A (11, 5) carbon nanotube may be calcu-
lated with a cell of 1/8th of its periodicity in axis direction using a twist
boundary condition.
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5.4 The Hartree potential

The classical electrostatic repulsion of the electrons contributes to the effective single-
particle potential in the form of the Hartree potential term VH{n}(r). From classical
electrodynamics we know that a point charge q at the position r′ creates an electro-
static potential according to

vq(r) =
q

|r − r′| . (5.11)

The superposition principle tells that the potential of a charge distribution is

VH{n}(r) =

∫

V

d3r′
n(r′)

|r− r′| . (5.12)

The same is expressed by the Poisson equation

∆rVH{n}(r) = −4πn(r). (5.13)

These two equivalent equations indicate two different possibilities of calculating the
Hartree potential in real-space. The first one is the direct method, using the Green-
function of the Poisson equation

g(r, r′) =
1

|r − r′| . (5.14)

On a grid, this operator becomes

gi,j =
1

|ri − rj|
(5.15)

for finite boundary conditions. However, gi,j is a full matrix i.e. relating each grid
point directly to any other. Even though this operator is simple to determine, the
action of this operator scales as ∝ N 2

tot, where Ntot denotes the total number of grid
points, Ntot = NxNyNz.
The alternative opportunity is to start at equation (5.13) and express the Laplacian
via real-space finite-difference formula (Chapter 3) which results in a large, inhomo-
geneous set of linear equations. The Laplacian itself then is a sparse operator again.
This promotes the use of iterative scheme for solving this. The conjugate gradient
(CG) method is one opportunity. Alternatives are the multigrid methods [9], some
of them even employ the Mehrstellen formula [9].

The residual to be minimized in the CG algorithm at the m-th step is defined as

Rm = 〈rm| rm〉 ; |rm〉 = |∆VH,m〉 − (−4π) |n〉 (5.16)
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The conjugate gradient scheme is explained in detail in Chapter A.1. For the electro-
static problem a preconditioning technique can be applied. Useful preconditioning
works with an approximation of the inverse of the operator at hand [23]. In this par-
ticular case the inverse is known to be the Green-function 1

|r−r′| but it is not sparse,
as pointed out before. A sparse approximate of that is a broadening operator e.g.
gaussian broadening as the preconditioner K̂:

K̂(r, r′) =
e− 1

2
(r−r′)2/σ2

(2πσ2)
3
2

(5.17)

Due to the rapidly decaying exponential function it may be truncated to a finite
range instead of the long ranged 1

r
function. Simultaneously it is taken care of the

singularity at r = r′, which requires a special treatment otherwise.

The problem to overcome is the stalling process due to the long wavelength error
which is reduced only very slowly with a finite difference formula truncated to some
Nf grid points. Preconditioning is one way to increase the convergence speed of the
residual minimization. New solutions towards this employ the multigrid technique
that has been mentioned above.
Any number of finite boundary conditions (see Chapter 5.3) requires a special treat-
ment when determining the Hartree potential. Outside of the super cell the the
charge density n(routside) = 0 vanishes. The electrostatic potential for a charge dis-
tribution localized inside a certain region can be approximated by an expansion into
cartesian multipole moments;

VH,outside(r) =
q

r
+

D · r
r3

+
r ·Q · r
r5

+ O(
1

r7
) (5.18)

where q is the monopole charge, D the dipole vector and Q the quadrupole tensor.
By construction, ∆VH,outside(r) vanishes in the entire space outside the cell.
Thus the Hartree potential is subjected to the constraint that the potential in the
vacuum is given by VH,outside(r) at the cell boundaries with finite boundary conditions.
This enters the differential equation on the right hand side. The equation determining
the Hartree potential then is

∆VH(r) = −4πn(r) − ∆VH,outside(r) (5.19)

so that the usage of the conjugate gradient method for the discretized inhomogeneous
system of equations is not affected at all. The determination of the Hartree potential
outside the cell VH,outside(r) via multipole moments is described in Chapter 5.5.
For systems with periodicity in all spatial directions the Hartree energy is, in princi-
ple, unconstraint but the usage of Bachelet, Hamann, Schlüter (BHS) pseudopoten-
tials [6] requires that

∫

V

d3r VH(r) = 0 (5.20)



34 Electronic structure calculation

5.5 Fuzzy cell decomposition

The constraint on the Hartree potentials outside of the finite boundary conditions is
calculated by a multipole expansion of the charge distribution inside the cell. The
cell borders are usually not far away from non-vanishing densities. Therefore the
potential needs to be expanded to a very high order to keep the errors at the cell
borders low if the single-centered multipole expansion is used indicated in equation
(5.18). The multi-centered expansion has the advantage that it does not require a
high expansion order to reduce the errors significantly since most of the centers are
far from the vacuum. The calculation domain is divided into so called fuzzy cells
(FCs) such that each FC contributes to the potential but with only low order com-
ponents (usually up to the quadrupole moment). The fuzzy cell is a spatial region
centered around the atomic positions where the multipole moments of the density are
integrated. In order to avoid fluctuating charges to cause a equally strong fluctuating
moment, the fuzzyness is introduced by smearing out the borders of these cells. Any
point in space thus belongs with a certain weight to any fuzzy cell whereas the major
contribution falls to the closest center. Reducing the fuzzyness to 0 would yield the
Voronoi-polyhedra (Wigner-Seitz-cell) around the atomic positions.

r1 r2

position  r
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0.4

0.6

0.8

1

we
ig

ht

sharp 2
sharp 3
sharp 4

Fuzzy Cell Sharpness

Figure 5.3: Fuzzy cell weights in one dimension for two atoms at r1 and r2. Different
sharpness parameters can be applied according to the grid spacing. A
small grid spacing allows high sharpness to be resolved in a smooth weight
function.

The monopole moments of the expanded charge distribution could in principle give
a rough estimate of the charge transfer between atoms. An example is hydrofluoric
acid (HF). Calculating the self consistent density as an isolated molecule at the
equilibrium distance of 0.72 Å, the fuzzy cells divide the super cell into equal parts
whereas the separating plane in the middle becomes a smeared out region. However
the two fuzzy cell weight functions are exact mirror images of each other. It can be
observed that a charge of 1.9 e contribute to the fuzzy-cell monopole around hydrogen
whereas the remaining 6.1 e of 8 shared valence electrons are in the flourine fuzzy cell.
For the accuracy of the multipole expansion fuzzy cells of equal size may be good but
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in order to get an estimate of the charge transfer in e.g. polar bonds (Bader-analysis)
the fuzzy cell volume has to depend on the atomic species.
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5.6 Double grid technique

The projectors of the nonlocal pseudopotentials introduced before (Chapter 4) are
products of radial functions inside the augmentation sphere and spherical harmon-
ics. Choosing a small cutoff radius rcut affects that the radial projector functions
show rapid changes for r ∈ [0, rcut]. Especially the norm-conserving pseudopotential
method produces quite ’hard’ pseudopotentials for some first-row elements when a
small rcut is applied. Performing the scalar product of the wave function and the
projector on the coarse grid produces very inaccurate results. Especially quantities
as e.g. the total energy and forces fluctuate with respect to the atomic position with
a period of the coarse grid spacing [10]. This unphysical behavior is crucial for the
forces if these are employed for geometry optimization. A solution towards this is to
perform the scalar product on a finer grid: Inside the augmentation sphere, the grid
is refined by introducing additional grid points between those of the coarse grid. An
integer refinement factor Nrefine ensures that the grid points of the coarse grid are
simultaneously elements of the fine grid. The grid spacing is then decreased by the
refinement factor, hfine = hcoarse/Nrefine. Typically one uses 2 to 4 times more grid
points per dimension on the fine grid. Throughout this work, the grid refinement
factor was kept constant at Nrefine = 3 i.e. 27 times more points in the augmentation
sphere. The rapidly varying projector function or the hard part of the local pseu-
dopotential, respectively, can be represented more accurately on the fine grid. The
wave function is assumed to be smooth and so its values are interpolated from the
coarse grid points to the fine grid points in between them. i and k label coarse and
fine grid points, respectively.

〈

p`m
∣

∣ψ
〉

=
∑

k

p`m
k ψfine

k =
∑

k

p`m
k

∑

i

Ikiψ
coarse
i (5.21)

The interpolation operator Î uses Lagrange interpolation of the values at 2Nitp grid
points with constant coefficients (see Chapter 3.3) if the grids are aligned, i.e. coarse
grid points are simultaneously fine grid points. Those fine grid points that are iden-
tical with the coarse grid do not require interpolation. If there is no fixed alignment
between the grids, but rather the fine grid is fixed to the atomic position, the inter-
polation coefficients depend on the position of the core relative to its nearest coarse
grid point. As emphasized in Chapter 3.3, the Lagrange interpolation technique is
equivalent to the finite difference approximation. Typically the order of Lagrange
interpolation is chosen in agreement with the order of the finite difference formula
applied for the kinetic energy and the Laplacian to keep consistency and suppress
numerical errors. As well as the finite difference derivatives the interpolation opera-
tor relates only grid points that differ at most Nitp in their index along each cartesian
direction. The interpolation operator can be set up as a product of of interpolation
coefficients for each spatial direction

Î = Îx ⊗ Îy ⊗ Îz.
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Figure 5.4: Double grid technique. Inside the augmentation radius rcut, a locally
refined grid is introduced. The values of the coarse grid are interpolated
to the fine grid, including information of Nitp neighboring coarse-grid
points. This defines the outer radius ritp = rcut + Nitp h, where h is the
grid spacing of the coarse grid. The results of the projection operation
performed on the fine grid show significantly less unphysical dependency
of the sphere’s relative position with respect to the coarse grid points.

Disregarding if the coarse and the fine grid are aligned, the interpolation coefficients
for each of these operators ˆIdirectionx,y or z are independent of the coarse grid index, if
the grid spacings of coarse and fine grid are related by an integer factor.

