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1. Introduction

Information technology is an ever-growing field, which is indispensable for contemporary society.
The main foundation for the rapid growth of this field is the progress in data storage and data
processing technologies, which are based on the progress in the field of magnetism. A milestone was
the discovery of the giant magnetoresistance (GMR) by P. Grünberg [1] and A. Fert [2], which was
awarded with the Nobel price in 2007. Nowadays the GMR is considered to be the groundbreaking
starting point of the field of spintronics. In addition to the electron’s charge, in spintronics the
electron’s spin degree of freedom is used as an information carrier, which has a lot of potential
advantages in devices [3]. Besides spin and charge, the spin-orbit interaction provides a third in-
gredient, which gives rise to new properties and is conceptually important for the detection and
the generation of spin-currents [4]. The new field of nano-spin-orbitronics aims to combine all the
three degrees of freedom to investigate new nanotechnologies rising from fundamental physics. To
push further the field of nano-spin-orbitronics, a deep theoretical understanding of the fundamental
processes is needed. The main technological aim of the research in these fields is the optimization
of data storage and data processing. Minimizing the size of the used devices enables a faster
processing speed and higher storage densities. The smallest devices one can think of is a single
atom, in which quantum mechanical effects play a crucial role. The storage and manipulation of
magnetic information within small devices containing only a few atoms demands for a fundamental
understanding of the ground state properties as well as the their excited states.
Regarding the ground state properties, the magnetic moment itself, which is a combination of the
spin magnetic moment and the orbital magnetic moment, is of huge technological interest. On the
one hand the spin magnetic moment, which originates from the many-body exchange interactions
among the electrons, is well understood. On the other hand the orbital magnetic moment, which
arises from the orbital motion of the electrons, is still part of current research. The orbital motion
of the electrons is also responsible for charge currents, so there should be a deep connection between
these and orbital magnetism.
Exciting the system induces a motion of the magnetic moment when brought from one state to the
other, during which the magnetic moment interacts with the enviroment and emits spin currents [5].
Furthermore, spin currents can interact with the magnetic moments yielding for example current-
induced magnetization switching [6]. My aim in this thesis is to lay the theoretical groundwork for
the first-principles exploration of static and dynamical charge and spin currents, and to present my
first numerical results on these topics.

The density functional theory (DFT) approach enables a theoretical investigation of the electronic
structure of many-body systems from first principles. These include charge currents, spin currents
and of course the orbital magnetic moment. To computationally solve the DFT problem there are
several different methods – for example the plane wave approach, which is widely used for peri-
odic systems. In this thesis I employ the Korringa-Kohn-Rostoker (KKR) Green function method,
which can be utilized within a real space approach, thus being perfectly suited to describe finite
nanostructures like single magnetic adatoms deposited on a surface.
Conventional DFT only describes static ground state properties. Therefore, ground state currents
and the orbital magnetic moment are accessible. However, the investigation of dynamical spin
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currents requires access to excitations out of the ground state, which is accomplished by time-
dependent DFT (TDDFT). Further simplifications can be done for small perturbations, which
allow the treatment within linear response, such that the computational demands are decreased.

In this work, a KKR Green function-based method for the calculation of ground state charge
and spin currents and dynamical spin currents is developed. Small magnetic nanostructures con-
sisting of iron atoms deposited on platinum surfaces are used to enlighten the fundamental processes
concerning the currents. The work is structured as follows:
In chapter 2, the physical background of charge currents and spin currents is discussed. The
Schrödinger equation and a relativistic single-particle Hamiltonian are used to define the charge
and spin currents via a continuity equation. In addition, the relation between charge currents and
the orbital magnetic moment is discussed. Chapter 3 gives an introduction of the DFT approach.
Apart from the ground state spin-polarized DFT, the theory is extended to the time-dependent
case. Furthermore, I discuss the description of currents within the DFT approach. In chapter
4, the KKR Green function method is discussed. Following the discussion of the most important
concepts concerning the Green function, the KKR Green function method in the atomic sphere ap-
proximation is explained. Furthermore, a calculation scheme for ground state currents within the
KKR approach is developed. The results of the ground state calculation are presented in chapter
5. Different nanostructures consisting of iron atoms deposited on platinum surfaces are used. In
the first part charge currents resulting from spin-orbit coupling and the related orbital magnetic
moments are shown. To support the understanding of the simulation results, a simple model de-
scribing an adatom on top of a surface is developed. In addition, charge currents resulting from a
non-collinear alignment of the magnetic moment in an iron trimer ring are analyzed. In the second
part, the ground state spin currents in an iron adatom on top of Pt(111) are presented. In chapter
6, I introduce the linear response theory, which is used to describe the dynamical spin-currents
induced by a time-dependent external magnetic field. The induced spin-currents are closely re-
lated to the magnetic excitations, which are described by the magnetic susceptibility. I discuss the
implementation within the KKR method and the time-dependent DFT approach. Furthermore,
I present a phenomenological model – the Landau-Lifshitz-Gilbert model – which is used to de-
scribe magnetization dynamics. The resulting dynamical spin-currents in an iron adatom on top
of Pt(111) are shown in chapter 7. The frequency dependence of the induced spin currents as well
as the static limit of the simulation are discussed. Finally, in chapter 8 the central results of this
work are summarized and a short outlook is given.



2. Charge and spin currents

In this chapter we discuss the fundamental background for understanding charge and spin currents.
Therefore, we start with the basic quantum mechanical equation – the Schrödinger equation. For
the reason of simplicity we work within a single particle description, which is extended in the next
chapter when the density functional theory is introduced.
We present a convenient definition of currents using continuity equations and include relativistic
effects contributing to the current. At the end of the chapter, we discuss the orbital magnetic
moment, which is a measurable quantity depending on groundstate charge currents.

2.1. Schrödinger equation

The time-dependent Schrödinger equation describes the dynamics of a non-relativistic quantum
mechanical system by using the so called wavefunction |ψ〉

i
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 =

(
#„p 2 + v( #„r ; t)

)
|ψ(t)〉 , (2.1)

with the HamiltonianH , the momentum operator #„p , the electron mass m and the potential v( #„r , t).
In the real space representation the momentum operator is given by 〈 #„r | #„p 〉 = −i #„∇, which yields

i
∂

∂t
ψ( #„r ; t) =

(
− #„∇2 + v( #„r ; t)

)
ψ( #„r ; t) . (2.2)

The wavefunction enables the calculation of the expectation value of any physical observable de-
scribed by a possibly time-dependent operator Ât, which is given in the Schrödinger picture by

〈Ât〉|ψ(t)〉 = 〈ψ(t)|Ât|ψ(t)〉 . (2.3)

The most important property of the wavefunction is its relation to the probability density n( #„r ) of
the electron

n( #„r ; t) = 〈ψ(t)| #„r 〉〈 #„r |ψ(t)〉 = |ψ( #„r ; t)|2 . (2.4)

For a time-independent Hamiltonian it is sufficient to calculate the stationary solutions of the
Schrödinger equation, which are given by the time-independent Schrödinger equation

H|ψ〉 = E|ψ〉 . (2.5)

The eigenvalues En of the Hamiltonian are the energies of the system in the associated eigenstates
|ψn〉. These eigenstates form a complete basis set {|ψn〉}, such that any state can be described by
a linear combination of these eigenstates. The time evolution of the eigenstates follows from eq.
(2.1)

|ψn(t)〉 = e−iEnt|ψn(0)〉 . (2.6)
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Thus solving the time-independent Schrödinger equation is sufficient to describe every system and
its time evolution for a time-independent Hamiltonian.

The Schrödinger equation in its presented form is only valid for spin-less particles without magnetic
field. In this work we deal with magnetism, which demands for a proper description of the spin
of a particle and of the magnetic field. In addition to the scalar potential an interaction with an
external magnetic field

#„

B( #„r ) and the corresponding vector potential
#„

A is possible. Furthermore,
the introduction of two separate wave functions for the different spin configurations {↑, ↓} is needed.
In total, for a spin 1/2-particle one finds the Pauli equation

i
∂

∂t
|Ψ(t)〉 = H|Ψ(t)〉 =

[(
#„σ ·
(

#„p − e #„

A( #„r ; t)
))2

+ v( #„r ; t)

]
|Ψ(t)〉 , (2.7)

where |Ψ(t)〉 =

(
ψ↑(t)
ψ↓(t)

)
is the so-called spinor,

#„

A is the vector potential which is related to the

magnetic field
#„

B =
#„∇× #„

A (see appendix B) and #„σ is the vector of Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 -i
i 0

)
and σz =

(
1 0
0 -1

)
. (2.8)

Using the commutation relations of the Pauli matrices the Pauli equation simplifies to

i
∂

∂t
|Ψ(t)〉 =

[(
#„p − e #„

A( #„r ; t)
)2
− µB #„σ · #„

B( #„r ; t) + v( #„r ; t)

]
|Ψ(t)〉 , (2.9)

where µB
#„σ · #„

B is the Zeeman term and µB = e~
2m is the Bohr magneton.

In addition to the probability density, the solutions of the Pauli equation enable us to calculate the
spin density:

#„m( #„r ; t) = µB〈Ψ(t)| #„r 〉 #„σ〈 #„r |Ψ(t)〉 = µBΨ†( #„r ; t) #„σΨ( #„r ; t) . (2.10)

A more rigorous derivation of the Pauli equation can be done by taking the non-relativistic limit
of the Dirac equation (see appendix C) which includes naturally the spin of the electron.
In the next section we discuss relativistic corrections to the presented Hamiltonian.

2.2. Relativistic corrections to the Schrödinger equation

The theory discussed in the previous section neglected any relativistic effects, since the Pauli
equation itself is non-relativistic. To describe relativistic particles properly one has to start from
the Dirac equation [7]. Fortunately, it is possible to derive relativistic corrections to the Schrödinger
equation using an expansion of the Dirac equation (see Appendix C).
The Hamiltonian up to first order in the speed of light c is given by:

H =
(

#„σ ·
(

#„p − e #„

A
))2

︸ ︷︷ ︸
kinetic energy (KE) + Zeeman

+ v︸︷︷︸
Potential

− 1

c2

(
#„σ ·
(

#„p − e #„

A
))4

︸ ︷︷ ︸
rel. corrections to KE

− 1

2c2

(
#„∇ · #„

E
)

︸ ︷︷ ︸
Darwin term

+ i
µB
2c2

#„σ · ∂
#„

B

∂t︸ ︷︷ ︸
interaction with time-dep. B-field

+
µB
c2

#„σ ·
(

#„

E ×
(

#„p − #„

A
))

︸ ︷︷ ︸
SOC term

, (2.11)
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with
#„

E being the electric field, which originates in a solid from the atomic nuclei potential, so that
the strongest fields are found around each atomic nucleus. Therefore the relativistic corrections are
more important in the vicinity of the atomic nucleus.
Thus up to first order in c there are four different corrections to the Hamiltonian.
The first term is a relativistic correction to the kinetic energy and to the Zeeman term. The second
term is the so called Darwin term, which is only important for s-like electrons with finite probability
density at #„r = 0. The third term describes an additional correction for time-dependent magnetic
fields. The last term is the so called spin-orbit coupling (SOC) term.
For this work the SOC term is the most important one, since it couples the spin degree of freedom
to the orbital degree of freedom, which is needed for finite ground state charge and spin currents.
Furthermore, the SOC term is responsible for many interesting and important effects like the orbital
magnetic moment, the mangetocrystalline anisotropy [8], the Rashba effect [9], the Dresselhaus
effect [10] or Dzyaloshinskii-Moriya interactions [11, 12].
In the next section we connect the Schrödinger equation to charge and spin currents by using the
continuity equation.

2.3. Continuity equation

The concept of continuity equations is used widely in different fields of physics, e.g. hydrodynamics
or electrodynamics [13]. The underlying property of the systems is always a conservation law. In
the case of the charge continuity equation it is the charge conservation law. Consider a charge
distribution ρ( #„r ; t) in a volume V enclosed by a surface ∂V as shown in figure 2.1. The total charge
Q in the volume is given by

Q(t) =

∫
V

dV ρ( #„r ; t) . (2.12)

Due to charge conservation all transferred charge has to flow through the surface, since there can
not be any source or sink inside the volume. By defining the current density

#„
j ( #„r ) by the flow of

charges per unit time, the change of charge inside the volume is given by

dQ(t)

dt
=

∫
V

dV
∂

∂t
ρ( #„r ; t) = −

∫
∂V

dA n̂( #„r ) · #„
j ( #„r ; t) , (2.13)

V

∂V

dA

n

j

Q(t)

Figure 2.1.: Concept of a continuity equation: The change of the charge Q(t) in a volume V is equal
to the flow j through the surface ∂V.



6 2. Charge and spin currents

where n̂ is the normal vector to the surface ∂V.
Applying Gauss’s theorem yields∫

V
dV

∂

∂t
ρ( #„r ; t) = −

∫
V

dV
#„∇ · #„

j ( #„r ; t) . (2.14)

Since the volume V is arbitrary the integrands have to match pointwise which yields the differential
form of the continuity equation:

∂

∂t
ρ( #„r ; t) +

#„∇ · #„
j ( #„r ; t) = 0 . (2.15)

Thus via the continuity equation we can connect changes in the density to the divergence of the
current. Starting from the Schrödinger equation with relativistic corrections we can use a continuity
equation to define currents in terms of the wavefunctions.

2.3.1. Charge continuity equation

For charge currents the proper starting point is the charge density, which is just the probability
density n = Ψ†Ψ defined in section 2.1 multiplied by the electric charge e. The time derivative of
the charge density can be connected to the Hamiltonian via the Schrödinger equation (2.2)

i∂tρ = ie∂t

(
Ψ†Ψ

)
=e
[
Ψ† (i∂tΨ) +

(
i∂tΨ

†
)

Ψ
]

(2.16)

=e
[
Ψ†

#„HΨ−Ψ†
#„HΨ
]

(2.17)

=− i #„∇ · #„
j , (2.18)

where we used the
#„H notation to indicate the action of H to the left. The action of the momentum

operator to the left is given by

( #„pΨ)† = #„p †Ψ† = −Ψ† #„p . (2.19)

First, let us consider the non-relativistic Pauli Hamiltonian (2.9). The kinetic energy yields

Ψ†
#„HkinΨ−Ψ†

#„HkinΨ =

[
Ψ†
(

#„p − e #„

A
)2

Ψ−Ψ†
(
− #„p − e #„

A
)2

Ψ

]
(2.20)

=
[
Ψ† #„p 2Ψ−Ψ† #„p 2Ψ

]
− e #„

A
[
Ψ† #„pΨ + Ψ† #„pΨ

]
(2.21)

=− i

e

#„∇ ·

e
[
Ψ† #„pΨ−Ψ† #„pΨ

]
︸ ︷︷ ︸

#„
j para

−e2 #„

AΨ†Ψ︸ ︷︷ ︸
#„
j dia

 , (2.22)

where
#„
j para is the paramagnetic current and

#„
j dia is the diamagnetic current. In the real space

representation the paramagnetic current operator can be written as:

#̂„
j para =− iµB

(
#„∇− #„∇

)
. (2.23)

These are the only finite contributions evolving from the non-relativistic Schrödinger equation.
From eq. (2.17) it is clear, that only the parts of the Hamiltonian including a momentum operator
which acts explicitly on the wavefunction contribute to the current. The potential and the Zeeman
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term do not contribute, because they do not depend on the momentum operator.
However, one can show that the Zeeman term yields a finite current, which does not contribute to
the divergence of the current [14]:

#„
j Zeeman = µB

#„∇×
(

Ψ† #„σΨ
)

=
#„∇× #„m . (2.24)

Let us consider the terms of the Hamiltonian with relativistic corrections from eq. (2.11). The
Darwin term and the interaction with a time-dependent magnetic field do not contribute to the
divergence of the current. The relativistic corrections to the kinetic energy contribute to the current,
but they are not considered in more detail in this work, since they are a small correction with the
same structure as the non-relativistic paramagnetic current.
The SOC term is linear in the momentum and therefore contributes to the charge current:

Ψ†
#„HSOCΨ−Ψ†

#„HSOCΨ =
µB
c2

Ψ†
[

#„σ ·
(

#„

E ×
(

#„p − #„

A
))
− #„σ ·

((
#„p +

#„

A
)
× #„

E
)]

Ψ (2.25)

=
µB
c2

Ψ†
[
εabcσ

aEb ( #„p + #„p )c
]

Ψ (2.26)

=− i #„∇ ·
[µB
c2

Ψ†
(

#„σ × #„

E
)

Ψ
]

= −i #„∇ ·
[

1

c2
#„m× #„

E

]
︸ ︷︷ ︸

#„
j SOC

. (2.27)

Thus in total the charge continuity equation is given by

∂tn+
#„∇ ·
[

#„
j para +

#„
j dia +

#„
j Zeeman +

#„
j SOC

]
= 0 . (2.28)

2.3.2. Spin continuity equation

Another important continuity equation follows from the spin density #„m = µBΨ† #„σΨ. A crucial
difference to the charge density is that the magnetization density is a vector quantity by itself.
Thus one can set up a continuity equation for each component of the magnetization yielding a spin
current for each polarization, such that in total the spin current is a tensor. Starting from the
Schrödinger equation one finds for the time derivative of the a-component of the magnetization

i∂tm
a = µB∂tΨ

†σaΨ =µBΨ†
[
σa

#„H− #„Hσa
]

Ψ , with a = {x, y, z} . (2.29)

The approach is similar to the case of charge currents, but now the commutation relations of the
Pauli matrices have to be considered, which yields additional terms.
The kinetic energy yields the paramagnetic and the diamagnetic term of the a-polarized spin
current:

#„
j apara = µBΨ†σa [ #„p − #„p ] Ψ = −iµBΨ†σa

[
#„∇− #„∇

]
Ψ , (2.30)

#„
j adia =− 2

#„

AΨ†σaΨ . (2.31)

The non-magnetic potential v does not contribute to the spin currents, since it commutes with
the Pauli matrices and it is independent of the momentum. However, the Zeeman term does not
vanish:

µ2
BΨ†

[
−σa #„σ · #„

B + #„σ · #„

Bσa
]

Ψ = 2iµ2
BΨ†

(
#„σ × #„

B
)a

Ψ = 2iµB

(
#„m× #„

B
)a

. (2.32)
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The resulting term – the so called spin torque – cannot be written as the divergence of a current.
The relativistic corrections in eq. (2.11) give rise to an additional current and an additional torque.
The interaction with the time-dependent magnetic field yields a torque:

i
µ2
B

2c2
Ψ†

[
σa #„σ · ∂

#„

B

∂t
− #„σ · ∂

#„

B

∂t
σa

]
Ψ = −µ

2
B

c2
Ψ†

(
∂

#„

B

∂t
× #„σ

)a
Ψ = −µB

c2

(
∂

#„

B

∂t
× #„m

)a
. (2.33)

The SOC term gives a correction to the spin current and a torque:

µB
c2

Ψ†
[
σa #„σ ·

(
#„

E ×
(

#„p − e #„

A
))
− #„σ ·

((
#„p + e

#„

A
)
× #„

E
)
σa
]

Ψ (2.34)

=
µB
c2

{
−i∂cΨ† [εabcEb] Ψ− iΨ† [εabc∂bEc] Ψ + iEkj

a
k − iEajkk

}
(2.35)

=− i #„∇ ·
[µB
c2
nεabcEbêc

]
︸ ︷︷ ︸

#„
j aSOC

+i
µB
c2

[
−n
(

#„∇× #„

E
)a

+
#„

E · #„
j a − Eajkk

]
︸ ︷︷ ︸

TaSOC

(2.36)

where we defined jak = jak,para +jak,dia as the sum of the paramagnetic and diamagnetic spin currents
with a-polarization in the direction k and T aSOC as the spin-orbit coupling contribution to the
torque.
In total, the continuity equation of the magnetization is given by

∂ma

∂t
+

#„∇ ·
[

#„
j apara +

#„
j adia +

#„
j aSOC

]
= −2µB

(
#„m× #„

B
)a
− µB

c2

(
∂

#„

B

∂t
× #„m

)a
+ T aSOC (2.37)

2.4. Orbital magnetic moment

The total magnetic moment in a magnetic solids can be separated in two parts – the spin magnetic
moment (SMM) and the orbital magnetic moment (OMM) [15]. The spin magnetic moment is
roughly speaking generated by the population imbalance between the spin up and the spin down
electrons, whereas the orbital magnetic moment is generated by the motion of the electrons. In
most technological relevant magnetic materials the spin magnetic moment is much larger than the
orbital magnetic moment, e.g. in bulk iron the orbital moment is only a few percent of the total
magnetic moment. Therefore, the orbital magnetic moment was overlooked for a long period of
time. However, it is a part of the total magnetic moment and for a precise investigation of any
material it has to be considered. Furthermore, it is not small for all systems – there are even
systems in which the orbital magnetic moment cancels the spin magnetic moment [16] and systems
where the net magnetic moment is purely of orbital origin [17]. In addition, there are a few effects
being directly related to the orbital magnetization and its derivatives [15].
In the previous sections we discussed charge and spin currents and their emergence in continuity
equations. The charge current describes a flow of charge mediated by the electrons. From classical
electrodynamics it is known that a moving electron generates a magnetic moment #„morb – the orbital
magnetic moment – which is proportional to the angular moment

#„

L of the electron [13]:

#„morb = µB
#„

L = µB
#„r × #„p . (2.38)

Thus, there should be a connection between the charge current describing the motion of the electrons
and the orbital magnetic moment generated by this motion.
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Starting from the quantum mechanical expectation value of the angular momentum one finds:

µB〈
#„

L〉 =µB

∫
d #„r Ψ†

[
#„

L +
#„

L†

2

]
Ψ (2.39)

=µB

∫
d #„r #„r ×

[
Ψ†

#„p − #„p

2
Ψ

]
(2.40)

=
1

2

∫
d #„r #„r × #„

j para . (2.41)

Thus the orbital magnetic moment is given by the integral of the cross product of #„r and the
paramagnetic charge current

#„
j para.

The calculation shown above works fine for finite systems. However, for periodic infinite systems,
e.g. a bulk solid or an infinite two dimensional slab, the method breaks down. The main problem
are the charge currents, which are periodically repeated so that there is no spatial decay, even if
the currents are bound within the unit cell. Therefore, the integral in eq. (2.41) does not converge.
The breakdown can also be explained in another perspective: The common solution of the Schrö-
dinger equation for periodic systems are so-called Bloch states, which are extended functions.
Within this Bloch states, the position operator is ill-defined, so that the evaluation of the angular
momentum operator is not possible via eq. (2.39).
Another problem occurs, when we relate the orbital magnetic moment to the charge current via
the Maxwell equations [18]:

#„∇× #„morb =
#„
j para , (2.42)

which shows that #„morb and

#„m′orb( #„r ) = #„morb( #„r ) + #„m0
orb +

#„∇ξ( #„r ) , (2.43)

yield the same ground state current. For finite systems the orbital magnetic moment has to vanish
for #„r →∞ so that the orbital magnetic moment in (2.41) is well-defined.
To overcome the discussed problems a couple of theories were developed, which are combined in the
modern theory of orbital magnetism. One approach being applicable for insulators is to use localized
Wannier functions to evaluate eq. (2.39) in reciprocal space [19, 20]. In the set of exponentially
localized Wannier functions the position operator is well-defined. In this approach two contributions
to the orbital magnetic moment arise – a local contribution and an itinerant surface contribution,
which is even relevant in the bulk. After finding both contributions a transformation back to the
Bloch states can be done, so that the calculation of the orbital magnetic moment is even possible
using the common Bloch states.
However, in this work we do not consider periodic systems but restrict ourselves to small finite
clusters with magnetic adatoms, in which the modern theory of orbital magnetism is not applicable,
since it is designed for periodic systems.

In this chapter we presented the three main observables discussed in this work. We showed how
to calculate charge currents, spin currents and orbital magnetic moments within a single particle
description. However, the simulation of real solids demands a treatment of all particles and their
interactions. For this purpose, in the next chapter the density functional theory is discussed.





3. Density functional theory

The density functional theory (DFT) is a scheme for calculating the electronic ground state prop-
erties of a many-body system. In this chapter we will discuss the ground state DFT as well as
its time-dependent extension which is used for the linear response calculations in this work. The
following chapter is based on the book of Martin [21].

3.1. Many-body Schrödinger equation

The time-dependent Schrödinger equation of an non-relativistic N -particle system is given by

i
∂

∂t
ψ( #„r1, ...,

#  „rN ; t) = H ψ( #„r1, ...,
#  „rN ; t) , (3.1)

where H is the many-body Hamiltonian and ψ( #„r1, ...,
#  „rN ; t) is the many-body wavefunction.

For a static system not evolving in time the Schrödinger equation simplifies to its time-independent
version:

H ψ( #„r1, ...,
#  „rN ; t) = E ψ( #„r1, ...,

#  „rN ; t) . (3.2)

For an exact solution one has to consider all the particles (electrons and nuclei) and their interactions
in the Hamiltonian. A first simplification is given by the so called Born-Oppenheimer approximation
which decouples the electronic motion from the nuclear motion [22]. The motivation is that the
nuclear mass is more than three orders of magnitude larger than the electronic mass. Therefore
the electron system evolves much faster than the nuclei system and the kinetic energy of the nuclei
can be neglected. Thus the electrons can be considered as a system inside a potential arising from
a static nuclear configuration.
Denoting the electron positions with #„ri and the nuclei positions with

# „

Rj the Hamiltonian of an
N -electron system is given by

H =−
∑
i

∇2
i +

1

2

∑
i 6=j

w( #„ri,
#„rj) +

∑
i

v( #„ri; {
# „

Rj}) , (3.3)

with the kinetic energy operator of the electron system

T = −
∑
i

∇2
i , (3.4)

the electron-electron interaction described by a Coulomb term

W =
∑
i 6=j

w( #„ri,
#„rj) =

∑
i 6=j

1

| #„ri − #„rj |
, (3.5)

and the potential containing the Coulomb interaction of the electrons with the nuclei

V =
∑
i

v( #„ri; {
# „

Rj}) =
∑
i

∑
j

−2Zj

| #„ri −
# „

Rj |
=
∑
i

vext( #„ri) . (3.6)
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The electron density n( #„r ; t) can be written as

n( #„r ; t) = 〈ψ(t)|
N∑
i=1

δ( #„r − #„ri)|ψ(t)〉 =

∫
d #„r2...d

#  „rN |ψ( #„r , #„r2, . . . ,
#  „rN ; t)|2 , (3.7)

where #„r1, ...,
#  „rN is the set of particle positions .

