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ABSTRACT

Ever since the middle of the 1920s, when compounds from the perovskite struc-
ture family played a key role in the groundbreaking work of Goldschmidt on
material synthesis, perovskite transition-metal oxides (TMOs) have repeatedly
stimulated new activities in fundamental research as well as in the development
of new technical applications. Thus, many perovskite TMOs, for example the
ferroelectrics BaTiO3 and PbTiO3, have become an integral part of present-day
technologies. Intriguing properties of other perovskite TMOs such as ferromag-
netic LaMnO3+δ or the high-κ dielectric BaZrO3 and their potential use in future
applications are currently investigated. As a large variety of A and B cations
can be combined to form the perovskite crystal structure with stoichiometric
composition ABO3, compounds with a wide range of material properties can
be synthesized. This makes perovskite transition-metal oxides a unique formal
laboratory to test models and theories pertaining to solid state physics.

The goal of this thesis is to shed light on the structure-composition-properties
relation of this fascinating class of materials from the electronic-structure point
of view. The investigations are based on density functional theory (DFT), the
most successful theory for the description of ground-state electronic properties
from first-principles in combination with the GW approximation (GWA) from
many-body perturbation theory which has emerged as the method of choice to
describe single-particle excitation spectra of solids. In this work, the full-potential
linearized augmented plane-wave method (FLAPW) is used in all calculations.
As an all-electron scheme it is particularly suitable to describe d and f states of
transition metals and rare earths contained in the perovskite TMOs.

Trends in the electronic structure of three series of prototypical perovskite
TMOs including BaTiO3, BaZrO3, and PbTiO3 in the high-temperature cubic
crystal phase are investigate to relate changes in the single-particle excitation
spectra and band gaps to changes in the composition of the materials. In ad-
dition, the effect of symmetry-breaking relaxations from the cubic crystal phase
on the electronic structure occurring at room temperature is investigated. The
first-principles results emphasize the importance of including these effects in the
calculations in order to quantitatively reproduce band gaps measured in experi-
ment. Furthermore, trends in the positions of high-lying core states are analyzed.
The calculated positions of the core states agree well with results from photo-
emission experiments.

Secondly, GW calculations for the three band insulators LaCrO3, LaMnO3, and
LaFeO3 are carried out. Results from DFT calculations employing the generalized-
gradient approximation with the PBE functional or results obtained from cal-
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culations using the hybrid-functional HSE are used as starting point to apply
many-body perturbation theory. The analysis of photo-emission spectra focuses
specifically on the position of the partially filled d states of the transition metals
yielding finite spin-magnetic moments at the transition-metal site of all three
compounds which order antiferromagnetically. Whereas the HSE result lead
to a general improvement of the PBE results for the spin-magnetic moments,
band gaps and photo-emission spectra are best described by the combination of
HSE+GW in the case of LaCrO3 and by PBE+GW calculations for LaMnO3 and
LaFeO3. For all three compounds, good quantitative agreement with experimen-
tal data is attained.

The last part of the thesis focuses on the question how accurately a Hubbard
model can reproduce the spectrum of a subspace of the full Hilbert space, as
this kind of model allows to gain insight into the electronic structure of materi-
als even if first-principles approaches are not applicable. A simple test system is
constructed to simulate partially filled valence states whose single-particle exci-
tation spectrum can be calculated exactly. These results are compared with the
description for a subspace of the full system obtained from a Hubbard model.
The model is designed to yield the best possible approximation for the exact
spectrum. The investigations reveal that the Hubbard model cannot reproduce
the spectrum exactly as soon as the wave functions of states inside the subspace
exhibit a finite overlap with wave functions of states not contained in the sub-
space. This limits the applicability of the Hubbard model to the description of
subspaces with a small degree of hybridization between states inside and outside
the subspace.
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ZUSAMMENFASSUNG

Seitdem Mitte der 1920er Jahre Materialien aus der Familie der Perowskite eine
Schlüsselrolle in der bahnbrechenden Arbeit Goldschmidts zur Materialsynthese
gespielt haben, tragen Übergangsmetalloxide mit Perowskitstruktur (kurz Pe-
rowskite) wiederholt und nachhaltig zu neuen Aktivitäten in der Grundlagen-
forschung sowie zur Entwicklung neuer Technologien bei. Da Perowskitestruk-
turen der stöchiometrischen Zusammensetzung ABO3 aus einer Vielzahl unter-
schiedlicher Kationen A und B synthetisiert werden können, existiert bereits eine
Vielzahl von Verbindungen mit unterschiedlichsten Eigenschaften. Diese Vielfalt
fordert und fördert die Anwendung und Weiterentwicklung von Theorien in der
Festkörperphysik zum besseren Verständnis der Eigenschaften dieser faszinieren-
den Materialklasse.

Ziel dieser Arbeit ist es, den Zusammenhang zwischen der strukturellen und
der chemischen Zusammensetzung der Perowskite auf der einen Seite und der
elektronischen Eigenschaften auf der anderen Seite zu untersuchen. Dazu wer-
den ab-initio-Berechnungen mit Methoden der Dichtefunktionaltheorie (DFT) in
Kombination mit der GW-Nährung (GWA) durchgeführt. Während DFT sich
als Theorie zur Beschreibung von Grundzustandseigenschaften von Materialen
durchsetzen konnte, hat sich die GWA, eine Methode der Vielteilchenstörungs-
theorie, als Königsweg zur Beschreibung angeregter Zustände in Festkörpern
etabliert. Für die Durchführung von Berechnungen in dieser Arbeit wird die
full-potential linearized augmented plane-wave-Methode (FLAPW) verwendet, die
besonders geeignet ist auch d- und f-Zustände in Übergangsmetallen und Selte-
nen Erden zu beschreiben, aus denen die Perowskite zusammengesetzt sind.

Die elektronischen Eigenschaften einer Reihe von prominenten Vertretern der
Perowskite einschließlich der Verbindungen BaTiO3, PbTiO3 und BaZrO3 in der
kubischen Kristallgitterphase werden im ersten Teil der Arbeit untersucht, um
Zusammenhänge zwischen Änderungen in der chemischen Zusammensetzung
und Änderungen im Spektrum angeregter Einteilchenzustände herzustellen. Des
Weiteren werden Veränderungen der elektronischen Struktur aufgrund von Git-
terverzerrungen bei Raumtemperatur analysiert. Der Vergleich von experimentell
bestimmten optischen Bandlücken mit den Quasiteilchenbandlücken legt nahe,
dass der Einfluss solcher Verzerrungen eine wichtige Rolle für eine akkurate
ab-initio-Beschreibung dieser Materialien spielt. Außerdem werden die Energien
von hoch liegenden Kernzuständen mittels der GWA berechnet, die ebenfalls gut
mit Messergebnissen übereinstimmen.

Im zweiten Teil der Arbeit werden Ergebnisse von GW-Rechnungen für die
Bandisolatoren LaCrO3, LaMnO3 und LaFeO3 präsentiert. Als Startpunkt für die
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Anwendung der GWA wurden sowohl DFT- Rechnungen getestet, in denen das
PBE-Funktional Verwendung fand, bei dem es sich um eine generalized-gradient

approximation handelt, als auch solche Rechnungen, in denen das Hybridfunk-
tional HSE verwendet wurde. Besonderes Augenmerk bei der Analyse von Zu-
standsdichten wird auf die Beiträge der teilweise gefüllten d-Schalen der Über-
gangsmetalle gelegt. Die beste Übereinstimmung von Zustandsdichten mit Pho-
toemissionsspektren wird aber nur im Fall von LaCrO3 durch eine Kombination
von HSE-Ergebnissen mit GW-Rechnungen erreicht. Für LaMnO3 und LaFeO3

liefern die auf den PBE-Ergebnissen basierenden GW-Rechnungen bessere Resul-
tate. Eine gute Übereinstimmung mit den experimentell gemessenen Bandlücken
kann so für alle drei Verbindungen erzielt werden.

Im letzten Teil wird untersucht, welche Voraussetzungen erfüllt sein müssen,
damit ein Hubbard-Modell das Vielteilchenspektrum eines Unterraums des ge-
samten Hilbert-Raums exakt beschreiben kann, da derartige Modelle häufig Ein-
blicke in die elektronische Struktur von Materialien erlauben, selbst wenn ab-

initio-Berechnungen nicht realisiert werden können. Hierzu wurde ein Test-
system entwickelt, mit dem sich ein Unterraum aus teilweise besetzten elek-
tronischen Zuständen in der Anwesenheit voll besetzter oder leerer Zustände
simulieren lässt. Die exakte Beschreibung des Vielteilchenspektrums dieses Un-
terraums durch den Teilchenzahlformalismus wird mit der Beschreibung durch
ein Hubbard-Modell verglichen, welches so konstruiert wurde, dass es die best-
mögliche Nährung des exakten Vielteilchenspektrums erzielt. Die Untersuchun-
gen zeigen, dass das exakte Spektrum nur dann reproduziert werden kann, wenn
es keine Überlagerung der Wellenfunktionen der Zustände im Unterraum mit
Wellenfunktionen der Zustände außerhalb des Unterraums gibt.
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CHAPTER 1

INTRODUCTION

The abundance of perovskite transition-metal oxides proves the perovskite struc-
ture to be one of the most versatile crystallographic hosts. Composed of formula
units ABO3, where A and B typically are cations of a simple and a transition
metal, respectively, the perovskite structure is highly stable against substitution
of either one of the cations thus allowing for a large number of combinations
of chemical elements. In addition, it is extremely tolerant to vacancy formation.
Compositions of cations at the A site with valence 1+ (Na, K), 2+ (Ca, Sr, Ba,
Pb) or 3+ (Fe, La, Gd) with B-site cations of valence 3+ (Cr, Mn, Fe), 4+ (Ti, Zr,
Hf) and 5+ (Nb, W) yield a huge array of phases with totally different functions
comprising insulating, semiconducting, conducting and superconducting behav-
ior as well as ferroelectricity, piezoelectricity and ferromagnetism. This diversity
of material properties makes perovskite transition-metal oxides a unique formal
laboratory to test models and theories pertaining to solid state chemistry and
physics. Moreover, they are true multifunctional high-tech materials for present
day and future technologies, which are used as catalysts, microwave dielectrics,
dielectric resonators and superconductors and have become key components in
capacitors, detectors, sensors and piezoelectric applications of all kinds [1, 2].

The first large scale industrial application of a perovskite transition-metal oxide,
BaTiO3, is closely tied to the history of a very different material, the phyllosilicate
mineral muscovite mica. Muscovite mica had become the most widely used
insulator in the production of capacitors during the first half of the 20th century.
The Allies, Germany, Russia and Japan had to import mica but supply lines
became increasingly tenuous with the beginning of World War II. Thus, it was a
key wartime goal for all these countries to find a substitute dielectric. Within a
three-years time period starting in 1942, American scientists Wainer and Salomon
[3, 4], Ogawa in Japan (see comment in [5]) as well as Wul and Goldman [6] in
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2 Introduction

Russia independently identified BaTiO3 as the most promising candidate having
the by far highest absorption coefficient κ. Shortly afterwards in 1945 and 1946,
von Hippel (USA) [7] as well as Wul and Goldman [8] demonstrated ferroelectric
switching in BaTiO3 ceramics thus identifying the origin of the extraordinary
value of κ. The discovery of ferroelectricity in BaTiO3 was extremely important,
as it illustrated for the first time that ferroelectricity could exist in simple oxide
materials.

BaTiO3 also became the first ceramic transducer material but it was soon
replaced by the solid solution of two other perovskite transition-metal oxides,
PbTiO3 and PbZrO3, whose exceptional ferroelectric properties were established
by Shiran et al. [9] as well as Jaffe and coworkers [10] during the 1950s. Since that
time, new discoveries involving members from the perovskite structural family
or its derivatives have repeatedly stimulated both new activities in fundamental
research and the development of technical applications. One of the most out-
standing examples is the discovery of high-Tc superconductivity in Ba-La-Cu-O
systems in 1986. These systems crystallizing in a layer-type perovskite-like phase
were first synthesized and characterized by Bednorz and Müller [11]. A mere
year later, they were awarded the Nobel prize for their important break-through in

the discovery of superconductivity in ceramic materials. However, in high Tc supercon-
ductors as in many perovskite transition-metal oxides with intriguing properties
the in-depth understanding of the underlying physical mechanisms is still far
from complete. Further theoretical investigations are required to better under-
stand the structure-composition-properties relations in complex quantum mate-
rials such as the perovskite transition-metal oxides, which can in turn help to
optimize present-day technologies and to exploit the potential of designing new
compositions for future applications. A huge step forward in gaining insight into
material properties from the electronic structure point of view became possible
due to the emergence of density-functional theory (DFT) [12].

Since the 1960s, first-principles calculations based on DFT have been estab-
lished as the method of choice to investigate the electronic ground-state prop-
erties of large material classes including insulators, semiconductors, half-metals,
simple metals, transition metals and rare-earths. The term first-principles or ab

initio, respectively, indicates that no further parameters enter the calculations
than those fixed by the basic assumptions and equations of quantum mechan-
ics and DFT. Therefore, the powerful albeit numerically simple approximations
within the framework of DFT such as the local-density approximation (LDA) and
the generalized gradient approximation (GGA) do not only allow to characterize
ground-state properties of existing compounds. These approaches can equally
describe newly-formed materials requiring, in principle, only the atomic num-
bers of the composing atoms as input. Hence, the wide applicability and the
predictive power of DFT-based schemes meet the demands of intelligent mate-
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rials design. Moreover, successful extensions of the theoretical framework also
allow to treat single-particle excitations by many-body perturbation theory based
on Green-function techniques.

The Green function is the canonical choice to describe single-particle excita-
tions, since it represents the probability amplitude of an excited electron or hole
traveling from one place in a solid to another in a given time period. In many-
body perturbation theory, the full single-particle Green function is determined
with the help of the self-energy operator Σ. In general, Σ is a a complex, non-
local and energy-dependent operator, whose real part describes the change in
energy of the excited particle due to interactions with other particles upon mov-
ing through the solid whereas the inverse of the imaginary part is proportional
to the lifetime of the excitation. The self-energy also enters the quasiparticle
equation, whose eigenvalues correspond to the energies of the single-particle
excitations. Solving the quasiparticle equation directly allows to determine the
excitation energies without the need to calculate the full Green function explic-
itly provided that Σ is known. However, the self-energy capturing all many-body
effects is a complicated quantity. It is very difficult to calculate even for model
systems like the electron gas. Hence, it has to be approximated in first-principles
calculations for real materials.

In the GW approximation (GWA) the self-energy is expressed in terms of the
Green function G describing a non-interacting particle and the screened interac-
tion W corresponding to the Coulomb interaction which is dynamically screened
due to secondary excitations of electron-hole pairs. For real materials, both G and
W can be readily calculated with solutions from DFT-based schemes. Since its
introduction in 1965 by Hedin [13], the GWA has been firmly established as the
gold standard in calculations for the single-particle excitation energies of simple
metals, semiconductors and insulators [14]. The treatment of transition metals
and transition-metal compounds within the GWA is challenging due to the large
numerical expense of GW calculations on the one hand and the high precision
necessary to obtain an accurate description of the localized transition-metal d
states on the other hand. Up to date, only few GW calculations of perovskite
transition-metal oxides have been reported [15, 16, 17].

In this work, results from state-of-the-art electronic structure calculations based
on DFT and the GWA for selected perovskite transition-metal oxides are pre-
sented. The DFT calculations were carried out with the FLEUR code [18], which
is based on the full-potential linearized augmented plane-wave (FLAPW) method
[19]. The latter is an all-electron scheme treating core and valence electrons ex-
plicitly. It is considered one of the most precise density-functional methods for
multicomponent materials, open structures and surfaces. The GW implementa-
tion SPEX [20] employs the mixed basis [21, 22] for the representation of the
screened interaction W and related quantities thus retaining the full accuracy of



4 Introduction

the linearized augmented plane-wave basis of the FLAPW method.

These techniques are applied first in a systematic study of a series of prototyp-
ical perovskite transition-metal oxides including BaTiO3, PbTiO3 and PbZrO3 to
investigate the relation between properties of the single-particle excitation spec-
tra and the composition of these compounds. Trends in the excitation energies
involving low-lying semicore states are analyzed as well. Furthermore, changes
in the electronic structure are discussed, which originate from distortions in the
perovskite crystal lattices. As these kind of distortions have been observed in
the room-temperature crystal phases of the majority of these compounds, re-
lated changes in their electronic structure are of particular importance when
comparing the calculated single-particle excitation spectra to data from optical
and photo-emission spectroscopies measured at room temperature.

Secondly, the ab initio approach is employed to investigate the electronic struc-
ture of the three compounds LaCrO3, LaMnO3 and LaFeO3. The partial filling of
the d shell of the transition-metal cation in these compounds leads to the forma-
tion of a finite spin-magnetic moment at the transition-metal site. Furthermore,
correlation between the d electrons is considered to have an important effect on
their electronic structure. However, correlation effects are often underestimated
in calculations employing the LDA or GGA. In addition, the self-interaction er-
ror inherent to these approximations becomes large for electrons occupying the
more localized transition-metal 3d or La 4f states. Hybrid functionals allow to
incorporate a certain degree of exact exchange into the DFT-based calculations
which removes the self-interaction error at least partially. Therefore, results from
calculations employing the hybrid functional HSE [23, 24] are compared with re-
sults obtained with the GGA functional PBE [25]. Furthermore, it is investigated,
which scheme yields a superior starting point to apply many-body perturbation
theory within the GWA. Photo-emission spectra and spin-magnetic moments
obtained from different levels of approximation are compared to results from
spectroscopic measurements.

For some materials, the GWA may not suffice to describe the effects of exchange
and correlation especially if the latter becomes strong. For example, the strongly
correlated materials LaTiO3 or LaVO3 exhibit a correlation-driven transition from
a metallic to an insulating phase at low temperature. As the description of this
phase transition is beyond the scope of perturbation theory one has to go beyond
the GWA to analyze the electronic structure of these kind of materials. One pos-
sibility is the construction of model Hamiltonians, which only describe a certain
part of the full Hilbert space explicitly including the interaction with the states
in the remaining parts of the Hilbert space implicitly via the parameters defin-
ing the model Hamiltonian. One of the most celebrated models is the Hubbard
model [26, 27, 28, 29, 30] which has been employed successfully in the context of
dynamical mean-field theory [31] combined with LDA to treat strongly correlated
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materials in recent years [32, 33, 34, 35].

For this work, a test system was designed to simulate electronic states located
close to the Fermi energy in the vicinity of fully occupied or empty states sim-
ilar to the partially filled 3d states in the compounds LaCrO3, LaMnO3 and
LaFeO3. The exact many-body solution of this system obtained with the help of
the particle-number formalism is used to explore changes in the single-particle
excitation spectrum upon tuning the interaction between the electrons as well
as the overlap between different states. In addition, a Hubbard-type model for
the system is constructed which only treats the states close to the Fermi energy
explicitly. The spectra obtained from this model are compared with the exact
solution to identify possible limitations of the Hubbard model. The analysis may
also yield indications for the applicability of the Hubbard model in simulations
of the electronic structure of real materials due to the generality of the approach.

The thesis is organized as follows. The second chapter briefly recites some
fundamental aspects of DFT, the Green-function technique and many-body per-
turbation theory. Various approximations based on these theories, which are
used throughout this work, such as the GGA and hybrid functionals as well
as the GWA are introduced. The FLAPW method and its implementation in
FLEUR and SPEX are discussed in chapter 3. Chapter 4 gives a short intro-
duction to the perovskite structural family. The first part describes the crystal
phases of the compounds investigated in this work. In the second part, empiri-
cal and semi-empirical approaches, i.e. crystal field and molecular orbital theory,
are applied to gain qualitative insight into the electronic structure of perovskite
transition-metal oxides. In chapter 5, results from GW calculations for selected
perovskite transition-metal oxides are presented and in chapter 6 the electronic
structure of LaCrO3, LaMnO3 and LaFeO3 as obtained from first-principles cal-
culations is discussed. Model calculations beyond the GWA analyzing the range
of applicability of the Hubbard model are the topic of chapter 7. The thesis is
concluded in chapter 8.





CHAPTER 2

THEORY OF ELECTRONIC STRUCTURE

CALCULATIONS FROM FIRST PRINCIPLES

This chapter provides insight into the theoretical concepts behind the methods,
which are used to carry out electronic structure calculations from first princi-
ples in this work. First, the many-body Schrödinger equation is presented. This
is the starting point for all further theoretical considerations. Within the Born-
Oppenheimer approximation [36] the atomic and electronic degrees of freedom
decouple and a Schrödinger equation of a system comprising N electrons can be
obtained. Since it cannot be solved exactly the Kohn-Sham [37] and the general-
ized Kohn-Sham scheme [38] within density-functional theory are introduced in
section two. These schemes make use of effective single-particle equations which
yield the exact ground-state density of the N-electron system if they are solved
self-consistently. This allows to calculate observables of the N-electron system
which can be expressed as functionals of the density such as the ground-state to-
tal energy without the knowledge of the full many-body wave function. Whereas
DFT-based approaches are designed to investigate the ground-state properties of
materials, Green-function based techniques allow to describe single-particle exci-
tation spectra. The concept of the Green function together with the GW approxi-
mation (GWA) [13] obtained from many-body perturbation theory is introduced
in the third part of this chapter. Last but not least, it is demonstrated how the
Kohn-Sham or generalized Kohn-Sham schemes combined with energy correc-
tions obtained from the self-energy calculated within the GWA can be used to
describe the excitation spectra of real materials.

7
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2.1. The many-body problem

A crystal containing N electrons and M atomic nuclei is described by the many-
body Schrödinger equation1

HΨ(r1, . . . , rN; R1, . . . , RM) = EΨ(r1, . . . , rN; R1, . . . , RM) , (2.1)

where the total energy E is the eigenvalue of the many-body wave function
Ψ(r1, . . . , rN; R1, . . . , RM) and the vectors ri and Ri denote the positions of the
electrons and nuclei in space. The Hamiltonian H in eq. (2.1) consists of five
terms

H = Te + TI + VII + Vext + Vee

= −
1
2

N∑

i

∇2
ri

−

M∑

i

1
2Mi

∇2
Ri

+
1
2

M∑

i,j
i6=j

ZiZj

|Ri − Rj|

+

N∑

i

vext(ri) +
1
2

N∑

i,j
i6=j

v(ri, rj) ,

(2.2)

where the first and second term, Te and TI, represent the kinetic energy of the
electrons and the atomic nuclei with mass Mi. The third term VII is the con-
tribution resulting from the interaction between the atomic nuclei, where Zi

represents the atomic numbers. The term Vext is the energy generated by the
external potential vext(ri) due to the positively charged atomic nuclei acting on
the electrons in the solid

Vext =

N∑

i

vext(ri) = −

N∑

i

M∑

j

Zj

|ri − Rj|
. (2.3)

The last term Vee comprising the Coulomb potential v(ri, rj) originates from the
electrostatic repulsion between pairs of electrons

Vee =
1
2

N∑

i,j
i6=j

v(ri, rj) =
1
2

N∑

i,j
i6=j

1
|rj − ri|

. (2.4)

Here and throughout the whole thesis atomic units are used:  h = m = e2 = 1.

Because of the two-particle terms denoted by VII and Vee, equation (2.1) cannot
be solved analytically. Furthermore, numerical solutions are not feasible for sys-
tems containing more than a few electrons and nuclei, because the computational

1For simplicity, relativistic effects in the description of the many-body problem are omitted, be-
cause they only have a small influence on the valence electronic structure. Exceptions to this rule
especially in connection with the spin-orbit interaction are discussed in section 2.2.2.
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effort scales exponentially with the number of particles. For a description of a
solid from first principles it is therefore inevitable to introduce approximations
to solve the many-body Schrödinger equation (2.1).

One commonly applied simplification when focusing on the electronic degrees
of freedom alone is the Born-Oppenheimer approximation [36]. It makes use
of the fact that the nucleus’ mass is higher than the electron’s mass by three to
four orders of magnitude. Therefore, the electrons in a solid can adapt almost
instantaneously to changes in the atomic positions. Consequently, the electronic
system can be described by the N-electron Schrödinger equation

Heψ(r1, . . . , rN; {Ri}) = E({Ri})ψ(r1, . . . , rN; {Ri}) (2.5)

with the N-electron wave function ψ(r1, . . . , rN; {Ri}) and the corresponding ei-
genenergies E({Ri}). Here, the positions Ri of the nuclei only enter equation (2.5)
as parameters because the Hamiltonian He consists of the three terms

He = Te + Vee + Vext , (2.6)

where the positions Ri only appear in the last term. All calculations discussed in
this thesis are ultimately based on the many-electron Schrödinger equation (2.5).

For the sake of completeness it should be mentioned here that it is equally
possible to obtain an equation describing the motion of the nuclei in a solid
within the Born-Oppenheimer approximation. The assumption that the degrees
of freedom of the electrons and nuclei decouple allows to decompose the many-
body wave function in eq. (2.1) into a product of the N-electron wave function
and a wave function χ(R1, . . . , RM) for the nuclei

Ψ(r1, . . . , rN; R1, . . . , RM) = ψ(r1, . . . , rN; {Ri}) ·χ(R1, . . . , RM) . (2.7)

Inserting this ansatz for the many-body wave function into eq (2.1) and integrat-
ing out the electronic degrees of freedom yields an equation of motion for the
nuclei. The electronic system only provides the potential that acts on the nuclei.
The assumption that this potential is quadratic with respects to the positions of
the atomic nuclei leads to an equation of motion of the same form than that of
the harmonic oscillator. The solutions describe the vibronic eigenstates of the
crystal. Let’s now return to the discussion of the many-electron Schrödinger
equation (2.5).

Despite the simplifications of the Born-Oppenheimer approximation, equation
(2.5) can also not be solved analytically because it still contains a two-particle
term stemming from the Coulomb interaction v(ri, rj) between the electrons. Un-
fortunately, numerical solutions for solids typically containing 1023 electrons are
also not feasible, which can be illustrated with the following example: a single
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iron atom contains N = 26 electrons. For simplicity the spin-degree of free-
dom of the electrons is neglected here. Hence, the N-electron wave function
ψI(r1, . . . , rN; {Ri}) depends on 26×3 coordinates. Choosing a very crude approx-
imation by specifying the wave function on a hyper-cubic grid with 10 points
per variable would yield 1078 numbers to store and process. Even if each hy-
drogen atom in our galaxy could store one bit of information, there is simply
not enough storage available to save all information contained in this N-electron
wave function.

This thesis aims at investigating the electronic structure and excitation spec-
tra of solids. Fortunately, these physical observables can be calculated with-
out the knowledge of the full many-electron eigenstates solving eq. (2.5). The
Kohn-Sham formalism and the generalized Kohn-Sham scheme within density-
functional theory – though originally designed to obtain the ground-state energy
of a many-electron system – also provide a good estimate for excitation spectra of
many materials. These formalisms and their applicability in studying electronic
excitations will be discussed in the next part of this chapter.

2.2. Density-functional theory

The theoretical foundation of density-functional theory (DFT) was laid by Pierre
C. Hohenberg and Walter Kohn in 1964 [12] and is summarized in the two
Hohenberg-Kohn theorems.

Theorem 1. Let n0(r) be the single-particle density of a non-degenerate ground state of

an interacting electron system in an external potential vext(r). Then vext(r) is (to within

an additive constant) a unique functional of n0(r).

The external potential in turn determines the Hamiltonian in eq. (2.5). Since
the N-electron eigenstates ψ of the Hamiltonian can be represented as functionals
of the external potential, the eigenstates also become functionals of the ground-
state density via the first Hohenberg-Kohn theorem. Consequently, any physical
observable computed as expectation value of the many-electron eigenstates can
be regarded as functional of the single-particle ground-state density. In particular,
the ground-state total energy of the electronic system can be written as

E[n0] = 〈Ψ[n0]| T + Vee + Vext |Ψ[n0]〉 = F[n0] +

∫

d3r vext(r)n0(r) . (2.8)

Here, the universal functional F[n] was introduced, which is universal in the sense
that it is identical for all systems with the same number of electrons regardless
of the external potential. Inserting the true single-particle ground-state density
of the N-electron system into eq. (2.8) yields the ground-state total energy. This
is reflected in the second Hohenberg-Kohn theorem.
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Theorem 2. (variational principle) The total energy functional E[n] of the N-electron

system is minimized by the ground-state electron density if the trial densities n(r) are

restricted by the conditions n(r) > 0 and
∫
n(r)d3r = N

δ

δn

[

E[n] − ǫ

(∫

d3r n(r) −N

)]∣

∣

∣

∣

n=n0

= 0 , (2.9)

where the Lagrange multiplier ǫ ensures particle conservation.

Hence, the ground-state density is sufficient to determine the total energy of
an electronic system. However, it cannot be obtained directly from the second
Hohenberg-Kohn theorem as long as an explicit expression for the functional F[n]

is unknown. In practice, it turns out that F[n] cannot be exactly determined for
real materials. Fortunately, very efficient approximations for F[n] can be given
within the Kohn-Sham and the generalized Kohn-Sham schemes. Before these
schemes are introduced in more detail in the following sections, a convenient
extension of the above formalism for the description of spin-polarized systems
with collinear orientation of the spins should be discussed here briefly.

Spin-DFT was first introduced by von Barth and Hedin [39]. It makes use
of the fact that for collinear spin orientation a separate eigenvalue problem for
each spin direction can be formulated. The full single-particle density is then
obtained as a sum of the densities of the electrons with spin up and spin down
orientation. Furthermore, magnetic moments can be calculated as differences
of spin up and spin down densities. The calculations for magnetic systems,
presented in chapters later on, are based on the spin DFT. However, further
discussions in this chapter are only based on DFT omitting the spin degree of
freedom, because all theoretical aspects of DFT playing an important role in this
work can readily be derived without explicitly taking the electrons’ spin into
account.

2.2.1. The Kohn-Sham (KS) formalism

The question of how an explicit expression for the universal functional F[n] in
eq. (2.8) can be derived was addressed by Kohn and Sham in 1965 [37]. They sug-
gested to replace the system of N interacting electrons by N non-interacting elec-
trons in an artificial, external potential. This potential is to be constructed in such
a way that the single-particle density of the non-interacting system equals the
density of the interacting system. The N-electron eigenstates of a non-interacting
electron system can be represented by single Slater determinants Φ of suitable
single-particle wave functions ϕi(r). These Slater determinants are used to eval-
uate the expectation value of the universal functional under the constraint that
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the determinants yield the single-particle density of the interacting system

minΦ→n〈Φ| T + Vee |Φ〉 = TKS[n] + minΦ→n〈Φ| Vee |Φ〉 . (2.10)

The expectation value TKS[n] of the kinetic energy can be calculated readily from
the single-particle functions ϕi(r). Therefore, Kohn and Sham suggested the
following form for the universal functional

F[n] ≡ TKS[n] + UH[n] + Exc[n] , (2.11)

where the second term on the right hand side is the Hartree energy

UH[n] =
1
2

∫∫

d3r d3r ′
n(r)n(r ′)

|r − r ′|
. (2.12)

The third term is called exchange-correlation energy. It accounts for all exchange
and correlation effects on the one hand and for the approximation made by re-
placing the kinetic energy of the interacting system by that of the non-interacting
one on the other. Inserting expression (2.11) for the universal functional F[n] into
eq. (2.8) for the total energy yields

E[n] = TKS[n] + UH[n] + Exc[n] +

∫

d3r vext(r)n(r) . (2.13)

Applying the variational principle from the second Hohenberg-Kohn theorem to
that equation in turn leads to

δTKS[n]

δn(r)
+

∫

d3r ′
n(r ′)

|r − r ′|
+

δExc

δn(r)
+ vext(r) − ǫ = 0 . (2.14)

This equation is formally equivalent to that obtained for a system of non-inter-
acting electrons, the Kohn-Sham (KS) system, with the effective potential given
by

VKS(r) = vext(r) +

∫

d3r ′
n(r ′)

|r − r ′|
+ vxc(r) (2.15)

where the last term, the exchange-correlation potential vxc(r), is obtained as the
functional derivative of the exchange-correlation energy

vxc(r) =
δExc

δn(r)
. (2.16)

Consequently, the ground-state density n0(r) of the interacting system is found
by solving the single-particle KS equations

[

−
1
2
∇2

r + VKS(r)

]

ϕi(r) = ǫiϕi(r) . (2.17)
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The density of the KS electrons is given by

n(r) =

occ∑

i

|ϕi(r)|
2 . (2.18)

Since the density enters in the construction of the potential VKS(r), the eqs. (2.17)
and (2.18) have to be solved self-consistently. The resulting density equals the
ground-state density of the interacting system by construction and consequently
yields the true ground-state total energy of the interacting N-electron system
when inserted into eq. (2.13).

2.2.2. The KS-Dirac equation and spin-orbit coupling

Up to now, relativistic effects were not taken into account in the description of
the N-electron system of a solid. This is justified as long as the velocity of the
electrons is much smaller than the speed of light such that relativistic effects
have a negligible effect on the observables to be calculated. However, both core
and valence electrons have finite probability amplitudes near the nucleus, where
the kinetic energy is large. This kinetic energy enhancement becomes more
significant for heavier elements and compounds. Additionally, only relativistic
effects, in particular the spin-orbit coupling (SOC), introduce a link between
spatial and spin coordinates. Thus, information about the orientation of spins
relative to the lattice can only be gained if relativity is taken into account. In
this work, the effect of SOC on the energy spectrum of the electronic system of
a solid will be investigated in the context of density-functional (DF) calculations.
Therefore, the origin of SOC and its further treatment within DF calculations is
outlined in this section.

To treat relativistic effects within DFT in the context of the KS formalism, the
KS equation (2.17) is replaced by the single-particle KS-Dirac equation [40]

[

cα ·p + (β− 14)mc
2 + 14 V

KS(r)
]

Ψ(r) = ǫΨ(r) , (2.19)

where p = −i∇, m is the mass of the electron and c the speed of light. The
matrices α and β are defined as

α =

((

02 σx

σx 02

)

,

(

02 σy

σy 02

)

,

(

02 σz

σz 02

))T

(2.20)

and

β =

(

12 02

02 −12

)

, (2.21)
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where σx,σy,σz are the Pauli matrices, 12 denotes a (2 × 2) unit matrix and 02

is a (2 × 2) matrix containing only zeros. The potential VKS(r) is the effective
potential of the non-relativistic KS equation defined in (2.15). The eigenfunctions
Ψ(r) of (2.19) are four-component vectors usually written as

Ψ(r) =

(

Φ(r)

χ(r)

)

, (2.22)

and the two-component vectors Φ(r) and χ(r) are called large and small com-
ponent of the wave function. Inserted into eq. (2.19), two differential equations
coupling the large and small component are obtained

cσ ·p χ(r) = 12(ǫ− VKS(r))Φ(r) (2.23)

cσ ·p Φ(r) = 12(ǫ− VKS(r) + 2mc2)χ(r) (2.24)

with σ = (σx,σy,σz)
T . Here, the two equations will be used to further investigate

the influence of relativistic effects on the valence electrons of a solid.

Since the probability amplitude of a valence electron near the nucleus is small,
relativistic effects caused by the kinetic energy enhancement are small, too. In
particular, its rest energy mc2 is much larger than its kinetic and potential ener-
gies. Consequently, the small component of the four-component wave function
Ψ(r) of a valence electron is indeed smaller than its large component, since mc2

only appears in (2.24) and not in (2.23). Hence, eqs. (2.24) and (2.23) can be
solved approximately by eliminating the small component. Applying a Foldy-
Wouthuysen transformation [41] to eqs. (2.24) and (2.23) results in a new form,
in which the off-diagonal elements of the Hamiltonian are so small that the
leading order estimate of the small component is sufficient to get an effective
Hamiltonian for the large component up to order p4

m3c2 . The derivation is lengthy
but well documented in the literature (see, e.g., reference [42]). Here, only the
resulting differential equation for the large component is presented

HΦ(r) = ǫΦ(r) . (2.25)

The Hamiltonian H can be divided into three parts

H = HKS + HSC + HSOC . (2.26)

The first term HKS corresponds the Hamiltonian of the non-relativistic KS equa-
tion (2.17). The second term is given by

HSC = −
p4

8m3c2
+

∇2VKS(r)

8m2c2
, (2.27)

where the index SC indicates that this term enters in the scalar-relativistic approx-
imation [43] to eq. (2.25) discussed in some more detail in section 3.2. The first
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term in HSC called mass-velocity term describes the variation of the mass with ve-
locity. The second term is the Darwin term. It takes into account the non-locality
of the Coulomb interaction between the electron and the nuclei, which originates
from quantum fluctuations in the position of the electron (Zitterbewegung).