However, after the action of the dyadic operator |p〉 〈p| onto a wave function |ψ〉, the
result is a scalar multiple of the projector |p〉. This one has to be represented on the
coarse grid again. The straightforward way would be to drop all the additional grid
points that make up the fine grid such that only the coarse grid is kept. Although
this looks correct we have to keep in mind that the projector is a part of the Hamil-
tonian. The Hamiltonian is constrained to be an hermitian operator and therefore
the projector must be so, too. The nonlocal potential is as well a real function as the
local parts so that the matrix representation must be symmetric (for k-points other
then the Γ-point the projectors are hermitian). The manner outlined above would
be

P̂ = |p〉 〈p| Î (5.22)

which is obviously not symmetric if Î differs from unity. Thus the correct translation
from the fine grid back to the coarse grid representation is an inverse interpolation:

P̂ = Î† |p〉 〈p| Î (5.23)

The action of these projectors are required every time that the Hamiltonian is applied
to a wave function. In order to speed it up the performance, the interpolation is
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performed in advance when the projectors are set up. The projector functions are so
directly merged with the interpolation operators

|Pψ〉 = Î† |p〉 〈p| Î |ψ〉 = |Ip〉 〈Ip|ψ〉 (5.24)

where the interpolated projectors |Ip〉 are represented on the coarse grid. This can be
done because both, the interpolation operators and projector functions are unchanged
as long as the atomic positions are constants. This ordering of the summations saves
a lot of computational effort compared with the case when the interpolation has
to be performed every time that the Hamiltonian act upon a wave function. The
radial extent of the region where the interpolated projectors are nonzero is not given
by the cutoff radius rcut but rather by rproj = rcut + Nitp h, where h is the coarse
grid spacing, because the inverse interpolation assembles information in a nonlocal
manner. When pseudopotentials are applied, the augmentation spheres are supposed
not to intersect.

R_1

r_itp

r_c

r_itp

r_c

R_2

Figure 5.5: Intersection of the outer augmentation spheres. The interpolation of the
projectors inside the cutoff radius rcut to the refined grid requires data of
the coarse grid points inside the outer the sphere with radius ritp. Pseu-
dopotential theory does not allow the augmentation spheres to intersect.
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5.7 Density mixing

Self-consistency usually is approached in an iterative algorithm as mentioned in Chap-
ter 5.1. We can evaluate the new density as a functional of the given input density
ñ{n(r)}. Therefore we define F{n(r)} = ñ{n(r)}−n(r). The self-consistent density
will satisfy F{n∗(r)} = 0. This corresponds to a set of coupled nonlinear equations
to be solved. Different solving methods are available. Here, the simple mixing and
Broyden mixing scheme are introduced but several others are available, among them
Pulay mixing, [24, 24].

Simple mixing

Simple density mixing works just as the steepest descent method. Here the residual
to be minimized is 〈F|F〉. The set of non-linear equations is assumed to be linear for
small changes so that the minimum is quadratic and the update vector is proportional
to the gradient.

n(m+1) = n(m) + αF{n(m)} (5.25)

Simple mixing shows linear convergence i.e. an exponentially decreasing behavior is
expected. Nevertheless critical slowing down can be observed as a significant change
in the slope that occurs earlier the larger the mixing ratio is. This effect is known
from conjugate gradient methods for linear solvers where the long wave length error
spoils the convergence. In the self consistency solver the slowing down occurs due to
a too large mixing ratio. One could also speak of a damping too weak to suppress
fluctuations. This is crucial for metals. The eigenvalues of the Hamiltonian change
slightly during the self-consistency iteration. This may cause a reordering of the
levels. Since a metal is supposed to show a nonzero density of states around the
Fermi level, occupation numbers for these states may change drastically which leads
to charge sloshing. Introducing an artificial smearing temperature helps to converge
(see Chapter 5.9). Nevertheless, simple mixing is very stable i.e. does not get trapped
easily in a local minimum.

Broyden mixing

Newton-Raphson methods are known to perform well (quadratic convergence) for
linear systems but need the full Jacobian matrix and its inverse explicitly. The
update goes as follows

n(m+1) = n(m) −
[

J {n(m)}
]−1 F{n(m)} (5.26)

J {n(m)} =
δF{n}
δn

∣

∣

∣

∣

n=n(m)

(5.27)

In one dimension this procedure is also known as Newton method for finding zero
points. Handling with many degrees of freedom the exact Jacobian is very expensive
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to generate and direct inversion even scales with ∝ n3 (with the third power of the
dimensions). Quasi-Newton methods benefit from the quadratic convergence of the
class of Newton-Raphson methods but instead the inverse Jacobian is approximated
by a sum of dyads that can easily be represented as outer product of two vectors.
The algorithm for Broyden’s 2nd method is here kept in the bra-ket-notation which
expresses scalar products.

n(m+1) = n(m) +
(

1 −
〈

v(m)
∣

∣F (m)
〉)

u(m) (5.28)

with

u(m) = ∆n(m) + α∆F (m) −
m−1
∑

i=2

〈

v(i)
∣

∣∆F (m)
〉

u(i) (5.29)

v(m) =
∆F (m)

〈∆F (m)|∆F (m)〉 (5.30)

with the definitions ∆n(m) = n(m) − n(m−1) and ∆F (m) = F (m) −F (m−1). In real im-
plementations the sum

∑m−1
i=2 does not run over all steps that have been done before

but the Broyden history is truncated to a finite number of steps. Alternatively the
history can be discarded and the algorithm be restarted after a certain number of
steps. The latter has shown to work fine. The mixing ratio α looks like the simple
mixing ratio. It has turned out that with simple mixing this ratio has to be kept
below a αcritical to damp oscillations and charge sloshing. αcritical depends on the
dielectric response of the system and may be very small for metals. The Broyden-α
may be much larger. Values like 0.2 and 0.3 have shown to perform well.

A comparison between the Broyden mixing scheme and simple mixing can be seen
in Figure 5.6. Here the change in density 〈F|F〉 is a number to measure how the
system approaches self-consistency. Explicitly written it is

〈F|F〉 =
1

V

∫

V

d3r [ ñ(r) − n(r) ]2 (5.31)

and
√

〈F|F〉 is the root mean square of the density.

The change in density converges much faster for Broyden-mixing although it fol-
lows a very volatile, not monotonous curve. This behavior depends on the level of
convergence of the new approximate eigenstates.
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Figure 5.6: Convergence with a Broyden mixing scheme. With simple mixing
(straight mixing) the change in density follows a smooth function. The
results of the Broyden-type mixing schemes are not at all monotonous
but reach the threshold performing much less steps. Calculation of ben-
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box with finite BCs and 12 Broyden history
elements.

5.8 Subspace diagonalization method

As long as the density changes a lot at each self-consistency iteration step it is
advantageous to stop the eigenstate solver after a few steps in order to save time.
Using very poor approximations of the eigenstates requires more steps until self-
consistency is reached but converging them every time down to a tiny residual. The
approximate eigenstate may contain remaining portions of other states. Therefore a
subspace method is invoked. The matrix elements of the Hamiltonian with respect
to the approximate eigenstates of each Bloch state are explicitly computed.

Hij =
〈

ψ(i)
approx

∣

∣ Ĥ
∣

∣ψ(j)
approx

〉

(5.32)

This matrix is exactly diagonalized so that

Ĥ = Ŝ D̂ Ŝ† (5.33)

where Ŝ is a unitary operator and and D̂ a diagonal matrix. The eigenvalues Dii are
taken as new eigenvalues ε

(i)
new for the next self-consistency step, analogously the new

eigenstates are transformed according to the eigenvectors

∣

∣ψ(i)
new

〉

=
∑

j

Sij

∣

∣ψ(j)
〉

(5.34)
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This method is very efficient as long as the number of bands in the system is kept
small and only few CG/SD-steps are preformed. Converging the eigenstates very far
makes this method redundant because then the states are close to eigenstates and the
off-diagonal matrix elements are of tiny magnitude. However it scales ∝ N 3

bands for
the diagonalization and linear combination of the new wave functions. Additionally
it requires a number of operations ∝ N 2

bands with a large prefactor for setting up the
matrix elements.
When a calculation is performed from the start and so atomic orbitals are used as ini-
tial wave functions the subspace method reflects the hybridization of the atomic states
into bonding and anti-bonding linear combinations before the first self-consistency
cycle starts.

5.9 Bisection method

The new density is calculated from the eigenstates of the Hamiltonian. The Kohn-
Sham states are occupied with electrons according to the Fermi-Dirac distribution
which is a function of the Kohn-Sham energies Ei (i labels all states i.e. all bands,
spins and k-points) and the Fermi energy EF which is unknown. The sum of all
occupation number has to be equal to the number of electrons in the system, Nele.
This is achieved by tuning the Fermi level EF until

∑

i

1

eβ(Ei−EF) + 1
−Nele = 0 (5.35)

where β = 1/(kBT ) corresponds to a fictitious smearing temperature explained be-
low. We have to find a null in the function

∑

i f(Ei, EF) −Nele with respect to EF.

The null of a function g(e) can be found applying the bisection method. This is
based on a search interval which is iteratively divided into two smaller intervals. If
the function g is monotonous in the start interval [e1, e2] and has a null, the method
is supposed to always converge. One iteration of the bisection performs the following
steps.

1. evaluate g(e1) = g1 and g(e2) = g2. By assumption we know that g1 and g2 are
of opposite sign since the interval contains exactly one null.

2. bisect the interval em = 1
2
(e1 + e2).

3. evaluate g(em) = gm.

4. if g1 and gm are of opposite sign the null must be in [e1, em]. restart with
[e1, em], otherwise restart with [em, e2].

The convergence of this algorithm is known to be linear since the error will be divided
by 2 every iteration. the length of the last interval gives an estimate for the error.
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The reason to use a finite temperature in the Fermi-Dirac distribution is not the
systems real temperature. Rather smeared out occupation numbers around the Fermi
level. Systems with a band gap will not notice the finite temperature since the
highest state below the gap will be occupied and the first states above the gap
unoccupied. However, bands that cross the Fermi level produce a non-zero density of
states at EF. Also using a finite number of k-points will produce some eigenenergies
close to EF. Within the self-consistency cycle, these energies may change slightly.
Consider the Fermi-Dirac distribution at Tsmear = 0 i.e. a step function that drops
discontinuously at EF. If the energy of an unoccupied state above the Fermi level falls
below the energy of an occupied states, these states will exchange their occupancies.
The new density,ñ(r), is created from the occupied states only. Therefore the new
density will deviate a lot from the old density, n(r). The changed density may effect
the eigenenergies to assume their previous ordering. One can see that there is an
instability leading to oscillations and a constant change in density. In order to damp
this out, the finite temperature produces partial occupancies around the Fermi level
EF, mainly in the interval [EF−kBTsmear, EF+kBTsmear]. The exchange of two energies
Ei and Ej does then not induce a change of the occupancies fi and fj from 0 to 1 and
vice versa but the change is proportional to (Ei −Ej)/(kBTsmear) if both energies are
close to the Fermi level, i.e. |Ei or j−EF| � kBT . Consequently, these oscillations may
be damped by increasing the smearing temperature Tsmear. Temperature smearing is
usually turned on for metallic systems.

