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ABSTRACT

Simulations of materials from first principles have improved drastically over the
last few decades, benefitting from newly developed methods and access to increas-
ingly large computing resources. Nevertheless, a quantum mechanical description
of a solid without approximations is not feasible. In the wide field of methods for
ab initio calculations of electronic structure, it has become apparent that density
functional theory and, in particular, the local density approximation can also make
simulations of large systems accessible. Density functional calculations provide in-
sight into the processes taking place in a vast range of materials by their access to an
understandable electronic structure in the framework of the Kohn-Sham single par-
ticle wave functions. A number of functionalities in the fields of electronic devices,
catalytic surfaces, molecular synthesis and magnetic materials can be explained
by analyzing the resulting total energies, ground state structures and Kohn-Sham
spectra. However, challenging physical problems are often accompanied by calcu-
lations including a huge number of atoms in the simulation volume, mostly due to
very low symmetry. The total workload of wave-function-based DFT scales at best
quadratically with the number of atoms. This means that supercomputers must be
used. In the present work, an implementation of DFT on real-space grids has been
developed, suitable for making use of the massively parallel computing resources
of modern supercomputers. Massively parallel machines are based on distributed
memory and huge numbers of compute nodes, easily exceeding 100,000 parallel
processes. An efficient parallelization of density functional calculations is only
possible when the data can be stored process-local and the amount of inter-node
communication is kept low. Our real-space grid approach with three-dimensional
domain decomposition provides an intrinsic data locality and solves both the Pois-
son equation for the electrostatic problem and the Kohn-Sham eigenvalue problem
on a uniform real-space grid. The derivative operators are approximated by finite
differences leading to localized operators which only require communication with
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the nearest neighbor processes. This leads to excellent parallel performance at large
system sizes. Treating only valence electrons, we apply the projector-augmented
wave method for accurate modeling of energy contributions and scattering prop-
erties of the atomic cores. In addition to real-space grid parallelization, we apply a
distribution of the workload of different Kohn-Sham states onto parallel processes.
This second parallelization level avoids the memory bottleneck for large system
sizes and introduces even more parallel speedup. Calculations of systems with
up to 3584 atoms of Ge, Sb and Te were performed on (up to) all 294,912 cores of
JUGENE, the massively parallel supercomputer installed at Forschungszentrum
Jülich.
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CHAPTER 1

INTRODUCTION

Modern society strongly depends on technological innovations. Technology, for
its part, relies on the fundamental understanding of basic physical concepts. In
this respect, the field of condensed matter research, from its very beginning, has
contributed to numerous revolutions leading to technological applications which
have an increasing impact onto everyday life. In particular, since the development
of inexpensive electronic devices for computation, fast and extensive media stor-
age and processing and, most important, digital communications, the way people
interact has changed drastically and appears to be changing ever faster, day by
day. Most of the applications in digital electronic devices are based on inventions
and patents in the field of solid-state research. Examples are microfabrication for
the processor layout on a silicon wafer, the giant magnetoresistance effect for mag-
netic hard disks, non-volatile flash memory, lithium-ion batteries as used in mobile
phones, optically rewritable digital-versatile disks (DVDs) and many more. Mod-
ern society’s demand for technical applications seem to be insatiable, driving the
improvement of existing and the development of new digital devices to new limits.

Many discoveries in the class of novel materials are inspired by nature or found
by accident. However, a new path to material design has opened up due to the vast
increase and improvement in computing resources. Materials simulations starting
from the most fundamental, their quantum mechanical nature, have become feasi-
ble for systems of considerable size and complexity. This development, in return,
allows us to conduct fundamental research in the field of condensed matter. Ben-
eficial for this development was the reformulation of the quantum mechanics of
many electrons in terms of the density functional theory (DFT) [1, 2], the success
of finding a simple but powerful approximation to the unknown energy functional
of the density and the conceptualization and implementation of appropriate elec-
tronic structure methods that solve these quantum mechanical equations without
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2 Introduction

any adjustable parameters. The enormous international effort behind the develop-
ment of such first-principles methods has led to numerical tools that describe the
complicated interactions of electrons and atomic nuclei with great accuracy, which
are, thus, now capable of making predictions about any conceivable configuration
of atoms.

The procedure of downsizing, as seen in the evolution of the silicon-based tran-
sistor over various orders of magnitude, is now supplemented by the development
of novel materials and functional devices on the nanoscale with a bottom-up ap-
proach. The composition of well-understood functionalized building blocks satis-
fies the demands of novel material design. These building blocks may be single
electrons, electron spins, surface states, impurity atoms or ad-atoms, clusters, ad-
sorbed molecules, wire structures and many more. In any case, functionalization
can only take place in an environment that stabilizes the arrangement, i.e. a host
crystal, a solvent or a substrate material, whose effects contribute substantially to
the required functionality. A variety of phenomena have been found to be unique
to a specific material so that there is a limited choice if that particular effect is re-
quired. However, in some situations, the chemical elements can easily be replaced
by members of the same group in the periodic table of elements thus permitting
fine tuning of the nanodevice. This substitution of a chemical element in a first-
principles calculation is fairly simple compared to the modification of an experi-
ment.

The idea of calculations from first principles occurred at a very early point. In
1929, Dirac already stated that the equations which describe all of the interactions
of electrons and nuclei are far too complicated to be solved and a practical numeri-
cal method [3] is required. Since then, a variety of approximations have been intro-
duced. The motion of the nuclei is usually separated from the electronic degrees
of freedom and often treated semi-classically [4]. However, the electrons also suf-
fer from immense complexity. The electronic many-body wave function possesses
far too many degrees of freedom to be treated numerically in full detail. The num-
ber of storage element required to allow Ne electrons access to d configurations
(lattice sites or predefined orbitals) is dNe . This number easily grows to unavchiev-
able values since both d andNe are linear in the system size. Approximations with
products of single-particle wave functions lead to the class of quantum chemistry
methods including the Hartree method, Hartree-Fock, coupled clusters and config-
uration interaction [5]. From these methods, we can learn that the electron-electron
interaction introduces a correlation effect which is very difficult to treat in an exact
manner.

Density functional theory assigns the degrees of freedom to the density rather
than to the electronic many-body wave function [6]. This, in principle, gives rise to
a computational method that scales linearly in its system size, an order-Nmethod.
However, only the total energy contributions from the external potential (of the
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atom cores or applied electric and/or magnetic fields) is exact when evaluated in
a straightforward way. The kinetic energy and the electron-electron interaction
undergo some approximations. The exact electron-electron interaction energy is
replaced by an energy functional of the density. Within the class of known func-
tionals, the relatively crude local density approximation (LDA) has turned out to
yield sufficiently accurate results, for some materials even in surprisingly good
agreement with experiments. Finally, also the kinetic energy needs to be evalu-
ated from the density. The earliest approaches by Thomas [7] and Fermi [8] and
also recent investigations [9] show that with repsect to kinetic energy an explicit
functional of the density exhibits a large inaccuracy without adjustable parame-
ters. Kohn and Sham introduced an auxiliary set of non-interacting single-particle
states [2]. From these, the evaluation of the kinetic energy is straightforward. The
single particles move in a local effective one-particle potential that models the inter-
action of a single electron with the density of all electrons and includes the effect
of the energy functional consistently. DFT in the framework of Kohn-Sham (KS)
wave functions requires an evaluation of the Ne lowest eigenstates of the effective
single-particle Hamiltonian. Giving d degrees of freedom to each KS state results
in an overall scaling of this method which is between dNe and d2Ne, depending
on the algorithm applied for solving the KS eigenvalue problem. To describe the
complete simulation volume accurately, dmust be proportional to the volume and
thus, roughly speaking, to the number of atoms. The number of electrons also de-
pends linearly on the number and type of atoms. This results in an overall scaling
of KS DFT which is, at least, cubic in the system size and, at best, quadratic.

The immense success of investigations based on first principles can be measured
by the number of publications per year in this field. This can mainly be attributed to
the strong predictive power of DFT calculations, which holds for a large variety of
materials, and the insight gained by the analysis of their electronic structures and
equilibrium geometries. Especially, the ab initio character of the DFT methodology
and, compared to quantum chemistry methods, its favorable scaling enhances a
fundamental understanding of novel materials. We can start our simulation simply
from the atomic numbers and approximate atomic positions. However, there are
some technical issues arising in implementations of DFT.

The various scales of the effective local potential impose a challenge in represent-
ing potentials and KS wave functions. The local effective potential is very deep in
the core region and shows a singularity at the nuclear site, but shallow and slowly
varying in the region between the atoms, usually called the interstitial or valence
region. The 1

r
-singularity of the atomic core potentials has no proper length scale,

i.e. its range is infinite, and thus cannot be treated properly in a finite basis set or on
a real-space grid with constant grid spacing. In fact, it requires an infinitely high
density of basis functions1 to resolve it accurately. This causes a disadvantageous

1Here, we treat grid points as if they were basis functions. A more detailed discussion of their
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convergence behavior with respect to the number of basis functions. The deep, at-
tractive potential leads to the formation of strongly bound core states, which are
localized in the vicinity of the nuclei. States higher in energy and, in particular
valence states, are orthogonal to the lower ones and thus exhibit rapid spatial os-
cillations in the core region. The representation of the local potential and the KS
wave functions can only become sufficiently accurate within a limited, reasonable
number of degrees of freedom if we increase the number of basis functions per unit
volume in the core region compared to the valence region.

Various ways of overcoming the aforementioned challenges of representing po-
tentials and KS wave functions have been developed over the past decades [6, 10].
The class of muffin-tin (MT) methods including orthogonalized plane wave [11],
augmented plane wave (APW) [12], linearized muffin-tin orbital (LMTO) [13] and
linearized augmented plane wave (LAPW) methods [14, 15, 16], introduce an atomic
sphere and a sharp cut-off at the atomic sphere boundary, where a matching of
the numerically given radial solution inside the sphere to the analytically given
(smooth) basis function outside the sphere is essential. The various implementa-
tions of LAPW [17, 18, 19, 20, 21] are considered to be the method representing the
gold standard of DFT results for solids due to their accuracy.

However, we apply the projector augmented wave (PAW) method in our work,
which was invented by P. E. Blöchl [22]. The class of methods that applies the con-
cept of the PAW transformation, introduced in Chapter 3, also allows the smooth
basis functions to cover the atomic spheres leading to corrections inside each sphere.
The norm-conserving pseudopotentials [23, 24, 25, 26, 27, 28, 29] or the ultrasoft
pseudopotentials [30], which loosen the contraint of a norm-conservation, can be
considered as PAW transformations with some approximations in addition to the
frozen core states. A large variety of implementations are based on these [31, 32].
The most common implementations represent the smooth PAW transformed quan-
tities in plane waves [33, 34, 35, 36]. Generalizing the PAW method, even the
LAPW implementation of Soler and Williams [37] can be incorporated into this
class. These methods show a reasonably good convergence with respect to the
total number of smooth basis functions whereas the number of smooth basis func-
tions is constant at each point in space. Furthermore, the smooth basis functions
do not depend on the atomic positions. This is a prerequisite for an unbiased de-
scription of the forces acting on the atoms. Accurate forces are needed for struc-
tural relaxation, i.e. the determination of the ground-state geometry, prerequisite
for molecular dynamics simulations [38].

In order to reduce the computational cost for the self-consistent calculation of
the electronic structure, combinations of the pseudopotential methods and smooth
basis functions that depend on the atomic positions have been realized. Within

equivalence is found in Appendix B.0.6.
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these implementations, large inner or outer regions of vacuum are sampled with
fewer basis functions than the atom-rich portions of space. This applies to adaptive
coordinates real-space grid methods [39] and local orbital method, for example
using linear combinations of atomic orbitals (LCAO) [40, 41, 42]. This class of DFT
implementations based on local orbitals has also proved to be very successful. A
representation in numerical atomic orbitals [43] allows an all-electron description
with favorable scaling behavior. The local-orbital-based approach also allows an
order-N treatment in the framework of density matrix formulations. The density
matrix decays exponentially with the distance in real-space if no band crosses the
Fermi energy. Hence, these methods cannot treat metals with order-N and are thus
less generally applicable.

In the early days of density functional calculations, the computing resources
were, even compared to modern mobile phones, smaller by several orders of mag-
nitude. However, calculations of millions of atoms were performed in perfect crys-
tal symmetry. Exploiting Bloch’s theorem and restricting calculations to the irre-
ducible part of the Brillouin zone enabled the determination of band structures,
lattice constants and bulk moduli for pure materials and alloys. As long as the
real-space unit cell is small, the diagonalization of the KS Hamiltonian is rela-
tively cheap. However, high symmetry is seldom found in nature. Experimen-
talists struggle to obtain perfect material purity, best vacuum and to come closer to
0 Kelvin in their laboratories whereas ab initio calculations approach the problem
from the other end. The pure crystal in high symmetry can be computed inex-
pensively, space without atoms represents a perfect vacuum at zero pressure and
the ground-state character of DFT is associated with zero temperature. Modern
questions of physics focus on broken symmetries. Here, we may think of amor-
phous solids, glasses, interchanged stacking orders, lattice mismatches or Jahn-
Teller distortions, partial disorder, core-hole calculations, surface relaxations, di-
lute impurity concentrations in otherwise pure host crystals, heterojunctions, epi-
taxial growth, grain boundaries, surface reconstructions and entire nanoparticles
or functionalized molecules on substrates.

A more than quadratic scaling with the size of the systems real-space cell leads
to an enormous workload of large-scale DFT calculations that cannot be managed
on a workstation. In order to investigate material properties, we need to be able
to find answers, at least within several days and if possible within hours. A single
calculation lasting several weeks or even months cannot keep pace with the speed
of modern science in the age of electronically accessible information. The need for
high-performance computing is therefore ubiquitous and can only be satisfied by
modern supercomputers. Although these machines help us to illuminate many
of the secrets of physics, their usage also raises some, mostly technical, challenges
dealing with the distribution of compute tasks, the limitation of communication
and the modest memory size per node. In summary, the most intriguing question
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is: Which of the above mentioned methods is most suitable for large-scale DFT
calculations on supercomputers?

The uniform real-space grid-based approach for DFT calculations allows effi-
cient parallelization of the real-space grid [44, 45, 46, 32, 47, 48, 49, 50] and is
thus suited for massively parallel machines. The PAW method models the cor-
rect scattering of the KS wave functions at the atomic cores and provides accurate
all-electron energy contributions of the atoms [51], although the density of grid
points is not refined in the vicinity of the core region [52, 53]. The locality of the
KS equation in real-space formulation is can be exploited as data locality, i.e. each
compute node acts mostly on data stored in local memory. In contrast, non-locality
requires communication. This thesis reveals a way of maximally exploiting the lo-
cality using a uniform real-space grid and incorporating long-range interactions
by iterative invocation of finite-range operations. Communication in parallel com-
puting is, compared to the same calculation in serial, an overhead. The parallel
scaling behavior of an algorithm depends crucially on the dependence of the over-
head times on the degree of parallelization.

Over the last two decades, the performance of the fastest computers in the world
has grown by six orders of magnitude and reached the petascale some years ago.
This was, at the beginning, mostly due to an increased clock rate of the proces-
sors. Moore’s law about the number of transistors on a chip growing by a fac-
tor of two every two years has proven right for about 35 years, much longer than
Moore himself expected. However, the paradigms have shifted. Increasing the
clock frequency of the central processing unit (CPU) is accompanied by a higher
power dissipation. The largest fraction of the CPUs power consumption then pro-
duces heat. An extremely high density of circuits and increased clock rates lead to
enormous heat accumulation on the chip, and the cooling of the chip represents a
technical challenge. Passive air cooling is no longer feasible. Therefore, the total
power consumption increases by additional cooling units based on fans or liquid
coolants. This technical challenge forces the development of faster computers into
the plurality of compute nodes, each one equipped with not-too-fast processors.
Massively parallel machines are the answer to further increasing the total comput-
ing performance. Production costs forced the design of some massively parallel
machines to work with a relatively small memory per compute node, as for exam-
ple JUGENE [54]. The main memory is local to each compute node. Remote memory
access thus requires explicit communication operations, in which both the sending
node and the receiving node are actively involved. It becomes clear that the net-
work connecting the assembly of vast numbers of compute nodes plays a crucial
role. The communication operations introduce synchronization of the processes.
The challenge in obtaining parallel efficiency is thus to minimize the number of
synchronizations and avoid waiting times by distributing the compute task to the
parallel processes according to an estimated load balance. Libraries implementing
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two-sided communication are the parallel virtual machine and the message pass-
ing interface (MPI). MPI has been used in the present work and is discussed in
detail in Chapter 5.

Another change of paradigms that has been observed over the last decade is the
development from a single core CPU to multi core chipsets. Several compute cores
are located on the same chip and share their access to the main memory of the com-
pute node and sometimes the level 3 (L3) cache. L2, L1 and registers, however, are
private to the compute core. In the last few years, many-core (> 16) architectures
have also been designed. Access of the parallel threads running on different cores
to a common main memory enables us to parallelize communicating tasks differ-
ently than in the distributed memory scheme. Shared-memory parallelization has
been strongly automated, as for example compilers supporting OpenMP [55]. Its
performance depends on environment variables that can be controlled during run-
time.

A further trend is the incorporation of accelerator units into a compute node.
Many scientific implementations now exploit the strong parallelism in graphical
processing units (GPUs) that originated from the need for accelerated rendering in
graphics applications, above all, for video games. The combination of one general-
purpose GPU with two CPUs in a compute node have reached a world record of
2.5 petaflops in 2010 [56]. In terms of shared memory parallelization or GPU accel-
eration, DFT implementations can benefit strongly from node-internal speed gain.

Despite the different aspects impacting the speed of a single compute node, fu-
ture supercomputer architectures will always be based on an array of compute
nodes linked by a fast network. Therefore, the aspect of scalability for large prob-
lem sizes on the distributed memory parallelization is key to the fast solution of
large problems and has been addressed in this work with a focus on MPI paral-
lelism. The road to hybrid parallelization in terms of MPI+OpenMP is discussed.

This thesis is structured as follows. The following chapter explains the founda-
tions of DFT and the motivation for the effective local potential. The third chapter
provides an introduction to the PAW formalism with the approximations that lead
to lower computational cost and defines the basic quantities and operations appear-
ing in the implementation of the application. Chapter 4 contains a detailed discus-
sion of the Cartesian real-space grid and the approximations made to the kinetic
energy. Furthermore, a special technique is illustrated that smoothens the inter-
face between localized functions and wave functions extending in full space. The
algorithms used to find the eigenstates of the KS Hamiltonian in real space are out-
lined at the end of Chapter 4, followed by their parallelization with MPI described
in Chapter 5. Two levels of parallelization for distributed memory supercomputer
systems are introduced, the real-space grid parallelization and a parallelization
over KS states as a response to the quadratic scaling behavior of the DFT method.
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The scaling behavior of the DFT method in total, the scaling of each code compo-
nent and their efficiencies are discussed in detail. Chapter 6 shows the results of
large-scale calculations. The implementation has been applied to investigate the
electronic structure of disordered alloys of GeSbTe, a phase-change material used
in industry for optically rewritable storage media [57, 58, 59, 60], before and after
structural relaxation. Statistical methods help to evaluate the vast amount of re-
sults of calculations in the large-scale limit. Finally, a conclusion on the results of
this work is given in the last chapter.
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Input Syntax Explanations

A large part of this thesis describes implementation details of jüRS, the Jülich Real-
Space DFT code. Sections that explicitly describe a functionality of the code which
may be controlled via the input file contain a syntax box explaining code usage,
e.g. the line

spacing 0.24 Ang

in the input file sets the grid spacing to this value and the number of grid points
for the representation is chosen such that the grid spacings hi 6 0.24 Å for all three
directions i ∈ {x,y, z}. Then, the input syntax explanation reads:

jüRS Input Syntax: spacing 0.24 Ang

Unit System

Throughout this document we use the Hartree atomic unit (au) system. These are
most convenient for non-relativistic quantum mechanics since they are based on
the electron massme=1 and the electron charge e=+1. Electrons are accounted pos-
itive whereas protons possess charge −1. Furthermore, Planck’s (reduced) quan-
tum of action is unity  h=1 andǫ0= 1

4π such that the energy scale is fixed to 1 Ha=27.21 eV
and lengths are measured in Bohr where 1 Bohr=0.529 Å. For relativistic effects,
as emerging in heavy atoms close to the nucleus, we also need the speed of light
clight= 1

α
=137.036 Ha Bohr where α is the fine structure constant.

Further quantities to be used are the approximate nucleon mass that is 1 u (1 Dalton)
= 1822.89me and Boltzmann’s constant kB = 3.16683 · 10−6 Ha

K for the conversion of
temperatures to energies.

For output of the application, unit systems other than atomic units may be used.
A usual choice are eVolt (eV,eV) and Ångström (Å,Ang). During input, predefined
multipliers as eV, Kel or Ang simplify the usage.

jüRS Input Syntax: units Ang eV

Notation

Meaning of mathematical symbols if not specified otherwise:

• r Real-space vector

• Ra Position of the atomic nucleus of atom a

• ra = r − Ra

• ra = |ra|
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• Sa Atomic sphere centered at Ra

• raaug Augmentation radius of Sa

• n Principal quantum number, n > 0 (as in φ̃nℓ)

• ℓ Angular momentum quantum number, 0 6 ℓ < n

• mMagnetic quantum number, |m| 6 ℓ

• L Combined set ℓm of angular momentum quantum numbers

• n Projector- and partial wave index (as in p̃ℓnm)

• i Short projector index stands for ℓnm

• k Bloch vector, element of the Brillouin zone sampling

• σ Collinear spin index, σ ∈ {↓, ↑}
• n Band index (as in nσk)

• |Ψ〉 Single particle state

• Ψ(r) Single particle wave function, Ψ(r) = 〈r|Ψ〉
• nσ(r) Electron spin density

• n(r) Total electron density (spin integrated)

• ρ(r) Generalized density (electrons and protons)

• ρ̃(r) Smooth generalized density (with compensators)

• Ψ̃(r) Smooth representation of Ψ(r)

• ñσ(r) Smooth electron spin density

• φ(r) True partial wave

• φ̃(r) Smooth partial wave

• p̃(r) Localized projector function

• ĝL(r) Localized and normalized compensator function

• fnσk Occupation numbers
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Abbreviations

PAW Projector augmented wave
DFT Density functional theory
KS Kohn-Sham
DOS Density of states
pDOS Projected density of states
xc exchange-correlation
es electrostatic
kin kinetic
LDA Local density approximation
MPI Message passing interface
LCAO Linear combination of atomic orbitals





CHAPTER 2

DENSITY FUNCTIONAL THEORY

2.1. The Many-Body System

Quantum mechanics fully describe the phenomena of the nano world. Most ob-
served properties of solid materials can be explained by solving the full (non-relativistic)
many-body Schrödinger equation

i
∂

∂t
|Ψfull〉 = Ĥfull|Ψfull〉 (2.1)

with the full many-body Hamiltonian for electrons and nuclei

Ĥfull =

Ne∑

i

(p̂i)
2

2
+

Na∑

a

(Pa)2

2ma
−

Ne∑

i

Na∑

a

Za

|r̂i − Ra|
(2.2)

+

Ne∑

i

∑

i<j

1
|r̂j − r̂i|

+

Na∑

a

∑

a ′<a

ZaZa ′

|Ra − Ra ′
|
.

Here, the Hamiltonian Ĥfull contains (ordered as in the equation) the kinetic energy
of the electrons, the kinetic energy of the atomic nuclei and the interactions of the
electrons with the atomic cores as well as the interaction among electrons and the
interaction among cores, respectively.

Already in 1929 Dirac [3] stated that the Equations (2.1) and (2.2) describe “a
large part of physics and the whole of chemistry”but “are too complicated to be
soluble”analytically for more than two particles. However, the very different scale
of masses, ma ≈ 3676Zame, justifies the separation of motions according to the
different time scales, the so called Born-Oppenheimer approximation [4], has shown
to hold in most cases. It fails only in very special scenarios where vibronic (com-
bined vibrational and electronic) states play a central role. It is possible to treat

13
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only the electronic part of the Hamiltonian quantum mechanically assuming the
atomic positions Ra to be parameters. The atomic motion can be treated classically
neglecting the quantum nature of their vibrational motion.

The many-body (MB) Schrödinger equation in the Born-Oppenheimer approxi-
mation forms the basis for a (non-relativistic) quantum mechanical description of
the interacting electron system at zero temperature, i.e. no atomic movements are
considered. It is given by

i
∂

∂t
|ΨMB〉 = ĤMB|ΨMB〉 (2.3)

with the electronic Hamiltonian

ĤMB{R
a1 , Ra2, . . . } =

Ne∑

i

p̂2
i

2
+

Ne∑

i

Na∑

a

Za

|r̂i − Ra|
+

Ne∑

i

∑

j<i

1
|r̂j − r̂i|

, (2.4)

where the atomic positions {Ra1 , Ra2 , . . . } enter as parameters rather than degrees
of freedom.

The challenge arising from this equation is the dimensionality of the underly-
ing Hilbert space. Considering for example a system where each particle has two
accessible eigenstates, e.g. a spin-1

2 system, the many-body Hilbert space is 2N-
dimensional. The exponential growth makes it problematic to find eigensolutions
of the Schrödinger equation, since conventional numerical solvers for eigenvalue
problems scale with the third power of the dimension. This leads to a total work-
load proportional to ∝ 23N for finding the exact solutions of a spin system with N
particles.

The problem becomes even more challenging giving more degrees of freedom
to the electrons. Quantum mechanics tells us to express position and momentum
of the electrons by a continuous distribution function. So we have to consider an
entire function space to represent their state. Most approximations are based on
truncating these function spaces to subspaces of a finite number of dimensions.
However, there is a constant tradeoff: On the one hand the number of basis func-
tions has to be kept large to preserve the accuracy of results. On the other hand the
number of basis functions needs to be kept small at the same time since using d
basis requires a storage of dN numbers and the number of computation operations
scales proportional to ∝ d3N which makes this practically impossible already for
systems with a few electrons.

In the following we consider the electronic Hamiltonian of the many body sys-
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tem of interacting electrons

ĤMB =

Ne∑

i

p̂2
i

2
+

Ne∑

i

Vext(r̂i) +

Ne∑

i

Ne∑

j<i

1
|r̂j − r̂i|

(2.5)

where Vext(r̂) stands for the one-particle external potential of the atom cores like
the electron-core interaction in Equation (2.2). Optionally, additional electric or
magnetic fields can be included into the external potential.

The MB wave function for the electrons needs to be antisymmetric under ex-
change of any two particles since electrons are fermions. Consider a two-particle
wave function ΨMB(r1, s1; r2, s2) with the spatial coordinate ri and the spin state si
of the i-th particle. The Pauli exclusion principle demands that no two fermions
occupy the same state. The consequence is a wave function that is antisymmetric
under the exchange of the particles, i.e. simultaneously interchanging r1 ↔ r2 and
s1 ↔ s2 produces a factor −1 such that

ΨMB(r2, s2; r1, s1) = −ΨMB(r1, s1; r2, s2). (2.6)

Now, if r1 = r2 = r and s1 = s2 = s holds this results in

ΨMB(r, s; r, s) = −ΨMB(r, s; r, s), (2.7)

i.e. ΨMB(r, s; r, s) = 0. Therefore, no two electrons can simultaneously have the
same position and spin coordinates. This holds for more than two particles, too. In
practice this means that two electrons with the same spin will avoid being near to
each other, giving a minimum in the spatial electron-electron correlation function
known as the exchange hole. Because the electrons avoid coming close to each
other, where the energy contributions from the Coulomb repulsion are high, the
exchange hole leads to a lowering of the total energy.

2.1.1. Hartree- and Hartree-Fock approach

A first attempt to model the many-body wave function is a product ansatz (some-
times called Hartree ansatz) of one-particle wave functions

ΨH(r1, r2, . . . , rN) = φq1(r1)φq2(r2) · · ·φqN
(rN), (2.8)

where the qi are different sets of quantum numbers. This wave function can easily
be stored due to the separation of variables. A basis set of size dwould then require
the storage of Nd numbers. However, the Hartree ansatz leads to a description of
the electrons without the explicit consideration of the Pauli principle. This was
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fixed by the ansatz of a determinant of single particle wave functions proposed by
Slater [61]

ΨHF(r1, . . . , rn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(r1) φ2(r1) · · · φn(r1)

φ1(r2) φ2(r2) φn(r2)

... . . . ...
φ1(rn) φ2(rn) · · · φn(rn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.9)

The mathematical construct of determinants intrinsically satisfies the antisymme-
try constraint imposed by the Pauli principle. Variation of the total energy

Etot = 〈ΨMB|ĤMB|ΨMB〉 (2.10)

with respect to the single particle states φi(r) leads to the Hartree-Fock [62, 63]
equations

(

−
1
2
∆+ V̂ext(r)

)

|φi〉+
(

∑

k

〈φk|
1

|r − r ′|
|φk〉

)

|φi〉 (2.11)

−
∑

k

(

〈φk|
1

|r − r ′|
|φi〉

)

|φk〉 = ǫHF
i |φi〉

with the Hartree-Fock energy parameters ǫHF
i . This leads to a computational very

expensive scheme that does not contain the full electron-electron interaction. Even
though the exchange interaction is treated in an exact manner the effects of electron-
electron correlations are not included.
Correlations in the statistical meaning are cross dependencies between the parti-
cles coordinates and spins. Assuming the many-body wave function as a product
of single particle states as Equation (2.8) gives a totally uncorrelated description
for the electrons, i.e. their probability distributions are independent of each other.

A rather different approach towards a solution of the MB problem was found by
considering the degrees of freedom of the electron density rather than the full MB
wave function.

2.2. Foundation of Density Functional Theory

The two theorems by Hohenberg and Kohn [1] build up the foundation of density
functional theory. Their first theorem states that the electronic ground-state den-
sity n0(r) of a system determines the external potential V(r) in a unique way such
that also the ground-state many-body state |Ψ0〉 can be found. As a consequence
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all observable quantities are indirect functionals of the ground-state density n0(r).
This is of particular interest for the expectation value of the Hamiltonian, i.e. the
total energy. The total energy functional is defined as

Etot[n] = min
Ψ→n

〈Ψ|T̂ + V̂ee|Ψ〉+
∫

d3rV(r)n(r) (2.12)

where the first expression is called universal functional. The minimization is con-
sidered over allNe-electron statesΨ that lead to the densityn(r). V̂ee is the electron-
electron interaction 1/|ri − rj| for i 6= j. According to the second theorem the
ground-state density n0(r) minimizes the total energy functional under the con-
straint of particle conservation

∫
d3rn0(r) = Ne. Nevertheless, the practical use

of these theorems is small as long as we have no way to evaluate the universal
functional.

2.2.1. Thomas-Fermi approach

The Thomas-Fermi approach offers a crude approximation for the universal func-
tional 〈Ψ|T̂ + V̂ee|Ψ〉 in terms of the density alone. Here, the electron-electron inter-
action is replaced by the Hartree energy

UH[n] =
1
2

∫∫

d3rd3r ′n(r)n(r
′)

|r − r ′|
(2.13)

and the kinetic energy is formulated as a direct function of the density

ETF
kin[n] =

3
10

(3π2)
2
3

∫

d3rn
5
3 (r). (2.14)

The variation of the total energy with respect to the density leads to the Thomas-
Fermi equation

1
2
(3π2)

2
3n

2
3 (r) + VH(r) + V(r) = µ (2.15)

where µ is a Lagrange multiplier that ensures the conservation of the particle num-
ber. VH(r) is the Hartree potential defined by

VH[n](r) =
δUH[n]

δn(r)
=

∫

d3r ′ n(r
′)

|r − r ′|
. (2.16)

Many electronic effects are neglected here as for example the exchange interaction
that promotes magnetism is missing. As well, it is not accounted for correlation
effects. Furthermore, the approximation for the kinetic energy is too inaccurate
to even describe covalent bonding [64]. Nevertheless, the idea of a kinetic energy
Ekin[n] as a direct functional of the density is a promising candidate for a practical
method [65].
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2.2.2. Kohn-Sham system

Kohn and Sham (1965) [2] showed that an auxiliary system of non-interacting elec-
trons can be constructed which reproduces the ground-state density n0(r) of the
complicated many-electron system, henceforth called KS-system. Thus, n0(r) can
be calculated by solving inexpensive single-particle Schrödinger equations

ĤKS|ψKS
i 〉 =

(

T̂ + V̂eff{n}
)

|ψKS
i 〉 = ǫKS

i |ψKS〉 (2.17)

and occupy the Ne lowest states according to the Pauli principle. The density is
then given by

n0(r) =
∑

i

fFD(ǫi − ǫF)|ψ
KS
i (r)|2 (2.18)

with the Fermi level ǫF. In Equation (2.17) the quantity ǫKS has the unit of an en-
ergy but does not necessarily represent a physically measurable quantity because it
is the single-particle energy of an auxiliary, non-interacting system. From a math-
ematical point of view these energies rather need to be understood as Lagrange
multipliers that arise due the conservation of the particle number, Ne. Neverthe-
less, the Kohn-Sham energies ǫKS are often treated as physically meaningful and
so are derived quantities such as the density of states.

The total energy of the interacting system is expressed as

Etot[n] = Ts[n] +UH[n] + Exc[n] +

∫

d3rVext(r)n(r). (2.19)

with the kinetic energy of the single particle states

Ts[n] =
∑

i

〈ψKS
i |T̂ |ψKS

i 〉 (2.20)

Here, Exc[n] contains energy contributions due to exchange and correlation effects
and the kinetic energy difference of non-interacting and interacting system. For
the ground-state density, the variation of EKS[n] with respect to the density must
become stationary, i.e.

δTs

δn(r)
+ VH(r) +

δExc

δn(r)
+ Vext(r) = µ. (2.21)

Thus, the effective potential operator V̂eff includes the classical electrostatic interac-
tion with the electron density given by the Hartree potentialVH(r)defined in (2.16),
the external potential Vext(r) and all complicated many-electron exchange and cor-
relation effects in the exchange-correlation potential Vxc[n](r) which results from
the variation of Exc with respect to n(r). The effective potential then reads

Veff[n](r) = VH[n](r) + Vext(r) + Vxc[n](r). (2.22)
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Since the effective potential Veff[n](r) depends on the density n(r) and the density,
in returns, depends on the KS states |ψKS

i 〉, these equations need to be solved self-
consistently.

2.2.3. Spin DFT

Barth and Hedin [66] introduced the electron spin into the DFT formalism. Un-
der the assumption that the spin orientation is collinear, two separate eigenvalue
problems arise from the Kohn-Sham equation

(

T̂ + V̂↑
eff − ǫ↑KS

)

|ψ↑
KS〉 = 0, (2.23)

(

T̂ + V̂↓
eff − ǫ↓KS

)

|ψ↓
KS〉 = 0. (2.24)

The full density n(r) is then obtained by summation over both spin densities nσ(r)

with σ ∈ {↑, ↓}. Furthermore, a magnetization density m(r) arises from the differ-
ence of n↑(r) and n↓(r). The magnetization density may also be interpreted as an
expectation value of the 2×2 Pauli matrix σ̂z. The aforementioned conservation
of the total number of particles holds for the sum of both partial particle numbers
N↑+N↓ whereas there is no constraint to the total magnetic moment of the system
which is proportional to the difference of the two partial particle numbers. The ef-
fective potential V̂σ

eff differs with respect to the spinσ since the exchange-correlation
potential V̂xc is now a functional of the total electron density n(r) and the magneti-
zation density m(r). Furthermore, the external potential may contain a magnetic
field contribution.

jüRS Input Syntax: spin 2

2.2.4. Local density approximation

The simplest kind of approximation for the exchange-correlation energy Exc gives a
local potential Vxc[n](r) that includes interactions with the total density n(r ′) only
at the position r ′ = r. Therefore, it is called the local density approximation (LDA). It
is based on the assumption that the exchange interaction can be approximated by
the exchange of a single electron with a homogeneous density of electrons all over
space that has the value n(r). The exchange energy Ex[n] then is given as

Ex[n] =

∫

V

d3rn(r) ǫx(n(r)) (2.25)

ǫx(n) = −
3

4π
(3π2n)

1
3 (2.26)
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where ǫx[n] is the exact exchange energy density for the homogeneous electron gas.
The corresponding potential, arising from the functional derivative with respect to
the density, is given by

Vx{n(r)} =
δEx(n)

δn(r)
= −

1
π
(3π2)

1
3 n(r)

1
3 (2.27)

The missing correlation part, Ec[n], is evaluated by a numerically approximated
function that has been fitted to exact many-body results achieved from Quantum
Monte-Carlo simulations as first done by Ceperly and Alder [67]. Various parametriza-
tions can be found in the literature [68, 69]. For magnetic systems the exchange-
correlation potential depends on the total density n(r) and the magnetization den-
sity m(r) where n(r) = n↑(r) + n↓(r) and m(r) = n↑(r) − n↓(r) and is then called
local spin density approximation (LSDA). Figure 2.1 shows the values of the energy
density ǫxc(n) and the potential Vxc(n) as function of the density n in the flavor of
Perdew and Zunger [69].
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Figure 2.1.: Exchange-correlation potential Vxc(n) and energy density
ǫxc(n) as a function of the density n in the local density approxima-
tion (LDA) parametrized by Perdew and Zunger [69]. Including spin
(LSDA), the potential also depends on the local magnetization density
m. Here,m = ±10 % of n is shown. Two different parametrizations for
the correlation contribution are matched at a Seitz-radius rS = 1 Bohr or
0.529 Å, see dots. The exchange-correlation energy density ǫxc(n) and
energy density ǫxc(n,m) lie almost on top of each other.



CHAPTER 3

PROJECTOR AUGMENTED-WAVE METHOD

Considering all the electrons of a system explicitly in a DFT calculation can become
very expensive and is, in most cases, not necessary for precise answers. Analyz-
ing typical spectra of Kohn-Sham energies, we can classify two types of occupied
Kohn-Sham states. The first type is core states that lie very deep in energy and are
localized in spheres around the nuclear position. Secondly, we find the valence
states with energies close to and at the Fermi level that form bands with a consid-
erable dispersion. Comparing the core states from a calculation which includes
all electrons to eigenstates of an isolated atom, we merely find tiny deviations in
their spectrum and spatial distribution. We thus conclude that different chemical
environments and coordinations of an atom hardly affect the properties of the core
states. At most, their energetic positions might shift with respect to the potential
average. Including the core states in the same way as the valence states in the cal-
culation is problematic since the core states are only non-zero close to the nuclear
site. There, the orthogonality requirement forces higher core states and valence
states into rapid oscillations.

The projector augmente-wave method (PAW) proposed by Blöchl [22] is capable
of an all-electron description of atoms in the framework of density functional calcu-
lations based on Kohn-Sham wave functions. However, a clear distinction between
core states and valence states is usually introduced. Their treatment differs in the
sense that the core states are restricted to the vicinity of the atom. The overlap of
the core states on one site with core states of neighboring atoms is assumed to van-
ish. Core states are expected to mainly experience the spherically symmetric, deep,
attractive atomic potential. We thus approximate the core states as discrete energy
levels rather than energy bands with an energy dispersion, even for periodic ar-
rangements of atoms. Valence states extend over several atomic sites and strongly
experience the full structure of the system and, if applicable, its symmetry.

21
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A criterion for identifying core and valence states is to compare their energies
with the barrier height of the local effective potential between two neighboring
atom sites. If the energy level is close to the barrier height or higher, the state
needs to be treated as a valence state. For practical reasons, we should choose
the core-valence separation such that the lowest valence state energy is separated
by a relatively large gap from the highest core state energy. If the valence-core
gap is too small, we have to deal with so-called semicore states, as for example
in the case of 3d-states of zinc. Semicore states should be included in the set of
valence bands because their spatial extent is usually larger than half the typical
atom-atom distances. Therefore, we expect a non-negligible energy dispersion as
depicted schematically in Figure 3.1. Figure 3.2 shows all atomic eigenenergies for
Z ∈ [1, 118] and where the separation between core and valence states is usually
placed.

The introduction of core states together with the approximation of non-overlapping
core state wave functions and those experiencing a spherical atomic potential re-
duces the number of bands to be calculated, since only valence bands will have to
be treated to a spatial extent. Furthermore, the construction of the PAW projectors
is simplified and the flexibility of core states is limited thus avoiding numerical
difficulties.
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Figure 3.1.: Schematic classification of Kohn-Sham states in a solid by
energy. Shown is the potential of a one-dimensional cluster of 13 atoms
in real space. The bars stand for various KS states whereas their height
indicates their position in energy, their width the energy dispersion and
their length the extent in real space. Low-lying core states are strongly
localized around the atomic nucleus and thus experience mainly the
spherical potential. Valence state are delocalized over the entire system
and are therefore sensitive to the environment. For semicore states, we
need to decide whether they may be treated as core states or need to be
included in the class of valence states.

Standard DFT pseudopotential calculations apply one occupied valence refer-
ence state per angular momentum ℓ as for example Troullier-Martins’ norm-conserving
pseudopotentials [28]. The PAW method is, in principle, able to use a larger num-
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ber of valence reference states since there is no requirement for the pseudized
(smooth) wave function to be nodeless [22]. This requires a very careful choice
of projector functions, especially a treatment with more than one projector per an-
gular momentum ℓ, to guarantee a proper description in the entire energy window
containing two valence states of the same ℓ-symmetry.
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Figure 3.2.: Atomic KS energies for all atomic numbers up to Z=118. In
the upper diagram, all levels are shown on a logarithmic scale. The
lower graph shows only the valence energy range and indicates the sep-
aration of core and valence states (solid black line). The periodic shell
structure becomes visible in the valence regime.

3.0.5. Spherical Approximation

The identification of core states and valence states introduced above allows further
approximations. The strong degree of localization of core states around the atomic
nuclei guarantees that the effect of non-spherical contributions Vℓm(r) (r = |r|,
ℓ > 0) to the potential is negligibly small such that we can approximate core states
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to experience the spherical part of the potential V00(|r|) only. This leads to a degen-
eracy with respect to the magnetic quantum numberm and a simpler treatment of
the core states as Ra

nl(|r|)Yℓm(r̂) on a radial grid.

3.0.6. Frozen-core Approximation

We can further assume that states which are low in energy are not very sensitive to
the environment of the atom. A plausible explanation is the strong screening be-
havior of the valence states. Therefore, an enormous simplification of the method
is to pre-compute the core states only once in an atomic all-electron calculation.
We further integrate out the degrees of freedom of the core states and store only
their density (and the sum of their kinetic energies, see Chapter A about the gener-
ation of PAW setups). Since the core density is not updated at a later moment, this
approximation is referred to as frozen core.

3.1. Basics of PAW

The Projector Augmented Wave method [22] is a way to deal with the difficulties
arising from a singular effective potential of the atomic nuclei that the electrons
experience. There are two major aspects that lead to unfortunate convergence be-
havior with respect to the number of basis functions assuming that our basis func-
tions are independent of the nuclear positions, as e.g. plane waves or equidistant
grid points are. The first challenging aspect is the representation of the potential
itself in terms of basis functions. An exact representation of the Coulomb potential
that arises from the proton charges in the atomic nuclei would require an infinite
number of plane waves or grid points. The second aspect is the representation of
the (single-particle) wave functions in terms of the basis functions. The attractive
core potential leads to a very high local kinetic energy density around the nuclei,
even for the valence states, where the local kinetic energy density of a state Ψ is
defined as

ǫkin(r) = Ψ
∗(r)

(

−
1
2
∆r

)

Ψ(r). (3.1)

Equivalently, the potential energy density of a state Ψ is defined as

ǫpot(r) = Ψ
∗(r)Vloc(r)Ψ(r). (3.2)

The sum of kinetic energy density and potential energy density has to add up to
the energy eigenvalue E times |Ψ|2, assuming that Ψ is an eigenstate of the Hamil-
tonian Ĥ = T̂ + V̂loc(r). Hence,

ǫpot(r) + ǫkin(r) = E|Ψ(r)|
2. (3.3)
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Figure 3.3.: Kinetic energy density of the Ag 5s valence state in an atomic
calculation. The graph shows r2 ǫkin(r) for an isolated Silver atom. The
kinetic energy density grows strongly (roughly as ∼ 47

r ) approaching
the singularity of the potential at r = 0. The left hand side shows rΨ(r)
with its rapid oscillatory behavior inside rmax = 1.32 Å.

Thus, a divergent local potential with the major contribution −Za/|r−Ra| (Hartree
atomic units) also leads to enormous values of the kinetic energy density of the
eigenstates close to the nuclear site Ra of atom a. This corresponds to wave func-
tions that show high frequency (short wavelength) oscillations near the nucleus for
both, core and valence states. Additionally, s-like wave functions show a discon-
tinuity of the first derivative (sometimes called kink) at the site of the singularity
that cannot be represented by a finite set of smooth basis functions. A limited
number of uniform basis functions, such as plane waves or an equivalent number
of equidistant grid points, clearly cannot capture this behavior.

