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Outline

Problem: standard scaling in DFT is O(N3)

Our method: KKR Green function method

Accuracy of our method

Reduction of scaling to O(N2) and O(N)

Parallelization strategies

Experience in applications and outlook to improvements



Standard density functional equations

wavefunctions
[−∇2

r + V (r)− Ei]Ψi(r) = 0

density

n(r) =
∑

Ei≤EF

|Ψi(r)|2

potential V = VH + VXC

∇2
rVH(r) = −4πn(r)
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O(N3) bottleneck for large systems



Key observations to achieve reduced scaling

[−∇2
r + V (r)− Ei]Ψi(r) = 0

1. observation: V (r) is local, ∇r is short ranged

simple discretization

or localized basis sets
⇒ sparse matrices

sparse matrices with O(N) matrix elements instead of O(N2)



How to exploit sparse matrices?

direct solution methods

1D 2D 3D
full matrices: O(N3) O(N3) O(N3)
band matrices: O(N) O(N2) O(N7/3)
optimal algorithms O(N) O(N3/2) O(N2)

but implementation and parallelization difficult

iterative solution methods
⇒ O(N) work to obtain one wavefunction
O(N) wavefunctions are required ⇒ O(N2) scaling



Difficulty exists with wavefunctions

wavefunction orthogonalization ⇒ O(N3) scaling

2. observation density matrix or Green function can be calculated directly

ρ(r, r′, T ) = −
1

π
Im

∫ ∞
−∞

f(E − EF , T )G(r, r′, E)dE

⇒ O(N2) scaling

.



Difficulty exists with wavefunctions

wavefunction orthogonalization ⇒ O(N3) scaling

2. observation density matrix or Green function can be calculated directly
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π
Im

∫ ∞
−∞

f(E − EF , T )G(r, r′, E)dE

⇒ O(N2) scaling

How to obtain linear scaling?

3. observation: (nearsightedness) density matrix decays exponentially
in semiconductors and insulators

spatial truncation ⇒ only fixed number of density matrix elements
are needed around each atom

⇒ O(N) scaling



Are large computing facilities needed?

4. observation: computational work increases as nznitnrN instead of N3

• nzN is number of non-zero matrix elements instead of N2

• nit is number of iterations

• nr is number of atoms in the truncation region

assume realistic values as nz = 50, nit = 50 and nr = 200
⇒ nznitnrN < N3 for N > 700

• supercomputing (with efficient parallelization) is required

• accuracy depends on nz, nit and nr



Basic features of the KKR-GF method

all electron method (no pseudopotentials)

applicable to metallic, semiconducting and insulating systems

useful for disordered systems (KKR-CPA)

available in relativistic version (Dirac equation)

KKR: Korringa (1947), Kohn-Rostoker (1954)

and earlier Lord Rayleigh (1892)

Green-function version
in Jülich developed originally for impurity calculations
with Peter Dederichs and many other coworkers



Comparison wavefunction and Green function methods

wavefunction method Green function method

n(r) =
∑

Ei≤EF

|Ψi(r)|2 n(r) = −
1

π
Im

∫ EF

∞
G(r, r, E)dE

with basis-sets methods with multiple-scattering theory

⇒ linear eigenvalue problem ⇒ system of linear equations

x
[−∇2

r + V (r)− Ei]Ψi(r) = 0
x[
−∇2

r + V (r)− E
]
G(r, r′, E) = −δ(r − r′)

⇓
or alternatively by a Dyson equation

G(r, r′, E) = Gr(r, r′, E) +

∫
Gr(r, r′′, E) [V (r′′)− V r(r′′)]G(r′′, r′, E)dr′′

with known Green function Gr of a suitably chosen reference system

e.g. for V r(r) ≡ 0 ⇒ G0(r, r′, E) = −
exp(i

√
E|r − r′|)

4π|r − r′|



Structure of the KKR Green-function equations

G(r +Rn, r′ +Rn′) = δnn
′
Gn
s (r, r′) +

∑
LL′

Rn
L(r)Gnn′

LL′R
n′
L′(r

′)

• divide space into cells n

• solve single-cell problems

Gn
s (r, r′) = G0(r, r′) +

∫
n

G0(r, r′′)V (r′)Gn
s (r′′, r′)dr′′

Rn
L(r) = JL(r) +

∫
n

G0(r, r′)V (r′′)Rn
L(r′)dr′

• use matrix equation

Gnn′

LL′ = Gr,nn′

LL′ +
∑

n′′L′′L′′′

Gr,nn′′

LL′′ ∆tn
′′

L′′L′′′G
n′′n′

L′′′L′

∆tnLL′ =

∫
n

Rr,n
L (r)∆V (r)Rn

L′(r)dr

x
a single cutoff parameter lmax determines accuracy and matrix size
single-cell problems can be solved in parallel with O(N) work
matrix equation is independent of the radial resolution used



Accuracy in comparison with FLAPW results

lattice constant [a.u.]