Even if we can easily write down the many-body Schrödinger equation it is not solvable analytically
for more than two particles. Also numerically, solving the many-body Schrödinger equation is a
computationally demanding task. Even for very simple systems with only a few electrons the storage
of the wave function becomes nearly impossible on modern computers, since the wave function has
to be calculated on a 3N -dimensional grid. Assume for example a very coarse grid consisting of 10
points in every dimension. This yields an array of 103N numbers just to store the wavefunction,
which becomes impossible for reasonable sized systems.
In the next section we introduce the density functional theory, which overcomes these computational
problems.

3.2. Ground state density functional theory

3.2.1. Hohenberg-Kohn theorem

The basic theoretical foundation of DFT is the Hohenberg-Kohn theorem [23]. It consists of two
parts, which state that

• for any system of interacting particles with a non-degenerated groundstate, the external
potential vext( #„r ) is, up to a constant, uniquely determined by the groundstate density n0( #„r )

and

• the energy is a universal functional of the density, which is minimized for the groundstate
density n0.

The first part of the theorem can be shown by a contradiction. Starting from two different systems
with non-degenerated groundstates under the influence of different external potentials

v(1),ext − v(2),ext 6= const. , (3.8)

one can show that also the groundstate densities of the systems have to differ. Thus there is a
one-to-one correspondence between the groundstate density and the external potential.

The second part of the Hohenberg-Kohn theorem states that the energy is a universal functional of
the density. It can be shown that the kinetic energy T [n] and the interaction energy of the electrons
W [n] are both functionals of the density being independent of the external potential.

E[n] = T [n] +W [n] + V [n] (3.9)

= T [n] +W [n] +

∫
d #„r vext( #„r )n( #„r ) . (3.10)

Since the groundstate is defined by being the state of lowest energy, the energy functional is mini-
mized for the groundstate density.
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ΨVext
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potential

ground state
density
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HK

Figure 3.1.: The DFT principle in a simplified picture. The external potential determines all wave-
functions and especially the unique ground state wavefunction via the Schrödinger (SE)
equation. The ground state wavefunction determines directly the ground state den-
sity. The Hohenberg-Kohn (HK) theorem closes the loop by stating that the external
potential is uniquely determined by the ground state density.

In total, it follows that the groundstate density determines all properties of the system. In principle
even excited states are determined by the groundstate density. This can be seen from the closed
loop shown in figure 3.1. The groundstate density determines uniquely the external potential and
via the Schrödinger equation this gives access to all properties and states of the system.

As the preceding example shows the Hohenberg-Kohn theorem might be of huge theoretical in-
terest, but it does not state anything on how to solve the Schrödinger equation. For this purpose
in the next section we discuss the Kohn-Sham equations which enable us to solve the Schrödinger
equation for a many-particle system.

3.2.2. Kohn-Sham equations

The ansatz of Kohn and Sham [24] was the groundbreaking starting point of the nowadays widely
and successfully used DFT scheme.
Instead of solving the Schrödinger equation for a many-body system Kohn and Sham showed that
there is an equivalent auxiliary system of independent particles having the same ground state density
as the initial many-body system. Via the Hohenberg-Kohn theorem we know that the many-body
system is uniquely determined by its ground state density. Thus by using the idea of Kohn and
Sham one can reduce the complexity of the problem dramatically by solving the equations for a
system of independent particles with the same ground state density as the many-body system.
The Kohn-Sham (KS) N -particle system can be described by the KS Hamiltonian

HKS =−∇2 + vKS( #„r ) , (3.11)

and the Schrödinger equation

HKSφi(
#„r ) = Eiφi(

#„r ) , (3.12)
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with the KS orbitals φi(
#„r ) yielding the ground state density

n0( #„r ) =
N∑
i=1

|φi( #„r )|2 . (3.13)

The KS potential vKS is constructed such that the system yields the same ground state density as
the initial many-body system. It is defined by

vKS( #„r ) = vext( #„r ) + vHartree( #„r ) + vxc( #„r ) , (3.14)

where vext is the external (ionic) potential, vHartree is the Hartree potential and vxc is the exchange-
correlation potential. The external potential is known from the many-body system. The Hartree
potential is the functional derivative of the Hartree energy being a functional of the density

vHartree( #„r ) =
δEHartree[n]

δn( #„r )
=

δ

δn( #„r )

∫
d #„r d #„r ′

n( #„r )n( #„r ′)

| #„r − #„r ′| = 2

∫
d #„r ′

n( #„r ′)

| #„r − #„r ′| . (3.15)

Thus the only unknown is the exchange correlation potential vxc( #„r ) = δExc[n]
δn( #„r ) . We can find an

expression for the exchange correlation energy by comparing the energies of the many-body system
with the KS system:

Exc[n] = T [n] +W [n]−
(
TKS[n] + EHartree[n]

)
. (3.16)

However, at this point the solution of Exc still requires the full solution of the many-body system.

3.2.3. Spin density functional theory

In the previous sections we discussed the basics of DFT for non-magnetic solids. Indeed, many
areas of research and many technologies are based on magnetic materials demanding for a proper
description of the spin, which is an intrinsic property of the electrons.

Starting from the Schrödinger equation, the many-body wavefunction depends on the particle
positions and the spin of each particle. Furthermore, the spin of the electrons can couple to an
external magnetic field which modifies the Hamiltonian:

δH = −µB
∑
i

#„σ · #„

Bext( #„r i) , (3.17)

where #„σ is the vector of Pauli matrices. In addition to the electron density, for magnetic systems
the spin density #„m( #„r ; t) characterizes the ground state of the system:

#„m( #„r ; t) = µB〈Ψ(t)|
N∑
i=1

δ( #„r − #„ri)
#„σ |Ψ(t)〉 . (3.18)

It is straightforward to generalize the DFT scheme to magnetic materials.
First of all, one can show that there is a one-to-one correspondence between the external potentials
and the set of the four ground state density components (n0,

#„m0). Furthermore, the energy is a
functional of the charge density and the spin density,

E[n, #„m] = T [n, #„m] +W [n, #„m] + V [n, #„m] (3.19)

= T [n, #„m] +W [n, #„m] +

∫
d #„r
[
vext( #„r )n( #„r )− #„

Bext( #„r ) · #„m( #„r )
]

, (3.20)
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which is minimized for the ground state densities. In total, this concludes the Hohenberg-Kohn
theorem for magnetic systems.
Even more important than the Hohenberg-Kohn theorem are the spin-dependent Kohn-Sham equa-
tions. The existence of a system of non-interacting spin-dependent particles described by the
Kohn-Sham Hamiltonian,

HKS =−∇2 + vKS( #„r )− #„σ · #„

BKS( #„r ) , (3.21)

with the same ground state density n( #„r ) and ground state magnetization density #„m( #„r ) as the
initial interacting spin dependent system can be shown. The energy of the Kohn-Sham system is
given by

E[n, #„m] = TKS[n, #„m] + EHartree[n] +

∫
d #„r

[
vext( #„r )n( #„r )− #„

Bext( #„r ) · #„m( #„r )
]

+ Exc[n, #„m] .

(3.22)

The minimization of this energy yields an expression for the exchange-correlation magnetic field
which is the only new quantity in comparison with the spin-independent case:

#„

BKS( #„r ) = µB
#„

Bext( #„r ) +
δExc[n, #„m]

δ #„m( #„r )
. (3.23)

These equations show the basic relation between the interacting and the KS system, but they do
not help with simplifying the problem. In principle one still has to solve the many-body problem to
get the functional form of the interaction W [n, #„m] and the kinetic energy T [n, #„m]. To overcome this
problem different approximations for the exchange-correlation energy are available. The simplest
used is the so-called local (spin) density approximation (L(S)DA) which is discussed in the next
section.

3.2.4. Local spin density approximation

The electronic structure of a few solids – e.g. alkali metals and the noble metals – can be approxi-
mated by the homogeneous electron gas. This led to the idea of approximating the exchange and
correlation effects in a solid by using the exchange-correlation energy of the spin-polarized homo-
geneous electron gas.
The LSDA exchange-correlation functional is defined by the integral over all space of the den-
sity times the exchange-correlation energy density of the spin-polarized homogeneous electron gas
depending locally on the density:

ELSDA
xc [n, #„m] =

∫
d #„r n( #„r )εHEG

xc (n( #„r ), #„m( #„r )) . (3.24)

Thus the only problem in this approximation is finding a proper function for εHEG
xc . It turns out

that even for this simple system it is not possible to calculate εHEG
xc analytically. Therefore one

usually relies on analytic functions fitted to data from Monte Carlo simulations of the homogeneous
electron gas. In this work we use the analytic form of Vosko-Wilk-Nusair (VWN) [25].

There are several other approximations of the exchange-correlation energy, for example the wide
field of so-called generalized-gradient approximations, where the gradients of the density are also
taken into account by the exchange-correlation functionals.
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3.3. Time-dependent density functional theory

The time-dependent DFT (TDDFT) is the extension of ground state DFT to time-dependent ex-
ternal potentials. Instead of solving the time-independent Schrödinger equation the starting point
is its time-dependent analogon.
In the following, we will first discuss the Runge-Gross theorem, which is the time-dependent ex-
tension of the Hohenberg-Kohn theorem. Then the Kohn-Sham equations for time-dependent
potentials are presented. Afterwards, we discuss important approximations to the time-dependent
DFT yielding the linear response and the adiabatic approximation.
For the reason of simplicity, we restrict ourselves on the discussion of the non-magnetic case. The
extension to the magnetic case is done in a later chapter, when we combine the Green function
formalism and the linear response theory.
The following sections are based on the book of Marques et al. [26].

3.3.1. Runge-Gross theorem

The Runge-Gross theorem [27] states that

• two densities n(1)( #„r , t) and n(2)( #„r , t) evolving from a common initial state Ψ( #„r1...
#  „rN , t0) under

the influence of two potentials v(1)( #„r , t) and v(2)( #„r , t), both Taylor-expandable about the
initial time t0, eventually differ if the potentials differ by more than a purely time-dependent
function, i.e. v(1)( #„r , t)− v(2)( #„r , t) 6= c(t).

As the Hohenberg-Kohn theorem, the Runge-Gross theorem predicts a one-to-one correspondence
of the potential and the density. However, there are some crucial differences.
Mathematically for the time-dependent calculation one needs to solve the Schrödinger equation
which is a first order differential equation in time yielding a dependence on the initial state of the
system Ψ( #„r1...

#  „rN , t0). This means, that also the time-dependent density depends on the initial
state.
Furthermore, the energy E[Ψ] = 〈Ψ|H|Ψ〉 is not conserved in the time-dependent case, such that a
minimization of this quantity is useless.

3.3.2. Time-dependent Kohn-Sham equations

The Runge-Gross theorem states that every observable can be calculated with the knowledge of the
density n( #„r , t) and the initial state Ψ( #„r1...

#  „rN , t0), but it does not say anything on how to calculate
the density.
As for the time-independent case a fictitious system – the Kohn-Sham system – of non-interacting
particles in an external time-dependent potential vKS( #„r , t) having the same density as the inter-
acting system can be used.

i
∂

∂t
φj(

#„r , t) =
[
−∇2 + vKS( #„r , t)

]
φj(

#„r , t) , (3.25)

n( #„r , t) =

N∑
j=1

|φj( #„r , t)|2 . (3.26)
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The Kohn-Sham potential is given in terms of the exchange correlation functional

vKS( #„r , t) =vext( #„r , t) + vHartree( #„r , t) + vxc( #„r , t) , (3.27)

where vxc( #„r , t) is defined such that the density of the Kohn-Sham system equals the density of the
interacting system for every time. Compared to the time-independent case the exchange correlation
potential in general depends on the entire history of the density n( #„r , t), the initial interacting wave
function Ψ( #„r1, ...,

#  „rN , t0) and the initial Kohn-Sham wavefunctions φi(
#„r ). For the special case

that the interacting and non-interacting wavefunctions are the non-degenerated ground states the
exchange correlation potential depends only on the density but still on its entire history.
Thus solving the time-dependent Kohn-Sham equations is a challenging task. To overcome the
complicated dependences of the exchange correlation potential different approximations can be
done. In this work the so-called adiabatic approximation discussed in the next section is used.

3.3.3. Adiabatic approximation

In the adiabatic approximation the exchange correlation functional is approximated by its static
analogue being evaluated at the time-dependent density:

vadiabatic
xc ( #„r , t) = vstatic

xc [n]( #„r )
∣∣
n=n(t)

. (3.28)

In this way, the entire history dependence is neglected.
Since the static exchange correlation potential is a ground state property, we expect this approxima-
tion to work for systems close to the equilibrium. The most commonly used adiabatic approximation
is the so called adiabatic local density approximation (ALDA) which uses the exchange correlation
potential of the homogeneous electron gas

vALDA
xc ( #„r , t) = vHEG

xc (n)
∣∣
n=n( #„r ,t)

. (3.29)

3.3.4. Linear response of the charge density

A different approximation to the time-dependent DFT can be done for small external time-dependent
potentials. In this case, it is often not necessary to solve the full Kohn-Sham equations. Instead
one can make use of the linear response theory.
Assume a system being in the ground state for t < t0 with the ground state density n0( #„r ). For
small perturbations in the external potential, the density can be expanded up to first order in the
potential:

vext( #„r , t) = v0( #„r ) + δv( #„r , t) (3.30)

⇒ n( #„r , t) = n0( #„r ) + δn( #„r , t) +O
(
(δv)2

)
. (3.31)

Using a Fourier transformation the change in the density can be written in terms of a susceptibility
χ in the frequency space as

δn( #„r , ω) =

∫
d #„r ′ χ( #„r , #„r ′, ω)δv( #„r ′, ω) . (3.32)

The concept of susceptibilities or in more general response functions will be discussed in more detail
in chapter 6. At the moment, we can view eq. (3.32) as the definition of χ.
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The main property of the Kohn-Sham system is the equality of the Kohn-Sham density to the
density of the interacting system, such that

δn( #„r , ω) =

∫
d #„r ′ χKS( #„r , #„r ′, ω)δvKS( #„r ′, ω) , (3.33)

where χKS is the susceptibility of the Kohn-Sham system and δvKS is the Kohn-Sham potential up
to first order in the perturbing potential,

δvKS( #„r , ω) = δv( #„r , ω) + δvHartree(
#„r , ω) + δvxc(

#„r , ω) , (3.34)

with the Hartree potential

δvHartree(
#„r , ω) =

∫
d #„r ′

2

| #„r − #„r ′|︸ ︷︷ ︸
fHartree( #„r , #„r ′)

δn( #„r ′, ω) , (3.35)

and the exchange correlation potential

δvxc(
#„r , ω) =

∫
d #„r ′

δvxc(
#„r , ω)

δn( #„r ′, ω)︸ ︷︷ ︸
=fxc(

#„r , #„r ′;ω)

δn( #„r ′, ω) . (3.36)

where we have defined the so-called kernels fHartree and fxc which are the functional derivatives of
the potentials evaluated at the ground state density.
Plugging this expressions into eq. (3.33) yields

δn( #„r , ω) =

∫
d #„r ′χKS( #„r , #„r ′, ω)δv( #„r ′, ω)

+

∫
d #„r ′

∫
d #„r ′′χKS( #„r , #„r ′′, ω)

[
fHartree(

#„r ′′, #„r ′) + fxc(
#„r ′′, #„r ′, ω)

]
δn( #„r ′, ω) ,

(3.37)

which finally yields an expression for the susceptibility of the interacting system

χ( #„r , #„r ′, ω) =χKS( #„r , #„r ′, ω)

+

∫
d #„x

∫
d #„x ′χKS( #„r , #„x , ω)

[
fHartree(

#„x , #„x ′) + fxc(
#„x , #„x ′, ω)

]
χ( #„x ′, #„r ′, ω) ,

(3.38)

which is a Dyson-like equation and has to be solved self-consistently.
Since the unperturbed system is in the ground state, the Kohn-Sham susceptibility can be written
in terms of the ground state Kohn-Sham orbitals. Furthermore, the Hartree kernel is universal, not
depending on the density. The only time-dependent quantity is the exchange-correlation kernel. It
depends crucially on the approximations made within the TDDFT scheme. In this work we always
stick to the adiabatic local density approximation which simplifies the calculation of the exchange
correlation kernel, since it neglects the time/frequency dependence of the kernel.

3.4. Currents within density functional theory

In this section currents within density functional theory are discussed. In the first part, the usage
of charge currents to construct current-depended energy functionals, which leads to the so-called
current density functional theory (CDFT), is shown. In the second part, the difference between
spin currents in the Kohn-Sham system and spin currents in the interacting system is enlightened.



3.4. Currents within density functional theory 19

3.4.1. Current density functional theory

In most of the widely used density functional theory implementations the magnetic field is con-
sidered to only couple to the spin degree of freedom, which induces a spin moment. However, a
magnetic field can also influence the orbital motion of the electrons, which induces currents. The
vector potential

#„

A, which is connected to the magnetic field via Maxwell’s equations, couples to
the motion of the electrons as can be seen in the kinetic energy part of the Hamiltonian:

Hkin =
1

2m

(
#„p − e #„

A
)2

. (3.39)

Evaluating the kinetic energy yields

Ekin =

〈
ψ

∣∣∣∣ 1

2m

(
#„p − e #„

A
)2
∣∣∣∣ψ〉 (3.40)

= T [n] +

∫
d #„r

#„
j para( #„r ) · #„

A( #„r ) +

∫
d #„r

e2

2m

#„

A( #„r )2n( #„r ) , (3.41)

where T [n] is the kinetic energy without external field and we restricted ourselves to the case of
a spin-less particle. Equation (3.41) shows explicitly the coupling of the vector potential

#„

A to the
paramagnetic charge current density

#„
j para.

Vignale and Rasolt [28? ] developed an extension of the density functional theory using the vector
potential as an additional potential, which couples to the charge current density. Thus, in addition
to the charge density n, the energy functional used in the DFT scheme depends on the paramagnetic
charge current density

#„
j para:

E = E[n,
#„
j para]. (3.42)

It is possible to prove a Hohenberg-Kohn theorem, which consists of two parts: On the one hand
it states that there is a one-to-one correspondence between the set of densities {n, #„

j para} and the

set of the potentials {v, #„

A}. On the other hand it states that in the ground state the energy with
respect to the four densities is minimized.
Furthermore, there is a Kohn-Sham system having the same densities as the interacting system,
which is achieved by using the exchange-correlation energy

Exc[n,
#„
j para], (3.43)

which depends on all the densities. Therefore, in addition to the exchange-correlation scalar poten-
tial, the exchange-correlation vector potential, which is the functional derivative of the exchange-
correlation energy with respect to the paramagnetic charge current density, has to be introduced.
The described procedure is known as the current density functional theory (CDFT). The main
strength of the scheme is its ability of describing arbitrary strong magnetic fields. In principle, for
a precise description of any system with an applied (time-dependent) magnetic field CDFT has to
be used, but even systems without external magnetic field can have finite paramagnetic currents
so that CDFT could be useful. However, as always when it comes to DFT a lot of approximations
are involved and one has to decide if it is worth the effort.
In the first part of this work, we deal with ground state phenomena without applied external mag-
netic fields. One of the main quantities discussed in our results is the orbital magnetic moment
caused by the orbital motion of the electrons. Ebert et al. [29] analyzed the orbital magnetic mo-
ment within the CDFT scheme for different magnetic bulk systems. The main outcome is that the
CDFT scheme improves the values of the orbital magnetic moment compared to the experimental
values by a few percent. However, the effect of CDFT is small compared to other approximations.
For example they showed that the so-called extended orbital-polarization formalism improves the
orbital magnetic moments much more than the CDFT scheme does.
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3.4.2. Kohn-Sham spin current

In the standard DFT scheme two fundamental quantities are used – namely the charge and the spin
density – which are the same in the Kohn-Sham and the interacting system. However, the charge
current and the spin current are not fundamental quantities, so that the Kohn-Sham currents can
differ from their interacting counterpart, which was first shown by Capelle et al. [30].
As pointed out in section 2 the appropriate way of defining currents is via a continuity equation.
The charge continuity equation of the Kohn-Sham system follows directly from the single particle
description in section 2.3.1. For the interacting system in addition there is the electron-electron
interaction, but it does not contribute to the continuity equation, so that in total the charge
continuity equations in the non-relativistic limit are given by:

∂ρ

∂t
+

#„∇ · #„
j KS = 0 and

∂ρ

∂t
+

#„∇ · #„
j = 0 . (3.44)

In total, the divergence of the charge currents must be the same in both systems:

⇒ #„∇ · #„
j =

#„∇ · #„
j KS . (3.45)

In case of the spin-current the situation is a bit different, since there is in addition the spin torque.
The spin continuity equation of the Kohn-Sham system using the corresponding Kohn-Sham Hamil-
tonian gives access to the Kohn-Sham spin current:

∂ma

∂t
+

#„∇ · #„
j aKS = 2

(
#„

BKS × #„m
)a

, (3.46)

where
#„

BKS = µB
#„

Bext +
#„

Bxc is the Kohn-Sham magnetic field. For the interacting system the
electron-electron interaction does not contribute, so that the continuity equation is given by

∂ma

∂t
+

#„∇ · #„
j a = 2µB

(
#„

Bext × #„m
)a

, (3.47)

which yields an equation connecting the difference of the Kohn-Sham spin-current and the inter-
acting spin-current to the exchange correlation magnetic field:

2
(

#„

Bxc × #„m
)a

=
#„∇ ·
[

#„
j aKS −

#„
j a
]

=
#„∇ · #„

j axc , (3.48)

where we defined the difference of the Kohn-Sham spin-current and the interacting spin-current as
jaxc. By integrating over the whole space and using Gauss’ theorem one arrives at∫

d #„r
#„

Bxc × #„m = 0 , (3.49)

the so-called zero-torque theorem, which can be interpreted as follows: The exchange-correlation
magnetic field does not exert any torque on the Kohn-Sham system as a whole.
The zero-torque theorem is a very important theorem, which has to be fulfilled for any approxi-
mation of the exchange-correlation magnetic field. In this work, we are using the LSDA as an ap-
proximation of the exchange-correlation energy. In the (adiabatic) LSDA the exchange-correlation
magnetic field is by definition parallel to the magnetization yielding

#„

Bxc(
#„r , t) ‖ #„m( #„r , t) ⇒ #„

Bxc(
#„r , t)× #„m( #„r , t) . (3.50)

Thus the zero-torque theorem is trivially fulfilled by the LSDA. Furthermore, the spin-currents of
the Kohn-Sham system should then equal the ones of the interacting system.



4. Korringa-Kohn-Rostoker Green function
method

In the previous chapter we discussed the general DFT scheme. We saw that for the calculation of
the electronic structure one has to solve the Kohn-Sham equations, but we have not shown how
to solve these equations. There are several different approaches, which all have their own specific
advantages, e.g. for periodic systems one often uses plane wave methods and works in the reciprocal
space.
However, in this work we will mainly discuss small nanostructures deposited on surfaces. Usual
plane wave methods need large supercells to minimize interaction effects between the periodic repli-
cas of the nanostructure. Therefore, we use the Korringa-Kohn-Rostoker (KKR) Green function
method, which was originally developed by Korringa [31], Kohn and Rostoker [32] for the calcula-
tion of periodic solids, but can be utilized within a real space approach being perfectly suited to
describe nanostructures on surfaces.
In the following chapter, we discuss the different concepts used in the KKR method. The idea
is to slowly build up the KKR formalism. We start with the description of the Green function
formalism. Subsequent, the KKR formalism for collinear structures without spin-orbit coupling is
discussed. Afterwards, we extend this scheme to non-collinear structures with spin-orbit coupling.
We end this chapter with a discussion of currents within the KKR scheme.
The main ideas of this chapter are well described in the book of Zabloudil [33] and the review of
Mavropoulos and Papanikolaou [34].

4.1. Green function formalism

The time-dependent Green function of a single particle Hamiltonian is defined via

(i∂t −H( #„r ))GR/A( #„r , #„r ′; t, t′) = δ(t− t′)δ( #„r − #„r ′) , (4.1)

where GR/A are the retarted respectively advanced Green functions fulfilling the boundary condi-
tions

GR( #„r , #„r ′; t, t′) = 0 for t < t′ (4.2)

GA( #„r , #„r ′; t, t′) = 0 for t > t′ . (4.3)

For time-independent Hamiltonians, which we are considering here, one can show that the Green
functions have only one time argument depending on the time difference t− t′.
Furthermore, in this case it is convenient to solve the static Schrödinger equation. The Fourier
transform of eq. (4.1) is given by

(E ± iη −H( #„r ))G( #„r , #„r ′;E ± iη) = δ( #„r − #„r ′) , (4.4)
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where we defined the Fourier transform of the Green function as

G(E ± iη) =

∫
dt ei(E±iη)tGR/A(t) , (4.5)

and added a small parameter η → 0+ ensuring convergence of the integral at t→ ±∞. The formal
solution of the Green function is given by

G( #„r , #„r ′;E + iη) = (E + iη −H)−1 δ( #„r − #„r ′) . (4.6)

Using the eigenfunctions of the Hamiltonian being two component spinors, which form a complete
basis set the Green function can be written as

G( #„r , #„r ′;E + iη) =
∑
n

Ψn( #„r )Ψ†n( #„r ′)

E − En + iη
=

(
G↑↑ G↑↓

G↓↑ G↓↓

)
, (4.7)

or equivalently written in operator form

G(E + iη) =
∑
n

|n〉〈n|
E − En + iη

. (4.8)

The Green functions are very useful to describe perturbed systems.
Consider an external perturbation ∆V . Let G0 be the Green function of the unperturbed Hamilto-
nian H0 with the wavefunction Ψ0. One can easily show that the perturbed wavefunction is given
by [35]

Ψ( #„r , E) = Ψ0( #„r , E) +

∫
d #„r ′ G0( #„r , #„r ′;E)∆V ( #„r ′)Ψ( #„r ′, E) , (4.9)

which is the so called Lippmann-Schwinger equation.
From the definition of the Green function directly follows a Dyson integral equation for the per-
turbed Green function:

G( #„r , #„r ′;E) = G0( #„r , #„r ′;E) +

∫
d #„r ′′ G0( #„r , #„r ′′;E)∆V ( #„r ′′)G( #„r ′′, #„r ′;E) . (4.10)

To simplify the notation we will often skip the integrals and arguments in those expressions yielding

G = G0 +G0∆V G (4.11)

= G0 +G0∆V G0 +G0∆V G0∆V G0 + . . . (4.12)

There are two ways of solving the Dyson equation. Either one inverts eq. (4.11) yielding

G = (1−G0∆V )−1G0 , (4.13)

or one calculates the Green function iteratively cutting eq. (4.12) after a finite summation.
The simplest non-trivial approximation is given by the so called first-order Born approximation

G = G0 +G0∆V G0. (4.14)

Often the so-called transition matrix (T -matrix) which relates the perturbed to the unperturbed
Green function is used:

G = G0 +G0T G0 (4.15)

with T = ∆V + ∆V G0∆V + . . . (4.16)



4.2. KKR Green function in the atomic sphere approximation 23

Thus instead of solving the Dyson equation for the Green function one has to solve a Dyson equa-
tion for the T -matrix.