The PAW method is based on a linear transformation between the space of the
true all-electron wave functions and smooth pseudo waves [22]. The characteristic
property of the smooth waves is their slow variation with respect to the spatial
coordinates which results in a fast convergence of their Fourier coefficients to zero
for short wavelengths. An essential property of the function space of true wave
functions is that it can capture both, fast and slow oscillations. Thus the smooth
waves can be represented as well. The linear transformation T̂ acts onto the smooth
wave function and returns the true wave function, i.e.

T̂|Ψ̃〉 = |Ψ〉. (3.4)

In the following, we use the tilde ( ˜ ) to denote all smooth quantities. In order
to tackle the problem of high kinetic energy density of Kohn-Sham states in the
vicinity of the atom cores we define the transformation to be a sum of single trans-
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formation operations. Each single transformation is localized within a sphere Sa

of radius raaug around an atom site Ra. Hence, the total transformation reads

T̂ = 1 +
∑

a

T̂a. (3.5)

The restriction of the transformations T̂a into sphere shapes is convenient since
the true potential in the crystal or molecule is dominated by the spherically sym-
metric contributions of the attractive nuclei. For the constructions of the transfor-
mation, the spherically symmetric potential of an isolated atom is assumed. In
principle, other shapes could be used, as for example a regular dodecahedron for
calculations in a regular face centered cubic (FCC) solid. However, the spherical
shape is the most general and advantageous for the application within different
geometries since it preserves spatial isotropy. Requesting the sphere radius raaug to
be small enough for the spheres not to overlap

Sa ∩ Sa ′
= ∅ ∀a,a ′, (3.6)

simplifies the expressions for the expectation values of the transformed operators,
as we will see later. Introducing non-overlapping spheres also defines two regions
in space: The region inside any of the spheres

⋃

a Sa and the region in between
spheres V\ (

⋃

a Sa), where V is the cell volume. The latter is called interstitial re-
gion (IR) in Augmented Plane Wave (APW) approaches [70]. Note that we use the
same name here but the functionality of the IR in the PAW context is slightly dif-
ferent. The transformation T̂ is required to be unity inside the interstitial region
since the atom-part of the transformation T̂a is only introducing changes inside
the sphere volume Sa, i.e.

〈r|T̂|r ′〉 = δ(r − r ′) for r, r ′ ∈ IR. (3.7)

Furthermore, the requirement of non-overlapping spheres (Equation (3.6)) leads
to the fact that the transformation operator does not relate spaces from different
spheres, i.e.

〈r|T̂|r ′〉 = 0 for r ∈ Sa and r ′ ∈ Sa ′
, ∀ {(a,a ′)|a 6= a ′}. (3.8)

Since the transformation T̂ is linear, we can describe it by its action onto a basis.
Using the same basis for both, the space of the smooth waves Ψ̃ and the space of the
true wavesΨ, would not lead to a transformation useful for our particular problem.
We want to keep the basis for the representation of the smooth waves as small as
possible enhancing fast computations. We thus seek to find two different basis sets
which are both strictly localized inside the sphere in order to fulfill Equation (3.8).
To this end, we construct two sets of partial waves. First, the true partial waves
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{|φa
i 〉} that are suited to describe the behavior of the true wave functions inside the

sphere. Further, we construct a set of smooth partial waves {|φ̃a
i 〉} that are suited

to describe smoothly varying wave function Ψ̃ and need to match the true partial
wavesφa

i at the sphere boundary. The action of the PAW transformation consists of
adding the wave function correction {|φa

i 〉− |φ̃a
i 〉} in true space. The dual basis for

the smooth space is spanned by a third set, the smooth projector functions {〈p̃ai |}.
Both sets, the correction functions {|φa

i 〉 − |φ̃a
i 〉} and the projector functions {〈p̃ai |},

are localized within the atomic sphere Sa

〈r|
(

|φa〉− |φ̃a〉
)

= 0, 〈p̃a|r〉 = 0 ∀ r ∈ V\Sa. (3.9)

Using
T̂a =

∑

i

(

|φa
i 〉− |φ̃a

i 〉
)

〈p̃ai |, (3.10)

one can show that T̂ satisfies Equation (3.4) if the completeness
∑

i

|φ̃a
i 〉〈p̃ai | = 1 ∀a (3.11)

and the duality
〈p̃ai |φ̃b

j 〉 = δij δab (3.12)

are fullfilled. We assume that {|φa
i 〉} and {|φ̃a

i 〉} are suitable to describe the true
wave functions |Ψ〉 and the smooth wave functions |Ψ̃〉 inside the spheres, respec-
tively. The full transformation then reads

T̂ = 1 +
∑

a

T̂a = 1 +
∑

ai

(

|φa
i 〉− |φ̃a

i 〉
)

〈p̃ai |. (3.13)

As assumed, any smooth wave function |Ψ̃〉 can locally (inside a sphere Sa) be
expanded into smooth wave functions |φ̃a

j 〉 as |Ψ̃〉 =
∑

j c
a
j |φ̃

a
j 〉. Then, the corre-

sponding true wave function |Ψ〉 has an expansion with the same coefficients caj
as |Ψ〉 = ∑

j c
a
j |φ

a
j 〉 since this ensures an equivalence of Ψ̃ and Ψ in the interstitial

region.

Applying the transformation T̂ onto any |Ψ̃〉 we see that

T̂|Ψ̃〉 = |Ψ̃〉+
∑

ai

(

|φa
i 〉− |φ̃a

i 〉
)

〈p̃ai |Ψ̃〉 (3.14)

= |Ψ̃〉+
∑

ai

(

|φa
i 〉− |φ̃a

i 〉
)

〈p̃ai |
∑

jb

cbj |φ̃
b
j 〉

= |Ψ̃〉+
∑

ai

(

|φa
i 〉− |φ̃a

i 〉
)

∑

jb

cbj δij δab

= |Ψ̃〉+
∑

ai

(

|φa
i 〉− |φ̃a

i 〉
)

cai = |Ψ〉.
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The smooth wave function |Ψ̃〉 is corrected inside each sphere to be the true wave
function |Ψ〉. The inner products 〈p̃ai |Ψ̃〉 between smooth wave functions and smooth
projector functions are called projection coefficients cai and are essential quantities
for any practical implementation of the PAW method.

The completeness relation (3.11) is only exact in the limit of an infinite number
of partial waves. However, we seek to minimize the errors arising from a finite
basis set, i.e. a set of limited number of partial waves {(|φa

i 〉, |φ̃a
i 〉, 〈p̃ai |)}. An ef-

ficient basis for the true wave functions {φi} is found by an outwards integration
of the all-electron Kohn-Sham equation under the assumption of a spherical ref-
erence potential Vref(r). The strength of the attractive nuclear Coulomb potential
clearly dominates the ingredients to the local potential which justifies the spherical
approximation. A computational benefit is the energeticm-degeneracy of the solu-
tions. A set of chosen energies ǫℓn will yield a set of radial all-electron wave func-
tions φℓn(r) (true partial waves) which are not required to be eigenstates of the un-
derlying Hamiltonian. These functions are usually generated in a pre-computation
where the applied potentials are effective spherical potentials of a chosen atomic
configuration in an isolated environment. More about integration techniques and
approximations can be found in in Section A.0.4, and further details about the gen-
eration process of the smooth partial waves |φ̃a

i 〉 from |φa
i 〉 are given in Section

A.0.2.

Using a finite number of partial waves {(|φi〉, |φ̃i〉), 〈p̃i|} makes the PAW trans-
formation not generally bijective. However, it works well even with a very small
number of basis functions, because we can assume that the important valence states
stay within a certain energy window of a few eV around the average band energies
or atomic energy levels. Within the Linearized Augmented Plane Wave (LAPW)
methods one can show that taking the energy derivative is equivalent to introduct-
ing a second projector. It has been reported in the literature that two projectors
per ℓ-channel are sufficient for almost all cases [22]. Compared to pseudopotential
approaches with only one projector function, the PAW method thus promises bet-
ter transferability due to the increased flexibility in the spheres. DFT methods that
rely on unoccupied states will probably need more than two partial waves per ℓ for
sufficient flexibility at higher energies.

3.2. PAW Transformed Operators

Considering the all-electron operator Ô and its matrix element with respect to the
all-electron states |Ψn〉 and |Ψm〉, we insert Equation (3.4) to find its matrix element
evaluated in terms of smooth wave functions |Ψ̃n〉 and |Ψ̃m〉. Note that we use the
|〉-notation here for all kinds of wave functions even though these are in general
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not normalized to unity.

〈Ψm|Ô|Ψn〉 (3.15)

=〈Ψ̃m|T̂†ÔT̂|Ψ̃n〉

=〈Ψ̃m|

(

1 +
∑

b

Tb†

)

Ô

(

1 +
∑

a

Ta

)

|Ψ̃n〉

=〈Ψ̃m|

(

1 +
∑

bj

|p̃bj 〉〈φb
j − φ̃b

j |

)

Ô

(

1 +
∑

ai

|φa
i − φ̃a

i 〉〈p̃ai |
)

|Ψ̃n〉

=〈Ψ̃m|Ô|Ψ̃n〉+
∑

aibj

cb∗mj〈φb
j − φ̃b

j |Ô|φ
a
i − φ̃a

i 〉cani

+
∑

bj

cb∗mj〈φb
j − φ̃b

j |Ô|Ψ̃n〉+
∑

ai

〈Ψ̃m|Ô|φa
i − φ̃a

i 〉cani

with the projection coefficient cani = 〈p̃ai |Ψ̃n〉.

3.2.1. Local and Semi-local Operators

The above expressions hold for any general operator Ô. However, the density op-
erator and thus also the overlap operator, the effective potential and the kinetic en-
ergy operator are local and semi-local operators, respectively. For these operators
the expression can be simplified considerably. The correction functions 〈r|φb−φ̃b〉
are localized within the sphere Sb. Thus all mixed-spheres expectation values
〈φa − φ̃a|Ôloc|φ

b − φ̃b〉 vanish for different spheres a 6= b if the requirement of
disjoint spheres (Equation 3.7) is fulfilled. This implies for the mixed expressions,
second line in Equation (3.15), that we can use the expansion of |Ψ̃n〉 and 〈Ψ̃m|

inside the spheres. Inserting the completeness relation from Equation (3.11) we
obtain

〈φb
j − φ̃b

j |Ôloc|Ψ̃n〉 = 〈φb
j − φ̃b

j |Ôloc

∑

i

|φ̃b
i 〉〈p̃bi |Ψ̃n〉,

〈Ψ̃m|Ôloc|φ
a
i − φ̃a

i 〉 = 〈Ψ̃m|
∑

j

|p̃aj 〉〈φ̃a
j |Ôloc|φ

a
i − φ̃a

i 〉,
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which yield

〈Ψm|Ôloc|Ψn〉 (3.16)

=〈Ψ̃m|Ôloc|Ψ̃n〉
+
∑

aibj

δab c
b∗
jmc

a
ni

(

〈φb
j |Ôloc|φ

a
i 〉− 〈φ̃b

j |Ôloc|φ
a
i 〉− 〈φb

j |Ôloc|φ̃
a
i 〉+ 〈φ̃b

j |Ôloc|φ̃
a
i 〉
)

+
∑

bj

cb∗mj

∑

i

(

〈φb
j |Ôloc|φ̃

b
i 〉− 〈φb

j |Ôloc|φ̃
b
i 〉
)

cbni

+
∑

ai

∑

j

ca∗
mj

(

〈φ̃a
j |Ôloc|φ

a
i 〉− 〈φ̃a

j |Ôloc|φ̃
a
i 〉
)

cani.

Renaming all b to a in the third line we find that all terms of the kind 〈φ|Ôloc|φ̃〉 (ex-
pectation value of a mixed pair of smooth and true partial waves) cancel out exactly.
Also, the expressions 〈φ̃a

i |Ôloc|φ̃
b
j 〉 from the second and third line cancel. Thus a

(semi-)local operator matrix elements in the PAW formalism consists of three con-
tributions,

〈Ψm|Ôloc|Ψn〉 =〈Ψ̃m|Ôloc|Ψ̃n〉+
∑

aij

ca∗
mj

(

〈φa
j |Ôloc|φ

a
i 〉− 〈φ̃a

j |Ôloc|φ̃
a
i 〉
)

cani. (3.17)

Since we did not impose any restrictions onto the states Ψn and Ψm, Equation
(3.17) allows us read off a representation of any (semi-)local operator with respect
to smooth states Ψ̃

T̂†ÔlocT̂
† = Ôloc +

∑

aij

|p̃aj 〉
(

〈φa
j |Ôloc|φ

a
i 〉− 〈φ̃a

j |Ôloc|φ̃
a
i 〉
)

〈p̃ai |. (3.18)

3.2.2. Density Operator

The electron density is the expectation value of the local operator ρ̂(r) = |r〉〈r|.
Therefore, we can apply Equation (3.17) to find the density of a Kohn-Sham state
|Ψ〉

〈Ψ|r〉〈r|Ψ〉 = 〈Ψ̃|r〉〈r|Ψ̃〉+
∑

aij

ca∗
i

(

〈φa
i |r〉〈r|φa

j 〉− 〈φ̃a
i |r〉〈r|φ̃a

j 〉
)

caj . (3.19)

The transformed valence density operator then reads

ρ̂(r) = ˆ̃ρ(r) +
∑

aij

|p̃ai 〉
(

〈φa
i |r〉〈r|φa

j 〉− 〈φ̃a
i |r〉〈r|φ̃a

j 〉
)

〈p̃aj |. (3.20)

In various situations, the smooth and true densities in the atomic sphere need to
be treated. Therefore, an atomic density matrix Da is defined by

Da
ijσ =

∑

nk

fnσk c
a∗
inσk c

a
jnσk (3.21)
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With this, the representation of the valence density reads

nσ
v (r) = ñ

σ
v (r) +

∑

a

Da
ijσ

(

φa
i (r)φ

a
j (r) − φ̃

a
i (r)φ̃

a
j (r)

)

(3.22)

where the smooth valence density ñσ
v (r) is constructed from the smooth KS wave

functions
ñσ

v (r) =
∑

nk

fnσk

∣

∣Ψ̃nσk(r)
∣

∣

2
. (3.23)

3.2.3. Overlap Matrix

The PAW transformation can be —but does not necessarily have to be —norm-
conserving. However, the true wave functions must be normalizable in order to
find the correct number of particles in the system. The requirement 〈Ψ|Ψ〉 = 1 can
be translated into the space of smooth wave functions by writing the norm as the
expectation value of the unity operator which is clearly local. According to Equa-
tion (3.17), we find

1 = 〈Ψ|1|Ψ〉 = 〈Ψ̃|Ψ̃〉+
∑

aij

ca∗
i

(

〈φa
i |φ

a
j 〉− 〈φ̃a

i |φ̃
a
j 〉
)

caj . (3.24)

We have therefore introduced an overlap operator Ŝ that is a metric to normalize
the smooth wave functions 〈Ψ̃|Ŝ|Ψ̃〉 = 1, where

T̂†T̂ = Ŝ = 1 +
∑

aij

|p̃ai 〉∆qaij〈p̃aj | (3.25)

with the norm deficit matrix ∆qaij = 〈φa
i |φ

a
j 〉 − 〈φ̃a

i |φ̃
a
j 〉. For the special case of a

norm-conserving construction of the smooth partial waves, the entire norm deficit
matrix vanishes and an implementation of the overlap operator becomes redun-
dant; see also Section A.0.2. The norm deficit matrix is often called charge deficit
matrix because the elementary charge e=1 in (Hartree) atomic units and the same
matrix is applied in the context of the electrostatic monopole deficit. This ensures
that the normalization condition 〈Ψ̃|Ŝ|Ψ̃〉 = 1 also leads to a normalized general-
ized density.

3.2.4. Kinetic Energy Operator

The kinetic energy operator relies on spatial derivatives and is thus not a local but
a semi-local operator since we can compute derivatives of a function at a given
point holding information about this point’s surrounding. This is done on real-
space grids with the finite difference approximation that leads to a non-local but
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localized operator. The PAW transformation for the kinetic energy operator reads

〈Ψ|T̂ |Ψ〉 = −
1
2
〈Ψ̃|∆r|Ψ̃〉+

∑

aij

ca∗
i

(

〈φa
i |−

1
2
∆r|φ

a
j 〉− 〈φ̃a

i |−
1
2
∆r|φ̃

a
j 〉
)

caj , (3.26)

and the transformed operator with respect to the smooth wave functions is given
as

T̂†T̂ T̂ = −
1
2
∆r +

∑

aij

|p̃ai 〉
(

Ea,kin
ij − Ẽa,kin

ij

)

〈p̃aj | (3.27)

The matrix elements Ea,kin
ij of the true and smooth partial waves with kinetic energy

operator are evaluated on the radial grid. Furthermore, we can exploit that the true
partial waves have been found as solutions of a local potential to a given energy
eigenvalue, such that T̂ |φℓn〉 = [ǫℓn − Va

ref(r)]|φℓn〉 which helps to evaluate Ea,kin
ij .

As shown in the following chapter of this thesis the derivatives ∆r are approxi-
mated by finite-differences on the real-space grid. This procedure involves a lim-
ited number if neighboring grid points such that the kinetic energy operator is
non-local with a range finite Nfh. However, in the limit of small grid spacings,
h → 0, this range vanishes and the PAW transformation for local operators may
still be applied.

3.2.5. Potential Operator

In the previous cases we used the PAW transformation in the sphere merely to
replace the true wave functions by an expansion in smooth partial waves. The
potential operator is treated differently in the sense that also the potential shape is
replaced by a much smoother one. As mentioned in the beginning of the chapter,
the singular Coulomb potential of the nucleus cannot be represented in a basis that
captures smooth quantities only. We therefore augment the singularity and replace
it with an —in principle arbitrary, but preferably —smooth potential Ṽ inside the
sphere Sa

〈Ψ|V |Ψ〉 = 〈Ψ̃|Ṽ |Ψ̃〉−
∑

aij

ca∗
i

(

〈φa
i |V |φ

a
j 〉− 〈φ̃a

i |Ṽ |φ̃
a
j 〉
)

caj . (3.28)

Thus, the potential operator with respect to the smooth wave functions reads

T̂†VT̂ = Ṽ −
∑

aij

|p̃ai 〉
(

〈φa
i |V |φ

a
j 〉− 〈φ̃a

i |Ṽ |φ̃
a
j 〉
)

〈p̃aj |. (3.29)

The freedom in the shape of Ṽ is usually restricted by the constraints that the
local potential on the grid Ṽ(r) is as smooth as possible. The construction of very
smooth potentials can be achieved by a potential shape correction term, see Section
A.0.2.
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3.3. Comparison PAW and APW

In the Augmented Plane Wave method (APW, developed by C. Slater [61]) one di-
vides space into two regions. The interstitial region (IR) and the so-called muffin-
tin spheres (MT). Non-overlapping spheres are centered around each atomic nu-
cleus. The interstitial region is the remaining space in between the sphere volumes.
Choosing maximally large spheres (touching spheres), we can assume that valence
states, densities and the effective potential are very smooth in the interstitial region
and can therefore be well represented with a relatively modest number of plane
waves. Inside the spheres a radial real-space grid is applied. A non-equidistant
radial grid can easily capture the strong potential of the nucleus as well as rapid
oscillations of wave functions and densities. The connection of the radial grid to-
wards the interstitial basis function at the sphere boundary involves matching of
values and derivatives. In the extension to Linearized APW (LAPW) the matching
is energy-independent.

Here, one may see the mayor difference between PAW and APW methods: As
pointed out in Equation (3.17), the expectation value for a local operator in PAW
consists of three contributions (omitting all indices)

PAW 〈Ψ|Ô|Ψ〉 = 〈Ψ̃|Ô|Ψ̃〉space +
(

〈φ|Ô|φ〉− 〈φ̃|Ô|φ̃〉
)

sphere (3.30)

while in APW one obtains

APW 〈Ψ|Ô|Ψ〉 =
(

〈Ψ̃|Ô|Ψ̃〉
)

masked + 〈φ|Ô|φ〉sphere. (3.31)

The interstitial contributions in APW are equivalent to 〈Ψ̃|Ô|Ψ̃〉− 〈φ̃|Ô|φ̃〉, i.e. an
evaluation in the entire space except for the sphere volumes which are excluded by
a mask function. The APW sphere contribution is the exact equivalent of the PAW
contribution 〈φ|Ô|φ〉 of the true quantities.

One can find more similarities between PAW and an implementation of LAPW
as described by Soler and Williams [37] if the plane waves are allowed to penetrate
the spheres for ℓ > ℓcut which is reported to lead to converged results at similar val-
ues of ℓcut as usually applied in PAW. This approach can be regarded as PAW on a
plane-wave (G) basis set whereas a single smooth partial wave φ̃a is chosen as the
spherical Bessel function jℓ(Kr) for each K = |k + G|. A linear combination of φa

and its energy derivative φ̇a is used as true partial wave, where the linear combina-
tion is chosen such that value and derivative at the sphere boundary match jℓ(Kr).
The resulting transformation Ta depends on the plane wave energy 1

2K
2 contrary

to the transformation in the PAW method discussed here.
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Figure 3.4.: Schematic comparison of the Projector Augmented Wave
method (left) and the Augmented Plane Wave method (right). The in-
terstitial contributions of APW are treated in a plane wave representa-
tion. Implementations of the PAW method are based on plane waves,
localized basis functions such as wavelets or on real-space grid points
as demonstrated in this work.

3.4. Total Energy

The total energy of a system is defined as the sum of the kinetic energy Ekin, the
electrostatic energy Ees, the exchange-correlation contribution Exc, and the external
energy Eext

Etot = Ekin + Ees + Exc + Eext. (3.32)

The external energy is a consequence pf an applied external fieldVσ
ext(r) and, hence,

its contribution to the total energy is given as

Eext =
∑

σ

∫

d3rnσ(r)V
σ
ext(r). (3.33)

The total kinetic energy Ekin can be evaluated directly from the auxiliary Kohn-
Sham states

Ekin =
∑

nσk

fnσk〈Ψnσk|T̂ |Ψnσk〉 (3.34)
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with the occupation numbers fnσk or indirectly via the eigenvalue sum and a dou-
ble counting correction as

Ekin =
∑

nσk

fnσkǫnσk −
∑

σ

∫

d3rnσ(r)V
σ
eff(r). (3.35)

The exchange-correlation energy in the local-density approximation reads

Exc =

∫

d3rn(r) ǫxc[n](r) (3.36)

where ǫxc[n] is the exchange-correlation energy density of the homogeneous elec-
tron gas at densityn. The electrostatic energy contribution Ees is discussed in detail
in the following section.



36 3. Projector Augmented-Wave Method

3.4.1. The Electrostatic Energy

The electrostatic contribution to the total energy consists of three terms,

Ees = EZZ + EeZ + Eee (3.37)

the core-core interaction, EZZ, the electron-core interaction, EeZ, and the electron-
electron term, Eee, i.e. the electrostatic self-interaction of an electron density n(r).
The latter is given as

Eee =
1
2

∫∫

d3r d3r ′ n(r)n(r
′)

|r − r ′|
(3.38)

=
1
2

∫

d3rn(r)Ves[n](r), (3.39)

where the electrostatic potential of a charge distribution ρ(r) is given by

Ves[ρ](r) =

∫

d3r ′ ρ(r
′)

|r − r ′|
. (3.40)

The evaluation of the electrostatic potential of a charge distribution that is not
neutral in the spatial average is difficult. It involves either boundary values in the
case of isolated systems or it requires the tuning for the convergence of an Ewald
summation technique for periodic boundary conditions [71]. To overcome this dif-
ficulty, we consider the electrostatics of the atomic cores. The attractive Coulomb
potentials of the atomic nuclei at positions Ra create an external potential which
is experienced by the electrons. The contribution to the electrostatic energy is thus
given by

EeZ =

∫

d3r n(r)
∑

a

Ves[Z
aδ](r) =

∫

d3r n(r)
∑

a

Za

|r − Ra|
, (3.41)

where an additional Ewald summation over the atoms is required in the case of
periodic boundary conditions. The charge distribution associated with the atomic
nuclei is equivalent to Zaδ(r−Ra). Za is the number of unit charges in the nucleus
i.e. a negative integer. Finally, the core-core interaction is given by

EZZ =
1
2

a ′ 6=a∑

aa ′

Za ′
Za

|Ra ′
− Ra|

. (3.42)

Note that while each core does not interact electrostatically with itself it does inter-
act with its periodic images, if applicable.

We can simplify the difficulties associated to Ewald summations of charged sys-
tems by introducing a generalized charge density of electrons and protons. If the
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total number of charges (electrons minus protons) vanishes, then the three con-
tributions to the electrostatic energy can be written as electrostatic energy of the
neutral charge density ρ(r) defined by

ρ(r) = n(r) +
∑

a

Zaδ(r − Ra), (3.43)

Ees =
1
2

∫∫

d3r d3r ′ ρ(r) ρ
′(r ′)

|r − r ′|
, (3.44)

where the prime on ρ reminds us of the omission of the self-interaction of the cores.

3.4.2. Electrostatics and the Pseudocharge Construction

In analogy to the PAW transformed expectation values introduced above we split
the electrostatic potential Ves[ρ] defined in Equation (3.40) and the electrostatic en-
ergy yielding

Ees = Ẽes +
∑

a

[

Eaes − Ẽ
a
es

]

, (3.45)

Ves[ρ](r) = Ṽes(r) +
∑

a

[

Va
es(r) − Ṽ

a
es(r)

]

. (3.46)

The smooth contribution Ṽes(r) can be represented with a reasonable number of
basis functions, e.g. plane waves or grid points, that do not depend on the atomic
positions. The two contributions Va

es, Ṽ
a
es are treated on a radial grid inside the

augmentation spheres Sa around each atom a. The radial grids are limited by the
radius of the augmentation spheres raaug.

The electrostatic potential of a charge distribution is found by solving the Poisson
equation

∆rVes[ρ](r) = −4πρ(r) (3.47)

with appropriate boundary conditions. In the case of finite systems, we align the
electrostatic potential such that it assumes zero for large distances. Due to the treat-
ment of neutral charge distributions the potential approaches zero as fast as ∼ D · r

|r|3
,

where D is the total dipole moment, or even faster if D vanishes. In the special case
of three periodic boundaries, the value of Ves(r)may be shifted by an arbitrary con-
stant. To fix this, we demand that the spatial average of the electrostatic potential
vanishes,

∫
d3rVes(r) = 0.

The solution of Poisson’s Equation (3.47) can be found according to Jackson [72]
via the Green function

Ges(r, r ′) =
1

|r − r ′|
(3.48)
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since

∆r ′Ges(r, r ′) = ∆r ′
1

|r − r ′|
= −4πδ(r − r ′) (3.49)

in Hartree atomic units.

The integration over r ′ shows that the electrostatic potential depends on ρ(r ′) in
all space. For this reason simply replacing ρ(r ′) by a smooth quantity inside the
spheres would result in a different electrostatic potential in the interstitial region
and is thus not suitable. However, we can expand the Coulomb kernel |r − r ′|−1 in
terms of multipoles such that

1
|r − r ′|

=

∞∑

L

rℓ<
rℓ+1
>

YL(r̂)YL(r̂
′)

2ℓ+ 1
, (3.50)

where r> is defined as max{|r|, |r ′|} and similarly r< = min{|r|, |r ′|}. L is a combined
index for ℓ andm running from 1 (ℓ=0,m=0) through (ℓmax+1)2.

We then split ρ(r) into three parts, a smooth contribution ρ̃(r) and two contribu-
tions ρa(r), ρ̃a(r) treated on the radial grid, i.e.

ρ(r) = ρ̃(r) +
∑

a

[ρa(r) − ρ̃a(r)] . (3.51)

However, in this situation the non-locality of the electrostatic problem requires a
special treatment. We demand that ρ̃(r) reproduces the same electrostatic multi-
pole moments as ρ(r) inside each sphere. Hence, the atomic correction ρa(r)-ρ̃a(r)
must have only vanishing multipole moments. Since ρ̃(r) coincides with ρ(r) in
the interstitial region, we need to find the two identical charge distributions ρ̃(r)
and ρ̃a(r) that fulfill this requirement.

Again, ρ̃(r) needs to be smooth enough to be accurately represented, so it can
neither feature the rapid oscillations of the atomic core densities nor the nuclear
charges Zaδ(|r − Ra|). At this point we introduce the concept of the pseudocharge
construction. The compensator function ĝaL(r − Ra) is strictly localized inside the
sphere Sa, centered at Ra and has unity multipole moment

∫

d3r ĝL(r) |r|
ℓ ′YL ′(r̂) = δLL ′ . (3.52)

Using compensator functions, we can identify ρ̃(r) as

ρ̃(r) = ñ(r) +
∑

aL

∆qaL ĝ
a
L(r − Ra) (3.53)

with

∆qaL =

∫

Sa

d3r |r|ℓYL(r̂) [n
a(r) + Zaδ(r) − ña(r)] (3.54)
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such that Ves[ρ̃](r) is the correct electrostatic potential outside of each sphere and
shows the correct asymptotic behavior for |r| → ∞. The summation over ℓ is
stopped at 2ℓmax, where ℓmax is the ℓ-cutoff of projectors and partial waves. The
multipole moments ∆qaL in the implementation are stored in a%qlm(1:).

3.4.3. Electrostatic Potential in the Spheres

For notational convenience, we assume Ra=0 in this section.

As we can see from Equation (3.50), the Coulomb kernel |r − r ′|−1 is diagonal
with respect to L in an ℓm-representation. Given that all densities are stored on
radial grid as ρ(r, L), the electrostatic problem reduces to the radial integrals

Ves[ρ(r2, L)](r1, L) =
∫

dr2 r
2
2
rℓ<
rℓ+1
>

ρ(r2, L) (3.55)

= r−ℓ−1
1

∫r1

0
dr2 r

2+ℓ
2 ρ(r2, L) + rℓ1

∫∞

r1

dr2 r
1−ℓ
2 ρ(r2, L),

where the notation Ves[ρ(r2, L)] expresses that we only need to know ρ(r2, L) at all
radii r2 to find Ves(r1, L). In a real calculation, the second integral is only executed
up to the boundary of the sphere Sa.

To find the correct electrostatic potentials and electrostatic energy contributions
in the spheres, we start by generating a preliminary potential, Ṽa,pre

es [ρ̃a(r ′, L)](r, L)
and Va,pre

es [ρa(r ′, L)](r, L), in the sphere from the true density ρa and smooth den-
sity ρ̃a, where we disregard the boundary conditions for both.

Also, due to the non-locality of the electrostatic problem, we cannot find Va
es(r, L)

fromna(r, L) and Ṽa
es(r, L) from ña(r, L) alone, respectively. Even if ña(r, L)matches

with ñ(r) on the grid, in the sense that
∑

L

ña(|r|, L)YL(r̂) = ñ(r), (3.56)

or equivalently,
∫

d3r ñ(r)YL(r̂)δ(r− |r|) = ña(r, L), (3.57)

the two potentials Ṽa,pre
es (r, L) and Ṽes(r) may still differ by a multipole source free

expression.
Ṽes(r) =

∑

L

Ṽa,pre
es (|r|, L)YL(r̂) +

∑

L

vaL |r|ℓYL(r̂)
︸ ︷︷ ︸
source-free

. (3.58)

The compensators ĝaL(r) are, by construction, orthonormal to |r|ℓYL(r̂) (see Equation
(3.52)), such that we can multiply Equation (3.58) with the compensators ĝaL and
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integrate over space. Then

vaL =

∫

d3r Ṽes(r) ĝ
a
L(r) −

∫

dr r2 Ṽa,pre
es (r, L) ĝaℓ (r), (3.59)

where the first term is an integral of the compensators with the smooth electro-
static potential on the grid (c.f. a%vlm(1:)) that contains information about exter-
nal potential shifts, electrical fields and higher multipoles. In contrast to ∆qaL (c.f.
a%qlm(1:)) which corrects the multipole moment for the far field, the shifts vaL
carry information about the electrostatics outside the spheres into the sphere and
generate the correct near field

Ṽa
es[ρ̃

a(r ′, L)](r, L) = Ṽa,pre
es [ρ̃a(r ′, L)](r, L) + vaLr

ℓ, (3.60)
Va

es[ρ
a(r ′, L)](r, L) = Va,pre

es [ρa(r ′, L)](r, L) + vaLr
ℓ. (3.61)

3.4.4. Electrostatic Energy in the Spheres

We can now compute the electrostatic energy in the spheres. At this point, the
treatment of the smooth quantities and the true quantities differs slightly. The
electrostatic energy of the smooth density in the sphere is a pure Hartree energy

Ẽaes =
1
2

∑

L

∫

dr r2 Ṽa
es(r, L)ρ̃

a(r, L). (3.62)

In return, the true electrostatic energy Eaes in the sphere consists of a Hartree energy
and the Coulomb energy of the electron density in the singular potential of the
atomic nucleus. It cannot be evaluated by

∫
Va

es[ρ
a]ρa with ρa = na +Zaδ because

that would involve a self-interaction of the nucleus. Instead

Eaes =
1
2

∑

L

∫

dr r2 Va
es[n

a](r, L)na(r, L) + (3.63)

∫

dr r2na(r, 00)
4πY00Z

a

r
+

1
2
va00Y00Z

a.

This way, the electrostatic interaction of a nucleus with itself is excluded.

3.4.5. Compensator Functions

The pseudocharge compensators need to be rather smooth and strictly localized.
We therefore adopt the polynomial construction as described by Weinert et al. [73]
as depicted in Figure 3.5.

ĝ
[NW]

ℓ (r) ∼ |r|ℓ

(

1 −
|r|2

R2
aug

)(NW−ℓ)

Yℓm(r̂) for |r| < Raug. (3.64)
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Figure 3.5.: Strictly localized compensator functions of the Weinert type.
The exponent NW controls the smoothness of the functions. The main
graph shows the ℓ=0-compensator for different exponents, whereas the
inlet shows the normalized radial functions for various values of ℓ.

3.4.6. Exchange-Correlation

A major advantage of the real-space representation is the ability to directly eval-
uate the exchange-correlation energy density ǫxc[n](r) and the potential Vxc[n](r)

in a local parametrization as LDA or GGA. However, the true density n differs in-
side the spheres from the smooth density ñ. The smooth density ñ(r) is stored
on the real-space grid, and the true densities inside the spheres are stored in (r, L)-
representation. Therefore, the exchange-correlation energy has three contributions

Exc =

∫

d3r ǫxc[n](r)n(r) = Ẽxc +
∑

a

(

Eaxc − Ẽ
a
xc

)

, (3.65)

Ẽxc =

∫

d3r ǫxc[ñ](r) ñ(r), (3.66)

Eaxc =
∑

L

∫raaug

drr2 ǫxc[n
a](r, L)na(r, L), (3.67)

Ẽaxc =
∑

L

∫raaug

drr2 ǫxc[ñ
a](r, L) ña(r, L). (3.68)

Since those exchange-correlation parametrizations known to work are non-linear,
the evaluation of ǫxc and the matrix elements of partial waves with Vxc has to be
performed fully numerically at each step. The densities inside the spheres are eas-
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ily represented in a radial representation and spherical harmonics for the angular
part, i.e. ña(r, L), where r will be sampled from the origin to the sphere radius
in a usually non-linear fashion. This allows us to capture the rapid oscillations in
the all-electron densities with a reasonable number of radial support points. The
advantages of an ℓm-representation (or L) are the simplicity of the cutoff param-
eter ℓmax that controls the quality of this representation and the straightforward
evaluation of electrostatics. However, the evaluation of the non-linear exchange-
correlation potential ǫxc and Vxc cannot be executed in the ℓm-basis. Here, we need
to transform into representation that samples the full solid angleΩ. This transfor-
mation is performed on a Legendre grid, where we sample ϕ and ϑ in an equidis-
tant fashion.

The number of points for this sampling is usually 2M2 whereM is chosen > ℓmax.

The transformation then reads

na(r, ϑj,ϕi) =
∑

L

na(r, L)YL(ϑj,ϕi), (3.69)

and the reverse transformation applied to the potential Vxc (and also ǫxc) reads

Va
xc(r, L) =

2π∫

0

dϕ

π∫

0

dϑ sin ϑ Va
xc(r, ϑ,ϕ) YL(ϑ,ϕ) (3.70)

≈
M∑

j

wj

2M∑

i

Va
xc(r, ϑj,ϕi) YL(ϑj,ϕi)

where the indices i and j sampleϕ and ϑ, respectively. A Legendre grid forM = 12
is depicted in Figure 3.6. The closer the points are to one of the poles (ϑ=0 or ϑ=π),
the denser is this grid. Therefore, the weights wj with

wj = sin(ϑj) (3.71)

need to be included in the reverse transformation.
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Figure 3.6.: Example Legendre grid for sampling the solid angle with
M=12, i.e. 288 points. Close to the poles, the grid points are denser
which is compensated by the integration weights wj = sin(ϑj) for an
isotropic treatment of the full solid angle.

3.5. Hamiltonian

We can derive the full transformed PAW Hamiltonian by the variation of the total
energy with respect to the smooth wave functions Ψ̃, where we suppress the indices
at Ψ̃nσk

δEtot

δΨ̃∗(r)
= f

∫

d3r ′ ˆ̃H(r, r ′)Ψ̃(r ′) (3.72)

=
δ

δΨ̃∗(r)

(

Ekin[{Ψ̃}] + Exc[ñ] + Ees[ρ̃] +
∑

a

∆Ea

)

.

∆Ea stands for the difference of true minus smooth atomic contributions, i.e. Ea −

Ẽa. Let us consider each part separately starting from the kinetic energy

δEkin[{Ψ̃}]

δΨ̃∗(r)
=
δ
(

f
∫

d3r ′ Ψ̃∗(r ′)
(

−1
2∆r ′

)

Ψ̃(r ′)
)

δΨ̃∗(r)
= f

(

−
1
2
∆r ′

)

Ψ̃(r ′)δ(r − r ′).

The exchange-correlation energy yields

δExc[ñ]

δΨ̃∗(r)
=

∫

d3r ′δExc[ñ]

δñ(r ′)

δñ(r ′)

δΨ̃∗(r)
= f

∫

d3r ′ Vxc[ñ](r
′)Ψ̃(r ′)δ(r − r ′). (3.73)

The contribution from the electrostatic energy reads

δEes[ρ̃]

δΨ̃∗(r)
=

∫

d3r ′δEes[ρ̃]

δρ̃(r ′)

δρ̃(r ′)

δΨ̃∗(r)
=

∫

d3r ′ Ves[ρ̃](r
′)
δ [ñ(r ′) +

∑
aL∆q

a
L ĝ

a
L(r

′)]

δΨ̃∗(r)
.

(3.74)

=

∫

d3r ′ Ves[ρ̃](r
′)

(

fΨ̃(r ′)δ(r − r ′) +
∑

aL

δ∆qaL
δΨ̃∗(r)

ĝaL(r
′)

)

,
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where the ∆qaL depend on the atomic density matrices Da
ij. Hence,

δExc[ñ]

δΨ̃∗(r)
= f

∫

d3r ′Ves[ρ̃](r
′)Ψ̃(r ′)δ(r − r ′) +

∑

aLij

δ∆qaL
δDa

ij

δDa
ij

δΨ̃∗(r)

∫

d3r ′Ves[ρ̃](r
′)ĝaL(r

′)
︸ ︷︷ ︸

va
L

.

(3.75)

The variation of the atomic density matrices Da
ij yields

δDa
ij

δΨ̃∗(r)
= fp̃ai (r)

∫

d3r ′p̃aj (r
′)Ψ̃(r ′)

which also appears in

δ∆Ea

δΨ̃∗(r)
=

∑

ij

δ
(

Ea − Ẽa
)

δDa
ij

δDa
ij

δΨ̃∗(r)
. (3.76)

The true atomic sphere contributions are

δEa

δDa
ij

= 〈φa
i |T̂ |φ

a
j 〉+

δEaes

δDa
ij

+
δEaxc

δDa
ij

= 〈φa
i |T̂ |φ

a
j 〉+

∑

L

∫

dr r2

[

Va
es[ρ

a](r, L)
δρa(r, L)
δDa

ij

+ Va
xc[n

a](r, L)
δna(r, L)
δDa

ij

]

= 〈φa
i |T̂ |φ

a
j 〉+

∑

L

∫

dr r2 [Va
es[ρ

a](r, L) + Va
xc[n

a](r, L)]φa
i (r)φ

a
j (r)G (Li, Lj; L) ,

(3.77)

whereas the smooth sphere contributions are

δẼa

δDa
ij

= 〈φ̃a
i |T̂ |φ̃

a
j 〉+

δẼaes

δDa
ij

+
δẼaxc

δDa
ij

= 〈φ̃a
i |T̂ |φ̃

a
j 〉+

∑

L

∫

dr r2

[

Va
es[ρ̃

a](r, L)
δρ̃a(r, L)
δDa

ij

+ Va
xc[ñ

a](r, L)
δña(r, L)
δDa

ij

]

= 〈φ̃a
i |T̂ |φ̃

a
j 〉+

∑

L

∫

dr r2 [Va
es[ρ̃

a](r, L) + Va
xc[ñ

a](r, L)] φ̃a
i (r)φ̃

a
j (r)G (Li, Lj; L)

+
∑

L

δ∆qaL
δDa

ij

∫

dr r2 Va
es[ρ̃

a](r, L)ĝaℓ (r) (3.78)

with
δ∆qaL
δDa

ij

=

∫

dr r2
[

φa
i (r)φ

a
j (r) − φ̃

a
i (r)φ̃

a
j (r)

]

rℓ G (Li, Lj; L) . (3.79)
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Collecting all terms we obtain

∫

d3r ′ ˆ̃H(r, r ′)Ψ̃(r ′) =

(

−
1
2
∆r + Ṽes[ρ̃](r) + Ṽxc[ñ](r)

)

Ψ̃(r) (3.80)

+
∑

aij

∫

d3r ′ Ψ̃(r ′)p̃aj (r
′)

︸ ︷︷ ︸
ca
j

[

δ∆Ea

δDa
ij

+
∑

L

δ∆qaL
δDa

ij

vaL

]

p̃ai (r).

If an external potential is present, Vext(r) needs to be incorporated into both the
local parts, expression in parenthesis in Equation (3.80), and the atomic Hamilto-
nian matrix elements Ha

ij, expression in square brackets in Equation (3.80).

3.6. Forces

This section follows closely the notes by C. Rostgaard [74].

Once a self-consistent electron density according to the ion positions is found,
the Hellman-Feynman forces acting onto the ions can be calculated from

Fa = −
dEtot

dRa
= −

∂Etot

∂Ra
−
∑

nσk

(

∂Etot

∂|Ψ̃nσk〉
d|Ψ̃nσk〉

dRa
+ h.c.

)

. (3.81)

We can insert the Hamiltonian for ∂Etot
∂〈Ψ̃|

= f ˆ̃H|Ψ̃〉 and the eigenvalue equation ˆ̃H|Ψ̃〉 =
ǫ ˆ̃O|Ψ̃〉 to find

Fa = −
∂Etot

∂Ra
−
∑

nσk

fnσkǫnσk

(

〈Ψ̃nσk|
ˆ̃O|

dΨ̃nσk

dRa
〉+ h.c.

)

(3.82)

= −
∂Etot

∂Ra
+
∑

nσk

fnσkǫnσk〈Ψ̃nσk|
d ˆ̃O
dRa

|Ψ̃nσk〉, (3.83)

where we exploited that the Kohn-Sham state are normalized to the overlap oper-
ator

〈Ψ̃i|
ˆ̃O|Ψ̃j〉 = δij. (3.84)

Taking the derivative with respect to Ra on both sides of this equation yields

d
dRa

〈Ψ̃i|
ˆ̃O|Ψ̃j〉 = 0 (3.85)
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and after reformulating

〈 dΨ̃i

dRa
| ˆ̃O|Ψ̃j〉+ h.c. = −〈Ψ̃i|

d ˆ̃O
dRa

|Ψ̃j〉, (3.86)

where

d ˆ̃O
dRa

=
∑

ij

∆qaij

(

|p̃ai 〉〈
dp̃aj
dRa

| + h.c.
)

. (3.87)

We further need to analyze the explicit dependence of the total energy on the
atomic positions

∂Etot

∂Ra
=

∑

σ

∫

d3r
δEtot

δñσ(r)

∂ñσ(r)

∂Ra
+
∑

ijσ

∂Etot

∂Da
ijσ

∂Da
ijσ

∂Ra
+
∑

L

∫

d3r
δEtot

δĝaL(r)

∂ĝaL(r)

∂Ra

(3.88)

=
∑

σ

∫

d3r Ṽσ
eff(r)

∂ña
c (r)

∂Ra
+
∑

ijσ

Ha
ijσ

∂Da
ijσ

∂Ra
−
∑

L

∫

d3r
∂Ṽes(r)

∂r
∆qaLĝ

a
L(r).

(3.89)

In the first term we used that the smooth density ñσ(r) only depends on the atomic
positions explicitly via the smooth core densities which are independent of the spin
σ, i.e.