0 E
0

1

oc
cu
pa
ti
on

n(EKS) =
1

eβ(E−EF) + 1
(5.36)

Figure 5.7: Fermi-Dirac distribution function. A finite temperature enables a lin-
earization around EF which is 0 in the plot.
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5.10 Forces

According to the Hellmann-Feynman theorem, the forces on the atomic cores may be
computed directly. The Born-Oppenheimer approximation allows to treat the atomic
positions as external parameters. The force on an atom is thus the gradient of the
total energy with respect to the atomic position.

−Fa =
∂Etot

∂Ra
=

∂

∂Ra
〈Ψ| Ĥ |Ψ〉 (5.37)

=
∂ 〈Ψ|
∂Ra

Ĥ |Ψ〉 + 〈Ψ| ∂Ĥ
∂Ra

|Ψ〉 + 〈Ψ| Ĥ ∂ |Ψ〉
∂Ra

(5.38)

using the eigenvalue equation for the ground state Ĥ |Ψ〉 = Etot |Ψ〉 and its adjoint
〈Ψ| Ĥ = Etot 〈Ψ| gives

=
∂ 〈Ψ|
∂Ra

Etot |Ψ〉 + 〈Ψ| ∂Ĥ
∂Ra

|Ψ〉 + 〈Ψ|Etot
∂ |Ψ〉
∂Ra

(5.39)

= Etot
∂ 〈Ψ|Ψ〉
∂Ra

+ 〈Ψ| ∂Ĥ
∂Ra

|Ψ〉 (5.40)

Due to the norm conservation condition 〈Ψ|Ψ〉 = Nelec its derivative vanishes.

⇒ Fa = −〈Ψ| ∂Ĥ
∂Ra

|Ψ〉 (5.41)

Although the ground state |Ψ〉 should be the many-body state, this holds for the

single particle states
∣

∣

∣
Ψ

(i)
KS

〉

occupied according to their energy eigenvalues ε
(i)
KS with

the weight fi (see Chapter 5.9). The kinetic energy term in the Hamiltonian does
not depend on the atomic positions so it is sufficient to regard the derivative of the
potential operator

Fa = −
∑

i

fi

〈

Ψ
(i)
KS

∣

∣

∣

∂V̂

∂Ra

∣

∣

∣
Ψ

(i)
KS

〉

(5.42)
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5.11 Application

The results of the electronic structure calculation may be used for many purposes.
Some applications are explained in detail below.

Polarizability

The response of a molecule to an external electrical field is the formation of a dipole
i.e. the field E polarizes the molecule. Due to the shifted minimum of the local
potential, the electron density will move its center of mass opposite to the field. The
ionic charges do not move in 1st order approximation due to their much higher mass.
Ions and valence electrons together form an effective dipole P. In the limit of very
small field strength, the polarization process can be assumed linear

Pi =
3
∑

j=1

αijEj (5.43)

where the αii is the polarizability with respect to the spatial direction i. These
can be calculated easily by taking the differences between the dipole moment of the
self-consistent charge density with and without electrical field.

αij =
∂Pi

∂Ej

= lim
Ej→0

Pi(Ej) − Pi(0)

Ej

(5.44)

Of course the values for Ej have to be chosen small enough so that the polarization
effect is still linear but large enough to prevent numerical errors in the difference.
Figure 5.8 shows an example setup.

Band structure

In the computation of periodic systems it is made use of Bloch’s theorem. This
means that for a periodic boundary condition, all quantities have to be integrated
in reciprocal space. In practice, a set of k-points has to be evaluated. Of course
the spectrum of single-article energies of these self-consistent k-points provides some
information about the band structure already but they do not resolve e.g. band gaps
in detail. Therefore non-self-consistent k-points are applied:
A self-consistent density is computed with some k-points (the larger the super cell the
less points are needed to converge the calculation with respect to this number). This
yields a self-consistent Hamiltonian. Now this Hamiltonian is applied to an arbitrary
set of k-points and solved for its lowest eigenvalues at each k-point. Usually a path
within the first Brillouin zone is chosen in order to analyze the dispersion relations,
band gaps and effective masses. The path samples a dense set of k-points along the
lines of high symmetry.
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Figure 5.8: Polarizability calculations on tetrathiofulvalene (TTF). An electrical field

of 5.0 mV/Å in x-direction induced a dipole moment of −0.01 Åe in x-

direction so that the polarizability coefficient is αxx = −2.0 Å
2
/V. The

maximal change of valence density max(|∆n(r)|) is 0.45 me/Å
3

which is
less than 1% of the maximum of value of the valence density. Conse-
quently, the electrical field is sufficiently small to apply assume linearity.
The blue areas correspond to a negative change whereas the red color
indicates a density gain.

Molecular dynamics

Molecular dynamics (MD) is the classical motion of the atoms according to the
ab initio-calculated forces. Demanding energy conservation over the time evolution
we may simulate the translations, vibrations and rotations of molecule or even the
propagation of lattice distortions by introducing a discretized and thus finite time
step. The total energy EMD must be conserved which contains the total electronic
energy and additionally the (non-relativistic) kinetic energy of the cores.

EMD = Eelec +
∑

a

p2
a

2ma

(5.45)

where the momenta pa(t) are updated at every time step according to the self-
consistently calculated forces

pa(t
(m+1)) = pa(t

(m)) + Fa(t
(m)) ·∆t (5.46)

and the atomic positions Ra(t) according to the velocities

Ra(t
(m+1)) = Ra(t

(m)) +
pa(t

(m))

ma
·∆t. (5.47)

Geometry optimization

Geometry optimization is means the minimization of the atomic forces. This can be
achieved in the limit of strong friction in molecular dynamics calculations. Friction
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means that the energy is not conserved but rather taken away from the atomic cores
after each molecular dynamics time step. The maximal friction possible can be
realized by taking away the entire momenta of the atoms after the position update.
This procedure definitely converges to an minimum of the total energy and can be
considered as the over-damped case of an oscillator since its convergence is linear
close to the minimum. Successful approaches have been made by estimating the
right friction coefficient to hit the aperiodic limit or apply quasi-Newton methods
analogous to those introduced for the self-consistency iterations (see Chapter 5.7).
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6 Parallelization and scalability

6.1 Parallel computation

The premise to perform a calculation in parallel is the ratio independent tasks over
interacting ones. Many operations in real space are local and can so be performed
independently for each of the grid points. The native way of parallelizing such a
independent operation thus is simply linear e.g. grid points 1 to 10 are stored and
computed on process element # 0, 11 to 20 on # 1 and so on. Now taking into
account non-local operations, this means a lot of communication between the pro-
cesses. If we consider a fully non-local operation where each of the grid points has
to interact with each other, the total amount for communication needed scales as
NP(NP-1) and the time needed ∝ (NP-1). This is for example the case when dis-
tributing the workload and the memory for a Fourier transform among NP process
elements. The real-space techniques introduced in Chapter 5 intrinsically avoid these
completely non-local operations.

As illustrated in Chapter 3, derivatives as e.g. the Laplacian become non-local op-
erators when space is discretized but can be truncated to a finite interaction radius
without losing much of accuracy. These operations require data from their neighbor-
ing grid points. At the borders of the super cell neighboring data is either 0 (isolated
case) or can be retrieved from the other end of the cell (periodic case). To parallelize
this in the linear way, mentioned previously, a lot of communication between process
elements has to be established to exchange the required data. Therefor one adopts
the parallelization scheme to fit best to kind of nearest neighbor interaction arising
from the non-local derivative approximations. The concept is called domain decom-
position and consists of a parallelization along each spatial dimension. Of course
the one-dimensional case will end up in linear distribution again. Data that has to
be exchanged among process elements causes communication which is an overhead
compared to the performance of the same method in a single process. The parallel
efficiency is defined to be the speedup (The factor by which a program is performed
faster on NP process elements) divided by the number of process elements. Obvi-
ously an overhead due to communication lowers the parallel efficiency. The three
dimensional domain decomposition reduces the communication needed for a finite
difference derivative most when the surface is minimized whereas the surface can be
identified with the number of border elements of all cuboid-shaped domains. The
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R0L0 L1 R1P0 P1

BC BC

real−space region

Figure 6.1: Domain decomposition in a one-dimensional scheme. The real-space re-
gion is divided into equal parts, each belonging to a specific process ele-
ment. However, semi-local operations require the data of neighboring grid
points. For this reason, so called halos are attached to the local arrays at
each interface. These are auxiliary arrays, containing a copy of the border
data of the neighboring domain. The update of these copies is sketched
roughly in the lower part of the picture. Each process sends its border
data into the halo of the nearest neighbor via the MPI-environment.
The data sent across the boundary (BC) will be treated according to the
boundary conditions. Finite boundary conditions will multiply the data
with 0 (or just not send) whereas periodic boundary conditions require
the Bloch-phase factor eikL for the wave functions, where L is the extent
of the one-dimensional unit cell and k the Bloch vector.

surface of a three dimensional grid Nx ×Ny ×Nz then is

S(mx, my, mz) = 2 (mxNyNz +myNxNz +mzNxNy)

= 2NxNyNz ·
(

mx

Nx

+
my

Ny

+
mz

Nz

)

under the constraint that all Ni and mi are integer values. The ratio of volume
by surface (in terms of grid points) is best for a domain shape which is as close as
possible to the cube.

6.2 Inter process communication

Parallelization with the MPI-library (Message Passing Interface) has become a stan-
dard in the last decade and can be used with a wide variety of parallel computer
systems. According to its name, messages containing data are exchanged between
the processes via a network, a hub or in special cases even shared memory although
there are faster ways to use these setups such as OpenMP or ShMem. The data from
a neighboring process is then transferred into the extensions of the enlarged array
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so that the semi-local function working on the array do not have to manage a dis-
continuity in memory. Since the interaction from derivatives only involves cartesian
neighbors of grid points, this holds also for the processes. A process only has to
communicate with its 6 direct cartesian neighbor processes. This fact limits the
amount of communication to a fix ratio and so parallel efficiency will not break down
at a high level of parallelization. The application becomes extremely efficient on a
supercomputer where the point-to-point communication network is constructed in a
3-dimensional cartesian torus as e.g. the BlueGene-type.

Figure 6.2: Domain decomposition. A cubic super cell is divided into 2× 2× 2 parts.
The tasks of each domain is given to a specific process element (PE). The
real-space representation allows an efficient parallelization of the total
workload. For local and quasi-local operators the reduced communication
is exploited by the fact hat each PE only needs to exchange data with
its nearest neighbors. For simple boundary conditions (periodic or finite)
this number is limited to the 6 cartesian neighbors.