The most important use of the Green function is its connection to the statistical average of an
observable Â in a fermionic system,

〈Â〉 =
∑
n

f(En) 〈n|Â|n〉 , (4.17)

where f(E) is the Fermi-Dirac distribution,

f(E) =
1

eβ(E−µ) + 1
, (4.18)

with β = 1/kBT , kB the Boltzmann constant, T the temperature of the system and µ the chemical
potential, which equals the Fermi energy at zero temperature.
Applying the Dirac identity to eq.(4.8) and multiplying with the Fermi-Dirac distribution f(E),
the energy-integrated Green function can be written as∫

dE f(E) G(E ± iη) = P
[∫

dE f(E)
∑
n

|n〉〈n|
E − En

]
∓ iπ

∑
n

f(En) |n〉〈n| , (4.19)

where P means Cauchy principal value.
Comparing to the statistical average of the observable A yields

〈Â〉 = − 1

π
Im

∫
dE f(E) Tr

[
Â G(E + iη)

]
, (4.20)

with the imaginary part of the Green function being defined via

Im G(E + iη) =
1

2i
[G(E + iη)−G(E − iη)] . (4.21)

Therefore, the Green function contains the same physical information as the wavefunction. Know-
ing the Green function is sufficient to calculate any physical property of a system.

Having the DFT scheme in mind, we need two very important quantities – the density and the
magnetization density – which can be calculated using Green functions. In the zero temperature
limit where f(E) = Θ(T − EF ) they are given by

n( #„r ) = − 1

π

∫ EF

dE Im Tr G( #„r , #„r ;E + iη) , and (4.22)

#„m( #„r ) = −µB
π

∫ EF

dE Im Tr #„σG( #„r , #„r ;E + iη) . (4.23)

Furthermore, the energy-resolved density of states is an important quantity

n(E) = − 1

π

∫
V

d #„r Im Tr G( #„r , #„r ;E + iη) (4.24)

= − 1

π

∫
V

d #„r Im
[
G↑↑( #„r , #„r ;E + iη) +G↓↓( #„r , #„r ;E + iη)

]
, (4.25)

where V is the unit cell volume.
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Figure 4.1.: Voronoi construction: The Voronoi cells contain all points being closest to the cor-
responding lattice point. In the ASA the Voronoi cells are replaced by Wigner-Seitz
spheres, which have the same volume as the Voronoi cells yielding gaps and overlaps.

4.2. KKR Green function in the atomic sphere approximation

The KKR method is a real space method using Green functions to solve the Schrödinger equation.
The space consisting of atoms is divided by a so called Voronoi construction into cells containing
all points being closest to the center which is usually the atom site (see fig. 4.1).
At each site relative coordinates are used, such that a point #„u at cell i is described by the position
relative to the center of the cell #„r and the position of the center

#„

Ri:

#„u = #„r +
#„

Ri , (4.26)

Often, the atomic potential can be sufficiently approximated by a spherically symmetric potential
given by

V ( #„r ) = V (r) =

{
V (r) for r < RMT

0 else.
, with V (r) =

(
V ↑↑ V ↑↓

V ↓↑ V ↓↓

)
, (4.27)

where RMT is the muffin-tin radius shown in fig. 4.1.
However, the volume of the spheres with radius RMT does not match the volume of the Voronoi cells.
Therefore, in the atomic sphere approximation (ASA) spherical symmetric cells with the Wigner-
Seitz radius RWS are constructed having the same volume as the Voronoi cell. One drawback of
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this approximation is that the constructed spheres overlap, which will become obvious when we
discuss the results of this work.
To summarize, the problem which should be solved by the KKR formalism is the single particle
Schrödinger equation with a periodic spherical symmetric potential using a Green function:

(E +
#„∇2 − V n(r))G( #„r +

#„

Rn,
#„r ′ +

#„

Rn′ ;E) = δnn′δ(
#„r − #„r ′) , (4.28)

where V n is the potential at site n.
For this, the KKR formalism makes use of scattering theory, which yields a Green function of the
form

G( #„r +
#„

Rn,
#„r ′ +

#„

Rn′ ;E) = Gon-site
n ( #„r , #„r ′;E)δnn′ +Gstr

nn′(
#„r , #„r ′;E) , (4.29)

where Gon-site
n is the on-site solution and Gstr

nn′ is the so called structural Green function accounting
for multiple scattering and the geometrical details of the system.
We start our discussion within the framework of collinear magnetism, such that the potential can
be considered as diagonal in spin space

V (r) =

(
V ↑↑ V ↑↓

V ↓↑ V ↓↓

)
=

(
V ↑ 0
0 V ↓

)
(4.30)

yielding two decoupled equations for the Green function of the two different spin configurations.
In the next section we introduce single-site scattering.

4.2.1. Single-site scattering

To describe single-site scattering we consider a scattering center at
#„
0 given by a finite spherically

symmetric potential

V (r) =

{
V (r) for r < RWS

0 otherwise.
(4.31)

For the reason of simplicity, we drop the spin index, since all spin dependent equations are decou-
pled.
The spherical symmetry of the problem is an excellent condition for an expansions of all space
dependent quantities in terms of spherical harmonics. Every function A( #„r ) can be written as

A( #„r ) =
∑
L

AL(r)YL(r̂) , (4.32)

where L = (l,m) is a combined index of the angular momentum indices and YL are real spherical
harmonics. In this way the time-independent Schrödinger equation for a single particle in an
external radial non-magnetic potential can be simplified to a radial differential equation,(

− 1

r2
∂r
(
r2∂r

)
+
l(l + 1)

r2
+ V (r)− E

)
Rl(r;E) = 0 , (4.33)

where Rl(r;E) is the radial part of the wavefunction.
To solve the radial Schrödinger equation we can make use of the Lippmann-Schwinger equation
(eq. (4.9)). Therefore, we need an unperturbed reference system which is the free electron gas.
The solutions of the Schrödinger equation are plane waves with | #„k | =

√
E

ψ #„
k ( #„r ) = ei

#„
k · #„r =

∑
L

4πiljl(
√
Er)YL(r̂)YL(k̂) , (4.34)
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where jl is the spherical Bessel function. From the wavefunctions one can construct the Green
function of the free electron gas

g( #„r , #„r ′;E) = − 1

4π

ei
√
E| #„r− #„r ′|

| #„r − #„r ′| , (4.35)

which can be rewritten in terms of real spherical harmonics

g( #„r , #„r ′;E) =
∑
L

YL(r̂)gl(r, r
′;E)YL(r̂′) , (4.36)

with

gl(r, r
′;E) = −i

√
Ejl(
√
Er<)hl(

√
Er>) , (4.37)

where we used the spherical Hankel functions hl = jl + inl with the spherical Neumann functions
nl and r>/< is the bigger/smaller of the radii r and r′. The Bessel function is well behaving at
r → 0, whereas the Neumann and Hankel functions are diverging at r → 0. Both, the Bessel and
the Hankel function, are solutions of the free Schrödinger equation.
The Lippmann-Schwinger equation (4.9) combined with the expanded form of the free Green func-
tion eq. (4.36) yields a regular solution converging at r → 0 constructed from the Bessel function

Rl(r;E) =jl(
√
Er) +

∫ RWS

0
dr′ r′2gl(r, r

′;E)V (r′)Rl(r
′;E) , (4.38)

and an irregular solution diverging at r → 0 constructed from the Hankel functions

Hl(r;E) =hl(
√
Er)βl +

∫ RWS

0
dr′ r′2gl(r, r

′;E)V (r′)Hl(r
′;E) , (4.39)

where βl is a factor fulfilling boundary conditions [36].
For r > RMT these expressions can be further simplified

Rl(r;E) =jl(
√
Er)− ihl(

√
Er)
√
E

∫ RWS

0
dr′ r′2jl(

√
Er′)V (r′)Rl(r

′;E)︸ ︷︷ ︸
=tl(E)

(4.40)

and Hl(r;E) =hl(
√
Er) , (4.41)

where we defined the t-matrix in the angular momentum representation tl(E). At this point we can
give an interpretation of the regular and irregular solutions. The regular solution Rl can be viewed
as a wave described by the potential-free solution jl being scattered at the scattering center, which
is described the the t-matrix. However, the irregular solution Hl is a wave, which is not scattered
outside the potential region, but is affected inside the scattering potential.
It can be shown that the Green function of the scattering problem can be written in terms of the
regular and the irregular solutions [34]:

G( #„r , #„r ′;E) =− i
√
E
∑
L

Rl(r<;E)Hl(r>;E)YL(r̂)YL(r̂′) (4.42)

=
∑
L

YL(r̂)Gl(r, r
′;E)YL(r̂′) , (4.43)

Thus we solved the scattering problem for a single spherical symmetric potential. In the KKR
formalism we deal with multiple sites indeed. In the next section we show how to extend the
theory to arrive at the full KKR representation of the Green function.
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4.2.2. Structural Green function

For the full Green function in the KKR formalism we need to add all the different scattering centres
in the Voronoi cells to our theory. Starting from the reference system of free electrons the Green
function for different sites n and n′ is given by

g( #„r +
#„

Rn,
#„r ′ +

#„

Rn′ ;E) = − 1

4π

ei
√
E | #„r+

#„
Rn− #„r ′− #„

Rn′ |

| #„r +
#„

Rn − #„r ′ − #„

Rn′ |
, (4.44)

which can be written in terms of Hankel and Bessel function as shown in eq. (4.36). Furthermore,
we can make use of a theorem for the transformation of Hankel functions:

hL( #„r ′ +
#„

Rn′ −
#„

Rn;E) =
i√
E

∑
L′

gnn
′

LL′(E)jL′(
#„r ′;E) for | #„r − #„r ′| < | #„Rn −

#„

Rn′ | , (4.45)

where we defined jL( #„r ;E) = jl(
√
Er)YL(r̂) and hL( #„r ;E) = hl(

√
Er)YL(r̂). The expansion coeffi-

cient gnn
′

LL′(E), which are called structure constants being connected to the structural Green function
Gstr
nn′ , are given by

gnn
′

LL′(E) = −(1− δnn′)4πi
√
E
∑
L′′

il−l
′+l′′CL

′′
LL′hL′′(

#„

Rn −
#„

Rn′ ;E) , (4.46)

with the Gaunt coefficient

CL
′′

LL′ =

∫
dΩ YL(r̂)YL′(r̂)YL′′(r̂) . (4.47)

Applying the theorem to the free electron Green function yields

g( #„r +
#„

Rn,
#„r ′ +

#„

Rn′ ;E) = −i
√
E
∑
L

jL( #„r <;E)hL( #„r >;E)δnn′ +
∑
LL′

jL( #„r ;E)gnn
′

LL′(E)jL′(
#„r ′;E) .

(4.48)

Thus, knowing the Green function of the free electron reference system we can use the Dyson
equation (4.10) to calculate the Green function of the perturbed system:

G( #„r +
#„

Rn,
#„r ′ +

#„

Rn′ ;E) = g( #„r +
#„

Rn,
#„r ′ +

#„

Rn′ ;E)

+
∑
n′′

∫
Vn′′

d #„r ′′ g( #„r +
#„

Rn,
#„r ′′ +

#„

Rn′′ ;E)V n′′(r′′)G( #„r ′′ +
#„

Rn′′ ,
#„r ′ +

#„

Rn′ ;E) .
(4.49)

A proper ansatz for the full Green function which describes the single-site scattering as well as the
structural scattering is given by

G( #„r +
#„

Rn,
#„r ′ +

#„

Rn′ ;E) =

− i
√
E
∑
L

RnL( #„r <;E)Hn
L( #„r >;E)δnn′ +

∑
LL′

RnL( #„r ;E)Gnn
′

LL′(E)Rn
′
L′(

#„r ′;E) . (4.50)

where RnL( #„r <;E) = Rnl (r<;E)YL(r̂) and Hn
L( #„r <;E) = Hn

l (r<;E)YL(r̂) are the regular, respec-
tively irregular solutions of the Schrödinger equation for the single site problem at site n.
Plugging eqs. (4.48) and (4.50) into eq. (4.49) yields a Dyson equation for the structural Green
function coefficients

Gnn
′

LL′(E) = gnn
′

LL′(E) +
∑
n′′,L′′

gnn
′′

LL′′(E)tn
′′
l′′ (E)Gn

′′n′
L′′L′(E) , (4.51)

with the t-matrix defined in eq. (4.40). The structural Green function coefficients contain infor-
mations about the geometrical arrangement of the atoms and the multiple scattering.
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4.3. Projection scheme of the KKR Green function

In the previous section we showed that the standard KKR representation of the Green function in
the ASA is given by

G( #„r +
#„

Rn,
#„r ′ +

#„

Rn′ ;E) =
∑
LL′

YL(r̂)Gnn
′

LL′(r, r
′;E)YL′(r̂

′) , (4.52)

with

Gnn
′

LL′(r, r
′;E) =− i

√
ERnl (r<;E)Hn

l (r>;E)δnn′δLL′

+Rnl (r;E)Gnn
′

LL′(E)Rn
′
l′ (r′;E) .

(4.53)

The matrix element Gnn
′

LL′(r, r
′;E) is constructed from several energy-dependent functions: the

regular and irregular radial basis functions, Rnl and Hn
L, and the structural Green function Gnn

′
LL′ .

In this work we use an projection scheme described in the appendix of the paper of dos Santos
Dias et al.[37], which maps the large set of matrix elements Gnn

′
LL′(r, r

′;E) on a smaller set of energy
independent radial basis functions φnlb(r) with b = {1, 2, . . .} and an energy dependent Green
function matrix element such that

G( #„r +
#„

Rn,
#„r ′ +

#„

Rn′ ;E) =
∑
LL′
bb′

YL(r̂)φnlb(r)GnLb;n′L′b′(E)φn′l′b′(r
′)YL′(r̂

′) . (4.54)

The projection of course decreases the accuracy, but it also yields a large speed-up of the calcula-
tions, especially for the computationally demanding linear response calculations in the second part
of this work. A detailed comparison of the density of states for the projected Green function and
the standard representation, showing the capability of this projection scheme, can be found in the
work of Schweflinghaus [38].

To construct the new basis, we start with radial basis functions which are given by the normalized
regular solutions of the radial Schrödinger equation evaluated at a set of energies {Eb} within the
range of valence states

φ̃nlb(r) =
Rnl (r;Eb)√∫

dr r2(Rnl (r;Eb))2
. (4.55)

Usually four different energy points are sufficient for a proper basis construction. The use of the
regular radial basis functions has two advantages: On the one hand they are numerically easy
accessible and on the other hand they are well-suited to the problem.
In a next step, the overlap matrix

Onlbb′ =

∫ RWS

0
dr r2φ̃nlb(r)φ̃nlb′(r) , (4.56)

with fixed n and l is diagonalized, such that the eigenvalues and eigenvectors are available. Usually,
it is sufficient to consider only the two largest eigenvalues and construct the normalized basis from
the two associated eigenfunctions φnlb, which are linear combinations of φ̃nlb.

4.4. Non-collinear magnetism and spin-orbit coupling corrections

In the previous sections we discussed the KKR scheme for collinear magnetic structures without
spin-orbit coupling. In this sections, we show how non-collinear structures can be treated and how
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Figure 4.2.: Non-collinear magnetism in the rigid spin approximation. The spins are treated as
collinear in each Voronoi cell.

to include spin-orbit coupling in the KKR formalism.
Figure 4.2 visualizes the treatment of non-collinear structures in the rigid-spin approximation,
which is used in the KKR codes within self-consistency. Instead of considering the whole spatial
dependence of the direction of the electrons magnetization, the magnetization direction is assumed
to be constant in each Voronoi cell, respectively each WS sphere in the ASA. The non-collinear
magnetization can be accessed at the end of the self-consistency cycle. Thus, if we consider a
potential in cell n given in the global spin frame of reference by

V n(r) = V n(r)1− µB #„σ ·Bn(r)ûn , (4.57)

where ûn is pointing along the local direction of the magnetization given by (θ, φ), we can apply a
local rotation in spin-space described by the rotation matrix Un(θ, φ) yielding

V n
loc = UnV n

globU
n† =

(
V n↑

loc 0

0 V n↓
loc

)
, (4.58)

which is diagonal in spin-space. Therefore, the discussion of the previous sections still holds, but
the rotations have to be included carefully.
However, if we include spin-orbit coupling the theory has to be extended. The SOC term discussed
in section 2.2 can be written as

V n
SOC =

1

M(r)2c2

1

r

∂V n(r)

∂r

#„

L · #„σ (4.59)

where we choose V n(r) = 1
2(V n↑ + V n↓) to be the average of spin up and spin down potential and

M(r) is the relativistic mass (see Appendix C). The total potential is given by

V n(r) = V n(r)1− #„σ ·Bn(r)ûn + V n
SOC . (4.60)
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A rotation to the local frame yields

V n
loc =

(
V n↑

loc 0

0 V n↓
loc

)
+ UnV n

SOCU
n† , (4.61)

which is not diagonal anymore.
Thus we need to extend our theory to non-diagonal potentials, which is described in the work of
Bauer [36]. The starting point is the Dyson equation (4.10). The Dyson equation can be written
in two ways

G = G0 +G0∆V G (4.62)

G = G0 +G∆V G0 , (4.63)

which can be shown by plugging in the Green function iteratively. For diagonal potentials the
order of multiplication does not matter, since the Green function is also diagonal. However, for
non-diagonal potential it does matter. In the work of Bauer a proper ansatz for the Green function
is discussed:

G( #„r , #„r ′) =
∑
L

[
Θ(r′ − r)RL( #„r )H̄L( #„r ′) + Θ(r − r′)HL( #„r )R̄L( #„r ′)

]
, (4.64)

with the Heaviside step function Θ(r− r′), the right-hand side solutions RL and HL being column
vectors and the left-hand side solutions R̄L and H̄L being row vectors.
At this point, we only discuss the regular solutions and refer to the work of Bauer for a more
detailed discussion.
The left and right hand solutions are solutions of Lippmann-Schwinger equations, which can be seen
as follows: Assume a single scattering potential of finite range RMT and r < RMT < r′. Plugging
the ansatz eq. (4.64) into the Dyson equation (4.62) yields∑

L

RL( #„r )H̄L( #„r ′) =− i
√
E
∑
L

YL(r̂)jl(
√
Er)h̄l(

√
Er′)YL(r̂′) (4.65)

+
∑
L

∫
d #„r ′′ G0( #„r , #„r ′′;E)∆V (r′′)RL(r′′)H̄L(r′) . (4.66)

With the boundary condition H̄L(r) = HL(r) = hl(
√
Er) for r > RMT the equation can be

simplified to

RL(r) = −i
√
Ejl(
√
Er)YL(r̂) +

∫
d #„r ′′ G0( #„r , #„r ′′;E)∆V (r′′)RL(r′′) . (4.67)

A similar approach, but assuming r′ < RMT < r and using the Dyson equation (4.63) yields for
the left-hand side regular solution

R̄L(r′) = −i
√
Ej̄l(
√
Er′)YL(r̂′) +

∫
d #„r ′′ R̄L(r′′)∆V (r′′)G0( #„r ′′, #„r ′;E) . (4.68)

Comparing both equations shows, that the left- and the right-hand side solutions are different for
potentials, which are not diagonal, since the order of multiplication matters as can be seen as
follows: Assume a purely off-diagonal potential with different elements V ↑↓ 6= V ↓↑. Due to the
different order of multiplication the left-hand solution and the right-hand solution differ:(

0 V ↑↓

V ↓↑ 0

)(
R↑L
R↓L

)
=

(
V ↑↓R↓L
V ↓↑R↑L

)
, (4.69)
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and (
R̄↑L R̄↓L

)( 0 V ↑↓

V ↓↑ 0

)
=
(
R̄↓LV

↓↑ R̄↑LV
↑↓
)

. (4.70)

The full Green function containing the on-site scattering and the multiple scattering contributions
is given by

G( #„r +
#„

Rn,
#„r ′ +

#„

Rn′) = δnn′G
n
on-site(

#„r , #„r ′) +
∑
LL′

RnL( #„r )Gnn
′

LL′R̄
n′
L′(

#„r ′) , (4.71)

where the structural Green function are defined via a Dyson equation

Gnn
′

LL′(E) = gnn
′

LL′ +
∑
n′′,L′′

gnn
′′

LL′′t
n′′
L′′G

n′′n′
L′′L′ , (4.72)

with the t-matrix

tnL =

∫
d #„r j̄L( #„r )V n(r)RL( #„r ) . (4.73)

The projection scheme discussed in the previous section applies in the same manner by using
the right-hand side solutions for the basis set construction. In addition it is assumed that the
constructed basis φnlb(r) does not depend on the spin anymore, which simplifies spin rotations,
since the spin dependence is only included in the Green function matrix element.

4.5. KKR programs

In this section a short overview of the used KKR programs and their purpose is given. We are using
three different KKR programs– the Jülich-München (JM) program [39] and the KKRflex program
with the extension KKRsusc.
The starting point is an accurate description of the host system, which is an infinite slab. The
JM program simulates the host system by using the KKR Green function method in the ASA
approximation. After a self-consistency cycle it gives access to the host Green function. In the
JM program a cluster in real space is cut, which is used in the impurity program KKRflex. In the
KKRflex program some of the vacuum sites in the cluster are replaced by impurities, e.g. one vacuum
is replaced to simulate an adatom on top of the surface. Using a KKR Green function method in real
space in the ASA approximation the KKRflex code is capable to describe the electronic structure
of the cluster. Finally, the last used program is the KKRsusc program, which is an extension to
the KKRflex program. Its main feature is the calculation of the magnetic susceptibility, which is
achieved by the usage of the projection scheme discussed before. All implementation done in this
work are embedded in the KKRsusc program.

4.6. Ground state currents within the KKR formalism

Up to now, we discussed the theory which is used to solve the Schrödinger equation in the KKR
formalism. Using this approach we directly have access to the ground state Green function, which
can be used to calculate the expectation value of any observable as shown in eq. (4.20).
In this section we show how to calculate ground state paramagnetic charge and spin currents within
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the KKR formalism. As shown in chapter 2 the paramagnetic charge and spin currents are given
by

#„

j apara( #„r , #„r ′) =− iµB
(

#„∇− #„∇′
)
σa , with a = {0, 1, 2, 3} , (4.74)

where we used σ0 = 1 to describe charge currents and σa to describe a-polarized spin currents.
Using the Green function yields

#„
j apara( #„r ) =− 1

π
Im

∫
dE f(E) lim

#„r ′→ #„r
Tr
[

#„

j apara( #„r , #„r ′) G( #„r , #„r ′;E + iη)
]

(4.75)

= lim
#„r ′→ #„r

Tr
[

#„

j apara( #„r , #„r ′)ρ( #„r , #„r ′)
]

, (4.76)

with the density matrix ρ defined via

ρ( #„r , #„r ′) = − 1

π
Im

∫
dE f(E) G( #„r , #„r ′;E + iη) . (4.77)

The density matrix is given in the projected Green function basis as

ρ( #„r +
#„

Rn,
#„r ′ +

#„

Rn′) =
∑
LL′
bb′

YL(r̂)φnlb(r)ρnLb;n′L′b′φn′l′b′(r
′)YL′(r̂

′) , (4.78)

with

ρnLb;n′L′b′ = − 1

π
Im

∫
dE f(E) GnLb;n′L′b′(E) . (4.79)

Thus, the paramagnetic currents are given by

#„
j apara( #„r ) =− iµB lim

#„r ′→ #„r

(
#„∇− #„∇′

)
Tr
[
σaρ( #„r , #„r ′)

]
(4.80)

=− iµB
∑
LL′
bb′

[(
#„∇YL(r̂)φnlb(r)

)
Tr
[
σaρnLb;nL′b′

]
φnl′b′(r)YL′(r̂)

− YL(r̂)φnlb(r)Tr
[
σaρnLb;nL′b′

] ( #„∇φnl′b′(r)YL′(r̂)
)]

.

(4.81)

Due to the summation we can relabel L↔ L′ and b↔ b′ in the second summand which yields

#„
j apara( #„r ) =− iµB

∑
LL′
bb′

(
#„∇YL(r̂)φnlb(r)

)
Tr
[
σaρnLb;nL′b′ − σaρnL′b′;nLb

]︸ ︷︷ ︸
=σa∆ρnLb;nL′b′

φnl′b′(r)YL′(r̂) , (4.82)

where we defined ∆ρnLb;nL′b′ = ρnLb;nL′b′ − ρnL′b′;nLb.
At this point we can discuss the basic requirements for finite paramagnetic ground state currents.
From Eq. (4.82) one can see that at least ∆ρnLb;nL′b′ has to be finite. This means that the Green
function can not be symmetric in the spatial arguments G( #„r , #„r ′) 6= G( #„r ′, #„r ). To see under which
circumstances the Green function is not symmetric we use the spectral representation

G( #„r , #„r ′;E) =
∑
n

Ψn( #„r )Ψ†n( #„r ′)

E − En + iη
. (4.83)

It is obvious, that the Green function can only be non-symmetric if the eigenfunctions of the Hamil-
tonian can not be chosen real and therefore the Hamiltonian is not real. In the case of collinear
magnetism without spin-orbit coupling the Hamiltonian can always be chosen real by rotating to
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the local frame, such that the Green function is symmetric in the spatial arguments and there are
no finite ground state currents.
In this work we consider two different effects yielding symmetry breaking of the Green function.
Namely, we include spin-orbit coupling or we look at complex non-collinear magnetic structures.

In addition to the paramagnetic contribution, the ground state currents have different other terms
which were discussed in chapter 2. All of them can be calculated straightforwardly by using the
density matrix.