ñσ(r) = ñσ
v (r) +

∑

a

ña
c (|r − Ra|). (3.90)

In the third term of Equation (3.89) changes its sign due to a partial integration
which effects that we have to consider the gradients of the electrostatic potential
Ṽes(r) rather than the derivative of each localized atomic compensator function
ĝaL(r).

The derivatives of the atomic density matrix Da
ijσ consists of derivatives of pro-

jection coefficients. These can be calculated by taking the derivative of either the
wave functions or the projector functions which leads to different scaling behavior
with respect the system size. Anyway, the derivative results in

∂Da
ijσ

∂Ra
=

∑

nk

fnσk

(

〈Ψ̃nσk|p̃
a
i 〉

∂

∂Ra
〈p̃aj |Ψ̃nσk〉+ h.c.

)

. (3.91)
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Taking the derivative of the atomic projectors with respect to their origins yields
expressions that can be unified using the derivative of the overlap operator from
Equation (3.83)

∂Da
ijσ

∂Ra
=

∑

nk

fnσk

(

〈Ψ̃nσk|p̃
a
i 〉〈

dp̃aj
dRa

|Ψ̃nσk〉+ h.c.
)

(3.92)

=
∑

nk

fnσk

(

ca∗
inσk ∂c

a
jnσk + h.c.

)

. (3.93)

Hence, the total expression for the force consists of three contributions

Fa = −
∑

L

∫

d3r
∂Ṽes(r)

∂r
∆qaLĝ

a
L(r) (3.94)

+
∑

nσk

fnσk

∑

ij

(

Ha
ijσ − ǫnσk∆q

a
ij

) (

ca∗
inσk ∂c

a
jnσk + h.c.

)

(3.95)

+
∑

σ

∫

d3r Ṽσ
eff(r)

∂ña
c (r)

∂Ra
(3.96)

In practice, the total effective potential usually contains a contributions V̄(r) that
corrects the potential to be smoother and less attractive inside the augmentation
spheres. This leads to an additional contribution to the force which then reads

Fa = −
∑

L

∫

d3r
∂Ṽes(r)

∂r
∆qaLĝ

a
L(r) (3.97)

+
∑

nσk

fnσk

∑

ij

(

Ha
ijσ − ǫnσk∆q

a
ij

) (

ca∗
inσk ∂c

a
jnσk + h.c.

)

(3.98)

+
∑

σ

∫

d3r
(

Ṽσ
eff(r) − V̄(r)

) ∂ña
c (r)

∂Ra
(3.99)

+
∑

σ

∫

d3r
∂V̄(r)

∂Ra
ñσ

v (r). (3.100)

jüRS Input Syntax: forces 1

3.7. Preparations for a PAW Calculation

• filter projector functions p̃ℓn and restore bi-orthogonality 〈p̃ℓn|φ̃ℓn ′〉 = δnn ′

in the radial basis

• compute tensors for the components of the atomic Hamiltonian Ha
ijσ, i.e. ki-

netic energy deficit matrix, multipole deficit tensor
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• create localized projector functions p̃ai (r−Ra) on the cartesian grid using the
DoubleGrid method

• create localized compensator functions ĝai (r − Ra) on the cartesian grid

• create frozen smooth core density ñc(r) =
∑

a ñ
a
c (|r − Ra|) on the cartesian

grid. Here, frequently more than 27 periodic images are required.

• create localized potential correction V̄(r) =
∑

a V̄
a(|r − Ra|) on the cartesian

grid, max. 27 periodic images.

• load Ψ̃nσk(r) from a file or generate an initial guess from atomic valence or-
bitals φ̃ℓn(|r

a|)Yℓm(r̂a), where ra = r−Ra and n=1 is the atomic bound state
(for details see Section 3.8).

• load ñσ
v (r) from a file or generate an initial guess from the wave functions

∑
nk fnσk|Ψ̃nσk(r)|

2.

3.8. Initial Wave Functions

An excellent choice of a set of initial wave functions are complete shells of atomic
orbitals. We therefore set Ψ̃nσk(r) φ̃ℓn=1(|r

a|)Yℓm(r̂a)M(|ra|/Rmax), where ra = r −

Ra and n=1 is the atomic bound state. In order to limit the costs, a maximum
number of only 27 periodic images of the atomic position are taken into account.
This requires a limitation of the range of the initial orbital to Rmax that is given by
the smallest extend of the cell in a direction with periodic boundary conditions.
The mask function M(x) takes care of this. M(x) is unity around the origin and
tends to 0 at x=1, beyond which it vanishes exactly. A typical choice of the mask
function shape is (1 − x8)4 for |x| 6 1 and 0 elsewhere. This limitation ensures
that symmetries of the system are not broken by the initial guess functions despite
the finite number of periodic images. However, in some cases we want to break
a symmetry as, e.g., in a spin polarized calculation. To test if the system tends
to be magnetic or not we break the symmetry between spin up and spin down by
scaling the length of ra by a few percent up and down, respectively. Thus, one kind
of orbitals becomes more localized than the others and their energetic degeneracy
is lifted.

If no density file is found at startup of a calculation, the density is generated
from the initial guess wave functions, i.e. usually atomic orbitals. Therefore, it is
necessary to create the right set of atomic orbitals to create an atomic density. The
choice is made by always adding full shells of orbitals to the set of initial states.
In this procedure, |φ̃ℓn=1〉 states that have been occupied during the PAW data
generation are selected with priority.

jüRS Input Syntax: ./paw -l -L
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3.9. The Self-consistency Cycle

• start from smooth wave functions |Ψ̃nσk〉 and occupation numbers fnσk

• find the coefficients cainσk = 〈p̃ai |Ψ̃nσk〉
• create the atomic density matrix Da

ijσ from fnσk and cainσk

• determine the compensation charge multipole moments ∆qaℓm from Da
ijσ

• compose the smooth valence density ñσ
v (r) from |Ψ̃nσk〉 and fnσk

• evaluate Vxc[ñ
σ] and ǫxc[ñ], where ñσ = ñσ

v + ñσ
c

• evaluate Ves[ρ̃], where ρ̃ =
∑

σ ñ
σ
v + ñσ

c + ∆qaℓmĝℓm

• find potential shifts vaℓm from Ves[ρ̃]

• set up atomic Hamiltonian matrix Ha
ijσ from Da

ijσ and vaℓm

• compose the new Hamiltonian ˆ̃Hσ = T̂ + Ves[ρ̃] + Vσ
xc[ñ] + V̄+ |p̃ai 〉Ha

ijσ〈p̃aj |
• diagonalize ˆ̃Hσ to find the new |Ψ̃nσk〉 and ǫnσk

• compute new Fermi level and occupation numbers fnσk from ǫnσk

3.10. Summary

The PAW method introduces a transformation mapping from smooth KS wave
functions to the cooresponding all-electron wave function and, thus, allows for an
all-electron treatment of all elements in the framework of DFT. However, the frozen
core approximation is implemented in jüRS for simplicity. Inside the atomic aug-
mentation spheres, the core density nc(r

a) is replaced by ñc(r
a) and all valence

states are represented as linear combinations of the smooth partial waves φ̃a(ra).
The all-electron wave functions are retrieved from the same linear combination of
the true partial waves φa(ra) which match the smooth partial waves at the sphere
boundaries in value and derivative(s). Localized projector functions p̃a(ra) are
required to find the corresponding linear combination.

The proper electrostatics outside the sphere are ensured by smooth localized
multipole compensator functions ĝa(ra) in the spheres. In return, multipole-free
corrections of the local electrostatic potential are required for the alignment of the
smooth and true potential inside the sphere. The potentials in the sphere provide
an atomic non-local correction to the HamiltonianHa. Furthermore, the PAW trans-
formation is not necessarily norm-conserving which leads to the charge deficit∆qa

which is generally non-zero.

The quantities ñc(r
a), ĝa(ra), φ̃a(ra) and p̃a(ra) exhibit, compared to the corre-

sponding all-electron quantities, smoothness, i.e. a rapidly converging represen-
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tation in reciprocal space, and can thus be treated accurately with a reasonable
number of plane-waves or on equidistant real-space grids, as this thesis shows.

The variation of the total energy Etot with its contribution from the smooth quan-
tities on the complete simulation volume and corrections inside the sphere with
respect to the degrees of freedom of a smooth KS wave function Ψ̃(r) leads to the
Hamiltonian ˆ̃H in the generalized eigenvalue equation

(

ˆ̃H− ǫ ˆ̃O
)

|Ψ̃〉 = 0 (3.101)

with the PAW overlap operator defined by

ˆ̃O = 1 +
∑

a

|p̃a〉∆qa〈p̃a| (3.102)

and the PAW transformed Hamiltonian

ˆ̃H = −
1
2
∆+ Ṽeff(r) +

∑

a

|p̃a〉Ha〈p̃a| (3.103)

which resembles closely the effective Hamiltonian of a pseudopotential method.

Hellman-Feynman forces can be computed deriving either the extended wave
functions Ψ̃(r) or the localized projector functions p̃a(ra)with respect to the atomic
positions Ra.



CHAPTER 4

CARTESIAN REAL-SPACE GRID

The most time consuming part of a DFT calculation is the solution of the Kohn-
Sham eigenvalue equation

(

1
2

p̂2 + Vσ
eff(r̂) − Enσk

)

|Ψnσk〉 = 0. (4.1)

In this equation we can find the momentum operator p̂ and the real-space posi-
tion operator r̂. The non-relativistic kinetic energy operator T̂ = 1

2 p̂2 is merely a
quadratic function of p̂ and the potential operator Vσ

eff is a function of r̂. These two
operators are incommensurate as their commutator

[p̂, r̂] = [i
∂

∂r
, r] = i

does not vanish. We thus cannot find a common eigenstate of both operators. The
eigenstates of the momentum operator |p〉 are plane waves. Choosing these as a
basis the Kohn-Sham equation reads

∫

d3p ′
([

1
2

p2 − Enσk

]

δ(p − p ′) + 〈p|V̂σ
eff |p

′〉
)

〈p ′|Ψnσk〉 = 0 ∀p. (4.2)

Casting this equation into a finite basis set ofN plane waves |p〉, usually chosen out
of a sphere with 1

2p2 6 Ecut, we need to evaluate (in principleN2 but due to symme-
try merely) 23Nmatrix elements of the potential operator 〈p|V̂σ

eff |p
′〉 every time the

effective potential changes due to a density update. On the other hand, choosing
the eigenstates of the position operator |r〉 as a basis, the Kohn-Sham equation in
real-space reads

∫

d3r ′
(

〈r|1
2

p̂2|r ′〉+ [Vσ
eff(r) − Enσk] δ(r − r ′)

)

〈r ′|Ψnσk〉 = 0 ∀r. (4.3)

51
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In this work, we employ three-dimensional equidistant real-space grids, i.e. the
real-space coordinates r are sampled with a constant grid spacing hi, i ∈ {x,y, z}.
Then, the matrix elements of the kinetic energy operator T̂ in real-space representa-
tion are constants. Their evaluation is discussed in Section 4.1. Further, we apply
the PAW transformation in order to model the scattering properties and energy
contributions of the atoms properly, see Chapter 3.

4.0.1. Kinetic Energy Operator in Real-Space

The maximum frequency to be represented on an equidistant grid with a constant
grid spacing of h is kmax = π

h
. This is called sampling theorem and kmax denotes

the Nykvist-frequency. The theoretical maximum of kinetic energy π2

2h2 will further
on be called nominal cutoff energy Ecut. In order to represent highly oscillating quan-
tities the grid spacing h must be decreased and thus Ecut increased. The computa-
tional costs grow at least cubically with the number of gridpoint and thus ∼ h−3.
The usage of the PAW method (see Chapter 3) with its augmentation procedure
allows to represent only smooth quantities in full space and thus enables us to use
relatively coarse real-space grids. Furthermore, the application of the potential op-
erator in real-space is a simple product. However, the kinetic energy operator T̂
is non-local since its eigenstates are plane waves that extend over the full space.
An exact treatment of the kinetic energy on real-space grids would thus require
Fourier transforms. Even though we can make use of the Fast Fourier Transform
(FFT) algorithms that scale only N log(N) with the number of grid points N, we
will avoid this method and approximate the kinetic energy by a localized Finite
Difference (FD) derivative scheme. The reason for this are two aspects of scaling
behavior. FD allows a linear scaling in the sense that we can compute the appli-
cation of T̂ to a vector in O(N) operations which will always be faster than FFT
for larger N. Further, the evaluation of the kinetic energy operator in FD approxi-
mation can be parallelized with a restricted communication pattern, whereas FFT
requires unrestricted all-to-all communication.

4.1. Finite Differences

The kinetic energy operator T̂ appears in the Schrödinger and in the Kohn-Sham
equation (see Equation 2.17) in the form of the Laplacian, i.e. the second deriva-
tive with respect to all three spatial directions. The central Finite Difference (FD)
method truncates this derivative to a difference quotient. Consider an analytically
given function f(x) that varies slowly in space and its representation on a uniform
grid with a constant grid spacing h, i.e. xi = ih. The values fi = f(xi) correspond
to the function evaluated at the grid points xi. By Taylor expansion up to second
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order we can express the value of the analytical function at neighboring points to
both sides.

fi−1 = f(xi−1) = f(xi − h)
Taylor
= f(xi) − hf

′(xi) +
1
2
h2f ′′(xi) + O(h3)

fi = f(xi) (4.4)

fi+1 = f(xi+1) = f(xi + h)
Taylor
= f(xi) + hf

′(xi) +
1
2
h2f ′′(xi) + O(h3)

This can be rewritten in matrix form as






fi−1

fi

fi+1






=







1 −1 1
2

1 0 0
1 1 1

2













f(xi)

hf ′(xi)

h2f ′′(xi)






(4.5)

This is a matrix relation between the vector of function values (fi−1, fi, fi+1) and the
zeroth, (approximate) first and (approximate) second derivative (f(xi),hf ′(xi),h2f ′′(xi))

of the function f(x) at the central grid point xi. The corresponding powers ofhhave
been kept for simplicity of the notation. Inversion of this matrix shows that the ze-
roth, first and second derivative of f can be expressed as a linear combination of
the values fi−1, fi and fi+1







0 1 0
−1

2 0 1
2

1 −2 1













fi−1

fi

fi+1






=







f(xi)

hf ′(xi)

h2f ′′(xi)






(4.6)

(Nf = 1) ⇒ f ′′(xi) =
1
h2

(fi−1 − 2fi + fi+1) (4.7)

Thus, the coefficients for the second derivative are c
′′
−1 = 1, c

′′
0 = −2 and c

′′
1 = 1

considering only nearest neighbor points. This scheme can be expanded to higher
derivatives and more neighboring point as shown below. With this method a more
accurate approximation for the second derivative can be achieved. Table 4.1 shows
the coefficients for various numbers of considered neighbors, Nf. It is easy to
show that even derivatives (zeroth, second, fourth, ...) have a symmetric coefficient
scheme while the coefficients are antisymmetric for odd derivatives (first, third, ...)
on an equidistant grid.

The case of arbitrary order 2Nf reads

f(xi+j) = f(xi + jh) = fi+j =

2Nf∑

k=0

(jh)k

k!
∂kf(x)

∂xk

∣

∣

∣

∣

x=xi

+ O(h2Nf+1) , j ∈ [−Nf,Nf].

(4.8)
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The matrix of Taylor coefficients then is tjk = jk/k!. So the coefficient scheme for
the first 2Nf derivatives are given by the rows of the inverse matrix of tjk. For the
m-th derivative, one finds

f
(m)

FD (xi) =
1
hm

Nf∑

l=−Nf

{
[tjk]

−1
}

ml
fi+l (4.9)

An explicit formula for high order coefficients of the first and second derivatives
that does not require the inversion of a (2Nf + 1)× (2Nf + 1) matrix can be found
later in this thesis.

|i− j| 0 1 2 3 4 5 6
Nf=1 -2.00000 1.00000
Nf=2 -2.50000 1.33333 -0.08333
Nf=3 -2.72222 1.50000 -0.15000 0.01111
Nf=4 -2.84722 1.60000 -0.20000 0.02540 -0.00179
Nf=5 -2.92722 1.66667 -0.23810 0.03968 -0.00496 0.00032
Nf=6 -2.98278 1.71429 -0.26786 0.05291 -0.00893 0.00104 -0.00006

Table 4.1.: Finite-difference coefficients of the second derivative. The
number of finite difference neighbors 2Nf determines the order of ap-
proximation. The error from this approach is of the order O(h2Nf).
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Figure 4.1.: Absolute value of the finite-difference coefficients, cFD(i−j),
of the second derivative forNf ∈ [1, 96]. The smallest element converges
to zero roughly as 0.05 e−

√
2Nf . The scale is logarithmic except for the

inlet.

The second derivative relates the grid points xi and xj for all |i − j| < Nf so
the Laplacian operator is not local (diagonal in spatial representation) and is repre-
sented by a symmetric banded matrix. In the case of one spatial dimension these



4.1. Finite Differences 55

bands enclose the diagonal from the upper and lower side as depicted in Figure
4.2 forNf=1.

The sparsity of these matrices enables a banded storage form. Periodic boundary
conditions cause non-zero matrix elements relating the first and last grid points.
The second picture in Figure 4.2 differs from the first only by an entry in the upper
left and the adjoint entry in the lower right corner.

The absolute value of these matrix element is as before determined from the fi-
nite difference coefficients. However, there is one degree of freedom in its complex
phase. The physical meaning behind this is a phase modulation of a complex wave
function which extends over an infinite number of unit cells. Therefore the Bloch-
theorem can be applied and the complex phase factor of the upper right element is
set to c1 e

−ikL where L denotes the extend of the one-dimensional unit cell. The ki-
netic energy operator is an observable and so its matrix representation is hermitian.
This fully determines the lower left element to be c1 e

ikL, where c1 is real.

Figure 4.2.: Matrix scheme for finite difference representation of the sec-
ond derivative for Nf = 1 on a one-dimensional equidistant grid with
Ng=8 grid points. On the left side, finite boundary conditions are de-
picted, assuming that any function f(x) vanishes outside the super cell.
On the right hand side, a matrix with periodic boundary conditions is
depicted. The matrix representation in general is very sparse, i.e. the
ratio of nonzero entries is (2Nf+1)

Ng
in the one-dimensional case.

4.1.1. Error Estimate

To analyze the error of the truncation of the calculation of derivatives to a finite
number of neighboring grid points, an arbitrary function f(x) represented on an
equidistant grid is expanded into Taylor polynomials. Different from before, two
orders more then requested to set up the matrix are taken into account. We achieve
an estimate for the error of the finite-difference approach for the second derivative:

f(xi ± h)
Taylor
= f(xi)± hf ′(xi) +

h2

2
f ′′(xi)±

h3

6
f(3)(xi) +

h4

24
f(4)(xi)± O(h5). (4.10)
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Solving for the second derivative yields (in vector notation)

f ′′(xi) ≈
1
h2







1
−2

1







T

·







f(xi − h)

f(xi)

f(xi + h)






−
h2

12
f(4)(xi). (4.11)

Obviously the error in the second derivative is proportional to h2. It can be shown
that for Nf > 0 the error enters with h2Nf multiplied by the (2Nf+2)-th deriva-
tive and an exponentially decreasing coefficient. Essentially, there are two ways to
improve the quality of these derivatives. On one hand, the grid spacing h can be
decreased which leads to an enormous increase of the computational costs. The
other possibility is employing a higher order finite difference formula which leads
to an increase in communicational costs as we will discuss later. A tradeoff needs
to be found here.
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Figure 4.3.: Error estimate of the finite-difference approximation for the
kinetic energy applied to one-dimensional plane waves. A plane wave
eikx is an eigenstates of the kinetic energy operator and its eigenvalue
is given analytically as 1

2k
2. For the allowed k-values in [0, π

h ], the FD-
approximated second derivative has been evaluated at the even orders
2 through 16. The grid spacing h is set to unity here. The dispersion
relation matches the exact derivative quite well as long as the k values
stay below a certain fraction of the nominal cutoff wave vector length
π
h . The lowest (black) curve corresponds to the lowest order FD approx-
imation (second order). A higher order finite difference approximation
exploits the cutoff energy more efficiently.

Figure 4.3 shows the dispersion relation of a plane wave where the kinetic en-
ergy is computed with finite difference approximations of various orders and an-
alytically for comparison. It can be seen that the second derivative deviates more
from the analytical solution 1

2k
2 for low order finite difference sets (lower curves).

This means that the FD approximation is only accurate up to a certain fraction of
the nominal cutoff energy 1

2

(

π
h

)2. A very efficient way to reduce this error is by
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increasing the number of finite difference neighbors such that a larger fraction of
the nominal cutoff energy can be exploited. However, this leads to a less sparse
and less localized kinetic energy operator and thus an increase in computation
and communication.

4.2. Lagrange Interpolation

The Taylor expansion technique and so the central point finite difference formula is
equivalent with Lagrange interpolation: a polynomialQ(x) of degree 2Nf is fitted
such that it matches the values fi at the grid points xi perfectly i.e. Q(xi) = fi
for all i ∈ [−Nf,Nf]. Since a polynomial of degree m has exactly m+1 degrees of
freedom, we have to fit it to exactly 2Nf+1 pairs of point and value (xi, fi). To keep
it symmetric we choose one central point x0 and Nf neighboring points to each
side i.e. x−Nf

, x−Nf+1, ..., x0, ..., xNf−1, xNf
. The generic solution for the Lagrange

interpolated polynomial centered around x0 reads

Q(x) =
∑

i

fi
∏

k 6=i

x − xk

xi − xk
=

∑

i

fi c
(0)
i (x) (4.12)

(all indices in
∑

or
∏

run from −Nf to Nf). The expansion coefficients for the
interpolated function are thus given by

c
(0)
i (x) =

∏

k 6=i

x − xk

xi − xk
(4.13)

So the first derivative of the polynomial reads

Q ′(x) =
∑

i

fi
∂

∂x
c
(0)
i (x) =

∑

i

fi c
(1)
i (x) (4.14)

c
(1)
i (x) =

∑

j 6=i

1
xi − xj

∏

k 6=i,j

x− xk

xi − xk
(4.15)

and the second derivative

Q ′′(x) =
∑

i

fi
∂2

∂x2c
(0)
i (x) =

∑

i

fi c
(2)
i (x) (4.16)

c
(2)
i (x) =

∑

j 6=i

1
xi − xj

∑

l6=i,j

1
xi − xl

∏

k 6=i,j,l

x− xk

xi − xk
(4.17)

This yields a direct formula to compute high order central FD coefficients for the
second derivative c(2)

i (x = 0) without inverting the matrix in Equation (4.6). On an
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equidistant grid, the difference in the denominator xj − xk is an integer multiple
of the grid spacing h and never zero because the case k = j is explicitly excluded
such that equation (4.17) can be simplified to

c
(2)
i (0) =

1
h2

∑

j 6=i

1
i− j

∑

l6=i,j

1
i− l

∏

k 6=i,j,l

k

i− k
(4.18)

The coefficients h2c
(2)
i (0) are displayed in Table 4.1 forNf in [1, 6]. Figure 4.4 shows

the (derived) Lagrange polynomials c(k)i (x) for k in [0, 3] and Nf=2.
The consistency of the FD approach with the Lagrange interpolation technique is
important because in later sections of this work, Lagrange interpolation will be ap-
plied to find values of a wave function in between two grid points. The effect of
interpolation with a finite number of grid points onto sharp-featured functions can
be seen as spurious residuals. The interpolation operator Î applies Lagrangian in-
terpolation to transfer values from a coarse grid to a finer grid. This operator shows
a sparse matrix representation if the order of interpolation is small compared the
total number of grid points. The operators matrix representation does not even re-
quire an explicit storage if the coarse grid spacing, hcoarse, is an integer multiple of
the fine grid spacing, hfine. The reverse operation Î† translates from a finer grid to
the coarse grid. However, this operator may not be called the inverse of Î because
both matrices are not square. The consequent execution of both operations, Î†Î,
will be the unity operation and lets the function on the coarse grid unchanged as
long as the order of interpolation is equal to the number of grid points (and the
interpolation operator is a full matrix). Any truncated formula with 2Nitp < Ng

will introduce an error to sharp features of the function.

4.2.1. Non-uniform Grids

Non-uniformity of the grid implies that the distances between grid points differs
and therefore are functions of the grid point position or of its index. In principle
one can determine the coefficients for the finite difference representation by the
same technique as outlined above but the coefficients as well become functions
of the grid index. This is fairly simple considering one-dimensional grids. Three
spacial dimensions, however, require mathematical constructs like non-diagonal
Riemann tensors. This in general includes so called adaptive coordinates [39] and
finite element methods [75].

The advantage of a non-uniform grid is the possibility of increasing the grid
point density in the vicinity of atomic cores. This enables cheaper calculations
and in principle also all-electron calculations where fast oscillations close to the
core and slow variation in the interstitial regions are represented on the same grid.
Also in the case of a widely extended vacuum region inside the super cell, this
could help to save resources of both, computational time and memory.
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Figure 4.4.: Lagrange polynomials for Nf=2 un-derived (upper left
panel), first, second and third derivatives.

4.2.2. Grid Anisotropy

Choosing the same grid spacings hi in all three spatial directions i ∈ {x,y, z} allows
a cartesian grid to be commensurate with all 48 symmetries of a cube, i.e. the
octahedral group. Nevertheless, the cartesian grid cannot be commensurate with
5-fold or 6-fold rotations. Also 3-fold rotations are only possible around the space
diagonals, i.e. the (111) direction.

The simulation volume is bound by a rectangular box that introduces anisotropy
by its shape. The real-space implementation of Chelikowsky makes use boundary
conditions for isolated systems that sample gridpoints up to a certain radius from
the center of mass of all atoms [76] rather than a rectangular box. This reduces
the anisotropy by the effect of the box-shape boundaries. In the case of periodic
boundary conditions, the periodic images of the simulation cell give rise to similar
effects as a bounding box.

4.3. Filtering Methods

The translational symmetry of a system with periodic boundary conditions is cast
into a discrete translational symmetry, i.e. space will only look exactly the same
once we translate by an integer multiple of the grid spacing. However, translation
by an arbitrary distance might affect those terms that relate the absolute position
and the positions of the grid points. The most illuminating example for these terms
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are the localized atomic projectors. Shifting the atomic position by a fraction of the
grid spacing will make the projector representation change. This effect is stronger
the coarser one chooses the grid and the more structured the projector function is.
A measure for structure of a localized function can be found from its Fourier trans-
form (on a 3-dimensional grid) or its Bessel transform (on a radial grid). This sec-
tion describes how the irrepresentable components of projector functions in real-
space can be reduced in order to decrease the spurious effect due to their strong
localization that appears during continuous translations of the atomic positions.

Localized functions represented on the radial grids have much higher Fourier
components than representable on the three dimensional cartesian grid with finite
sampling h due to their strict localization. Hence, the interface between the two
grids leads to the so called egg box-effect. To avoid these unphysical oscillations of
the inner product between a radially given projector function and functions repre-
sented on the cartesian grid, the radial projector function (multiplied by spherical
harmonics) may not have strong Fourier-components larger than the nominal cut-
off frequency of the grid, given by kmax =

π
h

where h is the grid spacing. To ensure
this, different filter methods in reciprocal space can be applied. The only difficulty
is to find the trade-off between frequency cutoff and strength of projector localiza-
tion. Since the unfiltered projector functions tend to an exact zero beyond a radial
cutoff rcut, their representation in Fourier space (Bessel-transformed) is delocalized
i.e. all frequency components are non-zero. In return, simply eliminating all com-
ponents higher gmax destroys the localization of the backtransform in the radial
representation.

For PAW calculations it is of major importance to keep the bi-orthogonality of
the filtered projectors with the smooth partial waves (compare Equation 3.12). The
reorthogonalization is usually performed only on the radial grids after the Fourier
filtering steps (Section 4.3.1 and Section 4.3.2) and, hence, does not take the effects
of the reversed interpolation method (see Section 4.3.3) into account.

The following three methods show how to reduce the high frequency compo-
nents of a strictly localized projector function preserving as much localization as
possible. The first two methods act onto the projector function on a radial grid. The
third method forms an interface between the radial function and its representation
on a cartesian grid.

4.3.1. Fourier Filtering Method

Given a projector function p(r) = pℓ(|r|)Yℓm(r̂). The filtering can be applied on the
radial grid, where the Fourier transform becomes a Bessel transform. For simplicity
of the notation we will use the same symbol p for the projector function in real-
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space and in reciprocal space representation. The transformation is given by

p(g) =

√

2
π

R∫

0

dr r2 p(r) jℓ(g r) (4.19)

and the back-transformation by

p(r) =

√

2
π

G∫

0

dg g2 p(g) jℓ(g r). (4.20)

Once found p(g)we choose a maximum frequencyGmax, usually twice the cutoff
frequency of the grid, Gcut. The smoother projector function p̃ is constructed as

p̃(g) =






p(g) 0 6 g 6 Gcut

f(g) Gcut < g 6 Gmax

0 Gmax < g

(4.21)

where f(g) is given by the following operations:

f(g) =

Gmax∫

Gcut

dg3

[π

2
δ(g− g3) g

2 − J
[R]

ℓ (g, g3)
]−1

Gcut∫

0

dg2 J
[R]

ℓ (g3, g2)p(g2) (4.22)

with the overlap integral of two Bessel function J defined in real-space

J
[R]

ℓ (q1,q2) = q
2
1 q

2
2

R∫

0

dr r2 jℓ(q1 r) jℓ(q2 r). (4.23)

The symmetric kernel J[R]

ℓ (q1,q2) can be understood as the scattering matrix of a
sharp mask function (step function on the radial grid) which is 1 for |r| < R and
zero elsewhere. Here, R denotes an enlarged cutoff radius. The realization of this
procedure uses a equidistant g-mesh to discretize the reciprocal space and a simple
matrix inversion for the inverse of the symmetric operator.

The overlap function J can be evaluated analytically. We scale all wave numbers
q→ qR and radii r→ r/R. For ℓ ∈ {0, 1, 2}, the kernel Jℓ(q1,q2) is then given by

R J0(q1,q2) =
q1 q2

q2
2 − q

2
1
(q1 cos(q1) sin(q2) − q2 cos(q2) sin(q1)) (4.24)

R J1(q1,q2) = R J0(q1,q2) − sin(q1) sin(q2) (4.25)
R J2(q1,q2) = R J0(q1,q2) − 3 (cos(q1) − sin(q1)/q1) (cos(q2) − sin(q2)/q2) .

(4.26)
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These expressions appear to be irregular in the limitq1 → q2. Using addition the-
orems we can find simplified regular expressions for the diagonal elements Jℓ(q,q).
These are

R J0(q,q) =
1
2
q (q+ cos(q) sin(q)) (4.27)

R J1(q,q) =
1
2
q (q+ cos(q) sin(q)) − sin2(q) (4.28)

R J2(q,q) =
1
2
q (q+ cos(q) sin(q)) − 3. (4.29)

4.3.2. Masked Fourier Filter Method

Another flavor of pre-filtering the radial projector function and preserving the lo-
calization in real-space is outlined by Tafipolski and Schmid [77], and earlier by
Lin-Wang [78]. In these methods a real-space mask function M(r) is introduced.
High frequency components of the auxiliary function p(r)/M(r) are strongly sup-
pressed with a second mask function M(q) in Bessel-space which is usually expo-
nentially decaying and thus suppressing high frequency components. The real-
space mask is then multiplied to the backtransform again and thus restores most
of the localization. With the Bessel-transform (BT) defined in Equation (4.20) and
its back-transform (BT−1) the procedure reads

p̃(r) = M(r) ·BT−1(r)

{

M(q) ·BT(q)
{
p(r ′)

M(r ′)

}}

(4.30)

and is also depicted in Figure 4.5. The shape of the two mask functions (green)
yields a degree of freedom in the realization of this very efficient procedure. In or-
der to gain a smoother, less localized, but still strictly localized, projector function,
a real-space mask function the assumes zero exactly beyond a larger cutoff radius
Rcut > rcut is advantageous. In reciprocal space a Gaussian type mask function per-
forms well to reduce high, irrepresentable Fourier components. Figure 4.6 shows
the action of the masked Fourier filtering procedure in real-space representation.
The x-y-contourplots show the smoother output function p̃(y) when the input is a
sharp delta function δ(x) for ℓ ∈ [0, 3].

Nevertheless, the smoother projector function p̃(r) will still contain contribu-
tions to relatively high Fourier components that have been introduced by the multi-
plication of the mask functionM(r). Therefore, the next section describes a careful
treatment in the interface between radial grid p̃(r) and cartesian real-space grid
p̃(|r|) ·Yℓm(r̂). Figure 4.6
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Figure 4.5.: Example of the Masked Filtering technique. The input func-
tion f(r) (black line) is strictly localized within r ∈ [0, 1], whereas the
output function g(r) ·m(r) (blue line) may extend beyond r = 1.

4.3.3. Reversed Interpolation Method

The need of accurate inner products between spatially extended wave functions
Ψ̃(r) and localized projector functions p̃(r) is eminent in the PAW method. This
section outlines a method to reduce the unphysical dependence of the projection
coefficient c = 〈p̃|Ψ̃〉 on the position of the projector’s center, called egg-box effect.
Assume a smooth wave function Ψ̃(r) represented on a coarse uniform real-space
grid with grid spacing hc. Then, the egg-box effect can be suppressed strongly by
interpolating the wave function to anM-times denser grid with grid spacing hd =

hc/M and performing the inner product there. Then, the projection coefficient is
given by

c =
∑

j

p̃(rj) Ψ̃(rj)
∆V

M3 (4.31)

=
∑

j

p̃(rj)

(

∑

i

Iji Ψ̃(ri)

)

∆V

M3 (4.32)

where the index i runs over the degrees of freedom of the wave function on the
coarse grid and the index j is used for the dense grid in M3-times more opera-
tions. In usual implementations of PAW (frozen core, fixed energy parameters) the
projectors do not change as long as the atomic positions are kept constant. The
wave functions are updated during the self-consistency iterations but the localized
projector functions are unchanged. As shown by Ono [79, 50, 53] it is, therefore,
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Figure 4.6.: x-y-Contourplot of the action of the masked Fourier filtering
for ℓ ∈ [0, 3]. The input function is a delta peak at x with x ∈ [0, 1]. The
output p̃(y) shows a softening. Observe how the maximum of p̃(y) is
repelled stronger from the origin the higher ℓ is. For x → 1 and higher
the action converges to a simple broadening function.

advantageous to interchange the summation order in the computation

c =
∑

i

[

1
M3

∑

j

p̃(rj) Iji

]

Ψ̃(ri)∆V (4.33)

such that we can prepare the expression in square brackets, p̃i, in a setup calcula-
tion preceding the self-consistency loop. Then, during the self-consistency itera-
tions the projection coefficients are computed as

c =
∑

i

p̃i Ψ̃(ri)∆V . (4.34)

The new effective projector elements p̃i is now represented on the same grid as
the wave functions Ψ̃. Therefore, we can interpret p̃i also as p̃(ri) and compare the
real-space representation to the original projector function p̃(r). Figure 4.7 shows
the three levels, the projector function on the radial grid p̃(r), on the dense grid
p̃(rj) and after reversed interpolation on the coarse grid p̃(ri).

Assuming that we start from a projector function that is given as a radial func-
tion p̃(r) times an angular function (e.g. a single spherical harmonic Yℓm(r̂)), our
localization region is a sphere of radius Rcut. Applying the reversed interpolation
scheme as outlined above to our projector on the M-times denser real-space grid
will increase the radius within which non-zero elements of p̃(ri) can be found by
the range Ritp of the interpolation. Therefore, the freedom of this method is given
by the mesh refinement numberM, usually integer, and the kind of interpolation
used to generate Iji. Figure 4.8 shows the one-dimensional interpolation function
L

[1D]

N (x) of the Lagrange interpolation (compare Section 4.2) for N ∈ [1, 8]. The
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Figure 4.7.: Schematic graph for the reversed interpolation filtering in
one dimension. A radial prefiltered function p̃ℓ(r) (blue) here with
ℓ=1 is represented on a 3-dimensional dense cartesian real-space grid
(black). Reversed interpolation yields the representation of the projec-
tor function on the coarse grid (red). One can observe how the localiza-
tion is gradually lost.

interpolation coefficients Iji are given by

Iji = F
[3D]

N (rj − ri). (4.35)

with the grid points at ri on the coarse grid and rj on the dense grid. We can
exploit that Lagrange interpolation factorizes, i.e. the three dimensional interpola-
tion function is a product of the one-dimensional functions,

L[3D](−−→xyz) = L[1D](x)L[1D](y)L[1D](z). (4.36)

The application of the localized interpolation scheme of order N with 2N-1 grid
points, N ∈ N, affects the localization of p̃(ri). The radius to which non-zero pro-
jector values may be found is now Rcut + Ritp where Ritp = Nhc, i.e. the radius
grows proportional to the order of the Lagrange interpolation.

The limit case N → ∞ lets the interpolation produce exact results. However, it
leads to the interpolating function

L∞(x) =
sin(πx)
πx

(4.37)

which has an infinite range Ritp, i.e. p̃(ri) is not a localized function any more but
has non-vanishing values on each grid point. This leads to a disadvantageous scal-
ing behavior, similar to the situation of a plane wave basis {Gi}, where the projector
representation in Fourier space p̃(Gi) is non-zero for all plane waves. Each projec-
tion operation thus scales proportional to the number of basis functions which
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Figure 4.8.: Lagrange interpolation function LN(x) in one-dimension
for various N. The interpolation coefficients between coarse and dense
grid can be read of given the grid refinementM and the relative align-
ment s of the two grids. LN(x) vanishes exactly for |x| > N. Note that
a Lagrange interpolation function of any finite order N is continuous
but its first derivative is discontinuous as clearly visible for N=1. The
red solid lines indicate from where the interpolating functions vanish
exactly.

makes the overall workload for projection scale quadratically in the system size.
The real-space representation with a finite interpolation order N leads the linear
scaling with a prefactor that depends on N.

A systematic way to understand the effect of reversed interpolation filtering is
to analyze the transfer function, i.e. the effect of reversed interpolation in recip-
rocal space. The filter is defined as LN(q) = 〈q|Î[1D]

N |q〉 where |q〉 are simple one-
dimensional plane waves with wave number q and Î[1D] is the one-dimensional
interpolation operator. Reformulating this, we see that F(q) is the Fourier trans-
form of the interpolation coefficients of Î[1D].

Figure 4.9 shows the one-dimensional transfer function L
[1D]

N (q) for several con-
figurations (N,M). Analyzing this we have to keep in mind that these filters have
been constructed from interpolation weights of the one-dimensional interpolation
scheme. The three-dimensional equivalent shows even sharper transitions from
transmission (L[3D](q) ≈ 1) to suppression (L[3D](q) ≪ 1) as we can see in Fig-
ure 4.10. As residual of the finite refinement factor (M = 5) we can observe the
transmission bump up to 3.9 % for q = 2.8 π

h
in linear interpolation in the (100) di-

rection. The height of this maximum is only slowly reduced with the interpolation
order N and its position seems to shift towards 3qmax. A second set of residulas
can be seen in the (100)-direction close to the maximum frequency on the dense
grid. However, these are smaller by a factor of ten. In the (110)-direction, some
contribution around 0.2 % becomes visible around q = 4qmax. In general, we find
that the suppression of erroneous frequencies above 2.0 is best for (111), good (110)



4.3. Filtering Methods 67

0 1 2 3 4 5 6 7
0

1

0 1 2 3 4 5 6
0

1

0 1 2 3 4 5
0

1

0 1 2 3 4
0

1

0 1 2 3
0

1

0 1 2
0

1

N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8

M=7 M=6 M=5 M=4 M=3 M=2

Figure 4.9.: Frequency dependent transfer function of the reversed inter-
polation method in one dimension. Shown are the transfer ratiosLN(q)

as a function of the reduced frequency q/qmax for the interpolation or-
derN =1 (linear, black) through 8 (red) and for different ratios of dense
grid to coarse grid M =7 (largest) through 2 (rightmost graph). The
frequencies q of functions represented on on the dense grid can only
assume values up to M ·qmax where qmax = π

hc
with the grid spacing

hc of the coarse grid. We can observe a stronger suppression of error fre-

quencies , i.e. for q/qmax > 1, at larger values of N and larger values of
M. Especially for larger interpolation ordersN, the frequencies < qmax

are transmitted better i.e. the transfer function is closer to the perfect
mask function which would be unity for q < qmax and zero elsewhere.
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and relatively good exept the one bump for (100). However, in the range 1.0 to 2.0,
the complete opposite is the case. In the limitN→ ∞, the transfer function should
approach a Heavyside function with the edge at 1.0. This seems to be the case for
(100), however, the position of the edge for (110) and (111) is renormalized by

√
2

and
√

3, respectively.

1 2 3 4 5
0

1

2

3

4

N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8

0 1 2 3 4 5
Frequency

0

10

20

30

40

50

60

70

80

90

100

T
ra

ns
m

is
si

on
 [%

]

(100)
(110)
(111)

M=5

Figure 4.10.: Frequency and orientation dependent transfer function of
the reversed interpolation method in 3D. Shown are the transmission
ratios LN(q) as a function of the relative frequency q/qmax for the inter-
polation order N from 1 (dark) through 8 (colored) and with the ratio
of dense grid to coarse grid M=5. The inlet shows a closeup onto the
suppression range (q/qmax >1) on a larger scale. We can clearly see dif-
ferent transfer functions for different spatial orientations. Only the high
symmetry directions (100), (110) and (111) are depicted here in solid red,
dashed green and dotted-dashed blue lines, respectively.

jüRS Input Syntax: dg N M

There are several possibilities to align the dense grid to the coarse grid if the grid
ratio is M, allowing only integer values forM. One option is to align the position
of the coarse grid to the exact position of every Mth dense grid point (matched,
shift s=0). Another way is to center the coarse grid points in between two dense
grid points (between, shift s= 1

2Mhc
). h is the grid spacing of the coarse grid. A third

possibility is an arbitrary shift (moving, shift s ∈ R and − 1
2Mh

< s 6
1

2Mhc
) that

depends on the position of the radial center of the localized function. Figure 4.11
shows all three cases graphically. In the case moving, the dense grid is attached
to the atomic position. Then, only the reversed interpolation operator is position
dependent. One might consider this approach for Car-Parinello MD implemen-
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tation on real-space grids since CPMD allows an update of the nuclear positions
every iteration. The costs of recomputing the representation of the localized func-
tions on the dense grid after a position update could be saved. However, the ap-
plication of the reversed interpolation operator is usually more time consuming
than the setup of the projector functions on the dense grid. The actual implemen-
tation forsees the same M and N for each spatial direction and uses the method
between for even values of M and the matched method if M is odd. The odd case
is connected to an advantageous workload since 2N-2 of the 2NM-1 coefficients of
the one-dimensional interpolation operator I[1D] vanish exactly. This reduces the
number of operations by 2N−2

2NM−1 saving roughly 28 % forN=2 andM=5 during the
execution of the three-dimensional application of the reversed interpolation.

-3 -2 -1 0 1 2 3

M=2 moving
coarse grid
M=2 between
M=3 matched
M=4 between
M=5 matched

Figure 4.11.: Different alignments of the dense grid with respect to the
coarse grid for the grid refinement ratio M ∈ [2, 5]. The alignment op-
tion moving is shown forM=2 and an atomic position that is 0.1hc off a
coarse grid point.

4.4. Algorithms

The choice of a real-space grid instead of a basis set leads to the necessity of var-
ious methods and algorithms that are introduced in the following sections. For
the generation of the effective potential we need to solve the electrostatic prob-
lem. The procedure is outlined below. Further, the generalized eigenvectors of the
Hamiltonian ˆ̃Hwith the overlap operator ˆ̃O according to the lowest eigenvalues is
requested. Therefore, we apply a combination of DIIS band update (see Section
4.4.2) and a subsequent explicit diagonalization in the subspace of the updated
bands (see Section 4.4.3).

4.4.1. Poisson solver

The classical electrostatic potential Ves(r) of the charge distribution ρ(r) needs to
be found in every self-consistency iteration. A straightforward implementation of
the Green function defined in Equation (3.48) leads to a disadvantageous scaling
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with respect to the number of grid points. Each grid elements requires the infor-
mation of each other grid elements. If periodic boundary conditions are involved,
the solution also needs to be converged with respect to a finite number of periodic
images. Consider the differential form of the electrostatic problem,

∆rVes(r) = −4πρ(r). (4.38)

From the Green function we know that the solution is intrinsically non-local. We
can find the exact solution by a Fourier transform ρ(G) = FT{ρ(r)} and the algebraic
solution of

−G2 Ves(G) = −4πρ(G) (4.39)

in Fourier space. Finally, the back transformation FT−1{Ves(G)} into real-space
gives yields Ves(r). We can already see that the component Ves(G = 0) is not deter-
mined by this equation. This corresponds to an arbitrary global shift of the local
potential. In return, the spatial average of the density ρ(G = 0) must vanish for a
charge neutral system. We see that the treatment of the Poisson equation in Fourier
space is very simple but only applies to neutral charge distributions in periodic
systems. The demand of a neutral charge density is essential for three periodic
boundary conditions. However, finding the FT with the Fast Fourier transform
(FFT) algorithm

ρ(r) −→ ρ(G) and Ves(G) −→ Ves(r)

scales asN logN for the serial calculation whereN is the number of points in either
space. For a parallelized version of the FFT, the total amount of communication is
expected to grow quadratically withN such that the efficiency will rapidly drop at
a high degree of parallelism.