The term HSOC in (2.26) describes the spin-orbit coupling given by

HSOC =
1

4m2c2
σ · [∇VKS(r) × p] . (2.28)

The most important contribution to the spin-orbit coupling term comes from the
strong nuclear field in the vicinity of the nucleus, where non-spherical parts of
the potential VKS(r) are small compared to the spherical contribution. Neglect-
ing the non-spherical parts in (2.28) leads to a spin-orbit coupling term of the
following from

H̃SOC =
1

2m2c2

1
r

dVKS(r)

dr
L ·S , (2.29)

with the angular momentum L = (r × p) and S = σ/2. Approximating HSOC by
(2.29) illustrates that SOC couples the spin and the orbital degrees of freedom of
the electron. Furthermore, SOC will have no influence on electrons occupying
s orbitals, since their orbital momentum is zero. The SOC is expected to be
strongest for p orbitals followed by d and finally f orbitals, because p wave
functions start as ϕ(r) ∼ r while d and f behave like r2 and r3, respectively. To
illustrate why SOC is more significant for heavier elements, the spherical part
of the potential close to the nucleus is approximated by the core potential. This
yields (1/r)dV/dr ∼ −Z/r3, where Z is the atomic number. Hence, the SOC is
stronger in materials containing elements with large atomic numbers.

In this work, calculations including SOC are carried out in two steps. First,
eq. (2.25) is solved approximately using the scalar-relativistic approximation [43].
Then, SOC in the form of (2.29) is introduced as a perturbation to the system
described by HKS + HSC and the resulting new eigenvalue problem is solved
within second variation [43, 44]. Some details about the implementation of the
procedure used in this work can be found in section 3.2.

Any calculations based on the KS formalism with or without relativistic cor-
rections require an explicit expression for the total-energy functional, eq. (2.13).
Unfortunately, the exchange-correlation energy Exc cannot be determined exactly
for real materials and has to be approximated. Some of the most common approx-
imations will be introduced in the next section. For simplicity, the non-relativistic
form of the KS equation, eq. (2.17), will be used in the further discussion in this
chapter.
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2.2.3. Local-density (LDA) and generalized-gradient (GGA)

approximation

In order to solve the KS equations (2.17) the effective potential VKS(r) has to be
determined. Unfortunately, the exact exchange-correlation energy Exc and exact
exchange-correlation potential, eq. (2.16), for real solids are unknown. Therefore,
one has to find approximate expressions for vxc(r) in VKS(r). Nevertheless, the
KS formalism has become the standard workhorse of modern materials science.
One reason is that all terms in (2.13) except Exc can be calculated explicitly, and
they already yield the by far largest contributions to the total energy for a huge
variety of electronic systems in solids. On the other hand, even seemingly simple
approximate expressions for the exchange-correlation energy yield both accurate
and reliable results.

One of the oldest and still widely used expressions for Exc is given by the
local-density approximation (LDA), which was already introduced in the work
by Kohn and Sham [37]. In the LDA it is assumed that each electron locally
has the same exchange and correlation energy ǫxc(n) as an electron in a uniform
electron gas of the same density n. Whereas the exchange energy of the electron
gas can be calculated exactly within the Hartree-Fock method [45], the remain-
ing correlation contribution is parametrized by a fit to quantum Monte-Carlo
calculations [46]. Finally, the exchange-correlation energy in LDA has the form

ELDA
xc [n] =

∫

d3r n(r)ǫxc(n(r)) . (2.30)

Since ELDA
xc [n] is exact for an electron gas of density n, it yields a good approxi-

mation for the exchange-correlation energy of many systems with slowly varying
density.

For systems exhibiting larger inhomogeneities in the density distribution, it ap-
pears natural to introduce functions f of the density and its derivative. This ap-
proach was realized in the generalized gradient approximation (GGA) by Perdew
and Wang [47]. It yields exchange-correlation energies of the general form

EGGA
xc [n] =

∫

d3r f(n(r),∇n(r)) . (2.31)

Whereas ǫxc in the LDA is derived directly from the electron gas, the choice of
the function f in the GGA is not unique. Over the last decades, a large number of
GGA exchange-correlation functionals have been suggested. The functional used
throughout this work is called PBE named after the authors Perdew, Burke, and
Ernzerhof, who first proposed it [25]. This functional was chosen for two reasons:
(1) among the most frequently used GGA functionals, the PBE functional yields
the most accurate and reliable results in most benchmark calculations [48, 49]
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and (2) to stay consistent with the treatment of Exc in the application of the
hybrid functional HSE [23, 24] used for calculations based on the generalized
Kohn-Sham scheme.

After the LDA and GGA have been introduced as practical approaches to ac-
tually calculate the ground-state total energy, the question remains, how LDA
and GGA can be of any use to determine excitation spectra of solids. In practice,
the eigenvalues ǫi solving the KS equations (2.17) are interpreted as excitation
energies of the electrons in the interacting N-electron system. However, there
is neither a mathematical nor a physical justification for this interpretation of
the KS eigenvalues. Only the eigenvalue corresponding to the highest occupied
KS state is identical to a physical observable, namely the ionization energy [50].
However, the qualitative agreement of the KS eigenspectrum with photoemis-
sion spectra mostly for sp-electron systems of real materials has led to a general
acceptance of this interpretation.

Despite the qualitative agreement of the predicted excitation spectra with ex-
periment, discrepancies can already be observed for some sp systems. These
become larger in d and f system. In addition, there are systematic deviations
between LDA and GGA results and experimental observations:

• already in simple semiconductors and insulators, such as Si, GaAs, C, and
MgO, the band gaps are systematically underestimated often by as much
as 50 % [51],

• in many f-electron systems, the positions of the f-states is in strong dis-
agreement with experiment, e.g., for Ce [52] and GdN [53], and

• in strongly correlated materials the band gaps are much too small, e.g., in
antiferromagnetic NiO and MnO [54], and systems in the Mott-insulating
phase are erroneously predicted to be metallic, for example paramagnetic
NiO and MnO [54].

The second and third discrepancy originates from the underestimation of ex-
change and correlation effects in ELDA

xc and EGGA
xc on the one hand and the self-

interaction error inherent to these approximation on the other hand. The self-
interaction error arises from a spurious interaction of an electron with itself. It
was first defined for the case of a one-electron systems [55] and later generalized
to the case of N electrons [56]. From the further discussion, it will be seen, how
the use of hybrid functionals within the generalized Kohn-Sham (gKS) formal-
ism can partly correct the self-interaction error. Before the gKS is introduced,
the underestimation of semiconductor band gaps in LDA and GGA is further
investigated here.



18 2. Theory of electronic structure calculations from first principles

2.2.4. The band-gap problem of LDA and GGA

The fundamental band gaps Egap of semiconductors can be obtained from energy
differences of the total ground-state energies of an N-electron and N±1-electron
system

Egap = (E(N− 1) − E(N)) − (E(N) − E(N+ 1)) , (2.32)

where the first term in brackets corresponds to the ionization energy and the
second to the electron affinity of the system under consideration. Since DFT is a
theory to calculate ground-state total energies for a given number of electrons the
fundamental band gaps are, in principle, accessible by DFT. Therefore, the dis-
crepancies between experimentally observed and LDA or GGA band gaps must
be attributed to the approximate treatment of the exchange-correlation energy
in LDA and GGA. To gain a more detailed understanding of the origin of these
discrepancies, it is convenient to rewrite the above expression in the following
manner

Egap = −
E(N− 1) − E(N)

N− 1 −N︸ ︷︷ ︸
→ −µ(N−0)

+
E(N+ 1) − E(N)

N+ 1 −N︸ ︷︷ ︸
→ µ(N+0)

, (2.33)

For systems with N ≫ 1 electrons the two fractions can be replaced by the
chemical potential defined by µ(N) =

δE(N)

δN
, where ±0 in µ(N ± 0) denotes the

derivative from the right and left, respectively. The chemical potential can be
identified with the Lagrange multiplier ǫ introduced in the second Hohenberg-
Kohn theorem

µ(N) =
δE(N)

δN
=

∫

d3r
δE[n]

δn(r)

∣

∣

∣

n=n0,N
︸ ︷︷ ︸

ǫ(N)

δn(r)

δN
= ǫ(N) . (2.34)

Hence, the band gap results from the discontinuity of the functional derivatives
of the total energy with respect to the density

Egap =
δE[n]

δn(r)

∣

∣

∣

n=n0,N+0
−
δE[n]

δn(r)

∣

∣

∣

n=n0,N−0
. (2.35)

For a system containing N≫ 1 electrons, the change in the single-particle density
itself upon adding or subtracting another electron will be infinitesimally small.
Thus, it can be seen from the expression for the total energy

E[n] = TKS[n] +
1
2

∫∫

d3rd3r ′
n(r)n(r ′)

|r − r ′|
+

∫

d3r vext(r)n(r) + Exc[n] (2.36)

that the energy difference of the derivatives of E in eq. (2.35) must arise from
a discontinuity in the kinetic energy TKS[n] and the exchange-correlation energy
Exc[n]
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Applying the above argumentation to the KS system, it can be seen that the
KS band gap amounts to

EKS
gap =

δTKS[n]

δn(r)

∣

∣

∣

n=n0,N+0
−
δTKS[n]

δn(r)

∣

∣

∣

n=n0,N−0
= ǫKS

N+1 − ǫKS
N (2.37)

due to the specific form of the total energy functional of the KS system

EKS[n] = TKS[n] +

∫

d3r VKS(r)n(r) . (2.38)

Combining eqs. (2.35) to (2.38), the true band gap of the N-electron system can
be expressed by

Egap = ǫKS
N+1 − ǫKS

N + ∆xc , (2.39)

where the exchange-correlation discontinuity ∆xc was introduced. It represents
the discontinuity of the derivative of the exchange-correlation energy with re-
spect to the density n. Equation (2.39) yields the exact band gap of the interacting
N-electron system obtained from KS-DFT.

In practice, equation (2.37) is used to calculate the band gap of the N-electron
system. This will only yield a good approximation for the true band gap if ∆xc

is small, which is not to be expected for arbitrary electronic systems. However,
in DFT calculations employing the LDA or GGA, the attempt to improve the
resulting KS band gap by applying equation (2.39) will only reproduce the KS
band gap as

∆LDA
xc = ∆GGA

xc = 0 . (2.40)

This is a direct consequence of the construction of the LDA and GGA exchange-
correlation energy as smooth, local functionals of the density. Hence, due to
the approximations made in the construction of the exchange-correlation energy
functional in LDA and GGA, EKS

gap will always differ from the true band gaps for
systems, where the exact ∆xc is appreciable.

2.2.5. The generalized Kohn-Sham scheme

One of the advantages of the generalized Kohn-Sham (gKS) formalism over the
conventional KS scheme is explained best by locking at yet another theory of first
principle electronic-structure calculations. In Hartree-Fock (HF) theory, the many-
electron wave functions in (2.5) are approximated by single Slater determinants
Φ of one-particle wave functions ϕi(r) obtained from the self-consistent solution
of the HF equations2. The total energy of the N-electron system in HF theory is

2For convenience, the same symbols for the Slater determinant and the wave functions as in the
discussion of the KS formalism are used although the single-particle eigenstates of the HF and
KS equation are, in general, not the same.
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approximated by the expectation value of the Hamiltonian (2.6) with respect to
Φ. Hence, the expectation value of the electron-electron interaction Vee, eq. (2.4),
decomposes into two terms: the Hartree energy introduced in eq. (2.12) and the
exact exchange energy Ex

〈Φ| Vee |Φ〉 = UH + Ex . (2.41)

In terms of the single-particle wave functions ϕi(r), the exact exchange energy
is given by

Ex ≡ −
1
2

occ∑

i,j

∫∫

d3r d3r ′
ϕ∗

i (r)ϕj(r)ϕ
∗
j (r

′)ϕi(r
′)

|r − r ′|
. (2.42)

The crucial point is that the terms diagonal in the wave-function indices i, j in
UH and Ex exactly cancel each other in eq. (2.41). Therefore, the HF total energy
is self-interaction free in contrast to the total energy obtained from the LDA or
GGA within the KS scheme. On the other hand, the Hartree energy UH is fully
included in the KS-derived expression for the total energy, eq. (2.13). Hence, the
approximate treatment of the exchange energy in the KS formalism leads to the
self-interaction error in the LDA and GGA.

One major draw back of the HF theory is the large overestimation of band
gaps compared to experiment because of the neglect of correlation effects. In
particular, the bare Coulomb interaction enters in (2.42) whereas in solids the
Coulomb interaction is screened by the charges of the other electrons and nuclei.
For metals the lack of metallic screening in HF theory even leads to an unphysi-
cal, logarithmic singularity in the derivative of the single-particle spectrum with
respect to the wave vector k at the Fermi level. In the KS scheme, the exchange-
correlation potential accounts for correlation effects but the band gaps obtained
from the most commonly used approximations LDA and GGA are typically too
small for the reasons discussed in the previous section. The true band gaps thus
lie inbetween the HF and the LDA or GGA results. Therefore, Seidl et al. [38]
introduced the generalized Kohn-Sham (gKS) scheme which allows to take frac-
tions of the exact exchange energy Ex explicitly into account in calculations of
the total ground-state energy of a N-electron system within DFT. Thus, one can
expect to obtain better estimates for band gaps. Furthermore, the self-interaction
error inherent to the LDA and GGA can be removed at least partially in the gKS
formalism.

To construct the gKS scheme the interacting N-electron system is again re-
placed by a non-interacting one with its wave functions represented by single
Slater determinants of single-particle wave functions ϕi(r) that are chosen under
the constraint to reproduce the single-particle density of the interacting system.
In the same manner as in the KS scheme, the expectation value of the kinetic
energy operator defined in (2.2) can be evaluated with respect to these Slater
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determinants Φ. The resulting expression is denoted from now an as

TgKS ≡ minΦ→n〈Φ|T |Φ〉 . (2.43)

In contrast to the KS scheme, the remaining part of the universal functional F[n]

is separated in the following way

F[n] = TgKS[n] + aminΦ→nEx{ϕi[n]} + aUH[n]
︸ ︷︷ ︸

≡S[n]

+ (1 − a)UH[n] + EgKS
xc [n]

= TgKS[n] + UH[n] + aminΦ→nEx{ϕi[n]} + EgKS
xc [n] ,

(2.44)

where the dimensionless parameter a ∈ [0, . . . , 1] can be used to admix contribu-
tions from the exact exchange energy. For a = 0 the separation of the universal
functional of the KS formalism is recovered. For a = 1 the resulting expres-
sion for F[n] yields a Hartree-Fock-type total energy when inserted into equation
(2.13). The exchange-correlation energy EgKS

xc plays the same role as EKS
xc in the

KS scheme. The functional S was introduced to simplify the notation in the
following.

Following the same procedure as in the derivation of the KS equations (2.17),
equation (2.44) is inserted into the expression for the total ground-state energy,
eq. (2.13), and the variational principle is applied

δS

δn(r)
+ (1 − a)

∫

d3r ′
n(r ′)

|r − r ′|
+
δE

gKS
xc

δn(r)
+ vext(r) − ǫ = 0 . (2.45)

Introducing the gKS potential as

VgKS(r) = vext(r) +

∫

d3r ′
n(r ′)

|r − r ′|
+ VgKS

xc (r) (2.46)

with

VgKS
xc (r) =

δE
gKS
xc

δn(r)
(2.47)

leads to the single-particle equations of the generalized Kohn-Sham scheme

[

−
1
2
∇2 + VgKS(r)

]

ϕi(r) − a
∑

j

∫

d3r ′
ϕ∗

j (r
′)ϕi(r

′)

|r − r ′|
ϕj(r) = ǫiϕi(r) . (2.48)

Equation (2.48) has to be solved self-consistently in the single-particle density
n(r) obtained from eq. (2.18).

For practical applications in electronic structure calculations it is necessary to
find an explicit expression for EgKS

xc . Furthermore, the free parameter a has to be
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chosen appropriately. Both aspects are addressed in the construction of hybrid
functionals Ehyb that can be formally introduced as the sum of the last two terms
in eq. (2.44)

Ehyb[{ϕi}] = aminΦ→nEx[{ϕi}] + EgKS
xc [n] . (2.49)

Since the choice of a as well as the approximation to EgKS
xc are not unique, there

are numerous ways to construct an explicit expression for Ehyb. In this work, the
HSE functional [23, 24] was used in all calculations employing the gKS formalism.
This hybrid functional is based on the PBE0 functional, which was first motivated
by a heuristic approximation to equation (2.49) by Becke [57]

Ehyb ≈ EDFT
xc + a (Ex − EDFT

x ) . (2.50)

Becke suggested this specific form for Ehyb based on the analysis of the adiabatic
connection formula [58, 59, 60] and the observed over-binding tendencies of local
density functionals in the description of molecular bonds. In equation (2.50), EDFT

x

and EDFT
xc are the exchange and exchange-correlation energy as defined within

the conventional KS scheme, respectively. Perdew, Ernzerhof, and Burke [61]
rederived eq. (2.50) from a simple model expression for the adiabatic connection
formula and furthermore estimated a to be 1/4 by examining the convergence of
the Møller-Plesset perturbation expansion [62] in 4th order for the total energy
of an N-electron system. Adamo and Barone [63] suggested to set EKS

x = EPBE
x

and EKS
xc = EPBE

xc in eq. (2.50) due to the numerous successful applications of PBE
within the conventional KS scheme. They named the resulting hybrid functional
PBE0, where "0" indicates that EPBE0

hyp contains no further parameters than those
necessary to determine EPBE

x and EPBE
xc .

In a case study of 20 materials comprising ionic, semiconducting and metal-
lic systems, Paier et al. [51] demonstrated that equilibrium lattice constants, bulk
moduli and atomization energies of insulators and semiconductors obtained from
PBE0 calculations agree better with experimental data than the corresponding
LDA and GGA predictions. On the other hand, these quantities are better de-
scribed within LDA or GGA in metallic systems. Heyd, Scuseria, and Ernzer-
hof [23] attributed this deficiency of PBE0 and similar hybrid functionals to the
neglect of the metallic screening of the Coulomb potential. Therefore, they in-
troduced a screening mechanism by partitioning the Coulomb potential into a
short-range (SR) and a long-range (LR) component

1
r

=
1 − erf(sr)

r︸ ︷︷ ︸
SR

+
erf(sr)
r︸ ︷︷ ︸

LR

, (2.51)

where the screening parameter s defines the screening range and the error func-
tion is given by

erf(sr) =
2√
π

∫sr

0
e−x2

dx . (2.52)
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By applying the partitioning of the Coulomb potential only to the long-range part
of the exact exchange, Heyd, Scuseria and Ernzerhof obtained a hybrid functional
of the form

EHSE
hyb (s) =

1
4
ESR

x (s) +
3
4
EPBE,SR

x (s) + EPBE,LR
x (s) + EPBE

c , (2.53)

where ESR
x is the short-range component of the exact exchange energy defined in

eq. (2.42), EPBE,SR
x and EPBE,LR

x are the short-range and long-range components of
the PBE exchange functional obtained by integration of the model PBE-exchange
hole and EPBE

c is the PBE correlation energy. The formula definitions of the terms
in eq. (2.53) are lengthy. Therefore, the interested reader is referred to the liter-
ature for further details [23]. Reexamining their work in 2006 [24], Scuseria and
co-workers suggested to chose s = 0.11 bohr−1. For convenience, the functional
with this particular choice of s is called HSE functional throughout this work.

Kresse and co-workers [51] found the results obtained from a similar implemen-
tation of the HSE functional with s = 0.15 bohr−1 to resemble the PBE0 results
with some improvements for example of values obtained for the heat of forma-
tion. They also emphasized the better convergence of this functional compared
to PBE0 with respect to the number of k points used to sample the Brillouin zone.
However, the most important question in the context of this work is if the gKS
scheme and the hybrid functionals can be useful for the description of electronic
spectra and electronic excitations. As in the conventional KS formalism, the inter-
pretation of gKS eigenenergies as the electronic spectra of an N-electron system
cannot be theoretically justified. The estimates for fundamental band gaps of
insulators and semiconductors are, in general, larger than LDA and GGA results
[24, 51]. In large-gap systems both PBE0 and HSE still underestimate the band
gap. Increasing the amount of exact exchange in the construction of Ehyb would
systematically increase the value for the band gap. However, in HF calculations,
where the exact exchange is fully included, band gaps, in general, come out way
too large compared to the experimental results indicating that exact exchange
alone cannot be the final answer to this problem.

The reason for the discrepancies between experiments, the HF theory and the
KS and gKS formalisms is the insufficient treatment of correlation in all three
approaches. In HF theory, two electrons of opposite spin are allowed to occupy
the same single-particle state at the cost of a large Coulomb energy. However, the
Coulomb repulsion keeps electrons away from each other creating a screening
hole around each electron, which reduces the interaction with the other electrons
and thereby the Coulomb energy. The energy cost for transferring an electron
from one site to a neighboring site is substantially reduced by screening. Thus,
correlation or screening reduces the gap from its HF value. The KS and gKS band
gaps for solids, in general, agree much better with experimental results than the
HF band gaps because they incorporate a certain amount of correlation in EKS

xc
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or EgKS
xc , respectively. However, both schemes only allow for a static treatment of

correlation. The dynamics of the screening mechanism is completely neglected
in both formalisms. Therefore, the GW approximation within many-body pertur-
bation theory is introduced in the next part of this chapter, which allows to take
into account dynamical screening effects in the description of electronic spectra.

2.3. Many-body perturbation theory

The key quantity in many-body perturbation theory is the one-particle Green
function. It can be introduced using the field operators ψ̂(r, t), ψ̂†(r, t) in the
Heisenberg representation given by

ψ̂(†)(r, t) = exp(iHt) ψ̂(†)(r) exp(−iHt) , (2.54)

where H is the Hamiltonian He defined in (2.6). The operators ψ̂(r, t), ψ̂†(r, t)
can annihilate or create an electron at position r. The latter process is described
by

ψ̂†(rj)|ri; i = 1, . . . ,N〉 =

{ √
N+ 1|ri; i = 1, . . . ,N+ 1〉, if rj 6= ri

0, if rj ∈ {ri}
, (2.55)

where the Fock state |ri; i = 1, . . . ,N〉 represents the N-electron wave function
defined in eq. (2.5). Applying ψ̂†(r) to |ri; i = 1, . . . ,N〉 increases the number of
electrons in Fock space by 1. Thus, the state |ri; i = 1, . . . ,N+ 1〉 corresponds to
a wave function containing (N+ 1) electrons. Applying ψ̂(rj) to |ri; i = 1, . . . ,N〉
lowers the number of electrons by one creating an (N− 1)-electron state. In the
further discussion, the shorthand notation |N, i〉 is used, where i = 0 denotes the
ground state and i 6= 0 labels the excited states of the N-electron system. More
details on field operators in condensed matter physics can be found in standard
textbooks [64, 65, 66].

The one-particle Green function G is defined as

G(r1, t1; r2, t2) = −i 〈N, 0| T̂ [ψ̂(r1, t1)ψ̂†(r2, t2)] |N, 0〉
= −i 〈N, 0| ψ̂(r1, t1)ψ̂†(r2, t2) |N, 0〉 θ(t1 − t2)

+ i 〈N, 0| ψ̂†(r2, t2)ψ̂(r1, t1) |N, 0〉 θ(t2 − t1) ,

(2.56)

where T̂ is the time-ordering operator. From the definition of the field operators
the Green function can now be interpreted as the probability amplitude of the
creation of an electron at r2 for t1 > t2 that propagates to r1 or the probability
amplitude of the annihilation of an electron for t2 > t1. The annihilation of an
electron in turn is interpreted as the creation of a hole at r1 that propagates to
r2.
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In photo-emission experiments, the occupied density of states of a solid is de-
termined by measuring the excitation spectrum of the solid after shining light
on it. An incident photon ejects an electron from a valence state thus creating
a hole. Knowing the energy of the photon and measuring the kinetic energy of
the ejected electron provides information about the energy distribution of the
electrons in the crystal. The complementary process is used in inverse photo
emission to probe the unoccupied density of states by measuring the excitation
spectrum after injection of an additional electron into a conduction state of the
crystal. From the above definition of G it follows that the Green function de-
scribes exactly these processes.

The excitation spectrum of a solid can be obtained directly from G upon Fourier
transformation of the time-coordinate to the corresponding frequency. First, the
closure relation

∑
i |N± 1, i〉〈N± 1, i| = 1 is inserted between the field operators

in eq. (2.56), where {|N± 1, i〉} is the complete set of eigenstates of the (N ± 1)-
electron system. Using the identity in eq. (2.54) and defining new single-particle
wave functions called quasiparticle states

ψN−1
i (r) = 〈N− 1, i| ψ̂(r) |N, 0〉 and ψN+1

i (r) = 〈N, 0| ψ̂(r) |N+ 1, i〉 (2.57)

along with the excitation energies

ǫN−1
i = EN

0 − EN−1
i and ǫN+1

i = EN+1
i − EN

0 (2.58)

leads to

G(r1, t1; r2, t2) = − i
∑

i

ψN+1
i (r1)ψ

N+1
i

∗
(r2) exp

{
−iǫN+1

i (t1 − t2)
}
θ(t1 − t2)

+ i
∑

i

ψN−1
i (r1)ψ

N−1
i

∗
(r2) exp

{
−iǫN−1

i (t1 − t2)
}
θ(t2 − t1) .

(2.59)

The Fourier transformation of the above expression yields Lehmann representa-
tion of the Green function

G(r1, r2;ω) =
∑

i

ψN+1
i (r1)ψ

N+1
i

∗
(r2)

ω− ǫN+1
i + iη

+
∑

i

ψN−1
i (r1)ψ

N−1
i

∗
(r2)

ω− ǫN−1
i − iη

, (2.60)

where η is an infinitesimally small, positive number that enters due to the Fourier
transformation of the θ function. Hence, the poles of G are the electronic exci-
tation energies eq. (2.58) of the N-electron system measured in (inverse) photo-
emission experiments.

Since the further discussion is closely related to the concept of quasi-particles
and the quasiparticle states formally introduced in eq. (2.57), it will be explained
in more detail in the next section.
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A
(k

,ω
)

ωǫ̃1

Γ1

ǫ̃2

Γ2

Figure 2.1.: Example of the spectral function for a fixed vector k.
The large number of delta-like peaks from electronic excitations
can be described by two quasiparticles with energy Ei = ǫ̃i + iΓi
represented by two Lorentzians at positions ǫ̃1 and ǫ̃2 with a width
of Γ1 and Γ2, respectively.

2.3.1. Quasiparticles

With the help of the spectral function A, equation (2.60) can be rewritten as an
integral over frequencies

G(r1, r2;ω) =

∫∞

−∞

A(r1, r2;ω ′)

ω−ω ′ + sgn(ω ′ − µ)iη
dω ′ , (2.61)

with max(ǫN−1
i ) 6 µ 6 min(ǫN+1

i ). According to the definition of the excitation
energies, eq. (2.58), and the discussion in section 2.2.4, µ is equal to the chemical
potential in systems with N≫ 1.

In finite systems the excited states are well separated. Consequently, the spec-
tral function is given by a sum over discrete delta peaks

A(r1, r2;ω) =
∑

i

ψi(r1)ψ
∗
i (r2) δ(ω− ǫi) , (2.62)

and each peak is weighted by the product of those quasiparticle states ψi(r),
eq. (2.57) that contribute to the excitation. In order to simplify the notation, the
index (N± 1) of the quasiparticle states and energies will be dropped from now
on. The above form of A follows directly from eq. (2.59). As the number of
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electrons gets larger, the number of peaks in the spectrum increases. Further-
more, the peaks move closer in energy. If the resulting spectral features are of
Lorentzian shape, the spectral function becomes

A(r1, r2;ω) =
∑

i

ψi(r1)ψ
∗
i(r2)

Γi

(ω− ǫ̃i)2 + Γ 2
i

, (2.63)

where the ǫ̃i are the peak positions and |Γi| the corresponding peak widths of
Lorentzians as shown in figure 2.1. With the above representation of A inserted
into eq. (2.61) the frequency integral can still be carried out analytically yielding
a discrete sum over i as in the Lehmann representation, eq. (2.60), provided that
the real energies ǫi are replaced by the complex numbers Ei = ǫ̃i + iΓi. However,
a Fourier transformation of G now leads to additional terms exp{−|Γi(t1 − t2)}| in
eq. (2.59), which correspond to damping factors. Thus, the particle propagating
from r1 to r2 now has a finite lifetime given by |Γi|

−1. Therefore, to be precise it
does not represent an excited electron moving through the solid, but it is the ex-
citation itself pictured as a particle called quasiparticle with energy Ei and wave
function ψi(r). The quasiparticle naturally decays over time as the excitation en-
ergy dissipates into the infinite crystal. This corresponds to the physical process
of de-excitation of excited electrons that lose energy via Auger transitions. From
now on, the Green function eq. (2.60) is referred to as a quasiparticle propagator,
and it is the spectrum of the quasiparticles that is to be determined.

The quasiparticle spectrum corresponding to a certain quasiparticle state may
have more than one peak. These additional spectral features are called satellites
and can be related to collective excitations of the electrons such as plasmons or
magnons. Hence, the exact quasiparticle spectrum indeed represents all interac-
tion processes of an N-electron system.

2.3.2. Equation of motion and self-energy

In second quantization the Hamiltonian He defined in (2.6) is written as

Ĥ =

∫

ψ̂†(r1)h(r1)ψ̂(r1)d
3r1+

1
2

∫∫

ψ̂†(r1)ψ̂
†(r2)v(r1, r2)ψ̂(r2)ψ̂(r1)d

3r1 d
3r2 , (2.64)

where the kinetic energy of an electron and the external potential introduced
in (2.2) and (2.3) are contained in the first term h(r1) = −1

2∇2
1 + vext(r1) and

the second term describes the electron-electron interaction with the Coulomb
potential v(r1, r2) given in (2.4). From the Heisenberg equation of motion for the
field operator

i
∂

∂t1
ψ̂(r1, t1) = ψ̂(r1, t1)Ĥ − Ĥψ̂(r1, t1) (2.65)
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the equation of motion of the Green function can be obtained

i
∂

∂t1
G(r1, t1; r2, t2) = δ(r1 − r2)δ(t1 − t2) + h(r1)G(r1, t1; r2, t2)

− i
∫

v(r1, r3)〈N, 0|T̂ [ψ̂†(r3, t1 + η)ψ̂(r3, t1)ψ̂(r1, t1)ψ̂†(r2, t2)]|N, 0〉d3r3 .
(2.66)

The expectation value of four field operators in the second line is a special case
of the two-particle Green function

G2(r1, t1; r2, t2; r3, t3; r4, t4) =

(i)2〈N, 0| T̂ [ψ̂(r1, t1)ψ̂(r2, t2)ψ̂†(r4, t4)ψ̂†(r3, t3)] |N, 0〉 .
(2.67)

Hence, equation (2.66) can be rewritten as

i
∂

∂t1
G(r1, t1; r2, t2) = δ(r1 − r2)δ(t1 − t2) + h(r1)G(r1, t1; r2, t2)

− i
∫

v(r1, r3)G2(r1, t1; r3, t1; r2, t2; r3, t1 + η)d3r3 .
(2.68)

The next step to solve for G would be to determine G2. Setting up an equation of
motion for G2 would yield an expression coupling G2 to the three-particle Green
function. Hence, this procedure would lead to an infinite series of coupled
integro-differential equations, and the need arises to either truncate or sum up
this series. The latter is done here using a mathematical trick: the self-energy
operator Σ is introduced as the operator that formally solves eq. (2.66). The
integral containing G2 is then split into two terms

− i
∫

v(r1, r3)G2(r1, t1; r3, t1; r2, t2; r3, t1 + η)d3r3 =

VH(r1)δ(t1 − t2)G(r1, t1; r2, t2) +

∫

Σ(r1, t1; r3, t3)G(r3, t3; r2, t2)d3r3 dt3 ,

(2.69)

where VH is the Hartree potential

VH(r1) =

∫
n(r2)

|r1 − r2|
d3r2 , (2.70)

and the second term contains the self-energy operator Σ. (Expression (2.69) is
discussed in more detail in appendix A.1.) With the help of the Hartree Hamil-
tonian

HH(r1) = h(r1) + VH(r1) (2.71)

eq. (2.66) can now be written as
[

i
∂

∂t1
− HH(r1)δ(t1 − t2)

]

G(r1, t1; r2, t2)

= δ(r1 − r2)δ(t1 − t2) +

∫

Σ(r1, t1; r3, t3)G(r3, t3; r2, t2)d3r3 dt3 .
(2.72)
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The electronic system described by the Hartree Hamiltonian HH will be taken
as a reference system of non-interacting electrons in the sense that an electron
can move freely in the potential resulting from the sum of the potential caused
by the atomic nuclei vext and the Hartree potential VH. The equation of motion
for the Hartree Green function GH describing such a free electron is given by

[

i
∂

∂t1
− HH(r1)δ(t1 − t2)

]

GH(r1, t1; r2, t2) = δ(r1 − r2)δ(t1 − t2) . (2.73)

It can be derived in the same way as the equation of motion (2.66) of the quasi-
particle Green function. Multiplying equation (2.72) from the left with GH and
integrating over the additional degrees of freedom then leads to the Dyson equa-
tion for the quasiparticle Green function

G(r1, t1; r2, t2) = GH(r1, t1; r2, t2)

+

∫∫

GH(r1, t1; r3, t3)Σ(r3, t3; r4, t4)G(r4, t4; r2, t2)d3r3 d
3r4 dt3 dt4 .

(2.74)

A physical interpretation of the Dyson equation can be given by writing it in the
form of a geometric series by subsequently replacing G on the right-hand side
by GH +GHΣG, which leads to, symbolically written,

G = GH + GHΣGH + GHΣGHΣGH + GHΣGHΣGHΣGH + . . . . (2.75)

The quasiparticle G propagating through the system is represented by the free
Hartree-electron GH that is scattered upon moving trough the solid due to all
possible exchange-correlation effects encoded in the self-energy Σ. Since GH of
an N-electron system can be easily calculated, the calculation of G now reduces
to the calculation of the self-energy.