6.3 Parallel speedup

Let T1 be the time needed to perform the computation with one process element.
Amdahl’s law states that a program spending αT1 in the sequential part and (1−α)T1

in the part that can be parallelized can at maximum reach a speedup of Smax = 1/α.
This is intuitive considering that the time for a parallel execution is TN = αT1 +(1−

Figure 6.3: Prediction model for parallel speedup. Serial parts of the code hinder the
speedup to get larger than 1/α. Unrestricted all-to-all communication
may even slow down and thus lead to a negative slope meaning that the
computation takes more time using more processors.
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α)T1/N . The parallel speedup S(N) = T1/TN then is

S(N) =
N

α(N − 1) + 1

In the limit N → ∞ the speedup S(N) → 1/α is limited. This motivates to paral-
lelize an application as much as possible before running it in massively parallel.

In general there is another quantity influencing the speedup: When communication
is not restricted in any form, we have N(N -1) communication operations which
need at least N -1 times the overhead of a communication operation. This may
lead to a speedup curve with an absolute maximum at a certain number of process
elements. This means that the parallel efficiency drops heavily for higher numbers.
Fortunately the cartesian domain decomposition restricts communication to the 6
cartesian neighbors. Instead of comparing the parallel execution time to T1 we can
take T8(exactly 2 PEs in each direction) as a reference time so that a drop of the
speedup can only arise from global communication.

Figure 6.4: Parallel speedup SN for 32 water molecules in a 10×10×10 Å
3
box with pe-

riodic boundary conditions. Plotted is the total time ratio SN = T32/TN ,
where N is the number of process elements (PEs). The times have been
compared to T32, the time needed with the smallest set of processors.
This scaling curve has been measured on a IBM BlueGene L where
the local mapping of the process ranks is exploited to minimize the com-
munication processes that are due to the domain decomposition. A close
look at the data shows a slightly lower parallel efficiency Eparallel = SN/N
of the setup with 256 PEs than at 512 PEs. This is an effect of the lo-
cal mapping that does not fit perfectly to the hardware given periodic
boundary conditions when using half a rack (256 nodes).
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The determination of electronic transport properties in the quantum regime by calcu-
lation is a goal of current research. Experimental techniques to measure conductivity
have brought up a new aspects in the development of scanning tunnelling microscopy
and also break junctions. The focus has settled to the transport properties of single
molecules. In this work, the transport properties of terephthalic acid are calculated
using a real-space transport formalism that will be explained for the general case in
this chapter.

Consider systems with two half infinite electrodes enclosing a junction. The elec-
trodes can be a bulk-like structures, a films or wires whereas the geometry of the
material inside the junction can be diverse. Systems of interest for transport calcu-
lations are layers of different materials, narrow cracks like in a break junction, lattice
mismatches, impurities, molecules and many others. The procedure for calculating
a setup which shows translational invariance in the leads exploits the fact, that the
range of interactions described by the Hamiltonian can be considered finite. There-
fore, the entire system is divided into three parts; the left electrode, the junction
region and the right electrode. Each of these systems is solved separately first, then
the solutions are matched together with the over-bridging boundary method.

7.1 Landauer-Büttiker ballistic transport

Right leadLeft lead Junction

El
Er

E

������������������������������������������������������������������

������������������������������������������������������������������

Figure 7.1: Scheme of the Landauer-Büttiker transport formalism. A junction is
embedded between two semi-infinite conducting leads. The difference
of chemical potentials (Fermi energies) EL − ER affects that the right
propagating electrons with energies E to contribute to a net current, if
ER < E < EL and if the junction itself shows a non-vanishing density of
states D(E) at that energy.
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Electronic transport is well described by the very simple model of the Landauer-
Büttiker formalism [11]. Ballistic means, that the only scattering that occurs is
the elastic scattering process at the junction itself. We assume to have a setup
aligned in a way that a scattering region is embedded between two electrodes. The
scattering region contains the structure of interest whereas the electrodes are semi-
infinite metallic leads. In the following the names ’left’ (L) and ’right’ (R) will refer
to the electrode of the incident electrons and the transmitted ones, respectively. Let
us assume electrons propagating from left to right and from right to left. These
electrons will be referred as right-movers and left-movers, respectively. An incident
electron can be either reflected or transmitted so that transmission and reflection
probability add up to unity T +R = 1. However, the net current across the junction
region is zero, if there are as many right-movers as left-movers, but in general we may
assume different levels of the chemical potential µ (at zero temperature, the chemical
potentials is equivalent to the Fermi energy EF). A finite difference between the
chemical potentials of the two electrodes causes an electrical field across the region
of the junction. Consider µL to be larger than µR. Then all right-movers with energy
E will contribute to a net current if, µR > E > µL. Their contribution to the total
current is proportional to the charge of each electron e, its transmission probability
T and its group velocity v expressed by the derivative of the dispersion relation E(k)

I(k) = −eT (E)
∂E(k)

∂~k
(7.1)

where k denotes the component of k in transport direction. The total current result-
ing from all electrons in the energy range between [µR, µL] including a factor 2 from
the integration over the spins

Itotal = 2

kL
∫

kR

I(k)
dk

2π
= −2

kL
∫

kR

eT (E)
∂E(k)

∂~k

dk

2π

= −2e

h

µL
∫

µR

T (E)dE (7.2)

In the following, the limit of zero voltage bias will be considered. Let the voltage
difference µL − µR → 0+ become vanishing small. Then the dependency T (E) can
be approximated by T (EF).

Itotal ≈ −2e

h
T (EF) (µL − µR) (7.3)

whereas the voltage is V = (µL − µR)/(−e). The total conductance becomes

Gtotal =
Itotal
V

=
2e2

h
T (EF). (7.4)

This shows the intrinsic units of conductivity in the quantum regime: G0 = 2e2

h
is

often called ’quantum conductance’ and R0 = h
2e2 = 25.8 kΩ ’quantum resistance’.
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7.2 Method

The transport formalism in real space is very intuitive within the framework of the
Laudauer-Büttiker theory.
As outlined above, the entire transport setup is divided into three space parts, the
scattering region embedded between the semi-infinite left and right electrode. An in-
cident electron is described in the single-particle picture of the Kohn-Sham formalism
by a wave function, which extends over all three volumes

Ψ(r) =







ΨL(r), r ∈ left electrode
ΨS(r), r ∈ scattering region
ΨR(r), r ∈ right electrode

(7.5)

and obeys the Kohn-Sham equation for the incident energy E





ĤL ĤLS 0

Ĥ†
LS ĤS ĤSR

0 Ĥ†
SR ĤR



 ·





ΨL(r)
ΨS(r)
ΨR(r)



− E





ΨL(r)
ΨS(r)
ΨR(r)



 = 0 (7.6)

The diagonal elements ĤL, ĤS and ĤR contain the local and non-local parts of
the Hamiltonian of the left electrode, the scattering region and the right electrode,
respectively. The off-diagonal element ĤLS represents the non-local interaction of the
left electrode with the scattering region and analogously ĤSR the interaction of the
scattering region with the right electrode. One may already see that the long ranged
interaction of the left and right electrode across the junction is neglected, i.e. the
element ĤLR = 0 and therefore not denoted explicitly in equation (7.6).
The setup of the three partial volumes has been done arbitrarily and therefore must
not affect the results. This imposes the constraint that the scattering wave function is
continuous ΨL(rLb) = ΨS(rLb) and ΨS(rRb) = ΨR(rRb) in the left and right boundary
plane, respectively (For simplicity, two planes, both perpendicular to the transport
direction have been chosen to confine the scattering region). Taking out the central
equation from (7.6), we get

Ĥ†
LSΨL(r) + (ĤS − E)ΨS(r) + ĤSRΨR(r) = 0

⇔ (E − ĤS)ΨS(r) = Ĥ†
LSΨL(r) + ĤSRΨR(r). (7.7)

ΨL(r) is a superposition of the incident wave function and the reflected wave. The in-
cident wave is an energy eigenstate of the (left) electrode because the electron cannot
be subject to any interaction with the junction when it is still in a far left position.
ΨR(r) is the transmitted wave only. We can expand ΨL(r) in eigenstates of the left
electrode and the transmitted part ΨR(r) in eigenstates of the right electrode where
we have to distinguish between propagating solutions and the so called evanescent
waves, solutions with negative kinetic energy which describe an exponentially de-
caying tail. Assuming ΨL and ΨR are well known, we can find the scattering wave
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function inside the junction

ΨS(r) = Ĝ(E)
[

Ĥ†
LSΨL(r) + ĤSRΨR(r)

]

(7.8)

where the Green-function Ĝ(E) is defined as

Ĝ(E) =
(

E − ĤS

)−1

. (7.9)

Here, the Hamiltonian of the scattering region ĤS is required. Therefore, the elec-
tronic structure of the scattering region has to be determined in advance. The scat-
terer can be regarded as some impurity in the, otherwise infinite, lead. For this
reason, the position of the boundary planes has to be chosen, such that the elec-
tronic structure has assumed bulk-like properties outside the boundaries. Then it is
justified, that each region is treated in a separate calculation. The electronic struc-
ture of the right and left electrode region are determined in a straightforward bulk
calculation, where ’bulk’ only refers to the periodic boundary conditions in transport
direction. The boundary conditions perpendicular to the transport direction are not
affected.
The scattering region, however, is also solved with periodic boundary conditions
in transport direction, but the fact, that the electronic structure has converged to
bulk-values ensures, that the impurity hardly interacts with its periodic replica. The
boundary conditions perpendicular to the transport direction have to be the same as
the boundary conditions of the leads, e.g. if the leads are wires, the scattering region
is a wire, too.
Now we assume that the interaction described by ĤLS and ĤSR are spatially localized
around the boundary planes at rLb and rRb, respectively. In particular the presump-
tion is important that they have no spatial overlap. This requires a certain minimum
thickness (zRb − zLb) of the scattering region. The minimum thickness is given by
the maximum range of non-local interactions zRb − zLb > 2 rnon−local.
Discretizing space into equidistant grid points allows to separate the 3 dimensional
scattering problem into a set of x-y-planes with Nx × Ny grid points in each plane
and a one-dimensional scattering problem in z-direction (transport direction). The
finite difference approximation (see Chapter 3) induces a relation of only 2Nf+1
planes in the Hamiltonian i.e. the interactions are localized within the interaction
radius rint = (Nf+1) hz where hz is the grid spacing in z-direction. In terms of the
x-y-planes the Hamiltonian takes the form of a banded diagonal matrix (just like in
the one dimensional FD-case) where the matrix elements are itself matrices operating
on each x-y-plane. A single equation at the plane [k] out of this set looks like follows

B̂
(−Nf )

[k−Nf ]ψ[k−Nf ] + · · ·+ B̂
(−1)
[k−1]ψ[k−1]

+
(

Ĥ[k] − E
)

ψ[k]+B̂
(1)
[k] ψ[k+1] + · · ·+ B̂

(Nf )

[k] ψ[k+Nf ] = 0 (7.10)

where B̂
(−n)
[k] = (B̂

(n)
[k] )† for all n ∈ [1, Nf ]. Note that the plane index [k] varies for

the B̂-operators on the left side of the central term Ĥ[k] whereas it is constant on the



7.2 Method 57

right side. We will see in equation (7.13) that this is necessary to obtain a hermitian
Hamiltonian. The operator Ĥi contains the local potential, FD-approximated kinetic
energy in x- and y-direction and the central FD-coefficient for the second derivative
in z-direction. Then the elements ĤLS, ĤSR and ĤS in the Schrödinger equation (7.6)
are given for Nf = 2 ; the general case can be found in the appendix (A.2).