A solution of the electrostatic problem in real-space can be found through the
differential form of the Poisson equation as in Equation (4.38). Let us focus on
the derivatives ∆r. We can approximate the second derivative in a finite-difference
(FD) scheme (compare Section 4.1), then the evaluation of ∆rVes(r) at a certain grid
point involves the value of Ves(r) and the values of Ves at neighboring grid points.
This operation is localized in a range which depends on the order of the finite-
difference expansion, i.e. its evaluation scales linear with the number of elements
in the FD stencil and linear with total number of grid points. The iterative solution
requires a start guess for the potential Vstart(r). This guess does not need to have a
special shape, even a completely vanishing guess function may be used. However,
the closer the start guess is to the final solution, the less iterations will be needed
to achieve convergence. From Ves(r) = Vstart

es (r) we can evaluate the approximate
charge density ρapp(r) by applying the Laplace operator.

ρapp(r) = −
1

4π
∆FD[Ves(r)] (4.40)
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the residual vector R is then defined as

R(r) = ρ(r) − ρapp(r). (4.41)

We apply iterative residuum minimization techniques such as steepest descent or
conjugate gradients (CG) to minimize the residual norm r with the definition

r2 = 〈R|R〉 =
∫

V

d3r R2(r). (4.42)

Since the self-consistency cycle is meant to lead to a converging charge density ρ(r)
and thus the changes of in the charge density become smaller over the number of
cycles, the solution of the Poisson equation of the previous iteration is a relatively
good start vectors.

An alternative to the FD approximation are the Mehrstellen algorithm [80] where
a short-ranged non-local stencil is applied to both sides of Equation (4.38). Differ-
ent from FD which only requires information of grid points in the six cartesian
(100)-directions, these stencils access the complete environment of each grid point.

4.4.2. DIIS method

For an accurate description of the atoms with the PAW method a certain minimum
density of the grid is necessary. This number differs according to the type of atom,
in particular the augmentation radius raaug and ℓamax. However, the number of de-
grees of freedom of a smooth KS wave function Ψ̃(r) easily exceeds the number of
electrons Ne in the system by a factor of hundred or more. We thus only need to
find the lowest 1 % of the eigenvalues and eigenvectors of ˆ̃H, or less. Nevertheless,
a direct method which scales cubically with the matrix dimension which makes it
practically impossible to reach to systems with more than a hundred atoms.

As outlined above, the KS-Hamiltonian ˆ̃H in real-space representation consists
of three contributions. The constant FD stencil which approximates the kinetic
energy operator with 6Nf elements, the smooth local effective potential and a non-
local potential part that is a sum of dyads of localized atomic projector functions.
The local potential is diagonal in real-space representation the FD approximation
leads to a banded but sparse representation. If now the system extends Li are
much larger than the projection regions of the non-local potential, the Hamilto-
nian is very sparse. We therefore employ iterative diagonalization methods to
find the lowest Ne eigenvalues and eigenvectors of the Hamiltonian. The spar-
sity and the structure of the Hamiltonian make an explicit storage of the matrix
elements 〈r ′| ˆ̃H|r〉 redundant. Instead, only the FD stencil tFD, the local effective po-
tential Ṽeff(r), localized projector functions p̃ai (r) and atomic Hamiltonian matrix
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elements Ha
ij are stored. We can thus compute the action of the Hamiltonian onto

a trial vector within a number of operations that scales linearly with the number
of grid points. The implicit action of ˆ̃H and ˆ̃O is all that is needed. The required
eigenvectors |Ψ̃nσk〉 and, consequently, their eigenenergies Enσk are found with the
Direct Inversion of the Iterative Subspace (DIIS) method proposed by Pulay [81].
An iterative sequence of vectors is found by adding a trial vector each iteration.
The norm of the residual vector

|R〉 =
(

ˆ̃H− ǫ ˆ̃O
)

|Ψ̃〉 = | ˆ̃HΨ̃〉− ǫ| ˆ̃OΨ̃〉 (4.43)

is minimized in the iterative subspace. The energy eigenvalue ǫ is approximated
by the Ritz value of |Ψ̃〉, i.e.

ǫ =
〈Ψ̃| ˆ̃H|Ψ̃〉
〈Ψ̃| ˆ̃O|Ψ̃〉

. (4.44)

In the first iteration, the subspace consists of the initially given vector |Ψ̃〉 only.
The subspace is extended by the gradient direction |R〉 every iteration and a lin-
ear combination of the sequence of residual vectors is found that minimizes the
new residual. This method is implemented in jüRS without explicit orthogonal-
ization. Therefore, a careful treatment of the eigenvectors is required. The maxi-
mum size of the subspace is usually limited to four steps. After the DIIS update,
reorthogonalization of all eigenstates is necessary. This can either be done be a
Gram-Schmidt-scheme or by subspace rotation as outlined in the next section.

4.4.3. Subspace Rotation

The subspace rotation method is necessary when the DIIS scheme, as described
in the previous section (Section 4.4.2), is applied to the bands without explicit re-
orthogonalization. Its duty is to restore the orthogonality of all bands of a σk-point
orthogonal after they have been updated in the DIIS scheme. The Hamiltonian
is block diagonal with respect to different σ and k, therefore, bands of different
σk-points are orthogonal by symmetry. During subspace rotation and for each
σk-point, the Hamiltonian and the overlap matrix are represented in the basis of
the newly updated bands Ψ̃, i.e. Hnm = 〈Ψ̃n|

ˆ̃H|Ψ̃m〉 and Snm = 〈Ψ̃n|
ˆ̃O|Ψ̃m〉 for

n,m ∈ [1,Nbands]. The subscript σk is suppressed here showing only the band
index. Since solving for eigenstates with an iterative band update method the KS-
wave states |Ψ̃n〉 are never completely converged to exact eigenstates. Furthermore
it also may occur that the potential changes sufficiently such that two bands are
tending to interchange their energy order. For both reasons the two matrices are
not diagonal matrices, even though often very close to a diagonal matrix, i.e. the
strength of off-diagonal elements is small compared to diagonal entries. An ex-
ceptional case of many non-vanishing off-diagonal elements is the first iteration,
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when the potential is generated from a superposition of atomic densities and the
start guess states are localized atomic orbitals. In this special case, the operators
resemble the Hamiltonian and overlap matrix of a tight-binding or LCAO (Linear
Combination of Atomic Orbitals) approach. Figure 4.12 and Figure 4.13 show ex-
amples of the subspace Hamiltonian matrices.

Figure 4.12.: Structure and subspace Hamiltonian matrix for a C60 Buck-
minster fullerene (Bucky ball) in the first iteration: The start guess KS
wave functions are atomic orbitals. Centered at each of the 60 Carbon
atoms, a set of {s,px,pz,py} atomic orbitals at each atomic position has
been generated. Thus the matrix dimension is 60×4=240. The effective
potential is created from a superposition of the atomic densities where
s-orbitals are occupied with 2 e and each p-orbital hosts 2

3 e. One can
see various features in this plot: Twelve five-fold rings of Carbon atoms
couple strongly among themselves visible as dark blocks of 20x20 occu-
pying the matrix diagonal. The couplings of 5-rings to other 5-rings ap-
pear as 5 lighter blocks in each row or column. Further, the non-coupled
atom pairs are indicated by blank entries as e.g. atoms on the other side
of the soccer ball-like structure.

The subspace rotation method consists of three steps of which the first is the
setup of the subspace matrices

Hnm = 〈Ψ̃n|
ˆ̃H|Ψ̃m〉, (4.45)

Snm = 〈Ψ̃n|
ˆ̃O|Ψ̃m〉. (4.46)

For this step, the Hamiltonian and overlap operator have to be applied onto all
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Figure 4.13.: Structure and subspace Hamiltonian for oligothiophene
(SC4H3)2 in the basis of atomic start orbitals. Strong inner-ring coupling
becomes visible in two blocks of 23x23 on the diagonal. In addition
to that, the C-C bond between the two rings appears as eminent off-
diagonal matrix elements.

preliminary states Ψ̃n, n ∈ [1,Nbands], and 2N2
bands scalar products need to be evalu-

ated. Fortunately, we can exploit that ˆ̃H and ˆ̃O are hermitian operators. Hence, the
subspace matrices are hermitian (symmetric) for complex (real) wavefunctions Ψ̃,
Hnm = H∗

mn and Snm = S∗mn. Hence, only their lower (or upper) triangular matrix
needs to be evaluated. Then, the total number of scalar products isN2

bands +Nbands.

The second step is the solution of the generalized eigenvalue problem

(Hnm − EnSnm)Xmk = 0 (4.47)

where a conventional eigensolver is applied. Finally, the third step is the rotation
of the KS-states that gives rise to the name of this algorithm. The eigenstates of ˆ̃H
are given by

Ψ̃ ′
n(r) =

∑

k

XnkΨ̃k(r). (4.48)

The combination of both methods, the DIIS band update and the subspace rota-
tion, take most of the computation time for an increasing system size. Therefore,
we show the strategies of parallelization applied to both methods in the next chap-
ter. The solution of the Poisson equation is parallelized as well. However, the
Laplacian operator is implemented in a finite-differences and its action onto a trial
vector is parallelized in complete analogy to the kinetic energy in the Kohn-Sham
equation. Therefore, it is not discussed in particular detail.



CHAPTER 5

PARALLELIZATION

Self-consistent density functional calculations consist of three major tasks: the gen-
eration of the effective potential given an electron density, the solution of the Kohn-
Sham equation for the lowest eigenstates, and the generation of a new electron den-
sity. Analyzing the scaling behavior of the different tasks we find clearly that the
solution of the generalized eigenvalue problem that arises from the Kohn-Sham
equation in the PAW formalism

(

ˆ̃Hσk − Enσk
ˆ̃Ok

)

|Ψ̃nσk〉 = 0 (5.1)

becomes computationally most demanding when the system size is increased.

For this reason, jüRS parallelizes the solution of Equation (5.1) on three levels
that differ strongly by their degree of communication. In priority order:

• σk-point parallelization → Section 5.2

• three-dimensional real-space domain decomposition → Section 5.3

• band parallelization → Section 5.4

Depending on the communication network of the computer system in use, one can
achieve higher parallel efficiency by interchanging the latter two levels in priority.
However, in the case of massively parallel supercomputer architectures connected
by a torus network that provide a high bandwidths and small latencies in commu-
nication with the nearest cartesian neighbor nodes this ordering is advantageous.

5.1. Introduction to Parallel Efficiency

Amdahl’s law [82] for parallelization of independent tasks without communication
states that the total execution time of a workload parallelized with N processes,

75
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Texe(N), consists of the time each process spends in serial tasks, Tserial, and the time
spent in parallel tasks. The cumulative time that all processes spend on the execu-
tion of the parallel tasks, Tparallel, is a constant if we neglect possible overhead times
of the task distribution that might depend on N. Assuming that the work can be
distributed equally among all processes. Then the total execution time reads

Texe(N) = Tserial +
Tparallel

N
. (5.2)

We define the serial fraction α by

α =
Tserial

Texe(1)
=

Tserial

Tserial + Tparallel
. (5.3)

Then, the speedup of the parallelization is defined by

Speedup(N) =
Texe(1)
Texe(N)

(5.4)

and the parallel efficiency by

Efficiency(N) =
Speedup(N)

N
=

Texe(1)
N · Texe(N)

. (5.5)

Figure 5.1 shows the monotonously growing speedup for an infinite number of
independent tasks. The asymptotic behavior for largeN is the maximum speedup
defined by

Speedupmax =
Texe(1)
Texe(∞)

=
1
α

. (5.6)

The asymptotic behavior for small numbers of processes (N ≪ 1
α

) is the ideal
speedup Speedupideal(N) = Nwhich corresponds to 100 % efficiency.

5.1.1. Load imbalance effects

We assumed earlier that the number of tasks to be distributed is unlimited. How-
ever, considering a finite number of tasks M which all require the same compute
time, Tparallel/M, we need to include imbalances due to the distribution of M tasks
onto N processes into the formula. The final synchronization makes all processes
wait until the process with the largest number of tasks assigned has finished. The
largest number of tasks is gives as ⌈M/N⌉. ⌈x⌉ is the nearest integer number larger
than x. Equivalently, ⌊x⌋ is the nearest integer number smaller than x. With this
the total execution time can be rewritten as

Texe(N) = Tserial +
Tparallel

M

⌈

M

N

⌉

. (5.7)



5.1. Introduction to Parallel Efficiency 77

0 100 200 300 400

0

50

100

150

200
S

pe
ed

up

ideal
limit
independent

0 100 200 300 400
Number of Processes

0

50

100

%
 E

ffi
ci

en
cy

Figure 5.1.: Theoretical limitation of the parallel speedup (black solid
line) described by Amdahl’s law about non-parallel code. Here a se-
rial fraction of α=0.5% limits the max. speedup to 200. In the absence
of communication and load imbalance (infinite number of indepen-
dent tasks) the speedup grows asymptotically towards the maximum
Smax=[α]−1 (black dashed line).
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Figure 5.2.: Parallel speedup including load imbalance due to a discrete
number ofM=128 tasks and a serial fraction of α=0.5%. The maximum
speedup cannot grow beyond S(M)=[α+ 1

M(1−α)]−1, 78.3 in this plot.
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The effect of load imbalances can be seen in Figure 5.2. Besides the limitation by
the serial fraction α the speedup is now limited to the upper bound Speedup(M) =

[α+ (1−α)/M]−1, the case where each processes is assigned exactly one task. For
a parallelization with more processes than tasks, N > M, idle processes let the
parallel efficiency drop strongly.

5.1.2. Intensive communication

In the previous sections we looked at Amdahl’s law for independent tasks. How-
ever, the need for strong degrees of parallelism is introduced by large problem sizes
that can only be divided into a combination of separate tasks plus communications.
Assuming again that all tasks need the same compute time we can neglect losses
due to load imbalances and assume a perfect synchronization. Nevertheless, the
overhead of communication also introduces a time contribution Tcomm. We thus
rewrite Equation (5.2) into

Texe(N) = Tserial +
Tparallel

N
+ Tcomm(N). (5.8)

Here, the dependence of the communication time on the number of processes N
and the type of communications plays a crucial role. The type of communication
determines the communication pattern, i.e. which processes need to exchange data.
We discuss two different types of communication here: the first is communication
with a constant number of processes which leads to a constant communication
time, independent ofN. This can be combined with Tserial such that we find a renor-
malized serial fraction as shown in Figure 5.3. The second type involves all-to-all
communication. Here, we need to distinguish two limit cases and one intermedi-
ate case. If the communication is volume intensive and the data packages become
smaller with increasing degree of parallelizationN, the communication time Tcomm

consists of an overhead part of the communication, e.g. MPI-handshake etc. that is
independent of N and the actual sending process that scales with the transferred
data volume. Assuming a data package size that behaves ∼ 1/N, the latter contri-
bution is a constant in the limitN −→ ∞ and renormalizes the serial code fraction.
Also, if the data packages are of constant size but negligibly small the communica-
tion time can be approximated as being proportional toN. Then, only the overhead
is seen and Tcomm = γlinN. This leads to a growing contribution to the total execu-
tion time for growing N and thus a reduction of the speed in the limit of large N.
A clear maximum of the speedup can be seen for all-to-all communication (orange
line) in Figure 5.3.

An intermediate case between constant and linear scaling communication times
can be found in global reduction operations. Usually, the data network is based
on a (e.g. binary) tree structure such that the communication times arising due to
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global reductions scales with the number of tree levels, i.e. Tcomm ∼ ln(N). This
contribution grows when increasing N but its growths is weaker than a linear de-
pendence.
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Figure 5.3.: Theoretical speedup including a serial fraction of α=0.05%
and communication. A constant communication time (green line) can
be regarded similar to a larger serial fraction. The new limitation then
is Smax=[α + γcst]−1. Here, γcst = 10−3. All-to-all communication time
scales linear with the number of processes and thus its speedup (orange
line) shows a maximum at

√

(1 − α)/γlin. With γlin = 5 · 10−5 the max-
imum can be found at 141.4 in this plot.

An example of a discrete number of independent tasks are spins and k-points
discussed in the following section. Communicating tasks with a restricted com-
munication pattern in jüRS are introduced in the framework of real-space domain
decomposition (Section 5.3) and data volume intensive all-to-all communication is
necessary in band parallelization (Section 5.4).

5.2. Spin- and k-point Parallelization

Periodic systems require a sampling of the first Brillouin zone by k, so called k-
points. The Bloch theorem tells us that the KS Hamiltonian is block diagonal in k

due to the locality of the effective potential. Furthermore, magnetic systems show
a difference in the effective potentials V↑ and V↓. Restricting magnetic systems to
those with a collinear spin, all coupling elements H↑↓ vanish, such that the gener-
alized eigenvalue problem

(

ˆ̃Hσk − Enσk
ˆ̃Ok

)

|Ψ̃nσk〉 = 0 (5.9)
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for both, k-points and collinear spins σ, can be treated as completely independent
tasks. The results of these tasks need to be collected at two points.

• For the determination of the occupation numbers fnσk of the next iteration
the eigenenergiesEnσk of all states are required (see subroutine Fermidistribution).

• For the generation of the new valence density ñσ
v (r) the eigenvectors Ψ̃nσk(r)

of all states are required (see subroutine construct_smooth_density).
The atomic density matrices Da

ijσ are computed from the eigenvector’s pro-
jection coefficients 〈p̃ai |Ψ̃nσk〉 (see subroutine find_density_matrix).

Both communication operations may be performed after the local summations
have been executed so the only significant quantities that require global reduc-
tion operations are ñσ

v (r) and Da
ijσ. The associated MPI communicator is called

equi_comm since it connects regions of equivalent space r and images of the same
atoms a belonging to different σk-points.

The σk-point parallelization is very efficient as long as the total workload for the
diagonalization Tdiag of the KS Hamiltonian is much larger than the time Tpot for the
generation of the effective potentials. According to Section 5.1 we find an efficiency
for the σk-point parallelization

Efficiencyσk(Np) =
Tdiag + Tpot

NpTpot + Tdiag
(5.10)

≈ 1 − (Np − 1)
Tpot

Tdiag
for Tpot ≪ Tdiag (5.11)

This estimate for parallel efficiency does not include losses due to load imbalance.
The global communication operations along equi_comm introduce a synchroniza-
tion that makes all ranks wait for the slowest one to finish its tasks. We therefore
have to use the following formula including Load Balance (LB) effects. Mσk is the
number of discrete σk-sampling points.

EfficiencyLB
σk(Np) =

Tpot + Tdiag

NpTpot + Tdiag
Np

Mσk

⌈

Mσk

Np

⌉ (5.12)

which is less or equal the above defined efficiency since

Np

Mσk

⌈

Mσk

Np

⌉

> 1 for Mσk,Np ∈ N (5.13)

Obviously, Mσk sets an upper limit for Np. In the special case Mσk = Np, the
speedup is largest and each process elements performs calculations of one task.
For higherNp, we will encounter idle processes.

RegardingTpot, a large fraction of the potential setup time goes to the spin-independent
electrostatic potential. Therefore, the parallelization over collinear spins has not
been extended to the generation of the spin-dependent XC-potentials.
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The solution of the Kohn-Sham eigenvalue problem and the generation of the
effective potentials are subject to the grid parallelization described in the following
section.

5.3. Real-Space Domain Decomposition

The special strength of the real-space approach is the possibility to distribute the
grid points of the uniform grid to parallel processes in a very simple and efficient
way such that local operations can be performed without and localized operations
with little inter-process communication, respectively. Equal-size domain decompo-
sition divides each of the three spatial extends of the full grid into small cuboids,
called domain. A good load balance for local operations is thus guaranteed when
domains is assigned to one parallel process and the size of each domain is the
same. Assuming that the real-space grid consists ofNx ×Ny ×Nz grid points the
distribution into domains reads

Nx ×Ny ×Nz = (pxnx)× (pyny)× (pznz). (5.14)

It is necessary that the total number of processes ptot can be factorized topx×py×pz.
For an equal numbers of grid points per domain, ni, the grid sizes Ni with i ∈
{x,y, z} must be a multiple of the domain numbers pi. A distribution with ni that
differ among the processes is discussed in Section 5.3.3.

Figure 5.4.: Domain Decomposition with 4×4×4 processes. Depending
on the system’s network the MPI task placement is important for the
scaling behavior of the communication times of the nearest-neighbor
communication.

5.3.1. Communication with cartesian neighbors

In real-space representation we can distinguish two major classes of operations,
local and non-local. In the class of non-local operations we can identify the sub-
set of global operations that involve all points in space and localized operations
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with a finite range. Finite-difference derivatives (compare Section 4.1), for example,
are localized operations whose range is given by the order of the finite-difference
approximation. To perform localized operations we need to transfer data from
the neighboring domains into a temporary storage which is realized by an halo-
enlarged array, i.e. the array bounds are extended by a halo at the lower and at
the upper boundary. The halo thickness is nh

i grid points for each spatial direc-
tion i ∈ {x,y, z}. The range of the localized operation determines the minimum
thickness of the halo in terms of number of grid points nh

i . An upper limit for nh
i

in jüRS is the number of grid points per domain ni. Any operation with a larger
range than ni would require that the data exchange procedure is called multiple
times or direct communication with a second shell of neighboring processes needs
to be established.

Standard finite-difference operators involve only non-local access to grid points
along the cartesian directions. Thus we need to exchangenh

inxnynz/ni data points
with the 6 cartesian face-neighbor processes, i.e. nh

xnynz, nxn
h
ynz and nxnyn

h
z

in x, y and z direction, respectively. Figure 5.5 shows a classification of the 26
neighboring processes of the first shell into face-neighbors, edge-neighbors and
vertex-neighbors. The ordering of the directions is arbitrary and best performed
simultaneously. Some other localized operations, e.g. the Mehrstellen algorithm
[80] for the approximation of the Laplacian operator involve the complete environ-
ment of a grid point and thus also nin

h
xn

h
yn

h
z/n

h
i data points from the 12 edge-

neighboring process along the diagonals and nh
xn

h
yn

h
z data points from 8 vertex-

neighboring processes along the space diagonals. In order to avoid extra MPI com-
munications with 12+8 processes for considerably smaller data packages (here we
assumed that nh

i is smaller than ni, the only restriction however is nh
i 6 ni), we

can circumvent this by introducing a non-arbitrary ordering of the data exchange
operations: x, y, z, where the x-direction is associated with innermost array dimen-
sion array(ix,:,:). Afternh

xnynz data points have been exchanged in x-direction,
the copying for the y-direction will also include array from the x-halo region, i.e.
(nx + 2nh

x)n
h
ynz data points are exchanged in y-direction. The last step then ex-

changes (nx + 2nh
x)(ny + 2nh

y)n
h
z data points in z-direction. The information ex-

change with the edge-neighbors and vertex-neighbors is thus cast into a 2-step for-
warding procedure. See Figure 5.6 for an example of a 1-step forwarding procedure
in two dimensions.

5.3.2. Boundary Condition

A specialty of the real-space grid approach is the flexibility of boundary conditions
(BCs). Three boundary conditions have to be chosen, one for each spatial direction.
Standard BCs can either be periodic(1) or isolated(0).
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27 1 6 12 8= + + +

Figure 5.5.: Cartesian neighbor domains in a three-dimensional do-
main decomposition. The cube in the center (red) of 3×3×3 cubes
has 26 neighbors, six cartesian direct neighbors (blue) sharing faces, so
called face-neighbors, twelve edge-neighbors (green) and eight vertex-
neighbors (yellow).

Figure 5.6.: Two-dimensional showgraph of x-y-ordered data exchange.
The information flow mediates data from the vertex-neighbors by for-
warding it along the cartesian neighbors such that communication
is necessary only with direct cartesian edge-neighbors in 2D (face-
neighbors in 3D). The data network of JUGENE supports direct neighbor
communication on the hardware level in a three-dimensional torus net-
work.
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• Isolated BCs means that the simulation volume ends. Wave functions and
potentials vanish outside the volume and thus the data exchange will return
zeros. Array halos are set to zero in the routine dataexchange.

• Periodic boundary conditions connect the lower end of the volume at −1
2Li

to the upper end at 1
2Li and vice versa. Li is the extend of the simulation

volume in direction i where i ∈ {x,y, z}. During data exchange across a pe-
riodic boundary, a k-dependent Bloch-factor eikL is multiplied the the wave
functions because the convention in jüRS is that the full Bloch wave functions
Ψ̃k(r) are treated rather than their lattice periodic parts ũk(r) where

Ψ̃k(r) = eik · rũk(r) (5.15)

and

Ψ̃k(r + T) = eik · (r+T)ũk(r + T) = eik ·Teik · rũk(r) = eik ·TΨ̃k(r) (5.16)

must hold for any allowed periodic translation vector T.

• One may think of more elaborate BCs [50].

The total communication volume Vcomm of the cartesian data exchange of each
domain is a linear function of the artificial interfaces Ai created by the decomposi-
tions into domains. These surfaces and interfaces are given as

Ax = nynz, (5.17)

Ay = (nx + 2nh
x)nz,Az = (nx + 2nh

x)(ny + 2nh
y) (5.18)

and the total communication volume

Vcomm = 2nh
xAx + 2nh

yAy + 2nh
zAz. (5.19)

Usually one chooses all halo thicknesses nh
i = nh independent of the spatial

direction such that

Vcomm = 2nh (Ax +Ay +Az) (5.20)

= 2nhnynz + 2nh(nx + 2nh)nz + 2nh(nx + 2nh)(ny + 2nh) (5.21)

= 2nh (nynz + nxnz + nxny) +
(

2nh)2
(nz + ny + nx) +

(

2nh)3
(5.22)

We have to determine ni such that Vcomm is minimal under the constraint that the
total number of grid points per domain nxnynz is a constant. The solution is as
close to a cube (nx = ny = nz) as the constraint of integer numbers allows.

The inner product of two wave functions stored on a real-space grid with domain
decomposition is performed in each domain locally first. Finally, a global reduction
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over all domain ranks is necessary:

∫

Volume
d3r Ψ̃(r)Ψ̃ ′(r) =

pxpypz
∑

r

∫

Domain(r)
d3r Ψ̃(r)Ψ̃ ′(r). (5.23)

The cartesian MPI subcommunicator for the parallelization in three-dimensional
domain decomposition is called grid_comm or g%comm, where g is of type(grid),
the cartesian grid descriptor.

The real-space domain decomposition in jüRS is applied to the coarse grid of
the smooth wave function Ψ̃nσk(r). The resulting smooth density ñσ(r) is treated
on a twice as dense grid with grid spacing hd = hc/2. The solution of the Poisson
equation (see Section 4.4.1) is either calculated on the dense grid or on an extra fine
grid with grid spacing he = hd/2. For simplicity of the implementation the denser
grids are congruent with the coarse wave function grid and make use of the same
grid communicator.

5.3.3. Non-uniform domain decomposition

The simplest approach towards a good load balance is a uniform domain decom-
position of a grid, as pointed out in the previous section. However, this requires
that the total number of grid pointsN can be factorized by the number of processes
p, i.e. N = n ·p. Let us assume that N cannot be factorized but needs to be paral-
lelized with p processes. Then we can find a distribution N = p> ·n> + p< ·n<

where p> + p< = p and n> = n< + 1 i.e. the local numbers of grid points only
differ by one. The load balance of this setup is n<

n>
(unlessN can be factorized). On

a three dimensional grid the effective load balance cannot be smaller than in one
dimension.

The overall performance of the three-dimensional domain decomposition in jüRS

is not affected by the placement of the domains that hostn< orn> grid points if the
cell volume is homogeneously filled with atoms. However, isolated boundary con-
ditions require some vacuum regions where the wave functions may decay without
being squeezed into the confinement given by the cell volume. Processes in the do-
main decomposition that are located in these vacuum regions will have to perform
the application of the total kinetic energy and local potential operator only and
most likely not involved into atomic projection operations. The workload of the
latter depends strongly on the local geometry. Then it is advantageous to partition
the processes in three groups, i.e. N =

⌊

p>

2

⌋

·n> + p< ·n< +
⌈

p>

2

⌉

·n>. This pro-
cedure guarantees that central processes of the domain decomposition store and
process less grid elements which is advantageous for isolated BCs with vacuum
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regions towards the boundary.

n>, . . . ,n>︸ ︷︷ ︸

⌊p>
2 ⌋ times

,n<,n<, . . . ,n<,n<︸ ︷︷ ︸
p< times

,n>, . . . ,n>︸ ︷︷ ︸

⌈p>
2 ⌉ times

.

An example of a three dimensional case is shown in Figure 5.7.

Deactivate EQUAL_DOMAINSIZES in module configuration for this feature.

Figure 5.7.: Load balancing of the grid tasks in a 6 × 6 × 6 domain
decomposition of 6n + 3 grid points, n ∈ N. Four colors are present
according to the total number of grid points per domain which is ∈
{n3

<,n1
<n

2
>,n2

<n
1
>,n3

>}.

The atomic projection operation and the addition operation are implemented in
a very similar code structure. It can be observed that their execution time differs
on most platforms by less than 5 %. Hence, their work balance with respect to the
domain decomposition is theoretically equal. However, minor differences can be
seen in Figure 5.8 at the example of a C60 molecule distributed on 8×8×8 domains.

Considering a heterogeneous distribution of the atoms in the simulation volume
we may optimize the workload balance of the domains using a non-uniform do-
main decomposition. The domain size is adjusted according to the local concentra-
tion of atoms (weighted with the number of projector functions of each atom). The
domain size of domains with a high (low) concentration of atoms are decreased
(increased). The workload of the kinetic energy in finite-difference approximation
(red blocks in Figure 5.9) is proportional to the domain size and the workload of the
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Figure 5.8.: Scalasca [83, 84] visualization of the load balance of the
atomic projections ci = 〈p̃i|Ψ̃〉 (left) and addition operations |Ψ̃ ′〉 :=

|Ψ̃〉 +
∑

i ci|p̃i〉 (right). The measured system is a C60 Buckminster
fullerene in a 8×8×8 domain decomposition. White colored processes
are not involved in the operations (vacuum).

atomic projection/addition operations (blue/green block in Figure 5.9) grows with
increasing domain size as well. This growths cannot be described as proportional
since we assumed variations in the local concentration of atomic tasks. Figure 5.9
shows that adjusted domain sizes help to reduce the total execution time by 26 %
assuming a load balance of 74 % before. The communication between the atomic
tasks is indicated as a blocking operation in setup 1, i.e. the communication in-
troduces synchronization. In setup 2 the communication is indicated at different
times. The concept of non-blocking communication can be applied here but the
domains involved in more than one projections/additions need to reorder the pro-
cessing of the atomic tasks according to the gradient of the centration of atoms.
Otherwise, also non-blocking communication may lead to idle processes waiting
from MPI messages. This constraint increases the complexity of finding an opti-
mized atom order, see 5.3.6.

5.3.4. Atom owner processes

As an intrinsic property of the PAW method, some calculations have to be per-
formed on the radial grids inside the spheres. In order to balance the workload
and memory usage these atomic tasks are assigned to one grid process, i.e. one
rank of the domain decomposition that owns the atom.
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1a

1b

2a

2b

Figure 5.9.: The execution time of the application of ˆ̃H to a vector |Ψ̃〉 con-
sists of three contributions: FD-kinetic energy (red), atomic projection
operation (blue) and atomic addition operation (green). Equal domain
sizes and blocking communication lead to setup 1 where domains with
less atoms (1b) idle (gray) while waiting for the domain with the most
workload in projection and addition (1a). Setup 2 is the ideal case since
the domain sizes are adjusted to the local concentration of atoms and
the communication does not introduce synchronization.

5.3.5. Parallelization of the projection

The artificial interfaces from the domain decomposition will intersect with the
cloud of grid points r where localized atomic functions are nonzero. These may be
either the PAW projectors p̃a(r) (see Section 4.3.3) or in a similar fashion the atomic
compensators ĝa(r) (see Section 3.4.5). We discuss this issue with the atomic pro-
jectors here. The domain decomposition forces us to perform a local application of
the projector part of the localized function that intersects with the domain. For the
projection operation 〈p̃|Ψ̃〉 this requires a global reduction over the domain ranks
r:

∫

Volume
d3r p̃(r)Ψ̃(r) =

pxpypz
∑

r

∫

Domain(r)
d3r p̃(r)Ψ̃(r). (5.24)

Within this reduction operation the contribution from most domains will vanish
due to the localized character of the projector. We can therefore identify for each
atom a group of processes that are involved in the projection operations with a non-
vanishing contribution. This group is a subset of the grid communicator. In the
current implementation, this is realized by forming a separate MPI communicator
a%comm for each atom1. Introducing atomic communicators leads to the advantage
of reduction operations that only need to be performed in contributing processes.
The result of the reduction is stored in the atom owner process only. For conve-

1Note that the number of MPI communicators is limitated to a maximum that depends in the imple-
mentation of the communication library.
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nience, the atom owner has MPI-rank 0 (master) within the atomic MPI communica-
tor. Choosing the atom owner rank such that the atomic nucleus is located inside
its domain will ensure that the atom owner is simultaneously a contributing pro-
cess. However, a distribution of atom owner processes that minimizes the number
of atomic ownerships per domain could balance the execution of atomic task better.

Figure 5.10.: Parallelization in domain decomposition of the non-local
projection operations. The inner product of a wave function with the
localized projector function is executed in each domain locally. The
results need to be reduced in the atom owner process, usually the do-
main that hosts the atomic nucleus. The atomic tasks on the radial grids
are assigned to the right domain. A circle indicates the position of the
atomic nucleus. The dashed circle shows the nuclear position for the
left domain.

The atomic communicator serves for both directions, i.e. to gather the domain
contributions to the projection coefficients and to broadcast information that are
stored in the atom owner process to the domains contributing to the localized func-
tions of this atom. This is needed for the addition of the projector functions to a
wave function as appearing in the action of the non-local parts of the PAW trans-
formed Hamiltonian (Equation (3.80)) and, similarly, for the multipole moments
∆qaℓm of the compensators in the electrostatic construction (Equation (3.53)).

5.3.6. Atomic communication ordering

In order to avoid serialization of the atomic communications, we have to find an
ordering, such that these steps are performed in a minimum number of cycles.
Within each cycle only such groups of processes are allowed to communicate (MPI_Broadcast
or MPI_Allreduce) that are disjoint, i.e. no process is member of more than one of
the groups in this cycle. The following algorithm describes a way to set up the
table of disjoint atomic communicator groups.

Each process stores an array of boolean values br(a) which is true if and only
if the process r is involved in the atomic communicator of atom a. The spatial
shape of the group of processes that belongs to an atomic communicator reminds
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of a rather edgy cloud. The logic table B(a1,a2) is true if any of the processes in
a1%comm is also involved in the communications along a2%comm. Here, B stands for
blocking. B is found via a global reduction operation with OR over allNp processes
ranks, i.e.

B(a1,a2) =

Np−1
∨

r=0

br(a1)∧ br(a2) (5.25)

Obviously, B(a1,a2) is symmetric under exchangea1 ↔ a2 and the diagonal entries
B(a,a) are always true, such that the minimum number of blockings is the number
of atoms. These two aspect can be exploited for saving communicational volume
and temporary memory.

Now, the table A(a1,a2) of groups which may be treated in the same cycle and
thus at the same time is the exact negation of B:

A(a1,a2) = ¬B(a1,a2)

Figure 5.11.: Boolean matrix of blockings for thiophene on a Cu(111)
surface. The order of atoms in this setup is 4×C, 4×H, S followed by
the Cu layers 1 through 6 with 30 Cu atoms in each layer. The 8×8×16
domain decomposition is not aligned to the layers of the Copper slab in
z-direction. The upper left 9 × 9 submatrix stems from the molecule. It
is almost block-diagonal except for some matrix elements that disable
the atomic communication operation of S and the Cu surface atoms of
layer 6 to be treated simultaneously.

If we consider A to be the adjacency matrix of the graph G({a},E), where the set
of all atomic communicators {a} represents the vertices of the graph and the edges
E are determined via the matrixA, we have reduced the problem to the well known
mathematical multi-coloring problem, i.e. a problem of finding the minimum num-
ber of complete subgraphs. Each of those subgraphs then stands for one color, i.e.
one subset of atomic communicators that can be treated at the same time without
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Figure 5.12.: Cu(111) surface with an adsorbed thiophene molecule on
top of layer 6. Layers 1 through 3 have been kept at the distance accord-
ing to the bulk FCC lattice constant abulk = 3.636 Å. Courtesy of M.
Callsen and Sh. Tsukamoto.

Figure 5.13.: Blocking of atomic communicators depends on the align-
ment of the domain boundaries. The same H2O molecule may lead to
complete serialization (left) where 2 domains contribute to all three pro-
jection operations or the simultaneous treatment of the two Hydrogen
atoms in one color (right).
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serialization of the operations. The requirement of completeness of each subgraph
corresponds to the requirement that no pair of two atomic communicators in a
color is blocking.

Given the logic table B(a1,a2) the following pseudo code will find a coloring:
for a1 in atoms

for c in colors

for a2 in c

if B(a1,a2)

go to next c in colors

no atom has been blocking

add a1 to c

end of colors reached but no open slot found

create new color c

add c to colors

add a1 to c
The multi-coloring problem has many solutions. Which one of all possible solu-
tions is found by this algorithm depends on the initial order of atoms. The solution
of this problem is only unique in two trivial limit cases. The first trivial case occurs
when all atoms only block with themselves. Then the average number of blockings
per atom is unity, Nb = Na and only one color is needed, Nc = 1. If the average
number of blockings per atom matches Na, i.e. Nb = N2

a, all atoms block with all
other atoms an the communication will serialize completely. Then the number of
colors Nc equals Na as visible in Figure 5.14. These data have been generated by
applying the above algorithm to random blocking tables while measuring the re-
sulting number of colors. We can observe that Nc converges from above towards
a constant for growing Na and fixed ratio Nb/Na. If we now interpret the ratio
Nb/Na as a coordination number, we can see that the convergence of the the num-
ber of colors, i.e. the number of communication cycles, converges to a function of
Nb/Na for large system sizes.

Figure 5.15 shows an analysis of the number of colors as a function of a constant
ratioNb/Na. Assuming that all atoms with k shells of an face-centered cubic (FCC)
crystal structure are in a blocking relation, the ratio equals the number of atoms
in all shells up to this radius. For k ∈ [0, 9] the number of atoms in the FCC shell

at radius a0

√

k
2 is 1, 12, 6, 24, 12, 24, 8, 48, 6 and 36, respectively. We can find the

sums of all shells up to this radius in the legend of Figure 5.15. We can observe
how all numbers of colors converge to a constants. The convergence occurs slower,
the larger the blocking radius k is. Furthermore, the converged numbers of colors
depend on the number of blockings in a non-linear fashion.

The serial multi-coloring algorithm scales linear with Na in its memory con-
sumption and the computational time is proportional to N2

a where the prefactor
is smaller than 1.5 ns on a 2.5 GHz compute core. For example Na = 1024 takes
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Figure 5.14.: Number of colors Nc as a function of the average number
of blockings per atom Nb/Na. Each branch of the graph corresponds
to a different number of atoms Na with Na ∈ {10, 20, ..., 190, 200}. At a
constant ratioNb/Na, the number of colors converges to a constant for
increasing system size Na.
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Figure 5.15.: Number of colorsNc as a function of the number of atoms
Na for various blockings per atom Nb/Na. Assuming an FCC crystal
structure for example, each atom blocks with its neighbors. Different

shells of neighbors have been considered up to the radii a0

√

k
2 with

k ∈ [1, 9] and the FCC lattice constant a0.
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1.3 msec. These execution times are much smaller than the time consumed by e.g.
IO performed at start-up of the calculation. For this reason, a parallelization of this
algorithm is obsolete.

5.3.7. Performance

The parallelization of the real-space grid in domain decomposition is expected to
be extremely efficient on JUGENE due to the machines three-dimensional torus net-
work that provides small latencies for the communication with the nearest carte-
sian neighbor nodes.
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Figure 5.16.: Strong scaling of the grid parallelization. A real-space grid
with 80×80×80 points is parallelized in 43 through 163 domains where
the number of domains per direction are chosen from {4, 8, 16}. The
ideal performance at 83 domains can be explained by caching effects.

Figure 5.16 shows the strong scaling for the parallelization of the real-space grid
in domain decomposition. 80 × 80 × 80 real-space grid points are parallelized
in 43 through 163 domains where the number of domains per direction are cho-
sen from {4, 8, 16}. One may observe the ideal performance at 83 domains where
caching effects compensate for the speed losses due to communication as discussed
by Gustafson [85]. The local problem size at the rightmost data point is as small as
53 grid points per domain, ni=5 for i ∈ {x,y, z}. This is very close the limit when
the communication volume is the complete local array size, i.e. ni = nh

i . jüRS is
limited by ni > nh

i since communication operations with next-nearest neighbors
or recursive calling of the data exchange routine would be required otherwise. We
can observe that the efficiency is close to 100 % up to 1024 domains and drops to
roughly 50 % for 163 domains. The drop is expected at higher parallelization num-
bers for larger grid sizes. As discussed in Section 5.1, the speedup will grow asymp-
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totically towards a constant limit and not exhibit a maximum as in communcation
intensive parallelizations. However, the restriction ni > nh

i ensures a reasonable
parallel efficiency at any time. Once could think of an optmization that improves
the speedup in this exact case by omitting the reshaping of the array to their send
buffers, if the application is frequently running in this limit.

5.3.8. Subspace Rotation in Domain Decomposition

A time critical point during the calculation of a large systems is the subspace ro-
tation as introduced in Section 4.4.3. This section outlines the optimization that is
necessary to use this algorithm efficiently with the domain decomposition of the
real-space grid.

Due to its enormous size the KS-Hamiltonian ˆ̃H in the representation of the real-
space grid points 〈r| ˆ̃H|r ′〉 is never stored explicitly. The same holds for the overlap
operator ˆ̃O. However, the structure and especially the sparsity of ˆ̃H and ˆ̃O allow
that we can provide the action of the operators onto any wave function Ψ̃(r). The
evaluation of this action scales linearly with the grid size. For the setup of the
subspace matrices the matrix elements

Hnm = 〈Ψ̃n|
ˆ̃H|Ψ̃m〉, (5.26)

Snm = 〈Ψ̃n|
ˆ̃O|Ψ̃m〉 (5.27)

need to be computed for all n,m ∈ [1,Nbands]. This is done by applying the op-
erators to |Ψ̃m〉 and evaluating the inner products 〈Ψ̃n|

ˆ̃HΨ̃m〉 and 〈Ψ̃n|
ˆ̃OΨ̃m〉 for

n ∈ [1,Nbands]. Because of the domain decomposition, each inner product is as-
sociated to a global reduction operation over all the domain ranks, see Equation
(5.23). A straightforward implementation would thus call MPI_allreduce 2N2

bands
times for the reduction of a single number, N2

bands +Nbands times if the hermiticity
is exploited. The data volume of a single number is negligible such that the com-
munication time is roughly the number of calls times the overhead time needed to
establish the communication. As mentioned earlier, global reduction operations in
a tree network scale with the number of tree levels, thus a domain decomposition
with a larger number of MPI processes is expected to require more communication
time.

An optimization to prevent this unfortunate scaling of the communication time
with respect to Nbands is introduced by rearranging the inner products 〈Ψ̃n|

ˆ̃HΨ̃m〉
and 〈Ψ̃n|

ˆ̃OΨ̃m〉. The domains first perform the inner products locally and store the
temporary matrices hnm and snm. Then, the global reduction operation is called
for the two matrices. In this situation, the communication overhead time becomes
negligible and the communication time is determined by the data volume and the
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Example Nbands=8×437 4
8

Method # of Ops Vol. # of Ops Vol. Comm. time[sec]
Simple 2N2

bands 1 24,500,000 8 Byte 245
Double N2

bands 2 12,250,000 16 Byte -
COLLECT NbandsNp 2 nbnd 28,000 7 kByte 51
COLLECT2 N2

p 2 n2
bnd 64 3 MByte 40

Table 5.1.: Acceleration of the setup of the matrix elements Hnm and
Snm for subspace rotation. The communication needed for the global
reduction of each scalar product over the 163 domain decomposition
can be collected in order to reduce the number of communication calls
and thus the time spent in operational overhead. The example system
has been measured on 32768 JUGENE processes (163 × 8). A total of 3500
bands are distributed over 8 sets as 4 × 438 + 4 × 437 for a good load
balance, see Section 5.4. In general Nbands = Np × nbnd. From the two
extreme cases we can read off an overhead time of about 10µsec and an
effective bandwidth of 4.8 MByte/sec.

bandwidth of the network. The results of this collection of communication opera-
tions are shown in Table 5.1 in combination with band parallelization. An effective
bandwidth of 4.8 MByte/sec on a 163 domain decomposition (JUGENE,-mode VN)
and overhead times of 10µsec have been found.

