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AbstractAbstract
The success of density-functional theory (DFT) relies on the availability
of accurate approximations for the exchange-correlation (xc) functional.
Standard xc functionals, such as the local-density and the generalized-
gradient approximation, suffer from several shortcomings: an unphysical
electronic self-interaction, no discontinuity of the xc potential at integral
particle numbers, wrong asymptotic behavior etc.. Orbital-dependent func-
tionals are a promising new generation of xc functionals. The simplest vari-
ant consistent with the Kohn-Sham theory requiring a local xc-potential
is the exact-exchange (EXX) functional. It does not exhibit the above
mentioned deficiencies. We implemented the EXX functional within the
full-potential augmented-planewave (FLAPW) method as realized in the
FLEUR code (www.flapw.de) using a specifically designed auxiliary basis
set for the optimized effective potential (OEP) equation. We demonstrate
that the auxiliary and FLAPW basis must be properly balanced to avoid
spurious oscillations in the exact exchange potential and show results for
prototype semiconductors and insulators.

Orbital-dependent functionalsOrbital-dependent functionals

Orbital-dependent xc functionals of DFT are indirect functionals of the
density Exc[ϕnk[Vs[n]]], since the KS orbitals ϕnk are functionals of the
effective KS potential Vs, which is a functional of the density [1]. In order
to calculate the local xc potential for such a functional the chain rule for
functional derivatives must be applied

Vxc(r) =
δExc[n]

δn(r)
=
∑
n,k

∫∫
dr′dr′′

(
δExc

δϕnk(r′)
δϕnk(r′)
δVs(r′′)

+ c.c.

)
δVs(r

′′)
δn(r)

We multiply with the density response function χs(r, r
′) = δn(r)/δVs(r

′),
use perturbation theory for the wavefunction response δϕnk(r)/δVs(r

′),
and arrive at an integral equation for the local xc potential∫

χs(r, r
′)Vxc(r

′)dr′

=
∑
n,k

∑
n′ 6=n

[(∫
δExc

δϕnk(r′)
ϕn′k(r′)dr′

)
ϕ∗n′k(r)ϕnk(r)

εnk − εn′k
+ c.c.

]

So far, the formalism is valid for any orbital-dependent functional. Here,
we employ the EXX functional

Ex =

occ.∑
n,k

∫∫
ϕ∗nk(r)V NL

x (r, r′)ϕnk(r′)drdr′

with V NL
x (r, r′) = −

∑occ.
n′q

ϕn′q(r)ϕ∗
n′q(r′)

|r−r′| . Then, the integral equation for

the EXX potential becomes the OEP equation∫
χs(r, r

′)Vx(r′)dr′ =

occ.∑
nk

unocc.∑
n′ 6=n

[
〈ϕnk|V NL

x |ϕn′k〉
ϕ∗n′k(r)ϕnk(r)

εnk − εn′k
+ c.c.

]

FLAPW methodFLAPW method
In the FLAPW method space is
partitioned into non-overlapping
atom-centered muffin-tin (MT)
spheres and the remaining intersi-
tial region (IR). As basis functions
we us the piecewise defined func-
tions

muffin tin (MT) spheres

interstitial
region (IR)

1

φkG(r) =

{
1√
Ω

exp [i(k + G) · r] if r ∈ IR∑
lm
∑1
p=0Almp(k,G)ualp(r)Ylm(r̂) if r ∈ MT(a)

.

where the Almp(k,G) are defined such that the function matches to the
plane wave in the IR in value and first radial derivative. The ual0(r) are
the solutions of the radial scalar-relativistic Dirac equation with predefined
energy parameters El, and the ul1(r) are their energy derivatives.
In order to increase the flexibility of the LAPW basis in the MT spheres, it
can be augmented with local orbitals (LO), which are confined to the MT
spheres

φLO(r) =

{
0 if r ∈ IR[

alou
a
l0(r) + blou

a
l1(r) + clou

a
l2(r)

]
Ylm(r̂) if r ∈ MT(a)

The function ual2(r) solves the Dirac equation with another energy param-
eter. For an accurate representation of the unoccupied states we add local
orbitals in each branch of the logarithmic derivative with the energy pa-
rameters chosen such that the solutions ualp(r), p ≥ 2 fulfill the condition

d

dr
ln[ualp(r)]|r=RMT

= −(l + 1)

at the MT sphere boundary r = RMT.
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ImplementationImplementation

In order to solve the OEP equation, we introduce a mixed product basis
(MPB) {MI(r)} that reformulates the equation as a linear-algebra prob-
lem ∑

J

χs,IJVx,J = tI

with

χs,IJ = 2

occ.∑
n,k

unocc.∑
n′

〈MIϕnk|ϕn′k〉〈ϕn′k|ϕnkMJ〉
εnk − εn′k

tI = 2

occ.∑
n,k

unocc.∑
n′
〈ϕnk|V NL

x |ϕn′k〉
〈MIϕn′k|ϕnk〉
εnk − εn′k

.

After elimination of the constant function, this equation can be solved by
matrix inversion of χs.
The MPB {MI(r)} is constructed from products of LAPW basis functions,
which yields interstitial plane-waves (IPWs) in the IR and MT functions
of the form ULP (r)YLM (r) in the spheres [2, 3]. We remove near linear
dependencies in the set of MT functions ULP (r) leading to a smaller
and more efficient basis. Furthermore, we add the atomic exact exchange
potential to the set U(L=0),P . In analogy to the LAPW basis set, two
radial MT functions for each lm channel are used to augment the IPWs,
while the remaining functions are combined to form local orbitals.