Implementation of the gradients

Computationally the main task in eq. (4.82) is to calculate the gradient of the spherical harmonic
times the radial basis function. Of course, it would be possible to do this pointwise by using
finite-differences, but without going into computational details it should be clear that this is not
an efficient way.
Furthermore, we want to expand the currents in terms of spherical harmonics such that

#„
j a( #„r ) =

∑
L

#„
j aL(r)YL(r̂) . (4.84)

Thus we need an efficient way, to calculate jaL(r) starting from eq. (4.82).
By using the identity

#„a ×
(

#„

b × #„c
)

=
#„

b ( #„a · #„c )− #„c
(

#„a · #„

b
)

, (4.85)

we can connect the momentum operator, which is basically the gradient, to the angular momentum
operator

#„

L = #„r × #„p

#„r × #„

L = #„r × ( #„r × #„p ) = #„r ( #„r · #„p )− #„p r2 (4.86)

⇒ #„∇ =i #„p = r̂
∂

∂r
− i1

r
r̂ × #„

L . (4.87)

In this way, we have decomposed the gradient in a radial part and a spherical part, since the angular
momentum operator only acts on the spherical components (θ, φ). Furthermore, the action of the
angular momentum operator on spherical harmonics is given by

#„∇Ylm(r̂) = −i1
r

∑
m′′

r̂ × #„

L l,mm′′Ylm′′(r̂) , (4.88)

where we defined the angular momentum matrix elements
#„

L l,mm′′ .
Thus we can write the gradient acting on the basis functions as

#„∇φnlb(r)Ylm(r̂) = r̂
∂φnlb(r)

∂r
Ylm(r̂)− iφnlb(r)

r

∑
m′′

r̂ × #„

L l,mm′′Ylm′′(r̂) . (4.89)

Writing r̂ in terms of real spherical harmonics and using Gaunt coefficients yields

∂αφnlb(r)Ylm(r̂) =
∑
l′m′

√
4π

3

[
C l
′m′

lm;(lm)α

∂φnlb(r)

∂r
− iφnlb(r)

r

∑
m′′

εαβγC
l′m′

lm′′;(lm)β
Lγl,mm′′

]
Yl′m′(r̂)

(4.90)

=
∑
l′m′

Pαnlmb;l′m′(r)Yl′m′(r̂) , (4.91)
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where we used (lm)α to indicate the spherical indices corresponding to the r̂α component and
defined the matrix Pαnlmb;l′m′(r) to shorten the following equations.
Combining eqs. (4.91) and (4.82) yields the paramagnetic ground state currents in the KKR basis

japara;α( #„r ) =− iµB
∑
LL′L′′
bb′

PαnLb;L′′(r)YL′′(r̂)Tr
[
σa∆ρnLb;nL′b′

]
φnl′b′(r)YL′(r̂) , (4.92)

with the polarization a and the direction α. Combining the two spherical harmonics by the use of
an additional Gaunt coefficient yields the desired form given in eq. (4.84).

Orbital magnetic moment

As pointed out in section 2.4, the ground state charge current can be used to calculate the orbital
magnetic moment

#„mo =
1

2

∫
d #„u #„u × #„

j para( #„u ) . (4.93)

where we have to integrate over the whole space and #„u is the position in the global frame with a
well defined origin. However, in the ASA approximation we have to split the integral into the used
Wigner-Seitz spheres:

#„mo =
1

2

∑
n

∫
Vn

d #„u #„u × #„
j para( #„u ) (4.94)

#„u= #„r+
#  „
Rn=

1

2

∑
n

∫
Vn

d #„r
(

#„r +
#„

Rn

)
× #„
j npara( #„r ) (4.95)

=
1

2

∑
n

∫
Vn

d #„r #„r × #„
j npara( #„r )︸ ︷︷ ︸

on-site contribution

+
1

2

∑
n

#„

Rn ×
∫
Vn

d #„r
#„
j npara( #„r )︸ ︷︷ ︸

net current contribution

. (4.96)

Thus, the orbital magnetization has two contributions: an on-site term, which is calculated in the
cell-centered local frame of each Wigner-Seitz cell, and a contribution, which depends on the net
currents flowing through the spheres. The usual way of calculating the orbital magnetic moment
within the KKR codes is the direct evaluation of the angular momentum operator in every Wigner-
Seitz sphere. This is done locally in each sphere corresponding to the on-site term in our approach.
Thus our approach enables a more detailed calculation of the orbital magnetic moment including
effects of the net currents. For all systems discussed in this work the net currents decay fast enough,
so that eq. (4.96) is well-defined.
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In this chapter we present and discuss the results of ground state charge and spin currents in
magnetic nanostructures. We show calculations of currents in magnetic adatoms, dimers and
trimers on different surfaces. Mostly, we discuss iron atoms deposited on a platinum substrate.
For the charge currents we take two symmetry-breaking effects into account. Single adatoms and
chains are calculated in a ferromagnetic state, using spin-orbit coupling to couple the spin and
orbital degrees of freedom. Furthermore, we show a simulation of a compact trimer without spin-
orbit coupling but with a complex non-collinear and non-coplanar structure ,where the coupling
between the spin and orbital degrees of freedom arises from the emergent magnetic field created by
the non-coplanar magnetic structure resulting in finite ground state charge currents [40].
In addition, for spin-currents we show a simulation without spin-orbit coupling, but including a
magnetic field which is not aligned with the magnetization. Even if this is not the ground state of
the system, we will discuss interesting effects in this system.
We start this chapter with the description of the systems under consideration.

5.1. Description of the systems

Figure 5.1 shows different systems which are used to discuss ground state currents. The top
three structures show iron adatoms deposited on different platinum surfaces – namely on Pt(100),
Pt(110) and Pt(111), which differ in terms of point group symmetry. The structures are treated
ferromagnetic with an out-of-plane magnetization of the iron adatoms. The Pt(111) surface has a
3-fold symmetry, whereas the other surfaces have a rectangular arrangement of the atoms with a
2-fold symmetry in the case of Pt(110) and a 4-fold symmetry in the case of Pt(100).
The central structures show an iron dimer and an iron trimer chain deposited on Pt(111). The
chains break the 3-fold symmetry of the lattice, such that only a mirror symmetry is left, which is
in turn broken by the magnetized adatoms. In total, this yields interesting currents which will be
discussed in a later section.
The last structure shown in figure 5.1 shows an iron trimer ring deposited on Pt(111) with a non-
collinear alignment of the magnetic moments. This structure is used to generate ground state
charge currents without spin-orbit coupling.

Computational details

To build all these structures, we take a relaxation of the adatoms towards the surfaces into ac-
count. Since the KKR codes are not appropriate for geometry optimization, these relaxations are
calculated using the plane wave code Quantum Espresso [41]. Therefore we have to consider large
supercells to minimize interactions between the periodic replica. A supercell with a total thickness
of 10 layers of which 5 layers are platinum is considered. In-plane the supercell consists of 4 × 4
platinum atoms with one adatom on top of the surface. For the plane-wave calculation a cutoff
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Fe-trimer ring/Pt(111)

Fe-dimer/Pt(111) Fe-trimer/Pt(111)

Fe/Pt(100) Fe/Pt(110) Fe/Pt(111)(a) (b) (c)

(d) (e)

(f)

Figure 5.1.: Different structures, which are used for the calculation of ground state charge and
spin currents. The three figures at the top show out-of-plane magnetized iron adatoms
(red) on three different platinum surfaces (grey) – namely Pt(100) (a), Pt(110) (b) and
Pt(111) (c). In the middle an iron dimer (d) and an iron trimer (e) with collinear,
out-of-plane magnetization on top of Pt(111) is shown. The bottom figures (f) show a
non-collinear iron compact trimer on top of Pt(111) in a side view and a top view.
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Fe/Pt(111)

Figure 5.2.: Side view of the full cluster, which is considered for the iron adatom on Pt(111). The
light blue transparent spheres indicate the vacuum spheres.

of 50 Ry and only one k-point – the Γ-point – is used. The calculations show a relaxation of the
single adatoms of approximately 20% towards the surface, which differ only slightly for the three
surfaces. For the dimers and trimers we approximate the relaxation by the one of the single adatom.

To setup the KKR simulation we start from the Jülich-Munich code [39] calculating the refer-
ence host system. The host is constructed by using 12 layers of platinum and 3 layers of vacuum on
both sides of the slab, which are periodically repeated in two dimensions. In the next step, a cluster
from the host is cut, which is usually a sphere around a vacuum site on top of the platinum surface
including several shells of neighboring atoms. In the real-space code KKRflex with the KKRsusc
add-on, this cluster is used to simulate the adatom on the surface. Therefore one vacuum site is
replaced by an iron atom. The used cluster of an iron adatom on Pt(111) is shown in figure 5.2,
where the blue transparent spheres indicate the vacuum sites.

Ground state properties of single iron adatoms on platinum surfaces

In the following the ground state properties of the single adatoms deposited on the different plat-
inum surfaces are discussed. Table 5.1 shows the cluster size, the spin moment of the adatom, the
summed spin moments of the cluster and the orbital moment of the adatom. The spin moments
are all around the same value of ms ≈ 3.4µB, whereas the orbital magnetic moments can vary by
a factor of 2. Since the orbital magnetic moments are connected to ground state charge currents,
we expect also the currents to vary a lot for the different surfaces, which will be shown later.

Pt(100) Pt(110) Pt(111)

cluster size [#sites] 47 44 46
madatom
s [µB] 3.38 3.35 3.46
mtotal
s [µB] 4.29 4.02 4.16

madatom
o [µB] 0.07 0.17 0.14
mtotal
o [µB] 0.22 0.28 0.17

Table 5.1.: Ground state properties of single iron adatoms deposited on the three platinum surfaces.
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Figure 5.3.: Local density of states of the iron adatom on the three different surfaces. Positive and
negative values are used to distinguish the two spin channels.

We can get more insight from the local density of states (DOS) of the adatom, which is shown
in figure 5.3 for the three different surfaces. Positive and negative values in the DOS are used
to distinguish majority and minority spin channels. The majority spin channel has a broad peak
below the Fermi level, whereas the minority spin channel has a peak above the Fermi level. The
integrated difference of these channels yields the spin moment discussed in the previous paragraph.
The peak above the Fermi level is splitted, because of the crystal field. A more detailed analysis is
shown in figure 5.4, which shows the local angular resolved density of states of the iron adatom on
Pt(111). Shown are the l = 2 components which are described by real spherical harmonics. The
C3v symmetry of the Pt(111) surface yields three independent components of the DOS, such that
the DOS for ±m is equivalent. Furthermore, one can see that the m = ±2 components, namely
the xy and x2 − y2 components, have the largest density of states around the Fermi level.
Having this in mind, we discuss in the next section a simple model, which approximates the adatom
on the Pt(111) surface.

5.2. Ground state charge currents and orbital magnetic moments

In this section, the resulting charge currents and the orbital magnetic moments for the different
systems shown in figure 5.1 are discussed. In the first part, we discuss a model, which approximates a
relevant portion of the electronic structure of an adatom on a hexagonal surface, e.g. an iron adatom
on Pt(111). Afterwards, we show the results of the KKR simulations of the paramagnetic currents
and the orbital magnetic moments. In addition, we discuss the corrections to the paramagnetic
current arising from spin-orbit coupling and the Zeeman term. Finally, we discuss the non-collinear
compact trimer, which shows finite orbital magnetic moments without spin-orbit coupling.
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Figure 5.4.: Angular resolved local density of states of the iron adatom on Pt(111). Shown are the
l = 2 components, which are described by five real spherical harmonics. Due to the
symmetry of the lattice the DOS has in total three independent components.

5.2.1. Simple model calculation

A simple model Hamiltonian which is often used for impurities is given by the multi-orbital version
of the Anderson impurity model [42].
The aim of the model calculation is the calculation of the ground state charge current. The
contributions from the different orbitals shown in the DOS in figure 5.4 add up to the total ground
state current. To simplify the model, we concentrate on the subset of the (l,m) = (2,±2) orbitals,
which has two reasons: On the one hand the orbitals seem to be slightly more important in the
DOS. On the other hand the orbitals have a stronger spin-orbit coupling than the other orbitals
since the spin-orbit coupling strength is linear in m and it will turn out that spin-orbit coupling is
responsible for the emergence of ground state charge currents. Furthermore, the DOS shows that
only one spin-channel is reasonable occupied, which motivates the following structure of our model:

Heff
mm′ = Edδmm′ − ξLzmm′ − iΓδmm′ , (5.1)

where m refers to the orbitals (2, 2) and (2,−2), Ed is the energy of the d-orbitals (l = 2), Lz is
the angular momentum matrix element, ξ is the spin-orbit coupling coefficient and Γ describes a
broadening.
Furthermore, the radial dependence of the orbitals is approximated by the so-called Slater-type
orbitals yielding

φm( #„r ) = R(r)Y m
2 (r̂) , (5.2)

with R(r) = Ar2e−αr, where A is a normalization constant and α characterizes the length scale.
Since the angular momentum matrix is not diagonal for real spherical harmonics we use complex
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spherical harmonics, for which it is diagonal

Lzmm′φm( #„r ) = mδmm′ φm( #„r ) , (5.3)

such that the effective Hamiltonian in the m = {−2, 2} basis is given by

Heff = (Ed − iΓ)σ0 − 2ξσz . (5.4)

By defining 〈 #„r |±〉 = φ±2( #„r ) with the energies E± = Ed∓ 2ξ the Green function of the system can
be written as

G(E) = (E −Heff )−1 =
|+〉〈+|

E − E+ + iΓ
+

|−〉〈−|
E − E− + iΓ

. (5.5)

The density matrix can be calculated using the Green function

ρ =− 1

π

∫ EF

dE
G(E)−G†(E)

2i
(5.6)

=− 1

2πi

∫ EF

dE

[ |+〉〈+|
E − E+ + iΓ

+
|−〉〈−|

E − E− + iΓ
− h.c.

]
(5.7)

=

∫ EF

dE

[
Γ/π

(E − E+)2 + Γ2
|+〉〈+|+ Γ/π

(E − E−)2 + Γ2
|−〉〈−|

]
(5.8)

=

[
1

π
arctan

(
2ξ

Γ

)
+

1

2

]
︸ ︷︷ ︸

=ρ+

|+〉〈+|+
[
− 1

π
arctan

(
2ξ

Γ

)
+

1

2

]
︸ ︷︷ ︸

=ρ−

|−〉〈−| . (5.9)

Using the density matrix the paramagnetic charge current is given by

#„
j ( #„r ) = lim

r→r′
−iµB(

#  „∇r −
#   „∇r′)ρ( #„r , #„r ′) (5.10)

= lim
r→r′
−iµB(

#  „∇r −
#   „∇r′)

∑
m={±2}

R(r)Y m
2 (r̂)ρmY

−m
2 (r̂′)R(r′) , (5.11)

where we used (Y m
l )∗ = (−1)mY −ml = Y −ml in the second step. Evaluating the gradient and taking

the limits yields

#„
j ( #„r ) = −iµB

∑
m

[(
#„∇R(r)Y m

2 (r̂)
)
ρmY

−m
2 (r̂)R(r)−R(r)Y m

2 (r̂)ρm

(
#„∇R(r)Y −m2 (r̂)

)]
. (5.12)

One can directly see, that the derivatives of the radial basis functions do not contribute, since the
basis functions do not depend on m. Thus one finds

#„
j ( #„r ) = −iµB

∑
m

R2(r)
[(

#„∇Y m
2 (r̂)

)
ρmY

−m
2 (r̂)− Y m

2 (r̂)ρm

(
#„∇Y −m2 (r̂)

)]
(5.13)

= −iµB
∑
m

R2(r)
(

#„∇Y m
2 (r̂)

)
Y −m2 (r̂) [ρm − ρ−m] . (5.14)

where we swapped the indices m↔ −m in the second part, which is possible due to the symmetric
summation interval.
Evaluating the gradients and plugging in the spectral density coefficients yields the final result for
the current:

#„
j ( #„r ) = µBA

2 15

8π2
arctan

(
2ξ

Γ

)
e−2αr

(
−y x2+y2

2

xx
2+y2

2

)
. (5.15)
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Figure 5.5.: Paramagnetic charge current of the model as given in eq. (5.15). X and Y are given
in units of α. Shown is the z = 0 plane.

This current is a purely swirling vector field, which has zero divergence and satisfies the continuity
equation. The current field is shown in figure 5.5.
In addition, the model can be used to examine the calculation of the orbital magnetic moment via
the paramagnetic charge current. On one hand, the orbital magnetic moment can be calculated by
using the expectation value of the angular momentum operator

mz
o = µB〈L̂z〉 =µBTr L̂zρ (5.16)

=µB

[
ρ+〈+|L̂z|+〉+ ρ−〈−|L̂z|−〉

]
(5.17)

=2µB (ρ+ − ρ−) =
4

π
µB arctan

(
2ξ

Γ

)
. (5.18)

On the other hand, we can use the paramagnetic current and calculate the orbital moment via eq.
(2.41), which yields

#„mo =
1

2

∫
d #„r #„r × #„

j para (5.19)

=µBA
2 15

16π2
arctan

(
2ξ

Γ

)∫
d #„r e−2αr

 −xz
x2+y2

2

−yz x2+y2

2
(x2+y2)2

2

 (5.20)

=
4

π
µB arctan

(
2ξ

Γ

)
êz . (5.21)

Thus both methods yield the same result.
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Figure 5.6.: Paramagnetic charge current computed according to eq. (4.82) for the adatom on the
three different platinum surfaces. Shown is the z = 0 plane. The central sphere is the
magnetic iron, whereas the surrounding spheres are vacuum sites.
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5.2.2. Paramagnetic charge current and orbital magnetic moments

Single adatoms on platinum

Figure 5.6 shows the paramagnetic currents of the adatom on three different platinum surfaces
calculated using the KKR approach. Shown are constant z cuts at the level of the adatom, such
that the central spheres correspond to the adatoms, whereas the surrounding spheres are vacuum
sites. The cones are pointing in the direction of the current and the color shows the absolute value
of the current in a logarithmic scale.
Let us first concentrate on the adatom sphere. In all three cases the paramagnetic current is swirling
in the x-y–plane. Furthermore, the currents are concentrated at the center of the sites decreasing
exponentially with the distance. The interested reader might ask for the behavior of the currents
at the center of the spheres: At a higher cone density it would become visible in the figure that
the currents are not diverging at the center of the sphere. In total, the results match quite well the
model calculation discussed in the previous section.

We also calculate the divergence of the current distribution. The divergence is up to a certain
numerical precision zero. Thus the continuity equation is fulfilled. Unfortunately, the numerical
precision for the calculation of the divergence is not very high. The problem is the way we calcu-
late the derivatives, which is described in section 4.6. The derivatives are split into a radial and a
spherical part. The radial part is a numerical derivative, whereas the spherical part is analytically
given by the angular momentum matrix elements. In the case of the divergence these parts are
both finite, but differ by a minus sign, which ends in a numerical error due to imperfect cancella-
tion of the two contributions. Another problem is, that we work with spherical harmonics, such
that the numerical error yields a divergence which has some spherical structure instead of being
random noise. In total, one has to be very careful while interpreting the divergence in the present
implementation.

Taking all sites into account, a drawback of the atomic sphere approximation becomes noticeable.
The currents are only calculated inside the Wigner-Seitz spheres, which results in gaps and over-
laps. On one hand there are regions without any information on the current and on the other hand
there are regions with two different values for the current. For example in the case of Pt(110), see
fig. 5.6(b), there are huge gaps in the y direction, which are filled with atoms from the vacuum
layer above and the platinum layer below the adatom (small circles in the figure). At z = 0 the
spheres have a finite overlap, which can be seen by the multiple arrows in that regions, and the
currents do not perfectly coincide with each other in those regions. Disregarding this very special
case, the overlap regions in figure 5.6 are mostly coinciding quite well.

In addition to the drawbacks discussed above, the current given on a fine grid as shown in fig-
ure 5.6 contains a lot of information, which is difficult to interpret in that form. Figure 5.7 shows
the paramagnetic net currents of each sphere. The net currents are the averaged currents over the
volume of the corresponding sphere. Shown are the x-y–projections of the currents in the adatom
layer and the first platinum layer. The arrows corresponding to the three surfaces have the same
scaling, but the currents in the adatom plane are scaled by a factor of 5 compared to the platinum
plane.
For all surfaces, the net currents are swirling. Thus we can reproduce the swirling behaviour of the
current inside the adatom sphere also on a larger length scale.
An interesting effect is related to the direction of the swirling. E.g. for the platinum layer at the
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Figure 5.7.: Net paramagnetic currents in the three different surfaces. Shown are the adatom plane
(red) and the platinum surface plane (blue). The arrows for the adatom plane are
scaled by a factor of 5 compared to the platinum plane.

Pt(111) surface the direction is changing for larger distances to the adatom, see fig. 5.7(c). This
is related to the so-called magnetic Friedel oscillations [43]. The swirling direction depends on the
direction of the magnetic moment. In the case of collinear magnetism there are two possibilities
– up and down. Due to the Friedel oscillations the magnetic moment oscillates as function of dis-
tance, which results in an oscillation of the swirling direction.

The paramagnetic charge current inside each sphere and the net currents can be used to calculate
the orbital moment as shown in eq. (4.96). Figure 5.8 shows the orbital magnetic moments of the
three different surfaces. The plots in the upper row show the adatom planes, whereas the plots
in the lower row show the first platinum layer. For each atom there are two values – the on-site
contribution and the net-current contribution (bold values). Shown are always the absolute values
of the orbital magnetic moment. The on-site contributions match perfectly previous results, which
were obtained by the evaluation of the angular momentum operator. This contribution depends
on the local swirling of the paramagnetic current, which is related to the magnetic spin moment.
Therefore, the values for the adatom are the largest and in the platinum plane the orbital moment
is decreasing with distance to the adatom. The further away the platinum atoms are, the less is
the magnetization and the swirling currents, which results in a lower orbital moment.
However, the net-current contribution is linear in the distance and the net-current. Therefore,
the net-current contribution can be larger than the on-site term. E.g. for the platinum plane in
Pt(111), see fig. 5.8(f), the net-current contribution of the outermost atoms is 5.6µB, whereas the
on-site contribution is 3.5µB.
Table 5.2 shows the z-component of the on-site contribution and the net-current contribution
summed over the whole cluster. The x and y-components vanish due to the symmetry of the clus-
ter. The first column shows the orbital magnetic moment of the adatom, the second column shows
the on-site contribution summed over the whole cluster and the last column is the net-current con-
tribution summed over the whole cluster. For Pt(100) and Pt(110) the total on-site orbital moment
is 3 times, respectively 1.7 times larger than that of the adatom, whereas the total on-site orbital
moment of the Pt(111) cluster is just 16% larger. This difference is related to the magnetic Friedel
oscillation. For Pt(111) the orbital moments cancel each other due to the oscillations. This effect
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Figure 5.8.: Orbital moments in different structures. Upper value is the on-site contribution,
whereas the lower bold value is the net current contribution. Shown are always absolute
values. The circles represent the atomic spheres in each plane.

is weaker for the other surfaces, which can also be seen in the net-current in figure 5.7.
The summed net-current contribution is around ≈ 10% of the summed on-site contribution for

System z-component of morb

madatom mtotal
on-site mtotal

net-curr

Pt(100) 70.2 215.3 19.9
Pt(110) 167.9 283.3 19.7
Pt(111) 142.7 165.6 -18.9

Table 5.2.: The z-component of the orbital magnetic moment for iron adatoms placed on three
different surfaces as obtained from the ground state current calculation. The rows
describe the Pt(100), Pt(110) and Pt(111) surface, whereas the columns show the orbital
moment of the adatom madatom, the on-site orbital moment summed over the whole
clustermtotal

on-site and the net-current contribution summed over the whole clustermtotal
net-curr.

The values match the ones in table 5.1. Values are given in units of [10−3µB].
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all three surfaces. Also here, the Pt(111) surface shows a different behaviour. The net-current
contribution gives a negative correction to the on-site one, which can be understood by looking at
the net-currents shown in figure 5.7. In the platinum plane the net-currents change the direction
for the outermost atoms compared to the swirling direction of the adatom, which is anti-clockwise.
The same happens for the other surfaces, but there are less atoms affected. In total this yields the
negative correction.
If we were to increase the cluster size, the current would change the swirling direction once again.
Thus, we expect the summed net-current contribution to be sensitive to the cluster size. For a
proper calculation, one would need to increase the cluster sizes and try to converge the values,
which was not attempted for this work.

Iron dimer and trimer on top of Pt(111)

The next systems we discuss are an iron dimer and trimer on Pt(111), see fig. 5.1(d)/(e). The
resulting currents in the adatom plane are shown in figure 5.9. The large magnetic spin moments
in the two, respectively three adatoms yield a strong swirling in each iron sphere, which is similar
to the swirling in the adatoms.
Figure 5.10 shows the net-currents for the two systems. Shown are the adatom plane (red) and
the first platinum plane (blue). The currents within the platinum plane behave similarly to the
currents of the single adatom structures discussed above. The inner ring of platinum atoms has the
same swirling direction as the local adatoms, whereas the swirling direction changes for the outer
ring of platinum atoms. The reason for this are once again the Friedel oscillations.
Looking at the adatom planes an interesting effect occurs. The current flowing through the dimer,
respectively the trimer chain is finite. Using symmetry relations we can explain this result: For the
single adatom on Pt(111) the system has a 3-fold rotational symmetry, which results in a vanishing
net-current in the adatom. For the chains, the rotational symmetry is broken. Left is a mirror
symmetry along y = 0. Naively, one would expect this yielding also zero net-current. However, we
are dealing with a magnetic system. Thus a parity operation (mirroring) has to be combined with
a time-reversal operation, which is effectively a flip of the spin-moment. Under this circumstances,
there is no symmetry left in the system, which results in the possibility of finite net-currents flowing
in the chain.

Figure 5.11 shows the orbital moments for the dimer and the trimer. The upper values are the
on-site orbital moment, whereas the lower bold values are the net-current contribution. One can
see that especially for the outermost atoms in the platinum layer the net-current contribution is
larger than the on-site contribution.
The summed orbital moments are shown in table 5.3. Due to the broken rotational symmetry the
y-component can be finite, whereas the x-component is still vanishing due to the spatial mirror
symmetry. The summed net-current contributions are finite and negative. The reason for this are
the Friedel oscillations. Once again, these values depend heavily on the cluster size.
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Figure 5.9.: Paramagnetic charge current for the iron dimer (a) and trimer (b) on top of Pt(111).
Shown is the z = 0 plane.
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Figure 5.10.: Net currents in the iron dimer and trimer structure. Shown are the adatom plane
(red) and the first platinum planes (blue).
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Figure 5.11.: Orbital moments in the iron dimer and trimer structure. Upper value is the on-site
contribution, whereas the lower bold value is the net current contribution. Shown are
always absolute values.
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System z-component y-component

mz,total
on-site mz,total

net-curr my,total
on-site my,total

net-curr

Dimer/Pt(111) 316.1 -39.7 45.9 -16.6
Trimer/Pt(111) 477.4 -66.0 84.6 -36.1

Table 5.3.: The z and y-component of the orbital magnetic moment for the iron dimer and trimer
on Pt(111) given in [10−3µB] as obtained from the ground state current calculation. The
rows describe the dimer and trimer, whereas columns show the z and y-component of
the on-site orbital moment summed over the whole cluster mtotal

on-site and the net-current
contribution summed over the whole cluster mtotal

net-curr.