The storage of the subspace matrix elements Hnm and Snm and the temporary
quantities hnm and snm of domain-local scalar products on each node can easily
exceed the available memory. The next section shows how we can solve this prob-
lem.

5.3.9. Parallel Eigensolver in the Subspace

As the central task of the subspace rotation method we need to solve the general-
ized eigenvalue problem

∑

m

(Hnm − Enew
n Snm)Xmk = 0. (5.28)

All indices n, m and k are in the range [1,N]. In the subspace rotation method
outlined in Section 4.4.3 the matrix dimension N is the number of bands, Nbands.
There are two major technical issues about this step:

• Workload of a direct matrix diagonalization ∼ N3

• Memory footprint of a full matrix ∼ N2

Trying to perform the diagonalization step of the subspace rotation in serial (e.g.
using DSYGV or ZHEGV from LAPACK) will lead to a hard limit given by memory
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and a soft limit given by an enormous drop of the overall parallel efficiency due
to Amdahl’s law about non-parallel code sections (see Section 5.1). Therefore, we
aim for solving both, memory and workload issues, at a time by applying a parallel
eigensolver.

We have chosen the ScaLAPACK library [86] as parallel eigensolver, in particu-
lar the routines for the real symmetric (PDSYGVX) and complex hermitian (PZHEGVX)
generalized eigenvalue problem. ScaLAPACK is based on a distributed matrix stor-
age scheme that can tackle the memory-per-node issue. This parallelized version
of LAPACK enables to decrease the execution time of the matrix diagonalization.
ScaLAPACK is based on the Basic Linear Algebra Communication Subprograms
(BLACS). All MPI processes available for the eigensolver are incorporated into a
two-dimensional BLACS grid. The two dimensions represent the two indices of
a matrix. The real-space domain decomposition is running on ptot MPI processes
where ptot is factorized as pxpypz. Since we treat only square matrices and, accord-
ing to the ScaLAPACK documentation [86], the performance for square matrices is
best at a square BLACS grid, we restrict the number of MPI processes involved to
the smallest square numberN2

p 6 ptot.

ScaLAPACK’s distribution scheme is a block cyclic distribution, i.e. the full ma-
trix is divided into NB blocks. Each block has a constant block size of BS elements
along both, row and column index [86], i.e.NB =

⌈

N
BS

⌉

. These blocks are distributed
among the BLACS grid ranks such that the maximum number of blocks per rank
is MB =

⌈

NB
Np

⌉

. Given a global index j ∈ [1,N] (row or column index) of a matrix

element we can compute the block index jB ∈ [0,NB-1] by jB =
⌊

j−1
BS

⌋

. A one-
dimensional example is shown in Table 5.2. The process rank r ∈ [0,Np-1] on the
BLACS grid determines whether a matrix block is supposed to be stored in the lo-
cal memory of this process. The block cyclic distribution requires that the rank r
must match jB%Np. Only the storing processes further computes the correspond-

ing index i of the local storage array. It determines the local block index iB =
⌊

jB
Np

⌋

with iB ∈ [0,MB-1]. Then, the local array index is given by i = j−BS (jB − iB), where
i ∈ [1,M]. The local memory is limited by the upper maximum of M = MB ·BS
elements in both directions, rows and columns. Advantageous values for the block
size BS are found by performance analysis and depend on the implementation and
cache optimization of the underlying Basic Linear Algebra Subprograms (BLAS) li-
brary.

The recently developed parallel eigensolver Elemental [87] makes use of a cyclic
distribution, a simpler distribution scheme than ScaLAPACK. One can retrieve it
from the block cyclic distribution with a block size of unity. Then jB = j-1 and
iB = i-1 simplify the distribution prescription. Table 5.3 shows an example of this
distribution scheme.
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rank 0 rank 1 rank 2
[01 02] [07 08] [13 14] [03 04] [09 10] [15 ] [05 06] [11 12] [ ]

Table 5.2.: Example for ScaLAPACK’s block cyclic distribution in one
dimension. Distribution of 15 vector entries (01-15) onto 3 ranks with 8
blocks of block size 2, indicated by square brackets. The blocks are intro-
duced to increase the performance of local BLAS operations on memory-
coherent parts of the vectors or matrices. Usual block sizes are 32, 64 or
128, depending on the cash line length of the system.

rank 0 rank 1 rank 2
01 04 07 10 13 16 02 05 08 11 14 17 03 06 09 12 15

Table 5.3.: Example for a one-dimensional cyclic distribution. Distribu-
tion of 17 vector entries (01-17) onto 3 ranks. The memory usage is more
balanced than in the case of a block cyclic distribution.

Performance

The solution of the generalized eigenvalue problem in parallel yields a substan-
tial speedup compared to single processor performance which easily take several
hours for this task. However, incorporating too many MPIprocesses into the BLACS
grid may hinder a speed gain in the solution of the generalized eigenvalue prob-
lem since this is a strongly communicating task. The last row in Table 5.4 shows
that mapping all 4096 processes of a 163 domain decomposition onto a 642 BLACS
grid only accelerates by 9.6 % compared to the performance of the 322 grid. In the
latter situation 75 % of the MPI processes were running idle during the execution
of PDSYGVX. This relatively low speed gain tells us that the 642 grid for a 14k-matrix
is already close to the turning point when the execution time starts to grow for a
parallelization with more processes. For a smaller matrix sizeN the turning point
is expected to occur earlier. We can observe this behaviour at N = 3500 in Table
5.4. It is therefore useful to restrict the BLACS grid the the number of processes at
which the highest speedup can be achieved.

5.4. Band Parallelization

Density functional calculations in the framework of a wave function based method
require the evaluation of (at least) the number of occupied KS-states. When the
number of atoms in a system grows, both, its volume and its number of (valence)
electrons grow linearly. To be able to tackle the more than quadratically grow-
ing workload we apply the real-space parallelization to the simulation volume as
pointed out in Section 5.3. We still have to face the challenge of a linearly growing
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Matrix SizeN BLACS grid Time[sec] System
3500 162 10.1 GST555

3500 642 11.0 GST555

14336 162 141.0 GST888

14336 322 94.1 GST888

14336 642 85.8 GST888

Table 5.4.: Performance data of the ScaLAPACK routine PDSYGVX on
JUGENE for various node numbers. A block size of 64 has been used
in all runs. Using all available 163 MPI processes of the domain decom-
position for solving the generalized eigenvalue problem of dimension
14336 can be as fast as 85.8 sec where a workstation would need more
than ten hours.

number of KS-states. Different σk-points are parallelized on the outermost level
as pointed out in Section 5.2. However, large systems often treat only the Γ -point
such that the maximum is 2-fold parallelization of spins if applicable. Therefore,
we focus in this section onto the number of bandsNbands. We employ a simple dis-
tribution of the total number of bands onto pbnd parallel sets asNbands = pbnd×nbnd.
Each set stores nbnd bands. We use the term sets here, since each set is internally
parallelized in a domain decomposition such that we cannot speak of a single MPI-
process. nbnd differs by 1 band between the sets if the total number of bands is not
an integer multiple of pbnd.

The DIIS band update method, as introduced in Section 4.4.2, acts onto each
band separately. Therefore, each band set perform the DIIS update onto the locally
stored bands. Workload and memory are distributed simultaneously. However,
band parallelization is more complex for the case of reorthogonalization by means
of the subspace rotation, as pointed out in the following Section.

5.4.1. Subspace matrix setup

The parallelization of bands introduces substantial communication into the matrix
setup step. Consider the subspace rotation algorithm as described in Section 4.4.3
(serial) and Section 5.3.8 (parallel).

The total number of bands is parallelized by pbnd > 1 band sets, i.e. Nbands =

pbnd × nbnd. The distribution subdivides the matrices Hnm and Snm into blocks
of nbnd × nbnd elements. The diagonal blocks consist of scalar products of | ˆ̃HΨ̃m〉
(| ˆ̃OΨ̃m〉) and bands |Ψ̃n〉, both in local storage as in Section 5.3.8. In addition, we
need to evaluate pbnd(pbnd − 1) off-diagonal matrix blocks. These consist of scalar
products between the locally stored | ˆ̃HΨ̃m〉 and bands |Ψ̃n〉 stored in the other sets.
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Figure 5.17.: Setup of matrix elements in band parallelization: In this ex-
ample the inner real-space parallelization level contains 6 processes in
a 3× 2× 1 domain decomposition. A 2×2 subset of the 6 grid processes
contributes to the BLACS grid since square grids achieve the highest per-
formance on square matrix operations in ScaLAPACK. White-colored
processes idle during the ScaLAPACK call. Bands are distributed over
5 parallel sets. Each band set evaluates the columns of the matrix Hnm

(and equivalently Snm) that match the locally stored bands (indicated
in red). Those matrix elements that result from scalar products of two
locally stored bands are marked in a darker tone and can be computed
without exchanging wave functions along the band communicator. For
the other matrix element, volume intensive communication between the
band sets in necessary.

Figure 5.17 shows the setup procedure schematically. For these scalar products,
the wave functions need to be exchanged in explicit send-receive operations via
the band communicator band_comm. A straightforward implementation without
the exploitation of hermiticity would require pbnd-1 communication cycles. Then,
each band set achieves access to theNbands ×nbnd matrix elementsHnm (Snm) that
are evaluated involving the locally stored | ˆ̃HΨ̃m〉 (| ˆ̃OΨ̃m〉). Since the generalized
eigenvalue problem is solved in each band set separately access to the complete
matrices is needed. Therefore, a reduction operation along the band communicator
is performed as final step of the matrix setup procedure. The matrix elements are
stored on the distributed BLACS grid which has a similar process distribution in
each bands set. Therefore, the reduction operation only works on two M × M

matrices whereM is defined in the ScaLAPACK context as

M =

⌈

⌈

Nbands
BS

⌉

Np

⌉

·BS (5.29)

with the BLACS grid of Np ×Np processes. These two communication operations
are introduced additionally in band parallelization of which the exchange of the
wave functions takes considerably more time than the reduction operation.

Exploiting that the Hamiltonian and the overlap operator are hermitian (sym-
metric for real numbers) quantities, i.e. Hnm = H∗

mn and Snm = S∗mn. This leads
to a simple setup of Nbands(Nbands + 1)/2 elements of the lower triangular matrix
when all bands are stored locally. Savings of 44 % compared to the full setup of
N2

bands elements can be achieved for Nbands=3500 as shown in Table 5.5. This is a
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good result considering that roughly 12 % of of the time for the full matrix setup
is spent in the application of the operators.

Tfull [sec] Tsym [sec] Speedup
no band parallelization 250.88 141.40 1.774

16× band parallelization 23.86 13.39 1.782

Table 5.5.: Times for the subspace matrix setup exploiting the symmetry
of symmetric/hermitian operators (sym) compared to the setup of all
matrix elements (full). The system was Ge125Sb250Te500 on a 163 domain
decomposition, with and without band parallelization. In both cases
roughly 44 % of the matrix setup time are saved.

In band parallelization Nbands = nbnd × pbnd, we also have to evaluate matrix
blocks of locally stored bands with remotely stored bands. The symmetry allows
to compute all matrix blocks in

⌊

pbnd
2

⌋

cycles instead of pbnd-1 cycles. Figure 5.18
shows this scenario for pbnd=3 (odd) and pbnd=4 (even). The odd case is advan-
tageous because the number of off-diagonal matrix blocks that need to be evalu-
ated in each process is pbnd(pbnd−1)

2 which is integer. We thus only need to perform
⌊

pbnd
2

⌋

= pbnd−1
2 cycles where each has process evaluates pbnd−1

2 off-diagonal blocks.
In the case of evenpbnd, pbnd−1

2 is not integer such that only half of the processes need
to perform a block evaluation in the last cycle. Nevertheless, also for a 16-fold band
parallelization we observe 44 % savings in the matrix setup times, compare Table
5.5.

Figure 5.18.: Setup of subspace matrix elements of hermitian operators.
Only the lower triangular matrix is evaluated (red). In band paralleliza-
tion (3-fold on the left, 4-fold on the right) matrix elements between
locally stored bands and remotely stored bands can be evaluated in
⌊pbnd/2⌋ cycles. In the second cycle (green) of the 4-fold band paral-
lelization only half of the processes need to evaluate their matrix blocks.

A workflow description of the ScaLAPACK interface can be found in the Ap-
pendix C.1.9.
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5.4.2. Performance
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Figure 5.19.: Strong scaling of the SCF-iteration time in band paralleliza-
tion. Increasing the number of processes in the band parallelization, we
find that the execution time decreases for up to a 32-fold parallelization.
The underlying real-space grid parallelization is a 16 × 16 × 16 domain
decomposition, i.e. 4096 JUGENE cores. The last data point (64) has been
running on 218 cores, 88.9% of all available nodes.

As outlined in Section 5.1.2 intensive all-to-all communication causes a commu-
nication time which grows proportionally to the number of communication part-
ners, i.e. the number of parallel band sets in this case. Figure 5.19 shows the strong
scaling behavior of JUGENE in band parallelization. We can easily see a maximum
of the speedup at a band parallelization with 32 parallel sets, each with an internal
domain decomposition on 163 MPI processes.

5.5. Size Scaling

For the calculation of large-scale problems, the it is important to know the scal-
ing behavior of the code components with respect to the system size, i.e. with the
number of atoms. In the previous sections, we have seen the strong scaling (hard
scaling) behavior of the two parallelization levels which give information about the
parallel efficiency in dependence on the degree of parallelization and the problem
size. In order to estimate the total workload of a calculation, we want to find the
dependence of the total workload on the system size. We therefore analyze the
weak scaling, i.e. we increase the system size and the number of processors at the
same time.
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The subsequent section increases the real-space cell and decreases the k-space
sampling simultaneously which leads to an effective scaling that is linear in the
number of atoms. However, Section 5.5.2 does samples the Brillouin zone only
with the Γ -point. Real-valued KS wave functions can be used but the full quadratic
scaling of the method becomes visible.

5.5.1. Real-Space vs. k-Space

The total workload of a real-space DFT calculation scales as

NbandsNgridNkpoints (1 + γNbands) (5.30)

where the number of bands Nbands depends in a linear fashion on the number of
valence electrons in the system and, thus, on the number of atomsNatoms. The total
number of grid points Ngrid is proportional to the systems volume which, as well,
depends on the number of atoms in the system, assuming no vacancies. The num-
ber of k-points can be considered to scale roughly with the inverse of the number
of atoms. Large systems in real-space require a less dense sampling of the Bril-
louin zone for a description providing the same accuracy. However, the number
of k-points cannot be less than one. In this section, we assume Nkpoints > 1. Then,
the overall scaling of the workload has two contributions, one which scales linear
with the system size and one which is quadratic in the system size. The ratio of
the two components is labelled γ here. The subspace rotation method, in principle,
also has a contribution proportional to N2

bands from the solution of the generalized
eigenvalue problem in the subspace. However, we neglect this contribution in this
analysis since its prefactor is comparably small.

In order to extract the scaling behavior with respect to the number of bands we
performed a set of calculations of carbon in the diamond crystal structure. The
number of unit cells treated in real-space is doubled each time whereas the num-
ber of k-point sampling is reduced by the same factor. Thus, in all calculations the
resulting density in each unit cell is the same and, making use of the real-space
parallelization and the parallel treatment of k-points, the total number of MPI pro-
cesses is the same, merely the factorization differs. We found the deviations in total
energy per atom to be as small as 1.2 meV comparing the converged results for 64
atoms and 512 atoms. We measured the time to solution (see Table 5.6) and the
time spent in the major ingredients of the calculation (see Figure 5.20). The scaling
of the solution of the Poisson equation exhibits no size dependence as expected for
a system of high symmetry and a constant number of grid points per domain. The
execution times of the DIIS method, TDIIS, are expected to grow ∼ NbandsNgridNkpoints

neglecting communication. With 4 bands per atom and 83 grid points per atom and
Nkpoints = 211/Natoms we expect the DIIS time to scale ∼ Natoms. In Figure 5.20 an



104 5. Parallelization

average power of 1.06 can be seen. The application of the subspace rotation con-
sists of four parts: First, the action of the Hamiltonian and overlap operator need
to be calculated for each band, i.e. NbandsNgridNkpoints ∼ Natoms. Second, N2

bands ma-
trix elements have to be computed for each k-point which scales ∼ N2

atoms. The
third contribution is the direct diagonalization of the subspace matrices that scales
N3

bandNkpoints ∼ N2
atoms. The fourth contribution is the new linear combination of

bands ∼ N2
bandsNgridNkpoints thus also ∼ N2

atoms. However, in Figure 5.20 an average
power of 1.76 for the subspace rotation can be extracted, indicating a large frac-
tion of linear scaling components. A fit to a polynomial with linear and quadratic
powers results in TSR ≈ 19 msecNatoms + 0.72 msecN2

atoms.
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Figure 5.20.: Times for the major ingredients of a self consistency step:
Solution of the Poisson equation, DIIS band update and subspace rota-
tion method. This test system is bulk carbon in diamond crystal struc-
ture with 8 atoms in the cubic unit cell. 2048 MPI processes in virtual
node mode have been running on JUGENE in all seven calculations. The
domain size (grid points per MPI process) has been kept constant in-
creasing the simulation volume in real-space from 1× 1× 1 to 4× 4× 4
cubic unit cells with 8 atoms each (see upper labels). Simultaneously
the Brillouin zone sampling is decreased from 8×8×8 to 2×2×2. The
difference in total energy per atom is 1.2 meV comparing 64 atoms and
512 atoms.

The scaling in terms of memory NbandsNgridNkpoints is linear in Natoms in these
calculations. A set of wave functions occupies 67.1 MByte per atom. However, typ-
ical large scale DFT calculations use merely Γ -point sampling of the Brillouin zone.
Then, the total memory requirement of a set of wave functions is ∼ NbandsNgrid and
thus proportional to N2

atoms. Γ -point sampling has the advantage that real-valued
KS wave functions can be used. Considering the scaling of the methods for the
solution of the eigenvalues problem we need to face the quadratic behavior of TDIIS
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and both, quadratic and cubic contributions to TSR. The at least quadratical scal-
ing of the method with respect to system size strongly motivates the two levels of
parallelization, i.e. real-space grid parallelization and band parallelization.

Natoms mxmymz kx ky kz Etot [eV] Etot/atom [eV] Time [sec]
8 1 × 1 × 1 8 × 8 × 8 -131.035443 -16.37943 36.5

16 2 × 1 × 1 4 × 8 × 8 38.4
32 2 × 2 × 1 4 × 4 × 8 58.7
64 2 × 2 × 2 4 × 4 × 4 -1047.116956 -16.36120 85.3

128 4 × 2 × 2 2 × 4 × 4 153.0
256 4 × 4 × 2 2 × 2 × 4 364.8
512 4 × 4 × 4 2 × 2 × 2 -8377.590679 -16.36248 995.3

Table 5.6.: Bulk carbon in diamond structure formx×my×mz unit cells
and a Brillouin zone sampling with kx×ky×kz k-points. Total energies
are given only for the cubic case of 13, 23 and 43 unit cells. The other cal-
culations have not been completed self-consistently. The SCF-iteration
times have been measured on JUGENE running 2048 MPI processes.

In this section the weak scaling for a system with k-point sampling has been
studied. As mentioned earlier, calculations in the large-scale regime usually sam-
ple only the Γ -point of the Brillouin zone, as shown in the following section.

5.5.2. Size Scaling of GeSbTe

As an example of large-scale calculations we have performed a scaling analysis on
the Xeon cluster JUROPA [88] and the massively parallel supercomputer JUGENE [54]
using different supercell sizes containing the phase-change material Ge1Sb2Te4 (see
Section 6). All simulated supercells are cubic and have an edge length ofm · 6.04 Å
with an integer multiplierm. To enable a direct comparison of the systems of differ-
ent edge lengths m · 6.04 Å a constant grid spacing of 0.19 Å has been chosen such
that the wave function grid contains 32m grid points in each direction. For a sim-
ple analysis, band parallelization has not been applied in any of these calculations.
However, the parallelization of the real-space grid in domain decomposition has
been scaled proportional to the system size. Two different series have been running
on each machine: JUROPA withm3 processes, JUROPA with (2m)3 processes, JUGENE
also with (2m)3 processes and finally JUGENE also with (4m)3 processes.

For simplicity we assume that the time for the diagonalization of the subspace
eigenvalue problem in parallel is negligible compared to all other tasks. Without
parallelization, this assumption is impossible due to the cubic scaling behavior of
the serial diagonalization workload of a full matrix. With these settings, however,
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enough parallel processes are available for diagonalizing the (28m3)× (28m3) ma-
trix in a reasonably short time by using the ScaLAPACK library (see Section 5.3.9).
The total workload of the DIIS method scales linear in the grid size and linear in
the number of bands. Both factors are proportional to the system size and thus the
total workload of the DIIS methods ∼m6. With a parallelization ∼ m3, we find that
the time behaves roughly proportional to ∼ m3. This can be seen in the upper right
panel of Figure 5.21. The DIIS band update on JUGENE-4 (red solid line) takes 1 sec
for 2 × 2 × 2 unit cells of Ge1Sb2Te4. The DIIS time for 83 unit cells is about 64 sec.

With the above assumption, the subspace rotation method scales linear in the
grid size. However, the number of subspace matrix elements that need to be evalu-
ated and the number of eigenvector coefficients scale quadratically with respect to
the system size. The scaling behavior of the total workload of the subspace rotation
is thus a cubic function of the system size. As above outlined for the DIIS method,
the computing time is divided by as real-space parallelization ∼ m3. Hence, the
time for the subspace rotation scales quadratically with the system size, i.e. with
the sixth power of the edge length m. We can observe this power law in the lower
left panel of Figure 5.21. The subspace rotation time on JUGENE 4 grows from 1.4 sec
for m=2 to 4867 sec for the largest system. This corresponds to an effective power
of 5.9 which indicates that there are also minor components in the subspace rota-
tion which exhibit linear and quadratic scaling with the system size. However, if
the compute time of each of the 64m3 processes scales ∼ m5.9 we can clearly see
the cubic trend in the total workload and an overall workload of the problem that
grows with the ninth power of the edge length.

All 4 panels of Figure 5.21 exhibit a deterioration of the parallel performance on
JUROPA [88]. Although only a faint indication can be read of the JUROPA-1 data (blue
dashed line) where the number of grid points per process was 323, the JUROPA-2
times (green dashed line) are clearly higher than the linear (quadratic) scaling be-
havior for the DIIS method (subspace rotation). Since only the grid parallelization
is applied in this set of calculations, we can conclude that this an intrinsic signature
of long communication times compared to computation. It can be directly assigned
to the network speed. We see that only the short latencies and large bandwidth of
the cartesian three-dimensional torus network are required to achieve a favorable
parallel efficiency. However, the JUGENE torus network [54] enables this fast com-
munication only if the task placement is matched to the torus shape. Therefore,
JUGENE-4 data are shown only for the edge length multipliersm ∈ {2, 4, 8}.

5.5.3. Grid- vs. State- Parallelization

The additional communication that is introduced in band parallelization for the
subspace matrix setup has been discussed in Section 5.4.1. Similar communica-
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SCF-it. JUROPA-1 JUROPA-2 JUGENE-2 JUGENE-4
m = 2 49.1 4.6 37.5 9.8
m = 3 191.1 25.8
m = 4 801.4 230.1 531.1 104.4
m = 5 3305.6
m = 6
m = 7
m = 8 5000.4
[sec] blue dashed green dashed green solid red solid
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Figure 5.21.: Scaling of the computing time with the system size for
the major components of a structural relaxation step. A system size
of 2 stands for a distordered geometry of 23 unit cells of disordered
Ge1Sb2Te4. Consequently, system size 8 is a calculation with 3584 atoms
(see Chapter 6.3). A relatively dense grid spacing of 0.19 Å was used in
these calculations. The supercomputer systems JUROPA [88] has been
used with 13 and 23 and JUGENE [54] with 23 and 43 MPI processes per
unit cell in domain decomposition, respectively. The times for a self-
consistency iteration (lower right panel) are listed in the above table.
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tion operations are needed in the process of applying the rotations to the previous
states to find the orthogonalized eigenstates of the Hamiltonian. These are not dis-
cussed in detail here but we can observe that this step takes often up to twice as
long as the matrix setup since hermiticity cannot be exploited. Considering the
amount of communication in each level we can maximize the parallel speedup by
parallelizing the calculation by the most independent tasks, i.e. σk-points, if ap-
plicable. Then, continue with the real-space domain decomposition and finally
apply the band parallelization if this last level is needed to fit the wave functions
into memory or to get the result faster. However, we need to ensure that the grid
parallelization stays in the range of reasonable parallel efficiencies. A limitation
in jüRS is given by the requirement that the number of grid points per domains
ni > n

h
i where nh

i is the halo thickness. In this limit, ni = n
h
i , one can imagine that

the code will spend a large fraction of the compute time in communication since
the entire local part of the wave functions needs to be transferred. Furthermore,
the process of copying arrays into temporary buffers for MPI_Sendrecv-call is an
overhead operation of the parallelization.

Given a total number of available MPI processes,Nall
p , we need to find the optimal

distribution (N
skpoints
p ,Nbands

p ,Ngrid
p ) such that

Nall
p = Nskpoints

p ×Nbands
p ×Ngrid

p (5.31)

where we need to respect that Ngrid
p needs to be factorizable according to Equa-

tion 5.14. As discussed in Section 5.1 and Section 5.2, the parallel efficiency of the
σk-point parallelization is extremely efficient due to a low requirement for com-
munication and is only reduced by a serial fraction that is cause by the generation
of the effective potential. Therefore, the parallelization of σk-points always has
the highest priority in the large-scale limit. However, large systems often do not
sample the Brillouin zone with more than the Γ -point. Therefore, we can restrict
our discussion to the distribution of Nbands

p and Ngrid
p .

In order to find the most efficient distribution of the parallel processes we ana-
lyze the scaling of the major ingredients of a typical large-scale calculation. The
wave function grid contains 1923 grid points and we need to treat 14336 bands, Γ -
point sampling, no spin polarization. The maximal number of available processes
on JUGENE is 33215. The first setting factorizesNall

p as 9× 323 (Space), i.e. a 9× band
parallelization and the 192 grid points are distributed to 32 domains in each spatial
direction. The number of finite difference neighbors nf controls the halo-thickness
nh
i which is the default value of 4. We can already see that each domains contains

1593 wave functions with only 63 grid points each such that we come close to the
limit case outlined above, ni ≈ nh

i . The second setting assigns more parallel pro-
cesses to the band parallelization (Bands), i.e. Nall

p is factorized as 72 × 163. In this
scenario each band set owns 200 bands and the local grid size is eight times as large.
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Table 5.7 summarizes these details for the first setting (Space) and the second set-
ting (Bands) and shows resulting compute times of the most important steps of
a self-consistency iteration. The grid parallelization numbers for the domain de-
composition, 16 and 32 for (Space) and (Bands), respectively, are chosen to match
the three-dimensional torus network of JUGENE. The hard wired cartesian nearest-
neighbor connectors can only be linked at the surfaces of 8×8×8-blocks, so called
midplanes.

Name Space Bands
Band parallelization 9× 72×
Domain decomposition 32 × 32 × 32 16 × 16 × 16
Grid points/domain 6 × 6 × 6 12 × 12 × 12
Etot − E0 [eV] - 0.08378510893 - 0.08378510616
DIIS [sec] 29.9 4.5
Subspace setup [sec] 437.6 151.8
Subspace solve [sec] 168.7 170.5
Subspace lin. [sec] 2433.1 854.6

Table 5.7.: Competition of the two parallelization levels. The total num-
ber of MPI processes, 294912 JUGENE cores in virtual node mode [54], is
distributed as 9 × 323 (Space) and 72 × 163 (Bands) for the calculation
of the electronic structure of Ge512Sb1024Te2048. Numerical inaccuracies
due to the different summation orders lead to deviations in the total en-
ergy as small as 3 · 10−9 eV. The total energy offset E0 is -35100 eV. A
64-bit representation for real numbers is used by default in the entire
implementation.

The DIIS band update method works on each band independently. Therefore, we
can interpret the ratio of 6.64 of the DIIS times as a clear indication that the grid
parallelization with 323 domains brings only 15 % of the efficiency that is achieved
with 16 domains per direction. The remaining times listed in Table 5.7 (subspace
setup and subspace lin.) show a total efficiency drop to 35 % comparing (Space) to
(Bands).

The solution of the generalized eigenvalue problem in the subspace shows no
difference. In order to keep ScaLAPACK at its highest speedup, the block size has
been customized to 224 and the BLACS grid extends over 64 × 64 processes. In
the case of (Bands), the grid parallelization of 163 is exactly reshaped into the 642

BLACS grid. In the case of (Space), a 4096-subset of 323 grid processes takes care
of the diagonalization of the subspace Hamiltonian.

The results have shown that the grid parallelization has an efficiency limit. When
the local grid size is as small as 216 grid points, the communication operations with
the nearest cartesian neighbors spend a large fraction of their time in operational
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overhead. In order to as run at the parallelization limit ni = nh
i the parallel effi-

ciency can only be increased by avoiding the copying process to the communica-
tion buffer arrays and collecting the communication for a group of wave functions
which would result in substantial changes in the code structure.
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5.6. Summary

Two levels of distributed memory parallelization with MPI are introduced here.
The first is a domain decomposition of the real-space grid. The exploitation of
data locality and the truncation of the limited range of the finite-difference operator
for the kinetic energy and Laplacian in the Poisson equation leads to a restricted
communication pattern where only very little explicit communication is needed
with the direct Cartesian neighbors. This leads to the excellent parallel efficiency
of the domain decomposition, which is an intrinsic property of the real-space grid
approach.

The second level of MPI parallelization introduced in this chapter is paralleliza-
tion over KS states, which is trivial except for the parallelization of bands, a strong
communication task. We have showed that even here we can obtain a substan-
tial parallel speedup and, simultaneously avoid the memory-per-node boundary,
a prerequisite for large-scale calculations due to the quadratic memory scaling of
this real-space DFT algorithm.

5.6.1. Outlook

For a further improvement in the performance of the domain decomposition, a
collection of nearest-neighbor communication could introduce an even higher effi-
ciency when the action of the Hamiltonian is required for a set of KS wave functions.
This is the case for the setup of the subspace matrices. However, the DIIS method
treats the bands sequentially – up to now. Similar to the collection of communica-
tions in Chapter 5.3.8, the communication overhead times compared to transmis-
sion times would then fade and the large maximal bandwidth is exploited better.
Furthermore, a mapping of the atomic projection onto a BLAS3-optimized matrix-
matrix multiplication then becomes possible which will certainly increase the over-
all performance and the load balance for heterogeneous geometries.

An emulation of a virtual global memory has been realized, for example by one-
sided communication [89]. Loading from memory is formulated into a request and
the explicit sending of the remote compute node is hidden from the user. Although
this apparently brings about some programming convenience, well-balanced syn-
chronized two-sided communication should outperform this approach by far.

Another trend is hardware accelerators such as GPUs that perform outstandingly
with large numbers of independent tasks yielding an enormous speed gain. It has
been shown that finite-difference operations can be performed efficiently on GPUs
[90, 91].

For the results of this work, JUGENE was mostly used in the virtual node mode
(-mode VN [54]) with an MPI process on each of the four CPUs in each physical com-
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pute node. Upcoming supercomputer architectures tend towards a larger num-
ber of compute cores per node. This motivates a hybrid parallelization, e.g. with
OpenMP [55] or pthreads. In particular, the overlapping of computation and com-
munication is promising in order to increase the parallel performance of a real-
space grid code such as jüRS. A computation of the grid tasks, i.e. the finite-difference
approximated kinetic energy, can easily be accelerated with threaded parallelism.
However, an OpenMP parallelization of the atomic projection operation routine
introduces more overhead than acceleration for the application of a single set of
projectors onto a single KS wave function. Therefore, OpenMP should be applied
in order to distribute the projections of different atomic spheres onto the threads.
In terms of thread-load balancing, this results in a well-studied packing problem
since the overlaps of the projection spheres with the rectangular domains leads to
a variety of total operation counts of the projection routine.



CHAPTER 6

APPLICATION TO GESBTE

6.1. Introduction

Compounds of germanium, antimony and tellurium have been found to fulfill the
prerequisites for a phase-change material (PCM) used for data storage [60]. PCMs
consisting of ternary alloys of Ge:Sb:Te can now be found in media applications
such as rewritable DVDs, BluerayTMdiscs and non-volatile random access memory.
The ability to store data is due to two (meta-) stable phases of these materials cor-
responding to binary bit states. One is the amorphous state and the other is the
crystalline phase. Due to different optical properties, i.e. transmission and reflec-
tivity, these states can be identified by a laser of low intensity. Information can
be written to a thin film of PCM by melting the structure locally with a short and
intense laser pulse. The material solidifies in the amorphous phase. The process
can be reversed by applying a long laser pulse of lower intensity. The system is
kept below the melting temperature and crystallizes again. The speed of this crys-
tallization process is remarkable and allows data reading and writing at speeds of
several Mbyte/sec.

Although alloys of Ge:Sb:Te have been used in industrial applications for many
years, recent investigations aim to understand the functionality of these materi-
als on a microscopic level. In this context Hegedüs et al. revealed that the fast
recrystallization in Ge2Sb2Te5 and Ge1Sb2Te4 is assisted by a high vacancy concen-
tration [92]. Further understanding of the fast formation dynamics was provided
by Matsunaga et al., who found stable rings of bonds which persist the melting
and, hence, accelerate recrystallization during the annealing process [93]. Recent
investigations have even indentified these PCMs as possible candidates for resis-
tive data storage. Especially the combination of both resistive reading or writing

113
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and optical access in the same material moved into the fields of interest [57].

In this work, we focus on the effects of structural relaxations onto the electronic
structure of Ge1Sb2Te4 in the rocksalt phase [60, 94, 95, 58].

Figure 6.1.: Simplest unit cell of Ge1Sb2Te4. In the rocksalt phase, the
first FCC sublattice is completely occupied with Te atoms. The second
sublattice is half occupied by Sb, a quarter Ge and a quarter vacancies.
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∑

24 48 32 24 96 96 48 120 96

Table 6.1.: Theoretical occurrence of interatomic distances in disordered
Ge1Sb2Te4 normalized to one unit cell. The lattice symmetry does not
allow distances at a

2

√
7. The lowest line (

∑
) indicates the number of

atoms in an FCC shell of the corresponding radius. The occurrences
are proportional to the product of the concentrations, c. On the second
sublattice cGe, cSb and cv are 1

4 , 1
2 and 1

4 , respectively.

6.1.1. Electronic structure

Crystalline Ge1Sb2Te4 (GST) in the rocksalt structure consists of two FCC sublat-
tices which are shifted by half a lattice constant a in the (100)-direction. The first
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sublattice is completely filled with Tellurium atoms (Te). The second sublattice is
randomly occupied with Antimony (Sb), Germanium (Ge) and vacancies (v). The
stoichiometry of Ge1Sb2Te4 defines that the ratio of Sb and Ge is 2:1 and the num-
ber of Ge atoms equals the number of vacancies. Figure 6.1 shows a typical unit
cell of Ge1Sb2Te4, however, we deal with a disordered alloy so the randomness of
occupations of the second sublattice may cause that two Ge atoms or two vacancies
can be found as close as a/

√
2 as shown in Table 6.1. The first column describes the

occurrence of nearest-neighbor bonds of bond length a
2 , k = 1, k ∈ N. These bonds

can only occur between the different FCC sublattices. This holds for all bonds with
odd k, except for some special cases as k = 7 which is impossible because 7 cannot
be expressed as m2

x + m2
y + m2

z with all mi integer. Even values of k represent
atom pairs on the same sublattice. Of particular interest in the following analysis
of the data, we consider the near-field coordination, i.e. nearest neighbors (nn) and
next-nearest neighbors (nnn), corresponding to k = 1 and k = 2, respectively. The
values in Table 6.1 are normalized to one unit cell of Ge1Sb2Te4 such that each of
the two Sb atoms feels the surrounding six Te atoms as nn which leads to an occur-
rence of 12 for Sb-Te at the bond distance, a

2 . The bottom line in the table shows the
sum of all occurrences which corresponds to the number of sites in an SC crystal
structure with lattice constant a

2 at the given distances.

In the disordered alloy, there is a non-vanishing probability of large regions with-
out any Ge atoms or without vacancies. The distance occurrence is proportional to
the product of two concentrations. The concentration of Te on the first sublattice is
unity, c(1.)

Ge = 1, and vanishes on the second sublattice, c(2.)
Ge = 0. For the other three

components, Ge, Sb and vacancies (v), all concentrations on the first sublattice van-
ish. The stoichiometry of Ge1Sb2Te4 defines that c(2.)

Ge = 1
4 , c(2.)

Sb = 1
2 and c(2.)

v = 1
4 .

Now, the occurrence of a combination of two components, e.g. Sb-v, is proportional
to the product of their concentrations, c(2.)

Sb · c(2.)
v = 1

8 and the coordination number
of the FCC shell.

All calculations of the electronic structure of Ge1Sb2Te4 have been performed
using jüRS, the implementation of real-space DFT discussed in this work. The
local density approximation [96] has been applied and a lattice constant of 6.04 Å
has been chosen [97]. The PAW configuration strings

Ge 4s* 2 4p* 2 4d | 1.8

Sb 5s* 2 5p* 3 5d | 2.5

Te 5s* 2 5p* 4 5d | 2.2

indicate that Ge is treated with a frozen core density [Ar]3d, the cores of Sb and
Te are configured [Kr]4d. s and p states of all three species are treated in the va-
lence band with two projectors, each. In the atomic reference configuration, the s
valence states have been doubly occupied whereas the p valence states hosted 2,3
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and 4 electrons for Ge, Sb and Te, respectively. Table 6.2 shows the energies of the
spherical all-electron calculation that precedes the augmentation procedure, com-
pare Section A.0.1 and A.0.2. Core states are indicated by (c) and valence states
with their occupation number. An additional d projector is added for each of the
three species. The corresponding d state is unbound and hence unoccupied. The
augmentation radii (given in atomic units above) are 0.953, 1.323 and 1.164 Å for
Ge, Sb and Te, respectively, and are chosen independent of the angular momentum
character, ℓ.

[eV] Ge Sb Te
1s -10940.723 c -30269.596 c -31592.174 c
2s -1369.390 c -4607.071 c -4845.614 c
2p -1198.005 c -4138.436 c -4352.371 c
3s -167.721 c -902.692 c -963.773 c
3p -115.370 c -749.917 c -803.425 c
3d -29.548 c -516.090 c -560.267 c
4s -11.948 2 -148.479 c -163.979 c
4p -4.052 2 -101.591 c -114.183 c
4d -33.546 c -41.689 c
5s -13.087 2 -15.359 2
5p -4.998 3 -6.116 4

Table 6.2.: Atomic eigenstates for the reference configuration of Ge, Sb
and Te. c indicates a fully occupied frozen core shell. Numbers stand
for the occupation of a valence state.

A grid spacing of 0.25 Å has been used in all calculations shown in this Chapter
and the projectors where represented on the coarse grid using the reversed inter-
polation method with N=2 andM=5 (compare Section 4.3.3).

Atomic density of states (DOS) plots discussed in this chapter are created from
the sum over s, p and d of the atomic ℓ-resolved DOS, where the d contributions are
negligible in all calculations. The atomic ℓ-resolved DOS results from a weighting
of each KS state with the weightwaℓ

nσk of its PAW projection coefficient, i.e.waℓ
nσk =

∑
i |〈Ψ̃nσk|p̃

a
i 〉|2 where the sum over projectors i has been restricted to the lowest

partial waves with the proper ℓ-character. All DOS-plots show the Fermi level at
the origin.

6.2. Classification of Te in Ge125Sb250Te500

For a meaningful analysis of the electronic structure of a disordered alloy, we need
to ensure that finite size effects do not play a role. In particular, a too small unit cell
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in real-space leads to the spurious interactions of the atoms with their periodic im-
ages. In nature, the quasi-crystal structure does not possess this symmetry. There-
fore, various numbers of Ge1Sb2Te4 unit cells have been investigated by Thieß[97].
We consider a Ge125Sb250Te500 consisting of 5×5×5 unit cells as large enough. The
configuration for the occupation of the second sublattice has been adopted from
the samples calculated by Thießfor a better comparison. Figure 6.2 shows the cal-
culated structure schematically. The atomic radii have been chosen according to
the PAW augmentation radii of each element.

Figure 6.2.: Visualization of the random alloy Ge125Sb250Te500. The first
FCC sublattice consists completely of Te atoms (blue). The second sub-
lattice is randomly occupied with Ge:Sb:vacancies in the stoichiometry
1:2:1. Ge and Sb are colored orange and green, respectively.

A determination of the electronic structure with jüRS yields the systems DOS
and atomically resolved DOS, if requested. Figure 6.3 shows the atomic ℓ-resolved
DOS averaged over the three different species for Ge125Sb250Te500 in the geometry
of the ideal FCC lattice positions, i.e. all atomic coordinates are integer multiples of
the bond distance, 3.02 Å. A clear cut between s states and p states can be found at -
6 eV. For the s states we can observe a pronounced peak for each of the three species.
The Te-5s peak has a shoulder towards the positions of Ge-4s and Sb-5s and, vice
versa, Ge and Sb also exhibit a shoulder at the position of Te-5s. All shoulders
below -6 eV have as minor contribution of p-character which is indicated by the
dashed lines in the corresponding colors. This indicates the hybridization of the
s valence states. Comparing the s peak positions to the energy eigenvalues of the
atomic reference configuration given in Table 6.2 we find that the Sb-5s peak has
its maximum 0.4 eV lower than expected, neglecting the global shift of the energy
origin.

GST exhibits a relatively clear separation between occupied and unoccupied states.
Nevertheless, a real band gap is not seen. The DOS shows a dip around the Fermi
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Figure 6.3.: Average Density of States projected onto the atomic Ge-4s,
Ge-4p, Sb-5s, Sb-5p, Te-5s and Te-5p states. The color coding is orange,
green and blue for Ge, Sb and Te, respectively. Solid lines show the
sum of both, s- and p-like contributions which are illustrated with dash-
dotted and dashed lines, respectively.

level on all three species at slightly different positions; Sb 0.15 eV below, Te 0.15 eV
above and Ge at the Fermi energy. The directional bonds in GST can be attributed
to occupied p states which are found between -6 eV and the Fermi level in Figure
6.3. On the rising side of the p-peaks (-6 to -3 eV) the DOS shows a similar behavior
for the three species. However, the range between -2 eV and the Fermi level carries
some extraordinary features. The Te-5p states have an extra sharp peak centered
at -1 eV where Sb and Ge exhibit an s-like contribution (green and orange dash-
dotted lines, almost on top of each other) in the range [−1.5, 0.0] eV. GST is known
to exhibit resonant p-bonding, i.e. covalent bonds which are occupied with less
than two electrons [60]. We investigate the KS states closely below the Fermi level
in more detail.

Figure 6.4 shows the DOS resolved for all atoms of Ge125Sb250Te500 around the
Fermi level. The pseudo-gap becomes visible formed by the (mostly) unoccupied
Sb states starting at the Fermi level and and the Te states reaching to EF. The plots
also makes clear that the sharp contributions of Te at the Fermi level can be as-
signed to a few atoms only. Thieß[97] has shown that these strongly localized p
states of Tellurium occur in dependence of the nn vacancy coordination, nVac, in-
troducing seven classes which are identified by nVac from 0 to 6.