Ĥ†
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









· · · 0 B̂
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[0]
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· · · 0
· · ·
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





, (7.11)

ĤSR =


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and

ĤS =


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where nz is the number of x-y-planes in the scattering region. The requirement of
no spatial overlap of the interactions may then be expressed as nz > 2Nf .
At this point further explanation refers to the case of Nf = 1 to keep the notation
as simple as possible. The main equation (7.7) becomes

(ĤS − E) ·















ψ[1]

ψ[2]
...

ψ[n−1]

ψ[n]















=
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













B̂
(−1)
[0] ψ[0]

0
...
0

B̂
(1)
[n−1]ψ[n+1]

















. (7.14)

Leaving out all lines that have a 0 on the right side yields a shortened version of
equation (7.8).
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(

ψ[1]

ψ[n]

)

=

(

Ĝ[1,1] Ĝ[1,n]

Ĝ[n,1] Ĝ[n,n]

)

·
(

B̂
(−1)
[0] ψ[0]

B̂
(1)
[n−1]ψ[n+1]

)

(7.15)

We now introduce the solutions ΦL,R
[k],i of the left and right electrode determined either

numerically or analytically (see Chapter 7.4) in a separated calculation. The waves
ΦL,R

[k],i form a basis for the reflected and transmitted waves. Here [k] denotes the x-
y-plane index and i labels the different states. These are not only eigenstates of the
Hamiltonian but also generalized Bloch-states. We identify for ΨL(r) the incident
and the reflected waves and for ΨR(r) the transmitted wave

ΨL([k], r‖) = Φinc([k], r‖) + Ψref([k], r‖), (7.16)

ΨR([k], r‖) = Ψtra([k], r‖). (7.17)

The incident wave Φinc[k] is a single propagating eigenstate of the lead whereas Ψref [k]
and Ψtra[k] are expanded in terms of the solutions ΦL,R

[k],i.

Ψref [k] =
∑

i

ri ΦL
[k],i (7.18)

Ψtra[k] =
∑

i

ti ΦR
[k],i (7.19)

In the following, the summation over i will be replaced by the dot-product ( · ). The
setup of leads is often symmetric i.e. the basis of solutions identical ΦL ≡ ΦR but
to keep it as general as possible we will continue labelling the left(L) and right(R)
electrode.

ΨL([k]) = Φinc
[k] + ΦL

[k] · r (7.20)

ΨR([k]) = ΦR
[k] · t (7.21)

Consequently equation (7.15) becomes

(
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)
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R
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)

. (7.22)

Solving for r and t gives
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=
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)

·
(

r
t

)

. (7.23)
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This (2NxNy) × (2NxNy) set of linear equations is to be solved directly.
Once the reflection coefficients ri and the transmission coefficients ti are found for
this particular incident wave Φinc

j , we know the transmission matrix elements tij. The
total transmission can then be evaluated according to

T =
∑

ij

vj

vi

|tij|2 (7.24)

where the factor
vj

vi
accounts for different group velocities. The meaning of |tij|2 is

the probability of scattering an incident wave ΦL
i into a transmitted wave ΦR

j . The
number of contributing incident waves nin

waves is determined by the potential at the
left boundary plane. Any solution with an energy E lower than EF gives one incident
wave. Analogously the number of outgoing waves nout

waves is determined at the right
boundary plane. Thus in a symmetric setup with zero voltage bias one can expect
nin

waves = nout
waves.

7.3 Generalized eigenstates

In a system with a discrete translational symmetry in z-direction, the eigenstates of
the Hamiltonian can be described in terms of Bloch-states i.e.

ΨBloch(r‖, z) = eikzz Ψ̃peri(r‖, z) (7.25)

Consider the electronic state of an electron in a infinite crystal. The periodic bound-
ary conditions requires us to choose kz real valued so that the phase factor eikzz has
the absolute value 1. This allows to normalize the wave function to the unit volume.
However, the transport setup foresees semi-infinite leads on each side of the junction.
For the left (right) electrode also exponentially growing (decaying) states can be nor-
malized so that kz may be complex. The (generalized) eigenstates corresponding to
complex kz values are usually connected to the complex band structure. Figure 7.2
depicts an evanescent wave of the right electrode schematically.

7.4 Jellium approximation

The jellium model is a very simple, but also very rough approximation for a metal.
The delocalized electronic states in bulk metallic material cause screening. This
means that strong core potentials are screened and so create a relatively smooth back-
ground potential. In the limit of maximal screening, the localized positive charge of
the cores is approximated by a homogeneous background charge distributed in space.
This produces a maximally smooth local effective potential in the single-particle pic-
ture. One can imagine that this model will not reproduce the same characteristic
wave functions as the original bulk material. Analogously, the chemical bonds to it
will suffer from the loss of structure and the gain of symmetry.
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Generalized Bloch-state

Figure 7.2: Sketch of a generalized Bloch-state. The electronic wave functions enve-
lope is exponentially decaying. Such states can be normalized inside a
half-infinite volume such as the right electrode.

Jellium as leads for transport calculations is of particular interest because its elec-
tronic structure can be described analytically. The crystalline structure given by the
core positions gets lost due to the smearing. Consequently, a pure bulk jellium sys-
tem has the full translational invariance and isotropy assuming an infinitely extended
system. The eigensolutions of such a homogeneous electron gas are known to be plane
waves, occupied up to the Fermi energy EF. However, the solutions needed for the
transport calculations outlined in Chapter 7.2 contain eigenstates (plane waves) and
generalized eigenstates (exponentially growing or decaying waves). These can be
expresses by

Φjellium(r) = ei~qr−~κr (7.26)

Discretizing the leads analogues to the junction region with peridic boundary condi-
tion for k‖ gives Bloch-states in plane. The exponentially growing or decaying factor
is only relevant in the transport direction so that ~κ is assumed to consist of κz only.

ΦL,R([k], r‖) = eik‖r‖ · eiqzzk · e±κzzk (7.27)

The local potential inside the junction region is subject to match the local potential
of the leads at the boundary planes at zLb and zRb, respectively. The junction region
is computed self-consistently in a so called repeated slab model i.e. with periodic
boundary conditions in transport direction. Both sides of the junction region have to
include some of the lead material. This causes the leads to interact with the junction
and equally the junction to interact with the surface of the leads. If for example a
molecule makes up the junction, the presence of a metal causes hybridization so that
the molecular states are broadened. The surface of the lead breaks the translational
symmetry so that it cannot be treated in a periodic calculation like regions deep
inside the leads. The consequence are states localized at the surface. It has to be
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ensured that the extend of the lead material included in the junction region is long
enough to show bulk-like properties at the boundary planes. The screening effect
in metals enables a rapid convergence but still there are effects arising from the
calculation with a finite slab thickness that will be discussed later.
Another, very striking advantage of jellium for the transport calculations is that
all the operators B̂

(n)
[k] in Chapter 7.2 are scalars i.e. scalar multiples of the unity

operator. The scalar values are exactly the off-diagonal finite difference coefficients
of the kinetic energy operator B̂

(n)
[k] = c

(2)
n · 1̂ and thus independent of the discretized

z-position index k.

7.5 Computational costs

The important quantity for transport calculations is the Green-function Ĝ(r, r′,k‖, E).
The spatial coordinates r and r′ become vectors of indices [ix, iy, iz] and [jx, jy, jz],
respectively due to the discretization, so the Green-function represented on the grid is
g([ix, iy, iz], [jx, jy, jz], [kx, ky]‖, E). If the only nonlocal contribution from the Hamil-
tonian at the boundary planes is given by a short ranged finite difference formula,
e.g. Nf=2 or Nf=1, for the kinetic energy in z-direction, the transport calculation
demands only certain elements of the Green-function. A general form of equation
(7.15) shows that the number required elements of g([ix, iy, iz], [jx, jy, jz], [kx, ky]‖, E)
is given by (2NfNxNy)

2. This means that the step from Nf = 1 to Nf = 2 brings
the strongest relative increase of computational costs.
The single elements of the Green-function g are computed with a CG solver applying
preconditioning for convergence acceleration. The residual norm

RĜ(r) =

∫
{
∫

[

E δ(r′′, r′) − Ĥk‖
(r′′, r′)

]

Ĝ(r′, r,k‖, E)dr′ − δ(r′′, r)

}2

dr′′ (7.28)

is minimized for all discretized vectors r in the first and last Nf x-y-planes, i.e.
2NfNxNy vectors. Presumably, some computational effort can be saved by a clever
guess for the initial Green-function that is required to start the iterative algorithm.
A good guess would be

Ĝinit(r, r
′,k‖, E) =

Nbands
∑

i

Ψ
(i)
k‖

(r)Ψ
(i)
k‖

(r′)

E − ε
(i)
k‖

(7.29)

which should be a good approximation even for a finite number of computed states
Nbands, where i is a band index, also including spin if spin is considered.
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8 Molecular Transport Results

My investigation of the transport properties of terephthalic acid, embedded between
two copper (110) surfaces, started at the isolated molecule in the gas phase, op-
timizing its structure and determining its electronic ground state structure. Then
the one-sided adsorption and later on, the double adsorbed geometry are discussed.
The conductance calculations have been performed using the jellium approximation.
Applying jellium requires several aspects of convergence to be taken into account. I
investigated the dependency of the equilibrium conductance on various parameters,
especially the change of electron transmission when the Fermi level is shifted.

8.1 Isolated TPA

Figure 8.1: Terephthalic acid in the gas phase (isolated). The structure has been op-

timized in a 7.3×10.3×12.7 Å3 box with finite boundary conditions. Af-
ter a geometry optimization, the residual forces do not exceed 50 meV/Å.
The density iso-surface is taken at 1.5 e/Å3.