2.3.3. The GW approximation (GWA) for the self-energy

The self-energy Σmay be obtained in several ways for example using Wick’s theo-
rem [67, 64] or by the Schwinger functional derivative method [68, 69]. Following
the latter, a set of self-consistent integro-differential equations for the self-energy
called Hedin equations were introduced by Hedin [13] in 1965. In principle,
these equations yield the exact description of the interacting N-electron system
(see appendix A.1 for a derivation of the Hedin equations). Unfortunately, this
set of equations cannot be solved numerically, because it contains a functional
derivative of Σ with respect to G. However, the equations may be iterated ana-
lytically in order to derive feasible approximations for Σ. If only one iteration is
performed, the following expression for the self-energy is obtained

ΣGW(r1, t1; r2, t2) = iGH(r1, t1; r2, t2)W(r1, t1 + η; r2, t2) , (2.76)
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which is coined GW approximation (GWA) for the self-energy due to the form
of the mathematical expression. While GH is again the Hartree Green function,
W is the screened interaction obtained from the random-phase approximation
(RPA)

W(r1, t1; r2, t2) = v(r1, r2)δ(t1 − t2)

+

∫∫∫

v(r1, r3)P(r3, t1; r4, t4)W(r4, t4; r2, t2)d3r3 d
3r4 dt3 dt4 ,

(2.77)

where the polarization function P is given as a product of two non-interacting
Green functions

P(r1, t1; r2, t2) = −(i)GH(r1, t1; r2, t2)GH(r2, t2; r1, t1) . (2.78)

Furthermore, the relation between the polarization function and the dielectric
function

ε(r1, t1; r2, t2) = δ(r1 − r2) −

∫

v(r1, r3)P(r3, t1; r2, t2)d3r3 (2.79)

is used to calculate the screened interaction as

W(r1, t1; r2, t2) =

∫

ε−1(r1, t1; r3, t2)v(r3, r2)d
3r3 . (2.80)

Just like the Dyson equation for the Green function, equation (2.77) for the
screened interaction W can be written as a geometrical series

W = v + vPv + vPvPv + vPvPvPv + . . . , (2.81)

where P is given by eq. (2.78). This expansion is written in terms of Feynman
diagrams in figure 2.2, where the straight lines represent the Hartree Green func-
tion GH and the dashed lines the bare Coulomb potential v(r1, r2), respectively. It
shows the RPA screening mechanism that consists of the subsequent creation and

W(r1, t1; r2, t2) = ++ + . . .

Figure 2.2.: The first terms of expression (2.77) for the screened
interaction W illustrated by Feynman diagrams. The dashed line
represents the bare Coulomb potential whereas straight lines sym-
bolize Green functions.
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annihilation of electron-hole pairs drawn as bubbles out of two Green functions
that can be pictured as small dipoles, which screen the bare Coulomb potential.
The interaction of a quasiparticle with a test charge via the resulting screened
Coulomb potential W is encoded in the expression for self-energy, eq. (2.76), of
the GWA.

In this work, results of single-shot GW calculations are reported, where the
eqs. (2.76) to (2.78) are only evaluated once with a suitable initial Green function
G0 as input. In single-shot calculations, it is expected that the choice of G0

will determine the quality of the resulting self-energy to a large extent. In this
sense, the Green functions constructed from the solution of the (generalized)
Kohn-Sham equations (2.17) and (2.48) yield a much better choice for G0 than
the Hartree Green function, since they yield a much better approximation for the
electronic structure of most solids than GH. For a non-interacting system like the
(g)KS system, the Lehmann representation (2.60) reduces to

G0(r1, r2;ω) =

unocc∑

i

ϕi (r1)ϕ
∗
i (r2)

ω− ǫi + iη
+

occ∑

i

ϕi (r1)ϕ
∗
i (r2)

ω− ǫi − iη
, (2.82)

where the wave function ϕi are the solutions of the (g)KS equations and ǫi the
corresponding eigenvalues. The first sum only runs over the unoccupied states
whereas the second sum runs over the occupied states. From this expression the
polarization function P can be calculated in frequency space as

P(r1, r2;ω) =

occ∑

i

unocc∑

j

ϕ∗
i (r1)ϕj (r1)ϕi (r2)ϕ

∗
j (r2)

×
(

1
ω+ ǫi − ǫj + iη

−
1

ω− ǫi + ǫj − iη

)

.

(2.83)

With the polarization function, equation (2.79) for the dielectric function ε can
be evaluated, and from the inverse of ε the screened interaction W is obtained
from eq. (2.80). To calculate the GW self-energy, W is separated into the bare
interaction and a remainder

W(r1, r2;ω) = v(r1, r2) + Wc(r1, r2;ω) , (2.84)

which leads to a decomposition of ΣGW into two terms

ΣGW(r1, r2;ω) = ΣGW
x (r1, r2) + ΣGW

c (r1, r2;ω) . (2.85)

The first term is given by the integral

ΣGW
x (r1, r2) =

i
2π

∫

G0(r1, r2;ω+ω ′)v(r1, r2)e
iηω ′

dω ′ , (2.86)
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which can be evaluated analytically leading to the Hartree-Fock exchange term

〈ϕi(r1)|Σ
GW
x (r1, r2)|ϕi(r2)〉 = −

occ∑

j

∫∫
ϕ∗

i (r1)ϕj(r1)ϕ
∗
j (r2)ϕi(r2)

|r1 − r2|
d3r1 d

3r2 . (2.87)

The second term in eq. (2.85) is given by

ΣGW
c (r1, r2;ω) =

i
2π

∫

G0(r1, r2;ω+ω ′)Wc(r1, r2;ω ′) dω ′ . (2.88)

It describes correlation effects due to the dynamical screening of the Coulomb
potential and must be, in general, evaluated analytically.

Finally, it should be mentioned that the choice of G0 instead of GH is not com-
pletely consistent with the GW approximation as given by the Hedin equations.
This inconsistency can be removed introducing a vertex correction into eq. (2.76)
for the self-energy and (2.78) for the polarization function. This correction orig-
inates from the exchange-correlation potential vxc in the Hamiltonian of the KS
equation (2.17). (See appendix A.2 for a detailed discussion.) In practice, the
inclusion of such a vertex correction in ΣGW and P leads to similar or worse
results then simply neglecting it (see i.e [70] and discussions therein). Therefore,
these vertex corrections are not taken into account in this work.

2.3.4. The GWA in electronic structure calculations

The approximate GW self-energy, eq. (2.76), could be used to solve the Dyson
equation (2.74) to obtain an estimate for the quasiparticle Green function, G.
However, there is a more direct way to obtain the quasiparticle spectrum, which
is the main focus of this work. First, equation (2.72) is Fourier transformed to
yield

[

ω−HH(r1)
]

G(r1, r2;ω) −

∫

Σ(r1, r3;ω)G(r3, r2;ω)d3r3 = δ(r1 − r2) . (2.89)

Then, the Lehmann representation for G, eq. (2.60), is inserted

∑

i

ψ∗
i (r2)

ω− Ei ∓ iη

{
[

ω−HH(r1)
]

ψi(r1) −

∫

Σ(r1, r3;ω)ψi(r3)d
3r3

}

= δ(r1 − r2) .

(2.90)
Now, the above expression is multiplied with (ω − Ej) and the limit ω → Ej is
taken on both sides. Assuming that the system is non-degenerate, i.e., all Ei are
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different, the left-hand side becomes

lim
ω→Ej

(ω− Ej)
∑

i

ψ∗
i (r2)

ω− Ei ∓ iη

{
[

ω−HH(r1)
]

ψi(r1) −

∫

Σ(r1, r3;ω)ψi(r3)d
3r3

}

= ψ∗
j (r2)

{
[

Ej −HH(r1)
]

ψj(r1) −

∫

Σ(r1, r3;Ej)ψj(r3)d
3r3

}

,

(2.91)

and the right-hand side becomes

lim
ω→Ej

(ω− Ej)δ(r1 − r2) = 0 . (2.92)

Since ψ∗
j (r2) does not vanish for all r2, the expression in the curly brackets must

be zero. This leads directly to the quasiparticle equation

HH(r1)ψi(r1) +

∫

Σ(r1, r2;Ei)ψi(r2)d
3r2 = Eiψi(r1) . (2.93)

(In the degenerate case an arbitrary, external potential φ̂ is introduced that lifts
the degeneracy such that the same derivation holds and φ̂ is set to 0 afterwards.)

The quasiparticle equation (2.93) is nonlinear in the energies Ei. Furthermore,
Σ, in general, is not Hermitian such that the quasiparticle energies Ei usually are
complex and the quasiparticle wave functions ψi(r) are not orthogonal. Neverthe-
less, equation (2.93) has a similar form like the single-particle DFT-KS equation
(2.17) restated here for comparison

HH(r1)ϕi(r1) + vxc(r1)ϕi(r1) = ǫKS
i ϕi(r1) . (2.94)

If the quasiparticle equation is rewritten as

[HH(r1) + vxc(r1)]ψi(r1) +

∫

[Σ(r1, r2;Ei) − vxc(r1)δ(r1 − r2)]ψi(r2)d
3r2 = Eiψi(r1)

(2.95)
and it is assumed that the KS eigenfunctions ϕi(r) and eigenvalues ǫKS

i yield a
good approximation for the quasiparticle states and energies, the latter can be
approximated by applying perturbation theory in first order as

Ei ≈ ǫKS
i +

∫∫

ϕi(r1)[Σ(r1, r2;Ei) − vxc(r1)δ(r1 − r2)]ϕi(r2)d
3r1 d

3r2 . (2.96)

This expression evaluated with ΣGW , as obtained in the previous section, yields
a direct estimate for the quasiparticle spectrum. Since the quasiparticle energy
appears on both sides, equation (2.96) has to be solved self-consistently.

Calculations of quasiparticle spectra based on equation (2.96) in combination
with the GWA for the self-energy have been established as the method of choice
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Figure 2.3.: Fundamental GW and LDA band gaps calculated with
the codes FLEUR and SPEX are compared with the gaps seen in ex-
periment. The GW calculations clearly improve on the LDA results.

to compute excited electronic states from first principles. The reasons are the
excellent agreement of these spectra with experimental measurements for insula-
tors, semiconductors as well as simple metals such as sodium or aluminum [14].
Furthermore, GW calculations of the band gaps of many insulators and semi-
conductors improve on the corresponding LDA and GGA estimates and yield
values for the band gaps that agree with the observed gaps within a few tenth
of an eV or better. This is demonstrated in figure 2.3 for a selection of prototype
semiconducting and insulating materials calculated with the GW implementa-
tion SPEX [20]. However, in practice the solution of equation (2.96) is hampered
by two things: (1) the calculation of ΣGW is numerically very expensive and
(2) it must be assumed that the ansatz is only applicable in a regime where
the KS eigenvalues and states yield a good approximation for the quasiparticle
self-energy such that perturbation theory is applicable.

Due to the numerical effort necessary to calculate ΣGW , additional approxi-
mations like the plasmon-pole approximation for the inverse dielectric function
[71, 72] are used in particular in many early implementations of the GWA. Further-
more, many implementations are based on pseudo-potentials using a plane-wave
basis. These implementations are mostly limited to materials with extended sp
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states, since plane waves are not well suited to describe the more localized d and
f electron states in transition metals or rare-earth elements. The last aspect will
be discussed in more detail in the next chapter.

Concerning the choice of DFT calculations as a starting point to apply pertur-
bation theory, it was already discussed in section 2.2.1 that the conventionally
employed LDA and GGA within the KS scheme can lead to large deviations be-
tween the theoretically predicted and experimentally observed spectra. For some
materials LDA and GGA even fail to yield a qualitatively correct description as
discussed in section 2.2.3. To overcome this obstacle various strategies have been
suggested: different schemes to calculate either G or W or both quantities self-
consistently to determine ΣGW have been applied in calculations for the electron
gas [73] and real materials [74, 75]. These approaches are numerically even more
expensive then the single-shot GW calculation. A different ansatz is to introduce
a vertex correction in the calculation of the polarization function P and Σ. These
corrections usually stem from higher-order terms in the diagrammatic expansion
of P and the screened interaction W. Although some improvement of the descrip-
tion of spectral satellites has been reported, the resulting quasiparticle spectra
are more or less unchanged compared to calculations without vertex corrections
[76, 77]. It was already noted by DuBois in 1959 [78] that this is due to a mutual
cancellation of the changes in P and Σ upon the inclusion of vertex corrections.
An approach yet very different in spirit employs the LDA+Umethod [79] as an al-
ternative starting point for the calculation of ΣGW and the quasiparticle energies.
However, the value of U cannot be uniquely determined and values obtained
from different approaches, e.g., constrained LDA [80, 81, 82, 83] or constrained
RPA [84] can differ by up to 100%. In practice, U is therefore often treated as a
parameter, which is obtained by fitting to experimental data.

In this work, solutions of the gKS equation using the HSE hybrid functionals
will be used to calculate ΣGW and the quasiparticle energies, whenever GGA
calculations yield an insufficient starting point to apply perturbation theory. In
this way, all calculations are carried out in an ab initio manner. Furthermore,
a full-potential all-electron implementation [85] was used for the solution of
the KS and the gKS equations as well as in the evaluation of ΣGW within the
GWA [20]. For these implementations the linearized augmented plane wave
basis was used that will be described in more detail in the next chapter. Last
but not least, the full inverse dielectric function is calculated without additional
approximations, e.g., the plasmon-pole approximation, to determine the screened
interaction W and ΣGW . Equipped with these tools, it will be shown that the
GWA yields an accurate, quantitative descriptions of electronic excitations of
perovskite transition-metal oxides calculated from first principles.





CHAPTER 3

IMPLEMENTATION WITHIN

THE FLAPW METHOD

In the first chapter, the theoretical ground was laid for the characterization of
the electronic structure of real materials within density-functional theory and the
GW approximation. To solve the corresponding equations numerically the full-
potential linearized-augmented-plane-wave (FLAPW) method is used through-
out this work. In this all-electron approach, a basis set of augmented plane
waves is used to transform the differential Kohn-Sham (KS) equations (2.17) [or
the generalized KS equations (2.48)] into a generalized eigenvalue problem. In
turn, products of the KS wave functions are expanded in the mixed product ba-
sis in order to transform the equations yielding the GW self-energy (2.76) into
matrix equations. Details of the construction of the augmented plane waves as
well as the mixed product basis will be discussed in the first part of this chapter.

The second and third parts of the chapter deal with selected aspects of the
implementation of the KS scheme and the GW approximation in the computer
codes FLEUR and SPEX [18], respectively. Besides delivering insight into the
general structure of the implementations, only those features are discussed in
detail which were particularly used in the calculations for transition metal oxides
in this work. A more detailed discussion of algorithms used in FLEUR can be
found, e.g., in the PhD thesis of Kurz [86] and references therein. An in-depth
description of the implementation of the SPEX code is presented in references
[20] and [22].

37
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3.1. Basis sets

The basis best suited to describe a given problem should yield the most accurate
description with the least numerically effort. The strife to find the optimal balance
between efficiency and accuracy demands a detailed analysis of the specifics of
the problem to be solved.

Figure 3.1 is a simple qualitative picture of the energetic positions and wave
functions of the electronic states of perovskite transition-metal oxides (TMOs) in-
vestigated in this work. Figure 3.1 allows to distinguish between three different
types of states. The atomic-like core levels are completely localized at the atomic
sites. In particular, the overlap of their wave functions with those from neigh-
boring atoms is negligible. On the contrary, the wave functions of the valence
and conduction states have a large overlap with those from neighboring sites.
This overlap causes the states from different sites to hybridize, which leads to
the formation of energy bands (see section 4.4 for a more detailed discussion
on band formation). In-between the core levels and valence states there exists a
third group of energy levels of semi-core states. They are mostly localized at the
atomic sites but they also have a small but finite overlap with wave functions of
semi-core states at neighboring sites. To study perovskite TMOs a basis set is
needed that can simultaneously describe the three different types of states. As
first step in the quest for such a basis, an efficient representation of only the
valence states is considered.

3.1.1. Plane waves

Since the electrons in the core levels and semi-core states screen the Coulomb
potential of the nuclei, the potential is comparably weak in those regions, where
the probability amplitude of the valence electrons is large. In theses regions
where the potential is smooth and varies slowly plane waves constitute an effi-
cient basis to represent the wave function of the valence states, since a plane wave
eik · r with the crystal momentum k is an eigenstate of the kinetic energy operator
(together with a constant potential that may be chosen to be zero). Furthermore,
plane waves diagonalize the Poisson equation with the Laplace operator, which
has to be solved to calculate the Hartree potential. In addition, the Fast Fourier
transformation provides an efficient algorithm to switch between reciprocal-space
and a real-space representations. The latter is needed to calculate the exchange-
correlation potential Vxc(r).

The major drawback arises from the fact that the representation of the wave
function in terms of plane waves does not converge at the presence of a 1/r-
potential. Consequently, an accurate representation of any state in a region close
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Figure 3.1.: Schematic representation of the energies and wave func-
tions of valence, semicore, and core states forming the electronic
structure of the perovskite transition-metal oxides investigated in
this work.

to the atomic nuclei would require a prohibitively large number of basis func-
tions. Hence, a plane-wave basis set can only be used efficiently in the context of
the pseudo-potential approximation where the 1/r potential is replaced by an ar-
tificial, non-divergent potential. The corresponding ground-state wave functions
mimic the all-electron wave function outside a selected core radius. Density-
functional and GW calculations relying on the pseudo-potential approximation
have been employed successfully in numerous electronic structure calculation for
simple metals as well as for semiconductors and insulators, where mostly s and
p orbitals contribute to the valence- and conduction-band states (see reference
[14] and references therein).

In materials containing transition metals or rare-earth elements, the more local-
ized d- or f-electron orbitals appear around the Fermi energy. Therefore, pseudo-
potential-based approaches become inefficient, because a very large number of
basis functions is needed to accurately describe these states, which are typically
much more localized in the region close to the atomic nuclei than s and p or-
bitals. An additional complication arises if semi-core states are present since
they are even more localized. Treating them as pseudized core states may be
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a too drastic approximation especially in the context of the GW approximation,
where all occupied states are needed, e.g., to calculate the polarization function,
eq. (2.78), which is in turn used to obtain the RPA dielectric function. As an
example, a detailed analysis of the electron-energy loss spectrum of Ni, ref. [22],
already exhibits non-negligible contribution to the RPA dielectric function due
to the presence of high-lying semi-core states.

In the light of the above discussion an all-electron approach treating the 1/r
potential exactly is much more suited for the investigation of transition metal
oxides. For example, the linear muffin-tin orbital (LMTO) [19] method employs a
basis set comprising atomic-like orbitals to treat the 1/r divergence. The Korringa-
Kohn-Rostocker (KKR) [87, 88] method is formulated in terms of Green functions.
Another strategy is pursued in the full-potential linearized-augmented plane-
wave (FLAPW) method [19]: the plane waves as basis functions are retained but
augmented in the region close to the nuclei to allow for an exact treatment of the
1/r potential. Details of the construction of the resulting augmented plane-wave
(LAPW) basis functions are discussed in the following.

3.1.2. Augmented plane waves and the LAPW basis functions

In the FLAPW method space is partitioned into atom-centered spheres, the
muffin-tin (MT) spheres, and into the remaining interstitial region. The parti-
tioning is illustrated schematically in figure 3.2. The radius sa of the MT sphere
of atom a is chosen to be as large as possible under the constraint that MT
spheres from neighboring atoms should not overlap. Consequently, the potential
from the nuclei in the interstitial region is smooth and plane waves constitute an
efficient basis in this part of space.

According to the Rayleigh decomposition a plane wave can be decomposed
into a sum over products of spherical Bessel functions and spherical harmonics
Ylm(er), where the notation er = r/r with r = |r| indicates the unit vector in the
direction of r. Furthermore, the index σ will be used to denote the electron’s spin.
Slater suggested in 1937 [89] to replace the Bessel functions by radial functions
uσ

al(ǫ, r) matching the Bessel functions in value at the sphere radius sa. It is this
procedure, what is understood by the term augmentation. The radial functions
are the numerical solutions of the radial KS equation

{

−
∂2

∂r2
+
l(l+ 1)

r2
+ V̄σ

eff,a(r) − ǫσ
al

}

ruσ
al(ǫ, r) = 0 , (3.1)

where V̄σ
eff,a(r) is the spherical average of the effective potential. Linear combi-

nations of these radial functions uσ
al(ǫ, r) together with plane waves in the inter-

stitial region constitute a basis of augmented plane waves (APWs) that allow for
an exact treatment of the 1/r potential.
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Figure 3.2.: Partitioning of space in the FLAPW method: Muffin-
tin (MT) spheres at each atomic site such as a,a ′ at the positions
Ra, Ra ′ are surrounded by the interstitial region.

In practice, eq. (3.1) has to be solved self-consistently in the energies, since the
radial solutions uσ

al(ǫ, r) are energy-dependent. Hence, the solution of eq. (3.1)
is much more computationally demanding than the solution of a standard eigen-
value problem, where the energies ǫσ

al are simply treated as fixed parameters.
Furthermore, the resulting radial functions lack variational freedom to allow for
changes in the wave function as the band energy deviates from the reference
energy ǫσ

al, e.g., in open shell systems, where the spherical average of the effec-
tive potential in eq. (3.1) is a rather crude approximation to the real potential. A
detailed discussions of the limitations of the APW method is beyond the scope of
this work. Further information can be found in the book by Loucks [90], where
reprints of the original publications of Slater can be found as well.

To avoid the problems originating from the energy dependence of the APW
basis functions, Marcus [91] suggested to replace the radial functions by their
Taylor expansion terminated after the linear term

uσ
al(ǫ, r) = uσ

al0(r) + uσ
al1(r) (ǫ− ǫσ

al) + O
[

(ǫ− ǫσ
al)

2
]

, (3.2)

where O
[

(ǫ− ǫσ
al)

2
]

denotes errors that are quadratic in this energy difference.
The function uσ

al0(r) = uσ
al(ǫ

σ
al, r) is the radial solution of eq. (3.1) and uσ

al1(r) ≡
∂uσ

al(ǫ, r)/∂ǫ|ǫ=ǫσ
al

its energy derivative. However, uσ
al0(r) and uσ

al1(r) are evalu-
ated at the fixed energy ǫσ

al chosen to minimize the linearization errors, i.e., in
the center of gravity of the l-like band. Marcus’ work was extended by Andersen
[19] as well as Koelling and Arbman [92] who proposed a method in which the
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radial functions uσ
al0(r) and uσ

al1(r) are matched continuously to the plane waves
in the interstitial region at the MT sphere boundaries. With the shorthand nota-
tion uσ

almp(r) ≡ uσ
alp(r)Ylm(er), where p = 0, 1 labels the two radial functions in

the Taylor expansion (3.2), the resulting APWs can be written as

χσ
kG(r) =






1√
N

lmax∑

l=0

l∑

m=−l

1∑

p=0

Aaσ
lmp(k, G)uσ

almp(r − Ra) if r ∈ MT(a)

1√
V
ei(k+G) · r if r ∈ interstitial

,

(3.3)
where Ra is the position of atom a, N is the number of unit cells and V denotes
the volume of the crystal. These APWs become the new LAPW basis functions
of the FLAPW method.

The error in the wave function originating from the energy linearization is
of quadratic order. This leads to an error of order O

[

(ǫ− ǫσ
al)

4
]

in the band
energies according to reference [93]. Furthermore, using two radial functions
for each index l instead of one makes the APWs (3.3) more flexible than the
energy-dependent solutions of (3.1). Altogether, the increase in flexibility as well
as the smallness of the linearization error typically allows to treat all valence
states with a single set of energies {ǫσ

al} making the LAPWs a very efficient yet
accurate set of basis functions. In numerical applications an appropriate choice
for the cutoff lmax for the l quantum number has yet to be found. This aspect
will be discussed in more detail in section 3.2 about the implementation of the
FLAPW method in the FLEUR code.

For the sake of completeness an explicit form of the coefficients Aaσ
lmp(k, G)

shall be given here as well. The coefficients are determined subject to the require-
ment that the LAPW basis functions and their spatial derivatives are continuous
at the MT boundary. This leads to the following expressions for the coefficients

Aaσ
lm0(k, G) = eiK ·Ra4π

1
wσ

al

ilY∗
lm(K̂)

[uσ
al1(sa)Kj ′l(saK) − u ′σ

al1(sa)jl(saK)]

Aaσ
lm1(k, G) = eiK ·Ra4π

1
wσ

al

ilY∗
lm(K̂)

[uσ
al0(sa)Kj ′l(saK) − u ′σ

al0(sa)jl(saK)]

(3.4)

with K = k + G and the abbreviation ∂u/∂r = u ′ for the spatial derivative. The
prefactor eiK ·Ra shifts the origin of the coordinate system into the center of the
MT sphere of atom a. The Wronskian w is defined as

wσ
al = [uσ

al1(sa)u ′σ
al0(sa) − uσ

al0(sa)u ′σ
al1(sa)] . (3.5)
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3.1.3. The local orbital (LO) extension

Core states are completely contained within the MT spheres, i.e., the correspond-
ing wave functions are practically zero at the MT sphere boundaries. It can be
shown (cf. ref. [94]) that these states and the LAPW basis functions are orthogo-
nal. Since the wave functions describing semi-core states are not zero at the MT
boundary they are not orthogonal to the LAPW basis functions. Due to a finite
overlap between a semi-core state and a APW basis function with correspond-
ing l quantum number the latter can now reproduce the former. However, the
semi-core state will now appear in the valence- or conduction-band region since
the energetic position of the LAPW basis function is fixed at the linearization
parameter ǫσ

al typically placed in the region around the Fermi energy. The re-
sulting spurious bands are called ghost bands. If the semi-core states are treated
as valence-band states right from the start, they can be described properly by the
LAPW basis functions if the energy parameter of the corresponding radial func-
tion is set at the position of the semi-core states. However, this would in turn
diminish the flexibility of the LAPW basis to represent states in the valence-band
region with the same l quantum number.

This dilemma can be resolved with the help of the local-orbital extension,
Refs. [95, 96]. A local orbital (LO) is constructed from an additional radial func-
tion uσ,lo

a (r), which is obtained from the solution of eq. (3.1) just like the radial
functions uσ

al0(r) but for a different energy parameter ǫσ,lo
a . If used to improve

the basis to better describe a semi-core state, the energy ǫσ,lo
a of the LO is typically

chosen to match the position of this state. The local orbital is then constructed
as a linear combination of the products of spherical harmonics with the three ra-
dial functions uσ,lo

a (r), and uσ
al0(r) and uσ

al1(r) with the same l quantum number
under the constraint that the resulting new basis function and radial derivative
become zero at the MT sphere boundary. Hence, no additional plane waves
in the interstitial region have to be added to continuously match the newly in-
troduced function across the sphere boundary. In this sense, the local-orbital
extension is a very efficient procedure to increase the flexibility of the LAPW
basis set. For example, a particular semi-core state can usually be described by
adding just one additional radial function uσ,lo

a (r) to the basis set. Since the local
orbitals still have to satisfy Bloch boundary conditions, when used in calculations
for periodic solids, they are matched to "fictitious" plane waves in the same way
as the LAPW basis functions. This leads to

χσa
kGlo

(r) =
∑

m

(aaσ
lo (k, Glo)u

σ
al0(r) + baσ

lo (k, Glo)u
σ
al1(r)) Ylm(er)

(

caσ
lo (k, Glo)u

σ,lo
a (r)

)

Ylm(er)

(3.6)

with
aaσ

lo (k, Glo) = eiKlo ·Raãaσ
lo 4π

1
w

ilY∗
lm(K̂lo) (3.7)
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and similar expressions for the b and c coefficient with Klo = k + Glo.

The energy parameters for the construction of the LAPW basis functions are
typically chosen in the energy range close to the Fermi level to minimize the
linearization error for the representation of the valence states. The resulting ba-
sis set is optimized for the description of occupied states which are the only
states necessary to calculate the charge density, eq. (2.18), and hence the only
states needed to solve the KS equation self-consistently. High-lying unoccupied
states are usually described poorly by this basis since the deviation due to the
linearization error growths if |ǫ − ǫσ

al| becomes large. However, the RPA polar-
ization function in eq. (2.83) and the KS Green function in eq. (2.82) comprise
a summation over all unoccupied states. Therefore, further local orbitals for
selected l channels are added to the LAPW basis in this work to converge the
representation of the unoccupied states.

To determine the energy parameter of these LOs the matching conditions be-
tween the solutions of the radial KS eq. (3.1) and the interstitial plane waves are
considered. If the latter are replaced by the Rayleigh expansion, the following
conditions have to be fulfilled at the MT sphere boundary sa

jl(ksa) = uσ
al(ǫ, sa) and j ′l(ksa) = u ′σ

al(ǫ, sa) . (3.8)

Dividing the equation on the right by uσ
al(ǫ, sa) leads to

j ′l(ksa)

jl(ksa)
=
u ′σ

al(ǫ, sa)

uσ
al(ǫ, sa)

. (3.9)

The right hand side of eq. (3.9) is identical to the logarithmic derivative D(ǫ) of
the radial function evaluated at the MT sphere boundaries sa

D(ǫ) ≡ u ′σ
al(ǫ, r)

uσ
al(ǫ, r)

∣

∣

∣

∣

r=sa

, (3.10)

The logarithmic derivative is an ever-decreasing cotangent-like function with ver-
tical asymptotes separating different branches. Each branch of D(ǫ) corresponds
to a particular number of radial nodes of the radial function uσ

al(ǫ, r) in the in-
terval 0 < r < sa. Requiring the logarithmic derivative to satisfy the condition
(cf. ref. [19])

D(ǫ) = −(l+ 1) (3.11)

yields a criterion to determine the energy parameter of the corresponding LO
and ensures that the radial functions in different branches are orthogonal.

3.1.4. The mixed product basis (MPB)

Previously, the LAPW basis and its local-orbital extension were introduced to
properly represent the single-particle spectrum of the KS eigenstates. To obtain
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matrix elements of the exchange contribution to the self-energy eq. (2.87) and to
calculate the polarization function eq. (2.83) of the GW approximation products
of KS wave functions have to be calculated. Therefore, in the last part of this
section the mixed product basis (MPB), refs. [21, 22], for the representation of
wave-function products is introduced. Unlike the LAPW basis functions that
are defined everywhere in space, the MPB consists of two disjunct subsets of
functions only defined within the MT spheres and the interstitial region, respec-
tively. This allows to optimize each subset of basis functions separately leading
to a small and efficient basis set. First, the MPB functions for the MT region are
introduced,

Inside each MT sphere basis functions are constructed from the radial func-
tions of the LAPW basis. With p,p ′ = 1, 2 labeling the LAPW radial functions
and their energy derivative and p,p ′ > 2 counting local orbitals for a given an-
gular quantum number l, these products of two radial functions are expanded
in spherical harmonics

uσ∗
almp(r)uσ

al ′m ′p ′(r) = uσ
alp(r)Y∗

lm(er)u
σ
al ′p ′(r)Yl ′m ′(er)

=

l+l ′
∑

L=|l−l ′|

L∑

M=−L

Clml ′m ′LMU
σ
aLP(r)YLM(er) ,

(3.12)

with the Gaunt coefficients given by

Clml ′m ′LM =

∫

Y∗
lm(er)Yl ′m ′(er)Y

∗
LM(er)dΩ . (3.13)

Here, U is defined as Uσ
aLP(r) = uσ

alp(r)uσ
al ′p ′(r), where P counts the functions

for a given angular quantum number L.

In practice, it is often sufficient to completely neglect the energy derivatives of
the LAPW radial functions as well as most of the local orbitals in the construc-
tion of the MPB. Furthermore, only radial functions with a certain l quantum
number can be selected. These measures allow to keep the total number of ra-
dial functions Uσ

aLP(r) small. Still, the resulting set of functions usually has a
high degree of (near) linear dependence. In other words, the set still contains a
certain number of functions that do not contribute significantly to the represen-
tation of the wave-function products. Furthermore, the radial functions Uσ

aLP(r)

are neither normalized nor orthogonal.

To optimize the set of radial functions, the overlap matrix is diagonalized
and only those eigenfunctions MaLP(r) with eigenvalues exceeding a certain
threshold value (typically 10−4) are kept, ref. [20]. This removes the (near) lin-
ear dependency. Furthermore, the resulting product functions MaLMP(r) =

MaLP(r)YLM(er) are orthonormal and become spin-independent, because the
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spin-up and spin-down products, eq. (3.12), are optimized together. The num-
ber of basis functions can be further reduced by introducing a cutoff value Lmax.
On the other hand, a constant MT function has to be included in the set for
each atom in the unit cell, which is later needed to represent the eigenfunction
that corresponds to the divergent eigenvalue of the Coulomb matrix in the limit
k → 0. Finally, Bloch functions are constructed

Mk
aLMP(r) =

1√
N

∑

T

eik · (T+Ra)MaLP(|r − T − Ra|)YLM(er−T−Ra
) , (3.14)

where the sum runs over all lattice translation vectors T. The radial functions
MaLP(r) are zero by definition if r is larger than the MT radius sa.

In the interstitial region, wave-function products are represented by the prod-
ucts of two plane waves, which is given by yet another plane wave. Thus, the
MPB functions in the interstitial region are given by

Mk
G(r) =

1√
V
ei(k+G) · rΘ(r) (3.15)

with the step function

Θ(r) =

{
0 if r ∈ MT

1 if r ∈ interstitial
(3.16)

that has to be introduced to guarantee thatMk
G(r) = 0 if r ∈ MT(a). The represen-

tation of wave-function products in the interstitial space becomes exact with the
cutoff G ′

max = 2Gmax, but a much smaller value for G ′
max often suffices as will be

demonstrated in section 5.1 of chapter 5. Together with the MT functions the full
MPB is given by {Mk

I (r)} = {Mk
aLMP(r),Mk

G(r)}, where the index I is introduced
to label the MPB functions.

The functions Mk
G(r) are not orthogonal since they are restricted to the inter-

stitial region. The overlap matrix of these functions is given by

〈Mk
G|Mk ′

G ′〉 = δkk ′OGG ′(k) = δkk ′ΘG−G ′ , (3.17)

where ΘG are the Fourier coefficients of the step function defined above. The
overlap matrix is k dependent because the size of the MPB varies for different
k vectors. Since the MT functions of the MPB are orthonormalized the overlap
matrix of the functions Mk

G(r) yields the only non-trivial contribution to the
overlap matrix of the full MPB OIJ(k) = 〈Mk

I |M
k
J 〉, which is used to introduce

the biorthogonal basis set with basis functions

M̃k
I(r) =

∑

J

O−1
JI (k)Mk

J (r) . (3.18)
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It fulfills the identities

〈M̃k
I |M

k
J 〉 = 〈Mk

I |M̃
k
J 〉 = δIJ and

∑

I

|Mk
I 〉〈M̃k

I | =
∑

I

|M̃k
I 〉〈Mk

I | = 1 , (3.19)

where the completeness relation is only valid in the subspace spanned by the
MPB, though.

3.2. Remarks on density-functional calculations

with FLEUR

In the FLEUR code [18] the FLAPW method is employed to solve the KS equation
(2.17) or the gKS equation (2.48) self-consistently. Some general aspects of the
implementation together with information about the input data necessary to run
this code are given in the first part of this section. Some remarks on the treatment
of the potential are given afterwards. The last part of this section describes how
relativistic effects within the scalar-relativistic approximation [43] are taken into
account in calculations with FLEUR and how the spin-orbit coupling in second
variation can be included.

3.2.1. The generalized eigenvalue problem

It is convenient to treat the core levels and the valence-band states (including
semi-core states) separately, i.e., to decompose the charge density according to

n(r) = nval(r) + ncore(r) . (3.20)

Since the core levels are well separated in energy and localized at the atomic
sites (cf. figure 3.1) the corresponding eigenvalue problem always fulfills the
boundary conditions of isolated atoms. Consequently, the potential felt by the
core electrons is nearly spherically symmetric. On the other hand, the core
electrons have a high kinetic energy since the potential close to the core is large.
Hence, relativistic effects such as spin-orbit coupling due to the large potential
gradient become important for a proper description of the core electrons. Thus,
the core levels in FLEUR are obtained by a solution of the fully relativistic Dirac
equation (2.19) with the spherical part (l = 0) of the potential.