We have refined the classification of Te atoms according to the nn vacancy co-
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Figure 6.4.: Density of States around the Fermi energy of the initial struc-
ture of Ge125Sb250Te500. The dotted lines depict the DOS projected onto
each atom where Ge, Sb and Te are colored in orange, green and blue,
respectively. The average DOS of each species is indicated by dashed
white lines. We can see clearly that some very localized Te states lie at
the Fermi level forming a pseudo-gap with the unoccupied Sb and Ge
states.
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ordination into ten classes {0,1,2,3,2’,3’,4,4’,5,6} of which the classes 5 and 6 do not
occur in the random configuration of Ge125Sb250Te500 which has been investigated
here. The class names stand for the number of vacancies, nVac, that are located at
a
2 from a Te atom. The further distinction is done by introducing the classes 2’,3’
and 4’. For example, Te atoms in the classes 2 and 2’ posses 4 bondings towards
Ge or Sb atoms but the local coordination differs by the bond angles. Table 6.3 de-
fines the ten classes in detail and shows the predicted occurrence of classes in an
infinitely large quasi-crystal. For a random distribution of one quarter vacancies
on the second sublattice in an infinitely large sample of GST, we can predict the
probability of occurrence of Te atoms in the ten classes. All six nn of each Te atom
have a probability of being a vacancy of pVac and a probability pX of being either
Sb or Ge. We thus have a binomial distribution for the probability p the number of
vacancies, nVac, defined by

1 = (pVac + pX)
6
=

6∑

nVac=0

p(nVac). (6.1)

With pVac =
1
4 and pX = 3

4 we find that

p(nVac) =
1
46

(

6
nVac

)

36−nVac (6.2)

finding the probabilities 17.8, 35.6, 29.7, 13.2, 3.3, 0.4 and 0.024 % for nVac = 0
through 6, respectively. The distinction by bond angles leading to the classes 2’, 3’
and 4’ introduced before has not been made yet. Hence, e.g. p(3) = p ′(3) + p ′(3 ′)

with p ′(class) being the occurrence probability as a function of the class. The
classes 3 and 3’ share their total probability of 13.2 % in a ratio of 8:12 because
of the 20 possible configurations with 3 bond in 6 directions we can find eight con-
figurations whith three bond angles of 90◦ (class 3). In the other 12 configurations
all bonds lie in a plane. Then, two bond angles are 90◦ and one is 180◦ (class 3’).
Hence, the probability p ′(3) = 5.3 % and p ′(3 ′) = 7.9 %. For nVac = 2 and 4, we
can exploit the symmetry v ↔ X, exchanging bonding and vacancy nn sites. Let
us consider nVac = 4. In three of 15 configurations, the bonds are at a bond angle
of 180◦, therefore, the probability p(4) is divided 12:3 giving p ′(4) = 2.6 % and
p ′(4 ′) = 0.66 %. Using the aforementioned symmetry, we split up p(2) in the same
ratio leading to p ′(2) = 23.7 % and p ′(2 ′) = 5.9 % with 2’ being the class where
the two vacancies are on opposite sidesof the Te atom. All probabilities p ′ can be
found in Table 6.3. The listed order of the classes has been chosen such that the
DOS on the Te atoms is a monotoneously growing function of the class in Figure
6.5.

Figure 6.5 illustrates the atomic DOS on the Te atoms in Ge125Sb250Te500 averaged
within the ten classes defined above. The highest and sharpest DOS values shows



6.2. Classification of Te in Ge125Sb250Te500 121

Class nVac Bonds 90◦ 180◦ 555 888 p ′ [%]

0 0 6 12 3 84 364 17.798
1 1 5 8 2 180 723 35.596
2 2 4 5 1 120 478 23.730
3 3 3 3 21 117 5.273
2’ 2 4 4 2 37 134 5.933
3’ 3 3 2 1 39 166 7.910
4 4 2 1 15 45 2.637
4’ 4 2 1 4 10 0.659
5 5 1 10 0.439
6 6 0 1 0.024

Table 6.3.: Classification of Te atoms in distorderedGe1Sb2Te4 according
to the number of vacancies on nearest-neighbor sites,nVac, and the bond
angles. The last columns show the occurrence in Ge125Sb250Te500 (555),
Ge512Sb1024Te2048 (888) and the theoretical probability of the occurrence
for a random distributions of one quarter vacancies in an infinite quasi-
crystal. The expectation of class 6 occurring in (888) is 49 %. Fortunately,
the setup investigated here contains exactly one.

class 4’. Here, four vacancies surround the Te atom in a plane, i.e. the two Te-X
bonds form an angle of 180◦ where X may be Ge or Sb. In class 4 the Te atom has
two covalent bonds at an angle of 90◦ and is, therefore, close to an sp3-hybridization
which occurs in tetrahedral coordinations (109.5 %). In contrast thereto, the bonds
in class 4’ are formed out of linear sp-hybridized orbitals such that the two non-
bonding p orbitals are close to degenerate in the plane perpendicular to the bonds.

It can be observed that the classified DOS shows several trends. Firstly, the width
of the peak is smaller the higher the class. Secondly, the height of each maximum
grows with the class rank. A third observation is a shifting of the position of the
maxima and, simultaneously, of the dip at E > EF of about +0.1 eV per class to
higher energies. This shift is even more pronounced in the position of the Te-5s
states (not shown) where we find about +0.2 eV per class. The pronounced shifts
indicate that the local potential in the surrounding of those Te atoms is elevated
compared to the potential average. This effect can be assigned to a depletion of
charge on these Te atoms which is a direct consequence of their p states being lifted
above the Fermi level. The lower shift in those Te-5p states compared to the 5s
states on the same atom can be regarded as screening behavior which only occurs
in metallic systems. A high accumulation of vacancies on the second sublattice
obviously causes a local metallicity. The small broadening of the Te-5p states of
class 4 and 4’ visible in the DOS (Figure 6.5) indicates a strong localization in real-
space. This agrees with the model of localized states in a pseudo-gap that have
been found for quasi-crystals [98].
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Figure 6.5.: Density of States on Te atoms averaged within eight classes.
The class of the Te atom depends on the near field vacancy coordination
and bond angles. Only four of 500 Te atoms are found in class number 4’
where four vacancies surround the Te atom and the bond angle is 180◦.
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Although the positions of the vacancies are randomly distributed, we need to
take into consideration that a localization center cannot consist of a single Te atom
in class 4 (or higher) alone. The presence of four vacancies around one Te atom
necessarily causes that these four vacancies are at a distance of a

2

√
2 from each

other. This is accompanied with at least four neighboring Te atoms which are at
least in class 2 (two bonds missing at an angle of 90◦). In other words, the probabil-
ity of finding a Te atom in class c1 on the nnn site from a Te atoms in class c0 is not
simply given by the values for p ′(c1) in Table 6.3 but there is a positive correlation
between p(nVac) for nnn sites. The correlation coefficient for nVac on two nnn Te
sites is 1

3 since these two Te atoms have two of six random variables in common.
We hereby see that vacancy clusters exert an potential elevating effect onto a small
surrounding region of Te atoms leading to localized states close to the Fermi level.

6.2.1. Relaxed Structure Ge125Sb250Te500

Structural relaxation of Ge125Sb250Te500 leads to a slightly distorted rocksalt struc-
ture and, of course, larger relaxation of the local structure in the vicinity of large
concentrations of vacancies. A simple, but interesting number is the total number
of atomic bonds. Two atoms are considered bonding if their interatomic distance
does not exceed the bond length of 3.02 Å plus a tolerance of 25 %. Also, the bond
length should not undergo −20 % from the equilibrium bond length since atoms
would come too close. This, however, is not the case in the relaxed coordinates.
Due to the relaxations, the total number of bonds was reduced by 2.5 %. This is
counter-intuitive considering that the high concentration of vacancies in the sys-
tem produces as large number of dangling bonds and one would expect the relax-
ation to finish at a geometry where more bands are formed, i.e. an increased bond
count. Figure 6.6 shows the structure

The changes in geometry are accompanied with changes in the electronic struc-
ture. Figure 6.7 shows the atom-species averaged DOS of Ge125Sb250Te500 before and
after structural relaxation. Neglecting the larger smoothness of the DOS curves of
the initial geometry (dashed lines) we can hardly see strong changes in the lower
range of the valence energies except for a relaxation of the Te-5s states.

In the electronic structure calculated from the initial coordinates, the s-states of
Tellurium were located at −11.48 ± 0.76 eV. After relaxation, we can find the peak
position at 0.13 eV lower, at −11.61 ± 0.57 eV, and a little sharper. These data have
been found by integrating the Te-DOS only up to −10 eV, i.e. the shoulder from hy-
bridization with the s valence states of the other two species has not been included
evaluating mean and rms values. A clear development due to the relaxation is the
clear separation of s-states and p-states. In fact, the DOS of the relaxed structure
does not show any states between −6.3 and 6.0 eV. Similarly, the pseudo-gap at the
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Figure 6.6.: Visualization of the relaxed geometry of Ge125Sb250Te500.
Ge, Sb and Te are colored orange, green and blue, respectively. Com-
pared to the initial geometry (Figure 6.2), this structure looks almost
amorphous. However, the upper right corner clearly exhibits (111)-
planes of Te atoms.

Fermi level has lowered its value and the dips of the three species are aligned about
60 meV below EF. The special features discussed for the electronic structure of the
initial geometry are still present, i.e. a high density of Te-5p state between −1.5 eV
and the Fermi level and s-like contributions from Ge and Sb to these states.

However, after relaxation of the structure Ge125Sb250Te500, a classification of Te
atoms according to the number of nn vacancies and bond angles is not as simple
as before. In analogy to Figure 6.4 for the initial structure, Figure 6.8 shows an
atom-resolved DOS around the Fermi level. We can observe that the very local-
ized Te states at have been reduced in height. In general, Te states are hardly see
directly above EF. In addition, the Ge states are completely unoccupied here lead-
ing to a reduced total DOS value at the Fermi level which is smaller by a factor
of 2.3 than that of the initial geometry. The number of states in the vicinity of EF

is even reduced by a factor of 4. Here, the vicinity is defined by the derivative of
the Fermi-Dirac function with a temperature TFD of 1000 K. However, we can still
see some behavior of local metallicity. Therefore, we evaluate the local near field
coordination of the Te atoms. As mentioned earlier, the number of nn vacancies
nVac needs to be redefined. We therefore approach via the bonds and their lengths.
For the relaxed structure of Ge125Sb250Te500, we define nVac for the Te atoms by

nVac = 6 −
∑

i

3.02 Å
bi

(6.3)

where bi are the bond length of nn bonds, i.e. Te-Ge or Te-Sb. With this definition,
nVac is obviously not integer any more. Figure 6.9 shows the pDOS at the Fermi
level on the Te atoms as a function of nVac comparing the initial and the relaxed
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Figure 6.7.: Average Density of States of Ge125Sb250Te500 comparing the
initial (dashed lines) and the relaxed geometry (solid lines) for Ge, Sb
and Te in orange, green and blue, respectively. The lower panel illus-
trates the energy range around the Fermi level exhibiting the pseudo-
gap.
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Figure 6.8.: Atom-resolved Density of States around the Fermi energy of
the relaxed structure of Ge125Sb250Te500. The dashed white lines indicate
the DOS average within each species. Ge, Sb and Te are colored orange,
green and blue, respectively. Compared the the initial structure (Figure
6.4) the number of states at EF has been reduced considerably by the
structural relaxation.
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geometry. We can see from the position of the data points that, although continu-
ous, nVac is usually found close to an integer value for the relaxed coordinates. The
error bars indicate the variation in the bond lengths bi.
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Figure 6.9.: Density of States on Te atoms at the Fermi level as a function
of nVac. In the initial geometry, nVac is an integer given by the number
of vacancies surrounding a Te atom (red dots). After relaxation, nVac

is estimated from the number of bonds to the nearest neighbor atoms
and their bond lengths (black dots), see text. The error bars indicate the
variation of the bond lengths. The inlet shows the same numbers on a
logarithmic scale.

As the most important trend, we observe that the DOS(EF) has reduced for all Te
atoms. Furthermore, we can see that Te atoms in class 0 (six bonds to Ge or Sb) are
tending towards slightly longer bonds than 3.02 Å whereas classes 4 and 4’ with a
lower bond coordination have short bonds in average. Class 2 and 2’ seem to be
hardly affected. The annealing reduced the strength of the large density of states
especially in the higher classes.

6.3. Large System: Ge512Sb1024Te2048

The calculation of 53 unit cells of Ge1Sb2Te4, i.e. Ge125Sb250Te500 was, as expected,
large enough to show no finit size effects. However, not all of the ten classes of Te
atoms have been found in this systems. In fact, the chance of having a Te atoms
surrounded by six vacancies in 5 × 5 × 5 unit cells is below 12.2 %. Therefore, a
similar analysis as above has been made for 83 unit cells of Ge1Sb2Te4 again with
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a random occupation of the second sublattice. Figure 6.10 illustrates the initial ge-
ometry of 3584 atoms with Te, Sb and Ge atoms colored in blue, green and orange,
respectively.

Figure 6.10.: Visualization of the random alloy Ge512Sb1024Te2048 in the
initial geometry of the ideal FCC positions.

Fortunately, this occupation configuration contains all of the ten classes specified
in Section 6.2, although the probability of a Te atom in class 6 was 49 % within 2048
Te atoms, compare Table 6.3. Class 6 means that the all six nn sites of this Te atom
unoccupied (vacancies). Table 6.4 show the occurrence of atomic distances. We
can observe that in the large setup of 83 unit cells the occurrences of distances on
the second FCC sublattice deviated less than 2.6 % compared to the ideal values
given in Table 6.1.

The atom number 2711 in the calculation was found in class 6. Therefore, it
feels only the nnn sites which are eight Te at a distance of 4.27 Å. As found for
Ge125Sb250Te500, we expect the local potential to be strongly elevated at the site of
the atoms and a sharp density of states since there is no real bonding and thus no
hybridization. Figure 6.11 shows the projected DOS of Ge512Sb1024Te2048 for atom
number 2711 in class 6 atom. As predicted, the Te-5s and 5p peaks are very sharp
indicating a tiny degree of hybridization with the surrounding. Furthermore, the
position of the 5s peaks at −9.8 eV is very high compared to the usual band center
of the Te-5s states, e.g. in the initial geometry of Ge125Sb250Te500 where the band
was centered at −11.48 ± 0.76 eV, compare Figure 6.7.

After relaxation, the projected DOS on atom number 2711 (Te) shows a regular
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[Å] 3.02 4.27 5.23 6.04 6.75 7.40 8.54 9.06 9.55
[ 1

2a] 1
√

2
√

3 2
√

5
√

6
√

8 3
√

10
Te−Te 24 12 48 24 48
Sb−Te 12 16 48 60
Ge−Te 6 8 24 30
Sb−Sb 6.035 3.000 11.994 5.936 11.924
Ge−Sb 5.946 3.006 12.014 6.059 12.000
Ge−Ge 1.503 0.752 2.953 1.469 3.021
Te− v 6 8 24 30
Sb− v 5.984 2.994 11.998 6.070 12.152
Ge− v 3.052 1.490 6.080 3.004 5.957
v− v 1.483 0.758 2.961 1.463 2.945
∑

24 48 32 24 96 96 48 120 96

Table 6.4.: Occurrence of interatomic distances in the initial coordinates
of Ge512Sb1024Te2048 normalized to one unit cell.
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Figure 6.11.: Projected density of states on the atom No. 2711 before
and after relaxation. Only this Te atom in Ge512Sb1024Te2048 was in class
6 in the initial coordinates, i.e. no bonds to nearest neighbors. After
relaxation the atom can be classified roughly in class 3, i.e. 3 bonds have
formed at angles around 90◦.
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behavior compared to the average DOS. Three bonds have formed at angles close
to 90◦ which allows a rough re-classification in class 3, compare Table 6.3. In order
to gain a more statistical understanding of the effects of the relaxations, we analyze
the changes of the interatomic distances. In the initial geometries, the atomic posi-
tions where integer multiples of a

2 and thus, all interatomic distance values were
given by a

2

√
kwith k integer.

Figure 6.12.: Visualization of the geometry of Ge512Sb1024Te2048 after re-
laxation.

Structural relaxation lets the distances become a continuous variable. However,
the occurrences of interatomic distances of the relaxed geometry Ge512Sb1024Te2048

exhibits a similar feature as the Tables 6.1 and 6.4 visible in Figure 6.13. Distances
between sites of the same FCC sublattice (even k) are zero for Te-Ge and Te-Sb.
In the same sense, distances connecting the different sublattices (odd k) do not
occur for Ge-Ge, Sb-Sb or Te-Te. Unfortunately, the position of the vacancies is
undetermined after structural relaxation.

Focussing onto the nn bonds, we can extract that there is a small difference be-
tween Sb and Ge in their bonding behavior towards Tellurium. The relaxation
shows that the in Ge-Te bonds tends to be shorter by 1.9 pm in average which is
a bond relaxation of −0.6 % (Ge-Te 3.001 ± 0.15 Å). In contrast to that, the Ge-Sb
bonds are elongated by +2.2 % to 3.086 ± 0.12 Å. This tendency leads to a distor-
tion from the regular rocksalt structure also without vacancies. Their respective
width of the distance distribution indicated that the Te-Ge bond (dashed orange-
blue line in Figure 6.13) occurres in local configurations with a higher degree of
variation compared to Te-Sb. The nn peak of Te-Sb at 3.08 Å is relatively sharp
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Figure 6.13.: Occurrence of interatomic distances in the relaxed struc-
ture of Ge512Sb1024Te2048. The Sb-Te bonds centered at 3.086 ± 0.12 Å
and are thus 2.2 % longer than the initial bonds with 3.02 Å. The Ge-Te
bonds contracted by 0.6 % to 3.001 ± 0.15 Å.

and exhibits only a faint indication of a shoulder towards larger distances (dashed
green-blue line). In contrast to that, the nn peak of Te-Ge shows a triple peak with
different heights of the local maxima at 2.888, 3.015 and 3.131 Å, respectively.

Furthermore, it can be observed that both, the Ge-Sb and the Sb-Sb curve have
their k=4 peak at+1.5 and+2.6 %, respectively. This indicates a repelling tendency
beyond the Antimony atoms and a not as strong repulsion between Sb and Ge. The
effect can also be seen at the nnn sites (k=2) but is much weaker there. In a similar
fashion, the Te-Te nnn peak is a bit asymmetric and has its maximum at +1.5 %.
However, its center of mass can be located at 4.278 ± 0.187 Å which corresponds
only to an increase by 0.16 %. The k=4 Te-Te peak reveals a clear shoulder towards
lower distances.

The electronic structure of the relaxed geometry of Ge512Sb1024Te2048(Figure 6.14)
shows the same signature as the DOS in Figure 6.8. Again, the blue lines illustrate
the atomic DOS on Te atoms, green for Sb and orange for Ge. The sharp atomic DOS
peaks of Te atoms which have been observed in the initial geometries indicating
localized states of Te atoms surrounded by vacancies can hardly be found here.
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Figure 6.14.: Atomic density of states of Ge512Sb1024Te2048. Snapshot af-
ter two SCF iterations with the relaxed geometry. A similar signature tp
that in Ge125Sb250Te500 becomes visible. The density of Te states below
the Fermi level is strongly reduced compared to the DOS before relax-
ation. In particular, there are fewer Te atoms with sharply localized
peaks.
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6.4. Summary

The investigations on the electronic structure of disordered structures of Ge1Sb2Te4,
in particular Ge125Sb250Te500 and Ge512Sb1024Te2048, have shown that the initial ge-
ometries in the rocksalt structure exhibit large scattering centers with an elevated
local potential and localized Te states in the region of high vacancy concentrations,
i.e. vacancy clusters. The electronic structure was calculated with jüRS, the Jülich
Real-Space DFT code for both system sizes. This implementation enables the par-
allel treatment of Ge512Sb1024Te2048 on all 294,912 compute cores of the massively
parallel supercomputer JUGENE [54].

We showed that structural relaxation decreases the strength of these scattering
regions leading to a reduced resistivity. A similar trend was observed in the con-
ductivity measurements on thin films of Ge1Sb2Te4 by Zhang et al. [58]. The resis-
tivity decreases with increasing temperature in the annealing process and drops
even more for longer annealing times. This coupling highlights Ge1Sb2Te4 and
some other stoichiometries of Ge:Sb:Te as promising candidates for electrical switch-
ing between their crystalline and amorphous state.

Figure 6.15.: Challenging setup of 123 unit cells of disordered Ge1Sb2Te4

(12096 atoms). With a grid spacing of 0.252 Å, this calculation requires
a storage volume of 9.25 Tbyte for all 48384 wave functions and about
three times as much main memory during the calculation.

Even larger systems than those calculated are still challenging. However, the
route for further progress has already been mapped out. For example, a setup with
twelve thousand atoms, as illustrated in Figure 6.15, has moved closer to becoming
feasible than it has been the case.





CHAPTER 7

CONCLUSIONS

The central goal of this thesis was the development of the parallel application jüRS

[99] for large-scale calculations in the framework of density functional theory. The
implementation is specially customized to the electronic structure and force calcu-
lations of large systems containing thousands of atoms employing massively par-
allel supercomputers as JUGENE, the IBM Blue Gene/P installed at Forschungszen-
trum Jülich. This machine has a nominal peak performance of one petaflops dis-
tributed onto 294,012 compute cores.

In contrast to a variety of complex basis sets for the representation of the Kohn-
Sham wave functions and electron densities, as applied in other DFT calculations,
we chose a uniform real-space grid which is parallelized in terms of memory and
workload per grid point. A real-space grid can represent both periodic and isolated
boundary conditions. Hence, the three-dimensional grid can combine different
boundary conditions for different spatial directions permitting a proper descrip-
tion of not only molecules and bulk systems but also wire structures and surfaces.

The projector augmented-wave method enables an accurate description of the
energy contributions and scattering properties of the atomic cores. For the sake
of simplicity and an improved convergence behavior, the core electrons only enter
the calculation as frozen core densities. Despite the great smoothness of the aug-
mented wave functions and sophisticated filtering methods for the projector func-
tions, the accurate representation of an atom on a real-space grid requires a number
of grid points per atom that is up to two orders of magnitude larger than the num-
ber of valence electrons which come with this atom. Hence, the dimensionality
of the Kohn-Sham Hamiltonian of a large system in the real-space representation
is huge. However, the locality of the effective potential, the finite-difference ap-
proximation for the kinetic energy operator and the localization of the atomic PAW
projectors cause the extreme sparsity of the Hamiltonian operator in real-space
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representation. In fact, the number of non-vanishing elements in the Hamiltonian
scales linearly with the system size. The application of the Hamiltonian operator
onto a trial vector is thus of order-N. Furthermore, we only need to find the lowest
1 % of all eigenvalues and eigenvectors. These aspects, together with the fact that
the Hamiltonian changes only slightly in the tail of convergence of the local po-
tential, favor iterative diagonalization methods for the solution of the Kohn-Sham
eigenvalue problem.

We found that a very efficient method for the iterative diagonalization of the
real-space Hamiltonian is the combination of the DIIS band update with a rotation
in the subspace of the occupied bands, which replaces an explicit Gram-Schmidt-
like reorthogonalization. The generation of the effective potential and both compo-
nents of the iterative diagonalization, the DIIS band update and the subspace ro-
tation, are parallelized in a three-dimensional domain decomposition where each
domain is assigned to one compute node. Each domain represents a rectangular
portion of the Cartesian real-space grid. The finite-difference approximation intro-
duces a limited range of non-locality for the evaluation of derivatives on the grid,
which leads to a restriction of the communication pattern to the nearest-neighbor
domains. Supercomputers with a three-dimensional torus network provide high
bandwidths and short latencies for exactly these communication patterns. Hence,
the mapping of the real-space grid domains to the three-dimensional grid of com-
pute nodes allows excellent parallel efficiency of up to roughly 8 compute nodes
per atom.

In the large-scale limit, the total workload of computations grows at best quadrat-
ically with system size. Therefore, a second parallelization level distributes the
Kohn-Sham states over equivalent sets of compute nodes in domain decomposi-
tion. This state parallelization on top of the real-space parallelization simultane-
ously solves the memory bottleneck of 500 Mbyte/core on JUGENE and introduces
a significant speedup. In particular, the parallelization of bands is a prerequisite
for handling the large number of valence electrons in calculations of large-scale
structures. Despite the need for data-intensive MPI communication to parallelize
the subspace rotation method, an acceleration of the computation speed by a factor
of eight has been achieved.

The implemented Jülich Real-Space DFT code project, jüRS, was applied to large
disordered systems of the phase-change material Ge1Sb2Te4. Short intense laser
pulses can switch this ternary alloy from its crystalline phase to an amorphous
state. During longer and less intense laser pulses, the material crystallizes again.
This reversible phase change is accompanied by an alteration of the optical proper-
ties which promotes the class of Ge:Sb:Te-based materials for storage media as real-
ized in rewritable DVDs. In the crystalline phase of Ge1Sb2Te4, the clustering of vac-
uum impurity sites leads to strong relaxations of the local structure. The electronic
structure was analyzed for the initial and the relaxed geometry Ge125Sb250Te500 in
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order to gain insight into the dependence of electrical resistance on annealing. The
largest setup studied in this work contained 3584 atoms parallelized onto all re-
sources of JUGENE. A self-consistency iteration with these settings thus takes 30
minutes whereas a work station would take about three years and would consume
twice as much power.

Upcoming supercomputer architectures are based on multi- and many-core chipsets
in their compute nodes, which promotes the usage of a node-internal shared mem-
ory parallelization and, to exploit the multi-core environment optimally, the over-
lapping of computation and communication. Furthermore, the integration of ac-
celerator units into the compute nodes becomes increasingly significant such as
graphical processing units in the combination CPU+GPU. Also, the improvements
of the inter-node connections is substantial. The network of the next generation of
IBM Blue Gene supercomputers is designed to connect the compute nodes to a five-
dimensional torus. This matches the needs of jüRS perfectly in the sense that we
map the real-space grid domains to three dimensions as shown in this work. The
remaining two dimensions promise to accelerate the communication in the second
parallelization level, in particular the compute nodes in band parallelization are
then direct neighbors.

In this thesis, we showed that the real-space grid method for density functional
calculations in combination with the accuracy of the PAW method can be paral-
lelized efficiently and, applied on massively parallel supercomputers, can permit
the determination of large-scale ground-state structures up to several thousands
of atoms. The strength of our implementation was proven for the bulk system
Ge512Sb1024Te2048 with an edge length of 48.3 Å including disorder and relaxations.
A larger field of application has thus become accessible. The combination of peri-
odic and isolated boundary conditions invites us to investigate the relaxations of
large functionalized molecules on substrates and complicated surface relaxations.
Further conceivable topics include accurate predictions of the long-range interac-
tion of impurity atoms in host crystals, doping in amorphous materials and a real-
istic description of entire nanodevices.





APPENDIX A

PAW DATA GENERATION

This chapter describes how the necessary precomputations for the Projector Aug-
mented Wave (PAW) [22] transformation described in Chapter 3 are performed.
PAW data are generated with some degrees of freedom. Starting from a spheri-
cally symmetric atomic all-electron calculation with a selected ionic configuration
of occupation numbers fℓ, we need to identify the valence states and choose a set
of energy parameters for each ℓ-channel.

A.0.1. Spherical Atomic All-Electron Calculation

Given the atomic number Z and occupation numbers for the designated states

fnℓ =

{
2 core states

fℓ valence states
(A.1)

we start the atomic all-electron calculation by guessing a start density

nguess(r) = (Z− 2)α

√

αr 108
π

e−3αr/r2 + γ3e−γr (A.2)

where α = 0.3058 3

√

Z
2 and γ =

√
4 + 3.2∆qwith the additional electron charge ∆q.

The all-electron potential Vref[n](r) is found as a functional of the density n(r)
by simple radial integrations for the electrostatic potential. Furthermore, the ex-
change correlation potential can also be evaluated on the radial grid directly since
a spherically symmetric representation nL=00(r) equals the real-space representa-
tion n(r) for |r| = r. Also for gradient corrected XC-functionals, only the radial
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derivatives are required since all gradients w.r.t. to the angular coordinates van-
ish.

Useful for a good start guess are also approximate energy eigenvalues ǫnℓ. A
simple formula for qualitatively good start energies is

ǫ
guess
nℓ = −

1
2

(

Z

n

)2

︸ ︷︷ ︸
Hydrogen-like

[

0.783517 + 25.791 · 10−6( Z

n

)2]

︸ ︷︷ ︸
fit to 1s energies

e−(n−1)Z/100
︸ ︷︷ ︸

screening

(A.3)

These start guess energies match best for the 1s-energies, since the middle part has
been fit to the the 1s-energies [100] and the screening factor is unity for n=1. The
energies ǫguess

nℓ are ℓ-degenerate although the true energies will depend strongly on
ℓ. However, the ℓ-degeneracy is lifted already after the first self-consistency cycle.

The exact eigenvalues are found with the shooting method described in Section
A.0.1. The results are depicted in Figure 3.2. Once all occupied eigenstates are
found, a new density can be created

nnew(r) =
1
r2

∑

nℓ

fnℓ [rΨnℓ(r)]
2 (A.4)

and self-consistency is achieved by mixing of either the densities or the effective
potentials. The latter has shown to achieve self-consistency in a reasonable number
of SCF iterations, even with a simple mixing scheme Vnext(r) = V last(r)(1 − α) +

αV[nnew](r) and α=1
3 .

The all-electron atom solver will also provide the spherical true core density
nc(r).

Shooting method

The shooting method is an iterative algorithm to solve a one-dimensional second
order differential equation with two boundary conditions, as in our case finding
an eigenvalue and an eigenstate of the radial Kohn-Sham equation

(

−
1
2

d2

dr2 +
ℓ(ℓ+ 1)

2r2 + Veff(r) − ǫ

)

rΨ(r) = 0 (A.5)

The second order differential equation is cast into two coupled first order differ-
ential equations, such that a direct integration is possible. The method chooses a
point rm in the interval (0,Rmax) and performs a Runge-Kutta type outwards inte-
gration for [0, rm] finding rΨout(r). Similarly, an inwards integration for [rm,Rmax]

starting from tiny values and derivatives at r=Rmax finds rΨin(r). One of the two



141

partial solutions is scaled to match the other partial solution in value at the match-
ing radius rm. For a numerically stable method one can use the classical return
radius as rm, i.e. ℓ(ℓ+1)

2r2
m

+ V(rm) = ǫ. However, the matched solutions do not coin-
cide in their first derivatives at rm as long as ǫ is not an exact eigenvalue. We can
compute the so-called kink and use its strength to determine the energy correction
for the next iteration. In order to find the correct eigenvalue, it is important to hit
the right branch of solutions with the initially guess energy ǫguess. The branch can
be determined by counting the number of nodes in both, rΨin(r) and rΨout(r). The
wanted solution will show (n-ℓ-1) nodes where n is the principal quantum number
and ℓ the angular quantum number. We therefore need to lower the guess energy
as long as the number of nodes is higher than requested. Once the branch is hit,
the kink is a monotonous function of energy so that we can easily find its zero with
a bisection algorithm.

The physical interpretation of the shooting method is a matching of the logarith-
mic derivative of the core region with the logarithmic derivative of the potential
tail. The energy must correspond to a bound state, i.e. should be lower than the
V(Rmax).
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Figure A.1.: Schematic of the shooting method. For a given local effec-
tive potential, an inwards integrated solution of the radial Kohn-Sham
equation (Equation A.5) is matched to an outwards integrated solution
at a trial energy. The strength of the resulting kink at the matching ra-
dius rm determines the energy correction until an eigenstate is found.
The radial wave functions rφ(r) in the plot are scaled arbitrarily.

jüRS Input Syntax: ./paw inp -g

File inp should contain the line element Ag 5s* 1 5p* 4d 10 | 2.6
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Figure A.2.: Radial atomic KS states for a Silver atom. The axes for each
atomic wave function have been shifted according to their energy eigen-
value (logarithmically). The radial wave functions rφnℓ(r) are normal-
ized to a maximal amplitude for better visibility.

A.0.2. Augmentation Procedure

Generation of true partial waves

Given a self-consistent spherically symmetric potential Vref(r) that has been gen-
erated with the ionic configuration fℓ of the valence states, we have to chose refer-
ence energies ǫℓn for the true partial waves. Now n counts the number of partial
waves in an ℓ-channel (c.f. enn=1...s%nn(ell)). Here, the lowest n=1 energy usu-
ally matches the eigenvalue of selected valence state. In this case we deal with an
eigenstate of the reference Hamiltonian Ĥref = T̂+V̂ref that is normalizable and nor-
malized. The advantage of this procedure is –besides numerical reasons –that the
diagonal values of the atomic PAW density matrixDa

iiσ will get the physical signif-
icance of atomic occupation numbers. We will henceforth refer to higher n-values
as excited partial waves since these may even be unbound scattering solutions. The
true partial waves φℓn are outwards integrated solutions of the radial Kohn-Sham
equation A.5 the self-consistent all-electron reference potentialVref(r) at the chosen
energies ǫℓn.

During the application of the PAW setup only a limited number nmax
ℓ of partial

waves according to the reference energies ǫℓn are used. Two partial waves per ℓ
for ℓ ∈ [0, ℓphys.] plus one at ℓcut = ℓphys.+1 are typically a good choice. Figure A.3
defines ℓphys. for all elements of the periodic table.

There are different ways to generate the higher solutions φℓn for n > 1 if the
n=1-energy has been set to the valence state eigenvalue. One ways is to choose an
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l=0  s
l=1  p
l=2  d
l=3  f

Figure A.3.: Physical ℓphys. for all elements of the periodic table. A good
choice for ℓcut is ℓphys.+1. The grid spacing of the coarse grid should be
fine enough such that a minimum of 2(ℓcut + 1)2 grid points lie within
the sphere. These are 8, 18, 32 and 50 for s-, p-, d- and f-elements, re-
spectively.

energy ǫℓ2 = ǫℓ1 + 1 Ha which is usually an unbound state. As an alternative, one
may generate an approximate energy derivative (as appearing in LAPW methods)
byφℓ2 ≈ 1

2δ (φℓ[ǫℓ1 + δ] − φℓ[ǫℓ1 − δ]). We use the latter method with δ=25 meV in
subroutine true_partial_waves which also allows for a second energy derivative
φℓ3 ≈ 1

δ2 (φℓ[ǫℓ1 + δ] − 2φℓ[ǫℓ1] +φℓ[ǫℓ1 − δ]).

We can even find the exact energy derivative by solving the inhomogeneous ra-
dial Kohn-Sham equation

(

Ĥ− ǫ
)

|Ψ̇〉 = |Ψ〉

where an inhomogeneous integration technique for the full SRA-Hamiltonian is
required, c.f. Section A.0.4.

Generation of smooth partial waves

We first need to choose a augmentation radius rcut. It is possible to use different
radii for the different ℓ-channels where the smallest one will be used for the aug-
mentation of the local potential. Simply add more values (in Bohr) for the radii
after the separator | in the species configuration string as e.g. element Ag 5s*

1 5p* 4d 10 | 2.4 2.6 2.5. This will set rs=2.4, rp=2.6, rd=2.5 and rf=2.5. We
pseudize the partial waves φℓn(r) to find φ̃ℓn(r) by replacing the heavy oscillating
behavior in the core region (r < rcut) with a smooth function, that matches the
true wave function at rcut in value, 1st, 2nd and 3rd derivative and has the correct
rℓ-behavior at the origin. The norm does not need to be conserved.

Here I use the 4 polynomials rℓ, rℓ+2, rℓ+4 and rℓ+6 to match the true wave func-
tion in 0th through 3rd derivative at rcut. The 0th derivative is the value of the
wave function itself. The treatment with polynomials simplifies the computation
of the matrix elements of the kinetic energy operator 〈φ̃ℓn|T̂ |φ̃ℓn ′〉 w.r.t. the smooth
partial waves in the sense, that we can compute the derivative w.r.t. r analytically.
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Assume that a smooth partial wave inside the cutoff radius is given by

rφ̃(r) = rℓ+1

(

3∑

i=0

ci r
2i

)

then the kinetic energy operator for these rφ̃-states in radial representation

T̂ =
1

2m

(

ℓ(ℓ+ 1)
r2 −

d2

dr2

)

applied to the polynomials yields

T̂ rφ̃(r) =
1

2m
rℓ+1

3∑

i=0

ci [ℓ(ℓ+ 1) − (ℓ+ 2i)(ℓ+ 1 + 2i)] r2i−2.

We see that the term for i=0 cancels completely such that there are no negative
powers of r left. This is the reason why we required that the smooth wave function
behaves like rℓ at the origin. Then

T̂ rφ̃(r) =
1

2m
rℓ+1

3∑

i=1

ci [ℓ(ℓ+ 1) − (ℓ+ 2i)(ℓ+ 1 + 2i)] r2i−2

=
1

2m
rℓ+1

2∑

i=0

ci+1 [ℓ(ℓ+ 1) − (ℓ+ 2i+ 2)(ℓ+ 1 + 2i+ 2)] r2i

= −
1

2m
rℓ+1

2∑

i=0

ci+1(2i+ 2)(2i+ 2 + 2ℓ+ 1) r2i

So in a matrix representation w.r.t. the polynomial coefficients, we can write

−2mT̂ =













0 2(2ℓ+ 3) 0 0
0 4(2ℓ+ 5) 0

0 6(2ℓ+ 7)
0













.

The evaluation of matrix elements of the kinetic energy operator w.r.t. the true
partial waves is performed via the energy parameter ǫ in order to capture the rel-
ativistic effects that have been accounted for in the radial SRA solver, if SRA is
applicable:

T̂ rφ(r) = [ǫ− Vloc(r)] rφ(r).
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Augmentation of the core electron density

The true core electron densitync(r)has been found during the self-consistent atomic
calculation, c.f. Section A.0.1. We augment the core density nc(r) in the same way
as the smooth partial waves to find ñc(r). There is a certain degree of freedom
here. However, it is in general useful to have an only positive function ñc(r) > 0 ∀r,
because ñc(r) will enter the exchange correlation potential that should not be eval-
uated with negative density values. Here again, the norm does not need to be
conserved. When the smooth core density enters the electrostatic expressions, a
compensation charge density will account for the missing charge. Since the core
density is spherically symmetric, the corresponding compensation charge moment
is only a monopole q00 (s%q00) that also includes the charge −Z of the protons in
the atomic nucleus. For the electrostatics,

∫

S

r2dr nc(r) − Z =

∫

S

r2dr ñc(r) + q00Y00 = −Nv (A.6)

must hold, where Nv is the number of valence electrons in the start configuration
(if neutral).

Compute the norm deficit

∆qℓn = 〈φℓn|φℓn〉− 〈φ̃ℓn|φ̃ℓn〉 =
∫

dr r2 (φ2
ℓn(r) − φ̃

2
ℓn(r)

)

(A.7)

and
∆qcore =

∫

dr r2 (nc(r) − ñc(r)) = Nc −

∫

dr r2 ñc(r) (A.8)

Usually, these integrals are performed on a radial grid in real space, so the integra-
tion only needs to run up to rcut since both partial waves are identical beyond this
radius.

The local potential

We construct the smooth charge densities

ñv(r) =
∑

ℓ

fℓφ̃
2
ℓ1(r) (A.9)

ρ̃(r) = ñv(r) + ñc(r) +

(

∑

ℓ

fℓ∆qℓ1 −Nv + qcore

)

ĝ0(r) (A.10)

whereNv is the number of valence electrons. Further, we evaluate the augmented
potentials Ves[ρ̃] and Vxc[ñv + ñc]. The new PAW Hamiltonian

ˆ̃H = T̂ + Ves[ρ̃](r) + Vxc[ñv + ñc](r) + V̄(r) +
ˆ̃Hnonlocal (A.11)
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now has some freedom: A potential V̄a(r) localized inside the spheres Sa may be
added to the local part and subtracted in the nonlocal Hamiltonian matrix elements
Ha without affecting the KS-eigenvalues. This can be exploited to construct the
local potential such that the scattering properties in the lowest ℓ-channel which
does not have any projectors (ℓmax + 1) coincide with the all-electron potential at
a chosen energy ǫℓmax+1. The procedure for finding the shape of V̄(r) could follow
the construction rules for local pseudopotentials [28]:

Vloc(r) = ǫℓ −
T̂ φ̃ℓ(r)

φ̃ℓ(r)
= Ves[ρ̃](r) + Vxc[ñv + ñc](r) + V̄(r) (A.12)

Alternatively, the local potential can be constructed as smooth as possible.

Generation of projector functions

Finally, we construct the projector functions p̃nℓ(r) according to

p̃ℓn(r) =
(

ˆ̃Hloc − ǫℓ

)

φ̃ℓn(r) =
(

T̂ + Ves[ρ̃](r) + Vxc[ñv + ñc](r) + V̄(r) − ǫℓ
)

φ̃ℓn(r)

(A.13)
These functions are nonzero since the smooth partial waves have been chosen maxi-
mally smooth under the constraints of matching the true partial waves at the sphere
boundary and showing the correct behavior at the origin. Figure A.5 illustrates the
projector functions of Copper. In PAW, the smooth partial waves are no eigenstates
of the smooth local potential. These projector functions however are good for the
lowest projector of each ℓ-channel. For higher projectors found that way, the or-
thogonality with the smooth partial waves 〈p̃ℓn|φ̃ℓn ′〉 = δnn ′ has to be enforced.
This method agrees with the way of Vanderbilt [30].

The augmented local potential is smooth and behaves quadratically at r = 0.
Since the smooth partial waves φ̃ℓn are constructed to behave as rℓ at the origin,
the application of the smooth local Hamiltonian will transfer this behavior to the
preliminary projector functions. The term in the kinetic energy that goes as rℓ−2

arising from −1
2

d
dr2 will exactly cancel with the centrifugal potential ℓ(ℓ+1)

2r2 arising
from the angular parts of the Laplacian operator. Usually, the lowest s-projector
will be a strictly localized nodeless function, the next higher projector will have a
single node after the orthogonalization has been performed. See Figure A.5 for an
example.

A.0.3. Scattering of the PAW Potential

The scattering of a spherically symmetric local potential is completely determined
by the scattering phase shift δℓ [101]. If our potential at hand vanishes for large
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distances, i.e. it has no long-range part, the scattering phase is a constant. In the
case of a spherically symmetric local potential, we can find the scattering wave by
an outwards integration of the Schrödinger equation

(

−
1

2m
d2

dr2 +
ℓ(ℓ+ 1)
2mr2 + Vloc(r) − E

)

Ψ(r) = 0 (A.14)

or its equivalent of the Scalar Relativistic Approximation (SRA) as described in
Section A.0.4. The logarithmic derivative is then found by taking the ratio of the
wave functions first derivative and its value at a certain radius.

Gtru
ℓ (R,E) =

∂rψ
[E]
out(r)

ψ
[E]
out(r)

∣

∣

∣

∣

∣

r=R

(A.15)

Since we want to compare the scattering of the true local potential and the aug-
mented non-local potential, we choose this radius R to be larger than the augmen-
tation radius Rcut of the potential. For the non-local potential, we are not left with a
second order differential equation any more. Thus we cannot solve it by reduction
of order as exploited in the solution of the purely local potential. We are rather left
with an integro-differential equation of the kind

(

T̂ + ˆ̃Vloc − E+
∑

ij

|p̃i〉 (Hij − ESij) 〈p̃j|
)

|Ψ̃〉 = 0 (A.16)

where the kinetic energy operator T̂ contains spatial derivatives and the inner prod-
uct 〈pj|Ψ̃〉 a spatial integral. In order to solve this, we first solve for the homoge-
neous solution of the local potential

(

T̂ + ˆ̃Vloc − E
)

|ψ̃
[E]
0 〉 = 0 (A.17)

and then solve the inhomogeneous equations for each projector state |p̃i〉
(

T̂ + ˆ̃Vloc − E
)

|ψ̃
[E]
i 〉 = |p̃i〉 , i > 0 (A.18)

The integro-differential equation is then cast into a set of linear equations by the
ansatz (the superscript [E] is dropped here for simplicity of the notation)

|Ψ̃〉 =
∑

k=0

bk|ψ̃k〉 (A.19)

which results in
∑

k=0

bk

(

T̂ + ˆ̃Vloc − E
)

|ψ̃k〉+
∑

ij

|p̃i〉 (Hij − ESij) 〈p̃j|
∑

k=0

bk|ψ̃k〉 = 0 (A.20)

∑

k=1

bk|p̃k〉+
∑

ij

|p̃i〉 (Hij − ESij) 〈p̃j|
∑

k=0

bk|ψ̃k〉 = 0 (A.21)
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where the first summation over k starts from 1 because |p̃0〉 vanishes in all space.
We can now exploit that the projectors |p̃i〉 are by construction orthogonal to the
smooth partial waves 〈φ̃n|. Multiplying 〈φ̃n| from the left will lead to a set of linear
equations

∑

k=1

bkδnk +
∑

k=0

∑

ij

δni (Hij − ESij) 〈p̃j|ψ̃k〉bk = 0 (A.22)

with
∑

j

(Hij − ESij) 〈p̃j|ψ̃k〉 : = Aik (A.23)

bn +
∑

k=0

bkAnk = 0 (A.24)

that determine the coefficients bn relative to b0. Nevertheless, the choice of b0 is
irrelevant for the logarithmic derivative. As an example, for two projectors in the
ℓ-channel at hand the system will look like this







1 0 0
A10 A11 + 1 A12

A20 A21 A22 + 1






·







b0

b1

b2






=







1
0
0






(A.25)

The logarithmic derivative is thus found by the superposition of the particular
solutions.