5.2.3. Spin-orbit coupling contribution

In addition to the paramagnetic currents, in section 2.3.1 the spin-orbit coupling contribution to
the charge current was discussed. It is a correction to the current in the continuity equation, which
comes from the spin-orbit coupling part of the Hamiltonian. It is given by the cross product of the
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Figure 5.12.: Spin-orbit coupling charge current for the iron adatom on top of Pt(111). Shown is
the constant z = 0–plane.
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spin density and the electric field,

#„
j SOC =

1

c2
#„m× #„

E , (5.22)

where the electric field is assumed to be radial. It is defined using the ionic potential V (r) and the
relativistic mass M(r) = m+ 1

2c2
(E − V (r)):

#„

E = Erêr with Er =
1

(2Mc)2

1

r

dV

dr
. (5.23)

Figure 5.12 shows the resulting SOC contribution to the charge current for an iron adatom on top
of Pt(111). Shown is the z = 0 plane. The resulting currents are purely swirling. This is expected
for any collinear structure, which can be seen as follows: The magnetization is pointing along the
z-axis and the electric field is considered to be purely radial inside each sphere. Using eq. (5.22)
this results in a purely swirling current for any collinear structure.
Regarding the amplitude of the currents, the SOC contribution inside the adatom sphere is around
two orders of magnitude smaller than the paramagnetic contribution. In the vacuum spheres the
SOC contribution even nearly vanishes with an amplitude smaller than 10−7µB as the SOC potential
is negligible, due to the lack of the nuclear Coulomb potential.
In total, the SOC contribution is a very small correction to the paramagnetic current. Furthermore,
it does not yield any new effects since its spatial structure is similar to the paramagnetic current,
which is also swirling.

5.2.4. Zeeman contribution

In section 2.3.1 a third contribution to the charge current was introduced. It is the so-called Zeeman
contribution to the charge current, which is given by the curl of the magnetization:

#„
j Zeeman =

#„∇× #„m . (5.24)

Figure 5.13 shows the Zeeman contribution for an iron adatom on top of Pt(111). Shown is the
z = 0 plane. Inside the adatom sphere the Zeeman current is purely swirling. The amplitude is
approximately one order of magnitude larger than the paramagnetic current.
However, the Zeeman current does not contribute to the divergence of the current even for systems
which are not in the ground state. Therefore, in most literature it is neglected.

5.2.5. Charge currents without spin-orbit coupling

In this section the emergence of ground state charge currents without spin-orbit coupling is dis-
cussed. Complex non-collinear structures can yield the symmetry breaking, which is needed for the
emergence finite ground state currents. We focus on the simplest structure with finite ground state
currents, which is a trimer. It was predicted by Tatara et al. [44], that in magnetic structures with
finite spin chirality

C123 =
#„

S 1 ·
(

#„

S 2 ×
#„

S 3

)
6= 0 , (5.25)

ground state currents can emerge, which yield in turn finite orbital magnetic moments.
We focus on an iron trimer ring on top of Pt(111), which was presented in the beginning of this
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Figure 5.13.: Zeeman charge current for the iron adatom on top of Pt(111). Shown is the constant
z = 0–plane.

chapter. The magnetic moments of iron are constrained to point outwards with a polar angle of
θ = 45◦, see fig. 5.1(f), so that the chirality is positive and finite, which is called chiral right-
handed. The true ground state is the ferromagnetic spin configuration. However, there are trimer
systems having a ground state with finite chirality, e.g. a manganese trimer ring on top of Ni(111)
as shown by Lounis [45].
Due to the complexity of the magnetic structure, the flow of the charge current is also more com-

plex than in all cases shown before. However, the main characteristics are still the same: Close to
the center of the Wigner-Seitz spheres the charge currents are swirling in the plane perpendicular
to the magnetic moments. The visualization of all the details is difficult. Therefore, we restrict
ourselves to the net currents and the orbital magnetic moment.
Figure 5.14 shows the net charge currents. Compared to the cases with spin-orbit coupling the
net currents are decaying much faster with distance and there is no obvious influence of Friedel
oscillations.
Figure 5.15 shows the orbital magnetic moments of the trimer ring structure decomposed in the
on-site contribution and the net current contribution. The induced on-site orbital magnetic mo-
ment is approximately one order of magnitude smaller than the orbital magnetic moments induced
by spin-orbit coupling. Furthermore, they are very localized so that reasonable values are only
induced up to the nearest neighbour sites. However, the induced orbital magnetic moments depend
crucially on the polar angle and the chirality, which was shown by dos Santos Dias [40]. Therefore,
general comparison with the orbital moments induced by SOC is complicated.
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System z-component

mz,total
on-site mz,total

net-curr

Trimer-ring/Pt(111) 26.1 10.9

Table 5.4.: The z-component of the orbital magnetic moment for the iron trimer ring deposited on
Pt(111) with a non-collinear magnetic structure given in [10−3µB]. The columns show
the on-site orbital moment summed over the whole cluster mtotal

on-site and the net-current
contribution summed over the whole cluster mtotal

net-curr.

The orbital moment contributions summed over the whole cluster are shown in table 5.4. Due to
symmetry only the z-component remains finite after the summation. The net-current contribution
is 10.9mµB, whereas the on-site contribution is 26.1mµB. Thus the net-current contribution is
nearly 50% of the on-site contribution and therefore much more relevant compared to the cases
discussed in the previous sections. The reason for this is the ring structure. There is a finite current
flowing through the ring, which generates a large net-current contribution to the orbital magnetic
moment. Increasing the size of the ring would probably increase the relevance of the net-current
contribution.

5.3. Ground state spin currents

In this section we discuss the resulting spin-currents in magnetic nanostructures. In the first part
we discuss spin-currents in adatoms, which are induced by spin-orbit coupling. Instead of looking
at different structures, we focus on one certain structure – namely the iron adatom on Pt(111) –
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Figure 5.14.: Net currents in the iron trimer ring structure with non-collinear magnetization. Shown
are the adatom plane (red) and the first platinum planes (blue).
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Figure 5.15.: Orbital moments in the iron trimer ring structure with non-collinear magnetization.
Upper value is the on-site contribution, whereas the lower bold value is the net current
contribution. Shown are the absolute values.

and show the spatial distributions of all three polarizations of the spin-current.
In the second part instead of spin-orbit coupling a magnetic field, which is not aligned with the
magnetization, is used to break the symmetry, which is the main condition for finite currents. Of
course, this is not the ground state of the system, but it gives first insights to dynamical effects,
which are discussed in the next chapters.

5.3.1. Paramagnetic contribution

Let us first discuss the paramagnetic spin-current with z-polarization. In this case the diagonal
Green function elements are used, which were also used for charge currents. Thus, we expect no
fundamental new results or shapes of the current. Figure 5.16 shows the resulting paramagnetic
spin-current with z-polarization inside the iron adatom on top of Pt(111). Shown is the constant
z = 0-plane. The z-polarized current is swirling in the x-y-plane, which is similar to the calcula-
tions of the charge current shown in figure 5.6. The amplitude is a bit smaller, but of similar order.
Overall, the results look reasonable.

Next, we discuss the x and y-polarized paramagnetic spin-currents. For the calculation of these
currents, the off-diagonal Green function elements are relevant, which were not used before and
therefore we have no expectations at this point.
Figure 5.17 shows the resulting spin-currents inside the iron sphere on top of Pt(111). Instead of
looking at the surface-plane (x-y), which was used for all currents shown by now, the x-z-plane
respectively the y-z-plane is used. The reason is that the spin-currents show a completely different
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behaviour.
Let us look at the x-polarized spin-current. Shown is the y-z-plane with constant x = 0. One can
see even in the figure that there is no large component in the x-direction, which would be needed
for a swirling in the surface-plane. There are some large bound currents at the center of the sphere.
However, the main effect is a finite current in the y-direction. Close to the platinum plane, which is
at z < 0, the current is nearly constant into the y-direction, whereas at the top of the sphere there
is no current compensating this. A similar result holds for the y-polarized spin-current. There are
some bound currents at the center, but the main effect is a finite current in the negative x-direction.
Figure 5.18 shows the net-spin-currents for all three polarizations that is, the integral of the spin
currents over the volume of the respective atomic spheres. Shown are the adatom plane and the
first platinum plane. For the z-polarized currents the results look similar to the net charge currents.
The currents are swirling in the platinum plane. However, for the x and y-polarized currents there
is a constant flow at the surface. The x-polarized spin current flows in the positive y-direction,
whereas the x-polarized spin current flows in the negative x-direction.
The spin current summed over the whole cluster, which includes a second layer of platinum and
the vacuum sites on top, is shown in table 5.5. The z-polarized spin current is well behaving with a
vanishing sum. The x and y-polarized spin currents show a finite total current in the y, respectively
x-direction.
At first sight it seems to be a strange result, which might be wrong. However, the divergence of
the currents (not shown) is still zero within the precision of the implementation. Therefore, the
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Figure 5.16.: Paramagnetic z-polarized spin-current inside an iron adatom on top of Pt(111).
Shown is the z = 0 plane with the platinum surface below the adatom at z < 0.
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Figure 5.17.: Paramagnetic spin-currents inside an iron adatom on top of Pt(111). (a) shows the x-
polarized spin-current. (b) shows the y-polarized spin-current. The platinum surface
is below the adatom at z < 0. The structural models indicate the adatom in red, the
three nearest-neighboring platinum atoms in grey, and the dashed line shows the cut
planes for the corresponding spin current calculations.
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Figure 5.18.: Paramagnetic net-spin-currents for an iron adatom on top of Pt(111). Shown are the
three different spin polarizations.

Polarization spatial directions

x-direction y-direction z-direction

x 0.0 0.32 0.0
y -0.32 0.0 0.0
z 0.0 0.0 0.0

Table 5.5.: The summed spin current over the whole cluster. Values are given in units of [µB].

continuity equation is fulfilled and there is no physical law, which forbids the finite currents at the
surface.
It is also known that the so-called Rashba effect, which is a spin-orbit coupling effect splitting the
momentum-dependent spin bands, can yield finite currents at the surfaces even in the absence of
spontaneous magnetism [46].
Another possible origin for the finite currents is the way spin-orbit coupling is treated in the code.
Presently, spin-orbit coupling effects are included only in the cluster and not in the host, which is
used to construct the cluster. In the host an infinite two dimensional system is considered, which
makes all atoms in one specific layer equal, whereas the atoms in the cluster have a much less
symmetric environment. In total, this might be an important difference, which has to be analysed
further.

5.3.2. Spin-orbit coupling contribution

Figure 5.19 shows the spin-orbit coupling contribution to the spin-currents. Shown is the iron
adatom on top of Pt(111). The currents are swirling for all three polarizations. However, the
swirling plane depends on the polarization. For x and y-polarized spin currents the planes are y-z,
respectively x-z, whereas z-polarized spin-currents are swirling in the x-y-plane.
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Figure 5.19.: Spin-orbit coupling contribution to the spin-current of the iron adatom sphere. Shown
are the three different polarizations, which are all swirling, but in different planes.
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Figure 5.20.: SOC net-spin-currents for an iron adatom on top of Pt(111). Shown are the three
different spin polarizations. The arrows of the adatom plane are scaled by a factor of
5 and the z-polarized currents are scaled by an additional overall factor of 5.

Polarization spatial directions

x-direction y-direction z-direction

x 0.0 0.37 0.0
y -0.37 0.0 0.0
z 0.0 0.0 0.0

Table 5.6.: The SOC contribution to the spin-current summed over the whole cluster. Values are
given in units of [10−3µB].

Given the definition of the SOC contribution to the a-polarized spin-current

#„
j aSOC =

µB
c2
nεabcEbêc , (5.26)

which was discussed in section 2.3.2, the structure of the spin-currents is obvious since the electric
field is considered to be radial, due to the spherical potential approximation.
Also in the SOC contribution we can see finite net currents emerging. The x and y-polarized cur-
rents show a distortion towards the surface. The amplitude of the currents at −z is larger than the
amplitude at +z. Therefore the currents do not compensate each other, which yields a finite net
current pointing in the same direction as the paramagnetic currents.

Figure 5.20 shows the net-currents for the adatom plane and the first platinum plane. As al-
ready supposed from the currents inside the iron adatom, there are finite currents flowing through
the structure, which are similar to the paramagnetic spin-currents.

Table 5.6 shows the SOC contribution to the spin-current summed over the whole cluster. In total
this contribution is three orders of magnitude smaller than the paramagnetic term, but it has a
similar structure.
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To summarize, the paramagnetic and the SOC contribution show exactly the same behaviour.
There are finite spin-currents flowing at the platinum surface. Since both methods are compu-
tationally completely different, we can conclude that either we found a Rashba behaviour at the
surface [46], or the treatment of SOC is inappropriate and has to be extended to the host code,
which could be done in the future.

5.3.3. Spin currents without spin-orbit coupling

In this section a magnetic field is used to generate spin-currents without spin-orbit coupling in a sort
of gedankenexperiment. We revisit the Fe adatom on Pt(111). For the self-consistent calculation
the system is converged with a magnetic field of 10 Tesla along the z-axis. For the calculation
of the currents the potentials of the self-consistent calculation are used, but the magnetic field is
tilted by 45◦ towards the x-direction. Therefore, we introduce a finite angle between the magnetic
moment and the magnetic field, even if in the ground state both quantities would be fully aligned.
Via the continuity equation this means that the divergence of the current should not be zero, since
the time derivative of the magnetization can be finite because we are not in the ground state.
From the macroscopic point of view, the dynamics of a magnetic moment under the influence of

a magnetic field can be described by the Landau-Lifshitz-Gilbert (LLG) equation:

d #„m

dt
= −γ #„m× #„

B + α #„m× d #„m

dt
, (5.27)

with the gyromagnetic ratio γ and the Gilbert damping constant α. The LLG equation is discussed
in more detail in section 6.5.
The solution of the LLG equation describes a precession of the magnetic moment around the mag-
netic field, which is damped by the the Gilbert damping constant. The motion is shown in figure
5.21a. For the moment we can neglect damping effects, which is depicted in figure 5.21b.

In a conventional DFT calculation we do not have access to the dynamical motion of the mag-
netic moment. However, the simulation should inform us about the behaviour of the magnetic
moments. The LLG equation predicts that initially only the y-component of the magnetic moment
is changed. Via the continuity equation we can connect this change to the divergence of the y-
polarized spin current. Therefore, we expect a finite y-polarized spin-current.

x

y
z

(a) (b)

m

B

m

B

δm

Figure 5.21.: Precession of a magnetic moment around a magnetic field, which is tilted into the
x-direction. The dashed lines show the time evolution of the magnetic moment with
finite damping in (a) and without damping in (b). The initial change of the magnetic
moment δm is purely in the y-direction.
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Figure 5.22.: Paramagnetic y-polarized spin-currents inside an iron adatom on top of Pt(111) in-
duced by an external magnetic field, which is tilted by 45◦ towards the x-direction.
Shown is the z = 0-plane, respectively the y = 0-plane.

Exactly this behaviour is found in the KKR simulation. Only the y-polarized spin currents are
finite, which is shown in figure 5.22 for the iron adatom. The currents flow towards the center of
the adatom from all directions. Therefore, the divergence is surely non-zero.
In the top view one can see the symmetry of the underlying lattice. The flow is larger in the
directions of the nearest-neighbour platinum atoms.
The side view shows that there is a large current flowing from the platinum atoms (z < 0) towards
the center, whereas the flow from the vacuum sites is much smaller, resulting in a finite net spin
current perpendicular to the surface.
The net spin-currents are shown in figure 5.23. Shown are all atoms, but only the iron adatom and
the three nearest-neighbour platinum atoms have visible contributions. One can see that there is
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Figure 5.23.: Net y-polarized spin-currents for all atoms inside the cluster. Only the iron
adatom (blue arrow) and the three nearest-neighbour platinum atoms have reasonable
contributions.

a finite spin-current flowing towards the adatom.

However, this this should correspond to the short-time behavior. From the LLG equation we
know that the magnetic moments precess, which means that there is a dynamical process inducing
y- and x-polarized spin-currents. Furthermore, during one precession there are two opposite contri-
butions. For example, after the magnetic moment has precessed by 180◦ there is a finite y-polarized
spin-current, which is without damping the same as the initial one with a different sign. Therefore,
after one precession there should not be any transferred current. However, one could imagine a very
short magnetic field pulse, which yields an effective spin-pumping perpendicular to the surface.
In the next chapters we discuss the dynamical effects in more detail. On the way, we will see that
there is always finite damping, which is induced by the spin-currents, and we will discuss the theory
of spin-pumping. We start by introducing linear response theory within the KKR framework and
discuss how to calculate spin-currents induced by static and dynamic magnetic fields.

5.4. Summary

In the following the most important results of this chapter are summarized. We presented KKR
simulations of the ground state charge and spin currents in different nanostructures. We discussed
the paramagnetic charge currents in an iron adatom deposited on Pt(100), Pt(110) and Pt(111)
and in an iron dimer and trimer deposited on Pt(111). Concerning the orbital magnetic moment
and its connection to ground state charge currents, we found two contributions – the on-site contri-
bution and the net current contribution resulting from the net charge currents flowing through the
Wigner-Seitz spheres. It turned out, that the net current contribution can either lower or higher
the total orbital magnetic moment depending on the geometry. Usually we found contribution,
which were around 10% of the on-site contribution.
In addition to the adatom systems, we discussed a compact iron trimer deposited on Pt(111), in
which finite ground state currents evolve even without spin-orbit coupling. In this system, the net
current contribution to the orbital magnetic moment was around 50% of the on-site contribution,
which resulted from the finite charge flow through the compact trimer.
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In addition to charge currents, we discussed ground state spin currents in an iron adatom deposited
on Pt(111). The most important result was the emergence of finite net spin currents through the
whole cluster, which can also be found in Rashba systems [46]. Furthermore, we showed the emer-
gence of spin currents without spin-orbit coupling if the magnetic field and the magnetic moment
are not aligned, which is not the ground state of the system.

In the next chapter, the basics of linear response are introduced. The aim is the description
of dynamical induced spin-currents.
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In this chapter we present a methodology for calculating spin-currents induced by dynamical mag-
netic fields. Assuming small magnetic fields as perturbation, the linear response theory can be
utilized to describe the induced spin currents. Spin-currents and magnetization dynamics are
closely connected, in the sense that magnetization dynamics can induce spin-currents. However,
these two quantities are also mathematically closely connected. Therefore, it will be useful to start
with a discussion of magnetization dynamics induced by magnetic fields.
The chapter is structured as follows: First, the basics of linear response theory are discussed with
the main aim of defining the correlation function, which is used to describe the induced spin-current
as well as the magnetization dynamics. Then, we present how to calculate magnetization dynamics
within the linear response and how to include additional effects resulting from the TDDFT for-
malism, which yields a renormalization of the correlation function. Having the calculation scheme
for the magnetization dynamics at hand, we discuss how to use these quantities to describe the
dynamical induced spin-currents. After developing the whole method, it is applied to an Anderson
model to earn first insights. Furthermore, we discuss the phenomenological Landau-Lifshitz-Gilbert
model, which describes magnetization dynamics and can be extended by the spin-pumping theory
[5].

6.1. Linear response theory

The linear response theory is a widely used formalism, which describes the response of any observ-
able A to a weak perturbation. The main aim is to find the proportionality constant between the
observable and the external perturbation in linear order. The procedure is well discussed in many
excellent textbooks [35, 47]. The reader, who is familiar with Kubo’s formula and the calculation
of correlations functions using Green functions, can skip this section and continue with section 6.2.
Assume an external (time-dependent) perturbation described by H′(t), which is turned on at t = t0,
such that the total Hamiltonian is given by

H(t) = H0 + Θ(t− t0)H′(t) . (6.1)

The thermodynamic expectation value of the observable A can be calculated by using the eigenstates
|n(t)〉 of the Hamiltonian via

〈Â〉 =
∑
n

fn(t)〈n(t)|A|n(t)〉 , (6.2)

with the occupation number fn(t). The time-dependence of the eigenstates can be calculated via
the time-dependent Schrödinger equation

i∂t|n(t)〉 = H(t)|n(t)〉 . (6.3)

It is convenient to use the so-called interaction picture, which is an intermediate representation
between the Schrödinger and the Heisenberg picture. The trivial time evolution due to H0 is
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decoupled from the time evolution due to the external perturbation H′(t). Both, the eigenstates
and the operator are time dependent in the interaction picture:

|n(t)〉 = eiH0t|n(t)〉 (6.4)

AI(t) = eiH0tAS(t)e−iH0t . (6.5)

Using these definitions the Schrödinger equation becomes

i∂t|n(t)〉 = H′(t)|n(t)〉 , (6.6)

such that the time evolution of the eigenstates in the interaction picture |n(t)〉 does only depend
on the perturbation H′(t). The eigenstates in the interaction picture are given by

|n(t)〉 = U(t, t0)|n(t0)〉 , (6.7)

with the time evolution operator U(t, t0), which fulfills the differential equation

i∂tU(t, t0) = H′(t)U(t, t0) , (6.8)

with the boundary condition U(t0, t0) = 1. The solution is given by an integral equation,

U(t, t0) = 1− i
∫ t

t0

dt′ H′(t′)U(t′, t0) = 1− i
∫ t

t0

dt′ H′(t′) + . . . . (6.9)

In the linear response theory, the time evolution in eq. (6.2) is calculated up to first order in the
perturbation H′(t), which yields the famous Kubo formula:

〈A(t)〉 =〈A〉0 − i
∫ t

t0

dt′
∑
n

fn(t)〈n(t0)|A(t)H′(t′)−H′(t′)A(t)|n(t0)〉 (6.10)

=〈A〉0 − i
∫ t

t0

dt′
〈[
A(t),H′(t′)

]〉
0

, (6.11)

where 〈〉0 indicates that the expectation value is evaluated with respect to the unperturbed Hamil-
tonian. This is a remarkable result, since it means that properties of the perturbed system can be
calculated via expectation values evaluated in the unperturbed system.
The quantity appearing in the integral is the so-called retarted correlation function

CA,H′(t− t′) = −iΘ(t− t′)
〈[
A(t),H′(t′)

]〉
0

, (6.12)

such that the Kubo formula can be written as

δ〈A(t)〉 =〈A(t)〉 − 〈A〉0 =

∫ ∞
t0

dt′CA,H′(t− t′)e−η(t−t′) , (6.13)

where η → 0+ is added to ensure convergence.
For periodic perturbations, which are considered mainly in this work, it is convenient to work in the
frequency space. Furthermore, one often deals with perturbations of the form H′(t) = B(t)δf(t).
Thus, applying a Fourier transform to eq. (6.13) yields

δ〈A(ω)〉 =CA,B(ω)δf(ω) , (6.14)

with the Fourier transform of the correlation function defined as

CA,B(ω + iη) =

∫
dt ei(ω+iη)tCA,B(t), (η → 0+) . (6.15)
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The evaluation of the expectation values yields the so-called Lehman representation of the correla-
tion function:

CA,B(ω + iη) =
∑
nm

fn

[ 〈n|A|m〉〈m|B|n〉
ω − (Em − En) + iη

− 〈n|B|m〉〈m|A|n〉
ω + (Em − En) + iη

]
(6.16)

=Tr
∑
nm

fn

[
B|n〉〈n|A |m〉〈m|

ω + En − Em + iη
+A|n〉〈n|B |m〉〈m|

−ω + En − Em − iη

]
,

(6.17)

where the cyclic invariance of the trace was used in the second step. Using the spectral represen-
tation of the Green function, see section 4.1, yields

CA,B(ω + iη) = Tr
∑
n

fn [B|n〉〈n|AG(ω + En + iη) +A|n〉〈n|BG(−ω + En − iη)] . (6.18)

In a next step, the Dirac identity can be used to rewrite the remaining sum over the basis functions
|n〉 in terms of the Green function:∫

dE M(E) G(E + i0+) =P
[∫

dE M(E)
∑
n

|n〉〈n|
E − En

]
− iπ

∑
n

M(En) |n〉〈n| (6.19)

⇒
∑
n

M(En) |n〉〈n| =− 1

π

∫
dE M(E) Im G(E + i0+) , (6.20)

where M(E) is an arbitrary function, which is in our case M(E) = f(E)G(E ± ω ± iη). Plugging
this result into the expression for the correlation function yields:

CA,B(ω + iη) =− 1

π

∫
dE f(E) Tr

[
AG(ω + E + iη)B Im G(E + i0+)

]
− 1

π

∫
dE f(E) Tr

[
A Im G(E + i0+)BG(−ω + E − iη)

]
.

(6.21)

Thus knowing the Green function, any correlation function can be calculated.
The following important symmetry relations can be proven via the Lehman representation for
hermitian operators [48]:

CA,B(0) = CB,A(0)

Re CA,B(ω) = Re CA,B(−ω)

Im CA,B(ω) =− Im CA,B(−ω) .

(6.22)

Thus it is sufficient to calculate the correlation function for ω ≥ 0.

Low frequency expansion

If the correlation function has no singular behavior for ω → 0, a Taylor expansion can be used for
small frequencies:

CA,B(ω + iη) = C
(0)
A,B(0 + i0+) + ω C

(1)
A,B(0 + i0+) +

1

2
ω2 C

(2)
A,B(0 + i0+) + . . . . (6.23)

The expansion coefficients can be calculated from eq. (6.21). For example the static correlation
function is given by

C
(0)
A,B(0 + i0+) =− 1

2πi

∫
dE f(E) Tr

[
AG(E + i0+)BG(E + i0+)

]
+

1

2πi

∫
dE f(E) Tr

[
AG(E − i0+)BG(E − i0+)

]
.

(6.24)
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6.2. Magnetic excitations within linear response

In this section we apply the linear response theory to magnetic excitations. Due to the close con-
nection of magnetic excitations to spin-currents it is useful to first look at magnetic excitations.
Furthermore, the developed calculation scheme applies in a similar way with only slight modifica-
tions to the calculation of spin-currents.
The convenient starting point is the response of the magnetization density and the charge density
to an potential perturbation, which is either a magnetic field or an electrostatic potential. To
simplify the notation we use 4-component vectors combining the magnetization density and the
charge density:

δn( #„r , t) =

(
δ #„m( #„r , t)
δn( #„r , t)

)
. (6.25)

The perturbation can be written as

δH( #„r , t) =

(
#„σ δ

#„

B( #„r , t)
σ0 δV ( #„r , t)

)
and δV ( #„r , t) =

(
δ

#„

B( #„r , t)
δV ( #„r , t)

)
, (6.26)

such that the response of the 4-component density is given by

δn( #„r , t) =

∫
d #„r ′

∫
dt′ χ( #„r , #„r ′; t− t′)δV ( #„r ′, t) , (6.27)

where χ is the susceptibility being a 4× 4-matrix with the structure

χ =


χxx χxy χxz χxn
χyx χyy χyz χyn
χzx χzy χzz χzn
χnx χny χnz χnn

 . (6.28)

The susceptibility elements χab with a, b = {x, y, z, n} are defined as the retarted correlation func-
tion of σa and σb:

χab(
#„r , #„r ′; t− t′) = CRσaσb(

#„r , #„r ′; t− t′) . (6.29)

Applying a Fourier transform yields

δn( #„r , ω) =

∫
d #„r ′ χ( #„r , #„r ′;ω + iη)δV ( #„r ′, ω) , (6.30)

where χab(
#„r , #„r ′;ω + iη) can be written in terms of Green function as shown in eq. (6.21).