To further treat valence-band and semi-core states the corresponding KS or gKS
wave functions are expanded in terms of the APWs1 χσ

kG(r), eq. (3.3), including

1Inside the MT spheres, the scalar-relativistic approximation described in section 3.2.3 is used.
Therefore, the MT parts of the LAPW basis functions, eq. (3.3), are replaced by solutions of
eq. (3.27).
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local orbitals to better describe semi-core and high-lying conduction-band states

ϕσ
nk(r) =

∑

|k+G|6Gmax

zσ
G(n, k)χσ

kG(r) . (3.21)

To simplify the notation, the spin index will be neglected from now on. Inserting
this expansion in (2.48) transforms the gKS equation into a generalized eigenvalue
problem (GEP)

∑

G

[HG ′G(k) + aVx,G ′G(k)]zG(n, k) = ǫnk

∑

G

SG ′G(k)zG(n, k) (3.22)

for the eigenvectors zσ
G(n, k) with

HG ′G(k) =

∫

d3r χ∗kG ′(r)

[

−
1
2
∇2

r + VgKS(r)

]

χkG(r) , (3.23)

SG ′G(k) =

∫

d3r χ∗kG ′(r)χkG(r) and (3.24)

Vx,G ′G(k) = −

occ∑

n ′,q

∫∫
χ∗kG ′(r)ϕn ′q(r)ϕ

∗
n ′q(r

′)χkG(r)

|r − r ′|
. (3.25)

A GEP for (2.17) is obtained in the same manner. It has the same mathematical
form as (3.22) with a = 0 and VgKS(r) replaced by VKS(r) in eq. (3.23). The
generalized eigenvalue problems are reduced to a standard ones employing the
Cholesky decomposition.

At the beginning of a density-functional calculation a starting guess for the
charge density is needed. Typically, atomic-like orbitals for each atom in the unit
cell of the solid are calculated thus neglecting all kinds of interactions between
them. The resulting orbitals are used to obtain the starting density according to
eq. (2.18), which is used to construct the Hartree potential as well as the exchange-
correlation potential yielding the Hamiltonian of eq. (2.48). The corresponding
GEP, eq. (3.22), is then solved. Afterwards, the charge density is recalculated, a
new GEP is obtained and the two steps are iterated until the densities computed
in the last and last but one step are sufficiently close. As an explicit measure
of convergence the root mean square of the difference between the input and
output densities in me/bohr3 is considered, where e is the elementary charge.
If this difference falls below 10−5 me/bohr3, the calculation is considered to be
converged. In practice, calculations within the gKS scheme are always started
from a converged solution of the KS equation (2.17). Hence, the initial wave
functions ϕnq(r) entering into the term Vx,G ′G(k) of the GEP for the gKS equation
(2.48) are the KS wave functions from a prior solution of the KS equation.

In practice, an appropriate choice for the plane-wave cutoff Gmax as well as
for the l cutoff lmax in the construction of the LAPW basis functions inside the
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MT spheres (3.3) has to be made. Due to the requirement that the LAPW basis
functions are continuous across the MT boundary both convergence parameters
cannot be treated independently. The real or imaginary part of a plane wave with
wave vector Gmax has Gmax/π nodes per atomic unit. A spherical harmonic l =

lmax has 2lmax nodes along a great circle on the MT sphere, i.e there are lmax/πsa
nodes per atomic unit. Therefore, a reasonable choice of the l cutoff is lmax =

saGmax, where sa again denotes the MT radius of atom a. The choice of Gmax

must be converged for example with respect to the total energy. Furthermore,
for calculations withing the generalized KS scheme, the number of conduction
bands also enters as parameter and has to be converged. For a detailed discussion
about the implementation of hybrid functionals in the FLEUR code the reader is
referred to the publication by Betzinger et al. [85].

Finally, it should be mentioned that results do depend on the choice of MT
radii. On the one hand, this is not surprising, because the MT radii enter in
many different parts of the algorithms. On the other hand, the partitioning of
space into the MT spheres and the interstitial region is just a mathematical trick
to better describe the behavior of the wave functions in different regions of space
and the results should be independent of the choice of the MT radii. Indeed, the
dependence on the MT radii becomes negligible if all input parameters are con-
verged properly. Apart from a reasonable choice of the convergence parameters
the only other information necessary to run FLEUR are the number of atoms in
the unit cell, which kind of atoms are contained and how they are distributed in
space.

3.2.2. Including the full potential in the LAPW method

For open-shell systems such as the TMOs investigated in this work an accu-
rate representation of the potential felt by the electrons occupying the semi-core
and valence-band states is indispensable. The flexibility of the LAPW basis is
therefore exploited in FLEUR to include the full potential without any shape-
approximations in the interstitial region (IR) or inside the MT spheres. Whereas
in the APW approach the potential in the IR is usually described by a constant
V0

IR and the potential inside the MT spheres is spherically averaged (see eq. (3.1)),
FLEUR routinely takes into account non-spherical terms inside the MT spheres
as well as a warped interstitial. The full potential is thus given by

V(r) =






∑

lm

Vlm
MT (r)Ylm(er) if r ∈ MT(a)

∑

G

VG
IRe

iG · r if r ∈ IR
. (3.26)
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The charge density takes a form analogous to the above equation for the potential.
In practice, the functions Ylm(er) are replaced by lattice harmonics and the plane
waves by symmetrized plane waves called stars. Further details can be found in
reference [86].

3.2.3. Scalar-relativistic approximation and SOC in second

variation

As discussed in section 2.2.2, for electrons occupying valence states relativistic
effects are small. It is therefore reasonable to treat the interstitial region non-
relativistically. In the construction of the APWs inside the MT spheres relativistic
effects are approximately taken into account within the scalar-relativistic (SC)
approximation [43]. The SC approximation captures relativistic effects described
by the term HSC, eq. (2.27). The radial KS equation (3.1) is replaced by

HSC

(

gl(r)

φl(r)

)

= ǫ

(

gl(r)

φl(r)

)

(3.27)

with

HSC =







1
2M(ǫ, r)

l(l+ 1)

r2
+ VKS(r) −

2c
r

− c
∂

∂r

c
∂

∂r
−2mc2 + VKS(r)






. (3.28)

Here, gl(r) and φl(r) are the wave functions of the large and small component,
respectively, M(ǫ, r) = m+(1/2c2)(ǫ−VKS(r)) and VKS(r) is the spherical part of
the KS effective potential, eq. (2.15). This leads to a modified basis set of APWs,
where uσ

al(r) and u̇σ
al(r) are replaced by (gl(r),φl(r))

T and (ġl(r), φ̇l(r))
T . Only

the large component is then matched to plane waves at the boundary between
the MTs and the interstitial region, because the small component is already neg-
ligible at this distance from the nucleus. The advantage of this procedure is
twofold: l and σ are still good quantum number, since SOC linking the spin and
orbital degrees of freedom is not taken into account. Secondly, the increase in the
numerical effort is moderate, i.e., comparable to that needed in spin-polarized
non-relativistic calculations, since the size of the basis and the Hamiltonian re-
mains the same as in non-relativistic calculation. However, the problem has to
be solved twice, once for each direction of spin, as in non-relativistic calculations
employing spin-DFT to describe magnetic systems with collinear orientation of
the spins.

The effect of SOC on the valence- and conduction-band states can be included
self-consistently inside the MT spheres using the procedure outlined in reference
[44]. It consists of three steps:
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1. The KS equation including the SC approximation is solved self-consistently
yielding the SC eigenfunctions denoted by ϕσ

nk(r) and the corresponding
eigenvalues ǫσ

nk for each spin direction up and down.

2. A second variational secular equation is set up using as basis functions the
lowest N SC eigenfunctions for both spins calculated in the previous step.
This yields a (2N× 2N) matrix equation with Hamiltonian

Hσσ ′

nn ′(k) = ǫσ
nkδnn ′δσσ ′ + 〈ϕσ

nk|H̃SOC|ϕσ ′

n ′k〉 , (3.29)

where the second term on the right denotes matrix elements of H̃SOC in-
troduced in eq. (2.29) with the SC eigenfunctions. The solution of the cor-
responding eigenvalue problem yields a new set of eigenvalues and eigen-
states.

3. From the new eigenstates a new single-particle density is constructed, which
is used to determine the effective potential, eq. (2.15), of a new KS equation.

In reference [93], a detailed description of the implementation of this procedure
within the FLAPW method can be found.

A spin quantization axis has to be defined to evaluate the vector product L ·S
contained in the term H̃SOC. The solution of the KS equation including relativis-
tic corrections from the SC approximation does not favor a certain spin direc-
tion energetically, since it does not link the spin and orbital degrees of freedom.
Therefore, the spin quantization axis must be chosen manually in the procedure
described above. On the contrary, the solutions of the new eigenvalue problem
with Hamiltonian eq. (3.29) can yield different total energies for different choices
of the spin quantization axis if the electronic system exhibits ferromagnetic or
anti-ferromagnetic spin order. For example, the magnetic anisotropy ∆E of such
a system can be obtained from the differences of the total energies

∆E = E(Σ1) − E(Σ2) , (3.30)

where Σ1 and Σ2 denote different spin orientations. For non-magnetic systems
the total energy is independent of the choice of the spin orientation even if SOC
is included in the calculation. In this case, the initial spin quantization axis can
be chosen arbitrarily.

3.3. The SPEX code

In the first part of the last section of chapter 3, the different steps of a GW
calculation as implemented in the computer code SPEX [18] will be outlined
and the input parameters necessary to conduct calculations are described. Then,
some technical aspects of the utilization of spatial symmetry in SPEX and the
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analytic treatment of matrix elements evaluated at the Γ point of the k point
mesh are addressed. The chapter closes with some remarks on calculations of
the quasi-particle band structure, the density of states and the dielectric function.
The main purpose of this last section is to deliver insight into how to calculate
physical observables with SPEX rather then discussing technical aspects of its
implementation. For more details on the algorithms used in the code the reader
is referred to the article by Friedrich et al. [20].

3.3.1. GW calculations with the SPEX code

Figure 3.3 summarizes the different steps of a calculation with SPEX yielding
the quasi-particle spectrum of a given material. First, some information from a
previous density-functional calculation are read in such as the number of atoms
in the unit cell, information about the types of atoms and about the symmetry of
the unit cell. Furthermore, matrix elements of the exchange-correlation potential
have to be provided, since they are subtracted later-on from the matrix elements
of the GW self-energy (cf. eq. (2.96)). Last but not least, the radial functions and
the plane-wave cutoff of the LAPW basis have to be given. They are used to
construct the MPB as described in section 3.1.4. Finally, information about the
k point mesh namely the number of points along the x, y and z direction have
to be specified. The density-functional input must have been calculated on the
same mesh of k points.

In the first step, the Coulomb matrix in MPB representation

vIJ(k) = 〈Mk
I |v|M

k
J 〉 =

∫∫
Mk

I

∗
(r)Mk

J(r
′)

|r − r ′|
d3r d3r ′ (3.31)

is calculated. Details on the algorithm can be found in ref. [22]. For the next
step, the GW self-energy ΣGW is divided into an exchange-only and a correlation
part according to eq. (2.85). Expectation values of the distinct contributions ΣGW

x

and ΣGW
c (ω) with respect to the KS wave functions ϕσ

nk(r) are then calculated in
different parts of the program.

It was already mentioned in section 2.3.3 that the expectation value of ΣGW
x

is the well-known Hartree-Fock exchange term, which can be calculated for the
n-th band at the Bloch vector q according to

〈ϕσ
nq|Σ

σ
x |ϕσ

nq〉 = −

BZ∑

k

occ∑

n ′

∑

IJ

vIJ(k) 〈ϕσ
n ′q+k|ϕ

σ
nqM̃

k
I〉〈M̃k

Jϕ
σ
nq|ϕ

σ
n ′q+k〉 (3.32)

with the projections

〈M̃k
Jϕ

σ
nq|ϕ

σ
n ′q+k〉 =

∫

M̃k∗
I (r)ϕσ∗

nq(r)ϕ
σ
n ′q+k(r)d

3r . (3.33)



3.3. The SPEX code 53

Read in data from density-functional calculation

Construct mixed product basis (MPB)

Calculate matrix elements vIJ(k) of the
Coulomb potential in the MPB

Correlation part ΣGW
c (ω)

Diagonalization of vIJ(k)

yields new basis {Ek
µ(r)}

Polarization function
– Calculate (ImP)IJ(k,ω)

– Hilbert transformation
yields PIJ(k,ω)

– Basis transformation:
PIJ → Pµν

Calculate matrix of

Calculate matrix of

dielectric function ǫµν(k,ω)

screened interaction Wµν(k,ω)

Use contour integration to
calculate 〈ϕnq|Σ

GW
c (ω)|ϕnq〉

Exchange part ΣGW
x

Calculate 〈ϕnq|Σ
GW
x |ϕnq〉

Self-consistent solution of quasiparticle eq. with Newton method

Figure 3.3.: Flow chart of a GW calculation carried out with
the computer code SPEX.
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The first sum on the left-hand side of eq. (3.32) runs over all k points in the whole
Brillouin zone (BZ), whereas the second sum over the occupied states comprises
the states in the valence-band region as well as the core states, which can be
treated as dispersionless bands. Using a formalism derived by Dagens and Perrot
[97], the summation over the core states can thus be simplified considerably. A
scheme for the efficient calculation of the non-local Fock exchange potential can
be found in the article by Betzinger et al. [85].

The first step to obtain the correlation part of the GW self-energy is to calculate
the polarization function which is given in MPB representation by

PIJ(k,ω) =
∑

σ

BZ∑

q

occ∑

n

unocc∑

n ′

〈M̃k
Iϕ

σ
nq|ϕ

σ
n ′q+k〉〈ϕσ

n ′q+k|ϕ
σ
nqM̃

k
J 〉

×
(

1
ω+ ǫσ

nq − ǫσ
n ′q+k + iη

−
1

ω− ǫσ
nq + ǫσ

n ′q+k − iη

)

.

(3.34)

Here, the projections eq. (3.33) were used again and the energies ǫσ
nq and ǫσ

n ′q+k

are the KS eigenvalues from a prior density-functional calculation. The sum
over the BZ in the above expression is difficult to evaluate due to the rational
expression in the brackets. It is more convenient to first calculate the spectral
function SIJ(k,ω) given by

SIJ(k,ω) =
∑

σ

BZ∑

q

occ∑

n

unocc∑

n ′

〈M̃k
Iϕ

σ
nq|ϕ

σ
n ′q+k〉〈ϕσ

n ′q+k|ϕ
σ
nqM̃

k
J〉

× [δ(ω+ ǫσ
nq − ǫσ

n ′q+k) − δ(ω− ǫσ
nq + ǫσ

n ′q+k)]

= −
1
π

(ImP)IJ(k,ω)sgn(ω) ,

(3.35)

which can be related to the imaginary part of the polarization function denoted
(ImP)IJ(k,ω) if expression (3.34) for the polarization function is decomposed
into the Cauchy principal value P and a delta function according to

1
x± iη

= P

(

1
x

)

∓ iπδ(x) . (3.36)

The full polarization function for all frequencies ω ∈ C is then accessible via a
Hilbert transformation

PIJ(k,ω) = P

∫∞

−∞

SIJ(k,ω ′)

ω−ω ′ + sgn(ω)iη
dω ′ . (3.37)

In practice, the calculation of the spectral function has to be converged with
respect to the number of unoccupied states. Likewise, the number of frequen-
cies ω ′ and ω used in the Hilbert transformation and for the representation of
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the polarization function, respectively, enter as convergence parameters in each
GW calculation. Both frequency meshes are dense for frequencies close to zero,
since the frequency-dependent quantities exhibit more structure in this region.
Furthermore, the frequencies ω are chosen along the imaginary axis, whenever
this is possible, since the frequency-dependent quantities show a smooth behav-
ior there and can therefore be sampled with typically 10 or even less then 10
frequency mesh points.

In the next two steps, the polarization function is used to calculate the dielec-
tric function eq. (2.79) which is then inverted to obtain the screened interaction
according to eq. (2.80). Equations (2.79) and (2.80) become matrix equations in
the MPB representation. However, they can be easily calculated, if a represen-
tation in terms of the eigenstates {Ek

µ(r)} of the Coulomb matrix is used. The
basis transformation {Mk

I (r)} → {Ek
µ(r)} involves no additional approximation.

Furthermore, the new normalized basis functions are necessarily orthogonal and
no biorthogonal set has to be constructed. In this new basis the matrix equations
become simple products

ǫµν(k,ω) = δµν −

√

vµ(k)Pµν(k,ω)
√

vν(k) (3.38)

Wµν(k,ω) =

√

vµ(k)ǫ−1
µν(k,ω)

√

vν(k) (3.39)

with vµ(k) denoting the eigenvalue of the Coloumb matrix (3.31). It should be
mentioned that the above definition of the matrix ǫµν(k,ω) is a symmetrized ver-
sion of the dielectric matrix. Although it is not identical with the matrix equation
for the dielectric function obtained directly from the definition eq. (2.79) it can
be shown that the screened interaction remains unchanged by the symmetrized
formulation.

The above calculations can be further optimized, if the eigenvalues of vµ(k)

are ordered according to decreasing size and those matrix elements of ǫµν(k,ω)

and Wµν(k,ω) are neglected, which have indices that are larger than a certain
µ defined by the threshold value vmin = vµ(k). If the eigenvalue vµ(k) is taken
as a measure of the importance of the corresponding eigenfunction Ek

µ(r) of v(r),
this procedure can be interpreted as a restriction to the dominant part of the
electron-electron interaction. It will be demonstrated later on that calculations
converge reasonably fast with the threshold value vmin. Nevertheless, since the
contributions from ΣGW

c (ω) are usually much smaller than those obtained from
ΣGW

x in calculations of the latter the full MPB is always employed.

With the correlation part of the screened interactionWc
µν(k,ω ′) = Wµν(k,ω ′)−

δµνvµ(k) it is now possible to calculate matrix elements of the correlation part
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of the GW self-energy

〈ϕσ
nq|Σ

σ
c (ω)|ϕσ

nq〉

=
i

2π

BZ∑

k

all∑

n ′

∑

µν

〈ϕσ
n ′q+k|ϕ

σ
nqE

k
µ〉〈Ek

νϕ
σ
nq|ϕ

σ
n ′q+k〉

×
∫∞

−∞

dω ′
Wc

µν(k,ω ′)

ω+ω ′ − ǫσ
n ′q+k + iη sgn(ǫσ

n ′q+k)
.

(3.40)

Contrary to the corresponding expression, eq. (3.32), for the matrix elements of
ΣGW

x , eq. (3.40) comprises an explicit integration over frequencies, which has to
be solved numerically. Since the integrand has a lot of structure along the real
axis it is more convenient to integrate along the path depicted in figure 3.4 and
to adapt the frequency argument of the integrand accordingly.

Finally, the matrix elements of ΣGW
c (ω) and ΣGW

x are used to solve eq. (2.96)
self-consistently to obtain the quasi-particle spectrum for a given material with
a standard Newton method. Hence, no energy linearization is needed to solve
eq. (2.96).

3.3.2. Construction of the k mesh

As described in the previous section, the quasi-particle spectrum is calculated
for a given set of k points. However, the expressions in the eqs. (3.32), (3.35) and
(3.40) do not only depend on the Bloch vector k. They comprise summations
over other Bloch vectors q as well as the vectors k + q, for which the KS wave
functions and energies must be known, too. Only an equidistant k mesh contains
the vector k + q for each pair of vectors k and q. Hence, the k mesh used in
SPEX consisting of (Nx ×Ny ×Nz) k points is defined as

{

k =
nx

Nx

bx +
ny

Ny

by +
nz

Nz

bz, ni = 0, . . . , (Ni − 1)

}

(3.41)

Figure 3.4: The contour (red line) for
the frequency integration in eq. (3.40)
in the plane of complex frequencies.
Crosses denote the position of the poles
of Wc

µν(k,ω ′). Circles correspond to the
position of the zeros of the denominator
of the integrand, i.e., poles of the Green
function. The height of the rectangle is
infinitesimally small, the width is deter-
mined by the poles of the Green function
and the position of the Fermi energy EF.

ω ′ ∈ C

ǫσ
nk − EF
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where Ni denotes the number of points in the i-th direction of space and the bi

are the reciprocal lattice vectors.

The k mesh used in a periodic bulk calculation with FLEUR to solve the KS
equations (2.17) only contains k vectors belonging to the irreducible BZ (IBZ),
because the solution at any other k ′ 6∈ IBZ is equivalent to a solution at a rep-
resentative k point contained in the IBZ. The points k and k ′ are related to the
representative from the IBZ by a symmetry operation. The number of symme-
try operations that leave the Hamiltonian in eq. (2.17) invariant determines the
size of the IBZ, which comprises all k vectors whose members are not pairwise
related by such a symmetry operation.

Likewise, the SPEX code exploits time-reversal and spatial symmetries that
leave the k vectors defined in (3.41) unchanged to reduce the number of q points
used in the summations in eqs. (3.32), (3.35) and (3.40). These operations form
a subset of all symmetry operations called the little group which, in turn, gives
rise to a minimal set of non-equivalent q points constituting the extended IBZ
or EIBZ(k) for short for a given k vector. A reformulation of the three equations
(3.32), (3.35) and (3.40) employing the symmetry operations from the little group
can be found in ref. [20]. Furthermore, it is worth mentioning that symmetries
can be exploited in a similar way to obtain the non-local exchange potential
in a density-functional calculation with FLEUR employing hybrid functionals.
Further details can be found in reference [85].

To determine the quasi-particle band structure, the quasi-particle energies
along certain high-symmetry lines of the BZ have to be calculated. From the
discussion above, it is obvious that k points cannot arbitrarily be added to the
k mesh (3.41) used in SPEX. However, the code allows to add one additional k

point k ′ in each calculation. This requires to calculate the KS wave functions and
energies for all points k ′ + k. Therefore, the quasi-particle energy at k ′ has to
be determined in a separate GW calculation, if k ′ is not contained in the mesh
defined by (3.41).

3.3.3. Treatment of the Γ point

The Γ point, i.e. k = 0, is exceptional in the sense that the interaction potentials
vIJ(k), eq. (3.31), and Wµν(k,ω), eq. (3.39), diverge for k → 0. These terms
for k = 0 yield an important contribution to the exchange and correlation self-
energy, eqs. (3.32) and (3.40). Therefore, the Γ point is always part of the k

mesh in GW calculations with SPEX. A numerical treatment of the diverging
contributions is possible, since the matrix elements in eqs. (3.32) and (3.40) have
a finite value at k = 0, because they are obtained via an integration over k. Thus,
the divergent terms (1/k2) integrate to finite volumes in three dimensions. To
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evaluate eqs. (3.32) and (3.40) numerically the k integration is replaced by a sum
over k. To enable an exact treatment of the terms containing the diverging matrix
elements of vIJ(k) and Wµν(k,ω) at k = 0, the summation over k is split into
two parts. One part contains only non-divergent terms and can hence be treated
numerically. The other part comprises all divergent terms but can be evaluated
analytically. Thus, the all-electron accuracy is fully retained since no additional
approximations like a projection onto plane waves is needed.

To calculate matrix elements of the correlation self-energy, eq. (3.40), the sep-
aration into parts with and without diverging matrix elements of Wµν(k,ω) is
achieved by the basis transformation {Mk

I(r)} → {Ek
µ(r)} described in the previous

section. In the resulting matrix expression Wµν(k,ω) for the screened interac-
tion, the divergent contributions are confined to the head and wing elements of
the matrix. These can be treated using k ·p-perturbation theory, ref. [98], which
allows for a full treatment of the divergence. Details of the algorithm can be
found in ref. [22].

To calculate matrix elements of the exchange self-energy, eq. (3.32), the matrix
of the Coulomb interaction vIJ(k) is separated according to ref. [85]

vIJ(k) =
4π
V

1
k2

〈M̃k
I |e

ik · r〉〈eik · r|M̃k
J〉 + v ′IJ(k) . (3.42)

The term v ′IJ(k) is finite at k = 0. Inserted into eq. (3.32) it yields contributions
to the summation over k, which can be carried out numerically. The diver-
gence of vIJ(k) is restricted to the first term in (3.42) with the eigenfunction
eik · r/

√
V , whose k → 0 limit can be represented exactly by the MPB by con-

struction (cf. section 3.1.4). Therefore, it can be evaluated analytically employing
again k ·p-perturbation theory. According to ref. [85] k ·p-perturbation theory

Figure 3.5: Typical form of the inte-
grand in 〈ΣGW

x 〉div =
∫
d3qA(q) in one

dimension close to q = 0. The black
curve shows the exact integrand, the
dashed lines are different approxima-
tions to the true curve obtained by
including (black) or neglecting (red)
zeroth-order terms. Such terms orig-
inate from the products of 1/k2 from
the first term in (3.42) and the terms
linear in k in the expansion of the pro-
jections 〈eik · rϕσ

nq|ϕσ
n ′q+k〉/

√
V within

k ·p-perturbation theory (see text for
more details).

A(q)

−q3 −q2 −q1 q0 q1 q2 q3 q
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yields

Φσ
nkq(r) = e−ikrϕσ

nq+k(r)

= ϕσ
nq(r) + k ·∇kΦ

σ
nkq(r)

+
1
2

kT ·∇k∇T
kΦ

σ
nkq(r) ·k + O(k3)

(3.43)

with

∇kΦ
σ
nkq(r) = −i

∑

n ′ 6=n

〈ϕσ
n ′q|∇|ϕσ

nq〉
ǫσ

n ′q − ǫσ
nq

ϕσ
n ′q(r) . (3.44)

This is used to expand the projections 〈eik · rϕσ
nq|ϕ

σ
n ′q+k〉/

√
V which are then

multiplied with (4π/V)(1/k2) to yield contributions to the exchange self-energy.
Due to the terms linear in k in the above expansion the product of the projections
with (1/k2) will lead to terms of zeroth order in k. To further analyze the
effect of these zeroth-order corrections, the contributions to the exchange self-
energy comprising the divergent parts of vIJ(k) is formally written as 〈ΣGW

x 〉div =
∫
d3qA(q). In figure 3.5, the integrand A(q) is depicted schematically in one

dimension. The black curve shows the exact integrand and the red area below
the curve should be integrated. The dashed lines are approximations to the
integrand obtained numerically, if the true integrand is sampled on a q-point grid
{−q3, . . . ,q3}. The black dashed line contains corrections due to the zeroth-order
term which were neglected in the calculations represented by the red dashed
line. As can be seen from the graph, an integration over the area below the
black dashed line would overestimate the area below the true curve whereas an
integration over the area under the red line would underestimate it.

The size of the error made by neglecting zeroth-order contributions depends
on the k-point sampling of the IBZ and on the width of the peak. The latter is
a material-dependent property (cf. discussion in ref. [20]). Hence, zeroth-order
contributions improve the k-point convergence for some materials whereas for
others they can worsen the convergence. In general, for a reasonably converged
k-point sampling the contributions from k ·p-perturbation theory are small (typ-
ically < 0.1 eV). In calculations of the quasi-particle band structure the contribu-
tions from k ·p-perturbation theory at the Γ point are completely neglected in
this work, because they can lead to numerical instabilities as the energy denom-
inator in (3.44) can become very small at certain k points due to the occurrence
of nearly degenerate bands.

3.3.4. The density of states in GW calculations

The density of states (DOS) is a very useful quantity, because it can be compared
directly to spectra obtained from (inverse) photo-emission spectroscopy (PES).
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This can be understood by looking at the definition of the total DOS D(ω) in
terms of the imaginary part of the many-body Green function given by

D(ω) = −sgn(ω− ǫF)
1
π

∫

d3r Im(G(r, r;ω) ) , (3.45)

where ǫF is the Fermi energy and the prefactor guarantees that D(ω) is always
positive. Inserting the Lehmann representation (2.60) for the Green function into
the above equation leads to

D(ω) =
∑

i

∫

d3r |ψN±1
i (r)|2δ(ω− ǫN±1

i ) . (3.46)

Since the energies ǫN±1
i are the exact excitation energies of the electronic system,

it is clear that D(ω) is, in principle, identical to the spectrum seen in PES.

The results from a density-functional calculation can be used to approximate
the photo-emission spectrum. Inserting the Kohn-Sham Green function (2.82)
into eq. (3.45) yields the following expression for the DOS

D(ω) =
∑

nσ

1
VBZ

∫

BZ

∫

d3r|ϕσ
nk(r)|

2

︸ ︷︷ ︸
=1

δ(ω− ǫσ
nk)d

3k , (3.47)

where VBZ is the volume of the BZ and ǫσ
nk and ϕσ

nk(r) are the KS eigenvalues
and wave function, respectively. Furthermore, a partial or projected DOS (pDOS)
can be introduced. Employing the expansion of the KS wave functions in terms
of the LAPW basis functions the spatial integration in (3.47) can be formally split
into a contribution from the MT spheres and the interstitial region (IR)

∫

d3r|ϕσ
nk(r)|

2 =

∫

MT
d3r|ϕσ

nk(r)|
2 +

∫

IR
d3r|ϕσ

nk(r)|
2 . (3.48)

Since the wave functions inside the MT sphere of atom a are expanded into
spherical harmonics, they can be split into contributions with certain l character

ϕaσ
nk(r) =

∑

l

ϕaσ
nlk(r) . (3.49)

The pDOS is then defined as

Da
l (ω) =

∑

nσ

1
VBZ

∫

BZ

∑

l

paσ
nlk δ(ω− ǫσ

nk)d
3k (3.50)

with paσ
nlk =

∫
d3r |ϕaσ

nlk(r)|
2. Although Da

l (ω) cannot be measured directly in
experiment it allows to analyze photo-emission spectra theoretically and helps to
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better understand, which electronic states contribute to the spectrum in different
energy regions.

The GW approximation yields an improved description of excitation energies.
Hence, a GW calculation should also yield a better approximation of photo-
emission spectra. According to the definition of the DOS, eq. (3.47), it should be
calculated using the imaginary part of the GW Green function that could be in
turn calculated by solving the Dyson equation (2.74). However, this is numer-
ically expensive as the GW self-energy must be calculated at many different k

points to achieve a sufficient resolution in reciprocal space. To approximate the
photo-emission spectrum obtained from a GW calculation the KS eigenvalues
in eqs. (3.47) and (3.50) are therefore simply replaced by the real part of the
quasi-particle energies thus neglecting the imaginary part of the GW self-energy
corrections.

In SPEX, spatial symmetry operations are again exploited to carry out the
integration over the BZ in eqs. (3.47) and (3.50) as weighted sum over k points
in the IBZ. This sum can be evaluated either by the tetrahedron method that
interpolates between the energies ǫσ

nk or be replacing the delta functions by a
Gauss distribution function for each energy, which can then be summed over.

3.3.5. The dielectric function within the RPA

The effect of an external perturbation on the N-electron system of a solid, for
example originating from the oscillating electric field of a beam of light in opti-
cal absorption spectroscopy, can be described by an external potential φext(r, t),
which, in general, is time-dependent2. Assuming that φext(r, t) can be separated
according to

φext(r, t) = φ
(0)
ext (r) + φ

(1)
ext (r, t) (3.51)

and the second term is small and varies slowly, linear-response theory can be
used to describe the dynamics of the N-electron system. Thus, the density is
expanded in orders of φ(1)

ext (r, t), i.e. n(r, t) = n(0)(r) + n(1)(r, t) + . . . , where the
first-order correction is given by

n(1)(r1, t1) =

∫∫

R(r1, r2; t1 − t2)φ
(1)
ext (r2, t2)d3r2 dt2 (3.52)

Here, R(r1, r2; t1 − t2) is the response function

R(r1, r2; t1 − t2) =
δn(r1, t1)
δφext(r2, t2)

∣

∣

∣

∣

φext(r2,t2)=φ
(0)
ext (r2)

(3.53)

2Throughout this section, the external potential is denoted by φ in accordance with the notation
introduced in appendix A.1.
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introduced in (A.14). Causality requires R(r1, r2; t1 − t2) = 0 for t1 < t2, because
the density cannot be influenced by later variations of the potential.

Changes in the density induced by the external potential lead to a polarization
of the electronic system of the solid. Consequently, the total potential φtot(r, t) of
the system now becomes a sum of the external potential and a potential φind(r, t)
originating from the induced changes in the density

φtot(r, t) = φext(r, t) + φind(r, t) . (3.54)

In linear-response theory, the quantity relating the total potential to the external
potential is the microscopic dielectric function ǫ(r1, r2; t1 − t2)

φtot(r1, t1) =

∫∫

ǫ−1(r1, r2; t1 − t2)φext(r2, t2)d3r2 dt2 . (3.55)

As demonstrated in appendix A.1, eq. (A.17), the microscopic dielectric function
and the response function R(r1, r2; t1 − t2) are related

ǫ−1(r1, r2; t1 − t2) = δ(r1 − r2)δ(t1 − t2) +

∫

v(r1, r3)R(r3, r2; t1 − t2)d
3r3 (3.56)

where v(r1, r2) = 1/|r1 − r2| is the Coulomb potential. In frequency space, the
response function can be expressed in terms of v and the polarization function
P

R(r1, r2;ω) = P(r1, r2;ω)

+

∫∫

P(r1, r3;ω) v(r3, r4) R(r4, r2;ω)d3r3 d
3r4 .

(3.57)

according to eq. (A.15).

Here, the polarization function entering eq. (3.57) is approximated by eq. (2.83).
As explained in section 2.3.3 of chapter 2, equation (2.83) is obtained from the
definition of the RPA polarization function, eq. (2.78), if the Hartree Green func-
tion GH is replaced by the KS Green function G0 defined in (2.82). Adapting the
symbolical writing introduced in eq. (2.75), the polarization function becomes
P = −iG0G0 and the response function can be written as

R
RPA
= −iG0G0 − (i)2G0G0vG0G0 − (i)3G0G0vG0G0vG0G0 + . . . . (3.58)

Hence, the full response function is approximated by a series of electron-hole
pairs represented by the products of two KS Green functions in the above ex-
pression that interact with other electron-hole pairs via the Coulomb interaction
v. In particular, the electron and the hole composing a single pair do not in-
teract with each other. These kind of interactions could be taken into account
via a vertex correction in calculations for the polarization functions according to
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eq. (A.24). However, this is beyond the scope of the RPA where the vertex is set
to one. Consequently, excitonic effects, i.e. bonding between an electron and a
hole, are not included in the response function calculated within the RPA.

The microscopic dielectric function ǫ is related to the macroscopic dielectric
function ǫM, which can be measured in absorption spectroscopy. A Fourier trans-
form of (3.56) yields

ǫ−1
GG ′(k,ω) = δGG ′ + vG(k)RGG ′(k,ω) , (3.59)

where G is a reciprocal lattice vector while k is a vector in the first BZ. From this
expression, ǫM(ω) is obtained according to [99, 100, 101] by

ǫM(ω) = lim
k→0

1
[ǫ−1

GG ′(k,ω)]GG ′=0

. (3.60)

An external perturbing field inducing fluctuations on the scale of the inter-atomic
distances in the material may give rise to internal density variations and thus
microscopic internal fields. If these kind of density variations occur, the polariza-
tion function depends explicitly on the positions r and r ′ which leads to non-zero,
off-diagonal matrix elements of P in reciprocal space. The polarization function
enters eq. (3.57) for the response function which, in turn, yields the inverse of the
microscopic dielectric function according to eq. (3.56). Hence, the inverse of ǫ is
also not diagonal in reciprocal space and all matrix elements contribute to ǫM in
(3.60). This is called local field effect (LFE). The LFE can be readily taken into
account in the RPA-based calculations for ǫM and is included in all calculations
discussed later-on.

In SPEX, the microscopy dielectric function is calculated in matrix form ac-
cording to eq. (3.38) in a representation of the eigenstates of the Coulomb matrix
vIJ(k), eq. (3.31). Since the first eigenvector of vIJ(k) corresponds to the projec-
tion of eik · r/

√
V onto the biorthogonal MPB, the head element of the inverse of

the dielectric matrix is equal to [ǫ−1
GG ′(q,ω)]GG ′=0. Inserting the head element of

the inverse of the dielectric matrix into eq. (3.60) thus leads to an estimate for
ǫM(ω) within RPA.