GPAW
ℓ (R,E) =

∑
k=0 bk∂rψ̃

[E]
k (r)

∑
k=0 bkψ̃

[E]
k (r)

∣

∣

∣

∣

∣

r=R

(A.26)

Comparing the logarithmic derivatives over the energy range of the occupied va-
lence states is essential to check the quality of the non-local PAW potential. How-
ever, we also have to check the augmented potential to show no resonances at en-
ergies below the lowest valence band, because these would lead to so-called ghost

states [102], i.e. states that tend to fall into a pseudo-core state. This is an effect of
the approximation that core states are not treated explicitly and so valence states
cannot be kept orthogonal to the core states.

jüRS Input Syntax: ./paw -g -cm 2
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A.0.4. Solving the Scalar-Relativistic Equation

The scalar-relativistic (SR) equation
(

−
 h2

2m(r)

d2

dr2 +
 h2ℓ(ℓ+ 1)
2m(r) r2 + VHxc(r) −

Ze2

r
− E

)

rφ(r) = 0 (A.27)

is solved by reduction of order: Besides g(r) = rφ(r), a so-called small component
auxiliary wave function, the large component wave function f(r) is introduced. The
second order differential equation can then be reduced to a set of two first order
differential equations:

d
dr

(

g

f

)

=

[

1
r

m(r)

2W(r) − 1
r

](

g

f

)

:= ∂̂

(

g

f

)

(A.28)

W(r) =
ℓ(ℓ+ 1)
2m(r)r2 + VHxc(r) −

Ze2

r
− E (A.29)

in Hartree atomic units, i.e.  h = me = e
2 = 1 and c = 137.036, the speed of light.

For the scalar-relativistic version, the relativistic increase of the electron mass at
high kinetic energies has to be taken into account:

m(r) = me

√

1 +
Ekin

mec2 ≈ me +
Ekin(r)

2c2 Ekin(r) = E−

(

VHxc(r) −
Ze2

r

)

The Schrödinger equation is found by replacing the relativistic mass m(r) by the
rest mass me of the electron. The approximation of the squareroot is valid for all
elements of the lower half of the periodic table, even though the effects to the core
levels and total energy of atomic configurations may be of several Hartree it does
not alter the valence states. For larger Z, it will affect the valence states. For exam-
ple Gold shows differences of 0.25 eV in the valence levels (5d and 6s).

Now the first order equations are integrated using the Adam’s-Moulton implicit
3 step 4th order multistep method:

yi−1 +
h

24
(

9∂̂yi + 19∂̂yi−1 − 5∂̂yi−2 + ∂̂yi−3
)

= yi + O(h5) (A.30)

Since both, the value yi and the derivative ∂̂yi are unknown, they can be brought
to the left hand side

8
3h
yi − ∂̂yi =

1
9
(

24/hyi−1 + 19∂̂yi−1 − 5∂̂yi−2 + ∂̂yi−3
)

:= bi (A.31)

Now the derivative ∂̂y is a linear function of y, given by the 2×2 matrix ∂̂ in
Equation (A.28) from above. (The implementation of ∂̂ includes the factor dr.)
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Finally, yi is found by applying the inverse operator to the right hand side (which
was defined as bi in Equation (A.31)).

yi =

[

8
3h

− ∂̂

]−1

bi (A.32)

For the inversion of the 2×2 operator [ 8
3h−∂̂]we can use the simple formula adjoint

divided by determinant.

Behavior at the origin

To analyze the wave function’s behavior at r = 0, we expand the two components
g(r) and f(r) in power series.

m(0) = me +
E− VHxc(0)

2c2 +
Ze2

2c2

(

1
r

)

(A.33)

: = m1 +
mZ

r
(A.34)

2W(0) =
ℓ(ℓ+ 1)
m(0)r2 + 2

(

VHxc(0) − E −
Ze2

r

)

(A.35)

: =
ℓ(ℓ+ 1)

m1r2 +mZr
+w1 +

wZ

r
(A.36)

Two special cases simplify these expressions drastically:
ℓ=0:

2W(0) : = w1 +
wZ

r
(A.37)

d
dr

(

g

f

)

=
1
r

[

1 mZ

wZ −1

](

g

f

)

+

(

m1f

w1g

)

(A.38)

leads to the double recursive relation

fi =
wZgi +w1gi−1

i+ 1
(A.39)

gi+1 =
mZw1/(i+ 2)gi +m1fi

i−mZwZ/(i+ 2)
(A.40)

and Z=0:

m(0) : = m1 (A.41)

2W(0) : =
ℓ(ℓ+ 1)
m1r2 +w1 (A.42)

⇒ gk+1 =
m1w1

k(k+ 1) − ℓ(ℓ+ 1)
gk−1 (A.43)

⇒ fk =
1

k+ 1

[

ℓ(ℓ+ 1)
m1

gk+1 +w1gk−1

]

(A.44)
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It is simple to show that both special cases coincide, if ℓ=0 and Z=0.

For the general expression (ℓ > 0,Z > 0) it is advantageous to expand the expres-
sion

ℓ(ℓ+ 1)
m1r2 +mZr

=
ℓ(ℓ+ 1)

mZr(1 + m1
mZ
r)

≈ ℓ(ℓ+ 1)
mZr

(

1 −
m1

mZ

r

)

because then, 2W(0) can be reformulated as

2W(0) :=
ℓ(ℓ+ 1)
mZr

−
m1ℓ(ℓ+ 1)

m2
Z

+w1 +
wZ

r

Solving the inhomogeneous equation

The inhomogeneous equation
(

−
 h2

2m(r)

d2

dr2 +
 h2ℓ(ℓ+ 1)
2m(r) r2 + VHxc(r) −

Ze2

r
− E

)

rφ(r) = p(r) (A.45)

leads to a derivative operator

d
dr

(

g

f

)

=

[

1
r

m(r)

2W(r) − 1
r

](

g

f

)

−

(

0
2p(r)

)

:= ∂̂p

(

g

f

)

(A.46)

(A.47)

as one can show easily verify

g ′ =
g

r
+mf and (A.48)

f ′ = 2Wg−
f

r
− 2p (A.49)

⇔ mf

r
=
g ′

r
−
g

r2 (A.50)

then g ′′ =
g ′

r
−
g

r2 +mf ′ (A.51)

= 2mWg+ 2mp (A.52)

⇔ −
g ′′

2m
+Wg = p (A.53)

Then the multistep method differs slightly:

yi−1 +
h

24
(

9∂̂pyi + 19∂̂pyi−1 − 5∂̂pyi−2 + ∂̂pyi−3
)

= yi + O(h5) (A.54)

Again, the value yi and the derivative ∂̂pyi are unknown. However this time, we
split ∂̂p into the 2x2 matrix ∂̂ and the inhomogeneity 2-component vector (0,−2p).
Only ∂̂yi is brought to the left hand side which leads to
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8
3h
yi − ∂̂yi =

1
9
(

24/hyi−1 + 19∂̂pyi−1 − 5∂̂pyi−2 + ∂̂pyi−3
)

− 2(0,p)
8
3
:= bi

(A.55)
Mind the different operators ∂̂p and ∂̂ with and without inhomogeneity, respec-
tively. Also here, the implementation requires a multiplication with the factor dr.



153

0 1 2

0

1

2

3

4

0 1 2 3r [Bohr]

-10

-5

0

5

C

n
nc
nv
ĝ
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Figure A.4.: Examples of the PAW data generation process. Shown are
the true and smooth densities for Carbon, the true and smooth poten-
tials for Carbon (rcut=1.1 Bohr) and for comparison the true and smooth
potentials for Copper (rcut=2.4 Bohr).
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Figure A.5.: Projector functions for Copper (rcut=2.1 Bohr).

-100 -80 -60 -40 -20 0 20
E - E0 / eV

0

Lo
ga

rit
hm

ic
 d

er
iv

at
iv

e

s
p
d
f

Au  6s* 2 6p* 5d* 9 | 2.0

Figure A.6.: Logarithmic derivative as a function of energy for Gold
with an indication of ghost states. The augmentation radius of 2.0 Bohr
is too small so false resonances (dotted lines) appear at -93.6 eV and -
59.6 eV in the s- and p-channel, respectively. Elsewhere, the scattering
properties of the PAW setup coincide with those of the full-potential
(solid lines).



APPENDIX B

GRID VS. BASIS

A real-space grid for the representation of a wave function is no basis set per se

but can be considered equivalent to a basis set. The simplest example for their
equivalence is the Fourier transform being the transformation from a grid in real-
space into a plane-wave basis set. However, it is in general difficult to determine
a localized function that describes a grid point in the fashion of a basis function.
This can be seen considering the following problem arising with real-space grids.

Density Grids

During DFT calculations, the local effective potential needs to be evaluated on a
real-space grid since usual density functionals are local (LDA) or semi-local (GGA)
functions of the density. The real-space grid is at least 2× denser (in each spa-
tial direction) than the underlying equivalent wave function grid. For plane wave
methods, the larger grid is obviously needed since the calculation of the density of
a wave function in Fourier space is a convolution of two wave functions. If now the
wave functions are given in Fourier coefficients up to Gmax, the resulting density
representation will hold Fourier coefficients up to 2Gmax. Real-space grid meth-
ods that sample the wave functions on a coarse grid with grid spacing h usually
compute the resulting smooth density on the same grid, as

ñσ(ri) =
∑

nk

fnσk|Ψnσk(ri)|
2. (B.1)

Thinking in Fourier space, the wave function grid can represent frequency compo-
nents up to π

h
. Representing the density on the same grid, means that all possible

frequency components in the range π
h
< |G| 6 2π

h
are lost information. We can

therefore identify π
h

to be the equivalent to a plane-wave cutoff of the density, not
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of the wave function representation. In order to reach the same level of accuracy,
we therefore have to apply two times higher cutoff frequencies, equivalent to four
times higher cutoff energies or half the grid spacing. This, of course, is connected to
a huge increase in the total workload, which usually does scale even less fortunate
than linear with the total number of grid points.

A reason why real space methods still work well even though some higher fre-
quency information of the density are lost is an advantageous error cancellation.
The density is constructed from occupied orbitals of the KS Hamiltonian. Each
two wave functions are mutually orthogonal, such that the extrema of a wave func-
tion coincide locally with the nodes (nodal surfaces in 3D, nodal lines in 2D and
nodes in 1D) of another wave function. The simplest and extreme case is the homo-
geneous electron gas. The occupied eigenstates are plane waves up to the Fermi
wave vector kF and their densities add up to a constant, i.e. all Fourier coefficients
of the density vanish except for G = 0.

The implementation of the PAW method on real-space grid methods demands
that the potential generation happens on a denser grid than the representation of
the coarse wave functions, even though the local effective potential is finally ap-
plied on the coarse grid again. This is due to the multipole compensators that
make up for the deficit of electrostatic multipole moments inside the augmenta-
tion sphere. These localized distribution functions require a much denser grid to
be represented accurately. A strict localization inside the augmentation sphere is
equivalent to arbitrarily high Fourier components. Their direct influence on the re-
sults is stronger than the influence of the localized atomic projector functions |p̃a〉
since the multipole compensators enter the Poisson equation and, thus, the electro-
static potential. In order to keep the errors arising from these irrepresentably high
frequency components small, we expand the multipole compensators on an M×
denser grid with M > 2.

The cutoffs of the coarse grid can be exploited more efficiently by applying the
interpolation to the wave function beforehand.

ñσ(rd) =
∑

nk

fnσk

∣

∣

∣

∣

∣

∑

i

wdiΨnσk(ri)

∣

∣

∣

∣

∣

2

(B.2)

where d is a grid index of an M× denser grid, i is a coarse grid index and w the
interpolation operation connecting both grids. This way the density ñmay contain
frequency components up toMπ

h
. The normalization of the wave functions in the

traditional scheme was simply given by

∑

i

|Ψnσk(ri)|
2
= 1 (B.3)
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and will thus change to a normalization on the dense grid, i.e.

1 =
∑

d

∣

∣

∣

∣

∣

∑

i

wdiΨnσk(ri)

∣

∣

∣

∣

∣

2

=
∑

i1i2

si1i2Ψ
∗
nσk(ri1)Ψnσk(ri2) (B.4)

where the new overlap operator ŝ is determined by the convolution of interpolation
operators

si1i2 =
∑

d

wdi1wdi2 . (B.5)

The complex conjugation was dropped here since usual interpolation weights are
real-valued.

matched between

M s0 s±1 s0 s±1

1 1.000000 0.000000 0.500000 0.250000
2 0.750000 0.125000 0.625000 0.187500
3 0.703704 0.148148 0.648148 0.175926
4 0.687500 0.156250 0.656250 0.171875
6 0.675926 0.162037 0.662037 0.168981
8 0.671875 0.164062 0.664062 0.167969

10 0.670000 0.165000 0.665000 0.167500
12 0.668981 0.165509 0.665509 0.167245
16 0.667969 0.166016 0.666016 0.166992

...
∞ 0.666667 0.166667 0.666667 0.166667

Table B.1.: Weights of the grid point overlap operator ŝ for 1D linear in-
terpolation and various integer grid refinement factorsM. The weights
forM = ∞ are computed by analytical integration.

During the development of pseudopotential techniques and also later when the
PAW method was invented, the main goal was to achieve a faster convergence of
the results with respect to the number of degrees of freedom that span a represen-
tation of the smooth wave functions. This representation may be based on plane
waves, local orbitals or real-space grids. An important step forward was intro-
duced by loosening the norm-conservation constraint as in Vanderbuilt’s US-PP
and the PAW method. A consequence is that the KS eigenvalue equation is cast
into a generalized eigenvalue problem. The general expression for the overlap op-
erator is given as

ŜPAW = ŝ+
∑

aij

|p̃ai 〉∆qaij〈p̃aj | (B.6)
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where for a traditional grid method ŝ is diagonal si1i2 = δi1i2 in the grid points
as implicitly given in Equation B.1. Here ∆qaij is the norm deficit due to the aug-
mentation of the partial waves in the augmentation sphere of atom a and |p̃a〉 are
the localized atomic projector functions. The new overlap operator for grid points
thus introduces only a modest overhead into the implementation of a real-space
grid method using PAW.

B.0.5. Implementation of the non-local overlap operator

Data locality is the most essential ingredient to an efficient scaling behavior in mas-
sive parallelization. The real-space grid approach for DFT calculations provides an
excellent way of exploiting data locality and short-sightedness of the operators can
be introduced with only little approximations.

Besides the kinetic energy operator and the dyadic non-local projector operator
|p̃〉〈p̃|, the overlap operator ŝ brings also non-locality into the equation. It relates
grid points at a distance of two times the range of the interpolation scheme. We
therefore choose the lowest order interpolation i.e. linear interpolation in between
grid points in the coarse grid to find the wave function on the M× (usually 2×)
denser grid. The new non-locality can be simply incorporated into the existing fi-
nite difference kinetic energy operator that requires non-process-local information.
However, a minor change is needed. The finite difference operator only requires
data from the six cartesian nearest neighbor processes, whereas ŝ also relates grid
points via the spatial diagonal, i.e. from all 27 surrounding processes. A way out
of this extra expense in communication is to introduce a strict ordering of the com-
munication operations in x,y, z-direction. We can thus let the information flow via
the cartesian neighbors as explained on Section 5.3.1.

B.0.6. Choice of dense grid alignment

For an integer grid refinement we can choose from two highly symmetric ways to
align the dense grid to the coarse grid. One alternative is to choose every M-th
dense grid point to match in position with a coarse grid point an locate the others
in between. The other way is to align the grids such that M dense grid points
fall in between any two coarse grid points and each coarse grid points is centered
between dense grid points. Table B.2 illustrates these two cases.

The difference between the two schemes becomes visible in the weights of ŝ on
a three-dimensional real-space grid. Table B.3 shows the elements of the overlap
operator ŝ, s000, s100, s110 and s111. We can see that the alignment between has a
weaker on site weight s000 and, hence, more weight at the non-local elements com-
pared to matched. For comparison, M = ∞ is shown here which results from one-
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coarse grid index i between 1 2 3
dense grid index d 0 1 2 3 4 5 6
coarse grid index i matched 1 2 3

Table B.2.: Two highly symmetric possibilities to align an M× denser
grid to a coarse grid, shown for a grid refinement factorM = 2.

dimensional integrals. The one-site and off-site weights are found in between the
two grid alignment schemes.

# matchedM=2 betweenM=2 M=∞
1 s000 center 421.88 244.14 293.58
6 s100 faces 70.31 73.24 73.39

12 s110 edges 11.72 21.97 18.35
8 s111 vertices 1.95 6.59 4.59

Table B.3.: 1000×Weights of the grid point overlap operator ŝ for lin-
ear interpolation in 3D. One can observe that the matched stencil shows
a stronger on-site weights than for between. However, the matched grid
alignment is disadvantageous when it comes to non-periodic bound-
aries. We therefore apply the between scheme. The weights for M = ∞

are products of the 1D-weights in Table B.1.





APPENDIX C

IMPLEMENTATION DETAILS

C.0.7. Bandstructure calculation

For a given (at best converged) local potential, jüRS can calculate the bandstructure.
Therefore, a densely sampled path is generated passing along a set of predefined
edge points in the Brillouin zone. The path edges are defined in the input file via
the block keyword jüRS Input Syntax: kpath

followed by a list of edges specifying the three internal coordinates ∈ [−1
2 , 1

2 ] and
an optional label. A repetition of the same block keyword closed the list of k-edges.
The calculation is parallelized over the available processes inσk-parallelization. As
an example, Figure C.1 shows the band structure of a hydrogen-saturated graphene
ribbon C14H2 along the transport direction. A red dashed line indicates the Fermi
level and a band gap of 4.8 eV at the Γ -point and 1 eV at the X-point.

C.1. Accuracy Benchmark

As a test of the accuracy of the implementation of jüRS, we performed two equiv-
alent calculations with the implementation of the full-potential LAPW method
FLEUR [20] and jüRS for graphene sheets with an interlayer separation of 6.7 Å
and a bond length of 1.415 Å. jüRS is restricted to rectangular unit cells such that
the smallest calculation contains four atoms which are symmetry equivalent. Al-
though the LAPW code could exploit the symmetry better, the setup with four
atoms per unit cell has been chosen for a simpler comparison. Figure C.2 shows the
bands structures calculated with the two implementations (black jüRS, red FLEUR)
in excellent agreement.
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Figure C.1.: Bandstructure in y-direction of a graphene ribbon with an
interlayer separation ofd = 6.7 Å and a bond length ofa = 1.415 Å, com-
puted with the PZ81 functional. The cell of this setup contains C14H2,
so 16 atoms, and is strongly elongated in the x-direction: 22.64× 2.45×
6.7 Å.

C.1.1. Fuzzy-Cell Decomposition

Performing molecular dynamics (MD) or structural relaxation with full self-consistent
for each set of atomic positions is very expensive, and unfortunately neither the
MD steps nor the SC cycles can be parallelized. However, information about the
density can be reused as a better start guess density for the next iteration providing
that the core did not move or relax much. This leads necessarily to a small time
step and thus many MD steps, keeping the system close to self-consistency and
thus electronically always in the ground state. The method proposed by Car and
Parinello [38] does not iterate to find the electronic ground state at each MD step
due to the underlying assumption that starting from a self-consistent electronic
state an adiabatic movement of the ions will not excite the system electronically.
This might hold in many cases, but is a potential risk. Applying a large time step
in order to find, for example, the ground state structure by damped MD, we have to
iterate in the SC density scheme. Therefore we need an educated way of reusing the
density and maybe also wave functions of the last MD step as a better starting point.
A useful but expensive way is to change from the uniform real space grid to a set
of radial grids inside a certain radius that covers e.g. the nearest bond neighbors.
This radial grid would represent the radial component of the function for different
Yℓm so ρℓm(r). In a sense, this basis is similar to those used in KKR [103, 104], except
that a useful shape function would require a smoother transition from one Voronoi
polyhedron to the next one than a well defined plane in space. One approach is the
so called fuzzy-cell method [50]. Each spatial point is assigned weights wa

fuzzy(r)
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Figure C.2.: Structure and bandstructure of a graphene sheet with an
interlayer separation of d = 6.7 Å and a bond length of a = 1.415 Å,
computed with the PZ81 functional. The smallest unit cell of this setup
contains 2 atoms and has non-orthogonal unit vectors (indicated in red
in the left pictogram). The structure shows the orthorhombic real-space
cell of 4.25 × 2.45 × 6.7 Å containing 4 atoms. The black bandstructure
has been calculated with jüRS whereas the red bandstructure has been
evaluated using the FLEUR code for comparison, an implementation of
the full-potential linearized augmented plane-wave method [20]. Due
to the doubled unit cell, folding of the reciprocal space leads to 16 occu-
pied bands, twice as many as in the smallest unit cell.
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of each atom a. One already sees, that this is not efficient in terms of memory and
time for the setup, storing all weights explicitly. Depending on how the weight
functions decay rate for larger distances from the atomic centers, only the nearest
atoms will have a significant contribution to a grid point at r. The smoothness of
this weight function controls the smoothness of these mask functions. If one uses
a sharp maximum function, such that each grid points only belongs to one atom,
the Voronoi construction is recovered.

The transformed density on the radial grids thus is
∑

a ρ
a
ℓm(|r − Ra|)wa

fuzzy(r).
We expect that this representation of the density is very suitable for having a good
start guess after moving the atomic positions Ra, if we just update wa

fuzzy(r) and
keep the radial functions constant. Especially some kind of atomic occupations are
preserved. Therefore, the cutoff in ℓ should at least include the highest occupied
angular momentum of the valence state. The sampling of the radial components
can be done in Bessel-space (c.f. q-space) or in real-space on an exponential grid
which is good for the full density whereas for the smooth density, equidistant grid
or even a grid that get coarser towards the origin are suitable.

Displacement interpolation

During structural relaxation, most of the force calculations are preformed with
very similar atomic coordinates, i.e. the atoms move only little between to self-
consistent calculations, especially close to convergence. An aim of the displace-
ment interpolation is used to adopt a function in space to new atomic coordinates,
knowing their displacement ∆Ra. This is particularly useful because using the old
density (which is certainly better than atomic densities) as start density with new
positions would lead to ap-like contribution of the density inside the atomic sphere.
The p-like character arises from the displacement of the sphere with respect to the
mostly spherical, s-like density. This can be seen by expanding the gradient oper-
ator in spherical harmonic functions. The p-like density would disturb the system
such that it will require more self-consistency iterations until it converges again.

The local displacement field is found by

d(r) =

∑
aw

a(r)∆Ra

∑
aw

a(r)
(C.1)

where the weightswa
fuzzy(r) create a fuzzy mask defining the vicinity of each atom.

Various shapes for this mask can be used. Gaussian and Weinert functions with
the finite range Rmask

max are implemented. Only points in space that are within Rmask
max

of the atomic position will have a non-zero weight for the associated displacement.

The new function is then evaluated at the displaced grid point positions using
interpolation.

nnew(r) = s · I {nold(r − d[r])} (C.2)
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with the scale factor s. The interpolation operator I is needed here because the
displacements are of continuous length and direction so that they will most likely
not match an integer multiple of the grid spacing. The implementation for this
non-local operation is limited to a maximum displacement given by the maximal
halo thickness (c.f. g%nh) times the grid spacing h (c.f. g%h) which again is limited
by the sizes of the neigboring domains.

One can observe, how the density moves with the atoms that are closest. The
density value of e.g. a covalent bond between two atoms will not be modified
by this algorithm, even though we expect an increase when shrinking the atomic
separation of the bond partners (which should than be the outcome of the next
self-consistent density). Note that this algorithm is so far not norm-conserving. In
order to find a density with the same norm, we could simply apply a global scale
factor s such that ∫

V

d3r nnew(r) =

∫

V

d3r ′ nold(r
′) (C.3)

The global character of this scaling is then equivalent to a non-local charge transfer
that again would imply an unnecessary perturbation of the system. We therefore
demand the scale factor to be local and fullfill the differential form of the equation

d3rnnew(r) = d3r ′ nold(r
′) = d3rnold(r − d(r)) · d

dr
(r − d(r)) (C.4)

where we can read off the local scaling factor s(r) as

s(r) = 1 − div d(r). (C.5)

To compute the divergence of the displacement field d(r)we weight the displace-
ment vector of each atom with the atomic weights and normalize at each grid point
r:

d[r] =

∑
aw

a(r)∆Ra

∑
aw

a(r)
. (C.6)

Then, the divergence of the displacement field is given by

∇ ·d(r) = [
∑

a∇wa(r) ·∆Ra] [
∑

aw
a(r)] − [

∑
aw

a(r)∆Ra] · [∑a ∇wa(r)]

[
∑

aw
a(r)]2

. (C.7)

For the weight function wa(r) we use a function that depends on the distance
from the atom a only, i.e. wa(r) = w(|ra|) where ra = r − Ra. The shape of w(r)
can be chosen differently and could, in principle also be varied depending on the
species of atom a. However, for w(r) we use either Weinert-like strictly localized
function

w(r) =

(

1 −
r2

R2

)NW

for |r| < R (C.8)
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where the Weinert exponent NW and the localization radius R can be customized
according to the atomic species. The gradient expansion of wa(r) then reads

∇wa(r) = NW

(

1 −
r · r
R2

)NW−1
(

−
2r

R2

)

(C.9)

Alternatively, we can use a strongly decaying Gaussian function for w(r):

w(r) = e− r2

2R2 , (C.10)

∇wa(r) = wa
(

−
r

R2

)

(C.11)

where R is chosen as 2.0 by default.

C.1.2. Band Reordering

During the application of the CG-method for solving the KS-equation, it is neces-
sary to reorthogonalize the KS-state at hand to the states lower in energy. However,
the changing effective potential can affect that two states may change their energy
order. To keep the explicit Gram-Schmidt reorthogonalization simple, we want
all states lower in energy to be stored in a continuous fashion which requires re-
ordering of the states after the CG-band update. Wave functions, however, tend to
have a rather large memory footprint, so we try to minimize the number of copy-
ing operations. The first step is to sort the given list of energy eigenvalues [ǫ]unsorted

and find [ǫ]sorted. During sorting, we keep the permutation information P, such
that P[ǫ]sorted = [ǫ]unsorted. We then invert the permutation. The reordering pro-
cess acting on the states requires a single temporary slot. The process starts off by
copying the first element i in P−1 that is off-diagonal, i.e. P−1(i) 6= i and copies
this to the temporary slot. Further, the memory position i is overwritten by the
elements P−1(i) that needs to be moved there. The next index i is the given by the
last memory position that has been copied, i.e. P−1(i) in this case. Simultaneously,
a copy P ′ of the permutation P is modified the same way as the memory block of
KS-states. This iteration continues until the n-fold permutation has been resolved.
However, an unsorted list may contain more than one string of permutations, so
that we have to restart at finding remaining off-diagonal entries in the modified
permutation P ′.

C.1.3. Combindices

Combindex stands for combined index and is an efficient method to address non-
rectangular memory. An example is storing a triangularly shaped portion of mem-
ory as the upper triangular part of a symmetric/hermitian matrix that contains
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only 1
2N(N + 1) independent elements rather than N2, where N is the matrix di-

mension. Combindices are used for several quantities related to the atomic setup,
such as quantum numbers. Especially in the code parts where PAW quantities are
addressed, many quantities depend on quantum numbers.

The inl-Combindex

The inl index combines the principle quantum number n that starts from 1 and
the angular momentum quantum number ℓ ∈ [0,n − 1], usually associated with
the angular momentum characters (s,p,d, f, . . . ). Explicit values are listed in Table
C.1.

inl=0

for n in 1...7

for ell in 0...n-1

inl++

ℓ 0 1 2 3 4 5 6 . . .
n s p d f g h i . . .
1 1
2 2 3
3 4 5 6
4 7 8 9 10
5 11 12 13 14 15
6 16 17 18 19 20 21
7 22 23 24 25 26 27 28
...

Table C.1.: Combindex inl for indexing atomic orbitals of an isolated,
spherically symmetric potential (m-degeneracy). inl= 1

2n(n−1)+ℓ+1

The ilm-Combindex

The ilm index combines the the angular momentum quantum number ℓ ∈ [0,n−1],
usually associated with the angular momentum character (s,p,d, f, . . . ), with the
so-called magnetic quantum numberm ∈ [−ℓ, ℓ]. This index is used to address the
spherical harmonic function Yℓm, especially their real-valued linear combinations.
Explicit values are listed in Table C.2.

ilm=0
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for ell in 0...6

for emm in -ell...ell

ilm++

m -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
ℓ

0 s 1
1 p 2 3 4
2 d 5 6 7 8 9
3 f 10 11 12 13 14 15 16
4 g 17 18 19 20 21 22 23 24 25
5 h 26 27 28 29 30 31 32 33 34 35 36
6 i 37 38 39 40 41 42 43 44 45 46 47 48 49
...

Table C.2.: Combindex ilm for indexing Yℓm. ilm = ℓ2 + ℓ+m+ 1

The iln-Combindex and ilnm-Combindex

The iln index combines the the angular momentum quantum number ℓ ∈ [0,n−1],
associated with the angular momentum character (s,p,d, f, . . . ), and the pseudo
quantum number enn. enn counts the number of partial wave that are involved in
the PAW-transformation. Since more than one partial waves are often associated to
projectors of states higher in energy, enn > 1 is denoted by enn-1 stars * following
the angular momentum character. The maximum of enn is stored in s%nn(ell)

and may differ for each ell, such that the iln-combindex will be generated by the
following pseudo-code, but we cannot display a constant table here:

iln=0

for ell in 0...maxell

for enn in 1...s%nn(ell)

iln++

The ilnm extends the iln combindex by the emm-quantum number:

ilnm=0

for ell in 0...ellmax

for enn in 1...s%nn(ell)

for emm in -ell...ell

ilnm++
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C.1.4. LCAO Start Guess

The diagonalization of the Kohn-Sham Hamiltonian in a large basis representation
as given in real-space is usually performed by iterative diagonalization schemes
and is applied to the lowest states only. However, start vectors are required in any
iterative method. Atomic orbitals from the radially symmetric all-electron calcu-
lation obviously are a simple and good choice since they show the correct asymp-
totic behavior at both, the origin and the tail. Furthermore, atomic orbitals are
orthogonal if belonging to the same atomic center and exhibit a strong degree of
localization in the region of the atom. The chance of two atomic orbitals on two
different atoms leading to a linearly dependent set of start vectors is tiny. Now,
a setup of initial guess wave functions that does not prefer any spatial direction
requires a full shell of atomic orbitals on each atom hosts electrons of that corre-
sponding ℓ-character, i.e. 2ℓ+1 orbitals. In many cases, the optimal number of states
then isNopt

bands =
∑

a

∑
{ℓa}

2ℓ+ 1. A strong physical limitation to large calculations
are the number of bands for two reasons. In jüRS, all KS wave functions are kept
in memory during the computation such that we easily hit a hard limit given by
memory. Solutions including temporary storage on the file system are thinkable,
but will produce a lot of IO. Secondly, the scaling of the diagonalization methods
is quadratic with respect the number of bands. Hence, we only want to work with
the number of occupied states.

A cheap way to generate a set of start vectors that covers only the number of oc-
cupied states includes information about the structure of the system for the linear
combinations of atomic orbitals. This means, the diagonalization in the 0th SCF
iteration is performed in a basis of local orbitals - which is cheaper than the fully
extended wave functions.

The ingredients to a LCAO step are described below.

Slater-Koster Integrals for an LCAO Start Guess

In an LCAO-type (linear combination of atomic orbitals) ansatz for finding a rea-
sonable start guess wave functions, several convolution integrals of two functions
given on a radial grid times a single spherical harmonic function which are not
centered at the same origin are needed [105]. Let us assume the two function
f0(r) = f0(|r|) Yℓ0m0(r̂) and f1(r) = f1(|R − r|) Yℓ1m1

̂(R − r)

One way to compute these integrals is to sample to functions on a 3dim real
space grid in that part of space where both functions are non-zero. A lot of com-
putational effort can be avoided when we consider the displacement vector R only
to be pointing in the z-direction of the coordinate system (R = R ez). Then the in-
tegrals can be solved in cylindrical coordinates exploiting that the dependence on
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the horizontal angle φ gives a δm0m1 (in both notations: real and complex spheri-
cal harmonics). Note that this δ does not come together with a δℓ0ℓ1 since spherical
harmonic functions are only orthogonal when there are centered at the same ori-
gin. The advantage of the cylindrical coordinates is that the integration left is now
2-dimensional:

∫

d3r f0(r)f1(r) = 2πδm0m1

∫zmax

zmin

dz
∫rmax

0
drxy rxy f0(rxy, z)f1(rxy, z) (C.12)

with

fi(rxy, z) = fi(ri)Yℓ|m|(rxy, zi), i ∈ {0, 1} (C.13)

where z0 = z − 1
2R, z1 = z + 1

2R, r0 =
√

r2
xy + (z− 1

2R)
2 and r1 =

√

r2
xy + (z+ 1

2R)
2.

Now R is the length of the displacement vector. This integration can be executed
easily by sampling a rectangular box of the two coordinates z and rxy in the overlap
region only. The memory requirement of this procedure is especially modest since
the sampled functions do not need to be stored.

Now we have found an expression for the overlap integral of two atomic orbitals
when the displacement between the two origins points along the z-direction in the
definition of the spherical harmonic functions. Then only the following integrals
have to be evaluated:

ℓ 0 1 1 2 2 2
|m| 0 0 1 0 1 2

0 0 s0s0(R) p1s0(R) d2s0(R)

1 0 s0p1(R) p1p1(R) d2p1(R)

1 1 p0p0(R) d1p0(R)

2 0 s0d2(R) p1d2(R) d2d2(R)

2 1 p0d1(R) d1d1(R)

2 2 d0d0(R)

Table C.3.: Non-zero Slater-Koster integrals to be evaluated in cylindri-
cal coordinates. The indices 0, 1, 2 label the powers of the associated Leg-
endre polynomials contained in the spherical harmonic functions and
so equal ℓ− |m|. R is the scalar distance between the two atomic centers.

In general, our displacement vector R will not point into the z-direction of the
coordinate system. Therefore, we have to apply the Wigner rotation matrices as
transformation for each ℓ-subspace of spherical harmonics. In addition, the ana-
lytical considerations above were made in terms of complex spherical harmonics
whereas the main code uses real spherical harmonics. The indices of the real spher-
ical harmonics will here be labelled with µ and complex withm, respectively. Then,
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∆

A0 A1

z

rxy

rmax

zmin zmax

Figure C.3.: Two-center integral in cylindrical coordinates z and rxy.

the overlap of atomic orbitals is given by

〈f0 · Yℓ0µ0(0)|f1 · Yℓ1µ1(R)〉 = 〈Yℓ0µ0 |Yℓ0m0〉〈Yℓ0m0 |Yℓ0m
′
0
(R̂)〉 (C.14)

× 〈f0 ·Yℓ0m
′
0
(0)|f1 ·Yℓ1m

′
1
(|R|)〉 (C.15)

× 〈Yℓ1m
′
1
(R̂)|Yℓ1m1〉〈Yℓ1m1 |Yℓ1µ1〉 (C.16)

where the indices m0,m ′
0,m

′
1 and m1 are contracted. The Wigner rotation matrix

elements only depend on the direction of the displacement vector R̂ and the over-
lap integral in the rotated coordinate system only depends on the length |R|. The
transformation matrices m → µ (complex to real) are constants (the same as used
in Section C.1.8).

The integral in cylindrical coordinates favors the reduction of the complex spher-
ical harmonics rℓYℓm to the following simplified spherical harmonics:

ℓ m ilm Prefactor Formula

0 0 1
√

1
4π 1

1 -1 2
√

3
8π rxy

1 0 3
√

3
4π z

1 1 4
√

3
8π -rxy

2 -2 5
√

15
32π r2

xy

2 -1 6
√

15
8π rxyz

2 0 7
√

5
16π 2z2 − r2

xy

2 1 8
√

15
8π -rxyz

2 2 9
√

15
32π r2

xy

Table C.4.: Simplified expressions of reduced rℓYℓm(r) in cylindrical co-
ordinates z and rxy.
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Figure C.4.: Expressions rℓYℓm in cylindrical coordinates rxy and z (ver-
tical). Although rxy > 0, it is shown for both signs to demonstrate
the symmetry. A Gaussian radial decay function and arbitrarily scaling
have been employed here.

Gaussian overlap

A well suited basis for the radial functions are Gaussian functions e−kir
2 since then,

Equation (C.12) can be computed analytically and without rmax from the basis in-
tegrals

Iz =

∫∞

−∞

dz e−(k0+k1)z
2+R(k0−k1)zzPz (C.17)

and

Ir =

∫∞

0
dr e−(k0+k1)r

2
rPr+1 (C.18)

with the integer polynomial powers Pz,Pr ∈ [0, ℓ0 + ℓ1]. The original integral reads

I =

∫∫∫∞

−∞

dxdydz e−k0(r−R0)
2
[rℓ0YL0 ](r − R0) · e−k1(r−R1)

2
[rℓ1YL1 ](r − R1) (C.19)

where we chose the origin of the coordinate system such that R0 = − k1
k0+k1

(

R1 − R0
)

and R1 =
k0

k0+k1

(

R1 − R0
)

. This effects that the linear term k0R0 +k1R1 in the expo-
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nent vanishes. Then

I = e
−

k0k1
k0+k1

(R1−R0)
2

︸ ︷︷ ︸
decay factor

∫∫∫∞

−∞

dxdydz e−(k0+k1)r2
[rℓ0YL0](r − R0) · [rℓ1YL1](r − R1)

(C.20)

Now we are left with linear combinations of integrals of the type

∫

dx e−kx2
xp =






√

π
k

p = 0

0 p odd
p−1
2k

∫
dx e−kx2

xp−2 p > 0 and p even

(C.21)

C.1.5. APW Method of Soler & Williams

The implementation of the Linearized Augmented Plane Wave (LAPW) method by
Soler and Williams [37] shows a striking similarity with the PAW method. Espe-
cially, a fast convergence of the results with respect the cutoff parameter ℓcut for the
angular momentum expansion in the augmentation spheres is reported. A similar
ℓcut = ℓphys.+1, as used in the PAW method, seems sufficient here. ℓphys. denotes the
physical maximum ℓ, i.e. 0 for elements of group one in the periodic table, 1 for
p-elements, 2 for transition metals and 3 for rare earth elements. The difference
to conventional implementations of the LAPW method is that the plane waves
are allowed to penetrate the spheres which brings this method closer to PAW in
combination with plane waves (PW). Therefore, we discuss the action of the PAW
transformation onto PWs as basis functions for the smooth waves.

PAW Transformation on Plane Waves

The PAW transformation has been defined by Blöchl [22] as

T = 1 +
∑

a

Ta = 1 +
∑

aLp

|φa
pL − φ̃a

pL〉〈p̃apL|.

Applied to a PW eiKr, we find a set of basis functions χ for PW-PAW

χK(r) =
1√
Ω

eiKr +
∑

aLp

capLK

(

φa
pℓǫ(|r

a|) − φ̃a
pℓ(|r

a|)
)

YL(r̂a)

where ra = r − Ra and the projection coefficients cwith

capLK = 〈p̃apL|eiKr〉 = 4πiℓeiKRa

Y∗
L(K̂)

Ra∫

0

drr2 jℓ(|K|r)p̃apℓ(r)
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Usually, the smooth partial waves φ̃a
pℓ(r) are chosen according to a1pjℓ(k1pr) +

a2pjℓ(k2pr) where the four degrees of freedom are determined such that φ̃a
pℓ(R

a)

matches φa
pℓ(R

a) in value, first, second and third derivative. A usual choice for
precise PAW calculations are two projectors per ℓ.

An alternative way of matching is assuming the smooth partial wave φ̃a
ℓ|K| =

jℓ(|K|r) and finding a true partial wave φa
ℓ|K|ǫ, with ǫ such that the logarithmic

derivative coincides. The value can be match by simple scaling. In case the true
spherical potential Va

0 (r) that is applied in the outwards integration for φa
ℓ|K|ǫ is

aligned such that Va
0 (R

a) = 0 vanishes at the sphere boundary, ǫ should coincide
with 1

2 |K|2. An approximation to simplify this procedure is the well known energy
linearization, where we use the solution of the full spherical potential at a fixed
energy parameter ǫ0 and its energy derivative to find a linear combination of the
two functions that matches the logarithmic derivative of the Bessel function.

In the original PAW formalism smooth partial waves, true partial waves and pro-
jector functions are not |K|-dependent. However, following the ideas proposed
above, we find an APW basis function

χK(r) =
1√
Ω

eiKr +
∑

aLp

4π√
Ω

iℓeiKRa

Y∗
L(K̂) (φa

ℓ [ǫℓ(|K|)](|ra|) − jℓ(|K||ra|))YL(r̂a)

where ǫℓ(|K|) has to be determined such that the logarithmic derivative of the out-
wards integrated solution of the spherical potential Va

ref(r)matches the logarithmic
derivative of the Bessel function jℓ(|K|r) at r = Ra. Proper scaling ofφa is assumed.

We introduce a set of basis of functions χ that consist each of one PW augmented
with a local orbital (LO) which is tailor made for this PW, i.e.

χk+G(r) = ei(k+G)r +
∑

aL

ΦaL
k+G(r) (C.22)

where ΦaL
K (r) =

2∑

p=0
caLp

K uK
aLp(|r

a|)YL(r̂
a) with K = |K| and ra = r − Ra. The

index p ∈ [0, 2] samples three special radial functions. For p=1, uK
aLp(r) is the

homogeneous solution ua
ℓ (r) of the spherical potential in the sphere of atoms a,

uK
aL2(r) is the corresponding energy derivative u̇a

ℓ (r) (inhomogeneous solution)
and uK

aL0(r) = jℓ(Kr) the spherical Bessel function that results from a Rayleigh
expansion of the PW eiKr. Note that uK

aLp(r) for p=1 and p=2, i.e. ua
ℓ (r) and u̇a

ℓ (r),
are actually independent of K and m (L is short for ℓm). The latter leads to the
effect that all three radial functions are independent of m and thus we can write
uK
aℓp(r) instead of uK

aLp(r). Furthermore, jℓ(Kr) is in principle independent of the
atom type of a, however in practice we might use radial support grids that are
customized for each atom type.

We define the atomic sphere Sa by |r − Ra| < Ra the position of the nucleus Ra

and a sphere radius Ra chosen such that spheres show no spatial overlap. Now the
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coefficients caLp
K are determined such thatΦaL

K (r) can be restricted to the sphere Sa

and χK(r) is continuous in value and first derivative. To achieve this, it is required
that the value of the LO vanishes at the sphere boundary, i.e.

2∑

p=0

caLp
K uK

aℓp(r)
∣

∣

r=Ra = 0 (C.23)

and so the derivative with respect to the radius

2∑

p=0

caLp
K

d
dr
uK
aℓp(r)

∣

∣

r=Ra = 0. (C.24)

This can be ensured by the matching procedure that is standart in APW methods:

caLp=1
K = 4πiℓeiKRa

Y∗
L(K̂)

1
W

[u̇ℓ(R
a)j ′ℓ(KR

a) − u̇ ′
ℓ(R

a)jℓ(KR
a)] (C.25)

caLp=2
K = −4πiℓeiKRa

Y∗
L(K̂)

1
W

[uℓ(R
a)j ′ℓ(KR

a) − u ′
ℓ(R

a)jℓ(KR
a)] (C.26)

Here,W is the Wronskian determinant defined as

W = u̇ℓ(R
a)u ′

ℓ(R
a) − uℓ(R

a)u̇ ′
ℓ(R

a) (C.27)

and the p=0-coefficient is given by

caLp=0
K = −4πiℓeiKRa

Y∗
L(K̂) (C.28)

Observe the minus sign here which cancels out the plane wave parts in the sphere
for ℓ 6 ℓcut. Optionally, we could further demand that the second radial derivative
also vanishes at the sphere boundary. This would require that we take a third
atomic solution üℓ(r) (p=3) into account.

Now regarding the overlap matrix Sij = 〈χKi
|χKj

〉 we have to evaluate three dif-
ferent expressions: PW-PW, PW-LO and LO-LO. Let us start by PW-PW:

SPW−PW
ij =

∫

V

d3r ei(Kj−Ki)r = V δij

Fairly simple are also the LO-LO terms

SLO−LO
ij =

∫

V

d3r
∑

aL

∑

a ′L ′

Φa ′L ′
Ki

(r)ΦaL
Kj
(r) (C.29)

The localization of the Φs to the non-overlapping atomic spheres gives us δaa ′ .
Being left with an integration over each sphere Sa, we can switch to spherical co-
ordinates

=
∑

a

∑

LL ′pp ′

c∗aLp
Ki

caL ′p ′

Kj

Ra∫

0

dr r2 uKi

aLp(r)u
Kj

aL ′p ′(r)

∫

dΩY∗
L ′(Ω)YL(Ω)

(C.30)
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which simplifies to

=
∑

a

∑

Lpp ′

c∗aLp
Ki

caLp ′

Kj
〈uKj

|uKi
〉aℓ
pp ′δmm ′ (C.31)

Where the inner part (p=1 and p=2) of the metric 〈uKj
|uKi

〉aℓ
pp ′ does not depend

on Ks:

〈uKj
|uKi

〉aℓ =







〈jℓ(Kj)|jℓ(Ki)〉 〈ua
ℓ |jℓ(Ki)〉 〈u̇a

ℓ |jℓ(Ki)〉
〈jℓ(Kj)|u

a
ℓ 〉 〈ua

ℓ |u
a
ℓ 〉 〈u̇a

ℓ |u
a
ℓ 〉

〈jℓ(Kj)|u̇
a
ℓ 〉 〈ua

ℓ |u̇
a
ℓ 〉 〈u̇a

ℓ |u̇
a
ℓ 〉






(C.32)

Note that the integral 〈jℓ(Kj)|jℓ(Ki)〉 depends in principle only on Ra.