In general, all elements of χab are finite. However, without spin-orbit coupling and without non-
collinear magnetism the Green function is purely diagonal and the structure of χab simplifies to

χ =


χxx χxy 0 0
χyx χyy 0 0
0 0 χzz χzn
0 0 χnz χnn

 , (6.31)

such that longitudinal ({z, n}) and transversal ({x, y}) components are fully decoupled. Further
simplifications can be made taking into account the symmetry of the system.
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6.2.1. Susceptibilities within TDDFT

Within the TDDFT scheme we are working with the single-particle Kohn-Sham Hamiltonian

HKS =−∇2 + V KS( #„r , t) + #„σ · #„

BKS( #„r , t) , (6.32)

with the Kohn-Sham potentials

V KS( #„r , t) =V ext( #„r ) + δV ( #„r , t) +

∫
d #„r ′

2n( #„r ′, t)

| #„r − #„r ′| + V xc[n( #„r , t)] (6.33)

and
#„

BKS( #„r , t) =µB

(
#„

Bext( #„r ) + δ
#„

B( #„r , t)
)

+
#„

Bxc[n( #„r , t)] . (6.34)

An external electromagnetic perturbation effects the Kohn-Sham Hamiltonian in two ways: On
the one hand there are the obvious dependencies of HKS on the external potentials. On the other
hand the change in the densities influences the Hartree term and the exchange-correlation fields,
which affects the total Hamiltonian. Both effects have to be considered up to first order in the
perturbation.
The change in the Kohn-Sham Hamiltonian due to the change in the densities can be calculated
as follows:

δHKS( #„r , t) =µB
#„σ · δ #„

B( #„r , t) + δV ( #„r , t)

+

∫
d #„r ′dt′

[
Kn( #„r , #„r ′, t− t′)δn( #„r ′, t′)

+ Km( #„r , #„r ′, t− t′) · δ #„m( #„r ′, t′)
]

,

(6.35)

where we used the functional derivatives of the KS Hamiltonian with respect to the densities, which
define the so-called kernels

Kn( #„r , #„r ′, t− t′) =
δHKS

δn( #„r ′, t′)

∣∣∣∣
n0( #„r ), #„m0( #„r )

, (6.36)

and Km( #„r , #„r ′, t− t′) =
δHKS

δ #„m( #„r ′, t′)

∣∣∣∣
n0( #„r ), #„m0( #„r )

. (6.37)

In the adiabatic local density approximation the Kernels are time-independent and given by

Kn( #„r , #„r ′) =
2

| #„r − #„r ′|︸ ︷︷ ︸
KH( #„r , #„r ′)

+δ( #„r − #„r ′)
δV xc( #„r )

δn( #„r )

∣∣∣∣
n0,

#„m0︸ ︷︷ ︸
Knnxc ( #„r )

+δ( #„r − #„r ′) #„σ · δ
#„

Bxc( #„r )

δn( #„r )

∣∣∣∣
n0,

#„m0︸ ︷︷ ︸
Kmnxc ( #„r )

, (6.38)

and Km( #„r ) =
δV xc( #„r )

δ #„m( #„r )

∣∣∣∣
n0,

#„m0︸ ︷︷ ︸
Knmxc ( #„r )

+ #„σ · δ
#„

Bxc( #„r )

δ #„m( #„r )

∣∣∣∣
n0,

#„m0︸ ︷︷ ︸
Kmmxc ( #„r )

. (6.39)

The Hartree kernel KH is non-local, whereas the exchange-correlation Kernels are all local due to
the ALDA.
An elegant approach to calculate the change in the densities is the usage of the time-dependent
Green function and the Dyson equation up to first order. It can be shown that the densities are
given in terms of the time-ordered Green functions by [47]

n( #„r , t) = −iTr G( #„r , #„r ; t, t+) and #„m( #„r , t) = −iTr #„σG( #„r , #„r ; t, t+) . (6.40)
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Via the Dyson equation the Green function can be expanded in the perturbation:

G( #„r , #„r ′; t− t′) =G0( #„r , #„r ′; t− t′) + δG( #„r , #„r ′; t− t′) (6.41)

with δG( #„r , #„r ′; t− t′) =

∫
d #„r ′′dt′′ G0( #„r , #„r ′′; t− t′′)δHKS( #„r ′′, t′′)G0( #„r ′′, #„r ′; t′′ − t′) , (6.42)

where G0( #„r , #„r ′; t − t′) is the time-dependent Green function of the unperturbed system. In the
following, the integrals and the dependencies on #„r and t are skipped to simplify the notations. The
change in the charge density is given by

δn( #„r , t) =− iTr δG( #„r , #„r ; t, t+) (6.43)

=− i
∫

d #„r ′dt′ Tr
[
G0( #„r , #„r ′; t− t′)δHKS( #„r ′, t′)G0( #„r ′, #„r ; t′ − t+)

]
(6.44)

=− i
∫

d #„r ′dt′ Tr
[
G0( #„r , #„r ′; t− t′)G0( #„r ′, #„r ; t′ − t+)δV KS( #„r ′, t′)

+ G0( #„r , #„r ′; t− t′)σbG0( #„r ′, #„r ; t′ − t+)δBb,KS( #„r ′, t′)
]

,

(6.45)

where the kernel contribution is omitted. Via eq. (6.45) the so-called Kohn-Sham susceptibilities
χ0, which describe the response of the Kohn-Sham system without taking the density changes in
the Hamiltonian into account, can be defined

χab0 ( #„r , #„r ′; t− t′) = −iTr
[
σaG0( #„r , #„r ′; t− t′)σbG0( #„r ′, #„r ; t′ − t)

]
, (6.46)

with a, b = {x, y, z, n} and the index n indicates the unity matrix σ0. Omitting the integrals and
the dependences on the space and time coordinates the susceptibilities of the interacting system
χab, which are called renormalized susceptibilities, have to fulfil the following Dyson-like equation

χab = χab0 + χan0 KHχ
nb +

∑
cd

χac0 Kcdxcχ
db , (6.47)

which can be solved, e.g. by inversion.
At this point, we can discuss the role of the Hartree kernel. The Hartree kernel, which is non-local
and therefore numerically cumbersome, couples to the density components of the susceptibility.
It describes the Coulomb interaction of an charge element with the surrounding disturbed charge
distribution. Without spin-orbit coupling the longitudinal and the transversal susceptibilities are
fully decoupled. This means if we only consider the transversal susceptibilities without spin-orbit
coupling the Hartree kernel is not used.

Calculations are done in the frequency space. One can show, that the Fourier transform of eq.
(6.46) is equivalent to the correlation function showed in eq. (6.21), which uses the retarted Green
function and its imaginary part, evaluated with the Pauli matrices as operators.
In the KKR codes, we work in the frequency space and evalute the Kohn-Sham susceptibilities via
eq. (6.21), which is discussed in the next section.

6.2.2. Susceptibilities within the KKR formalism

In section 4.3 the actual representation of the Green function within the projection scheme is
shown. The basis, which is called Green function basis in the following, consists of a few energy
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independent radial basis functions and the spherical harmonics. Using this basis the susceptibility
can be written as

χab( #„r , #„r ′;ω) =
∑

L1b1...L4b4

YL1(r̂)YL2(r̂)φnl1b1(r)φnl2b2(r)χabnn′;L1b1L2b2;L3b3L4b4(ω)

× φn′l3b3(r′)φn′l4b4(r′)YL3(r̂′)YL4(r̂′) ,

(6.48)

with the matrix element χabnn′;L1b1L2b2;L3b3L4b4
(ω) being of similar shape as eq. (6.21), but using the

Green function matrix elements instead of the full Green function. However, this product basis
for the susceptibility is huge, which makes it computationally demanding. The typical basis size
for an angular momentum cutoff of l = 3 is N =

[
(l + 1)2 ×#b×#atoms

]2
= 1024 × #atoms2.

For example, the renormalization of the susceptibility uses an inversion process, which has a cubic
scaling O(N3). Therefore, it is computationally advisable to reduce the basis size if possible.
Via a contraction of the two spherical harmonics used in the basis, it is possible to simplify the
basis. In the KKRsusc code a new orthonormal basis set is used, which typically reduces the basis
size by a factor of approximately 4. The Green function basis is mapped on the new basis, which
is called in the following density basis, via

φnl1b1(r)φnl2b2(r)YL1(r̂)YL2(r̂) =
∑
Lb

CLbL1b1L2b2ΦLb(r)YL(r̂) , (6.49)

with the coefficients

CLbL1b1L2b2 =

∫
dr r2φnl1b1(r)φnl2b2(r)ΦLb(r)

∫
dr̂ YL1(r̂)YL2(r̂)YL(r̂)︸ ︷︷ ︸

=CLL1L2

, (6.50)

which leads to the representation of the susceptibility in the density basis:

χab( #„r , #„r ′;ω) =
∑
Lb,L′b′

YL(r̂)ΦnLb(r)χ
ab
nn′;LbL′b′(ω)Φn′L′b′(r

′)YL′(r̂
′) . (6.51)

Also the Hartree and the exchange-correlation kernel are given in the density basis within the code.
Since the basis is orthonormal the evaluation of eq. (6.47) is simply a matrix multiplication and
inversion of the corresponding matrix elements.

In addition to the spatial dependence the frequency dependence has to be discussed. The Kohn-
Sham susceptibility is calculated by using the Taylor expansion in frequency space given in eq.
(6.23). This is a good approximation since the energy scale in which we are interested is character-
ized by the collective spin precession, which are much lower in energy than the Stoner excitations.
Therefore, for the range of frequencies we are interested in, the Kohn-Sham susceptibility is a
smooth function.

6.3. Spin-currents within linear response and TDDFT

In this section, the main result of this chaper is discussed – the response of the spin and charge
currents to an external perturbation δV . We follow the same steps as the previous section and we
will notice the very close connection between magnetic excitations and currents.
The paramagnetic spin and charge current operators are given by

ĵak( #„r ) = −iµB lim
#„r ′→ #„r

(
∂k − ∂′k

)
σa , (6.52)
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which leads via the Kubo formula to the charge and spin current response to an external pertur-
bation:

δ
〈
ĵak( #„r , t)

〉
=− i

∫
d3r′dt′ Θ(t− t′)

〈[
ĵak( #„r , t),σb

]〉
· δV b( #„r ′, t′) (6.53)

=

∫
d3r′dt′ χabjkm( #„r , #„r ′, t− t′)δV b( #„r ′, t′) , (6.54)

with the spin-current–spin correlation function χabjkm. The index a refers to the spin polarization
of the current, whereas the index b is the direction of the external field (a, b = {x, y, z, 0}). In
addition, the index k refers to the flow direction of the current.
According to eq. (6.21) the spin-current–spin correlation function of the Kohn-Sham system can
be calculated via

χabjkm( #„r , #„r ′;ω + iη) =

iµB lim
#„r ′′→ #„r

{
1

π

∫
dE f(E) Tr

[(
∂k − ∂′′k

)
σaG0( #„r , #„r ′;ω + E + iη)σb Im G0( #„r ′, #„r ′′;E + i0+)

]
+

1

π

∫
dE f(E) Tr

[(
∂k − ∂′′k

)
σa Im G0( #„r , #„r ′;E + i0+)σbG0( #„r ′, #„r ′′;−ω + E − iη)

]}
.

(6.55)

At this point, the close connection between the spin-spin susceptibility and the spin-current–spin
correlation function is visible.
Let us analyse the structure a bit further within the Green function basis of the KKRsusc code.
From eq. (6.55) it is easy to see, that the spin-current–spin correlation function can be written in
terms of the spin-spin susceptibility as:

χabjkm( #„r , #„r ′;ω) = −iµB lim
#„r ′′→ #„r

(
∂k − ∂′′k

) ∑
L1b1...L4b4

YL1(r̂′′)φnl1b1(r′′)YL2(r̂)φnl2b2(r)

× χabnn′;L1b1L2b2;L3b3L4b4(ω)φn′l3b3(r′)φn′l4b4(r′)YL3(r̂′)YL4(r̂′) .

(6.56)

Using a similar approach as for the groundstate currents, we can construct a basis with one gradient
to define the spin-current–spin correlation function by relabeling the summation indices:

χabjkm( #„r , #„r ′;ω) =
∑

L1b1...L4b4

∂k (YL1(r̂)φnl1b1(r))YL2(r̂)φnl2b2(r)

× χabjkm;nn′;L1b1L2b2;L3b3L4b4(ω)φn′l3b3(r′)φn′l4b4(r′)YL3(r̂′)YL4(r̂′) ,

(6.57)

with the spin-current–spin correlation function matrix element

χabjkm;nn′;L1b1L2b2;L3b3L4b4(ω) = iµB

(
χabnn′;L1b1L2b2;L3b3L4b4(ω)− χabnn′;L2b2L1b1;L3b3L4b4(ω)

)
. (6.58)

Since we are using this gradient basis it is not possible to switch to the density basis, which is used
for the magnetic susceptibility. The basis functions of the density basis are constructed to fit the
Green function product basis and not the gradients of it. However, we will see that it is convenient
to switch to the density basis for the #„r ′ dependence, which yields

χabjkm( #„r , #„r ′;ω) =
∑

L1b1L2b2
Lb

∂k (YL1(r̂)φnl1b1(r))YL2(r̂)φnl2b2(r)χabjkm;nn′;L1b1L2b2;Lb(ω)Φn′Lb(r
′)YL(r̂′) ,

(6.59)

with the matrix elements

χabjkm;nn′;L1b1L2b2;Lb(ω) =
∑

L3b3L4b4

χabjkm;nn′;L1b1L2b2;L3b3L4b4(ω)CLbL3b3L4b4 . (6.60)
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6.3.1. Renormalized spin-current–spin correlation function

To take the interaction effects in to account, the convenient starting point are time-dependent
Green functions. The currents can be written in terms of the time-ordered Green function as:

δjak( #„r , t) = −µB lim
#„r ′→ #„r

Tr σa
(
∂k − ∂′k

)
δG( #„r , #„r ′, t, t+) , (6.61)

with δG from eq. (6.42), which was discussed in detail in section 6.2.1. Comparing to the structure
of the magnetic susceptibility, one can see that the only difference are the additional gradients. The
gradients act on the coordinates of the unperturbed Green functions, which are used to define the
Kohn-Sham susceptibilities. Thus in total, the calculation is similar to the magnetic susceptibility,
but with gradients acting on the Kohn-Sham susceptibilities.
Defining the Kohn-Sham spin-current–spin correlation function as

χab0;jkm
( #„r , #„r ′; t− t′) = −µB lim

#„r ′′→ #„r

(
∂k − ∂′′k

)
Tr
[
σaG0( #„r , #„r ′; t− t′)σbG0( #„r ′, #„r ′′; t′ − t)

]
,

(6.62)

yields for the renormalized correlation function

χabjkm = χab0;jkm
+ χan0;jkm

KHχ
nb +

∑
cd

χac0;jkm
Kcdxcχ

db , (6.63)

where χab are the renormalized magnetic susceptibilities. Thus knowing the kernels and the renor-
malized magnetic susceptibilites is sufficient to renormalize the spin-current–spin correlation func-
tion.

Computational details

To implement the renormalized spin-current–spin correlation function the mixed basis set discussed
in the previous section is used. The #„r dependence of the correlation function is treated in the
gradient Green function basis, whereas the #„r ′ dependence is treated in the density basis. Due
to the orthonormality of the density basis the evaluation of eq. (6.63) simplifies to a matrix
multiplication. Defining Nden as the number of basis elements in the density basis and NGF as
the number of basis elements in the Green function basis, the matrix multiplication is of order
O(NGF×N 2

den). Thus the operation is linear in the size of the Green function basis. Therefore, the
speed up by decreasing the basis size would be approximately a factor of 4, which is the difference
between density and Green function basis. Therefore at the moment it is not worth the effort to
set up a new smaller basis for the gradient Green function basis.

6.3.2. Structure of the spin-current–spin correlation function

In this section the structure of the spin-current–spin correlation function is discussed. For systems
with spin-orbit coupling, all 16 elements of the magnetic susceptibility and the spin-current–spin
correlation function can be finite. However, for collinear systems without spin-orbit coupling both
quantities are block diagonal as shown in eq. (6.31), such that the transversal part and the longi-
tudinal part decouple.
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In the static limit the structure simplifies even more. Let us discuss the transversal block in more
detail. Eq. (6.24) yields the following condition for vanishing elements:

Tr
[
ÂG( #„r , #„r ′;E + i0+)B̂G( #„r ′, #„r ;E + i0+)

]
!

= 0 . (6.64)

In the considered case, the Green functions are diagonal and symmetric

G( #„r , #„r ′;E + i0+) =

(
G↑( #„r , #„r ′;E + i0+) 0

0 G↓( #„r , #„r ′;E + i0+)

)
= G( #„r ′, #„r ;E + i0+) ,

(6.65)

which yields for the susceptibility

χab ∝ 2

{
G↓( #„r , #„r ′;E + i0+)G↑( #„r ′, #„r ;E + i0+), for ab = {xx, yy}
0, for ab = {xy, yx}

, (6.66)

such that only the xx and yy-components are finite.
A similar procedure can be done for the spin-current–spin correlation function. The important
quantity is

lim
#„r ′′→ #„r

Tr
[(

#„∇− #„∇′′
)
σaG( #„r , #„r ′;E + i0+)σbG( #„r ′, #„r ′′;E + i0+)

]
, (6.67)

which yields due to the additional subtraction with the gradients other possible finite components:

χabjm ∝
(

#„∇G↓( #„r , #„r ′;E + i0+)
)
G↑( #„r ′, #„r ;E + i0+)

−
(

#„∇G↑( #„r , #„r ′;E + i0+)
)
G↓( #„r ′, #„r ;E + i0+)

, for ab = {xy, yx} . (6.68)

Thus the static spin-current–spin correlation function can mathematically be non-zero for the xy
and the yx-component.

6.4. Model for the excitations within linear response

In this section, a model to describe excitations within linear response is discussed. The Anderson-
like model in section 5.2.1, which was used to describe ground state charge currents, can not directly
be used to calculate the susceptibilities. However, with a few extensions it is possible to use the
model. The main change is the explicit inclusion of the spin, which is done by using a Stoner-like
spin splitting described by the parameter U . Furthermore, the spin dependence is added to the
spin-orbit coupling term, which is treated purely in the z-direction. To simplify the problem, we
stick to the use of the (l,m) = (2,±2) orbitals, which give the leading order contribution with
SOC. Furhtermore, the orbitals are of Slater type yielding a simple radial dependence, such that
the orbitals are given by

φµ( #„r ) = R(r)Y µ
2 (r̂), with R(r) = Ar2e−αr , (6.69)

where Y µ
2 are complex spherical harmonics, A is a normalization constant and α defines a charac-

teristic length scale of the problem.
The effective Hamiltonian is given by

Heff
µµ′;ss′ = (Ed − iΓ) δµµ′σ

0
ss′ −

U

2
mδµµ′σ

z
ss′ + ξLzµµ′σ

z
ss′ , (6.70)
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where the index µ refers to the orbitals, s refers to the spins and m is the magnetization, which is
assumed to be a parameter and not calculated self-consistently as a first approximation.
The Green function of this Hamiltonian can be written in the eigenbasis as

G(E) =
(
E −Heff

)−1
=
∑
µ,s

|µ, s〉〈µ, s|
E − Eµ,s + iΓ

(6.71)

⇒ G( #„r , #„r ′;E) =
∑
µ,s

R(r)Y µ
2 (r̂) Gµs;µs(E)︸ ︷︷ ︸

〈µ,s|G(E)|µ,s〉

[
Y µ

2 (r̂′)
]∗
R(r′) , (6.72)

with the eigenenergies

Eµ,s = Ed − iΓ−
U

2
mσzss + ξµσzss . (6.73)

Using eq. (6.21) the correlation function of any two observables for this model Hamiltonian can be
calculated. A detailed derivation is given in Appendix D, where it is shown that the correlation
function can be written as

χAB(ω) =
∑
µs,µ′s′

Tr
[
Â|µs〉〈µs|B̂|µ′s′〉〈µ′s′|

]
χ̃µs,µ′s′(ω) (6.74)

=
∑
µs,µ′s′

[
〈µ′s′|Â|µs〉〈µs|B̂|µ′s′〉

]
χ̃µs,µ′s′(ω) , (6.75)

or equivalently in the spatial representation:

χAB( #„r , #„r ′;ω) =
∑
µs,µ′s′

[
φ∗µ′(

#„r )〈s′|Â|s〉φµ( #„r )φ∗µ( #„r ′)〈s|B̂|s′〉φµ′( #„r ′)
]
χ̃µs,µ′s′(ω) . (6.76)

Magnetic susceptibility

In the case of the magnetic susceptibility the operators Â and B̂ are given by Pauli matrices. To
see which elements contribute we have a look at the spin-dependent part

〈s′|σA|s〉〈s|σB|s′〉 , (6.77)

which is only non-zero for specific Pauli matrices. One can show that the combinations

AB = {+−,−+, ↑↑, ↓↓}, with σ+ = |↑〉〈↓|, σ− = |↓〉〈↑|, σ↑ = |↑〉〈↑|, σ↓ = |↓〉〈↓| ,
(6.78)

and thus only 4 of 16 possible components of the susceptibility are finite.

Furthermore, we can analyse the spatial dependence of the magnetization for a homogeneous
magnetic field. The integral over #„r ′ in eq. (6.27) yields for a homogeneous perturbation the
condition δµµ′ due to the orthonormality of the orbitals. The resulting spatial distribution of the
magnetization has the form

R(r)2Y 2
2 (r̂)Y −2

2 (r̂) = R(r)2 1√
π

[
1

2
Y 0

0 (r̂)−
√

5

7
Y 0

2 (r̂) +
1

14
Y 0

4 (r̂)

]
. (6.79)
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Spin-current–spin correlation function

The spin-current–spin correlation function differs from the susceptibility by the additional gradients.
For a homogeneous perturbation it is given by:

χabjkm( #„r , #„r ′;ω) =
∑
µ;s,s′

[{
φ∗µ( #„r )∂k (φµ( #„r ))− φµ( #„r )∂k

(
φ∗µ( #„r )

)}
〈s′|σa|s〉〈s|σb|s′〉

]
χ̃µs,µs′(ω) .

(6.80)

The evaluation of the spin-dependent part is identical to the magnetic susceptibilities, which yields
the same structure as described in eq. (6.78). However, the gradients affect the spatial dependence.
Using the relation

(Y m
l (r̂))∗ = (−1)mY −ml (r̂) ⇒

(
Y 2

2 (r̂)
)∗

= Y −2
2 (r̂) , (6.81)

yields for the spatial dependent part of eq. (6.80)

R(r)Y −µ2 (r̂)∂k [R(r)Y µ
2 (r̂)]−R(r)Y µ

2 (r̂)∂k

[
R(r)Y −µ2 (r̂)

]
= R(r)2

{
Y −µ2 (r̂) [∂kY

µ
2 (r̂)]− Y µ

2 (r̂)
[
∂kY

−µ
2 (r̂)

]}
.

(6.82)

Plugging in the actual form of the spherical harmonics yields

Y −µ2 (r̂) [∂kY
µ

2 (r̂)]− Y µ
2 (r̂)

[
∂kY

−µ
2 (r̂)

]
=sgn(µ) i

√
3

π

1

r

{
−Y1,−1 + 1√

14
Y3,−1, k = x

Y1,1 − 1√
14
Y3,1, k = y

, (6.83)

which is a purely swirling field in the x-y–plane.
At this point, a few drawbacks of the model are noticeable. The chosen orbitals may be the most
relevant for the spin-orbit coupling part, but the spatial dependence of these orbitals will always
lead to a swirling in the x-y–plane as we already saw for the ground state charge current model in
section 5.2.1.
Thus we expect this model to describe at most the effects resulting from spin-orbit coupling. How-
ever, we already saw for ground state currents that external magnetic fields can lead to finite
spin-currents, which is exactly the situation in the linear response calculations. Thus if we con-
sider systems without spin-orbit coupling, we can not expect results which are swirling, since the
argument of chosing the specific orbitals is based on spin-orbit coupling.

6.5. Landau-Lifshitz-Gilbert equation

Magnetization dynamics in ferromagnets are often described by the Landau-Lifschitz-Gilbert (LLG)
model, which is a phenomenological approach. The basic equation describing the dynamics of a
magnetic moment is given by

d #„m

dt
= −γ #„m× #„

B + η
#„m

m
× d #„m

dt
, (6.84)

where γ = gµB is the gyromagnetic ratio and η is an empirical damping parameter. The g-factor
equals 2 for free electrons, whereas for more complex systems it can slightly differ from 2 due to the
electronic structure close to the Fermi level and to the presence of an orbital magnetic moment.
For a constant magnetic field the LLG equation describes a precession of the magnetic moment
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around the field vector with the precession frequency γB. If damping is turned on (η > 0) the
precession spirals down so that the magnetic moment aligns with the magnetic field.
The LLG equation can be connected to the magnetic susceptibility as follows: Assume a small
time-dependent magnetic perturbation, which induces a change in the magnetic moment. The
dynamics of the magnetic moment can be described by the magnetic susceptibility. Writing the
LLG equation in the frequency space up to first order in the perturbation yields

−iωδ #„m = −γ
(
δ #„m× #„

B0 + #„m× δ #„

B
)
− iωηêz × δ #„m , (6.85)

with the magnetic moment δma = χabδBb. In general, eq. (6.85) describes a set of coupled
equations, which can be solved for the elements of the susceptibility. Assuming a homogeneous
external field, it can be shown that the transverse magnetic susceptibility in the LLG model is
given by [37]

χ+− =
1

4
[χxx + χyy + iχxy − iχyx] (6.86)

=
mzω0

2B0

(1 + η2)ω0 − ω + iηω

(ω − ω0)2 + (ηω0)2
, with ω0 =

γB0

1 + η2
. (6.87)

Thus by fitting the KKR results to the LLG model function the KKR susceptibility gives access to
the gyromagnetic ratio and the damping parameter.