CHAPTER 4

PEROVSKITES – A SHORT INTRODUCTION

The German mineralogist Gustav Rose was the first to describe the mineral with
the stoichiometric composition CaTiO3 that he had discovered in the Ural Moun-
tains in 1839 [102]. Rose gave this mineral the name "Perovskite" after the Russian
politician and mineralogist L. A. Perovski. Today, the name "Perovskite" not only
denotes this mineral but also the structural family of compounds with the stoi-
chiometric composition ABO3, where A and B are typically metals and O is oxy-
gen. In particular, B usually stands for a transition metal, which is "an element
whose atom has an incomplete d sub-shell, or which can give rise to cations with
an incomplete d sub-shell" according to the definition of the International Union
of Pure and Applied Chemistry (IUPAC). Consequently, the electronic d states
of B play a crucial role in the formation of the valence band and the low-lying
conduction-band states of perovskites.

The purpose of this chapter is twofold: the first section delivers some in-
sight into the crystal structure of perovskites focusing in particular on the room-
temperature (RT) crystal structures of the materials examined in this work. The
structural composition is important because it strongly influences the formation
of the electronic structure. This interplay between the crystal and the electronic
structure together with various additional aspects of the latter is discussed in
the remaining sections of this chapter in the context of model approaches. This
will be helpful to better understand and interpret the results of calculations from
first principles presented in the following chapters. Parts of this chapter were
inspired by the book of Huheey [103] and the review article by Imada, Fujimori
and Tokura [104].

65
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A

B

O

Figure 4.1.: Two representations of the crystal structure of the cu-
bic perovskite composition ABO3. The left picture emphasizes the
formation of strings of BO6 octahedra extending infinitely in three
dimensions. The right picture shows the unit cell used for electronic
structure calculations in this work.

4.1. Crystal structure

The crystal structures of many ABO3 compositions were first described in the
pioneering work of Goldschmidt and co-workers, who made and studied a large
number of the first synthetic perovskites in 1924-26 [105]. They worked with a
purely ionic model of hard spheres which will be used in this section as well.
Based on this model, the cubic crystal phase of a perovskite in the following
called ideal perovskite structure can be described by a very simple arrangement
of ions illustrated in figure 4.1. The cubic structure is typified not by CaTiO3 for
reasons discussed later on in this section but by the crystal structure of SrTiO3

at room temperature (RT). In SrTiO3 the Ti4+ ions (the B cations) are located at
the corners, the Sr2+ ions (the A cations) at the center of a perfect cube. Oxygen
anions are placed at the center of the twelve cube edges, giving corner-shared
strings of TiO6 octahedra, which extend infinitely in three dimensions. The TiO6

octahedra are perfect with 90◦C angles and six equal Ti-O bonds, whereas a Sr2+

ion is surrounded by twelve equidistant oxygen anions. The crystal lattice has
the space group Pm3̄m.

Goldschmidt’s empirical studies of the crystal structures of perovskites played
a key role in formulating some very fundamental principles about the formation
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of ionic crystals:

• The radius of the ions is fundamental to the structure.

• The radius ratio Rcation/Ranion determines the coordination number of the
cation (= the polyhedron formed).

• The packing of polyhedra follows simple rules (later codified by Pauling
[106]).

If ions are considered to be rigid spheres, the crystal structure of SrTiO3 can also
be characterized as cubic close-packed layers of Sr2+ and oxygen ions along the
cubic [111] direction and some of the resulting octahedral holes are occupied
by Ti4+ ions. Goldschmidt then realized that the ionic radii RA, RB, and RO in
the ABO3 composition of the ideal perovskite structure are related by symmetry.
Based on this observation he introduced the concept of the tolerance factor t
defined by

t =
RA + RO√

2 · (RB + RO)
, (4.1)

where t = 1 for the ideal perovskite structure in the ionic model. Based on his
measurements of ionic radii Goldschmidt predicted that ABO3 compositions with
0.8 < t 6 1.0 crystallize in the ideal perovskite structure, whereas perovskites
with a smaller tolerance factor form orthorhombic or rhombohedral lattices.

Material
tolerance

factor

RT crystal

structure.

CaTiO3 0.96 orthorhombic [107]
SrTiO3 1.00 cubic [108]
BaTiO3 1.06 tetragonal [109]
BaZrO3 1.00 cubic [110]
BaHfO3 1.00 cubic [111]
PbTiO3 1.01 tetragonal [112]
PbZrO3 0.96 orthorhombic [113]
PbHfO3 0.96 orthorhombic [114]
LaCrO3 0.98 orthorhombic [115]
LaMnO3 0.96 orthorhombic [116]
LaFeO3 1.00 orthorhombic [117]

Table 4.1.: List of tolerance factors t calculated
with the ionic radii after Shannon [118] and the
crystal structure of the perovskite transition-metal
oxides (TMOs) investigated in this work deter-
mined experimentally at room temperature (RT).

Despite the simple form of the
tolerance factor, the assumption
of Goldsmith cannot be easily ap-
plied to the perovskites investi-
gated in this work. First of all,
Goldschmidt did not determine
the ionic radii of all metal cations
contained in the ABO3 composi-
tions examined in this work. On
the other hand, the ionic radii ob-
tained by Shannon [118], which
are considered the most accurate
today, are determined differently
than those by Goldsmith. The de-
tails of the two definitions of the
ionic radii should not concern us
here. However, it is remarkable
that all ABO3 compositions inves-
tigated here, which do acquire
the ideal perovskite structure at
room temperature (RT), have a tol-
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La

Mn

O

Figure 4.2.: Unit cell of LaMnO3 in the orthorhombic crystal phase.
Atomic positions were determined experimentally at RT [116]. The
picture on the left shows the tilting and rotation of the oxygen
octahedra. On the right, the cubic unit cell is indicated to clarify the
displacement of the La atoms (A cations) from the high-symmetry
position in the cubic phase.

erance factor of exactly 1.00 when calculated using the ionic radii according to
Shannon. Furthermore, all perovskites listed in table 4.1 that do not crystallize
in the ideal perovskite structure at RT have a tolerance factor t < 1.00 in agree-
ment with the trend observed by Goldschmidt. The only exceptions are LaFeO3,
BaTiO3, and PbTiO3. The reason why the crystal structure of LaFeO3 is not pre-
dicted correctly is due to the neglect of covalent contributions in the purely ionic
model of Goldschmidt. The formation of the RT crystal structure of BaTiO3 and
PbTiO3 is discussed in a later part of this section.

The formation of the orthorhombic crystal structure of the perovskites listed
in table 4.1 can be at least explained qualitatively within the simple ionic model.
With decreasing A-cation size a point will be reached, where the cations will
be too small to remain in contact with the oxygen anions in the cubic close-
packed perovskite structure. One possibility to bring at least some A cations
into direct contact with the oxygen anions is the tilting of the BO6 octahedra
and an associated displacement of the A cation. This is exactly the situation
observed in the perovskite mineral CaTiO3, where a tilt of the TiO6 octahedral
along the b and c axes of the cubic unit cell of the ideal perovskite structure
leads to the formation of a lattice with an orthorhombic unit cell shown in figure
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PbTiO3 BaTiO3

a
a

c
c

x

z

Figure 4.3.: Schematic drawing of the unit cells of tetragonal PbTiO3

and BaTiO3 projected onto the xz plane. The cubic unit cell is elon-
gated along the [001] direction. Covalent contributions to the bond-
ing between Pb and O increase the elongation in PbTiO3 compared
to BaTiO3. Arrows denote the displacement of atoms from the
high-symmetry positions of the cubic crystal phase. (Distortions
and displacements from the cubic phase are not to scale).

4.2. Tilting along all axes would reduce the symmetry even further resulting
in a rhombohedral crystal structure, which is observed, e.g., in BaTiO3 below a
critical temperature of 183 K [109].

To understand the formation of the tetragonal crystal structure of BaTiO3 and
PbTiO3 one has to go beyond the simple ionic model and consider vibronic inter-
actions, i.e., the coupling of electronic and nuclear motions of pseudo-Jahn-Teller

type. A thorough discussion of the various Jahn-Teller effects is beyond the scope
of this work. The discussion will therefore be restricted to a characterization of
the effects determining the crystal structure of the two compounds BaTiO3 and
PbTiO3. In his work, Bersuker [119] proved that the presence of two electronic
states of opposite parity close in energy of which one is filled and the other
is not leads to a lattice instability favoring atomic displacement. The resulting
crystal structures of BaTiO3 and PbTiO3 are drawn schematically in figure 4.3.
The cubic unit cells are elongated along the [001] direction and the small arrows
indicate additional shifts of the oxygen anions and the Ti4+ ions away from the
high-symmetry positions of the ideal perovskite structure. The loss of inversion
symmetry causes a spontaneous crystal polarization. Hence, the two compounds
become ferroelectric. Apart from the role of the pseudo-Jahn-Teller effect, Cohen
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[120] emphasized the importance of the hybridization between the Ti 3d and
the oxygen 2p states as well as hybridization between oxygen and lead states in
PbTiO3 to stabilize the ferroelectric crystal structures of both compounds.

Finally, it should be mentioned that the tetragonal as well as the orthorhombic
phases of the crystal structures of the perovskites in table 4.1 represent only small
deviations from the crystal structure of the ideal perovskite. In particular, the
coordination of the A and B cations is left unchanged as can be seen in figure 4.2
for the orthorhombic structure of LaMnO3. Therefore, these non-cubic phases of
the crystal structure are often called distorted perovskite structures. In the next
sections, it will be discussed how the octahedral coordination of the transition
metal B cation to the surrounding O2− ions affects the the electronic d states of
the B cation.

4.2. Perovskites and crystal field theory

The origins of crystal field theory (CFT) date back to the work of Bethe from
1929 [121] continued by Van Vleck in the 1930s [122, 123]. CFT is a model that
describes the electronic structure of coordination complexes. These are structures
consisting of a central atom or ion (usually metallic), bonded to a surrounding
array of molecules or anions called ligands. In CFT, the ligands are approximated
as structureless point charges whereas the central atom is described quantum-
mechanically. Consequently, the ligands are considered to interact with the nu-
cleus of the central atom solely via the electrostatic interaction. On the other
hand, the electrons residing in the orbitals of the central atom will feel the repul-
sion from the electrostatic field, the crystal field, generated by the ligands. In the
perovskites the transition metal B cation together with the oxygen O2− ions form
the octahedral BO6 coordination complex as shown in figure 4.1. The results of
the quantum-mechanical description of the d-electronic states of the B cation as
obtained from CFT will be outlined in this section.

Figure 4.4 shows the angular-dependent parts of the probability amplitude of
the five 3d states of a transition metal cation. The circles symbolize the struc-
tureless point charges representing the oxygen ions of the BO6 complex in CFT.
Obviously, the repulsion between these charges and an electron residing in the
dz2 or dx2−y2 states will be larger than for an electron in the other three states
dxy, dxz, and dyz, because the corresponding probability amplitude of the first
two states point into the direction of the position of the O2− ions and those of the
latter three extend into the space between them. The effect on the energy levels
of the corresponding d states is illustrated in figure 4.5 and can be described in
two steps: first, the five states, which are degenerate in the atom as shown in 4.5
(a), are destabilized in the electrostatic field of the ligands, figure 4.5 (b). The
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Figure 4.4.: Probability amplitude of the electrons in the d states of
the central B cation in octahedral complexes BO6. The colors red
and green indicate a change of the sign of the corresponding wave
functions. Oxygen atoms are represented as structureless point
charges at the corner of the octahedra.

destabilization energy E0 corresponds to the repulsion of the d electrons by the
ligands, assuming that they generate a spherically symmetric field around the
transition metal ion. However, the electrostatic field seen by the d electrons is
not spherically symmetric due to the spatial arrangement of the ligands. Con-
sequently, the energy levels of the dz2 and dx2−y2 states are further destabilized,
whereas the other three states gain energy. This results in a splitting of the five
degenerate levels, figure 4.5 (c). The wave functions of the threefold degenerate
dxy, dxz, and dyz states transform according to the irreducible representation
T2g of the point-group symmetry Oh of the octahedral crystal field. Therefore,
the corresponding d orbitals are named t2g states. The wave functions of the
remaining two d orbitals transform according to the irreducible representation
Eg and are therefore denoted eg states, respectively. The energy difference ∆
between the t2g and eg states is called crystal-field splitting energy.

The simple idea that the octahedral crystal field induces an energy splitting
between the levels of the formally degenerated d orbitals can be easily extended to
distorted perovskite structures: any distortion from the ideal perovskite structure
will reduce the symmetry of the octahedral crystal field. This will in turn lift



72 4. Perovskites – a short introduction

the degeneracy between the d states labeled t2g and eg. This effect is pictured
in figure 4.5 (d) and (e) for the case of the tetragonal and the orthorhombic
perovskite structures introduced in the previous section. As discussed before,
it is assumed that the deviations from the ideal perovskite structure are small.
Hence, the deviations from the octahedral symmetry of the crystal field are also
small and the induced splitting is not as big as the crystal-field splitting. In
general, the strength of the crystal field and the resulting crystal field splitting
depends on the following aspects:

1. The number and geometrical arrangement of the ligands. The importance of the
geometrical arrangement was already emphasized in the discussion above.
In a different geometrical arrangement orbitals other than dxy, dxz, and dyz

can be energetically favored. For example, in a tetrahedrally coordinated
complex the d states split into t2g and eg states, too, but their energetic or-
der is reversed with respect to the octahedral case. Furthermore, a smaller
number of ligands would generate a smaller electrostatic field and the re-
sulting splitting will be smaller.

2. The nature of the ligands. Ligands with a larger charge or a large electronega-
tivity induce a larger crystal field splitting. Since oxygen is the only ligand
in all compounds examined in this work, this aspect will not be discussed
in detail here.

3. The oxidation state of the B cation. If a central B cation is replaced by another
cation with a higher oxidation state, the electrostatic attraction causes the
ligands to move closer to the new B cation. This enlarges the repulsion
between the ligands and the d-electronic states. Consequently, the crystal
field splitting is enhanced.

The electronic configuration of the BO6 coordination complex can now be ob-
tained by distributing the N d electrons of the B cation among the t2g and eg

states. For N 6 3 each t2g state will by singly occupied by an electron. Further-
more, the electrons’ spins are supposed to align parallel maximizing the total
spin and total angular momentum in agreement with Hund’s rules. For the
fourth, fifth etc. electron there are two possibilities: it can either occupy an eg

state paying the price of the additional energy ∆ or it can occupy a t2g state.
Since all t2g states were already populated by one electron, the energy arising
from the strong Coulomb repulsion between two electrons in the same state has
to be paid in the latter case. For small ∆, all d states first are singly occupied.
In this case, Hund’s first and second rule are applicable to all d states such that
all electronic spins of the single electrons are aligned parallel. Therefore, this
electronic configuration is called high-spin state. If ∆ is large, all t2g states will
be doubly occupied before eg states will be populated. Thus, Hund’s rules have
to be applied to t2g and eg states separately and the resulting electronic configu-
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Figure 4.5.: Sequence of the energy levels of the B cation’s d states
in a BO6 coordination complex: (a) in the free atom, (b) in a spher-
ically symmetric ligand field, (c) in an octahedral ligand field with
(d) tetragonal, and (e) orthorhombic distortions. E0 and ∆ denote
the destabilization energy and the crystal field splitting, respec-
tively.

ration is called low-spin state. Despite its simplicity, this model of the electronic
structure obtained from CFT successfully described the magnetic behavior of
many coordination complexes.

In CFT, it depends solely on the strength of the crystal field splitting which
configuration will be favored. However, in solids there can exist other important
energy contributions like the spin-orbit coupling. In heavy rare-earth elements,
the spin-orbit coupling can be very strong. Furthermore, the f electrons are usu-
ally more localized than the d electrons. Therefore, they are screened from the
crystal field by the outer s, p, and d electrons. Consequently, the f electrons
are less affected by the crystal field than the d electrons and the spin-orbit cou-
pling becomes larger than the crystal field splitting energy. In the compounds
examined in this work, the spin-orbit coupling on the site of the B cation is
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weak compared to the crystal field splitting. Therefore, the main results from
the analysis of the electronic structure within CFT should hold at least qualita-
tively. However, it will be seen that a quantitative description of the electronic
structure of perovskite TMOs also requires to take into account covalent mixing
of the oxygen p wave functions with the d wave functions of the B cation. This
is beyond the simple ionic model of CFT. It can be described within the ligand
field theory (LFT), which can be considered an extension of CFT introduced by
Hartmann and Ilse in 1951 [124]. For example, LFT allows to take into account
the polarizability and field intensity of the ligands as obtained from experimen-
tal measurements and is therefore a semi-empirical theory. It can yield a much
more quantitative description of the electronic structure of the central atom of
a coordination complex. However, only the central atom is treated quantum-
mechanically like in CFT.

Van Fleck, one of the founders of CFT, already pointed out in 1935 [123] that
CFT and its descendants are only special cases of the more general molecular or-
bital (MO) theory yielding a fully quantum-mechanical description of the central
atom and the ligands in a coordination complex. To obtain a deeper understand-
ing of the electronic structure of perovskites, the basic results from MO theory
obtained for an octahedral coordination complex will be discussed in the next
section.

4.3. Perovskites and molecular orbital theory

The basic ideas of molecular orbital (MO) theory are quite different in spirit from
those of CFT or LFT: if isolated atoms are brought together to form molecules or
coordination complexes, the atomic orbitals (AOs) of the distinct atoms will begin
to overlap. Thus, the AOs combine to form orbitals, which extend over the whole
complex and contain the valence electrons formally occupying the distinct AOs.
These new orbitals are called molecular orbitals (MOs). The electrons contained
in an MO are delocalized over the whole complex. Hence, they can now move
inbetween the atoms, which ties them together and thus stabilizes the molecule
or coordination complex.

The first steps towards the formulation of the MO theory were made by Hund
[125] and Mulliken [126] in the late 1920th. Therefore, the MO theory was first
called Hund-Mulliken theory. The word "orbital" was introduced by Mulliken in
1932 [127]. However, it was Lennard-Jones, who first applied MO theory quan-
titatively in 1929 [128] deriving the electronic structure of the oxygen molecule.
More importantly, in his later work [129, 130, 131] he established the MOs as
eigenfunctions of the self-consistent field Hamiltonian of the Hartree-Fock equa-
tions. This was the point when MO theory became fully rigorous and consistent.
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In Hartree-Fock theory, anN-electron wave function is computed as a single de-
terminant of single-electron wave functions. The advantage of the Hartree-Fock
method is that the single-electron wave functions are determined self-consistently.
The major drawback is that the electrons apart from fulfilling the Pauli exclusion
principle are treated as statistically independent. Today, there are more sophis-
ticated wave function-based approaches that incorporate correlation effects to
some degree, e.g., configuration interaction or the coupled cluster approxima-
tion. These methods are much more accurate but they are also computationally
expensive because they scale unfavorably with the system size. Hence, they are
mostly used for the quantitative description of the electronic structure of atoms
and molecules. The main results of MO theory can be derived qualitatively
from a much simpler ansatz by Lennard-Jones who suggested to construct the
molecular orbitals from linear combinations of atomic orbitals (LCAO ansatz). Fur-
thermore, the LCAO ansatz allows a direct graphical interpretation of the results
in terms of LCAO-MO diagrams. The approach will be applied in this section to
gain further insight into the electronic structure of the BO6 coordination complex
of perovskites, but the basic concepts and terminologies are introduced by first
looking at the simplest molecule possible: the H+

2 -molecule.

In a gedankenexperiment an H+
2 -molecule in the ground state can be con-

structed from an H atom with the electron in the 1s orbital and an H+ ion (a
proton). In the molecule the two protons at the sites A and B are indistinguish-
able. The 1s orbitals at the two sites are given by

φi(ri) =
1

√

πa3
0

e−ri/a0, i = A,B , (4.2)

where a0 is the Bohr radius. Here, the origin of the coordinate system is placed
in the center of gravity of the two protons. Thus, the coordinates of the electron
occupying φi(ri) are given by ri = r± 1

2R, where the vector R connects the two
protons and ri = |ri|. From the LCAO ansatz a MO Ψ(r,R) for the H+

2 -molecule
is obtained as linear combination of the 1s orbitals

Ψ(r,R) = c1φA(rA) + c2φB(rB) (4.3)

with R = |R|. The MO has to be normalized

1 !
=

∫

|Ψ(r,R)|2 d3r

= c2
1

∫

|φA(rA)|2 d3r + c2
2

∫

|φB(rB)|2 d3r + 2 c1c2 SAB(R) .
(4.4)

The overlap integral SAB(R) is defined as

SAB(R) =

∫

φA(rA)φB(rB)d3r . (4.5)
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Figure 4.6.: Left: The linear combination of the 1s orbitals φA and
φB (black dashed lines) of two H atoms yield a bonding MO Ψb

(red) and an anti-bonding MO Ψa (blue) for the H+
2 -molecule.

Right: Probability distribution of an electron in the bonding and
anti-bonding MO.

Since the 1s orbitals are already normalized, the first two integrals in (4.4) equal
one. Furthermore, the relation |c1|

2 = |c2|
2 = |c|2 holds due to the symmetry of

the molecule. Since the MO Ψ(r,R) has to be either symmetric or anti-symmetric
with respect to the permutation of the two 1s orbitals, it follows that c1 = ±c2.
In a shorthand notation omitting the spacial arguments of the wave functions
the resulting two MOs of the H+

2 -molecule in the ground state are

Ψb =
1√

2 + 2SAB

(φA + φB) , (4.6)

Ψa =
1√

2 − 2SAB

(φA − φB) . (4.7)

The indices b and a indicate that the first wave function is a bonding state, whereas
the second one is anti-bonding. The terminology becomes clear by looking at the
probability distribution of the single electron in the molecule given by |Ψb|

2 and
|Ψa|

2, which are pictured in figure 4.6. There is a finite probability to find the
electron occupying Ψb between the two protons. The attraction between the
protons and the electron thus holds the molecule together. Furthermore, the
electron in Ψb can move in a larger region in space compared to an electron in
a 1s orbital. According to the uncertainty relation this leads to a decrease of
the expectation value of the momentum operator p = 〈p̂〉. Hence, the kinetic
energy of the electron is diminished which further stabilizes the H+

2 -molecule.
The opposite holds for an electron occupying Ψa. The probability to find the
electron in between the two protons is decreased and its kinetic energy is equal
to or even larger than that of an electron in a 1s orbital.
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Figure 4.7.: A 3dxy orbital with two 2p orbitals projected onto the
xy plain. The 2py orbital on the left has a finite overlap (shaded
area) with the 3dxy orbital, whereas the overlap with 2px on the
right is zero due to spatial orientation and symmetry of the orbitals.

In principle, MOs for larger molecules or structures like the BO6 coordina-
tion complex in perovskites can be constructed in the same way as for the H+

2 -
molecule. The only difference is that the overlap between a larger number of
AOs with different character s, p, d has to be taken into account. Typically,
only the AOs constituting the valence states are considered in the LCAO ansatz.
Furthermore, only those AOs with a finite overlap can form a bonding and an
anti-bonding MO and it depends on the spatial orientation and the symmetry of
the AOs if they have a finite overlap. An example is given in figure 4.7, where
a 3dxy orbital and a 2py orbital have a finite overlap due to their relative ori-
entation, but the overlap of the 3dxy with the corresponding 2px orbital is zero.
Hence, the number of linear combinations of AOs in the LCAO ansatz for the
MOs can be reduced if the symmetry and spatial orientation of the AOs is taken
into account.

In the construction of MOs for the BO6 coordination complex of perovskites
the symmetry of the AOs is exploited in the following way. First, the AOs of the
ligands are combined to form MOs Φ that transform after the irreducible rep-
resentations of the symmetry group Oh of the octahedral coordination complex.
In the second step, the MOs Ψ of the whole complex are constructed as linear
combinations of the ligand MOs Φ and the AOs of the central B cation φ,

Ψ = c1φ + c2Φ . (4.8)

The advantage of this procedure is that the AOs φ can also be classified according
to the irreducible representations of the symmetry group Oh and only those AOs
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Figure 4.8.: Global coordinate system X, Y,Z and local ligand coor-
dinate systems x,y, z, of the BO6 coordination complex. The central
atom is represented by a black circle. The ligands drawn as empty
circles are labeled by the numbers 1, . . . , 6.

φ and ligand MOs Φ transforming after the same irreducible representation have
a finite overlap. This can be proved rigorously using group theory (cf. [132]).

In order to explain the construction of the ligand MOs it is useful to first
introduce a notation for the ligand AOs of the BO6 coordination complex. Figure
4.8 illustrates the choice of the global and local ligand coordinate systems and the
ligand numeration. The z axes of the ligand coordinates are directed towards
the central atom, while the orientation of the remaining axes may be chosen
randomly. The 2s and 2pz orbital of each oxygen ligand hybridize to form two
sp-hybrid orbitals. One sp orbital is oriented along the z direction and the other
points into the −z direction. Due to this spatial orientation only one sp orbital
can form a σ bond with the AOs of the B cation. Thus, six sp orbitals, one from
each ligand, are used in the construction of the ligand MOs. According to the
conventions of MO theory, these orbitals are called σ orbitals because they are
σ bonding. Here, the orbitals are labeled with the number of the ligand, for
instance, σ1 means the σ orbital of the first oxygen ligand. The 2px and 2py

orbitals of the oxygen ligands are not affected by the hybridization of the 2s and
2pz orbital. They can form π bonds with the 3d orbitals of the central B cation.
Therefore, the 2px orbital of the first ligand is denoted by π1x, 2py is named π1y

and so on.
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Type of

symmetry
φ Φσ Φπ

A1g s (1/
√

6)(σ1 + σ2 + σ3 + σ4 + σ5 + σ6) —

A2u — — —

T1u px (1/
√

2)(σ2 − σ5)
1
2 (π1x − π4y − π3x + π6y)

py (1/
√

2)(σ3 − σ6)
1
2 (π1y − π4x − π2y + π5x)

pz (1/
√

2)(σ1 − σ4)
1
2 (π2x − π5y + π3y − π6x)

Eg dz2 (1/
√

12)(2σ1 + 2σ4 − σ2 − σ3 − σ5 − σ6) —

dx2−y2
1
2(σ2 + σ5 − σ3 − σ6) —

T2g dxy — 1
2 (π2y + π5x + π3x + π6y)

dxz — 1
2 (π1x + π4y + π2x + π5y)

dyz — 1
2 (π1y + π4x + π3y + π6x)

T2u — — 1
2 (π1y + π4x − π3y − π6x)

— — 1
2 (π2x + π5y − π1x − π4y)

— — 1
2 (π3x + π6y − π2y − π5x)

T1g — — 1
2 (π1x − π4y + π3x − π6y)

— — 1
2 (π2y − π5x + π1y − π4x)

— — 1
2 (π2x − π5y − π3y + π6x)

Table 4.2.: Atomic orbitals φ of the central B cation and linear combinations Φσ and Φπ

of the ligand MOs σ and π for different types of symmetry of the Oh group for the BO6

coordination complex of perovskites (taken from reference [132]).
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Altogether, the ligands contribute 18 orbitals, 6 σ and 12 π orbitals, which are
combined to yield an equal number of ligand MOsΦ listed in table 4.2 taken from
reference [132]. Table 4.2 also lists the AOs φ of the central B cation. All orbitals
φ and Φ are ordered with respect to their transformation after the irreducible
representation of the symmetry group Oh. Typically, the AOs and ligand MOs are
labeled according to the corresponding irreducible representation, e.g., the s AO
of the central B cation and the ligand MO (1/

√
6)(σ1+σ2+σ3+σ4+σ5+σ6) are both

named a1g orbitals. Here, the small latter is used to distinguish the name of the
MOs from the irreducible representation. All ligand MOs transforming according
to the same irreducible representation are degenerate. This also applies to the
AOs φ. From the classification in table 4.2 it becomes immediately clear, which
linear combinations of ligand MOs with AOs of the central B cation will have
a finite overlap. They can be used to construct MOs Ψ of the BO6 coordination
complex according to eq. (4.8). In particular, the three t1g and the three t2u

ligand orbitals do not overlap with any of the AOs of the central B cation. Hence,
they are not affected during the formation of the MOs and contribute only non-
bonding MOs.

If the MOs Ψ of a molecule or coordination complex as well as the Hamiltonian
Ĥ of the system are known, the energy of the MOs can be calculated according
to

E =

∫
Ψ∗HΨdτ
∫
Ψ∗Ψdτ

. (4.9)

The order of the energy levels can be illustrated in a LCAO-MO diagram. This
is exemplified first for the H+

2 -molecule with the Hamiltonian

HH+ = −
1
2
∇r −

1
rA

−
1
rB

+
1
R

, (4.10)

in the Born-Oppenheimer approximation. The energy of the electron in the states
Ψb and Ψa for a certain distance between the protons can be written as

Eb(R) =
HAA(R) +HAB(R)

1 + SAB(R)
, Ea(R) =

HAA(R) −HAB(R)

1 − SAB(R)
(4.11)

Figure 4.9: LCAO-MO diagram of the
H+

2 -molecule. Assuming that the over-
lap integral between the 1s AOs is small
(see text for further details), the energy
of the bonding MO Ψb is lowered by
an amount ∆E with respect to that of
the 1s AOs and the energy of the anti-
bonding MO Ψa is increased by the
same amount.

Ψa

Ψb

E

1s1s

∆E

∆E
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with

HAA(R) =

∫

φ∗
A(rA)HH+φA(rA)d3r , (4.12)

HAB(R) =

∫

φ∗
A(rA)HH+φB(rB)d3r . (4.13)

Assuming that SAB(R) ≪ 1, SAB(R) can be neglected in (4.11). For the ground-
state equilibrium distance R0 between the protons the distribution of the resulting
energies of the MOs Ψb and Ψa and the constituting 1s orbitals is shown in the
LCAO-MO diagram figure 4.9. The energy of the binding MO Eb(R0) is lowered
by the energy ∆E = −HAB(R0) with respect to the energy HAA(R0) of the 1s
orbital and the energy of the anti-binding MO Ea(R0) is increased by the same
amount.

In the same manner it is possible to calculate the energies of the MOs of
the BO6 coordination complex. With the knowledge of the ligand MOs and
the AOs of the B cation forming the MOs of the complex and some additional
considerations discussed below, it is possible to construct a LCAO-MO diagram
of such a complex without detailed computations. Figure 4.10 shows the LCAO-
MO diagram of the regular octahedral TiO6 coordination complex of SrTiO3. It
can be obtained from the following considerations.

• In LCAO-MO diagrams of hetero-nuclear complexes the energies of the
element or ligands with larger electronegativity are pictured on the right.
Thus, the oxygen ligands appear on the right side of the diagram of the
TiO6 coordination complex.

• The 3d orbitals of the Ti atom are more localized than the 4p orbitals which
are in turn more localized than the 4s orbital. Thus, the overlap between
the a1g ligand MO and the 4s orbital is larger than the overlap of the 4p
orbitals and the t1u ligand MOs. The overlap of 3d orbitals with t2g and
eg ligand MOs is even smaller. Consequently, the energy splitting between
bonding and anti-bonding MOs Ψ decreases with respect to the constituting
AOs in the order 4s, 4p and 3d.

• The overlap between orbitals forming σ bonds is larger than the overlap
between π-bonding orbitals. Consequently, the energy splitting between
the MOs constructed from the 3d(t2g) orbitals of Ti will be smaller than
the splitting between the MOs containing contributions from the 3d(eg)

orbitals.

• Anti-bonding MOs of the TiO6 coordination complex are labeled with a star
to distinguish them from the bonding MOs.

In the LCAO-MO diagram of the TiO6 coordination complex, ligand MOs of
oxygen are lower in energy than AOs of Ti as a consequence of the higher elec-
tronegativity of oxygen. Thus, the bonding MOs of the complex lie closer in
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4p
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t1g
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e∗g
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π non-bonding
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Figure 4.10.: LCAO-MO diagram of the TiO6 coordination complex
of SrTiO3 with the AOs φ of Ti on the left, the oxygen-ligand MOs
Φ on the right and the MOs Ψ of the complex in the middle. The
energy difference ∆ corresponds to the crystal field splitting energy
of CFT.

energy to the ligand MOs than to the AOs of Ti. For the anti-bonding MOs it is
the other way round. Consequently, the bonding MOs have mostly ligand-MO
character and the anti-bonding orbitals are mainly composed of the Ti AOs. In
particular, the two anti-bonding orbitals t∗2g and e∗g have mostly Ti 3d character.
Thus, the energy splitting ∆ between these MOs corresponds to the crystal field
splitting in CFT. In general, the dominance of either ligand MOs or AOs of the
central B cation in the composition of the MOs Ψ is interpreted as ionic character
of the bonding between the ligand and the cation.

With the help of the LCAO-MO diagram the electronic configuration of the
TiO6 coordination complex can now be determined by successively filling the
MOs with electrons starting from the MO with the lowest energy. Due to the
larger electronegativity of oxygen the 18 ligand MOs are completely filled con-
taining in total 36 electrons, whereas the AOs of Ti4+ are completely empty.
Thus, the electronic configuration of the TiO6 coordination complex is given by
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a1g
2 t1u

6 eg
4 t2g

6 t1u
6 t1g

6 t2u
6. Based on this prediction of the electronic configu-

ration of SrTiO3 many spectral features seen in photo-emission experiments can
be readily explained [133].

For the perovskite LaCrO3 the exact same LCAO-MO diagram, figure 4.10,
for the CrO6 coordination complex is obtained if the orthorhombic distortions
from the ideal perovskite structure are neglected. Once again, the ligand MOs
of oxygen contribute 36 electrons. Chromium has the oxidation number III in
the LaCrO3 compound and thus contains 3 electrons in the 3d orbitals. This
leads to the electronic configuration a1g

2 t1u
6 eg

4 t2g
6 t1u

6 t1g
6 t2u

6 t∗2g
3. The three

additional electrons are distributed evenly over the 3 t∗2g orbitals and their spins
are aligned parallel according to Hund’s rules. Hence, the CrO6 coordination
complex will have a total magnetic moment of 3 µB, which is in good agreement
with 2.8 µB found experimentally [134].

The MO theory is capable of predicting electronic and magnetic structures
of coordination complexes. It is much more reliable than CFT but calculations
based on the MO theory are more cumbersome and numerically expensive. Cot-
ton [135] quotes G. B. Shaw, who tried to characterize the different theories: CFT
and LFT are "too good to be true". They are both easy to understand, but a
model built solely on point charges and electrostatic interaction certainly does
not describe the real physics of coordination complexes. On the other hand, MO
theory is just "too true to be good". It takes into account most of the physically
relevant information and conveys a much more accurate description of the elec-
tronic structure of coordination complexes. But it lacks the insightfulness of CFT.
Finally, it can be ascertained that both theories – although in a very different
manner – describe coordination complexes with the help of interactions between
the central atom and ligands. In both cases this leads to a splitting of the d
states of the central atom (cf. the LCAO-MO diagram of the TiO6 coordination
complex, figure 4.10). Since the crystal field splitting energy ∆ is a dominant
energy scale in many of these complexes, it is after all not surprising that both
theories yield a good estimate for electronic spectra and magnetic properties of
perovskite TMOs.

4.4. Insulating properties of transition-metal oxides

(TMOs)

In the previous sections, the electronic configuration of a single transition-metal
cation B in a BO6 coordination complex was discussed. The perovskite crystal
structure can be considered as an array of BO6 coordination complexes extending
infinitely in three dimensions, which is embedded in a simple cubic lattice of A
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cations. If N separate coordination complexes with M MOs condense into a
single crystal lattice, the MOs will start to overlap forming M/2 binding and
M/2 anti-binding MOs. For N→ ∞, the distinct energy levels of the MOs move
closer in energy forming a continuum of states. This leads to the picture of
energy bands in a crystal as opposed to the well separated energy levels of the
single coordination complex.

Originally, the concept of energy bands was introduced in the early days of
quantum mechanics and is a direct consequence of the description of the energy
distribution of non-interacting electrons in the periodic potential of the atomic nu-
clei in a crystal lattice. It leads to the canonical distinction between metals and
insulators based on the filling of the electronic bands. This will be discussed
briefly in the first part of this section. Band theory successfully explains metal-
lic and insulating behavior of many materials. However, de Boer and Verwey
[136] reported already in 1937 that many TMOs with a partially filled d-electron
band are poor conductors and indeed often insulators in contrast to the metallic
character predicted by band theory. Following their report, Peierls [137] pointed
out the importance of the electron correlation: the strong Coulomb repulsion
keeps the electrons apart giving rise to the insulating behavior. The occurrence
of correlation-driven insulating behavior will be discussed in more detail in the
second part of this section. In the last part, the different ansatzes to explain
insulating behavior will be applied to the materials examined in this work.