Balance of basis setsBalance of basis sets
We demonstrate for the case of diamond that a smooth and physical local
EXX potential requires a balance of the LAPW and MPB.
If we only use the conventional LAPW basis, the potential (green dashed
line) shows an over-pronounced intershell-hump and tends to an unphys-
ical positive value close to the atomic nucleus. Here, the basis sets are
unbalanced. In order to converge the EXX potential to the red solid line
we had to add no less than six local orbitals per lm channel with l = 0, ...5
and m ≤ |l| leading to a LAPW basis that is five times as large as that
required for conventional local functionals.
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We have traced back the spurious oscillations in the unbalanced case to
an insufficiently converged response function. If the LAPW basis, which
parametrizes the electron density, is not flexible enough, the electron
density cannot follow the changes of the effective potenial that are
desribed by the MPB. This becomes evident in the convergence of the
relative change of the eigenvalues of the density response function χs
with respect to the LAPW basis. We add 2l + 1 additional local orbitals
per l quantum number (l = 0, . . . , 5) in each step.
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Full-potential treatment IFull-potential treatment I

The EXX (left) and LDA (right) exchange
potentials on the (011) plane of diamond
are shown as a contour plot. The non-
sphericity of the EXX potential is consider-
ably more pronounced than in LDA, which
stresses the importance a full-potential
treatment.
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The contour lines have an interval of 0.05 htr and the dotted lines corre-
spond to Vx = 0.00 htr. The MT sphere boundaries are indicated. (We
have defined

∫
Vx(r)d3r = 0.)

The self-consistent total electron densities show corresponding varia-
tions, which are particularly apparent in the density difference ∆n(r) =
nEXX(r)− nLDA(r).

Full-potential treatment IIFull-potential treatment II

Due to the self-interaction correction the EXX wave functions and, hence,
the electron density are less delocalized. As can be seen, charge also
accumulates in the bonds.
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— EXX · · · LDA
For the density (density difference) plot the contour levels have a spacing
of 0.03 a−3

0 (0.003 a−3
0 ).The dotted lines correspond to ∆n = 0 a−3

0 .

ResultsResults

This work Plane-wave PP
LDA EXX EXXc EXX EXXc Expt.

C Γ→ Γ 5.56 6.21 6.26 6.19a, 6.21b 6.28c 7.3e

Γ→ L 8.43 9.09 9.16 9.15b 9.18c

Γ→ X 4.71 5.20 5.33 5.34b 5.43c

Si Γ→ Γ 2.53 3.13 3.21 3.12b 3.26c 3.4e

Γ→ L 1.42 2.21 2.28 2.21b 2.35c 2.4e

Γ→ X 0.61 1.30 1.44 1.25b 1.50c

SiC Γ→ Γ 6.27 7.18 7.24 7.37c

Γ→ L 5.38 6.14 6.21 6.30c

Γ→ X 1.32 2.29 2.44 2.52c 2.42e

Ge Γ→ Γ −0.14 1.24 1.21 1.28c 1.0e

Γ→ L 0.06 0.89 0.94 1.01c 0.7e

Γ→ X 0.66 1.15 1.28 1.34c 1.3e

GaAs Γ→ Γ 0.29 1.72 1.74 1.82c 1.63e

Γ→ L 0.85 1.79 1.86 1.93c

Γ→ X 1.35 1.95 2.12 2.15c 2.18e

Ne Γ→ Γ 11.43 14.79 15.46 14.15d 14.76d 21.51f

Γ→ L 16.97 20.49 21.16
Γ→ X 18.27 21.85 22.56

Ar Γ→ Γ 8.19 9.65 10.09 9.61d 9.95d 14.15f

Γ→ L 11.06 12.22 12.60
Γ→ X 10.86 12.08 12.49

aReference [4] bReference [5] cReference [6]
dReference [7] eReference [8] fReference [9]

We obtain transition energies in very good agreement with plane-wave
pseudopotential calculations (Ne is an exception). This is at variance with
the findings of Ref. 10.

Outlook: IBS treatmentOutlook: IBS treatment

The OEP equation contains the response function δϕnk(r)/δVs(r
′). As

the LAPW basis functions φkG(r) depend explicitly on the potential, an
additional term beyond the ’standard’ perturbation theory result arises

δϕnk(r)

δVs(r′)
=
∑
n′ 6=n

ϕ∗n′k(r′)ϕnk(r′)

εnk − εn′k
ϕn′k(r)

+

∫
d3r′′

δ(r− r′′)−
∑
n′
φn′k(r)φ∗n′k(r′′)

∑
G

zG(nk)
δφkG(r′′)
δVs(r′)

with the KS wavefunction ϕnk(r) =
∑

G zG(nk)φkG(r). This additional
term vanishes in the limit of a complete basis corresponding to an LAPW
basis with many LOs. We currently seek to treat this incomplete-basis-set
(IBS) term explicitly. We hope that this will reduce the demand on the
LAPW basis.

ConclusionsConclusions

•We have presented an implementation of the exact-exchange functional
within the all-electron FLAPW method based on the mixed product
basis.

• For the case of diamond, we have demonstrated that the LAPW and
mixed product basis are not independent. They must be properly bal-
anced to obtain a smooth and physical EXX potential.

•We have shown for the case of diamond that the local EXX potential
is spatially strongly corrugated, which makes a full-potential treatment
even more important than in conventional LDA or GGA calculations.

•We find that with properly balanced basis sets the transition energies
for a variety of semiconductors and insulators are in very good agree-
ment with plane-wave pseudopotential results from the literature. This
confirms the adequacy of the pseudopotential approximation in the con-
text of the EXX-OEP formalism and clarifies a previous contradiction
between FLAPW and pseudopotential results [10].
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