Al Fe Ni Cu Rh Pd Ag

FPKKR 7.52 5.20 6.46 6.63 7.09 7.24 7.53
FLAPW 7.51 5.18 6.46 6.63 7.09 7.25 7.54

bulk modulus [Mbar]

Al Fe Ni Cu Rh Pd Ag

FPKKR 0.82 2.43 2.54 1.88 3.18 2.28 1.39
FLAPW 0.85 2.57 2.56 1.90 3.12 2.29 1.41

from Asato et al., PRB 60, 5202 (1999)



Forces and relaxations

comparison with experiment
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Phonons (example aluminium)
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• displace central Al atom by 0.5 %

• calculate forces on six shells of neighbours

• Fourier transform force constant matrix

• determine eigenvalues of dynamical matrix



How to achieve sparsity in the KKR matrix equation?

originally screening transformation of structure constants

• TB-LMTO method
Andersen and Jepsen (1984)

• screened (or TB) KKR method
Andersen et al. (1992)
energy-dependent screening parameters ⇒
are difficult to obtain

• introduction of least-square fits
Szunyogh et al. (1994)

• hard sphere solid and unitary spherical waves
Andersen et al. (1994)

• concept of a repulsive reference system
Zeller et al. (1995)



What is a suitable repulsive reference system?

we choose an infinite array of repulsive potentials

⇒ a finite energy E0 exists such that below E0

• reference system has no eigenstates

• reference Green function decays exponentially

with nz = 50 total energy accuracy better than
1 meV is achieved



How to solve KKR matrix equation by iteration

Gnn′(E) = Gr,nn′(E) +
∑
n′′

Gr,nn′′(E)∆tn
′′
(E)Gn′′n′(E)

O(N2) computational effort, O(N) storage
easy parallelization over the atoms and L components

simple iterations G(i+1) = Gr +Gr∆tG(i) do not work

QMR method and complex energy integration with T 6= 0

E

iΓ
z = E + iΓ

EF

n(r) = −
1

π
Im

∮
f(E, T )G(r, r, E)dE

f(E, T ) = Fermi-Dirac function

usually 30 to 40 energy points are enough



How many iterations are needed?

as function of T and size
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KKRnano

• our newly developed code (presently implemented in supercell mode)

• why nano?
nanosystems contain many atoms
(2000 in a cube of 3 nm length)

accuracy (in meV) scaling behaviour

.

x

present applications

MgO: 1-10 % N, C ⇒ Jij ⇒ Tc (Poster P517)

GaN:Gd with 1-5 % interstitial N, O (LDA+U) ⇒ Tc

Si + shallow donors



How to use more processors than atoms?

KKRnano uses four levels of parallelization
MPI groups and communicators and point-
to-point and collective messages

• parallelization over atoms (is efficient)

• parallelization over two spin directions
(is trivial and efficient)

• parallelization over energy points
(2 or 3 panels dynamically load balanced)

• parallelization over L components
(implemented until now only in matrix
equation)

.

test system: NiPd3071
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How to achieve linear scaling

n’

• truncate: Gnn′
LL′ = 0 for |Rn −Rn′| > rcut

G decays like the density matrix

• truncation leads to O(1) storage

• truncation leads to O(N) computing time

.

(
ACC

ARC

ACR

ARR

)(
X

(i)
C

0

)
=

(
ACCX

(i)
C

ACRX
(i)
R

)
x

use X
(i+1)
C = ACCX

(i)
C and X

(i+1)
R = 0



Truncation error for total energy
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supercell with 131072 identical atoms in fcc geometry
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KKRnano for band gap materials
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How to improve the efficiency?

we use four strategies

1. use higher temperature without losing accuracy

2. use preconditioning

3. use good initialization

4. use postprocessing by Newton step



How can higher ”temperature” be used?

increasing T reduces number of iterations but decreases accuracy

observation T corresponds to smoothing f(E, T )

use more efficient smoothing f(E, T )⇒ 4/3f(E, T )− 1/3f(E, 2T )

Etot(T ) = Etot(0) + α2T
2 + α4T

4...⇒

4

3
Etot(T )−

1

3
Etot(2T ) = Etot(0)− 4α4T

4...

only modified quadrature rules

no problems with negative occupancies
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Is preconditioning useful?

instead of (1− gt)G = g solve P (1− gt)G = Pg

if P (1− gt) ≈ 1 fewer iterations are required

1. multigrid methods

2. incomplete LU

3. circular preconditioners

.

test system NiPd255 with
randomly displaced atoms
(about 2 % displacement)
convergence quality 10−7

energy error < µeV

.



better than random initialization?

1. extrapolation along the energy contour

2. use results of previous self-consistency
iteration



Are Newton steps possible?

Newton step for matrix inversion X
(i+1)
Newton = X(i)(2−AX(i))

Advantage: number of correct digits doubled

Disadvantage: multiplication with dense matrix X(i)

seems to scale as O(N3) and destroys parallel efficiency
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Use particular features of KKR-GF method:

• density calculation requires only O(N)

on-site blocks of G ≈ X(i+1)
Newton

• using symmetry Gnn′
LL′ = Gn′n

L′L avoids
data transfer between processors



Summary

1. Key concepts for linear-scaling DFT calculations:

• sparse Hamiltonians (matrices)

• iterative solutions

• nearsightedness of electronic matter

2. Implementation in Korringa-Kohn-Rostocker Green function method by:

• repulsive reference system

• complex energy integration with T 6= 0 and QMR method

• local truncation of the Green function

3. Accuracy of the KKR-GF method in general and for O(N) calculations

4. Jülich computer code KKRnano is useful in O(N2) mode for thousands of atoms and
is efficiently parallelized

5. For many thousand atoms O(N) calculations are possible also in metals

6. Large reduction of computational work can be expected by:
smoothing, preprocessing, preconditioning and postprocessing