4.4.1. Band theory

Band theory is based on the nearly-free electron (NFE) model, a modification of
the free-electron gas model. It is a mean-field theory describing the valence elec-
trons in a crystal as free particles moving independently in the periodic potential
generated by the atomic nuclei. This corresponds to a neglect of the term Vee

in the Hamiltonian (2.6) of the N-electron Schrödinger equation (2.5). Without
the term Vee the N-electron eigenstates of the remaining Hamiltonian can be
represented as a product of single-particle wave functions φkν(r). Inserted into
the corresponding Schrödinger equation N single-particle Schrödinger equations
are obtained

[

−
1
2
∇2

r + vext(r)

]

φkν(r) = ǫν(k)φkν(r) (4.14)

with the external potential vext(r) defined in eq. (2.3). For each k in the BZ, there
exists an infinite number of eigenvalues ǫν(k). The eigenvalues for a fixed ν and
all k in the first BZ constitute the ν-th band of the crystal. Thus, the index ν is
called band index. The eigenstates φkν(r) are labeled accordingly.
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It is convenient to represent the external potential via its Fourier components
ṽext

G

vext(r) =
∑

G

ṽext
G e−iG · r; ṽext

G =
1
Ω

∫

Ω

vext(r) eiG · r d3r , (4.15)

where G is a reciprocal lattice vector and Ω is the unit cell volume. Due to
the periodicity of the potential, the eigenfunctions φkν(r) have to fulfill Bloch’s
theorem and can hence be written as

φkν(r) =
∑

G

cG e
−i(k+G) · r . (4.16)

Inserting eqs. (4.15) and (4.16) into eq. (4.14) yields a set of equations for the
expansion coefficients cG

[

1
2
(k + G)2 − ǫν(k)

]

cG +
∑

G ′

ṽext
G−G ′cG ′ = 0 . (4.17)

If ṽext
G = 0 ∀ G the eigenstates are simply given by ǫν(k) = 1/2(k + G)2. The

energy parabolas with origins at different G have crossing points at the reciprocal
unit-cell boundaries.

In the following derivation, two parabolas are consider one for G = 0 and an-
other one with the origin at a non-zero reciprocal lattice vector G ′. For simplicity,
it is assumed that ṽext

0 and ṽext
G ′ are the only non-zero Fourier components. From

(4.17), the following two equations are obtained

0 =

[

1
2

k2 − ǫν(k) + ṽext
0

]

c0 + ṽext
−G ′cG ′ , (4.18)

0 =

[

1
2
(k + G ′)2 − ǫν(k) + ṽext

0

]

cG ′ + ṽext
G ′ c0 . (4.19)

Since the external potential is real, the Fourier components satisfy ṽext
−G ′ = (ṽext

G ′ )∗

and the two equations above yield
[

1
2

k2 − ǫν(k) + ṽext
0

] [

1
2
(k + G ′)2 − ǫν(k) + ṽext

0

]

= |ṽext
G ′ |

2 . (4.20)

Now, the two energy parabolas for G = 0 and G ′ are assumed to be equal at the
Brillouin-zone boundary, k2 = (k + G ′)2. Inserted into the equation above one
gets two solutions for the formally degenerate energy values

ǫν(k)± =
1
2

k2 + ṽext
0 ± |ṽext

G ′ | (4.21)

which are separated by an energy gap of the size 2 · |ṽext
G ′ |.
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The eigenstates can now be filled successively with electrons. Because of the
spin-degeneracy each state can hold two electrons of opposite spin. The energy
of the highest occupied state corresponds to the Fermi level of the system. If the
Fermi level crosses an energy band, it only takes an infinitesimally small amount
of energy to excite the electron from the highest occupied state into an unoc-
cupied state. Consequently, the material has a high conductivity and exhibits
metallic behavior. If the highest occupied state and the lowest unoccupied state
are separated by an energy gap, the material is insulating. Depending on the
size of the gap, the material is either called a semiconductor for Egap < 2eV or
an insulator for Egap > 2eV .

The occurrence of metallic behavior in the NFE model is the consequence of
the periodicity of the potential on the one hand and the filling of the bands
on the other. In particular, a material with an unpaired electron per unit cell is
predicted to be metallic because the Fermi energy in such a system crosses a band.
However, there are prominent examples among the TMOs, e.g., LaTiO3, which is
insulating at low temperature, although there is only a single electron per unit cell
occupying a Ti 3d state. The origin of the insulating behavior in such materials
can be explained if the electron-electron interaction term Vee in the Hamiltonian
(2.6) is taken into account explicitly as will be seen in the next section. Mean-field
theories such as the NFE model which employ the independent-particle picture
to describe the electrons in a solid are therefore not suited to describe this kind of
correlation-driven insulating behavior because they do not take the two-particle
term Vee explicitly into account.

DFT-based calculations employ the KS or gKS schemes which treat the elec-
trons as independent particles moving in an effective potential which is con-
structed in such a way that the exact density of the interacting N-electron system
is obtained. In particular, the KS or gKS single-particle energies are not related
to the exact eigenspectrum of the N-electron system apart from the highest occu-
pied state. In practice, the eigenspectrum of the (g)KS system is frequently inter-
preted as approximation for the ground-state eigenspectrum of the interacting
N-electron system1. As the (g)KS eigenspectrum is obtained from a mean-field
type description in the same sense as discussed above, i.e., the term Vee is not
included explicitly in the calculations, the (g)KS approach predicts a metallic
ground-state for materials like LaTiO3. It is important to realize that this is nei-
ther a failure of DFT nor the (g)KS formalism which are exact theory. However, it
is an indication that the single-particle picture employed in the (g)KS approach
is not sufficient to describe all properties of materials where electron-electron
interactions are large.

1This has been discussed in detail in section 2.2.3 of chapter 2.
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4.4.2. Correlation-driven insulating behavior

It was already discussed in the introduction to chapter 2 that the N-electron
Schrödinger equation (2.5) cannot be solved exactly due to the electron-electron
term Vee. However, there are numerous model approaches that allow to study
the influence of the term Vee in (2.5). Here, two models are introduced, namely
the Hubbard model [26, 27, 28, 29, 30] and the p-d model. Whereas the first is
most suited to explain the occurrence of correlation-driven insulating behavior,
the second one is more suitable to model the electronic structure of TMOs.

Before the two models are introduced, it is instructive to first consider the
many-electron Hamiltonian in second quantization, eq. (2.64), written in terms
of field operators ψ̂†

σ(r), ψ̂σ(r) defined in section 2.3. Here, the spin of the
electron denoted by σ is taken into account explicitly. If a new set of creation
and annihilation operators ĉ†iσ, ĉiσ is introduced that acts on the AOs2 denoted
by φi(r), the field operators can be written as

ψ̂σ(r) =
∑

i

φi(r) ĉiσ . (4.22)

Inserted into (2.64), the Hamiltonian acquires the form of a fermionic lattice
model

Ĥ =
∑

iσ

ǫiniσ −
∑

ij,σ
i6=j

tijĉ
†
iσĉjσ +

1
2

∑

ijkl

∑

σσ ′

Uijkl ĉ
†
iσĉ

†
jσ ′ ĉkσ ′ ĉlσ (4.23)

with niσ = ĉ
†
iσĉiσ. The energy levels ǫi of the orbitals are given by

ǫi ≡
∫

φ∗
i (r)H1(r)φi (r)d

3r , (4.24)

with H1(r) = −1
2∇r +v

ext(r) and vext(r) defined in (2.3). The second term in (4.23)
describes the "hopping" of electrons between different orbitals with the hopping
matrix elements

− tij ≡
∫

φ∗
i (r)h(r)φj (r)d

3r (4.25)

and the last term yields the electron-electron interaction with matrix elements of
the Coulomb interaction

Uijkl ≡
∫∫

φ∗
i (r)φ

∗
j (r

′)v(r, r ′)φk(r ′)φl(r)d
3r d3r ′ (4.26)

with v(r, r ′) defined in (2.4). Equation (4.23) is an exact representation of the
many-electron Hamiltonian if the basis of the single-electron wave functions
φi(r) is complete. The many-electron Hamiltonian written in the above form,
eq. (4.23), can be considered as the theoretical background of various lattice
models suggested during the last decades.

2The AOs used in this context must form a complete basis.



88 4. Perovskites – a short introduction

The Hubbard model

One of the most celebrated and simple lattice models is the Hubbard model
[26, 27, 28, 29, 30]. It only considers electrons in a single band that can move
from a single orbital i at one site to an orbital j at neighboring sites. Two electrons
occupying the same orbital will repel each other due to the Coulomb interaction.
The corresponding Hamiltonian is given by

ĤHub = ǫ
∑

iσ

niσ − t
∑

〈ij〉σ

ĉ
†
iσĉjσ + U

∑

i

niσni−σ . (4.27)

Formally, it can be obtained from eq. (4.23) by retaining only the terms with
hopping matrix elements between neighboring sites and the electron-electron
interaction term with the on-site Coulomb interaction Uiiii. However, if the
Hubbard model is used to simulate a band in a solid, the effective Coulomb in-
teraction U is smaller than the bare Coulomb integral Uiiii by roughly one order
of magnitude, because it is screened by the presence of other electrons in the sys-
tem. Although constraint RPA3 [84], in principle, yields an exact expression for
the screened Coulomb interaction in a subspace, U can only be approximately de-
termined for real materials. In practice, it is often taken as a parameter obtained
from the analysis of photo-emission spectra.

Clearly, the Hubbard Hamiltonian neglects multiband effects. If this model is
used to describe d-electron systems, it is implicitly assumed that the orbital de-
generacy is lifted, e.g., due to a strong crystal-field splitting, such that low-energy
excitations can be described within a single band. Furthermore, the inter-site
Coulomb force is neglected. It has already been discussed in the first chapter
that the long-range part of the Coulomb interaction is screened in solids which
justifies the neglect of the Coulomb interaction beyond a certain screening ra-
dius. However, ignoring the inter-site interaction in the short-range part of the
Coulomb force is a crude approximation that will lead to erroneous characteri-
zations of the electronic structure of certain materials.

Despite these drastic simplifications, the Hubbard model has been studied
extensively, in particular because it predicts a correlation-driven phase transition
from a metallic to an insulating phase due to a correlation-induced splitting of
the single band considered in eq. (4.27). Indeed, if two electrons occupy the
same orbital i, the on-site Coulomb interaction U has to be paid. Mott [138]
argued that this splits the band in two: the lower band is formed by electrons
occupying an empty orbital and the upper one by electrons that populate an
orbital already taken by another electron. With one electron per site (half-filling),
the lower band would be completely filled. If the ratio U/t is larger or equal
to one, the hopping between neighboring sites will be suppressed because there

3Constraint RPA is discussed in more detail in chapter 7.
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is not enough energy available to bridge the energy gap between the lower and
upper band. Consequently, the system becomes an insulator. For less or more
than one electron per site at least one of the bands is only partially filled and
the system is metallic. Hence, by manipulating the occupation of the AOs a
metal-insulator transition can be induced if U/t > 1. The insulating state is
called a Mott insulator. Today, the existence of Mott-insulating phases in real
materials has been widely accepted and was observed experimentally in various
transition-metal compounds (see [104] and references therein).

Zaanen-Sawatzky-Allen classification scheme

The Hubbard model, eq. (4.27), only yields a reasonable description of the elec-
tronic d states in TMOs if the ligand p bands are far from the d states or they
are strongly hybridized allowing for a description in terms of a single band. To
model the electronic structure of most perovskites investigated in this work, ĤHub

will certainly not be sufficient, because it was already shown in the LCAO-MO
description of the TiO6 coordination complex of SrTiO3 that the upper valence
band states of the majority of these compounds have oxygen 2p character and
only the lower conduction bands are composed of transition-metal d states. In
fact, it is demonstrated in the first-principles calculations presented later-on that
only in the LaBO3 series with B = Cr, Mn or Fe both valence and conduction
bands are composed of d states. A more realistic description of the remaining
materials is obtained from the p-d model, where the Hamiltonian takes the form

Ĥpd = Ĥpdt + ĤpdU + ĤpdV (4.28)

with

Ĥpdt = ǫd

∑

iσ

nd
iσ + ǫp

∑

jσ

n
p
jσ − tpd

∑

〈ij〉σ

(d̂
†
iσp̂jσ + d̂iσp̂

†
jσ), (4.29)

ĤpdU = Udd

∑

i

nd
iσn

d
i−σ + Upp

∑

i

np
iσn

p
i−σ, (4.30)

ĤdpV = Vpd

∑

〈ij〉σ,σ ′

n
p
iσn

d
i−σ ′ . (4.31)

It describes the hopping of electrons between p and d orbitals of a single p and
a single d band located at the energies ǫd and ǫp. Electrons occupying a state
in the d or p band that is already taken by another electron experience the on-
site Coulomb repulsion Udd and Upp, respectively. The last term describes the
Coulomb repulsion between a d and a p electron. The creation and annihilation
operators ĉ†iσ, ĉiσ were renamed d̂

†
iσ, d̂iσ and p̂

†
iσ, p̂iσ according to the orbitals

they act on. For simplicity, it will be assumed in the further discussion that
Udd ≫ Upp such that Upp can be neglected.
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Figure 4.11.: According to qualitative differences in the density of
states (DOS) Zaanen, Sawatzky, and Allen [139] suggested the clas-
sification of TMOs as (A) d-band metal, (B) Mott-Hubbard insulator,
(C) charge-transfer insulator, and (D) p-band metal. The filling of
the states with electrons up to the Fermi level EF (red line) is indi-
cated in blue. Udd is the on-site Coulomb repulsion between two
electrons occupying the single d band, ǫp and ǫd denote the center
of gravity of the p and d band, respectively.

Zaanen, Sawatzky, and Allen (ZSA) demonstrated for a similar lattice fermionic
model4 that the conductivity gap and the nature of the electron and hole states
in TMOs mainly depend on the relation between Udd and the charge-transfer
energy ∆dp = |ǫd−ǫp| [139]. They proposed a phase diagram allowing to classify
the TMOs according to their distinct electronic structure and the nature of their
conductivity gaps in particular. The phase diagram allows to distinguish between
four different types of electronic structures, of which two exhibit metallic and
two insulating behavior. The densities of states (DOS) of these four structures are
drawn schematically in figure 4.11, where the filling of the states with electrons
up to the Fermi level is indicated in blue. If the width of the p and d band
denoted by wp and wd is defined as the distance between the middle and the
edge of the band ǫp or ǫd, the relation between the different structures can be

4Zaanen, Sawatzky, and Allen based their discussion and calculations on the Anderson impurity
model [140], which can be formally obtained from the p-d model if Upp is set to zero and the
term ĤpdV is neglected.
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expressed in terms of the four model parameters wp, wd, Udd, and ∆pd:

(A) d-band metal: Udd < 2wd < ∆dp; Egap = 0.

(B) Mott-Hubbard insulator (MHI): 2wd < Udd < ∆dp; Egap = Udd − 2wd.

(C) charge-transfer insulator (CTI): wd +wp < ∆dp < Udd; Egap = ∆pd − (wp +

wd).

(D) p-band metal: ∆dp < wp +wd < Udd; Egap = 0.

The parameter ∆pd should not be confused with the crystal-field splitting en-
ergy ∆ introduced in the previous sections. In particular, the splitting of the d
band in this model is not due to the crystal field of the ligands but it is a con-
sequence of the Coulomb interaction between the d electrons themselves. The
correlation-induced splitting leads to an energy splitting of the single d band in
the model into two bands usually called lower and upper Hubbard band. Con-
trary to that, the crystal field induces an energy splitting between previously
degenerate d orbitals. Finally, it should be mentioned that the terms MHI and
CTI are sometimes used with slightly different connotations in the literature (see
for example [104]). In this work, MHI and CTI will always be used as defined
within the ZSA classification scheme.

4.4.3. Classification of the perovskite TMOs investigated in

this work

The first-principles calculations presented in the next chapter predict the d bands
of the compounds with an iso-electronic configuration of the BO6 coordination
complex to the TiO6 coordination complex in SrTiO3 to be completely empty. The
valence bands are formed by oxygen 2p states. According to the ZSA classifica-
tion scheme these materials are CTIs. However, no lower Hubbard band in the
occupied part of the spectrum has been observed experimentally. This suggests
that the experimental data are either not accurate enough or it indicates that
correlation effects are not that strong in these materials. The latter interpretation
is supported by the good agreement between experiment and the first-principles
calculations. This implies that the band gaps result from the periodicity of the
effective KS potential and do not result from the interplay between the charge-
transfer energy ∆dp and the on-site Coulomb repulsion Udd.

A detailed analysis of the band structures of the compounds LaBO3 with B =
Cr, Mn or Fe presented in chapter 6 reveals that the highest occupied and the
lowest unoccupied bands both have d character. According to the ZSA classifica-
tion scheme these materials are MHIs. However, their insulating behavior is also
described correctly in ab initio calculations based on the KS formalism. As dis-
cussed previously, KS-derived eigenspectra do not incorporate correlation-driven
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splitting of the bands resulting directly from the term Vee. On the other hand,
in the model used by ZSA the splitting of the d states results from the approxi-
mate treatment of Vee. In chapter 6, it is demonstrated that the splitting of the d
bands is caused by the crystal field in combination with the corporate Jahn-Teller
effect. As the model used by ZSA neglects these kind of effects, it does not yield
a proper bases for a qualitative description of the electronic structure of these
compounds.



CHAPTER 5

TRENDS IN THE ELECTRONIC STRUCTURE OF

SELECTED PEROVSKITE TMOs

In this chapter, results from all-electron DFT (GGA) and GW calculations for
band-insulating perovskite TMOs are presented that are contained in the three
series ATiO3, BaBO3, and PbBO3 with A = Ca, Sr, and Ba and B = Ti, Zr, and
Hf. Numerous applications of these materials in microelectronics as dielectrics in
capacitors, as the dielectric layer in dynamic random access memories (DRAMs),
as substrates for high Tc superconductors, as piezoelectric materials in actua-
tors or as non-linear optics detection devices [141, 142, 143, 144, 145, 146] can
be taken as an indication for the different physical behavior of these materials
in an external electric field: BaTiO3 and PbTiO3 are ferroelectric and piezoelec-
tric at room temperature (RT), SrTiO3 and CaTiO3 are conventional dielectrics,
BaZrO3 and BaHfO3 are coined high-κ dielectrics, i.e., they are materials with an
exceptionally large imaginary part κ of the dielectric function, and PbZrO3 and
PbHfO3 are antiferroelectrics. On the other hand, optical experiments measuring
the transition energies or absorption coefficients of these compounds exhibit a
number of similarities of the electronic structures [147, 148, 149, 150, 146, 151]. In
particular, the size of the optical band gap of all materials is comparable except
for BaZrO3 and BaHfO3, where the band gap is at least 1 eV larger than in the
other materials.

A thorough understanding of many material properties can be obtained from
theoretical investigations of their bulk-electronic structures. For some of the
compounds of the series ATiO3, BaBO3, and PbBO3, first-principles calculations
have been reported based on pseudo-potentials, e.g., references [152, 153] as
well as all-electron calculations using the LAPW method, e.g., [120, 154] within
the LDA and GGA and, more recently, calculations using hybrid functionals

93
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[85, 155, 150, 15]. These investigations focused on certain aspects of the electronic
structures. Results from DFT calculations using LDA or GGA underestimate the
band gaps of all compounds compared to experimental data. On the other hand,
hybrid-functional-based calculations yield band gaps that are too large. Although
GW calculations for the two compounds BaTiO3 [15] and SrTiO3 [16] yield better
agreement with experimental data, no GW calculations for the other compounds
from the series ATiO3, BaBO3, and PbBO3 have been reported so far.

The purpose of this chapter is twofold: In the first part, results from a sys-
tematic study are presented, which was carried out to investigate changes in the
electronic structure of all compounds contained in the series ATiO3, BaBO3, and
PbBO3 originating from changes in the composition of the compounds. Results
of DFT (GGA) and GW calculations employing the all-electron implementations
FLEUR and SPEX are analyzed, to reveal trends in electronic structure of the
valence- and low-lying conduction-band region as well as changes of the energy
levels of high-lying core states (semicore states). In addition, the influence of
spin-orbit coupling on the valence- and conduction-band spectra of compounds
from the PbBO3 series is analyzed. Secondly, the electronic structure of the com-
pounds is described within DFT (GGA) and the GWA assuming the RT crystal
phase. Deviations of the electronic structures of the compounds in the RT crystal
phases from those obtained for the cubic phase are discussed. The resulting band
gaps as well as energy levels of semicore states are compared to experimental
data.

The chapter is organized as follows. After discussing the convergence of the
numerical schemes implemented in the FLEUR and SPEX code in the calcula-
tions for perovskite TMOs in section 5.1, section 5.2 illustrates the trends in the
electronic structure of the compounds from the series ATiO3, BaBO3, and PbBO3.
In section 5.3, the results from DFT and GW calculations of these compounds cal-
culated in the RT crystal structure are presented and compared to experimental
data. All results are summarized and discussed in the last section.

5.1. Numerical aspects

To carry out electronic structure calculations with FLEUR and SPEX, a set of
input parameters for each material has to be determined. In all calculations pre-
sented in this work, the lattice constants are taken from experiment. All other
input parameters are obtained from the results of convergence tests. DFT cal-
culations for perovskite TMOs with all-electron implementations similar to the
FLEUR code are already well documented in the literature [120, 154]. Hence,
only those aspects of FLEUR calculations are discussed corresponding to modi-
fications of the standard procedures of DFT calculations, which are necessary to



5.1. Numerical aspects 95

generate data for a subsequent GW calculation with SPEX. Thus, the first part of
this section primarily focuses on convergence tests of the GW results carried out
with the SPEX code. The convergence of QP transition energies in SrTiO3 and
PbTiO3 with respect to selected input parameters is analyzed in detail. Due to
the chemical und structural similarities, the other perovskite TMOs show similar
convergence behavior. The second part of this section deals with the representa-
tion of the unoccupied states with the help of additional LOs in FLEUR and its
influence on GW calculations with SPEX.

In all convergence tests, the cubic crystal phase with 5 atoms in the unit cell
is used (figure 4.1, chapter 4), because the input parameters do not explicitly
depend on the geometry of the lattice. Unless noted otherwise, the BZ is sampled
by a mesh of 2×2×2 k points and the PBE functional within the GGA is used at
the DFT level. The resulting input parameters for calculations with FLEUR and
SPEX are tabulated in appendix B.1 for all compounds.

5.1.1. Convergence of input parameters

For numerical calculations employing the LAPW basis, eq. (3.3), the plane-wave
cutoff Gmax and the cutoff lmax for the angular momentum of the LAPW basis
functions have to be determined. To guarantee a smooth matching of the basis
functions across the MT border these two parameters may not be chosen inde-
pendently. As pointed out in section 3.2.1, chapter 3, a reasonable choice of the l
cutoff is lamax = saGmax, where sa denotes the MT radius of the a-th atom in the
unit cell. For all materials studied here, a choice of Gmax = 4.4 bohr−1 is sufficient
to converge the KS eigenvalues of the valence and low-lying conduction bands to
within 0.01 eV. However, in GW calculations the knowledge of the unoccupied
KS eigenvalues and eigenstates up to high energies is also required. They enter
into the equation for the correlation self-energy, eq. (3.40), through the Green
function G, eq. (2.82), as well as the screened interaction W, eq. (2.77). To gen-
erate enough eigenfunctions and eigenstates a Gmax of at least 5 bohr−1 has to
be chosen and the values for lmax have to be modified accordingly. Furthermore,
the flexibility of the basis in the MT spheres must be improved to guarantee an
accurate description of the high-lying KS eigenstates. In this work, LOs located
in the unoccupied bands are added to the LAPW basis to enhance its flexibil-
ity. These changes in the LAPW basis can have a large impact onto the results
of FLEUR and SPEX calculations and are therefore discussed separately in the
next section. Convergence tests from SPEX calculations will be discussed in the
following.

The test results from SPEX calculations for SrTiO3 and PbTiO3 shown in the
first row of figure 5.1 emphasize the importance of unoccupied states. At least
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Figure 5.1.: Top row: Convergence of the Γ15v → Γ25 ′c and R15 ′v → Γ25 ′c

gaps of SrTiO3 (left) and the X4 ′v → X1c and X4 ′v → X3c gaps of PbTiO3

(right) with respect to the number of bands per atom. Bottom row:
Convergence of the same gaps as in the top row as functions of
(4π/vmin)1/2.

180 bands per atoms are necessary to converge the QP transitions Γ15v → Γ25 ′c and
R15 ′v → Γ25 ′c in SrTiO3 and X4 ′v → X3c in PbTiO3 to within 0.01 eV, but only the
first 20 bands of SrTiO3 and 22 bands of PbTiO3 are occupied in the ground state.
The transition X4 ′v → X1c in PbTiO3 is exceptional, because it converges much
fast than the other three with respect to the maximal number of bands nmax. A
closer look at the final states of the transitions reveals that X1c has mostly Pb
6p character whereas Γ25 ′c, Γ25 ′c in SrTiO3 and X3c in PbTiO3 all are nearly pure
Ti 3d states. The test calculations for all materials show that the self-energy
correction for d states converges much slower with respect to nmax than the
respective correction for the s and p state. As the initial states of the transitions
in SrTiO3 and PbTiO3 all have oxygen 2p character, the discrepancy in the speed
of convergence originates from the different characters of the conduction band
states.

As mentioned previously, the unoccupied states enter into GW calculations in
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the evaluation of matrix elements of the correlation self-energy via the Green
function and the screened interaction W. The calculations of the matrix W can
be optimized by introducing a threshold value vmin as explained in section 3.3.1,
chapter 3, which leads to a reduction of the rank of the matrix. This speeds up
calculations considerably and also decreases the amount of storage necessary to
save the matrix during calculations. According to reference [20], the threshold
value vmin can be reformulated in terms of a cutoff value in reciprocal space
|k+G| =

√

4π/vmin similar to the plane-wave cutoff for the LAPW basis functions.
In the second row of figure 5.1 the convergence of QP transitions of SrTiO3 and
PbTiO3 as functions of

√

4π/vmin is shown. As explained in reference [20], steps
in the curves can be interpreted as the contribution from additional shells of
reciprocal lattice vectors. For example, the step at 5.8 bohr−1 in the curve of
SrTiO3 for the transition Γ15v → Γ25 ′c is caused by a shell of reciprocal lattice
vectors entering between 5.5 and 6.0 bohr−1. Convergence of the transitions of
SrTiO3 to within 0.01 eV is attained for

√

4π/vmin = 5.5 bohr−1, and the rank
of the matrix W is 708 for this choice of the cutoff radius. For comparison,
√

4π/vmin = 10.0 bohr−1 corresponds to a rank of 1473. The results for PbTiO3

converge more slowly. The rank of the matrix W can be reduced to 1000 with the
choice

√

4π/vmin = 6.5 bohr−1 (1454 for
√

4π/vmin = 10.0 bohr−1). Furthermore,
a qualitative difference in the curves for the two QP transitions of PbTiO3 can
be observed, but convergence of both transitions to within 0.01 eV is reached
around the same value of

√

4π/vmin. (Note the different energy scales for both
transitions.)

To determine the polarization function given by eq. (2.83) as well as the ex-
change self-energy, eq. (3.32), products of KS wave functions have to be calcu-
lated. These products are represented in terms of the MPB in SPEX, which
consists of radial functions for the regions in space occupied by MT spheres
and plane waves in the interstitial region called interstitial plane waves (IPWs).
The radial functions of the MPB are constructed from products of radial func-
tions contained in the LAPW basis according to eqs. (3.12) and (3.14). For each
atom, a cutoff value Lmax for the angular moment of the MPB radial functions
has to be chosen. Furthermore, a plane-wave cutoff G ′

max for the IPWs has to be
determined.

For convenience, the cutoff values for Lmax of the radial functions of Ti, O, Sr,
and Pb were set to the same value in all test calculations. An exact representa-
tion of the products of LAPW basis functions would require to choose the cutoff
values Lmax to be twice as large as the corresponding l cutoff of the LAPW radial
functions. However, the test results in figure 5.2 show that a value of Lmax = 6
for Sr and Lmax = 7 for Pb is sufficient to attain convergence of the QP transitions
as opposed to lmax = 12 for Sr and lmax = 14 for Pb in the respective FLEUR cal-
culation. Likewise, a plane-wave cutoff G ′

max = 2Gmax would be necessary to
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Figure 5.2.: Top row: Convergence of the Γ15v → Γ25 ′c and R15 ′v → Γ25 ′c

gaps of SrTiO3 (left) and the X4 ′v → X1c and X4 ′v → X3c gaps of PbTiO3

(right) as functions of the MPB cutoff parameter Lmax for the angular
moment. Bottom row: Convergence of the same gaps as in the top
row as functions of the MPB cutoff parameter G ′

max for the IPWs.

exactly represent wave-function products in the interstitial region, but 4.0 bohr−1

and 5.0 bohr−1 suffice to converge the QP transitions of SrTiO3 and PbTiO3 as
demonstrated in the second row of figure 5.2. In contrast, plane-wave cutoffs of
Gmax = 5.8 bohr−1 and Gmax = 6.0 bohr−1 for the LAPW basis functions were cho-
sen. The same trends in the convergence of the representation of wave-function
products in terms of the MPB were reported in references [20, 85] and a detailed
discussion can be found there. Here, it is yet worth mentioning that the LOs
contained in the LAPW basis can be selected manually in the construction of the
MPB, which can help to further reduce the number of MPB basis functions. Fur-
thermore, the energy derivatives of the radial functions contained in the LAPW
basis can be omitted in the construction of the MPB in all calculations without
any loss of accuracy.

Since the GW self-energy is a non-local operator, eqs. (3.32) and (3.40) yielding
matrix elements of the exchange and correlation self-energy calculated at a given
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Figure 5.3.: The graphs show the QP gaps EQP
gap at the X (left) and Γ

(right) point as functions of the number of k points N used to sample
the BZ by N × N × N k-point meshes. The energy differences are
calculated according to ∆ǫ = E

QP
gap(N) − E

QP
gap(Nmax) with Nmax = 5

(left) and Nmax = 6 (right).

k point comprise summations over all other k points in the BZ. Thus, the QP
transitions become a function of the number of k points used to sample the BZ.
The k-point meshes used in SPEX calculations are defined in eq. (3.41). In all
test calculations, Nx × Ny × Nz k-point meshes were used with Nx = Ny =

Nz = N. For the perovskite TMOs containing Pb the energy of the QP transition
X4 ′v → X3c was determined for N = 5. The left graph in figure 5.3 shows the
energy differences ∆ǫ between this transition energy and the energies obtained
from calculations employing k-point meshes with N < 5. Convergence of the
gaps of all three materials to within 0.01 eV is attained with a 4 × 4 × 4 k-point
mesh. On the right side in figure 5.3 the results of similar test calculations
for the remaining perovskite TMOs are illustrated. Here, the energy of the QP
transition Γ15v → Γ25 ′c obtained with N = 6 is compared to the transition energies
from calculations with less numbers of k points. To converge the results for these
materials a mesh of at least 5 × 5 × 5 k points has to be used.

Finally, input parameters for SPEX calculations are required, which determine
the number of frequencies used in the evaluation of the Hilbert transformation
in eq. (3.37) as well as the frequency mesh used for the representation of the
resulting matrix elements of the polarization function PIJ(k,ω). The choice of
these parameters has already been discussed in section 3.3.1, chapter 3. Some
comments on the choice of frequency intervals necessary to solve the integral in
eq. (3.40) have been given there as well. The QP transitions converge quickly as
functions of these parameters.
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As mentioned at the beginning of this section, the input parameters do not
depend on the number of atoms per unit cell. Hence, the parameters obtained
for the cubic crystal phases should be used in calculations for the same mate-
rials in the room-temperature crystal phases presented in section 5.3. However,
it was not possible in calculations for materials with 20 (CaTiO3) or 40 (PbZrO3,
PbHfO3) atoms per unit cell to use as many bands per atom as in the calculations
for the cubic crystal phases with 5 atoms per unit cell, because it would require
more working memory than provided by the conventional personal computer
used in this work. Therefore, the input parameters had to be changed for these
calculations (see appendix B.1) such that convergence of QP transition energies to
within 0.05 eV instead of 0.01 eV was achieved for these systems. In this context,
it is worth mentioning that the present GW implementation in SPEX only runs
on a single processor. As the unoccupied states only enter in the calculation of
the correlation contribution to the self-energy, a simple parallelization of this par-
ticular part of the code, which redistributes this task between several processors,
should allow to include more unoccupied states in calculations for large systems
or speed up calculations for smaller systems.

5.1.2. Convergence of the representation of the unoccupied

states

The LAPW basis functions, eq. (3.3), are defined by an expansion around fixed
energy parameters ǫσ

al such that an accurate representation of the KS wave func-
tions is only obtained in the neighborhood of these energies. Typically, the en-
ergy parameters are located in the valence band close to the Fermi level such
that valence states are described accurately. Note that only occupied states are
needed to calculate the electron density which is the central ingredient of DFT.
Unoccupied states are described less accurately by the conventional LAPW basis,
which might lead to errors in the QP energies obtained from the GWA, because
the correlation self-energy, eq. (3.40), and the screened interaction W, eq. (2.77),
depend on the unoccupied states up to high energies.

In order to enhance the basis-set flexibility, it is not sufficient to simply increase
the plane-wave cutoff Gmax, since this only improves the basis set in the interstitial
region but not within the MT spheres. Krasovskii demonstrated [96] that a fairly
small Gmax is sufficient to provide enough flexibility in the interstitial region.
However, the MT part of the LAPW basis quickly deteriorates the more the
wave-function energies deviate from the parameter ǫσ

al. This inadequacy cannot
be overcome by increasing Gmax.

In this work LOs located in the conduction bands are used to enhance the
flexibility of the MT part of the LAPW basis functions. The construction of these
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Figure 5.4.: Comparison of KS band structures of PbTiO3 calculated
in the cubic unit cell with two different LAPWunocc basis sets LO1
and LO2 on the left and basis sets ü and

...
u comprising LOs, which

represent higher-order energy derivatives of the radial functions in the
LAPW basis, on the right. Black lines illustrate the results obtained
from the conventional LAPW basis.

LOs and the determination of their energy parameters ǫσ,lo
al is described in section

3.1.3, chapter 3. In the further discussion, the LAPW basis sets including LOs
located in the unoccupied part of the energy spectrum are called LAPWunocc basis.
These basis sets are similar to those used in [96] although no energy derivatives
of the LOs are included here. Alternative approaches to enhance the flexibility
of the LAPW basis were introduced by Friedrich et al. [156] as well as Boss
and Fehrenbach [157]. The latter used spline functions to gain more flexibility
whereas Friedrich et al. added LOs to the conventional LAPW basis defined as
second and higher energy derivatives of solutions of the scalar-relativistic KS
Dirac equation, eq. (3.27).

To compare the ansatz of Friedrich et al. with the scheme employing LAPWunocc

basis sets, DFT (GGA) calculations for PbTiO3 were conducted employing four
different basis sets. The LAPWunocc basis denoted LO1 contains LOs for the low-
est unoccupied s, p, d, and f states of each atom in the unit cell. The basis ü
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comprises the same number of LOs representing second-order energy derivatives
of the solutions of the scalar-relativistic KS Dirac equation for the corresponding
l quantum numbers. Likewise, LO2 is constructed by adding LOs for the lowest
and second-lowest unoccupied s, p, d, and f states and

...
u by adding second-

and third-derivative LOs to the conventional LAPW basis. To compare the rep-
resentation of the unoccupied states obtained from the four different basis sets
figure 5.4 shows parts of the KS band structure of PbTiO3 calculated in the cubic
unit cell. Apart from the differences in the basis sets, the same input parameters
listed in appendix B.1 were used in all calculations. For comparison, the band
structure calculated with the conventional LAPW basis is also shown.