6.5.1. Spin pumping theory

Spin currents and magnetization dynamics are closely connected in two ways: On the one hand,
an applied spin current can induce magnetization dynamics, e.g. domain wall motion. On the
other hand, magnetization dynamics can induce spin currents, which gives rise to the spin pumping
method. Spin pumping is a method for the generation of spin-current, which is of huge interest in the
field of spintronics. Tserkovnyak et al. [5] showed the connection between dynamical magnetization
motion and the pumped spin current in a layered system consisting of a ferromagnetic layer in
between two normal metal layers. Using the LLG model to describe the magnetization dynamics,
the pumped spin current can be connected to the LLG parameters. The divergence of the pumped
spin current with polarization a is given by

Iapump =

[
Ar

(
#„m× d #„m

dt

)a
−Ai

dma

dt

]
, (6.88)

where Ai and Ar are parameters depending on the reflection and transmission coefficients of the
interface for electrons. It is shown by Tserkovnyak, that the interface parameters are connected to
the renormalization of the LLG parameters

1

γ
=

1

γ0

[
1 + gL

A
(L)
i +A

(R)
i

M

]
(6.89)

η =
γ

γ0

[
η0 + gL

A
(L)
r +A

(R)
r

M

]
, (6.90)

where gL is the Landé factor, M is the total magnetic moment, the subscript 0 indicates the bulk
values and the superscripts (L) and (R) the evaluation of the interface parameters at the left and
right side of the ferromagnetic layer.
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In principle, we can obtain the interface parameter from the KKR simulation via the renormalized
LLG parameters. However, in this work we are not dealing with layered systems. Therefore, the
model by Tserkovnyak is not directly applicable to our simulation results, but can be used as a
approximation without defining the parameters Ai and Ar in more detail.
Within the model of Tserkovnyak, the pumped spin current can be written in terms of the suscep-
tibility by Fourier transforming and linearizing eq. (6.88), which yields

Iapump = − ~
4π
iω [Ar ( #„m0 × δ #„m)a −Aiδma] , (6.91)

with δma = χabδBb and #„m0 = m0êz.
An important result is the ω = 0 - limit , where the pumped spin-current should vanish since it is
linear in the frequency. In the next chapter we will discuss this limit in more detail.



7. Spin-current excitations in magnetic adatoms

In this chapter the results of the spin-current calculations within linear response are discussed.
The KKR procedure for linear response calculations, which was discussed in the previous chapter,
is applied to an iron adatom on top of a Pt(111) surface. We restrict ourselves to transversal
homogeneous and time-dependent magnetic fields perturbing a static magnetic field, which always
points in the z-direction and acts locally on the adatom.
The chapter is structured as follows: In the first part, the dynamical spin-current and magnetiza-
tion response to an external magnetic field is discussed. The dynamical spin-current–spin density
correlation function is analysed as function of frequency. Using the continuity equation and the
spin-pumping theory of Tserkovnyak, the spin-current–spin density correlation function is con-
nected to the magnetic susceptibility. In the second part of this chapter, we have a detailed look
at the ω = 0 limit of the spin-current–spin density correlation function. In the final part of this
chapter, we include spin-orbit-coupling effects, which lead to a more complex spin-current response.

7.1. Dynamical spin-current–spin correlation function

In this section the response to a dynamical homogeneous magnetic field is presented. We consider
an iron adatom deposited on a Pt(111) surface with an external static out-of-plane magnetic field of
10 T (0.5788 meV), for which a standard self-consistent ground state DFT calculation is performed.
The frequency dependence of the spin-current–spin density correlation function and of the magnetic
susceptibility are discussed. Using an unidirectional monochromatic magnetic field perturbation,
the resulting magnetization dynamics and the induced spin-currents are discussed. Furthermore,
the continuity equation and the spin-pumping theory of Tserkovnyak are used to interpret the
results.

Frequency dependence of the response functions

Figure 7.1 shows the renormalized spin-current–spin correlation function (a) and the renormalized
magnetic susceptibility (b) as function of the frequency. All elements of the transverse response
are shown, separating real and imaginary parts.
Let us first discuss the frequency dependence of the magnetic susceptibility. A characteristic im-
portant frequency is the resonance frequency ω0 = gBext, at which the highest density of magnetic
excitations is found. As shown in section 6.5, the g-factor can be related to the LLG parameters

g =
γ

1 + η2
, (7.1)

where γ is the gyromagnetic ratio and η is the damping parameter. In a free system there is no
damping, so that the g-factor and γ are equal 2. Fitting the linearized LLG equation to the our
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Figure 7.1.: (a) Divergence of the spin-current–spin correlation function of an iron adatom on top
of Pt(111) as function of frequency, averaged over the atomic sphere. (b) Magnetic
susceptibility as function of frequency, averaged over the atomic sphere.

results yields the values

γ = 1.581 and η = 0.159 , (7.2)

so that γ and g differ by more than 20% from the values of a free system. The reason for this is
that the magnetic adatom is strongly coupled to the Pt(111) surface. For the response of the full
system, one would find the values of 2 for both quantities. Locally in the adatom, the damping and
the deviation of γ from 2 is induced by an emission of spin currents. In order to understand this
effect (and many more) in more detail, an in-depth investigation of dynamical induced spin-currents
from first-principles is important.

Let us continue with the spin-current–spin density correlation function shown in figure 7.1(a). The
frequency dependence of the spin-current–spin density correlation function is quite similar to the
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frequency dependence of the magnetic susceptibility, which can be seen from the definition of the
renormalized spin-current–spin density correlation function:

χabjm = χab0,jm +
∑
cd

χac0,jmKcdxcχ
db
mm . (7.3)

In the considered frequency range, the Kohn-Sham correlation function χ0,jm depends only weakly
on the frequency, while the magnetic susceptibility contains the spin excitation resonance at low fre-
quency. So the dynamical structure of the enhanced spin-current–spin density correlation function
is essentially the same as that of the magnetic susceptibility. However, the frequency dependence
of the specific elements is not the same, since the Kohn-Sham correlation function is not diagonal
in spin space.
To analyse the physical meaning of the shown curves in more detail, let us consider a periodic
magnetic perturbation in the x-direction applied only within the adatom atomic sphere given by

δ
#„

B(t) = δB cos(ωt)êx =
δB

2

(
eiωt + e−iωt

)
êx . (7.4)

In linear response the time-dependent magnetization averaged over the atomic sphere can be cal-
culated via

δ #„m(t) =

∫
dt′ χmm(t− t′)δ #„

B(t′) (7.5)

=

∫
dt′

(
χxxmm(t− t′)
χyxmm(t− t′)

)(
eiωt

′
+ e−iωt

′
) δB

2
, (7.6)

where χmm(t) is the magnetic susceptibility averaged over the atomic sphere. Using the transfor-
mation ∆t = t− t′ yields

δ #„m(t) =

∫
d∆t

(
χxxmm(∆t)
χyxmm(∆t)

)(
eiωte−iω∆t + e−iωteiω∆t

) δB
2

(7.7)

=

(
χxxmm(−ω)eiωt + χxxmm(ω)e−iωt

χyxmm(−ω)eiωt + χyxmm(ω)e−iωt

)
δB

2
. (7.8)

Splitting the susceptibility into real and imaginary part yields using the symmetry relations of eq.
(6.22) for ω → −ω:

χmm(−ω) = Re χmm(ω)− i Im χmm(ω) . (7.9)

Combining eqs. (7.9) and (7.8) yields the final result for the frequency-dependent magnetization:

δma(t) = {Reχaxmm(ω) cos(ωt) + Imχaxmm(ω) sin(ωt)} δB (a = x, y) . (7.10)

A similar approach gives access to the divergence of the spin-current, averaged over the atomic
sphere, in terms of the spin-current–spin density correlation function:

δ
#„∇ · #„

j a(t) =
{

Re
[

#„∇ · χaxjm(ω)
]

cos(ωt) + Im
[

#„∇ · χaxjm(ω)
]

sin(ωt)
}
δB . (7.11)

This is an interesting result, since it shows that a unidirectional magnetic field can excite a pre-
cessional motion of the magnetic moment and induce spin-currents with both polarizations, which
can be seen as follows: Consider for example the excitation frequency gBext, at which the time-
dependent magnetization is given by

δ #„m(t)

∣∣∣∣
ω0=gBext

=

(
Imχxxmm(ω0) sin(ω0t)
Reχyxmm(ω0) cos(ω0t)

)
δB ≈ Imχxxmm(ω0)

(
sin(ω0t)
cos(ω0t)

)
δB , (7.12)
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where we used

Reχxxmm(ω0) ≈ Imχyxmm(ω0) ≈ 0 and Imχxxmm(ω0) ≈ Reχyxmm(ω0) . (7.13)

The same holds for the divergence of the induced spin-current, which is given by

δ
#„∇ · #„

j a(t)

∣∣∣∣
ω0=gBext

=

 Re
[

#„∇ · χxxjm(ω0)
]

cos(ω0t)

Im
[

#„∇ · χyxjm(ω0)
]

sin(ω0t)

 δB ≈ Re
[

#„∇ · χaxjm(ω0)
]( cos(ω0t)
− sin(ω0t)

)
δB ,

(7.14)

with

Im
[

#„∇ · χxxjm(ω0)
]
≈ Re

[
#„∇ · χyxjm(ω0)

]
≈ 0 and Re

[
#„∇ · χxxjm(ω0)

]
≈ −Im

[
#„∇ · χyxjm(ω0)

]
.

(7.15)

Thus at the excitation frequency both, the magnetic moment and the induced spin-current, are
precessing in the clockwise direction, but the phase differs. The x-component of the spin-current is
in phase with the external magnetic field, whereas the x-component of the magnetic moment has
a phase shift of −π

2 . This is exactly the behaviour we are expecting, since the time-derivative of
the magnetic moment, which yields an additional phase of π

2 , is connected to the divergence of the
spin-currents via for example the spin continuity equation. To investigate this connection in more
detail, let us focus on the spin continuity equation in the whole frequency regime.

Spin continuity equation

The spin continuity equation, eq. (2.37), can be used to connect the time-derivative of the mag-
netization density and the divergence of the spin current. For the x and y-component of the
magnetization one finds

∂tδm
x +

#„∇ · δ #„
j x =− 2µB (Bzδmy −mzδBy) = −2µBB

zδmy

∂tδm
y +

#„∇ · δ #„
j y =− 2µB (mzδBx −Bzδmx)

. (7.16)

In the linear response calculation only the paramagnetic spin current is calculated. In the non-
relativistic continuity equation the paramagnetic and diamagnetic spin current are relevant. How-
ever, it is easy to see, that in the discussed case the diamagnetic term does not contribute. Assume
the Landau gauge, in which the vector potential is given by

#„

A(t) = Bzxêy + δBx(t)yêz = Ay(x)êy + δAz(y)êz , (7.17)

which yields for the diamagnetic spin current and its divergence in first order

δjak,dia =− 2δ (Akm
a) = −2 (δAkm

a +Akδm
a) (7.18)

⇒ #„∇ · δ #„
j adia = ∂kδj

a
k,dia = −2 [∂zδAz(y)mz + ∂yAy(x)δma] = 0 . (7.19)

Thus, in the discussed case the diamagnetic spin current does not contribute to the continuity
equation.
Plugging eqs. (7.10) and (7.11) into the continuity equation (7.16) and comparing the prefactors
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of the (time-dependent) linearly independent sin and cos terms yields the following equations

x− component:

 ωImχxxmm(ω) + Re
[

#„∇ · χxxjm(ω)
]

= −2µBB
zReχyxmm(ω)

−ωReχxxmm(ω) + Im
[

#„∇ · χxxjm(ω)
]

= −2µBB
zImχyxmm(ω)

, (7.20)

y − component:

 ωImχyxmm(ω) + Re
[

#„∇ · χyxjm(ω)
]

= 2µBB
zReχxxmm(ω)− 2µBm

z

−ωReχyxmm(ω) + Im
[

#„∇ · χyxjm(ω)
]

= 2µBB
zImχxxmm(ω)

. (7.21)

Let us analyse the first equation in (7.20), which corresponds to the cos(ωt) time dependence of the
continuity equation for x-polarization. Using figure 7.1 we can see all the relevant components of
the spin-current–spin density correlation function and the magnetic susceptibility. The frequency

dependence of the used quantities, Imχxxmm,
[

#„∇ · χxxjm
]

and Reχyxmm, is the same – they are peaked

around the excitation frequency. However, a more quantitatively analysis shows, that the values
do not coincide. At the excitation frequency, the first term ω Imχxxmm is of order ≈ 20, whereas

the divergence of the current is
[

#„∇ · χxxjm
]
≈ 400. At first sight, this could be related to a missing

prefactor or to a mistake in the unit conversion.
However, there is a more fundamental problem in this equations. The scaling of the magnetic
susceptibility with the external magnetic field is known to be χmm ∝ 1/Bext. Applying different
static external magnetic field the simulations show, that the Kohn-Sham spin-current–spin density
correlation function does not reasonable scale with the external magnetic field. Using eq. (7.3)
and the fact that the Kohn-Sham correlation function is much smaller than the enhanced magnetic
susceptibility implies that the scaling of the divergence of the spin-current–spin density correlation
function is also χjm ∝ 1/Bext. Therefore, the left-hand side of eq. (7.20) scales like ∝ 1/Bext,
whereas the right-hand side does not scale with the external magnetic field. Thus, the KKR results
do not seem to satisfy the continuity equation in its present form

Spin-pumping theory

Another way to connect the susceptibility to the divergence of the spin-current is the spin-pumping
theory discussed in section 6.5.1. To obtain the parameters Ai and Ar the gyromagnetic ratio and
the damping parameter from the fit to the linearized LLG equation are used, which yields

Ai = 0.23 and Ar = 0.35 . (7.22)

Using eq. (6.88) and the form of the perturbation in eq. (7.4), the divergence of the pumped
spin-current is given by

#„

I pump = Arm
z

(
−∂tδmy

∂tδm
x

)
−Ai

(
∂tδm

x

∂tδm
y

)
. (7.23)

At this point it is not clear if the pumped spin-current
#„

I pump, which was originally developed
for trilayer thin films, should apply to our KKR simulation, which considers a different geometry.
However, let us assume for the moment that Iapump =

#„∇ · δ #„
j a.

Using eqs. (7.10) and (7.11) and looking at the prefactors of the linearly-independent sine and
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cosine terms yields the following four equations, which should be fulfilled:

x− component:

−Arm
zω Imχyxmm(ω)−Aiω Imχxxmm(ω) = Re

[
#„∇ · χxxjm(ω)

]
Arm

zω Reχyxmm(ω) +Aiω Reχxxmm(ω) = Im
[

#„∇ · χxxjm(ω)
] , (7.24)

y − component:

−Arm
zω Imχxxmm(ω)−Aiω Imχyxmm(ω) = Re

[
#„∇ · χyxjm(ω)

]
Arm

zω Reχxxmm(ω) +Aiω Reχyxmm(ω) = Im
[

#„∇ · χyxjm(ω)
] . (7.25)

This set of equations has two inconsistencies. On the one hand, none of the equations is fulfilled by
our KKR results, when we compare the magnetic susceptibility elements to the spin-current–spin
density correlation function results, either qualitatively or quantitatively. On the other hand, the
equations do not match with the continuity equation, which can be seen as follows: Assuming that
the spin-currents in eqs. (7.20) and (7.24) are equal yields the condition

Arm
zω Imχyxmm(ω) +Aiω Imχxxmm(ω)

!
= ωImχxxmm(ω) + 2µBB

zReχyxmm(ω) (7.26)

⇒ Reχyxmm(ω)
!

=
ω

2µBBz
(Arm

z Imχyxmm(ω) + (Ai − 1) Imχxxmm(ω)) . (7.27)

Looking at the explicit curves in figure 7.1 it is obvious without plotting the right-hand side of
eq. (7.27), that this equation can not be fulfilled by the KKR results using the values of Ai and
Ar from eq. (7.22). Thus, there is an inconsistency between the continuity equation and the
spin-pumping theory for the single adatom. However, the spin-pumping theory was developed for a
different system – a layered system – so that we assume in the following sections that the continuity
equation is the more fundamental equation, which should be fulfilled by the results.

In this section we discussed the dynamical spin-currents and the magnetic moments induced by
an unidirectional monochromatic magnetic field. We saw that at the excitation frequency both
quantities are precessing in spin space. However, using the simulation results we were not able to
quantitatively verify the continuity equation. To investigate this problem in more detail, we go
one step back and look at the ω = 0 limit. It is already known, that in this limit there are some
numerical issues with the magnetic susceptibility, which were solved by employing a sum rule [37].
Thus, it might be interesting to look at this limit with regard to the spin-current–spin density
correlation function.

7.2. Static response

In this section the response to an external magnetic perturbation in the ω = 0 limit is discussed.
The same system as in the previous section is considered. We start with the well-known magnetic
susceptibility results.

7.2.1. Static magnetic response

Table 7.1 shows the transversal block of the static Kohn-Sham and enhanced magnetic susceptibility,
or the spin density–spin density correlation function χmm. The values are averaged over the Wigner-
Seitz sphere of the iron adatom. Since we are not considering spin-orbit coupling, the susceptibility
is diagonal and the xx and the yy elements are the same.
Let us focus on the results of the enhanced magnetic susceptibility, which can be explained using
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χKS
mm magnetic field direction

x y

Polarization
x -0.0013 0.0
y 0.0 -0.0013

χenhanced
mm magnetic field direction

x y

Polarization
x -3.47 0.0
y 0.0 -3.47

Table 7.1.: Kohn-Sham (left) and enhanced (right) magnetic transversal susceptibility in [µB/ T].
Shown are the contributions averaged over the atomic sphere for the ω = 0 limit.

the LLG picture. Consider for example a perturbing static magnetic field in the x-direction. The
magnetic moment starts to precess around the total magnetic field but due to damping it slowly
aligns with the magnetic field. After a long time, which is captured by the ω = 0 limit of the
magnetic susceptibility, the magnetic moment fully aligns with the magnetic field, which can be
seen in the results as follows: Assume a small magnetic perturbation δBx. The small polar angle
θ between magnetic field and the z-axis is given by

θ ≈ δBx
Bz

=
δBx
1T

, (7.28)

whereas the polar angle of the magnetic moment is given by

θ ≈ δmx

mz
=
χxxδBx
mz

=
3.473

3.479

δBx
1T

. (7.29)

Hence, up to a small numerical error the results show exactly the described behaviour. One reason
for the numerical error is the applied external magnetic field of 10 T, which is quite small compared
to the exchange-correlation magnetic field, so that numerics can cause problems. There are also
further approximations made when constructing the response functions, which lead to further
inaccuracies. To correct this error, a sum rule, which is a property the magnetic susceptibility
should fulfil, was introduced in the code [37].

7.2.2. Static spin current response

Table 7.2 (left) shows the averaged Kohn-Sham spin-current–spin density correlation function in
the ω = 0 limit. As discussed in section 6.3.2 from the mathematical point of view the diagonal
components have to be zero, whereas the off-diagonals can differ from zero. This is exactly what

χKS
jzm magnetic field direction

x y

Polarization
x 0.0 0.0187
y -0.0187 0.0

χenhanced
jzm magnetic field direction

x y

Polarization
x 0.0 6.13
y -6.13 0.0

Table 7.2.: Kohn-Sham (left) and enhanced (right) spin-current–spin correlation function in
[10−3µB / T]. Shown are the contributions averaged over the atomic sphere in the ω = 0
limit. Due to the symmetry of the iron adatom on the Pt(111)-surface the currents are
flowing in the z-direction.
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we obtain: The off-diagonal components for the flow in the spatial z-direction are non-zero.
A more detailed picture is shown in figure 7.2, which shows the spatial flow of the y-polarized
Kohn-Sham current for a static magnetic field perturbation in the x-direction. Shown is the con-
stant y = 0-plane. One can see a finite current flowing from the center of the sphere towards the
vacuum layers. The currents in the lower half circle are much smaller and have the same symmetry
as the lattice. Already at this level, we can say that there is a source generating spin-current, which
results in a finite divergence. Figure 7.3 shows the divergence of the y-polarized spin-current. In the
top view the symmetry of the lattice is visible. In the side view one can see the strong variation of
the divergence in the upper half circle compared to the lower half circle, which is more homogeneous.

Let us go on with the renormalized results of the interacting system shown in table 7.2 (right). The
structure is similar to the non-interacting system. Only the actual values vary by approximately 3
orders of magnitude. The enhancement of the spin-current–spin density correlation function comes
from the enhanced magnetic susceptibility, see eq. (7.3). The matrix structure itself indicates a
precession. A magnetic perturbation in the x-direction induces a y-polarized spin current, whereas
a magnetic perturbation in the y-direction induces a x-polarized spin current of opposite sign. Fig-
ure 7.4 shows the y-polarized renormalized spin current in a constant y = 0 plane. The flow is quite
similar to the Kohn-Sham spin current. There is a large flow towards the vacuum spheres, whereas
the flow from the surface is smaller, which results in an effective generation of spin current and
a finite divergence. However, there are some crucial differences regarding the amplitude. For the
Kohn-Sham spin current the flow towards the vacuum is decreasing close to the boundary of the
Wigner-Seitz sphere, whereas the amplitude of the renormalized spin current is increasing towards
the boundary.
The divergence is shown in figure 7.5. One can see that the divergence is everywhere positive. The
top view shows once again the symmetry of the lattice. The side view differs from the Kohn-Sham
spin current. Close to the surface the variation in the divergence is larger than close the the vacuum
layer. This is related to the more homogeneous flow towards the vacuum layer.

Spin continuity equation

As pointed out in section 7.1, the spin continuity equation is not satisfied by the dynamical simula-
tion results. Let us have a more quantitative look for the ω = 0 limit. The spin continuity equation
(2.37) without relativistic corrections for the y-polarization is given by

∂tm
y +

#„∇ · #„
j y = 2µB (Bzmx −Bxmz) . (7.30)

In frequency space the time derivative simplifies to ∂t → −iω. Assuming the static perturbation in
the x-direction the magnetic moment can be written in terms of the susceptibility, which yields

−iωχyxmmδBx +
#„∇ · #„

j y = 2µB (BzχxxmmδB
x −mzδBx) . (7.31)

The right-hand side of eq. (7.31) corresponds to the torque. As shown in eq. (7.29), in the ω = 0
limit the magnetic moment fully aligns with the magnetic field up to some small numerical error,
so that the torque vanishes. Since χyxmm is not singular at ω = 0 the continuity equation simplifies
to

#„∇ · #„
j y = Re

[
#„∇ · χyxjm(ω = 0)

]
δBx = 0 , (7.32)

which indicates that there should not be any pumped spin-current for a static magnetic field
perturbation.
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Figure 7.2.: Flow of the y-polarized Kohn-Sham spin current. Shown is the y = 0 plane with the
platinum surface below the adatom at z < 0.
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Figure 7.3.: Divergence of the y-polarized Kohn-Sham spin-current shown in fig. 7.2.
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Figure 7.4.: Flow of the y-polarized renormalized spin current. Shown is the y = 0 plane with the
platinum surface below the adatom at z < 0.
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Figure 7.5.: Divergence of the y-polarized spin current shown in fig. 7.4.
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However, we know that the torque in the ω = 0 limit is not identically zero in the simulation
due to a numerical error. So the reader might ask, if this error could be responsible for the finite
divergence of the spin-current. To investigate this further, we look at the scaling with the external
magnetic field of all quantities.

Scaling with the external magnetic field

The scaling with the external magnetic field of the torque and the divergence of the spin-current is
shown in table 7.3 for three different magnetic fields in the ω = 0 limit. The torque part is nearly
constant, explained by the magnetization sum rule [37], but the divergence of the spin current
is scaling with 1/Bext, so that the numerical error in the torque part can not explain the finite
divergence.
Using the definition of the enhanced spin-current–spin correlation function one can easily prove
this scaling behavior:

χab = χab0︸︷︷︸
≈const.

+
∑
cd

χac0 Kcdxc︸ ︷︷ ︸
≈const.

χdb︸︷︷︸
∝1/Bext

. (7.33)

The Kohn-Sham correlation function is approximately constant with the external magnetic field.
The same holds for the exchange-correlation kernel. Thus the only quantity, which has a reasonable
scaling is the enhanced magnetic susceptibility with a scaling ∝ 1/Bext. In addition, the Kohn-
Sham correlation function is usually a few order of magnitude smaller than the enhanced one, such
that the total scaling of the enhanced correlation function is approximately ∝ 1/Bext.
The only way, to overcome this scaling problem is for the divergence of the static Kohn-Sham
correlation function to vanish, so that the scaling does not matter anymore. At present our results
contradict this assumption.
Furthermore, the underlying physical picture yields additional doubts about the ω = 0 result, which
is discussed in the next paragraph.

Connection to the LLG model

The static magnetic perturbation induces a precessional damped motion of the magnetic moment,
which can be described by the LLG equation. During the precession spin currents are periodically
induced. However, as we already discussed in section 7.2.1 the precession is damped resulting in a

Quantity magnetic field strength scaling

100 Tesla 20 Tesla 10 Tesla

Bzχxx 3.4771 3.4736 3.4736 ∝ const.
mz 3.4831 3.4797 3.4792 ∝ const.
Bzχxx −mz -0.0060 -0.0061 -0.0056 ∝ const.
#„∇ · jyenhanced 15.37 76.7 153.4 ∝ 1/Bext

Table 7.3.: Scaling with the external magnetic field of the quantities appearing in the continuity
equation (7.31) for the ω = 0 limit.
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finite precession time. After the magnetic moment is aligned with the external magnetic field there
should not be any induced spin current with finite divergence, which is described by the ω = 0
limit. In total, this physical picture predicts no finite spin currents in the ω = 0 limit, which is a
contradiction to the found results.

Possible sources of the error

The errors can have different sources. In our method we are using many approximations, some
of which could lead to wrong results. At the moment the most probable reason for the incorrect
ω = 0 behavior of the spin-current–spin density correlation function is a numerical error. In case of
the magnetic susceptibility we already saw a small numerical error concerning the alignment of the
magnetic moments with the external magnetic field in section 7.2.1. The problem was fixed in the
code by the introduction of a sum rule, which is basically a property the magnetic susceptibility
has to fulfill [37]. However, at the moment we do not have such a check for the spin-current–spin
density correlation function, so that numerical errors might lead to incorrect results.