Terephthalic acid is a simple organic compound that consists of a benzene ring struc-
ture with two carboxylic functional groups in (1,4) position i.e. attached at opposite
side of the ring (also called para-position). Figure 8.1 shows the structure visualized
in a molecular viewer. The hexagonal ring of carbon atoms is known to be very stable
due to the aromatic configuration. Each carbon atom is configured in a sp2-state, so
that the third p-orbital can hybridize with the others to a delocalized π-state. This
delocalized p-orbital has a nodal plane in the plane of the ring. That causes the
density of this molecular orbital to be strongly localized in two torus structures, one
above and one underneath the hexagonal ring of carbon cores. The Dh6-symmetry is
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Bond Length (Å) This work Ref.[13]
O1-C1 1.34 1.390
O2-C1 1.20 1.291
C2-C1 1.46 1.480
C3-C2 1.38 1.417
C4-C2 1.38 1.415
C5-C4 1.37 1.405

O1b-C8 1.34 1.390
O2b-C8 1.20 1.291
C7-C8 1.46 1.480
C5-C7 1.38 1.417
C6-C7 1.38 1.415
C6-C3 1.37 1.405

Bond Angle (◦) This work Ref.[13]
O1-C1-O2 122.6 121.7
O1-C1-C2 112.9 113.6
O2-C1-C2 124.4 124.7
C1-C2-C3 117.6 122.4
C1-C2-C4 121.5 119.3
C3-C2-C4 120.8 120.4
C2-C4-C5 119.4
C2-C3-C6 119.8 120.3
C3-C6-C7 119.4
C4-C5-C7 119.8
C5-C7-C6 120.8
C5-C7-C8 117.1
C6-C7-C8 122.0

C7-C8-O1b 124.2
C7-C8-O2b 113.2

O1b-C8-O2b 122.6

Table 8.1: Structural data of terephthalic acid (TPA) in the gas phase. Bond length
and angles are measured after a geometry optimization as described in
Chapter 5.11. The calculation parameters are: cell extent 7.3 × 10.3 ×
12.7 Å3, finite boundary conditions and a force-cutoff Fcutoff = 50 meV/Å,
i.e. the atomic positions R(a) are not updated after the determination of
the electronic structure as soon as their forces |F(a)| < Fcutoff fall below
the cutoff.

broken due to the functional carboxylic group binding to the first and fourth carbon
of the ring (labelled C2 and C7) atom replacing hydrogen atoms. The steric effect
of them can be seen in a small deviation of the bond angles, listed in Table 8.1. The
angles at C2 and C7 of the terephthalic acid deviate about 0.84◦ from the equilibrium
angle of benzene which is exactly 120◦ due to its symmetry. This has been found in

a geometry optimization of the isolated TPA structure in a 7.3× 10.3× 12.7 Å
3

unit
cell with isolated boundary conditions and a grid spacing of [0.152, 0.161, 0.159] Å.
The forces have been relaxed below Fcutoff = 50 meV/Å. The results have been found
to agree qualitatively with the reference data from [13]. The bond angles differ only
slightly whereas the bond lengths are systematically shorter. This is due to the us-
age of the P91-functional [2] in this work and the PBE96GGA-functional [25] in the
reference.

This tiny change of the bond angle justifies the assumption that the electronic struc-
ture in the carbon ring has changed only slightly from the one of benzene. Figure 8.2
shows the density of the molecular state that has a strong contribution of p-orbitals.
Additionally, hybridization with the states localized around the oxygen pairs oc-
curs. However, the shape of the central cloud represents the π-conjugated orbital in
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Figure 8.2: Iso-surface of a conjugated π-state. The nodal plane of the p-orbitals co-
incides with the plane of the carbon ring structure. Hybridization occurs
also with the p-states of the oxygen pairs.

agreement with the prediction from benzene.

8.2 TPA on Cu(110) surface

The carboxylate group of terephthalic acid easily dissociates the hydrogen in order
to bind to a metallic surface. The functional carboxylic group assumes a symmetric
equilibrium structure after removing the hydrogen due to the gained mirror symme-
try. Atodiresei et al. investigated the adsorption process of the carboxylic acid group
on the basis of ab inito calculations for single formate molecules (CH3COOH) [14] as
well as for terephthalic acid itself [13]. The arrangement of the organic molecules on
a Cu(110) surface is such that one carboxylic group couples to the outermost copper
layer. This configuration was found more stable than adsorption at any hollow site of
the (110)-surface. Each of the two oxygen atoms of the lower carboxylic group bind
to one copper surface atom. The molecule arranges itself to be standing vertically
on the surface [15].

The self assembly process is strongly controlled by the surface coverage. A set of
terephthalic acid molecules (TPA) standing packed on the surface interact due to
their small intermolecular distance. Their separation is induced by the surface struc-
ture. The equilibrium lattice constant of copper a = 3.59 Å forces the molecular
axis to be separated by 3.59 Å = a in x-direction and 5.08 Å = a

√
2 in y-direction

so that a full coverage leads to repulsive forces between the hydrogen atoms. The
effect is that the benzene ring is tilted with respect to the (110) direction [12]. At
full coverage, i.e. every adsorption site is occupied, the torsion angle is 24.7 degrees
[13], when the structure is relaxed.
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Figure 8.3: Isosurfaces at 0.2 · 10−3 e/Å3 of the HOMO (left) and LUMO (right)
Kohn-Sham states. The HOMO state shows mainly σ-bonds inside the
carbon ring whereas the LUMO state consists of π-orbitals with a nodal
plane that coincides with the plane of the molecule. The HOMO-LUMO
gap is 3.66 eV (difference of Kohn-Sham energies).

8.3 TPA in the transport setup

Terephthalic acid in its one-sided adsorption geometry, as described in the previ-
ous Chapter, has been measured using scanning tunnelling microscopy (STM). This
technique requires a conductive substrate and a metallic tip which is positioned close
above the surface of the substrate. In this particular setup the tip approaches the
upper end of the upright standing molecule. STM measurements produce a char-
acteristic dependence of the tunnel current in dependence of the voltage, applied
between tip and substrate, and the spatial separation between tip and molecule.
Consider a tip that is brought close to upper end of the TPA molecule so that the
upper carboxylic group binds to the closest atoms of the tip.

The self-assembled array of molecules can easily be calculated using periodic bound-
ary conditions and one molecule in the unit cell. However, the tip approaching the
molecule breaks the translational invariance so that periodic boundaries are not ap-
plicable any longer. A realistic model of a STM tip would require a huge super cell
with many molecules and surface atoms because usual tip radii are larger than a hun-
dred Å. Furthermore some vacuum between the periodic replicas of the tips would
be necessary to come closer to the system of a single tip. Alternatively, an impurity
calculation could treat the single tip over the surface. To simplify the problem, the
tip has been replaced by a second copper (110) surface. The result is a symmetric
setup of two surfaces enclosing the molecule as depicted in Figure 8.4. Note that this
setup will not fully reproduce the results of STM measurements for various reasons.
Copper is too flexible to produce a tip out of it; rather Tungsten works well and
is used frequently. A major difference is also induced by the change of boundary
conditions. The copper surface with its two-dimensional boundary conditions will
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Figure 8.4: Terephthalic acid in the transport setup. The molecule is chemisorbed to
both Cu (110) surfaces simultaneously. The coupling to both electrodes
promises transport via the molecular states.

produce a different density of states than the tip which is expected to show finite
size effects due to its small extent in the direction parallel to the surface.
In the process of the molecules chemisorption to the surface, the hybridization of the
molecular states with the metallic states of the leads is of special interest. In partic-
ular the broadening of the molecular states is crucial for the transport mechanism.
The effect of the molecule onto the surface and the effect of the surface onto the
molecule can be considered relatively weak. This can be seen from the results of the
projection method.

Consider the Kohn-Sham states
∣
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For a non-interacting system, the weights w
(j)
elec and w

(j)
mol must add up to unit for each

state j. Figure 8.6 depicts the total density of states (weight 1) and the projected
densities of states. The sum of both parts adds up to unity almost everywhere. Note



68 Molecular Transport Results

Direction Length Grid points Grid spacing Cutoff energy

x 3.59 Å 20 0.179 Å 83.3 Ry
y 5.08 Å 28 0.181 Å 81.7 Ry
z 21.4 Å 160 0.134 Å 155.4 Ry

k-point in 2π
L

Weight
0.00 0.00 0.00 1/16
0.25 0.00 0.00 2/16
0.50 0.00 0.00 1/16
0.00 0.25 0.00 2/16
0.25 0.25 0.00 2/16
0.50 0.25 0.00 2/16
0.00 0.50 0.00 1/16
0.25 0.50 0.00 2/16
0.50 0.50 0.00 1/16
0.25 -0.25 0.00 2/16

Natoms 34
Nelectrons 258
Nbands 144

Table 8.2: Details of the calculation. The grid spacings in the directions parallel to
the surfaces have been chosen, according to the results of the convergence
test, relatively small, because the number of required Green-function ele-
ments is proportional to the number of grid points in the x-y-plane. The
k-point set has been chosen according to the Monkhorst-Pack[26] scheme
4×4×1. Natoms is the number of real atoms. It differs in those calculations
where jellium has been used to replace the inner layers of the copper slab,
but the total number of valence electrons is kept constant.
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Figure 8.5: Periodic transport setup. A realistically extended surface has to be sim-
ulated in a periodic model. Choosing the smallest unit cell that accom-
modates one molecule leads to a small intermolecular separation. This
causes the carbon rings to relax into an tilted equilibrium structure due
to the repulsions of the hydrogen atoms. The super cell in this calculation

is 3.59 × 5.08 Å
2

and 21.4 Å in transport direction. A set of 2 × 2 super
cells is shown.

that this does not mean, that states of the electrode and states of the molecule that
have the the same energy do not hybridize, but rather it means that the hybrid states
are very close to linear combinations of each components states. Thus the energy
splitting is small.