Direct band gap at Γ point

without LOs with LOs

DFT GW DFT GW

CaTiO3 2.34 4.05 2.34 4.11

SrTiO3 2.24 3.91 2.23 3.96

BaTiO3 1.91 3.39 1.91 3.46

BaZrO3 3.43 4.82 3.43 5.20

BaHfO3 3.77 5.17 3.76 5.58

Direct band gap at X point

without LOs with LOs

DFT GW DFT GW

PbTiO3 1.62 2.94 1.63 2.98

PbZrO3 2.46 3.19 2.44 3.28

PbHfO3 2.47 3.31 2.47 3.37

Table 5.1.: Comparison of DFT and QP
band gaps obtained from calculations
using basis sets with and without ad-
ditional LOs located in the conduction
band.

Friedrich et al. demonstrated
that the representation of the un-
occupied states can be converged
to the results of an APW-like ap-
proach, which contains no energy-
linearization errors, by systemat-
ically including higher-order en-
ergy derivatives of the radial func-
tions into the LAPW basis. In fig-
ure 5.4, the energies obtained with
LO2 and

...
u illustrated by green

dashed lines in each graph are al-
most identical in the whole en-
ergy range displayed here. Hence,
basis-set completeness can be at-
tained by augmenting the conven-
tional LAPW basis with LOs either
located in the conduction bands or
defined as higher energy deriva-
tives. The single-particle ener-
gies tend towards smaller values
in the basis-set limit as a conse-
quence of the variational princi-
ple. Furthermore, figure 5.4 shows
that the representation in terms
of LAPWunocc basis sets converges
faster with respect to the number
of additional LOs than the ansatz

of Friedrich et al., because the energies obtained from LO1 deviate from those
using LO2 only above 58 eV. In contrast, deviations in the energies calculated
with ü and

...
u already occur above 43 eV.



5.1. Numerical aspects 103

For a quantitative analysis of these results, figure 5.5 shows the energy dif-
ferences of the single-particle energies at the Γ point between results obtained
with ü and

...
u (A), LO1 and LO2 (B), and between LO2 and

...
u (C). The latter

proves, that both schemes indeed converge to the same results. Furthermore,
(A) and (B) illustrates that the results from ü deviate much more from the ref-
erence energies obtained with

...
u than the energies calculated with LO1 differ

from those obtained with LO2. Since ü and LO1 contain the same number of
additional LOs, it can be concluded that less LOs are needed in the construction
of an LAPWunocc basis than in the ansatz by Friedrich et al. to achieve the same
level of accuracy. This makes the LAPWunocc basis set more efficient, which is
especially important for the investigation of materials with many atoms per unit
cell. Therefore, LAPWunocc basis sets are used throughout this work. For the
sake of completeness it should be mentioned that an advantage of the approach
of Friedrich et al. is that no additional energy parameters are needed other than
those already used in the construction of the conventional LAPW basis functions.

To analyze the effect of the representation of the unoccupied states in terms of
LAPWunocc basis sets on the QP energies obtained within the GWA, the QP band
gaps of the cubic crystal phases of all perovskite TMOs studied in this chapter
are listed in table 5.1. For comparison, results from calculations employing the
conventional LAPW basis as well as the band gaps resulting from the correspond-
ing DFT calculations are shown. The input parameters for the DFT and the GW
calculations including the number of local orbitals used in the construction of
the LAPWunocc basis sets can be found in appendix B.1.

The KS band gaps of all materials in table 5.1 obtained from the two basis
sets differ by less than 0.02 eV although the unoccupied states do not enter ex-
plicitly in the self-consistent solution of the KS equation (2.17). However, the
additional LOs in the LAPWunocc basis do not only affect the representation of
the unoccupied states but also slightly improve the representation of the occu-
pied states. This leads in turn to small deviations in the single-particle density,
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Figure 5.5: Deviations between the
KS eigenvalues of PbTiO3 at the Γ
point obtained from different ba-
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the energy differences between re-
sults from calculations using ü and
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u, (B) and (C) the differences em-
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eq. (2.18). Since the density reenters into the self-consistency cycle, the changes
in the basis-set representation of the KS eigenstates also have a small influence
on the KS band gaps.

Apart from the KS eigenvalues, expectation values 〈Vxc〉 and 〈Σx〉 of the ex-
change correlation potential, eq. (2.16), and the exchange self-energy, eq. (3.32)
as well as expectation values of the correlation self-energy, eq. (3.40), enter into
the evaluation of the QP equation, eq. (2.93). The exchange-correlation poten-
tial and the exchange self-energy are both independent of the unoccupied states.
Hence, changes in 〈Vxc〉 and 〈Σx〉 are smaller than 0.02 eV and originate from the
changes in the basis-set representation described above. The main effect on the
QP energies is due to the expectation values of the correlation self-energy, which
depends explicitly on the unoccupied part of the spectrum through the Green
function G, eq. (2.82), and the screened interaction W, eq. (3.39). In particular,
the effect on G due to changes in the representation of the unoccupied states is
larger than the effect on W. A calculation of the QP band gap of BaZrO3 yields a
value of 5.01 eV if additional LOs located in the conduction bands are only taken
into account to obtain G. On the other hand, a value of 4, 86 eV is obtained if the
LOs are only included in the calculation of W. Table 5.1 shows that the effects
from the augmentation of the conventional LAPW basis on the QP band gaps
are strongest for the large-gap insulators BaZrO3 and BaHfO3.

In practice, the number of additional LOs used in the construction of the
LAPWunocc basis sets and the MPB has yet to be determined. This is done in two
steps. First, the maximum number of bands nmax necessary to converge the QP
spectrum in a GW calculation with SPEX is obtained from convergence tests. The
number nmax directly determines the highest KS eigenvalue ǫmax entering into the
GW calculations. In a second step, the basis representation of the KS eigenstates
up to the energy ǫmax is converged in FLEUR calculations by adding LOs to the
LAPW basis. As a rule of thumb, convergence of the basis-set representation is
attained if all LOs with energy parameters ǫσ,lo

al 6 0.7ǫmax are taken into account.
However, test calculations for the materials listed in table 5.1 show that it is
usually not necessary to include all of these LOs in the construction of the MPB
as well. It is sufficient to only include few LOs for the lowest unoccupied states
in the construction of the MPB to achieve convergence of QP band gaps to within
0.01 eV.

The input parameters obtained from the test calculations discussed in the pre-
vious section together with the improved LAPW and mixed-product basis sets
were applied in DFT and GW calculations for the perovskite TMOs comprising
the series ATiO3, BaBO3, and PbBO3 to study trends in their electronic structures.
The results of these calculations are presented in the next part of this chapter.
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5.2. Trends in the electronic structure

In this section, KS and QP spectra obtained from DFT (GGA) and GW calcu-
lations are analyzed to reveal, which changes in the electronic structure of the
perovskite TMOs can be related to changes in their chemical composition. In the
first part of the section, the valence- and low-lying conduction-band spectra of the
following three series are analyzed: the series ATiO3 with A = Ca, Sr, and Ba, the
series BaBO3 with B = Ti, Zr, and Hf, and finally the series PbBO3 with B = Ti, Zr,
and Hf. All compounds in the series crystallize in the cubic crystal phase (figure
4.1, chapter 4) at high temperatures. To suppress changes in the electronic struc-
ture due to lattice distortions all calculations were carried out for this phase. The
second part deals with additional changes in the valence- and conduction-band
spectra of compounds from the PbBO3 series that may arise from the influence of
spin-orbit coupling (SOC). Although GW calculations, which fully incorporate
the SOC, are not feasible for these materials at present, the results from DFT-
based calculations allow to estimate the influence of the SOC on the valence-
and conduction-band spectra. In the third and last part of the section, trends
in the position of the energy levels of semicore states obtained from DFT calcu-
lations are compared to results from GW and non-self-consistent Hartree-Fock
(HF) calculations.

5.2.1. Valence- and conduction-band spectra

Before the KS and QP band structures of the perovskite TMOs are compared in
detail, general trends observed for all materials shall be summarized: At first
sight, the KS band structures illustrated by the blue dots in the three figures 5.6,
5.9, and 5.12 reveal that the valence bands of all compounds are largely composed
of oxygen 2p states, whereas the d states of the transition metals Ti, Zr, and Hf
strongly contribute to the formation of the low-lying conduction bands. This
composition of the valence and conduction bands has been predicted with the
help of MO theory using the simplified LCAO ansatz to describe the electronic
structure of the TiO6 octahedra summarized in the LCAO-MO diagram in figure
4.10, chapter 4. However, the first-principle calculations also show that Pb 6s
and 6p states yield dominant contributions in the formation of the valence- and
conduction-band spectra of the three compounds PbTiO3, PbZrO3, and PbHfO3.
This cannot be described by the simple ansatz used to derive the qualitative
picture of the valence- and conduction-band spectra illustrated in the LCAO-MO
diagram.

The analysis of the QP correction ∆EGW
nkσ obtained from the GW calculations,

which is illustrated in figures 5.8, 5.11, and 5.14 for selected k points, reveals
that the valence bands are lowered in energy, whereas the energy levels of the



106 5. Trends in the electronic structure of selected perovskite TMOs

O
 2

p
T

i 
3

d
 (

e
g

)
T

i 
3
d

 (
t2

g
) 

S
r 

4
d

 +
 5

s
O

 2
p

T
i 

3
d

 (
e
g

)
T

i 
3

d
 (

t2
g

) 
C

a
 3

d
 +

 4
s

O
 2

p
T

i 
3
d

 (
e
g

)
T

i 
3
d

 (
t2

g
) 

B
a
 5

d
 +

 6
s

MM ΓΓ XX RR

00

00

00

22

22

22

44

44

44

66

66

66

88

88

88

−2−2

−2−2

−2−2

−4−4

−4−4

−4−4

−6−6

−6−6

−6−6

CaTiO3

SrTiO3

BaTiO3

GWA

GWA

GWA

DFT

DFT

DFT

E
−
E

F
(e

V
)

E
−
E

F
(e

V
)

E
−
E

F
(e

V
)

Ti 3d (t2g)
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SrTiO3 (middle) and BaTiO3 (bottom). The Fermi energy is placed in
the middle of the KS and QP gap, respectively. The bars on the right
indicate the orbital character of the bands.
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conduction-band states are raised, which leads to an increase of the band gap of
all compounds. To illustrate the two effects graphically, the Fermi energy was
placed in the middle of the calculated KS and QP band gaps in figures 5.6, 5.9,
and 5.12. To understand the origin of the two effects, a closer look at eq. (2.96)
for the QP energies as obtained within the GWA is necessary. Rewriting this
equation in the following form

Eσ
nk = ǫσ

nk + ∆EGW
nkσ (5.1)

emphasizes that the QP spectra Eσ
nk calculated within the GWA is obtained from

the KS band structure ǫσ
nk due to an energy shift ∆EGW

nkσ for each band n at each
k point and for each spin direction σ. This energy shift leads to

• a partial correction of the self-interaction error inherent to the conventional KS
scheme within GGA by including contributions from the exchange energy,
eq. (2.41), in ∆EGW

nkσ which leads to the decrease of the energies of the
valence band states in the QP band structure, as well as

• a partial compensations of the lack of the exchange-correlation discontinuity in

GGA (cf. section 2.2.4, chapter 2), which results in the increase of the
energy levels of the conduction band states.

Furthermore, a thorough analysis of the QP band structures reveals that the size
of the energy correction ∆EGW

nkσ for a certain band n at a given k point strongly
depends on the character of the orbitals contributing to the formation of this band.
In the following, details of the KS and QP band structures will be discussed.

ATiO3, A = Ca, Sr, Ba

Figure 5.6 shows that the KS band structures of all three compounds ATiO3, A =
Ca, Sr, Ba are virtually identical in the energy range between −6 and +3 eV. From
the projection of the KS eigenfunctions ϕnk(r) onto the LAPW basis functions,
the eigenfunctions at each k point and for each band index n can be decomposed
into an interstitial and a MT part [eq. (3.48), chapter 3]. The MT contributions
can be further divided into contributions from radial functions representing the
atomic-like orbitals of the distinct atomic species [eq. (3.49), chapter 3]. This
analysis reveals that the bands of all three compounds between −6 and −1 eV are
mostly composed of oxygen 2p states. Furthermore, the three conduction bands
lowest in energy have almost pure Ti 3d character. In reference to the CF and
MO theory, these states are labeled t2g. Consequently, the two bands at higher
energies between +3 and +5 eV, which also primarily consist of contributions
from the Ti 3d states, are labeled eg states. As in CF or MO theory these bands are
completely separated. The smallest band gap in all three compounds corresponds
to the indirect transition between R and Γ . The smallest direct transition occurs
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at the Γ point. Moreover, the hysteresis-like shape originating from the t2g states
of the transition metal, which is formed along the high-symmetry lines between
Γ to X and X to M of the BZ, is a characteristic feature of t2g bands and is present
in the electronic structure of all perovskites in the cubic crystal phase studied in
this section.
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BaTiO3 (bottom) and the pDOS of
Ti 3d (blue), O 2p (violet), and of
the d states of Ca, Sr, and Ba (red)
obtained from DFT calculations.

The d and s states of the A cations
of Ca, Sr and Ba only yield signifi-
cant contributions to the formation of
the bands above +4 eV. Hence, the
shape as well as the energy positions
of the valence and low-lying conduc-
tion bands are nearly identical in all
three materials. In particular, the d
states of the A cations do not hy-
bridize with the states constituting the
valence-band maximum (VBM) or the
conduction-band minimum (CBM) in
any of the three compounds. This is
demonstrated in figure 5.7, were the
contribution of the A cation’s d state to
the total DOS is illustrated. Figure 5.7
also shows that there is no hybridiza-
tion between the Ti 3d states and the
oxygen 2p states at the VBM or the
CBM.

A comparison of the direct KS band
gaps of all three materials (cf. table
5.1) shows a decrease of the gap of
0.11 eV from CaTiO3 to SrTiO3 and of
0.32 eV between the gaps of the latter
and of BaTiO3. The lack of hybridiza-
tion implies that these changes might
originate solely from electrostatic ef-
fects. In this context, it is worth notic-
ing that the radii of the A cation in-

creases throughout the series ATiO3. As this increase translates into an increase
of the distance between the Ti cation and the oxygen anions it should reduce the
electrostatic repulsion between electrons occupying the orbitals of oxygen and
Ti. However, there are additional effects such as changes in the crystal potential
due to substitution of the A cation which may also influence the size of the band
gaps. The complexity of the first-principles scheme does not allow to attribute
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the origin of these changes to a single cause.

The QP band structures of the three compounds in 5.6 exhibit the aforemen-
tioned downwards and upwards shift of the valence and conduction bands with
respect to (w.r.t.) the KS band structure. However, the bands are not shifted
uniformly. This can be observed directly in the band structure of CaTiO3, where
the different size of the QP correction ∆EGW

nkσ obtained for the three KS bands
located at roughly +4 eV at the Γ point leads to a reordering of the bands in the
QP band structure at +5 eV.

To further analyze the QP correction, figure 5.8 lists ∆EGW
nkσ at the Γ point for the

nine valence bands 12-20 and the conduction bands 21-31 of all three compounds
corresponding to the bands in the band structures in figure 5.6. In the cubic
phase, the 9 valence bands consists of 3 sets of triply degenerate states. The QP
corrections for the degenerate bands 12-14, 15-17, and 18-20 for each compound
are identical. Likewise, the QP correction of the degenerate conduction bands
are of equal size but the corrections for distinct sets of degenerate bands differ.
Furthermore, there is a decrease in the size of the energy correction in the series
ATiO3 except for the QP correction for band 28, for which the energy correction
increases systematically throughout the series and which gives rise to the already
mentioned band reordering in CaTiO3.

To understand the trends in the QP corrections, it is instructive to look again at
the DOS of the compounds in figure 5.7. In the energy interval between −5 and
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−3 eV, the Ti 3d states hybridize with the O 2p states forming the valence band,
between −4 and −2 eV the d states of the A cation also mix with the oxygen states,
whereas the VBM has pure oxygen character as mentioned previously. It stands
to reason that the differences in the composition of the valence bands in the
different energy regions lead to the slight differences between QP corrections for
the three distinct sets of triply degenerate valence bands. Furthermore, the pDOS
of the A nd states in the conduction-band regime become more extended and
move to higher energies throughout the series as illustrated in figure 5.7. This
indicates that the Ca 3d states are bound more strongly than the Sr 4d states and
the Ba 5d states are even bound less strongly. However, correlation effects are
strongest between highly localized electrons or holes. Thus, the decrease in the
localization of the A nd states throughout the series might be responsible for the
decrease of the QP correction for the A nd states.

BaBO3, B = Ti, Zr, Hf

This series results from replacing Ti in BaTiO3 by Zr and Hf. Since the conduction
bands lowest in energy in BaTiO3 are mainly composed of Ti 3d states the largest
changes in the band structure of this series are expected to be observed in the
conduction-band regime. Indeed, for energies below EF the KS band structures
of BaZrO3 and BaHfO3 shown in figure 5.9 are both very similar to that of BaTiO3

in figure 5.6. However, the conduction bands lowest in energy in BaZrO3 and
BaHfO3 are located at higher energies than the corresponding bands in BaTiO3,
which is the reason for the observed increase in the band gaps of the first two
compounds compared to the gap of the latter one. On the other hand, the spectra
of BaZrO3 and BaHfO3 are very similar in the whole energy region shown in
figure 5.9. Apart from the upwards shift of the conduction bands in BaZrO3

and BaHfO3, the fundamental gap is indirect and corresponds to the transition
between R and Γ like in BaTiO3. The smallest direct transition occurs at the Γ
point in all three materials.

In the series BaBO3, the valence bands mostly consist of O 2p states. This
explains the similarities of the band structures in the valence-band regime. Fur-
thermore, the first three bands above EF are composed of the d states of the B

cation of the transition metals Ti, Zr, and Hf, respectively. The Zr 4d and the
Hf 5d states are more extended and less strongly bound than the Ti 3d states.
This is demonstrated in figure 5.10 comparing the total and partial DOS of all
three compounds as obtained within DFT (GGA). The consequences are twofold:
first, the conduction bands formed out of the Zr 4d and the Hf 5d states are
located at higher energies than the bands originating from Ti 3d states. Second,
the Zr 4d and Hf 5d orbitals hybridize much more with the Ba 5d states than
the Ti 3d states, since the first two are much closer in energy to the Ba 5d states,
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than the Ti 3d states. This can also be seen in figure 5.10 and explains, why
the hysteresis-like feature in the conduction-band regime between Γ and M in
the band structures of BaZrO3 and BaHfO3 in figure 5.9 are less flat than the
corresponding feature in the band structure of BaTiO3 in figure 5.8.

The close resemblance of the band structure of BaHfO3 to that of BaZrO3 is
attributed to the influence of the lanthanide contraction. This term denotes the
large decrease of the atomic as well as the ionic radii of elements in the lanthanide
series resulting from the poor shielding of the charge of the nucleus by the 4f
electrons. It leads to an increase in the attraction between the nucleus and the
valence electrons occupying the outer states in the 5th or 6th shell resulting in
a decrease of the ionic radii. Consequently, the size of the ions of the period-6
transition metals is significantly smaller than would be expected if there were
no lanthanides. In fact, they are very similar to the ionic radii of the period-5
transition metals. In the case of Zr and Hf, the size of the ionic radii of Zr4+

and Hf4+ with coordination number IV are 72 pm and 71 pm, respectively [118].
Furthermore, the 5d states of Hf are located at similar energies as the Zr 4d states
in BaZrO3 and BaHfO3 as demonstrated in figure 5.10. In general, many chemical
properties of the elements Zr and Hf or of compounds containing either one of
the elements are known to be similar.

The QP corrections determined within the GWA for BaZrO3 and BaHfO3 lead
to shifts of the valence bands to lower energies and of the conduction bands to
higher energies. The resulting QP band structures are shown in red in figure 5.9.
The QP corrections calculated at the Γ point for the bands 12 to 31 of BaZrO3 and
BaHfO3 are shown in figure 5.11. A comparison of these energies with the QP
correction of BaTiO3 for the same bands at the Γ point listed in figure 5.8 reveals
that the size of the correction for the valence-band states strongly increases from
BaTiO3 to BaZrO3, whereas the increase of the energy corrections from BaZrO3

to BaHfO3 is much more moderate. The largest increase from BaTiO3 to BaZrO3

of almost 0.3 eV can be observed for the bands 12 to 14. The QP correction for
the Ba 5d and 6s states also slightly increases, whereas the correction for the
transition-metal d states decreases throughout the series.

Due to the large increase in the KS transition energies obtained for BaTiO3 and
BaZrO3, the contribution of screening to the QP correction is reduced as energy
differences between the occupied and unoccupied states of the KS eigenspectra
enter the denominator of the polarization function, eq. (2.83). A closer look at
the correlation contribution to the GW self-energy, calculated at the KS energies
of the transition-metal d states of Ti, Zr, and Hf, shows that the contribution
decreases troughout the BaBO3 series. In addition, the exchange contribution to
the self-energy exhibits the same trend for these states such that the QP correc-
tions for the transition-metal d states become smaller throughout the series. For
the other valence- and conduction-band states, changes in the contributions to
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Figure 5.10.: The DOS obtained from DFT calculations.
Left: Total DOS (black) of BaTiO3 (top) and pDOS of Ti 3d (red), Ba
5d (blue), and O 2p (violet) from top to bottom.
Right: Total and partial DOS of BaZrO3 (straight lines) and BaHfO3

(dashed-dotted lines). From top to bottom: total DOS, Zr or Hf nd
pDOS (red), Ba 5d (blue), and O 2p (violet) pDOS.
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Figure 5.11.: QP corrections obtained from GW calculations at the Γ
point for the bands 12 through 31 for BaZrO3 and BaHfO3.

the self-energy are less pronounced and partially compensate each other. Fur-
thermore, there are other aspects that may have influence on the size of the QP
correction, e.g., the differences in the KS wave functions of the distinct materials
which are used to calculate matrix elements of the GW self-energy to obtain the
QP correction. However, none of these aspects influencing the QP corrections of
the remaining states are as predominant as the changes in the correlation and
exchange contributions to the GW self-energy observed for the transition-metal
d states.

PbBO3, B = Ti, Zr, Hf

The last series analyzed in this chapter is formally obtained, if Ba is replaced by
Pb in the compounds discussed in the previous section. The KS and QP band
structures of the resulting series displayed in figure 5.12 exhibit a number of
changes and new features, which cannot be found in the spectra of the materials
discussed previously: in all three compounds, a new valence band is formed in
the energy interval from −9 to −7 eV in the KS band structures. The other valence
bands above −7 eV are of similar form as in the compounds of the series BaBO3.
However, additional conduction bands can be found in the energy interval from
+1 to +7 eV in the KS spectra of PbTiO3 and between +1 and +5 eV in the spectra
of PbZrO3 and PbHfO3. They cross the bands formed by the transition-metal d
states, which yield the hysteresis-like structure in the conduction-band regime
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between Γ and M observed previously in the band structure of other compounds.
One of these new bands forms the CBM of PbZrO3 and PbHfO3 located at the X
point. In PbTiO3, the CBM is formed by states, which can be identified as Ti 3d
from comparison to the KS band structures discussed in previous sections and
it is also located at the X point. All states of the lowest conduction band along
the high-symmetry line between Γ and X are very close in energy in all three
compounds. The fundamental band gap in PbTiO3 corresponds to the indirect
transition between the X and the Γ point whereas in PbZrO3 it is the indirect
transition between R and X. In PbHfO3, the fundamental band gap corresponds
to the direct transition at the X point.
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Figure 5.13.: From top to bottom:
total DOS (black) of PbTiO3 and
partial DOS of the states Pb 6s and
6p (green and blue), Ti 3d (red),
and O 2p (violet) obtained from
DFT calculations.

The changes and new features in the
KS band structures of PbBO3 can all
be related to the contributions from
the valence states of Pb. This is il-
lustrated in figure 5.13 showing the
total DOS of PbTiO3 as well as the
pDOS from those states of Ti, Pb, and
oxygen that yield the largest contribu-
tions to the total DOS within the en-
ergy interval displayed here. Hence,
the additional valence band evolving
around −8 eV is mostly formed by
Pb 6s states with small contributions
from the oxygen 2p states. Further-
more, it is worth noticing that the Pb
6s states also yield a non-negligible
contribution to the formation of the
upper valence bands and the VBM,
which are primarily composed of oxy-
gen 2p states as in the materials dis-
cussed earlier. In addition, the Pb 6p
states hybridize with the valence-band
states between −6 and −4 eV. However,
the dominant contribution of the Pb
6p to the total DOS can be found be-
tween +1.5 and +7 eV above EF, where
it leads to the formation of the addi-
tional conduction bands observed in
the KS band structures, figure 5.12.

The other conduction bands are again composed of the transition-metal d states
as in the compounds of the BaBO3 series. Hence, replacing Ti by Zr or Hf leads
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to the same shift of these bands to higher energies in the KS band structure of
PbZrO3 and PbHfO3 like the one observed in the series BaBO3 upon replacing
Ti by Zr or Hf. Likewise, the close resemblance between the band structures of
PbZrO3 and PbHfO3 can again be related to the similar physical and chemical
properties of Zr and Hf discussed previously.

The QP bands of the compounds PbBO3 with B = Ti, Zr, and Hf in figure
5.12 are shifted downwards in the valence-band regime and upwards in the
conduction-band regime w.r.t. the KS band structures in agreement with previ-
ously observed trends. Again, the size of the energy shifts for the distinct bands
is not identical. For a quantitative analysis of the QP corrections, the observed en-
ergy shifts obtained for the bands 13 to 30 at the X point for all three compounds
of the PbBO3 series are illustrated in figure 5.14.

The largest deviation of the valence bands and the corresponding QP correc-
tions of the series PbBO3 from those observed in the other two series of com-
pounds results from the presence of Pb 6s and p states. The smallness of the QP
correction for the conduction band 24 of PbTiO3 at the X point and 23 in PbZrO3

and PbHfO3, which is mostly composed of Pb 6p states, is mainly attributed to
the fact that this band is extended over a large energy interval. Electrons oc-
cupying the corresponding states are very delocalized. Since correlation effects
between delocalized electrons are small so is the QP correction obtained for these
states.

For the other valence- and conduction-band states, the same trends in the
QP corrections can be observed like in the BaBO3 series. It is discussed in the
following section that additional changes in the spectra of the compounds from
the PbBO3 series may arise if the influence of spin-orbit coupling is taken into
account.

5.2.2. Influence of SOC in PbBO3, B = Ti, Zr, and Hf

In the photo-emission spectrum of Pb, a two-peak structure can be observed [158]
in the energy interval comprising the valence bands. First-principles calculations
[158] indicate that this feature originates from the effect of spin-orbit coupling
on the Pb 6p states. Quantitative agreement of the calculated spectrum with the
experimental data can thus only be attained, if SOC is included in the calculation.
It was discussed in detail in the previous sections that the Pb 6p states yield a
dominant contribution to the formation of the conduction bands in the three
compounds PbBO3, B = Ti, Zr, and Hf. Therefore, the influence of SOC on the
valence- and conduction-band spectra of these compounds will be investigated
in this section. First, the influence of the SOC on the KS band structure of the
three compounds is discussed.
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Figure 5.15 shows the KS band structure of PbTiO3 obtained from a calculation
without SOC on the left and with SOC on the right. The spin-orbit interaction
induces several changes: at the R point around −7 eV and +3 eV, at the X point
at −4 eV and at the Γ point at −5 eV the degeneracy between bands is lifted
due to small shifts in energy of the KS eigenstates. Close to the X point at +5
eV, the curvature of bands changes such that the bands do not cross each other
any more. However, these changes are of the order of meV at the most. On the
contrary, larger shifts on the scale of one eV can be observed in the conduction
bands above +3 eV.

The SOC term, eq. (2.29), induces a splitting between degenerate bands com-
posed of orbitals with l > 1. The magnitude of the splitting reflects the spin-
orbital coupling strength. As discussed in section 2.2.2, chapter 2, the influence
of SOC is expected to be strongest for p orbitals of heavy atoms, since the spin-
orbit coupling strength is enhanced as the atomic number increases. Therefore,
the largest changes in the KS band structure of PbTiO3 can be observed for the
bands above +3 eV, since they are mostly composed of Pb 6p states. In partic-
ular, the KS eigenstates located roughly at +6 eV at the R point are degenerate
if SOC is neglected but they are separated by more than 1 eV if the SOC term
is included in the DFT calculations. In contrast, the influence of SOC on the
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Figure 5.15.: KS band structures of PbTiO3 calculated without SOC
(left) and with SOC (right) included in second variation. The Fermi
energy is placed in the middle of the band gap.
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conduction bands below +3 eV consisting of Ti 3d states and on the valence
bands which are mainly composed of oxygen 2p states is much smaller. Hence,
the fundamental gap at the X point in PbTiO3 is only slightly affected by the
changes originating from the SOC.

Along the same line of arguments, changes in the KS band structures of
PbZrO3, figure 5.16, can be related to the influence of SOC on eigenstates with
different orbital character. Moreover, it follows immediately that SOC has a
larger influence on the position of the CBM in PbZrO3 than in PbTiO3, since
the conduction band of PbZrO3 lowest in energy is composed of Pb 6p states
as opposed to the conduction band lowest in energy in the KS band structure
of PbTiO3. Since the KS band structures of PbHfO3 and PbZrO3 are practically
identical in the energy interval from −9 to +6 eV (cf. figure 5.12), the SOC leads
to similar modifications of the band structure of PbHfO3 than those observed for
PbZrO3 in figure 5.16.

For the sake of completeness, it should be mentioned that SOC can also lift
the spin-degeneracy at certain k points in systems without inversion symmetry.
Prominent examples of such changes in crystals lacking inversion symmetry are
the Dresselhaus effect and the Rashba splitting. In a lattice with inversion sym-
metry, the energy eigenvalues of the two spin states at a given k point have to be
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Figure 5.16.: KS band structures of PbZrO3 calculated without SOC
(left) and with SOC (right) included in second variation. The Fermi
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degenerate, because time-reversal symmetry requires a spin state at an arbitrary
k point to have the same energy as the opposite-spin state at −k1. Hence, the
SOC does not induce a splitting between the different spin states in the band
structures of the cubic crystal phases studied here.

In reference [159], it is described how the SOC can be included in the GWA.
However, GW calculations for complex oxide materials such as the compounds
from the PbBO3 series, which fully incorporate the SOC, are not feasible at
present. To estimate the influence of the SOC on the QP energies Enk, new
QP energies ESOC

nk are calculated according to

ESOC
nk = Enk +

(

ǫSOC
nk − ǫnk

)

, (5.2)

where ǫnk denotes the KS eigenvalues obtained from calculations without the
SOC term and ǫSOC

nk represents the KS eigenvalues which are calculated includ-
ing the SOC term in second variation. Similar schemes [160, 161] employed in
calculations for binary semiconductors yield better agreement with experimental
data than calculations which do not take into account the effects of the SOC.

To determine the quantitative changes caused by SOC, table 5.2 lists the direct
KS and QP gaps between the highest occupied and lowest unoccupied states at

1This is also referred to as Kramers degeneracy.

Material Transitions KS gaps (eV) QP gaps (eV)

w/o SOC with SOC w/o SOC with SOC

PbTiO3 X → X 1.62 1.61 2.98 2.97
Γ → Γ 2.64 2.61 4.15 4.12
M→M 3.70 3.69 5.07 5.06

PbZrO3 X → X 2.46 2.23 3.28 3.05
Γ → Γ 4.11 4.03 5.63 5.55
M→M 4.34 3.33 5.34 4.33

PbHfO3 X → X 2.48 2.25 3.37 3.14
Γ → Γ 4.64 4.39 6.14 5.89
M→M 4.50 3.49 5.59 4.58

Table 5.2.: Influence of SOC on the transition energies between the highest
occupied and lowest unoccupied KS and QP states of PbTiO3, PbZrO3, and
PbHfO3 at selected k points. The QP energy including contributions from
the SOC are obtained from the definition (5.2).
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the X, Γ and M points of the BZ of the compounds PbBO3, with B = Ti, Zr,
and Hf calculated with and without inclusion of the SOC term. The values for
the KS band gaps confirm that the changes in PbTiO3 are much smaller than
in the other two compounds for the reasons discussed above. The fundamental
KS gaps of PbZrO3 and PbHfO3 are diminished by 0.23 eV due to the influence
of the SOC, whereas in PbTiO3 it is only decreased by 0.01 eV. In general, the
transition energies of all three materials systematically decrease upon inclusion
of SOC in the DFT calculations.

As the QP energies incorporating the corrections from the SOC are calculated
according to eq. (5.2), the reduction of the transition energies observed for the
KS gaps directly translates into a decrease of the QP transition energies listed in
table 5.2. However, the resulting new QP gaps have to be dealt with carefully,
because, strictly speaking, it is not correct to predict the size of energy corrections
in the QP band structures due to SOC based on the changes observed in the KS
band structures. The SOC does not only change the eigenvalues. It also alters
the KS wave function. Eigenvalues and eigenstates both enter in the calculation
of the Green function G0, eq. (2.82), and the polarization function P, eq. (2.83),
which, in turn, enter the calculations to determine the GW self-energy. The SOC
leads to sizable changes in the KS eigenspecta of PbZrO3 and PbHfO3 and it is
doubtful that these changes are negligible in calculations of G0 or W. Further
investigations will be necessary to prove that eq. (5.2) yields a good estimate for
the influence of the SOC on the QP energies obtained from the GWA.

After the detailed analysis of trends in valence- and conduction-band spectra
of the perovskite TMOs the energies of semicore states will be compared in the
next section.

5.2.3. Semicore states

In this section, trends in the spectra of the perovskite TMOs in the energy in-
terval between −70 and −10 eV are discussed. In all compounds, energy bands
resulting from high-lying core states, called semicore states, are present in this
energy regime. As a semicore state is well separated in energy from the core
and valence states, it does not hybridize neither with the core or valence states
nor with other semicore state. Hence, the resulting bands have nearly pure or-
bital character and are almost dispersionless. Therefore, only the energies of
these bands at the Γ point are compared here. All energies are aligned w.r.t. the
energy EVBM of the highest occupied state.

Figure 5.17 shows the KS as well as the QP energies of the semicore states
at the Γ point calculated within the GGA and GWA, respectively. For almost all
states, the KS and the QP energies are very similar. In general, the QP corrections
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Figure 5.17.: Comparison of the energies of the semicore states at the
Γ point obtained from DFT (GGA) and GW calculations.

shifts the semicore states to slightly lower energies. In the KS and QP spectra of
all materials, oxygen 2s states form bands located roughly at −17 eV. Likewise,
the semicore states originating from elements, which are contained in more than
one of the compounds, like the Ti 3s and p states as well as the Pb 5d or the Hf
4f states, are all located at about the same energies in all compounds.

For the sake of completeness, it should be mentioned that the bands resulting
from the oxygen 2s states are not dispersionless. There are three oxygen atoms in
the unit cell. The 2s states of these atoms form three bands which are very close
in energy at all points of the BZ and extend over an energy interval of only 2 eV.
In order not to overburden the graphs in figure 5.17 and 5.18 only the position
of the band lowest in energy is displayed.