7.3. Spin-orbit coupling effects

Spin-orbit coupling breaks the continuous rotational symmetry in spin space by coupling the spin
momentum and the angular momentum. As a result, different effects originate from the coupling of
spin space and real space, but the most important one for this section is the magnetic anisotropy,
which introduces a dependence of the total energy on the direction of the magnetic moment. Usually
there is an easy axis, which is energetically preferred for the alignment. It can be shown that an
adatom on the Pt(111) with its C3v-symmetry is well-described by the model spin Hamiltonian [37]

H = −Km2
z , (7.34)

with the easy axis in-plane or out-of-plane depending on the sign of the parameter K. The magnetic
anisotropy energy (MAE) of an iron adatom on top of Pt(111) is approximately Km2

z ≈ 1.10meV,
which is obtained from the KKR simulation by comparing the band energy of the system with
out-of-plane magnetization to the one with the in-plane magnetization. Thus, the ground state has
an out-of-plane magnetization. The magnetic anisotropy energy corresponds to an magnetic field
#„

BMAE, which is given by

#„

BMAE = −∂E
MAE

∂ #„m
= 2Kmz êz =

2Km2
z

mz
=

2 1.1meV

3.46µB
= 11.0T , (7.35)

resulting in a total effective magnetic field of
#„

Beff =
#„

Bext +
#„

BMAE. Therefore, applying a magnetic
perturbation perpendicular to the anisotropy easy axis we expect the magnetic moment to not fully
align with the external magnetic field, but to tilt slightly in the direction of the perturbation.
In the simulation we consider a static external magnetic field of 10 T in the z-direction. The static
magnetic susceptibility is still diagonal but the amplitude differs drastically from the case without
spin-orbit coupling. The polar angle of the induced magnetic moment is given by

θm =
χxxδBx

mz
=

1.336

3.465

δBx

10T
≈ δBx

25.9T
, (7.36)

whereas the polar angle of the external magnetic field is θB = δBx/10T . The reason for this is
the magnetic anisotropy and the corresponding effective magnetic field. From this calculation we
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obtain a MAE magnetic field of 15.9 T, which slightly differs from eq. (7.35). However, we are
comparing two different kinds of calculations, which could yield different results. In particular, the
result of the band energy differences is very sensitive to the size of the real-space cluster [49].

Let us continue with the static spin-current–spin correlation function. Without spin-orbit coupling,
only the off-diagonal elements of this function were finite. With spin-orbit coupling also the diag-
onal elements of the static spin-current–spin correlation function are finite.
Consider a magnetic perturbation in the x-direction. The resulting y-polarized spin-current looks
qualitatively similar to the induced spin-current without spin-orbit coupling. The amplitude
changes, but the direction of the flow is quite similar, so that the main problem concerning the
continuity equation remains the same.
However, spin-orbit coupling yields an additional x-polarized spin-current, which was not present
before. Figure 7.6 shows the flow of the x-polarized spin-current. The currents are obviously
bound, which can be seen in the divergence shown in figure 7.7. The integrated divergence van-
ishes, which means that in total there is no net flow of the spin-current out of the Wigner-Seitz
sphere. However, the divergence is not zero everywhere, which could be related to the rigid spin
approximation. The rigid spin approximation assumes a uniform spin quantization axis in each
atomic sphere, which is not correct in case of spin-orbit coupling since spin-orbit coupling naturally
leads to a three-dimensional spin density. Therefore, the actual ground state of the system could
be different resulting in finite spin currents.

In addition to the static behavior, figure 7.8 shows the frequency dependence of the divergence of
the spin-current–spin correlation function and the magnetic susceptibility. One can notice that the
excitation frequency is shifted compared to the case without spin-orbit coupling by a factor of 2.59,
which corresponds to a MAE magnetic field of 15.9 T. Apart from the overall shift, the frequency
dependence of all the elements is similar to the frequency dependence without spin-orbit coupling.

To summarize, spin-orbit coupling results in finite diagonal components of the spin-current–spin
density correlation function, which means that for an magnetic perturbation in the x-direction an
additional finite x-polarized spin current is induced. However, the finite diagonal components van-
ish within the divergence calculation, so that the frequency dependence of the divergence, which is
the important quantity, is similar to the calculations without spin-orbit coupling.
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Figure 7.6.: Flow of the x-polarized renormalized spin current with SOC. Shown is the y = 0 plane
with the platinum surface below the adatom at z < 0.
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Figure 7.7.: Divergence of the x-polarized spin current shown in fig. 7.6.
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Figure 7.8.: (a) Divergence of the spin-current–spin correlation function as function of frequency
with spin-orbit coupling averaged over the atomic sphere. (b) Magnetic susceptibility
as function of frequency with spin-orbit coupling averaged over the atomic sphere. The
leftmost dashed vertical line indicates the peak position without spin-orbit coupling,
whereas the rightmos dashed line corresponds to the excitation frequency with spin-
orbit coupling.

7.4. Summary

In this chapter, spin currents and magnetization dynamics induced by an (dynamical) external
magnetic field were discussed. The magnetic susceptibility and the spin-current–spin density cor-
relation function were calculated for an iron atom deposited on Pt(111).
In the first part, the frequency dependence of the dynamical spin-current–spin density correlation
function and the magnetic susceptibility were discussed. Applying an unidirectional periodical
magnetic perturbation, we found both quantities – the magnetic moment and the divergence of
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the spin current – precessing in spin space. Using the results in the continuity equation indicated
some problems, which could be related to the ω = 0 limit. Therefore in the second part, the ω = 0
limit was discussed by using a static magnetic field perturbation. Using the magnetic susceptibility
we were able to describe the alignment of the magnetic moment moment with the static external
magnetic field. However, the spin-current–spin density correlation function showed an unexpected
behaviour in the ω = 0 limit, finite spin currents. The underlying physical picture predicts that
there should not be finite spin currents in the ω = 0 limit. A possible reason for this is a numerical
error. We believe that developing a sum rule similar to the one used to correct the dynamical
magnetic susceptibility will clarify this matter.
In the final part of this chapter, we discussed the effects of spin-orbit coupling on the magnetic
susceptibility and the spin-current–spin density correlation function. We found the MAE to shift
the excitation frequency, since it is acting as an effective magnetic field. Furthermore, spin-orbit
coupling induces finite diagonal components in the spin-current–spin correlation function, which
vanish for ω = 0 in the divergence calculation, but might play a role in dynamical processes.



8. Summary and outlook

The main focus of this work was the study of charge and spin currents in magnetic nanostructures.
Within the KKR-DFT scheme I was able to develop two methods describing charge and spin cur-
rents of static and dynamical origins. On the one hand, I investigated ground state charge and
spin currents, which are induced by spin-orbit coupling and other symmetry-breaking effects such
as non-collinear magnetism. On the other hand, dynamical spin currents were also investigated,
which were induced by dynamical external magnetic fields, and are important for understanding
spin dynamics.

In case of the ground state charge currents, I presented simulations of single iron adatoms de-
posited on different platinum surfaces. Using the electronic structure of the adatom on top of the
hexagonal surface, I could motivate an Anderson-like model Hamiltonian, which yielded first in-
sights to the charge current distribution in the adatom. The model as well as the KKR calculation
showed a purely swirling charge current.
Furthermore, I investigated the connection between ground state charge currents and orbital mag-
netic moments. Using a simple relation, which is even known from classical electrodynamics but
strictly valid only for finite systems, I could calculate the orbital magnetic moment via the ground
state charge current. I have analyzed an additional contribution resulting from the net currents
flowing through the Wigner-Seitz spheres, which was neglected in previous calculations of the or-
bital magnetic moment within the KKR scheme.
In addition to single adatoms, I presented calculations of an iron dimer, an iron trimer and a non-
collinear iron trimer, which was calculated without spin-orbit coupling. In the non-collinear iron

trimer the finite scalar spin chirality,
#„

S 1 ·
(

#„

S 2 ×
#„

S 3

)
, was responsible for the emergence of finite

ground state charge currents and the resulting finite orbital magnetic moments.
For the simulation of ground state spin currents, I reported only on a single system – an iron
adatom deposited on Pt(111). The most important result was the emergence of finite net spin cur-
rents through the whole cluster. At the surface the simulation predicted finite x- and y-polarized
spin currents, which are not bounded. Even if this result sounds strange at first sight, I showed
that the spin currents have a vanishing divergence, such that the results are in accordance with the
continuity equation. Furthermore, I highlighted the possibility of finite spin currents at surfaces as
it is known for example for Rashba systems [46].

In the second part of this work, I investigated dynamical spin currents induced by external magnetic
fields within linear response. I developed a KKR based method to calculate the spin-current–spin
density correlation function, which can be divided into two steps: First, the spin-current–spin cor-
relation function of the Kohn-Sham system has to be calculated, which is closely connected to the
magnetic susceptibility of the Kohn-Sham system. Then the exchange-correlation effects have to be
considered, resulting in a renormalization of the Kohn-Sham spin-current–spin density correlation
function. A detailed description of the implementation of these two steps was given.
Furthermore, I discussed how magnetization dynamics described by the LLG equation can be con-
nected to spin currents, which are induced by the magnetization dynamics, using the description
of Tserkovnyak [5].
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The developed method was applied to an iron adatom deposited on Pt(111) without spin-orbit
coupling. The frequency dependence of the spin-current–spin correlation function was analyzed.
It was shown that the frequency dependence of the spin-current–spin correlation function is fully
governed by the frequency dependence of the magnetic susceptibility. Applying an unidirectional
periodical magnetic field perturbation, it was shown that both – the magnetization and the di-
vergence of the spin-current – are precessing in spin space. The continuity equation was used to
connect the resulting time-dependent magnetic moment to the resulting divergence of the spin-
current. Qualitatively the frequency dependence of the connected quantities matched, but using
the actual numbers I found a discrepancy. To analyze this discrepancy, I went one step back and
discussed the ω = 0 limit of the simulations. In this limit, which corresponds to the long time
behavior, I expected no finite spin-currents, since the magnetic moment is fully aligned with the
external magnetic field. However, the results showed a finite spin-current, in disagreement with
the continuity equation and the spin-pumping theory of Tserkovnyak, which predicts pumped spin-
currents linear in the frequency. A possible reason for the discrepancy is a numerical error. For
the magnetic susceptibility, there is a well-known numerical error in the ω = 0 limit, which was
corrected by using a sum rule [37]. However, at the moment I do not know of any sum rule for the
spin-current–spin density correlation function to correct the ω = 0 limit.
In the last part of the results, I discussed the effects of spin-orbit coupling on the induced spin
currents. First I showed that the magnetic anisotropy yields a shift in the excitation frequency,
since it acts as an additional effective magnetic field. Furthermore, I analyzed the occurrence of
diagonal elements of the spin-current–spin density correlation function in the static limit, which
were exactly zero without spin-orbit coupling. I showed that these currents are bound such that
the divergence is vanishing and the continuity equation is fulfilled.

To conclude the summary, I provide an outlook of what can still be done and what I could improve.
Regarding the ground state currents and the orbital magnetic moment, the new method could be
used to analyze more complex systems. I found, that the net current contribution of the orbital
magnetic moment in the non-collinear compact trimer had the same order of magnitude as the on-
site contribution. The reason was the presence of the flowing net currents in the trimer. As a next
step, I could investigate a larger ring-like structure, in which even larger net current contributions to
the orbital magnetic moment might be expected. Another interesting target system would be nano-
skyrmions, which are currently attracting a lot of attention [50]. Due to the magnetic structure of
a two dimensional skyrmion, I expect ground state ring-like currents resulting in a large net current
contribution to the orbital magnetic moment, which was not captured by previous first-principles
simulations.
Regarding the implementation of the dynamical spin-currents induced by magnetic fields, more
theoretical and numerical development is still needed. To check the numerics, which are believed
to cause the discussed discrepancies, I have to find an analytical property of the spin-current–spin
density correlation function, as it was done in case of the magnetic susceptibility with the sum
rule. Therefore, it might be useful to develop a model for a single adatom, which captures more
details than the model discussed in this thesis, to understand the physics of dynamical induced
spin-currents in more detail. After achieving this goal, there are a lot of interesting systems which
could be analyzed. For example a detailed analysis of the dynamics of a skyrmion induced by an
external magnetic field will surely uncover new and interesting effects.



A. Atomic Rydberg units

Within this work atomic Rydberg units are used. In the unit system the following fundamental
physical constants are defined:

Definition Quantity

~ = 1 Planck constant
aB = 1 Bohr radius
Ry = 1 Rydberg energy

4πε0 = 1 Coulomb constant

Furthermore, the following important quantities are defined via these fundamental constants:

Quantity

e =
√

2 elementary charge
me = 1

2 electron mass

µB =
√

2 Bohr magneton

However, in this work usually the Bohr magneton is kept in the equation to allow easy comparison
to other unit systems for magnetic quantities and to avoid factors of

√
2.





B. Maxwell equations

The Maxwell equations are the fundamental equations in electromagnetism [13]. They are a closed
set of differential equations describing electromagnetic fields via charges and charge currents:

#„∇ · #„

E =4πρ , (B.1)
#„∇ · #„

B =0 , (B.2)

#„∇× #„

E =− 1

c

∂
#„

B

∂t
, (B.3)

#„∇× #„

B =
4π

c

#„
j +

1

c

∂
#„

E

∂t
, (B.4)

where
#„

E is the electric field,
#„

B is the magnetic field, ρ is the charge density and
#„
j is the charge

current. One can show that the electric field and the magnetic field can be written in terms of a
potential φ and a vector potential

#„

A:

#„

E =− #„∇φ− 1

c

∂
#„

A

∂t
, (B.5)

#„

B =
#„∇× #„

A . (B.6)

In this work the potential φ corresponds to the ionic potential v.





C. Dirac equation

The Dirac equation for an particle in an electromagnetic field is given by

i~
∂Ψ

∂t
( #„r ; t) =

(
c #„α ·

(
#„p − e #„

A( #„r ; t)
)

+ βmc2 + V ( #„r ; t)
)

Ψ( #„r ; t) , (C.1)

where the matrices #„α and β are given by

#„α =

(
0 #„σ
#„σ 0

)
and β =

(
σ0 0
0 −σ0

)
. (C.2)

The wavefunction Ψ is a four-component vector, which can be decomposed into two spinors – φ
called big component and χ called small component

Ψ =


φ↑
φ↓
χ↑
χ↓

 =

(
φ
χ

)
, (C.3)

such that the Dirac equation simplifies to a set of coupled differential equations:

i~
∂φ

∂t
=c #„σ ·

(
#„p − e #„

A
)
χ+

(
V +mc2

)
φ , (C.4)

i~
∂χ

∂t
=c #„σ ·

(
#„p − e #„

A
)
φ+

(
V −mc2

)
χ , (C.5)

where the dependencies on #„r and t were skipped to simplify the notation. To explain why the
small component χ is actually small compared to the big component φ, the replacement

i~
∂χ

∂t
→
(
i~
∂χ

∂t
−mc2χ

)
+mc2χ , (C.6)

can be inserted to eq. (C.5) yielding

χ =
1

2mc
#„σ ·
(

#„p − e #„

A
)
φ+

1

2mc2

(
−i~ ∂

∂t
+ V +mc2

)
︸ ︷︷ ︸

≈V

χ (C.7)

≈ 1

2mc
#„σ ·
(

#„p − e #„

A
)
φ, , (C.8)

so that the small component is approximately by the factor v
c � 1 smaller than the big component,

which is only valid for sufficiently small scalar potentials V .
Furthermore, the expansion of the small component can be used to arrive at the non-relativistic
limit of the Dirac equation by plugging eq. (C.8) into eq. (C.4) yielding

i~
∂φ

∂t
=

1

2m

(
#„σ ·
(

#„p − e #„

A
))2

φ+
(
v +mc2

)
φ . (C.9)
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Using the following relation for the Pauli matrices,

( #„σ · #„a )
(

#„σ · #„

b
)

= #„a · #„

bσ0 + i
(

#„a × #„

b
)
· #„σ , (C.10)

eq. (C.9) simplifies to the Pauli equation:

i~
∂φ

∂t
=

1

2m

(
#„p − e #„

A
)2
φ− e~

2m
#„σ · #„

Bφ+
(
v +mc2

)
φ . (C.11)

An important point is the normalization of the big component φ. The whole wavefunction Ψ is
normalized by construction:

1 =

∫
d #„r Ψ†Ψ (C.12)

=

∫
d #„r

(
φ†φ+ χ†χ

)
. (C.13)

Using the expansion given in eq. (C.8) for the small component one finds

1 =

∫
d #„r

[
φ†φ+O

((v
c

)2
)]

, (C.14)

so that the big component is normalized up to first order in v
c .

Eq. (C.7) can be used to systematically expand the Dirac equation in higher orders of v
c by

iteratively plugging the resulting small component into eq. (C.4). The first relativistic corrections
are found by using

χ =
1

2mc
#„σ ·
(

#„p − e #„

A
)
φ+

1

2mc2

(
−i~ ∂

∂t
+ V +mc2

)
1

2mc
#„σ ·
(

#„p − e #„

A
)
φ+O

((v
c

)3
)

.

(C.15)

Before we start, the normalization of the big component can be analyzed.

1 =

∫
d #„r

{
φ†
[
1− 1

2mc
#„σ ·
(

#„p + e
#„

A
)]
×
[
1 +

1

2mc
#„σ ·
(

#„p − e #„

A
)]
φ

}
(C.16)

=

∫
d #„r

{
φ†
[
1 +

1

4m2c2

(
#„σ ·
(

#„p − e #„

A
))2

]
φ

}
, (C.17)

where we used the #„p notation to denote the action of #„p to the left and we used partial integration
in the second step. Eq. (C.17) yields an expression for the renormalized big component φ̃ and
defines an normalization operator N̂ :

φ̃ =

[
1 +

1

8m2c2

(
#„σ ·
(

#„p − e #„

A
))2

]
φ = N̂φ =

(
1 +

1

c2
N̂2

)
φ . (C.18)

The Dirac equation for the big component eq. (C.4) can be written in terms of an operator L̂,

L̂φ = 0 , (C.19)

which can be expanded in orders of 1
c ,

L̂ = L̂0 +
1

c2
L̂2 +O

(
1

c4

)
, (C.20)



101

yielding for example the Pauli equation L̂0φ = 0.
Pluggin eq. (C.7) into eq. (C.4) yields

L̂0 =i~
∂

∂t
− V −mc2 − 1

2m

(
#„σ ·
(

#„p − e #„

A
))2

(C.21)

L̂2 =
1

4m2
#„σ ·
(

#„p − e #„

A
)
L̂0

#„σ ·
(

#„p − e #„

A
)

+
1

8m3

(
#„σ ·
(

#„p − e #„

A
))4

. (C.22)

Since we want an equation for a normalized wavefunction the normalization operator has to be
used: (

L̂N̂−1
)(

N̂φ
)

=
(
L̂N̂−1

)
φ̃ = 0 . (C.23)

The effective operator is given by(
L̂0 +

1

c2
L̂2

)(
1− 1

c2
N̂2

)
φ̃ = 0 (C.24)

⇒ L̂0φ̃+
1

c2

(
L̂2 − L̂0N̂2

)
φ̃ = 0 +O

(
1

c4

)
. (C.25)

Let us consider the operators L̂2 and L̂0N̂2 in more detail. Using L̂0φ = 0 under the assumption
that it also holds for the renormalized wavefunction yields

L̂0N̂2φ̃ =
[
L̂0, N̂2

]
φ̃+ N̂2 L̂0φ̃︸︷︷︸

=0

=
[
L̂0, N̂2

]
φ̃ . (C.26)

Furthermore, the same argument yields

L̂0
#„σ ·
(

#„p − e #„

A
)
φ̃ =

[
L̂0,

#„σ ·
(

#„p − e #„

A
)]
φ̃ , (C.27)

which can be simplified by using eq. (C.21):[
L̂0,

#„σ ·
(

#„p − e #„

A
)]

=

[
i~
∂

∂t
− V, #„σ ·

(
#„p − e #„

A
)]

(C.28)

=

(
i~
∂

∂t
− V

)
#„σ ·
(

#„p − e #„

A
)
− #„σ ·

(
#„p − e #„

A
)(

i~
∂

∂t
− V

)
(C.29)

= #„σ ·
(
−ie~∂

#„

A

∂t
− i~ #„∇V

)
= #„σ ·

(
ie~ #„

E
)

, (C.30)

where in the last step Maxwell’s equations were used.
Using eq. (C.27) to rewrite L̂2 yields:

L̂2 =
1

4m2
#„σ ·
(

#„p − e #„

A
) [
L̂0,

#„σ ·
(

#„p − e #„

A
)]

+
1

8m3

(
#„σ ·
(

#„p − e #„

A
))4

. (C.31)

Inserting eq. (C.30) into eq. (C.31) yields

L̂2 =
1

4m2
#„σ ·
(

#„p − e #„

A
)

#„σ ·
(
ie~ #„

E
)

+
1

8m3

(
#„σ ·
(

#„p − e #„

A
))4

. (C.32)

In addition to L̂2, eq. (C.25) needs the commutator of
[
L̂0, N̂2

]
, which is given by[

L̂0, N̂2

]
=

1

8m2

[
L̂0,
(

#„σ ·
(

#„p − e #„

A
))2

]
(C.33)

=
1

8m2

(
#„σ ·
(

#„p − e #„

A
)

#„σ ·
(
ie~ #„

E
)

+ #„σ ·
(
ie~ #„

E
)

#„σ ·
(

#„p − e #„

A
))

. (C.34)
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Using eq. (C.10) yields for the terms in eq. (C.34)

#„σ ·
(

#„p − e #„

A
)

#„σ ·
(
ie~ #„

E
)

=ie~ #„

E ·
(

#„p − e #„

A
)

+ ie~
(

#„p · #„

E
)

+ e~ #„σ · #„

E ×
(

#„p − e #„

A
)
− e~ #„σ ·

(
#„p × #„

E
)

,
(C.35)

and

#„σ ·
(
ie~ #„

E
)

#„σ ·
(

#„p − e #„

A
)

=ie~ #„

E ·
(

#„p − e #„

A
)
− e~ #„σ · #„

E ×
(

#„p − e #„

A
)

. (C.36)

Collecting all terms gives

1

c2

(
L̂2 − L̂0N̂2

)
=

1

8m3c2

(
#„σ ·
(

#„p − e #„

A
))4

+
ie~

8m2c2

(
#„p · #„

E
)

− e~
8m2c2

#„σ ·
(

#„p × #„

E
)
− e~

4m2c2
#„σ · #„

E ×
(

#„p − e #„

A
)

,

(C.37)

which are the relativistic corrections to the Pauli Hamiltonian L̂0. The first term is a relativistic
correction to the kinetic energy and to the Zeeman term:

1

8m3c2

(
#„σ ·
(

#„p − e #„

A
))4

=
1

8m3c2

((
#„p − e #„

A
)2
− µB #„σ · #„

B

)2

. (C.38)

The second term is the Darwin term, which affects in case of an ionic potential only the s-electrons:

ie~
8m2c2

(
#„p · #„

E
)

=
e~2

8m2c2

(
#„∇ · #„

E
)

. (C.39)

The third term describes relativistic corrections due to a time-dependent magnetic field:

− e~
8m2c2

#„σ ·
(

#„p × #„

E
)

= −i e~2

8m2c2
#„σ · ∂

#„

B

∂t
. (C.40)

Finally, the last term is the spin-orbit coupling term:

− e~
4m2c2

#„σ · #„

E ×
(

#„p − e #„

A
)

. (C.41)



D. Simplified model for the correlation function

In this appendix the details of the calculation in section 6.4 are shown. The correlation function
of any two observables Â and B̂ can be calculate via eq. (6.21). Using the Green function in its
spectral representation

G(E) =
(
E −Heff

)−1
=
∑
µ,s

|µ, s〉〈µ, s|
E − Eµ,s + iΓ

(D.1)

yields for the correlation function

χAB(ω + iη) = − 1

π

∫ EF

dE Tr

ÂG(E + ω + iη)B̂ ImG(E) + Â ImG(E)B̂ G(E − ω − iη)︸ ︷︷ ︸
=G(E−w+iη)∗


(D.2)

= − 1

2πi

∑
µs;µ′s′

∫ EF

dE Tr

[
Â

|µ, s〉〈µ, s|
E + ω − Eµs + iΓ

B̂|µ′, s′〉〈µ′, s′|
(

1

E − Eµ′s′ + iΓ
− 1

E − Eµ′s′ − iΓ

)

+ Â|µ, s〉〈µ, s|
(

1

E − Eµs + iΓ
− 1

E − Eµs − iΓ

)
B̂

|µ′, s′〉〈µ′, s′|
E − ω − Eµ′s′ − iΓ

]
.

(D.3)

The energy integration and the trace over the expectation values of the observables decouple yield-
ing:

χAB(ω) =− 1

2πi

∑
µs,µ′s′

Tr
[
Â|µs〉〈µs|B̂|µ′s′〉〈µ′s′|

]
×
∫ EF

dE

{
1

E + ω − Eµs + iΓ

(
1

E − Eµ′s′ + iΓ
− 1

E − Eµ′s′ − iΓ

)
+

1

E − ω − Eµ′s′ − iΓ

(
1

E − Eµs + iΓ
− 1

E − Eµs − iΓ

)}
.

(D.4)

Thus one can perform the energy integration independently of the observables.
To simplify the integrand partial fraction decomposition is used:

1

E −A
1

E −B =
1

A−B

(
1

E −A −
1

E −B

)
, (D.5)
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which yields

χAB(ω) =− 1

2πi

∑
µs,µ′s′

Tr
[
Â|µs〉〈µs|B̂|µ′s′〉〈µ′s′|

]
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(D.6)

=− 1
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×
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+
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)}
.

(D.7)

The second part of the integrand the summands cancel each other for most energies. One can
calculate this part by shifting the integration interval for one summand to E → E ± ω leaving an
energy integration from EF to EF ± ω:

∫ EF

dE

{
1

ω + Eµ′s′ − Eµs + 2iΓ

(
1

E − ω − Eµ′s′ − iΓ
− 1

E − Eµ′s′ − iΓ

+
1

E + ω − Eµs + iΓ
− 1

E − Eµs + iΓ

)} (D.8)

=
1

ω + Eµ′s′ − Eµs + 2iΓ

{∫ EF+ω

EF

dE
1

E − Eµs + iΓ
−
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EF−ω
dE

1

E − Eµ′s′ − iΓ

}
(D.9)

=
1

ω + Eµ′s′ − Eµs + 2iΓ

{
ln

(
EF + ω − Eµs + iΓ

EF − Eµs+ iΓ

)
− ln

(
EF − Eµ′s′ − iΓ

EF − ω − Eµ′s′ − iΓ

)}
. (D.10)

For the first part of the integrand we can not do this since the imaginary part differs. Thus we have
to integrate over the full energy range. To overcome convergence problems a lower bound energy
EB is introduced.
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In total, we obtain for the correlation function

χAB(ω) = − 1

2πi

∑
µs,µ′s′

Tr
[
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