As pointed out in Chapter 7.4, the transport calculations using jellium is much sim-
pler and faster than the general case employing crystalline electrodes. Therefore the
junction system must be adopted to the jellium leads. Especially the valence density
and local potential of the junction region have to be continuous at the boundary
planes. The first derivatives of the valence density and of the local potential have
to vanish in order to find a smooth transition to the constant density and potential.
Fortunately, this is an intrinsic feature of a mirror symmetric junction region. How-
ever, this goal can be reached by including some jellium into the junction region. As
mentioned previously, also layers of real atoms have to be included there to model
the surface structure. The transport setup has to be converged with respect to both,
the number of atomic buffer layers and the length of the included jellium. Within
this slice of jellium, the structured effect arising from the atomic potentials (local
and non-local) has to vanish and adopt to the flat potential inside the semi-infinite
electrode. The difficulty arising from the usage of jellium in combination with atomic
buffer layers is to treat the interface right. The setup has a certain interface at the
position of the jellium edge. The atomic buffer layers are, to produce no gap, situ-
ated such that the average density would be preserved i.e. the jellium edge is at a
half a layer-layer distance from the first row of atomic positions. However there is a
strong surface dipole which induces an unwanted interface between the jellium and
the atomic buffer layers.
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|2, respectively. The same boundary condi-

tions and k-point sets are applied to all three setups. It has been checked
that the density of states (DoS) of the junction containing the molecule
deviates only slightly from the sum of the projected densities of states
i.e. w

(j)
elec + w

(j)
mol ≈ 1 for all j.
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Figure 8.7: Buffer layers of copper atoms. The electronic structure and total con-
ductivity at the Γ-point have been calculated with different numbers of
atomic buffer layers. The effect of the (110) surface structure can not be
reproduced by a flat jellium surface (lowest configuration without atomic
buffer layers). However the combination of copper atoms and jellium
bares severe difficulties. The conduction is higher not including atomic
buffer layers, but the density plots show, that the binding of the molecule
to the textureless and flat jellium surface does not reproduce the effect
of a (110) surface.
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Figure 8.9: Local pseudopotential for copper. The localized d-states are treated as
core states. The integrated effective potential may be constructed to
be only local, i.e. no non-local projection of the Kleinmann-Bylander
pseudopotential form is needed.

8.4 Friedel oscillations in jellium

A jellium surface creates a surface dipole due to its electronic states leaking out of
the confining potential well. The constant electrical field of this dipole is screened
by the charges underneath the surface which leads to Friedel oscillations. These in
principle are a natural phenomenon but it has to be ensured that the oscillations of
the surface have decayed in the center of a slab of finite thickness if we want to match
bulk to it. Otherwise a finite size effect comes into play. If the charge density has
not converged to a constant, bulk-like charge density but rather oscillates, the local
effective potential oscillates as well. This is crucial for matching it to the constant
potential of the electrode.

The valence electron configuration of copper is [Ar] 3d10 4s1. The d-electrons are
well localized around the core whereas the spatial extent of the 4s-wave function is
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much larger. There are two ways to represent copper atoms by pseudopotentials.
One way is using a nonlocal pseudopotential with s, p and d-states treating all 11
valence electrons (Cu(10+1)). The alternative is integrating out the effect of the d-
states using a local potential for the 4s-state only (Cu(1)). This local potential is
depicted in Figure 8.9.
The jellium charge density in the transport setup has to coincide with the average
valence charge density of crystalline copper. For Cu(10+1) the density in the elec-

trodes is %(10+1) = 0.91 e/Å
3

while it is less by factor 11 for the s-electron only

%(1) = 0.083 e/Å
3
.

The advantage of the local potential with only one valence electron per copper atom
is in first place the relatively small total number of valence electrons in the system.
Additionally, a pure local potential in the Hamiltonian is cheaper to apply to a
wave function since it does not require nonlocal projection operations as described
in Chapter 4. The disadvantage is the reduced screening effect. In the model of
the single s-electron as valence charge, the charge density is not sufficient to damp
these oscillations down. Figure 8.10 depicts that in particular. The results show that
even a much longer electrode, with the same valence electron density and thus more
charge in total, is not effectual to remove the finite size residuals.
A higher valence density allows more efficient screening so that the oscillations decay
rather rapidly into the jellium. For these reasons the Cu(10+1) has to be applied for
the buffer layers and %(10+1) as valence density of the jellium electrodes. Figure 8.8
shows this for different numbers of buffer layers. It can be observed that the plane-
integrated density converges to the constant ’bulk’ value about one layer width behind
the jellium edge. Note that the jellium surface is situated behind the buffer layers of
real atoms. The position of the edge has been chosen in the center between the real
atomic layer and the replaced atomic layer. It can be observed in Figure 8.11, that
the plane integrated density has a minimum at the jellium edge, if there are atomic
buffer layers separating the jellium from the molecule. For a pure jellium surface (i.e.
no buffer layers), the plane-integrated density deviates strongly from the density of
the atomic surface. This explains the enormous deviations of conductance values and
other properties. The characteristic structure of the (110) surface is not reproduced
by a flat jellium surface.
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Figure 8.10: Valence density averaged over the x-y-direction. The Cu(1) model (cop-
per with only the 4s electron) shows very large Friedel-oscillations (left
hand side). Even for a much thicker slab size the density does not con-
verge to a constant (right side). The low valence density does not screen
the surface effect efficiently.

C HC C O Cu Cu Cu Cu Cu

z-component of positions
0.0

0.2

0.4

0.6

0.8

jel

1.0

1.2

z-
li
ne
 d
en
si
ty
 (
e/
An
gs
tr
om
^3
)

no jellium
4 buff.lay.
3 buff.lay.
2 buff.lay.
1 buff.lay.
no buffer

Density of the electrode

Figure 8.11: Valence density averaged over the x-y-direction. Cu(11), i.e. copper with
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8.5 Energy dependence 75

-0.2 0 0.2 0.4 0.6 0.8
E - E(Fermi) /eV

0

20

40

60

80
DoS (Gamma point)
PDoS (Gamma point)

Density of States

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

( incident energy − E
F
 )/eV

co
nd

uc
ta

nc
e 

/ 
G
o

 

 

Conductance G(E)   
shape−preserving fit

Figure 8.12: Comparison of the density of states and transmission T (E) above the
Fermi level. The total conductance at the Γ-point (right plot) shows a
significant similarity to the corresponding density of states. The finite
width of the resonance peak is due to the broadened molecular state,
whereas the width in the density of states is artificial.

8.5 Energy dependence

A main purpose of the transport calculation is to determine the total conductivity
of a junction setup. For simplicity the Green-function G(E) is only calculated at the
Fermi level i.e. E = EF in equation (7.9). This provides the conductance value at
the Fermi level and so the limit of zero voltage. In order to investigate the sensitivity
of the total conductance G(E) to changes of the Fermi level, the total transmission
T (E) has been evaluated at a set of different energies above EF for the transport
setup of terephthalic acid (TPA). A very simple model predicts that the transmission
T (E) depends only on the density of states at the particular energy E. Therefore,
it is supposed to show a resonance when E matches the eigenenergy of a molecular
state εi.

The corresponding distribution function for the density of states of a molecule is a
set of δ-functions, each centered at a molecular eigenenergy. However, when the con-
tinuum of states of the electrode in the transport setup hybridizes with the molecule,
its states will broaden i.e. the molecular states appear in the density of states as a
peak with a finite width instead of a sharp delta-function. In practice, every calcu-
lation with a finite number of k-points will give discrete set of states instead of a
continuum. The peaks will therefore split into a set of peaks, localized within the
range of the energy broadening. This broadening should then be visible also in the
width of the resonance of the transmission T (E).

We can expect of a symmetric transport setup that the molecular states cause a
high transmission probability by coupling to both electrodes simultaneously and so
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Figure 8.13: Comparison of the transmission channel and molecular states. The first
iso-surface is the transmission channel wave function at +0.3 eV above
the Fermi level. The second iso-surface is the state of the junction region
at the corresponding energy. It is localized 99.3% on the molecule. The
third state is the LUMO orbital of the isolated TPA molecule. All three
structure show a similarity in their behavior around the carbon ring.

mediating incident electrons from the left electrode via the molecule into the right
electrode. This has been found for the first resonance level above the Fermi energy
EF.

The transmission T (E) has been measured at a set of energy values above the Fermi
level, especially at the eigenenergy of the LUMO state, which is expected to provide
a non-vanishing total conductance. Figure 8.12 gives a comparison between the den-
sity of states and the total transmission T (E), both evaluated at the Γ-point. The
resonance peak is centered at 0.29 eV. The density of states shows a single state at
0.29 eV but the projected density of states (PDoS) vanishes there. This means that
this particular state has no weight on the molecule. Visualization of the density of
this state shows, that it is bulk state inside the copper electrode. The next highest
state at 0.54 eV however, is strongly localized on the molecule. This is a proper can-
didate for causing the high transmission. The energy shift of 0.25 eV can be explained
by the different boundary conditions of the Hamiltonian. The Hamiltonian of the
scattering region is determined self consistently in a electronic structure calculation
using periodic boundary conditions. The Hamiltonian to be inverted in order to find
the Green-function though, does not include this periodicity.

Figure 8.13 illustrates the similarity of the transmission channel at 0.29 eV above
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the Fermi level and the molecular state at 0.54 eV. The transmission channel is the
scattering wave function that is found by matching the incident wave to the reflected
and transmitted wave. The third iso-surface picture is the LUMO state of the isolated
molecule.
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Name N position G(EF)/G0 ELUMO − EF

benzene-1,4-dicarboxylic acid – 53.0 · 10−6 0.376 eV
pyrazine-2,5-dicarboxylic acid para 5.1 · 10−6 0.405 eV
pyrimidine-2,5-dicarboxylic acid meta 22.7 · 10−6 0.369 eV
pyridine-2,5-dicarboxylic acid 1 104.4 · 10−6 0.388 eV

Figure 8.14: Doping of the benzene ring with nitrogen. The names change according
to the IUPAC nomenclature rules. Starting from terephthalic acid the
carbon atoms C3, C4, C5 and C6 (comp. Figure 8.1) are systematically
replaced by nitrogen. Simultaneously one hydrogen atom is removed
so that the total number of valence electrons is unchanged. The aro-
matic character of the π-conjugated electronic structure within the ring
is preserved.

8.6 Nitrogen doping

Terephthalic acid can be also be called benzene-1,4-dicarboxylic acid. Replacing
some carbon atoms in the benzene ring creates new compounds. The effect of three
different configurations of nitrogen in the benzene ring has been investigated by
calculating the electronic structure and measuring the total conductance of these
setups.

The effect of nitrogen doping is strongly localized in the ring structure of the molecule.
This can bee seen from the difference of valence charges in Figure 8.15. Also the
density of states is hardly affected close to the Fermi level. Figure 8.16

All values for the equilibrium conductance are very small compared to the quantum
conductance G0, which is the theoretical value for one conducting channel. This is
an effect from the insulating nature of all these molecules. More interesting results
could in principle be gained from the investigation of G(E) like shown in Chapter
8.5. The important quantities then would be the position and width of the resonance
peaks closest to the Fermi level.