Now let us consider the tricky part: PW-LO.

SPW−LO
ij =

∫

V

d3r e−iKir
∑

aL

ΦaL
Kj

(r) (C.33)

Here again, we find the Rayleigh expansion for the PW and exploit the orthogonal-
ity of the spherical harmonics

=
∑

aLp

4π(−i)ℓe−iKiR
a

YL(K̂i) c
aLp
Kj

Ra∫

0

dr r2 jℓ(Kir)u
Kj

aLp(r) (C.34)

with the definition from above, we can identify our p=0-coefficient and the metric

= −
∑

aLp

c∗aLp
Ki

caL0
Kj

〈uKj
|uKi

〉aℓ
p0 (C.35)

and thus the LO-PW term (PW and LO interchanged) is

SLO−PW
ij = −

∑

aLp

caL0
Ki
c∗aLp

Kj
〈uKj

|uKi
〉aℓ

0p (C.36)

We can thus cancel out terms and find

Sij = Vδij +
∑

aL

(

2∑

pp ′=1

c∗aLp
Ki

caLp ′

Kj
〈upℓ|up ′ℓ〉a − c∗aL0

Ki
caL0

Kj
〈jℓ(Kj)|jℓ(Ki)〉a

)

(C.37)
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The overlap integral of two spherical Bessel functions is given by

Jℓ(q1,q2) = R
3
a

∫ 1

0
dr r2 jℓ(q1r) jℓ(q2r) (C.38)

J0(q1,q2) = R
3
a

q1 q2

q2
2 − q

2
1
(q1 cos(q1) sin(q2) − q2 cos(q2) sin(q1)) (C.39)

J1(q1,q2) = R
3
a (J0(q1,q2) − sin(q1) sin(q2)) (C.40)

J2(q1,q2) = R
3
a (J0(q1,q2) − 3 (cos(q1) − sin(q1)/q1) (cos(q2) − sin(q2)/q2))

(C.41)

where q1 = K1Ra and q2 = K2Ra, respectively.

These expressions appear to be irregular for the limit q1 → q2, but we can find
simplified regular expressions for these cases:

J0(q,q) = R3
a

(

1
2
q (q + cos(q) sin(q))

)

(C.42)

J1(q,q) = R3
a

(

1
2
q (q + cos(q) sin(q)) − sin2(q)

)

(C.43)

J2(q,q) = R3
a

(

1
2
q (q + cos(q) sin(q)) − 3

)

(C.44)

(C.45)

C.1.6. Convergence Acceleration

Instability of Metallic Systems

The SCF convergence of systems with a non-vanishing density of states at the Fermi
level EF may be difficult due to the instability arising from reoccupation. Let us as-
sume a simpler system that is found by neglecting orbital relaxation, kinetic energy
and the exchange correlation potential. We are left with the external potential (e.g.
of atomic cores) and the Hartree potential. Let us further assume that the external
potential has eigenstates with a high degeneracy close to the Fermi level. Then the
Hartree potential is defined by

VH[n](r) =

∫

V

d3r ′ n(r
′)

|r − r ′|
(isolated), (C.46)

VH[n](G) =
4π
G2n(G), |G| > 0 (periodic) (C.47)

where G are reciprocal lattice vectors. The solution of the KS-equation returns the
eigenstates Ψi(r) and eigenenergies Ei and the new density is found by

n(r) =
∑

i

fi(Ei − EF, kBT)|Ψi(r)|
2. (C.48)
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Now let us assume that the density is self consistent. To analyze the stability, we
can introduce a slight perturbation of any of these quantities, VH(r), Ψi(r), Ei, fi
or n(r). We will start by a change in the local potential ∆Vpert(r). In first order, the
energy eigenvalues will change according to

∆Ei =

∫

d3r |Ψi(r)|
2 ∆Vpert(r) + O(∆2) (C.49)

so if the potential change is mostly positive (negative) where most of the state’s
weight is located, we will have a positive (negative) change of the eigenvalue, re-
spectively. The change of the occupation numbers fi is directly related to the
change in the cooresponding energies, i.e.

∆fi =
df(Ei − EF, kBT)

dEi
∆Ei + O(∆2). (C.50)

We neglected the first order relaxation of the orbitals ∆Ψi(r) here, since the change
in density ∆nr(r) that is induced by reoccupation ( index r) can be much stronger
than the effect of orbital relaxation. We thus find a new density nnew(r) = n(r) +

α∆nr(r) where α is the straight mixing coefficient. The change of the Hartree po-
tential is thus given by Equation C.46. The non-local Coulomb kernel |r − r ′|−1 is
difficult to interpret in a real-space representation, however, we can say that val-
ues are high (low) for short (long) distances, respectively. So we are left with the
coupled equations

∆nr(r) =
∑

i

∆fi|Ψi(r)|
2 (C.51)

≈
∑

i

df(Ei − EF, kBT)

dEi
|Ψi(r)|

2 ∆Ei (C.52)

and

∆Ei = α

∫

V

d3r|Ψi(r)|
2VH [∆nr] (r) (C.53)

= α

∫

V

d3r|Ψi(r)|
2VH

[

∑

j

∆fj|Ψj|
2

]

(r) (C.54)

We see that the change in density ∆nr(r) due to reoccupation is present on both
sides of the equation, whereas on the right side it is involved in the integration over
r ′ for the Hartree potential. So for the non-periodic case this non-linear equation
involves the integrals

Cij =

∫∫

V

d3rd3r ′ |Ψi(r)|
2|Ψj(r

′)|2

|r − r ′|
(C.55)
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Further, we see that the coupling involves the derivative of the Fermi-Dirac dis-
tribution function which is negative and proportional to the inverse temperature
β = (kBT)

−1. The couplings therefore lead to faster re-occupations, the smaller the
smearing temperature T is chosen.

0
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Figure C.5.: Bare Coulomb potential in a 1DEG for isolated and periodic
boundary conditions.
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Figure C.6.: Simplified model for reoccupation dynamics. Starting from
an even distribution of occupation 1

2 (black dashed line), the undamped
system tends to oscillate between two states (red solid lines). The
damped system tends to the equilibrium solution shown in blue.

Density Mixing

There are several ways to lead the self-consistency cycle towards convergence. An
important aspect certainly is the mixing of old and new potentials or densities. The
simplest form herein is straight mixing of the (true) density

nnext
v (r) = (1 − α)n(in)

v (r) + αn(out)
v (r) (C.56)
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where in many situations the value of α needs to be kept very small in order to
converge which also results in a huge number of steps needed until the residual
falls below a given threshold. However, in practice we do not deal with the true
density as a single quantity but rather the smooth density and the atomic density
matrices Da

ij

ñ(next)
v (r) = (1 − α)ñ(in)

v (r) + αñ(out)
v (r) ∀r, (C.57)

Da
(next) = (1 − α)Da

(in) + αD
a
(out) ∀a. (C.58)

Quasi-Newton methods for convergence acceleration

In higher order methods, inner products of density changes ∆n are required. Also
here, the true densities are important such that we need to define a metric for the
smooth quantities ñv(r) and Da

ij that reproduces the inner product of true quanti-
ties:

〈∆n1|∆n2〉 =
∫

V

d3r ∆n1(r)∆n2(r) (C.59)

=

∫

V

d3r ∆ñ1(r)∆ñ2(r)

+
∑

aijkl

∆Da
1,ij∆D

a
2,kl

(

Qa
ijkl − Q̃

a
ijkl

)

(C.60)

Qa
ijkl =

∫

Sa

d3r φa
i (r)φ

a
j (r)φ

a
k(r)φ

a
l (r) (C.61)

Q̃a
ijkl =

∫

Sa

d3r φ̃a
i (r)φ̃

a
j (r) φ̃

a
k(r)φ̃

a
l (r) (C.62)

Broyden mixing scheme

The combination of the iterative self-consistency cycles with the iterative and ap-
proximate solution of the eigenstates of the Kohn-Sham Hamiltonian leads to a
very sensitive interplay in the convergence behavior of the SC convergence. Start-
ing from a superposition of atomic densities and atomic orbitals as start wave func-
tions, it is obvious that these states are no eigenstates of the Hamiltonian with the
effective potential generated from the start density. In fact, we can find an LCAO-
type Hamiltonian in this first cycle as described in more detail in Section 4.4.3. The
number of self consistency iterations needed to converge the density residual de-
pends strongly on the method of density mixing. One can also mix the potentials
in a similar fashion but we will describe density mixing in this text. The simplest
method is straight (simple) mixing. The density of the next iteration i+1 is a com-
bination of the input density of iteration i and the output density of iteration i

nin
[i+1](r) = n

in
[i](r) + α

(

nout
[i] (r) − n

in
[i](r)

)

. (C.63)
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Straight mixing can only achieve a linear convergence behavior, i.e. the decay of
the residual R[i] defined by

R2
[i] =

1
V

∫

d3r
(

nout
[i] (r) − n

in
[i](r)

)2
(C.64)

is limited by α according to R[i+1] > (1 − α)R[i]. The residual is shown by the
dashed lines in Figure C.7 for an α of 1 %, 5 %, 10 %, 20 % and 30 %. In this semi-
logarithmic plot the linear convergence shows straigt lines converging faster for
larger values ofα. However, there is a critical, system dependent mixing parameter
αcrit. Exceeding α > αcrit will decelerate the convergence as visible for α = 50 %
or might even spoil the convergence completely as for α = 80 % (not shown). The
dependence of αcrit of the system is mostly governed by the density of states at
the Fermi level, EF, and the degree of localization of the states around EF. This
situation is discussed in detail in Section C.1.6.
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Figure C.7.: Reduction of the residuals of the density over the SCF cy-
cles for various mixing parameters α. The test system is an insulating
Oligothiophene molecule, S2C8H8. Black dashed lines show the linear
mixing scheme. Solid lines are color-coded according to their number
of Broyden history steps.

The class of second order methods promises an improved convergence behav-
ior in the quadratic region, i.e. close to the converged solution [106]. In principle,
second order methods should lead to a quadratic convergence. However, this is
not the case since the derivation of these methods assumes that the functional to
be minimized possesses a multi-dimensional quadratic minimum. For any den-
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sity that is not the converged ground-state density, the residual vector is thus as-
sumed to be a linear function of the response vector. Due the the non-linearity
in the exchange-correlation potential and reoccupation of orbitals, this does not
hold. However, the linearization is a better approximation the closer the system
is to convergence. Second order methods are based on constructing a history of
changes of the density over the previous SCF cycles. Each cycle extends the infor-
mation about the total energy surface in the phase space of all possible densities
a bit further. An approximate Jacobian of the density response function is com-
puted in a finite subspace, i.e. the densities of the previous cycles span the ex-
plored portion of the phase space. In order to avoid IO-operations jüRS keeps the
previous densities in memory. This, however, requires an limiting maximum of
history steps, Hmax. Figure C.7 shows the reduction of the residual for the mixing
parameters α ∈ {1 %, 5 %, 10 %, 20 %, 30 %, 50 %} and Hmax ∈ {2, 5, 9, 15, 19, 29}, col-
ored red, green blue, orange, brown and violet, respectively. At short histories we
can observe that the residual does not decay any further after the iteration number
has passed 4+Hmax. This becomes very clear for Hmax of 2 and 5 in the range 20 %
to 30 %. The offset of four iterations comes from the first iteration that does not
involve density mixing and three initial iterations of straight mixing. Comparing
only the cases of unreached history limitations (violet) we may observe that too
small values for α lead to a non-monotonous and slower convergence. This might
be caused by a deterioration of the signal-to-noise ratio of the response n[out]−n[in]

when multiplied with values as small as 1 %.

jüRS Input Syntax: mixing 0.4 Broyden 19

The SCF convergence within the Broyden mixing scheme [107, 108] is best for
our test system at α = 50 % and an unreached history limitation Hmax > 9 since
convergence (R[i] < 10−6 e/Bohr3) is reached after 13 SCF iterations.

The aforementioned approximate Jacobian needs to be inverted in order to guess
the next density change such that we get as close to the self-consistent solution
as possible with the given information about the total-energy surface. For this
Jacobian it is of major importance that the density response function nout −nin as a
function of nin is accurate. The output density is generated from the eigenstates of
the Hamiltonian which are computed with an iterative method. We thus have to
find a reasonable criterion for the quality of the eigenstates that is required to have
a sufficiently accurate response function. Too large errors in the response function
will lead to a erroneous and probably even singular Jacobian that will let the SCF
cycles diverge rather than converge.
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Preconditioning

The DIIS band update method optimizes the eigenvectors by adding a linear combi-
nation of resdual vectors. For a faster convergence of this method, preconditioning
of the residual vectors is useful. The best preconditioner is, of course, the inverse
of the problem. However, this is obviously not a practical ansatz. We want to
find a preconditioner which is independent of the problem and whose application
is cheap. With respect to the parallelization of the real-space grid in domain de-
composition, only a localized preconditioner is leads to favorable scaling. A very
simple and cheap precondition of this kind is given by two weights only, an on-site
weight of 1

2 and an off-site weight of 1
12 for each of the six cartesian nearest-neighbor

grid point. Figure C.8 shows the transmission of this preconditioner in terms of fre-
quencies. The transmission for low frequencies is unity and decays quadratically.
The maximum frequency in each direction, (100), (110) and (111), which can be
represented on an equidistant grid with grid spacing h is π

h
, π
h

√
2 and π

h

√
3, respec-

tively. The transmission functions for these values assumes 2
3 , 1

3 and 0, respectively.
This means, that higher frequencies are suppressed than lower ones.
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2/3

1
(100)
(110)
(111)

π
√

2 π
√

3π

Figure C.8.: Transmission of the sparse nearest-neighbor precondi-
tioner.

C.1.7. Localized Functions

The PAW formalism and the pseudocharge construction lead to two kinds on local-
ized functions, atomic projector functions and multipole compensator functions.
Localized functions F(r) in a sphere can always be expanded as a radial functions
times spherical harmonics, i.e.

F(r) =
∑

ℓm

fℓm(|r − R|)Yℓm(r̂ − R) (C.65)
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where R denotes the sphere center.

In the special case of projector functions that are generated from a spherically
symmetric pre-calculation, and for the compensation charges, we can drop the m-
index at the radial function fℓ due tom-degeneracy. The aim of projector function
is to project only onto one ℓ-symmetry and thus the expression reduces to a ra-
dial function times a full shell of spherical harmonic functions belonging to that
particular ℓ.

The spherical harmonics Yℓm(r̂) depend on sin- and cos-functions of the two
angles ϑ and ϕ. However, the evaluation of inverse trigonometric functions is re-
quired to find ϑ and ϕ from the components of the normalized vector r̂. The quan-
tity |r|ℓYℓm(r̂) on the other hand contains only powers of the vector components of r

and does not even require normalization by the vector length. For speeding up the
calculation, several division operations and evaluations of inverse trigonometric
functions can be avoided, if a separated representation is introduced as

F(r) =
∑

ℓm

[

fℓr
−ℓ
]

(|r − R|)[rℓYℓm](r − R). (C.66)

The function Ylmax_rl(ellmax, v) of the module harmonics returns the proper
values for ℓ less than or equal ELLMAX_IMPLEMENTED. Then all radial functions have
to be divided by the factor rℓ. This procedure can only take place, if the radial
function stays regular at the origin. However this is the case for all projector func-
tions, since these behave as rℓ in the limit r→ 0. The same applies for the true and
smooth partial waves, whereas the smooth partial waves are only represented on
to the cartesian grid for start guess wave functions. True partial waves can never
be represented properly on coarse real-space grids.

Derivative of localized functions

The evaluation of the force acting on the nuclei requires the computation of the
gradient with respect to the atomic origin Ra of several quantities. Especially the
localized function are to be derived. Assume a localized function F(r) consisting
of a radial function fℓ and one single spherical harmonic Yℓm.

∂F(r)

∂R
=
∂

∂R

(

fℓ(|r − R|)Yℓm(r̂ − R)
)

(C.67)

=
∂

∂R

(

[fℓr
−ℓ](|r − R|)[rℓYℓm](r − R)

)

(C.68)
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Figure C.9.: Example for the reduction of localized radial projector func-
tions to [fℓr

−ℓ] for Oxygen configured element O 2s* 2 2p* 2 3d |

1.3

separation as defined in Section C.1.7

∂F(r)

∂R
=
∂[fℓr

−ℓ](r)

∂r
· ∂r
∂R

· [rℓYℓm](r − R) + [fℓr
−ℓ](r) · ∂[r

ℓYℓm](r)

∂r
· ∂(r − R)

∂R
(C.69)

= −[fℓr
−ℓ] ′(|r − R|) · r − R

|r − R|
· [rℓYℓm](r − R) − [fℓr

−ℓ](|r − R|) · [rℓYℓm] ′(r − R)

(C.70)

exploiting that
∂r

∂R
=
∂|r − R|

∂R
= −

r − R

|r − R|
. (C.71)

The derived spherical harmonics [rℓYℓm] ′(r) are again three simple expressions
of the vector components of r. The function d_Ylmax_rl_dri(ellmax, v, derive2i)

of the module harmonics returns the corresponding values in analogy to the func-
tions introduced in C.1.7.

Implementation of spherical harmonics

The expression rℓYℓm of the real spherical harmonics are regular expressions of
the power ℓ in the components of r = [x,y, z]. Replacing cos(θ) by z

r
, sin(θ) cos(ϕ)

by x
r

and sin(θ) sin(ϕ) by y
r

we get the expression for the real spherical harmonic
functions shown in Table C.5.
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ℓ m ilm Prefactor Formula Name

0 0 1
√

1
4π 1 s

1 -1 2
√

3
4π x px

1 0 3
√

3
4π z pz

1 1 4
√

3
4π y py

2 -2 5
√

15
16π x2 − y2 eg

2 -1 6
√

15
4π zx t2g

2 0 7
√

5
16π 3z2 − r2 eg

2 1 8
√

15
4π yz t2g

2 2 9
√

15
4π xy t2g

3 -3 10
√

35
32π x(x2 − 3y2) f

3 -2 11
√

105
16π z(x2 − y2) f

3 -1 12
√

21
32π x(5z2 − r2) f

3 0 13
√

7
16π z(5z2 − 3r2) f

3 1 14
√

21
32π y(5z2 − r2) f

3 2 15
√

105
4π xyz f

3 3 16
√

35
32π y(3x2 − y2) f

Table C.5.: Simplified expressions of Yℓmrℓ(r)
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This way of implementing the spherical harmonic functions is advantageous in
terms of computational execution speed and simplicity of the force implementa-
tion: forces usually involve the three spatial derivatives of localized functions such
as the projector functions in the PAW method. The implementation of rℓYℓm(r) in
powers of the vector components of r makes it particularly simple to derive the the
cartesian coordinates.

ℓ m ilm Prefactor ∂
∂x

∂
∂y

∂
∂z

0 0 1
√

1
4π

1 -1 2
√

3
4π 1

1 0 3
√

3
4π 1

1 1 4
√

3
4π 1

2 -2 5
√

15
16π 2x −2y

2 -1 6
√

15
4π z x

2 0 7
√

5
16π −2x −2y 4z

2 1 8
√

15
4π z y

2 2 9
√

15
4π y x

Table C.6.: Simplified expressions of ∂
∂r [Yℓmr

ℓ](r)

C.1.8. Gaunt Coefficients

The Gaunt-coefficients allow to express the products of two spherical harmonic
functions defined on the same angles (ϑ,ϕ) in the basis of single spherical har-
monic functions again. Let us assume a function f(ϑ,ϕ) that is a product of only
two spherical harmonic functions Yℓ1m1(ϑ,ϕ) andYℓ2m2(ϑ,ϕ) and for simplicity choose
the prefactor to be unity:

f(ϑ,ϕ) = Yℓ1m1(ϑ,ϕ) ·Yℓ2m2(ϑ,ϕ) (C.72)

then the expansion of this function f in spherical harmonics reads

f(ϑ,ϕ) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

fℓm Yℓm(ϑ,ϕ) (C.73)
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with the expansion coefficients

fℓm = 〈Yℓm|Yℓ1m1 · Yℓ2m2〉 (C.74)

=

∫ 2π

0
dϕ

∫π

0
sin ϑdϑ Y∗

ℓm(ϑ,ϕ)Yℓ1m1(ϑ,ϕ)Yℓ2m2(ϑ,ϕ) (C.75)

: = G (ℓ1,m1, ℓ2,m2; ℓ,m)complex (C.76)

With the definition of the complex spherical harmonics

Yℓm(ϑ,ϕ) =

√

(2ℓ+ 1)
4π

(ℓ−m)!
(ℓ+m)!

(−1)m

2ℓℓ!
eimϕ(x2 − 1)

m
2

dℓ+m

dxℓ+m
(x2 − 1)ℓ (C.77)

where x = cos ϑ, the ϕ-integral can be solved separately:
∫ 2π

0
dϕ e−imϕ eim1ϕ eim2ϕ = 2π δm,m1+m2 . (C.78)

This means that all Gaunt coefficients vanish, unless m = m1 +m2. Furthermore,
this simplifies the ϑ-integral since then, disregarding prefactors, only the following
has to be solved

∫ 1

−1
dx (x2 − 1)

m+m1+m2
2 dℓm(x) dℓ1m1(x) dℓ2m2(x) with (C.79)

dℓm(x) =
dℓ+m

dxℓ+m

{
(x2 − 1)ℓ

}
(C.80)

Saving of computational resources is strongly enhanced by treating the real-valued
linear combinations of the spherical harmonics as a basis set. The basis transfor-
mation that leads from complex-valued spherical harmonics Yℓm to real ones (here
denoted asXℓµ, but throughout this document, the real spherical harmonics are de-
notes as Yℓm) relates only basis functions within the same ℓ-value, i.e. it is (block)
diagonal because of the orthogonality of the associated Legendre polynomials. The
full unitary transformation Uℓ,ℓ ′

m,m ′ can thus be simplified to Uℓ
µ,m ′δℓ,ℓ ′ , so that

Xℓm =
∑

m ′

Uℓ
µ,m ′Yℓm ′

A possible choice for this transformation is proposed by Homeier et al. [109]
shown here for the first three ℓ-values.

Uℓ=0 = 1, Uℓ=1 =
1√
2







1 0 i

0
√

2 0
−1 0 i






, Uℓ=2 =

1√
2



















1 0 0 0 i

0 1 0 i 0

0 0
√

2 0 0
0 −1 0 i 0
1 0 0 0 −i


















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Then the Gaunt coefficient relating the real spherical harmonics Xℓµ can be found
by the transformed tensor

G (ℓ1,µ1, ℓ2,µ2; ℓ,µ)r =
∑

m,m1,m2

[Uℓ
µ,m]∗Uℓ1

µ1,m1
Uℓ2

µ2,m2
G (ℓ1,m1, ℓ2,m2; ℓ,m)c (C.81)

where r and c denote the real and complex Gaunt coefficients.

C.1.9. Density of States

Computation of Occupation Numbers

The new density is calculated from the eigenstates of the Hamiltonian. The Kohn-
Sham states are occupied with electrons according to the Fermi-Dirac (FD) distri-
bution fFD which is a function of the Kohn-Sham energies Ei (i labels all states i.e.
all bands, spins and k-points) and the Fermi energy EF which is unknown. The
occupation numbers fFD are defined as

fFD(E− EF, TF) =
1

eβ(E−EF) + 1
(C.82)

whereβ = (kBTF)
−1 corresponds to a fictitious smearing temperature TF that will be

explained below. The sum of all occupation number has to be equal to the number
of electrons in the system, Nele. This is achieved by tuning the Fermi level EF until

∑

i

fFD(Ei − EF, TF) =
∑

i

1
eβ(Ei−EF) + 1

!
= Nele (C.83)

We have to find a null in the function g(EF) =
∑

i fFD(Ei,EF) −Nele with respect to
EF.

The null of a function g(e) can be found applying the bisection method. This
is based on a search interval which is iteratively divided into two smaller inter-
vals. If the function g is monotonous in the start interval [e1, e2] and has a null, the
method is supposed to always converge. One iteration of the bisection performs
the following steps.

1. evaluate g(e1) = g1 and g(e2) = g2. The start results g1 and g2 are of opposite
sign since the interval contains exactly one null and g(e) is monotonous. If
this is not the case, extend the start interval’s limits until g1 · g2 < 0.

2. bisect the interval em = 1
2(e1 + e2).

3. evaluate g(em) = gm.

4. if g1 and gm are of opposite sign the null must be in [e1, em]. restart with
[e1, em], otherwise restart with [em, e2].
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The convergence of this algorithm is known to be linear since the error on e is pro-
portional to the interval length. Every iteration this length is divided in half.

The reason to use a finite temperature in the Fermi-Dirac distribution is not the
systems real temperature. Rather it is the need for smeared out occupation num-
bers around the Fermi level. Systems with a band gap will not notice the finite
temperature since the highest state below the gap will be occupied and the first
states above the gap unoccupied. However, bands that cross the Fermi level pro-
duce a non-zero density of states at EF. Also using a finite number of k-points will
produce some eigenenergies close to EF. Within the self-consistency cycle, these
energies may change slightly. Consider the Fermi-Dirac distribution at TF = 0
i.e. a step function that drops discontinuously at EF. If the energy of an unoccu-
pied state above the Fermi level falls below the energy of an occupied states, these
states will exchange their occupancies. The new density, ñ(r), is created from the
occupied states only. Therefore the new density will deviate a lot from the old
density, n(r). The changed density may effect the eigenenergies to assume their
previous ordering. One can see that there is an instability leading to oscillations
and a constant change in density. In order to damp this out, the finite tempera-
ture produces partial occupancies around the Fermi level EF, mainly in the inter-
val [EF − kBTF,EF + kBTF]. The exchange of two energies Ei and Ej does then not
induce a change of the occupancies fi and fj from 0 to 1 and vice versa but the
change is proportional to (Ei − Ej)/(kBTF) if both energies are close to the Fermi
level, i.e. |Ei−EF| ≪ kBT and |Ej−EF| ≪ kBT . Consequently, these oscillations may
be damped by increasing the smearing temperature TF. Temperature smearing is
usually turned on by the user for metallic systems.
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Figure C.10.: Fermi-Dirac distribution function. A finite temperature TF

enables a linearization around EF which is located at the origin in this
plot.
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Figure C.11.: Fermi-Dirac distribution function and its derivative.

During the process of finding the correct Fermi energy given a spectrum of eigenen-
ergies, we have to evaluate the Fermi-Dirac distribution function

fFD(E− EF, TF) =
1

eβ(E−EF) + 1
, β = (kBTF)

−1 (C.85)

where an artificial occupation temperature TF has been introduced to generate tem-
perature smearing. This is necessary in the case of metallic systems.

jüRS Input Syntax: temp 345 Kel

Especially in the situation of periodic samples it becomes important for the SCF
convergence to apply smearing such that kBTF is of the order of the pseudo band gap
that arises from the finite k-point sampling. In order to quickly check if a system
behaves metallic or insulating a quantity DoS(0) is displayed during the execution
of jüRS that shows a measure of the Density of States around the Fermi energy EF.
This quantity is found also during the computation of the Fermi-Dirac distribution
function. We can define a smearing or broadening function

bFD(E, TF) = −kBTF
∂

∂E
fFD(E, TF). (C.86)

Once the Fermi-Energy is found, we evaluate DoS(0) = bFD(EF, TF).

Spin integrated Spin polarized
Atom fFD(0, TF) DoS fFD(0, TF) DoS Magn.[µB]

B 1/3 5/6 1/3 2/3 1
C 2/3 4/3 2/3 2/3 2
N 3/3 3/2 3
O 4/3 4/3 1/3 2/3 2
F 5/3 5/6 2/3 2/3 1

In the special case of a discrete number of degenerate states at the Fermi energy
this number is of interest. From table REF we can see that the classical value DoS(0)
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does not give a direct estimate of the number of states since we expect B, C, O and
F to show 3 states at the Fermi level in a spin-polarized calculation and 6 states
in a spin-integrated run. Therefore we should look at the density of states at the
corrected Energy EF+∆Ewhere∆E = kBTF (ln(1 − f) − ln f). Evaluating the Fermi-
Dirac function at this corrected Fermi level will give f = 1

2 and DoS(0)=1
4 per state.

However, this procedure does not apply for the situation of many states close to the
Fermi energy and a large number of fractional occupation numbers as is a usual
bulk calculation for a metal and hence it is not implemented.

The smearing function is also employed as broadening for the Density of States
plots whereas a larger temperature might in many cases be good to achieve smoother
graphs.

Density of States Plot

A graphical way to qualitatively analyze the Kohn-Sham spectrum of systems con-
taining many atoms is the density of (KS-)states plot. In contrast to k-resolved band
structure plots Eσ(k) that may become more confusing the more bands are shown,
the k dependency is fully integrated such that we are left with merely Dσ(E) as a
function of energy (one per spin).

Dσ(E) =
∑

n

∫

BZ
d3k δ(E − Enσk)

To achieve a smooth function rather than a barcode, we replace the very sharp
δ-function by a broadening function. Various types of broadening functions are
possible, but we use the derivative of the Fermi-Dirac distribution bFD(E, TF) as
broadening function as outlined above and apply either the temperature of the
calculation TF or even a larger one to yield a continuous line.

Projected Density of States

The PAW method reveals the ℓ-character of each Kohn-Sham state inside of each
augmentation sphere Sa. Even though angular momentum can only be called a
good quantum number if the potential is spherically symmetric (and without spin-
orbit coupling), the projection of each state onto the localized atomic projector func-
tions yields information about its local symmetry. The absolute of the projection
coefficients 〈p̃aℓ1m|Ψ̃nσk〉 tells us about the similarity of the KS-state |Ψ̃nσk〉 to the
smooth partial waves |φ̃a

1ℓm〉. We can thus use these as weights during the forma-
tion of the density of states:

Dσ
aℓm(E) =

∑

n

∫

BZ
d3k δ(E − Enσk)

∣

∣〈p̃aℓ1m|Ψ̃nσk〉
∣

∣

2
(C.87)
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Figure C.12.: Total density of states of graphene for the smearing tem-
peratures TF=100 K, 316 K (default), 1000 K and 3162 K.

We only use the n=1 atomic partial waves and projectors since only those can be
normalized to atomic eigenstates (compare Section A.0.2). If the directional char-
acter is not of interest, we may also look at them-integrated DoS

Dσ
aℓ(E) =

ℓ∑

m=−ℓ

Dσ
aℓm(E). (C.88)

Similarly, also the ℓ quantum number can be integrated out, Dσ
a, such that we are

left with the identification of the contributions of single atoms to the density of
states.

Furthermore, we can perform statistical analysis e.g. by summing over all atoms
of one species.

Dσ
sℓm =

∑

a∈s

Dσ
aℓm. (C.89)

Table C.7 gives an overview of the possibilities.

atom species
ℓm-resolved Dσ

aℓm alm Dσ
sℓm slm

ℓ-resolved Dσ
aℓ al Dσ

sℓ sl m-integrated
Dσ

a a Dσ
s s ℓm-integrated

Table C.7.: Projected density of states. To activate the generation of pro-
jected DoS plots choose pdos from { alm, al, a, slm, sl, s }.
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Figure C.13.: Total density of states and projected density of states. To
activate the generation of projected DoS plots in addition to the total
DoS, choose pdos from { alm, al, a, slm, sl or s }.

ScaLAPACK interface workflow

• Initialize the BLACS grid of a largest possible square number of process ele-
mentsNp ×Np as a subset of the grid communicator grid_comm

• Setup BLACS grid descriptors for Hnm, Snm and the eigenvectors Xmk

• Start here, if the module has been initialized before

• init_matrix allocates memory for the matrix chunks and clears all matrix
and entries

• Fill matricesHnm andSnm via a setter-function set_matrix_entry( Hnm, Snm,

(n,m) )

• AllreduceHnm and Snm via band_comm (only in band parallelization, see Sec-
tion 5.4)

• solve_matrix allocates work memory and starts the ScaLAPACK diagonal-
ization invoking PDSYGVX or PZHEGVX

• Broadcast the new eigenvalues En to all processes in grid_comm

• Get the eigenvector coefficientsXmk for the new linear combinations of bands
via the getter-function get_matrix_entry( (/m,k/), comm )

The getter-function get_matrix_entry determines the rank of the process ele-
ment which stores the eigenvector element Xmk. An MPI_Broadcast is performed
along the grid_comm whose root is the element owning process element. The com-
municational overhead of a separate broadcast for each element in not tractable,
therefore the function has been replaced by get_matrix_block( (/m,k/), comm,

b, (/ib,jb/) ). This routine broadcasts the matrix block of BS × BS elements
with block indices ib and jb that contains the requested matrix element. If the
next request lies in the same block, communication is suppressed and the element
is taken from the locally stored block b(:,:).
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USER MANUAL

D.0.10. Building the Application

jüRS is a pure Fortran code with coding standards newer than FORTRAN90, i.e. it
uses some features of the ’95 and 2003 standards. Before compiling, the directory
build should contain the following items: Makefile, system.make, README and the
directory src/ containing the .F90 and .F95 source files.

The Makefile usually does not need to be changed for building the application.
All configurations such as preprocessor, compiler linker and their flags are defined
in the architecture-specific include file system.make. If there is an example include
file such as system.make.INTEL, you can copy that file or use a soft link to it:
ln -s system.make.INTEL system.make

For preprocessing the .F90 source files, a C-preprocessor (e.g. cpp) is applied.
Some source files carry the extension .F95. These source files contain simultane-
ous code for real/complex and will be preprocessed twice with an additional flag
R1_C2. The first time cpp -D R1_C2=1 $< generates the head part of the final .f90-
source file with routines that accept real as data type for wave functions, the sec-
ond time cpp -D R1_C2=2 $< generates routines for complex wave functions and
the tail part of the preprocessed .f90-file. Each source file contains exactly one
module.

The code has been developed for double precision that is activated via the com-
piler flags (Intel:-r8, IBM:-qrealsize=8). In principle, one could also compile in
single precision, for that, -D SINGLE_PRECISION should be added to the preproces-
sor flags in order to replace library calls (MPI, LAPACK, ScaLAPACK[86]) with the
proper interface.

On JUGENE and similar architectures, add -D JUGENE to the preprocessor flags.

195
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Furthermore, the MPI library can be replaced with dummy routines leading to a
serial version by defining -D NOMPI. On systems where ScaLAPACK is not installed,
-D NOScaLAPACK will replace the ScaLAPACK calls by calls to the corresponding LA-
PACK routines. -D NOLAPACK can be used for testing the compilation and linking
of all the others code parts but does not lead to a fully usable application. During
development, some additional checks for NaN (Not a Number) can be included
into the code with -D NaN_SEARCH.

The binary executable will be called paw.

D.0.11. Get Started

Once the application ./paw was successfully compiled and linked, we may start
with the help function ./paw --help which explains how to generate an example
input file and more command line options.

D.0.12. Input Files

jüRS (v5.*) tries to load the required element specific PAW data stored in pawdata.00Z

where 00Z is the three-digit atomic numberZa, e.g. pawdata.047 contains the PAW
data for Silver. These files are ASCII-formatted. A description of the format can be
found in the module pawdatafile.

The system to be calculated is described in a single input file. Three different
elements of the input syntax are to be distinguished:

• Keyword statements D.0.13

• Variable definitions D.0.14

• Blocks D.0.15

The following subsection will describe each syntax element in detail.

D.0.13. Keyword statements

A keyword statement consists of one line in the input file that is lead by the key-
word and followed by one or three values, depending on the quantity to be set.
Blanks as separation are required here, no equality-sign. Lines starting from # are
comments and will be ignored. For all keyword statements, the latter statement
will overwrite the earlier. However, multiple mentioning of a keyword will launch
a warning. In vector quantities (requiring three values) all vector entries are set to
the same value if the keyword is followed only by one value.
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A list of all keywords can be found by ./paw --keywords and their syntax is
explained further in Table D.1.

D.0.14. Variable definitions

jüRS is equipped with a built-in variable environment that helps to generate flex-
ible input files. All variables are scalar real values. To define a variable yourself,
simply write $<var> = <expression> in one line. The blanks to the left and right of
= are important. A line that reads $<var> only will show the variable’s value in the
output. Here, <expression> must be one of float values, fractional values (with :),
predefined constants <cst> (see Table D.2), defined variables, functions of values
or math operations. Valid operators are +, -, *, : , ^ (or **). The /-slash for divi-
sions cannot be used. No operator between two strings means multiplication. Op-
erators only lead to valid expressions in a context <value> <operator> <value>.
The minus sign therefore cannot be used as a unary operator or function, please use
0 - $<var> instead. Valid functions are exp, cos, sin, abs, sqrt and log. Functions
lead to valid expressions in a context [<prefactor>] <function> <argument>. An
expressions may only consist of up to three strings. The usage of parenthesis is not
supported. A string as a:b without blanks before and after the colon : will be
interpreted as fractional number a

b
.

D.0.15. Blocks

To input a list of dynamic length, blocks are defined by block keywords. A line
containing only the block keyword opens the block or closes the block, depending
on the application’s previous state. In between block opening/closing keywords,
block items are added to the corresponding list. Blocks are implemented for atoms
and k-points: Block keywords are

• kpoints k-points for Brillouin zone sampling x y z w

• kpath edges for a band structure path sampling x y z

• atoms for absolute atomic positions Z x y z [mx my mz σ]

• atoms_fractional for relative positions Z x
Lx

y
Ly

z
Lz

[mx my mz σ]

where Z may be either the atomic number (integer) or the chemical symbol (e.g.
Mg instead of 12, element symbols are case sensitive). Li with i ∈ {x,y, z} are the
extends of the orthorhombic cell (see cell). For the input of atoms, we may option-
ally add three logic values mi ∈ {T,F} for geometry relaxations. The default mi is
T, so atoms are usually free to move. If the threemi are defined, the user may also
define a spin-flip integer σ ∈ {−1, 0,+1}. If the element data contain a magnetic
orbital occupation (run grep PartialWave pawdata.* to reassure a different occu-
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<keyword> # Type Default Description
ascale 1 real 1.0 scale absolute atomic positions by this factor
bands 1 int [auto] total number of bands
boundary 3 or 1 int 0 0 0 boundary condition, 0:isolated 1:periodic
cell 3 or 1 real [required] extend of the orthorhombic cell
charged 1 real 0.0 additional electrons in the system
dg 2 int 2 5 DoubleGrid orderN and meshrefinementM
domains 3 or 1 int 1 1 1 processes for domain decomposition
efield 3 or 1 real .0 .0 .0 electric field (only directions where boundary is isolated)
element string PAW configuration, paw -e <ChemSym> shows def
forces 3 or 1 int 1 1 1 calculate forces 1:yes 0:no
hfield 1 real .0 magnetic field, shifts local potential up/dn by this
kmesh 3 or 1 int [ 32/cell ] automatic k-point sampling
kshift 3 or 1 real .0 .0 .0 origion shift for kmesh
md 1 crit 0 0 1E-4 criteria for structural relaxation
mixing 1 real .25 simple mixing ratio or ...

3 .1 Broyden 19 higher order methods with history length
nf 2 int 4 4 FiniteDifference orderNf for KohnSham and Poisson
ngps 3 or 1 int [auto] total numbers of grid points per direction
nscale 1 int 1 ratio of potential grid over density grid
origin 3 or 1 real .0 .0 .0 shift of the coordinate system in fractions of cell
pawpath 1 word . path to the pawdata.00Z files (use \ instead of /)
pdos 1 word none projected DoS {alm,al,a,slm,sl,s,z}
poisson 1 crit 333 3 1E-7 criteria for CG iterations of electrostatics
scale 1 real 1.0 scale cell by this factor
scf 1 crit 33 3 1E-7 criteria for self-consistency iterations
shift do not use!
solver 1 word diis eigensolver method
spacing 3 or 1 int 0.25 Ang grid spacing suggestion (to be adjusted)
spin 1 int 1 1:spin integrated 2:spin polarized
symmetry 1 word none do not use!
temp 1 real .001 Ha electronic smearing temperature
units 1 or 2 word Ang eV output units {aB,Ang,nm,pm} and {Ha,eV,Ry,kJ,. . . }
wfs 1 crit 1 1 .1 criteria for eigensolver iterations
xc 1 word PZ81 XC-functional {VWN80,PZ81,. . . }

Table D.1.: Keywords and their syntax. The required key cell has no
default values since the application will not run without its specification.
Type crit stands for the input syntax of convergence criteria which are
specified e.g. poisson max 333 min 3 < 1E-7 for the max. and min.
number of iterations and the convergence threshold, short noted as 333
3 1E-7 in the column of default values.
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<cst> Internal Value Name
Ang Å 1.8897261247728 Ångström
nm nm 18.897261247728 nanometer
pm pm 0.0188972612477 picometer
Pi π 3.1415926535898
Deg 2π

360 0.0174532925199 degrees, ◦

sqrth
√

1
2 0.7071067811865

sqrt2
√

2 1.4142135623731
sqrt3

√
3 1.7320508075689

sqrt5
√

5 2.2360679774998
Kel K 3.1668294 · 10−6 Kelvin
eV eV 27.210282768626 eVolt
meV meV 0.0272102827686 milli eVolt
Ry Ry 2 Rydberg
Ha Ha 1 Hartree
aB Bohr 1 Bohr radius

Table D.2.: Predefined constants for easy input.

pation of up and dn), the spin-flip determines the sign of the magnetization of the
inital orbitals in a spin-resolved calculation. Default σ is +1.

A single block keyword followed by the name of an existing external file will
open the file and try to read block items from it. Useful examples: atoms coords.xyz

or kpoints kpts

In order to check the input file for syntax and perform some quick analysis of
the atomic geometry we can run in CheckMode (most useful in serial). Invoke the
executable as paw <inp> --CheckMode where <inp> is your input file. Then search
the output for WARNING!s.

A continued calculation may load existing densities (--Load) and/or wave func-
tions (--load) from the file system. See Section D.0.16 for their description.

D.0.16. Output Files

The name of the input file is the project name. All non-temporary output files will
have the same name as the project plus an extension that depends on the type of
output. Usual file name extensions are

• .dos Density of states (ASCII)

• .bst Plotable band structure (xmgrace v5.0+)

• .frc Atomic positions and forces (ASCII, atomic units)
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• .adm Atomic density matrices Da
ijσ (ASCII)

• .rho Smooth valence density ñσ
v (r) (binary)

• .wfs Smooth valence wave functions Ψ̃nσk(r) (binary)

In CheckMode some more files for the visualization are created

• .xyz Atomic positions (ASCII, Å)

• .pov Geometry for povray (ASCII)

Both types of binary files (density and wave functions) are created by MPI-collectives
that write files in BIG ENDIAN [110, 111]. A leading header of 1024 Bytes proceeds
the data arrays. The header is encoded in ASCII and holds information about the
calculation such as file name, stored quantity, numbers of grid points, cell extends,
number of bands, number of spins, number of k-points and a time-stamp of the
file generation time. When densities are to be loaded, the number of grid points
needs to match the number of grid points specified in the density file. Significant
deviations of the cell sizes will launch WARNING!s. For loading wave functions, the
number of bands, spins and k-points found in the file may be larger than the re-
quested number, however, this will also be warned.

D.0.17. Global Application Configuration

Most configurations are defined in mod_configurations.F90 and, if necessary, have
to be adjusted before compiling.

D.0.18. Limitations

The restriction to nearest-neighbor communication during data-exchange intro-
duces a limitation. The lower limit for the number of grid points per domain is
the number of finite-difference neighbors Nf used for the kinetic energy stencil
in the Kohn-Sham Hamiltonian. This defines a lower boundary to the paralleliza-
tion in domain decomposition. The finite-difference order of the Laplacian in the
Poisson equation of the electrostatic part may be twice as large since the density
grid contains at least twice the number of grid points per direction in each domain
compared to the wave function grid. The syntax for controlling Nf is explained in
Table D.1 (nf).

D.0.19. Example input

Either run ./paw --example to get an example input file
or create a file called inp with this content:
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cell 12 Ang

$r = 76 pm

$a = 45 Deg

$x1 = $r cos $a

$y1 = $r sin $a

$x2 = 0 - $x1

$y2 = 0 - $y1

atoms

Li $x1 $y1 0.0

Li $x2 $y2 0.0

atoms

Now invoking ./paw inp --CheckMode or equivalently ./paw inp -cm tells the
user that ./pawdata.003 could not be found. Re-running ./paw inp -cm --gen gen-
erates a PAW data file for Lithium with the default PAW configuration for this
species. Check ./paw -e Li to see the default PAW configuration string for Lithium.
Running again ./paw inp -cm performs a check of the geometry specified in the
input file. To start the calculation, remove the CheckMode flag -cm and add -r for
real wave functions (faster). The file name does not need to be inp but inp is a
placeholder for the project name. The input file of a project carries only the project
name, <projectname>. Any output file will be named <projectname>.<ext> where
<ext> depends on the kind of output.

Version 5.11 (2012-11-19)
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