8.6 Nitrogen doping 79

-10 -8 -6 -4 -2 0 2 4 6 8 10

z-coordinate (Angstrom)
0.0

0.2

0.4

0.6

0.8

jel

1.0

1.2

z-
li

ne
 d

en
si

ty
 (

e/
An

gs
tr

om
^3

)

benzene-DCA
pyrazine-DCA
pyrimidine-DCA
pyridine-DCA

Density of the junction

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

z-coordinate (Angstrom)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

z
-
l
i
n
e
 
d
e
n
s
i
t
y
 
(
e
/
A
n
g
s
t
r
o
m
^
3
)

benzene-DCA
pyrazine-DCA
pyrimidine-DCA
pyridine-DCA

Density of the junction

Figure 8.15: Comparison of the plane-integrated total valence densities for the four
different molecules. The right plot is a closeup on the region of the ring.
The effect that can be observed at the nitrogen sites is a slightly more
localized valence charge density.
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Figure 8.16: Density of KS-states around the Fermi-level. The deviations in the total
density of states induced by nitrogen replacement in the benzene ring
clearly affect only molecular states. The states above the Fermi level
(EF = 0.0) are contributions of the electrode because all four molecules
show a large HOMO-LUMO gap. This has been shown by the projected
density of states for benzene-dicarboxylic acid (TPA).
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Figure 8.17: Tilted TPA molecules. The structures and conductivities have been
investigated at 14.7, 19.7, 24.7, 29.7 and 34.7 degrees tilting against the
(110) direction. The geometries have not been optimized.

∆φ/degree φ/degree G(φ)/G0 ∆Etot ELUMO − EF

-10 14.7 74.6 · 10−6 0.583 eV 0.3698 eV
-5 19.7 58.5 · 10−6 0.122 eV 0.3729 eV
0 24.7 52.8 · 10−6 0.000 eV 0.3757 eV
5 29.7 49.7 · 10−6 0.035 eV 0.3782 eV
10 34.7 43.9 · 10−6 0.149 eV 0.3806 eV

Table 8.3: Data for different tilting angles. The conduction values at the Fermi level
are all in the insolating regime. However, a trend can be observed. The
less the molecule is tilted, the higher grows the conduction value and the
closer comes the LUMO energy to the Fermi level.

8.7 Mechanical coupling

The equilibrium structure of the TPA molecule on a Cu(110) surface shows a tilting
of the benzene ring with respect to the (110) direction. This is an effect of the
intermolecular repulsion at full coverage (each molecules occupies exactly two surface
unit cells of 3.59 Å× 2.54 Å). This angle has been driven away from its equilibrium
value to see the response of the electronic structure and thus of the conductivity.
Unfortunately, the setup is insulating, so that the effect is tiny. In Figure 8.18, a trend
towards higher conductivity values can be observed, when the structure approaches
the straight, planar configuration. Simultaneously, the level of the LUMO state at
the Γ-point with respect to the Fermi energy shows a trend upwards. The sign
of this change agrees with the variation of the conductivity. All out-of-equilibrium
configurations have, as expected, a higher total energy than the equilibrium structure,
but the minimum seems to be strongly asymmetric (compare ∆Etot in Table 8.3).
A very interesting case study would be the φ = 0 state. This configuration shows
a higher symmetry than the tilted systems. Due to the repulsion of the molecules
among each other, this configuration cannot be computed at full surface coverage.
The hydrogen atoms are then brought too close leading to instability. The compu-
tation at quarter coverage, however, requires a super cell four times as large.
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Figure 8.18: Conductivity in dependence of the angle. The molecule which is tilted by
24.7 degrees in equilibrium has been forced into a atomic configurations
with smaller and larger values. At each step, the electronic structure has
been determined and consequent to it, the conductivity at the Γ-point.

Figure 8.19: Transport setup at 1/4-coverage. Due to the sparse coverage, the in-
termolecular interaction can be neglected. Especially the transmission
value at φ = 0.0, i.e. no tilted ring structure, can then be investigated.
This case is of particular interest because it provides a higher symmetry.
However, the unit cell of this setup is twice as large in x- and y-direction
as in the case of full coverage (compare Figure 8.5 and its setup). This
leads to a much higher effort in the electronic structure computation
and in the transport calculation.
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9 Conclusions

In this thesis I applied a newly developed real-space finite difference method to in-
vestigate the electronic structure and transport properties of terephthalic acid within
the framework of the density functional theory. We found out that such a real space
method provides an excellent tool to investigate systems in low and broken struc-
tural symmetry and large number of atoms, situations which occur with increasing
frequency in nanoscience. Especially the representation on equidistant grids and
the usage of pseudopotentials and iterative methods allows a simple and most effi-
cient parallelization. Thus this method opens a new vista using massively parallel
supercomputers to challenge the system sizes.
The transport formalism, introduced in this work, combining first-principles calcu-
lations with the Landauer-Büttiker formulation of quantum transport extends the
electronic structure calculation and allows to study the conductivity on an ab initio
basis. Electronic transport calculations in the quantum regime can so be applied
to realistic setups. This has been shown for terephthalic acid between two copper
(110) surfaces. We are aware that several important aspects of the electron transport
across a molecule has been neglected in this Diplomathesis, which included the as-
pects of non-equilibrium transport, inelastic effects such as coupling of transport to
molecular vibrations as well as possible Coulomb blockade effects. All these effects
may be included in the future.

Figure 9.1: Sketch of a molecular switch. Two electrodes provide a continuous spec-
trum of states whereas the molecule in the junction shows discrete and
localized states. Molecular states that lie between the Fermi levels of left
and right electrode cause single conduction channels to open. If the align-
ment of a molecular spectrum to the Fermi level of the electrodes can be
tuned, this setup is a candidate for a molecular switch or transistor.

In this thesis I investigated the electronic structure of the terephthalic acid molecule
between the copper (110) leads. To simplify the transport calculations we replaced
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parts of the copper leads by jellium electrodes. As a result I found that the insulating
nature of the molecule is dominant when the surfaces are fully covered with adsorbed
molecules. However, a promising application for molecular junctions is a nano switch.
The molecule is an insulator by default but shifting the molecular states with respect
to the electrodes’ Fermi energies results in drastic changes of the electron transmis-
sion. A third ’gate’ electrode in the setup which controls the molecular level shift
over electrostatic interaction would provide this possibility. The conduction channels
opening up from this manipulation give rise to a quantized conductance behavior. A
nano device for digital data processing could exploit this feature properly.



A Appendix

A.1 Conjugate gradients

The CG method is a sophisticated way to find the solution of a set of linear equations
Â |x〉 = |b〉. Therefore a residual norm is defined which is to be minimized iteratively.
The residual vector is

|rm〉 = |b〉 − Â |xm〉 (A.1)

and the residual norm

Rm = 〈rm| rm〉 (A.2)

The function R is quadratic in the components of x so the best search direction |p〉
from a starting vector |x0〉 is according to the steepest descent algorithm a scalar
multiple of |r0〉.

|p0〉 = |r0〉 (A.3)

now do iteratively:

|xm+1〉 = |xm〉 +
Rm

〈pm| Â |pm〉
|pm〉 (A.4)

|rm+1〉 = |b〉 − Â |xm+1〉 (A.5)

Rm+1 = 〈rm+1| rm+1〉 (A.6)

|pm+1〉 = |rm+1〉 +
Rm+1

Rm
|pm〉 (A.7)

until Rm has converged below a given threshold that determines the accuracy of the
result vector |xm〉. It can be seen that the new search direction always contains a
fraction of Rm+1

Rm
of the old search direction. This can be understood as some kind of

memory. Setting this fraction to zero gives back the SD algorithm (and |p〉 would be
dispensable). In real CG minimizations the method can be stuck in a saddle point.
Then a restart i.e. one SD step may help to get towards the minimum again.
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A.2 Transport formalism

The general expressions for the equations (7.11),(7.12) and (7.13) in Chapter 7.2 are
given by
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and
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Equation (7.22) is written in general form as
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Ĝ[nz−Nf ,1] · · · Ĝ[nz−Nf ,1+Nf ] Ĝ[nz−Nf ,nz−Nf ] · · · Ĝ[nz−Nf ,nz]
...

...
...

. . .
...

Ĝ[nz ,1] · · · Ĝ[nz,1+Nf ] Ĝ[nz,nz−Nf ] · · · Ĝ[nz ,nz]





















× . . .

(A.11)

. . .

























B̂
(−Nf )

[1−Nf ]ψ[1−Nf ] + · · · + B̂
(−1)
[0] ψ[0]

...

B̂
(−Nf )

[0] ψ[0]

B̂
(Nf )

[nz−(Nf−1)]ψ[nz+1]

...

B̂
(1)
[nz ]ψ[nz+1] + · · · + B̂

(Nf )

[nz] ψ[nz+Nf ]

























.
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A.3 Code modules

The electronic structure code can be explained in a modular scheme as follows.

KK4 main Main program

+-ARG arguments Command line arguments

| +-DOC documentation Internal documentation

+-INP input Input processing

+-ATM atoms Atomic information

+-KPT kpoints K-point information

+-PAR params Parameters for everything

| +-RNK ranks MPI-Communicators for parallelization

| +-KPP kparallel K-point parallelization

+-MDY moldyn Molecular dynamics

| +-PRE prepare Initial wave functions

| | +-PDD pseudodata Atomic species pseudopotential data

| | +-WFS wavefunctions Wave functions

| | +-DNS density Densities

| +-SCF selfcon Self consistency

| | +-PSD pseudo Pseudo potential preparator

| | | +-PDD pseudodata Atomic species pseudopotential data

| | | +-PRJ projector Nonlocal projectors

| | | +-POT potential Local potentials

| | | +-FZC fuzzycells Fuzzy cells

| | | +-EWA ewald Ewald summations

| | +-POT potentials Local potentials

| | | +-BND boundary Boundary conditions for the Hartree potential

| | | +-CGR congradient Conjugate gradient

| | | | +-LPL laplace Laplace operator and parallelization

| | | | | +-FDF finitediff Finite difference coefficients

| | | +-DFT denfunctional Density functionals

| | +-SDA sdescent SD/CG eigensolver

| | | +-WFS wavefunctions Wave functions

| | | +-HMT hamiltonian Hamiltonian

| | | | +-FDF finitediff Finite difference coefficients

| | | | +-OVL overlap Kinetic energy parallelization

| | | | +-POT potentials Local potentials

| | | | +-PRJ projector Nonlocal projectors

| | +-BMX broyden Density mixing

| | | +-DNS density Densities

| | +-FRC force Force calculation

| | | +-FDF finitediff Finite difference coefficients

| | | +-WFS wavefunctions Wave functions

| | | +-POT potentials Local potentials

| | | +-PRJ projector Nonlocal projectors

| | +-EWA ewald Ewald summations

| +-PIO parallelio Parallel input/output

| +-DSP display Display results

+-BST bstructure Band structure

+-DSP display Display results

+-OUT output Output units, files
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