For the position of the semicore states formed by the B cation’s s and p states
with B = Ti, Zr and Hf and the A cation’s s and p states with A = Ca, Sr and Ba
two trends are observed: states attributed to shells with larger quantum numbers
are more extended and less tightly bound. This leads to a systematic increase of
the energies of the s and p states from Ca over Sr to Ba. For the same reason, the
Zr 4s and p states are located at higher energies than the corresponding states
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Figure 5.18.: Comparison of the QP energies of the semicore states at
the Γ point obtained from the full QP correction from the GWA with
spectra obtained by including only the non-selfconsistent HF correc-
tion.

of Ti. On the other hand, the Hf 5s and p states are located at lower energies
than the 4s and p states of Zr in both compounds BaHfO3 and PbHfO3. This
second trend originates from the extended 4f states of Hf that screen the nuclear
charge only partially such that the Hf 5s and p states feel more of the nuclear
charge, which leads to a contraction of the orbitals (lanthanide contraction) and
a stronger binding of these states.

To further analyze the QP spectra of the semicore states, figure 5.18 compares
the energies obtained from the full QP correction calculated in the GWA with
the spectra, which are calculated by adding only the contribution of the ex-
change term to the GW QP correction. As this contribution compensates the
self-interaction error, the resulting spectra are shifted to lower energies. This
effect is strongest for the B ns states as they are the most tightly bound ones of
all semicore states discussed here. The effect is also strong for the 4f states of Hf.
The contribution from the screening to the QP correction compensates this shift
such that the resulting QP spectra are again close in energy to the KS spectra.
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Since the screening does not fully compensate the effect of the contribution from
the exchange term the QP states are, in general, located at slightly lower energies
than the KS eigenstates.

In summary, trends in the valence- and conduction-band spectra as well as in
the position of semicore states can be related to changes in the chemical composi-
tion of the perovskite TMOs in first-principles calculations. In the next part of the
chapter, the influence of changes in the crystal structure on the electronic spectra
is analyzed and the resulting KS and QP gaps are compared with experimental
data.

5.3. GWA results versus experiment

In the third part of this chapter, band gaps, positions of semicore states and
dielectric functions obtained from GW calculations are compared to experimental
data. These data are typically measured at room temperature. As the majority
of the perovskite TMOs investigated in this part of the thesis does not crystallize
in the cubic phase at RT, the first section deals with changes occurring in the
band structures upon phase transitions from the cubic to the RT crystal phase.
After some brief comments on the experimental procedures used to determine
the aforementioned quantities, the results of measurements are compared with
the results of DFT (GGA) and GW calculations for the RT crystal phases. The
influence of contributions missing in the GWA, i.e., the neglect of excitonic effects
due to the neglect of the vertex, are revised briefly and the shortcomings of the
theoretical approach are contrasted with possible flaws in the interpretation of
the experimental data. Finally, the results of the whole chapter are summarized.

5.3.1. Room temperature crystal and electronic structures

Table 5.3 lists the crystal phases of the perovskite TMOs and the correspond-
ing transition temperatures that are known from experiment. Only the three
compounds SrTiO3, BaZrO3, and BaHfO3 crystallize in the cubic phase at RT
(space group Pm3̄m). Their KS band structures illustrated in figure 5.6 and 5.9,
respectively, have already been analyzed in detail in the previous sections.

The two compounds BaTiO3 and PbTiO3 form a tetragonal lattice (space group
Pamm). Furthermore, they are ferrolectric at RT, which implies that they crys-
tallize in a non-centrosymmetric structure. The crystal phase is obtained from
an elongation of the cubic unit cell along the c axis accompanied by small shifts
of the Ti cations and oxygen anions away from their high-symmetry positions
(cf. figure 4.3, chapter 4). The c/a ratio of PbTiO3 is given by 1.062 and is larger
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than c/a = 1.011 in BaTiO3.

Figure 5.19 shows parts of the KS band structures of BaTiO3 and PbTiO3 in
red obtained for the tetragonal, ferroelectric structure. For comparison, the KS
band structures for the cubic crystal phases are also displayed. All four band
structures agree well with spectra published in the literature [166]. Whereas
the electronic structure of the RT crystal phase of BaTiO3 only exhibits small
deviations from that of the cubic phase, the differences between the electronic
structures of the crystal phases of PbTiO3 are much larger. A direct comparison
of the changes in the band structures of both materials is hampered by the
previously discussed differences in the composition of the bands: in PbTiO3, the
Pb 6s states hybridize with the valence bands composed of oxygen 2p states
and the Pb 6p states lead to the formation of additional conduction bands. In
contrast, the valence bands of BaTiO3 have nearly pure oxygen 2p character and
the low-lying conduction bands are composed of Ti 3d states. Furthermore, the
shifts of the atoms away from the high-symmetry points are larger in PbTiO3.
This is the reason why the differences between the electronic structures of the
cubic and tetragonal phase of PbTiO3 are more pronounced than the differences
between the electronic structures of the corresponding crystal phases of BaTiO3.

The three compounds CaTiO3, PbZrO3, and PbHfO3 attain an orthorhombic
crystal phase at RT. In CaTiO3, the resulting unit cell (space group Pbnm) con-
tains 4 chemical units which corresponds to 20 atoms. The number of atoms per
unit cell in PbZrO3 and PbHfO3 (space group Pbam) amounts to 40, which is
equivalent to 8 chemical units.

Material Crystal phases (transition temperatures in K) Ref.

CaTiO3 cubic
(1634)−→ tetragonal

(1498)−→ orthorhombic [107]

SrTiO3 cubic
(106)−→ tetragonal [162]

BaTiO3 cubic
(393)−→ tetragonal

(278)−→ orthorhombic
(183)−→ rhombohedral [109]

BaZrO3 cubic [110]
BaHfO3 cubic [111]

PbTiO3 cubic
(766)−→ tetragonal [163]

PbZrO3 cubic
(508)−→ orthorhombic [164]

PbHfO3 cubic
(477)−→ orthorhombic [165]

Table 5.3.: Crystal phases of the perovskite TMOs. The RT phases are underlined.
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Figure 5.19.: Comparison of the KS band structures of BaTiO3 and
PbTiO3 calculated in the RT crystal phase (red) and the cubic phase
(black).

The KS band structures of CaTiO3 and PbZrO3 are illustrated in figure 5.20.
Since the number of atoms per unit cell is increased compared to the cubic phases
a larger number of valence and conduction bands close in energy is formed by
the oxygen 2p and the transition-metal d states than in the KS spectra of the cubic
phase, figure 5.6 and 5.12. Again, contributions from the Pb 6s and p states can
be identified in the band structure of PbZrO3. In contrast to the band structures
of the cubic phase, the fundamental band gap now corresponds to the direct
transition at the Γ point in all three materials with orthorhombic crystal phase
at RT including PbHfO3. For the reasons discussed previously, the KS spectrum
of PbHfO3 is very similar to that of PbZrO3. Therefore, the band structure of the
former is not displayed here.

5.3.2. Transition energies and band gaps in experiment

Photo-emission spectroscopy (PES)2 is an excellent tool to determine the core
and semicore level spectra of solids. Semicore states form nearly dispersionless
bands well separated in energy such that the position of these bands can be
directly determined from the peak positions in the spectra obtained from X-ray

2The basic mechanism of PES is explained in section 2.3 of chapter 2.
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Figure 5.20.: KS band structures of orthorhombic CaTiO3 (top) with
20 atoms per unit cell and of orthorhombic PbZrO3 (bottom) with 40
atoms per units. The Fermi energy is placed in the middle of the KS
band gaps.
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photo-emission spectroscopy (XPS). In contrast, it is much more difficult to deter-
mine energies of transitions between valence- and conduction-band states by PES.
On the one hand, there are usually many states close in energy in this energy
regime, which are difficult to resolve in PES. On the other hand, the occupied
and unoccupied parts of the QP spectra cannot be probed simultaneously in PES
but have to be studied by complementary techniques, i.e., PES and inverse PES,
yielding two separate spectra for the occupied and unoccupied part of the QP
spectrum. These spectra from different measurements have to be aligned to de-
termine transition energies which may lead to additional inaccuracies. Therefore,
optical spectroscopies are usually preferred to probe the transition energies be-
tween states pertaining to the valence- and conduction-band spectrum of solids.

Optical experiments like absorption, transmission, and reflectance spectroscopy
allow to directly measure the fundamental band gap and transition energies be-
tween the occupied and unoccupied part of the QP spectrum. In both spectro-
scopies, a detector first measures the spectrum from the radiation generated by a
source, which emits light in the energy regime to be probed experimentally. To
probe the valence- and conduction-band spectra of the perovskite TMOs radia-
tion with frequencies of near infrared (NIR), visible (vis), and ultra violet (UV)
light is used. The spectrum is then re-measured after placing the material of
interest in between the source and the detector. The two measured spectra can
then be combined to either determine the transmittance T corresponding to the
fraction of radiation refracted by the material or the reflectance R, which is the
fraction of the incident radiation that is reflected from the surface of the mate-
rial. The sample spectrum alone is not sufficient to determine transmission or
reflectance spectra, because they will be affected by the experimental conditions,
such as the spectrum of the source, the spectra of other materials in between the
source and detector and the wavelength-dependent characteristics of the detec-
tor. The reference spectrum will be affected in the same way, though, by these
experimental conditions and therefore the combination of both spectra yields the
spectrum of the material alone.

In recent years, spectroscopic ellipsometry (SE) has evolved to a powerful,
alternative optical technique to measure dielectric properties of thin films. Ellip-
sometry measures the change in the polarization of the radiation upon reflection.
The polarization state of the radiation incident upon the sample may be decom-
posed into a component p parallel to the plane of incidence and a component s
(from German "senkrecht") perpendicular to that plane. The amplitudes of the
s and p components, after reflection and normalized to their initial value, are
denoted by rs and rp. Ellipsometry measures the complex reflectance ratio ρ
given by

ρ =
rp

rs
= tan(Ψ)ei∆ , (5.3)
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where the amplitude ratio tan(Ψ) upon reflection and the phase shift ∆ are the
two quantities determined experimentally. Since ellipsometry measures an inten-
sity ratio instead of pure intensities no reference measurement is needed.

The basic mechanism exploited in all optical spectroscopies is the excitation of
electrons from an occupied to an unoccupied state by absorbing the energy  hω

of an incident photon or the deexcitation by emitting a photon, where the energy
of the photon has to match the energy difference between the initial and the final
state. If the reflectance or transmittance are plotted as functions of the energy of
the incident photons, maxima of R(ω) or minima of T(ω) can thus be identified
as transition energies between occupied and unoccupied states. However, an
electron which has been excited into an empty state of the conduction band
can couple via the Coulomb interaction to the hole in the valence band created
upon the excitation. The combined electron-hole pair is called exciton. The
excitation of excitons may effect optical spectra in two ways: the formation of
bound excitons with energies smaller than that of the fundamental gap Egap

may hamper the determination of Egap in optical spectroscopies. Secondly, the
formation of excitons with energies larger than Egap usually leads to a shift of the
peaks in transmission or reflectance spectroscopy to lower energies compared to
the energy differences between the actual QP states [167, 168].

Transmittance or reflectance are directly related to the real part n(ω) of the
complex refractive index

ñ(ω) = n(ω) + iκ(ω) (5.4)

via the Fresnel equations. The imaginary part κ(ω) of ñ(ω) describes the loss
through absorption of light propagating through the material and is therefore
also called extinction coefficient. If n(ω) is measured over a wide range of
frequencies, κ(ω) can be obtained from a Kramers-Kronig transformation. If
birefringence is negligible in the material of interest, the macroscopic dielectric
function ǫM(ω) introduced in section 3.3.5, chapter 3, is related to the complex
refractive index by

ǫM(ω) = ñ2(ω) . (5.5)

From transmission spectroscopy, the absorption coefficient α(ω) of a material
can also be directly determined, as it is related to the intensities I0(ω) of the
incident light and I(ω, z) of the transmitted light according to the Beer-Lambert
law

I(z,ω) = I0(ω) · e−α(ω)z , (5.6)

where z is the thickness of the sample. The absorption coefficient, in turn, is
related to the extinction coefficient by

α(ω) =
4πκ(ω)

λ
, (5.7)
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where λ is the wavelength of the incident light. Moreover, Tauc [169] as well as
Davis and Mott [170] established that the absorption coefficients of semiconduc-
tors are related to the energy of their fundamental gaps Egap by

α(ω) ·  hω ∼ ( hω− Egap)
2 . (5.8)

This relation is frequently used to derive the energy of the fundamental gap by
a linear fit to the plot of the square root of the absorption coefficient obtained
from transmission spectroscopy.

The quantities measured in SE, i.e., the amplitude ratio tan(Ψ) and phase shift
∆, can, in general, not be converted directly into the optical constants of the sam-
ple. Usually, a layer model is established, which considers the optical constants
and thickness parameters of all individual layers of the sample including the cor-
rect layer sequence. Based on an iterative procedure, unknown optical constants
and thickness parameters are varied and tan(Ψ) and ∆ are calculated using the
Fresnel equations. The calculated tan(Ψ) and ∆ values, which match the experi-
mental data best, provide the optical constants and thickness parameters of the
sample. Further details on the procedures used to extract material properties
from results of SE can be found in reference [171, 172].

5.3.3. Band gaps, semicore states, and dielectric functions

In table 5.4, energies of interband transitions between the QP states obtained from
GW calculations for the RT crystal phases of the perovskite TMOs comprising the
series ATiO3, BaBO3, and PbBO3 are compared to transition energies determined
experimentally. In addition, the transition energies obtained from the KS band
structures of the RT crystal phases as well as the results from DFT (GGA) and
GW calculations for the cubic lattices are listed. Whereas the results from DFT
calculations systematically underestimate the energies measured in experiment,
the QP band gaps are in much better agreement with the experimental data
for all materials. Furthermore, explicit changes can be observed in the results
obtained for the different crystal phases. The sizes of the fundamental band gaps
calculated for the different crystal phases differ by as much as 1.09 eV in PbTiO3.
In CaTiO3, PbZrO3, and PbHfO3, the positions of the fundamental band gaps in
the RT crystal phases differ from those in the cubic lattices and the size of the
gaps for the RT crystal phases is significantly smaller as for the cubic phases. In
contrast, the transition energies obtained for the RT phases of BaTiO3 and PbTiO3

are larger compared to those of the cubic phases. For all materials, the energy
differences between QP states calculated for the RT crystal phases agree best
with the experimental data. Thus, it is vitally important to consider the correct
RT crystal phase explicitly in theoretical investigations to attain a quantitative
description of the spectra observed in experiment.
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Material Interband Energy gaps (eV) Energy gaps (eV)
Transition of the cubic phase of the crystal phase at RT

cubic

DFT GWA Exp.

SrTiO3 R → Γ – – 1.88 3.61 3.20∗ [151]
Γ → Γ – – 2.23 3.96 3.88# [151]

BaZrO3 R → Γ – – 3.24 4.94 4.86∗ [150]
Γ → Γ – – 3.41 5.20 –

BaHfO3 R → Γ – – 3.67 5.40 5.7+ [146]
Γ → Γ – – 3.76 5.58 –

cubic tetragonal

DFT GWA DFT GWA Exp.

BaTiO3 R/A→ Γ 1.80 3.32 1.84 3.45 3.27# [149]
Γ → Γ 1.91 3.46 2.20 3.81 3.92# [149]

PbTiO3 X → X (1.63) (2.98) 3.06 3.98 3.81# [148]
X → X ′ 2.77 3.51 (3.14) (4.61) –
Z → Z – – (2.15) (3.68) –
Z → Z′ – – 3.12 4.02 4.11# [148]

cubic orthorhombic

DFT GWA DFT GWA Exp.

CaTiO3 R → Γ 1.88 3.62 2.29 3.86 –
Γ → Γ 2.34 4.11 1.88 3.44 3.57∗ [147]

PbZrO3 X → X 2.44 3.28 3.06 3.80 –
Γ → Γ 4.12 5.63 2.78 3.47 3.86# [148]

PbHfO3 X → X 2.48 3.37 3.00 3.79 –
Γ → Γ 4.65 6.14 2.73 3.45 –

∗ UV-vis absorption spectroscopy
# Spectroscopic ellipsometry (SE)
+ Ultraviolett photo emission (UPS) and x-ray absorption (XAS) spectroscopy

Table 5.4.: Energies of interband transitions in the KS and QP band structures
of perovskite TMOs obtained from calculations for the cubic and RT crystal
structures compared to experimental data. Transition energies of PbTiO3 listed
in brackets are dipole-forbidden. (See text for further details.)
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Apart from the significant improvement over the DFT result, smaller devia-
tions between the QP transition energies obtained from the GWA and the ex-
perimental data can yet be observed. In SrTiO3, BaTiO3, and PbTiO3 as well as
BaZrO3 the GWA predicts transition energies that are slightly larger than the
ones observed in experiment, whereas it underestimates the fundamental gaps
of CaTiO3, BaZrO3 and PbZrO3. As a large effort was made to converge the GW
calculation for the RT crystal phases of CaTiO3, PbZrO3, and PbHfO3 to within
0.05 eV and the calculations for the other five compounds to within 0.01 eV, these
deviations must either originate from the approximations inherent to the first-
principles calculations or from inaccuracies in the experimental data or from a
combination of both. In general, it is important to note the difference between
optical and photo-emission spectra. Although the spectra might be close in en-
ergy and yield similar values for the transition energies in solids, the physical
mechanisms exploited in the two spectroscopic procedures are different. The QP
spectra obtained from the GWA yields approximations to photo-emission spectra
as described in section 2.3, chapter 3. It is not to be expected that the QP spec-
trum describes an optical spectrum correctly, because they represent a different
kind of excitation spectrum. Nevertheless, it is instructive to critically revise the
approximations used in the GW calculations as well as the procedures used to
determine the transition energies in experiment to identify and better understand
possible causes of the discrepancies between the QP transition energies and the
experimental data.

In the single-shot GW calculations for the perovskite TMOs, energy differences
of KS eigenvalues describing the occupied and unoccupied states, respectively,
enter into the calculation of the polarization function, eq. (3.34), which, in turn, is
used to determine the screened Coulomb potential, eq. (3.38). The systematic un-
derestimation of the transition energies in DFT (GGA) leads to an overestimation
of contributions from low-energy transitions to the polarization function. Hence,
the screening of the bare Coulomb potential can become too large. Therefore,
single-shot GW calculations for binary semiconductors often underestimate the
fundamental band gaps (cf. figure 2.3, chapter 2). Hence, the underestimation
of the band gaps of CaTiO3 and PbZrO3 can be attributed to an overestimation
of the screening in these two compounds. It has been demonstrated for binary
semiconductors that the size of the band gaps is usually increased [74, 75] if GW
calculations are carried out self-consistently, i.e., by replacing the KS eigenval-
ues in the calculation of the polarization function by the QP energies obtained
from the GWA. However, self-consistent calculations are beyond the scope of this
work.

The overestimation of the transition energies, in particular in SrTiO3 and BaTiO3,
are most likely related to the neglect of the influence of phonons in the GW cal-
culations. The momentum of the radiation used in the optical experiments is
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too small to directly induce indirect transitions. Hence, these types of transitions
can only be observed in optical experiments due to a coupling between electronic
and phononic excitations and the latter is not taken into account in the GW cal-
culations. In reference [151], the temperature dependence of the absorption edge
of SrTiO3 was determined. Cooling of the samples resulted in a shift of the
absorption edge to higher energies. This substantiates the influence of phonons
on the transition energies measured in experiment. Furthermore, it may suggest
that the QP gaps obtained from the GWA are in better agreement with the actual
electronic energy gaps of these compounds than indicated by the comparison to
the optical gaps.

Furthermore, fundamental gaps, i.e., the indirect transitions lowest in energy
of SrTiO3 and BaZrO3, are frequently derived from experimental data by a linear
fit to the curve [α(ω) hω]2 exploiting the relation in eq. (5.8). As pointed out by
Benthem et al. [173], who investigated the absorption spectrum of SrTiO3, these
band-gap energies can vary depending on the range of absorption coefficients
used for the linear fit. For example, this technique was applied in references
[150] and [174] to determine the fundamental gap of BaZrO3. In reference [150],
a gap of 4.86 eV was determined whereas in [174] a gap of 5.4 eV was derived.
Furthermore, it is already known since the middle of the eighties [175] that
the absorption edge of these materials has a long exponential tail not described
by eq. (5.8). The origin of this behavior first observed by Urbach [176] has
not been fully clarified yet, but its existence in many different materials has
been confirmed in numerous experiments. According to the Urbach rule, the
absorption coefficient in the energy region close to the fundamental absorption
edge is described by

α(ω, T) = α0 exp{( hω− Egap)/kB(T − T0)} (5.9)

where kB is the Boltzmann constant, T denotes the temperature and T0 and α0 are
material-specific constants. It was pointed out by Wemple [177], who reported
an Urbachian tail in BaTiO3 extending down to nearly 2.5 eV, that Egap and α0

cannot be determined simultaneously from the absorption spectrum in the energy
region of the Urbachian tail. Wemple emphasized the importance to measure the
absorption edge in those energy regime, where the Urbachian tail blends in with
the region, where the behavior predicted by eq. (5.8) is dominant, in order to
minimize the influence of the temperature and to guarantee reliable results from
the linear fit to [α(ω) hω]2. In more recent publications, e.g., in reference [174],
these aspects have not been discussed and it is not clear if they have been taken
into account in the analysis of the experimental data. Hence, the reliability of
the value for the band gap of BaZrO3 taken from reference [174] is questionable.

Likewise, the reliability of the experimentally determined band gaps of BaHfO3

and CaTiO3 in table 5.4 is also questionable. The value of BaHfO3 was determined
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from a combination of spectra obtained from direct and inverse PES. As already
mentioned, the alignment of the two spectra is delicate and the resulting band-
gap value taken from reference [146] must be taken with a grain of salt. In refer-
ence [147], the value of the band gap is identified as the optical absorption edge
without any further definition or explanation. The existence of an Urbachian tail
or a temperature dependence of the absorption spectrum is not discussed. Un-
fortunately, no other experiments could be found that measured the band gaps
of BaHfO3 and CaTiO3 whereas the values listed for the other materials in table
5.4 have been confirmed by several groups [178, 179, 173, 180, 181, 182].

For the cubic crystal phase of PbTiO3, Lee et al. [153] calculated the dipole
transition-matrix elements squared which are denoted by pi→f in this work ac-
cording to

pi→f = |〈ϕ(f)
nk|∇|ϕ

(i)
n ′k ′〉|2 (5.10)

where the initial (i) and final (f) states correspond to the KS eigenstates from
DFT calculations. With k = k ′ and n, n ′ denoting a band below and above EF,
respectively, pi→f can be taken as an estimate for the optical transition probability
between the two state. Lee found that the matrix element calculated for the lowest
direct transition at the X point between the electronic eigenstates obtained for
the cubic crystal structure is zero.

For this work, dipole transition-matrix elements between initial and final states
taken from the electronic structure of the cubic as well as the tetragonal, ferro-
electric crystal phase were calculated. For the cubic lattice, the results of Lee
could be confirmed, i.e., for the transition lowest in energy denoted by X→ X in
table 5.4 pX→X = 0. The transition second lowest in energy also occurs at the X
point in the electronic structure of the cubic crystal phase and is labeled X→ X ′

in table 5.4. As pX→X ′ is larger than zero, it is concluded in reference [153] that
this is the transition corresponding to the fundamental gap measured in optical
spectroscopies.

In the RT crystal phase, the lowest direct transition occurs at the Z point.
However, the transition probability pZ→Z is also zero. On the other hand, the
transition second lowest in energy can again be found between the highest occu-
pied and lowest unoccupied states located at the X point. As pX→X > 0 for the
electronic structure of the RT crystal phase, the value of 3.98 eV listed in table
5.4 is identified as the most probable transition measured in SE. In addition, the
energy of the transition at the Z point between the highest occupied and the
unoccupied state second lowest in energy, which is denoted by Z → Z ′ in table
5.4, also agrees well with the transition energy measured by SE.

Last but not least, the influence of the SOC term on the conduction-band
states of PbZrO3 and PbHfO3 was already emphasized in the previous part of
this chapter. However, GW calculations fully incorporating the influence of the
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Figure 5.21.: The imaginary part of the macroscopic dielectric function
of SrTiO3 and BaTiO3 calculated within RPA using the KS eigenvalues
(RPA-DFT) and the QP energies from a GW calculation (RPA-GW) as
input are compared to the dielectric function obtained from reflectance
spectroscopy [178].

SOC for these materials are not feasible at the moment. As the SOC leads to
sizable changes in the spectra of these two compounds it should be taken into
account in the GW calculations to obtain an accurate estimate of the QP gaps.

The fundamental difference between QP and optical spectra mentioned previ-
ously can be illustrated best by looking directly at the optical absorption spectrum.
Figure 5.21 compares the imaginary part of the macroscopic dielectric function of
SrTiO3 and BaTiO3 obtained from reflectance spectroscopy [178] with two curves
obtained from first principles calculations. The results coined RPA-DFT (blue
lines) were obtained from calculations of the dielectric function within the RPA
(section 3.3.5, chapter 3) using the KS eigenvalues to calculate the polarization
function. Although the resulting spectra agree qualitatively with the experimen-
tal curves of both materials they are both shifted to lower energies, because
the transition energies are underestimated within DFT (GGA). Replacing the KS
eigenvalues by the QP energies obtained within GWA in the calculation of the
polarization function results in the red curves in figure 5.21 labeled RPA-GW.
The resulting spectra shift to higher energies but overcompensate the underes-
timation of the GGA. This is most easily seen in the onset of the absorption.
Furthermore, relative peak heights of the RPA-GW spectra, which can be taken
as measures of the absorption strength, differ from those observed in experiment.
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Semicore state Method E− EVBM (eV)

CaTiO3 SrTiO3 BaTiO3

Ti 3p DFT −39.41 −32.70 −32.78

GWA −40.10 −33.14 −32.79

exp. – −34 [183] −34 [183]

A ns DFT −32.69 −32.65 −24.64

(A = Ca, Sr, Ba) GWA −32.92 −32.82 −24.78

exp. −33.43 [184] −34 [183] −27 [183]

A np DFT −20.36 −14.70 −9.83

(A = Ca, Sr, Ba) GWA −21.82 −16.01 −10.51

exp. −22.43 [184] − 16 [183] −12 [183]

O 2s DFT −17.03 −16.94 −16.50

GWA −17.18 −17.14 −16.53

exp. −18.43 [184] −19.5 [183] −19 [183]

Table 5.5.: Energy levels of semicore states of CaTiO3, SrTiO3, and
BaTiO3 at the Γ point obtained from DFT (GGA) and GW calculations
are compared to results from XPS.

Both discrepancies, the blue shift as well as the underestimation of the ab-
sorption strength in the low-energy part of the spectra can be attributed to the
neglect of excitons in the description of the optical spectra calculated within the
GWA [167]. Excitonic effects can be included in the first-principles description of
optical spectra, e.g., by an approximate solution of the Bethe-Salpeter equation
[167, 168]. In particular, it was demonstrated by Rohlfing and Louie [168] that a
proper description of optical spectra is not obtained by simply shifting the QP
energies by the amount of the binding energies of the excitons. It rather leads to
a renormalization of the whole QP spectrum calculated within the GWA, which
results in a much better agreement between the theoretical and experimental
optical spectra.

However, the poor resemblance of the RPA-GW dielectric function with the
optical spectra does not indicate that the approximation of the true QP spectrum
obtained from the GWA is erroneous. It only emphasizes that QP and optical
spectra are not alike. Optical excitations measured by absorption spectroscopy
are neutral excitations, i.e., the number of electrons in the solid is unchanged.
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This can be described by the Bethe-Salpeter equation in the context of many-body
perturbation theory. In photo-emission spectroscopy, the number of electrons
is raised or reduced by one. This kind of excitation is model by QP spectra
obtained from the GWA. Excitonic effects can, in principle, be incorporated in
the GW calculations of the QP spectra in terms of vertex correction, but this is
beyond the scope of the calculations presented here. However, it was already
mentioned in section 2.3.4 of chapter 2 that the vertex corrections employed so
far only result in small or no changes of the QP spectra [76, 77].

Last but not least, the energies of semicore states of CaTiO3, SrTiO3, and BaTiO3

obtained from DFT (GGA) and GW calculations are compared to results from
XPS. As observed previously, the DFT and GW results are very close in energy.
They agree best with the energies measured in CaTiO3 and are slightly worse
for SrTiO3 and BaTiO3. Furthermore, all energies obtained from DFT and GW
calculations are larger than the ones observed in experiment. Since QP energies
from the GWA are slightly lower than the KS eigenstates, the QP corrections
from GW calculations at least yield a small improvement over the DFT results.

In the previous section, the influence of the different contributions to the QP
correction for the semicore states was analyzed. It was demonstrated that the
exchange part yields a large negative contribution to the QP correction, whereas
the screening of the Coulomb potential leads to a positive correction which al-
most cancels the former contribution. Hence, the overestimation of the screening
discussed earlier in this section might be responsible for the observed deviations
between the QP energies and the XPS results. In addition, the exchange contri-
bution might also be too small, since it ought to correct the self-interaction error,
which effects the KS eigenvalues as well as the KS eigenstates. Since the latter
are used in the evaluation of the matrix elements of the exchange contribution
to the QP correction, the self-interaction is not removed completely in the GWA.

5.4. Discussion and Summary

In this chapter, results from all-electron DFT (GGA) and GW calculations for the
perovskite TMOs CaTiO3, SrTiO3, BaTiO3, PbTiO3, BaZrO3, BaHfO3, PbZrO3, and
PbHfO3 obtained from the FLAPW-based implementations FLEUR and SPEX have
been analyzed. Detailed convergence test for these materials demonstrate that
more than 180 unoccupied states per atom in the unit cell are needed to con-
verge the QP corrections from the GWA of the lower-lying conduction bands to
within 0.01 eV. This emphasizes the necessity to improve the representation of
the unoccupied states, because the conventional LAPW basis does not yield an
accurate description of high-lying states. It was shown that this deficiency can be
removed by adding LOs to the conventional LAPW basis, which are located in
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the unoccupied part of the KS eigenvalue spectrum. The efficiency of the ansatz
in comparison to other methods [156] has been demonstrated. Moreover, only a
small number of LOs has to be retained in the construction of the MPB used in
the GW calculations to obtain an accurate description of the unoccupied states,
which makes this scheme fast and efficient.

The investigation of the KS and QP band structures of the perovskite TMOs has
revealed trends in the electronic structures of the cubic crystal phases in the series
ATiO3 with A = Ca, Sr and Ba, BaBO3, and PbBO3 with B = Ti, Zr, and Hf due to
changes in the chemical compositions. The valence bands of all compounds are
mainly composed of oxygen 2p states. Furthermore, the conduction bands lowest
in energy in the series ATiO3 and BaBO3 exhibit transition-metal d character.
Hence, the band gaps in the series ATiO3 are very similar. In the series BaBO3,
band gaps become larger if Ti is replaced by Zr or Hf, because the more extended
Zr 4d and Hf 5d are located at higher energies.

In the PbBO3 series, the Pb 6p states lead to the formation of additional con-
duction bands. In contrast to the compounds from the ATiO3 and BaBO3, the
conduction-band minimum (CBM) is formed by the Pb 6p states instead of d
states of Zr and Hf, whereas in PbTiO3 the Ti 3d states make up the CBM. As
the Ti 3d-derived bands in PbTiO3 are located in the same energy interval as
the Pb 6p-derived bands lowest in energy in PbZrO3 and PbHfO3, only small
changes in the band gaps are observed in the PbBO3 series.

Moreover, it is illustrated that the shape as well as the positions of conduction
bands, which are composed of Pb 6p states, are altered significantly if SOC is
included in the DFT calculations for compounds in the series PbBO3 in second
variation. However, it is questionable whether changes in KS band structures
resulting from SOC can be translate directly into changes in the QP spectra
by simply adding the difference between the KS eigenstates obtained with and
without the corrections from the SOC to the QP energies, because the transition
energies between the occupied part of the KS eigenvalue spectrum and a large
number of unoccupied states up to high energy enter the equation for the GW
self-energy. As the SOC changes the positions of the conduction-band states in
a broad energy region the effect on the screening of the Coulomb interaction
calculated within the GWA cannot be predicted without further investigations.
GW calculations fully taking into account the effect of SOC will be necessary to
answer the question how the SOC changes the QP states.

In general, the QP corrections obtained from the GWA lead to downward
shifts of the occupied part of the KS spectrum and to upward shifts of the
unoccupied parts. However, the size of these energy shifts strongly depends on
the orbital composition of the KS eigenstates. For example, in PbTiO3, the QP
corrections obtained at the X point for the first two conduction bands above EF
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with prevalent Ti 3d and Pb 6p character, respectively, differ by a factor of three.
This demonstrates clearly that a quantitative description of the QP spectra of
the perovskite TMOs cannot be obtained from a uniform shift of the conduction
bands to higher energies, e.g., by applying a scissors operator but may only
be attained if the QP corrections for each band at each k point are calculated
explicitly.

For all perovskite TMOs investigated in this chapter, good agreement has been
found between the QP gaps in the band structures of the RT crystal phases
with transition energies measured in experiment. In particular, the QP gaps
agree much better with the experimental data than the corresponding transition
energies between KS eigenstates. Furthermore, significant deviations between
the QP band structures of the high-temperature cubic lattices and the RT crystal
phases emphasize the necessity to consider the RT crystal structure in theoretical
studies to attain quantitative agreement with experimental data. In addition, the
GW calculations also lead to a small but systematic improvement of the energies
of semicore states with respect to experimental data.

Smaller deviations between the QP gaps and experimental data could be re-
lated to approximations inherent to the GW calculation, i.e., the neglect of
electron-phonon coupling and the vertex function or the use of the KS eigen-
states in the evaluation of the polarization functions. The latter is considered
to result in an overestimation of the screening which, in turn, might lead to an
underestimation of band gaps. Self-consistent GW calculations typically lead to
larger band gaps. The reason for the increase is usually attributed to a reduction
of the screening as the KS eigenvalues are replaced by the QP energies in the self-
consistent calculations. Furthermore, the QP wave functions are approximated
by the KS wave functions in single-shot GW calculations. A better estimate for
the QP states might be obtained if off-diagonal elements of the GW self-energy
neglected in the present approach are included in the calculations. In addition,
the results from the present approach do depend on the choice of the DFT staring
point as will be demonstrated in the following chapter. Although the compar-
ison between the QP band gaps and experimental data imply that DFT (GGA)
calculations yield a good starting point to apply many-body perturbation theory
in terms of the GWA to describe the electronic structure of the perovskite TMOs
discussed in this chapter, it could be educational to use input data obtained from
DFT-based calculations employing hybrid functional or OEP.

Last but not least, the transition energies and band gaps reported for the
valence- and conduction-band regime were mainly determined in optical spectro-
scopies. Due to the fundamental difference between optical and QP excitations,
a one-to-one agreement of the experimental data and the QP gaps should not be
expected. In particular, excitonic excitations not taken into account in GW cal-
culations may alter the transition energies between QP states considerably. This
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has been demonstrated by comparing the RPA dielectric functions of SrTiO3 and
BaTiO3 to absorption spectra determined in experiment.





CHAPTER 6

FIRST-PRINCIPLES CALCULATIONS FOR
LaCrO3, LaMnO3, AND LaFeO3

Since the middle of the 1990s, the rare-earth compounds of the series LaBO3 with
B = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu have attracted a lot of attention both
experimentally and theoretically [185, 186, 187, 17, 188, 189, 190]. From the ex-
perimental point of view, the series is most suitable to investigate the systematic
variation of the electronic structure with the B species, since all of these com-
pounds can be synthesized. Optical and electron spectroscopies reveal a wide
spectrum of electronic and magnetic ground state properties throughout the se-
ries such as Mott-insulating, charge-transfer type and metallic behavior as well as
antiferromagnetism and paramagnetism. This diversity originates from the com-
petition between two opposing trends: the presence of a strong electron-electron
interaction strength within the transition-metal d manifold tends to localize the
electrons and stabilize a magnetic moment at the transition-metal site whereas
the hybridization between oxygen 2p and transition-metal d states enhances the
delocalization of electrons.

The scope of strong correlation effects on the one hand and delocalized elec-
trons on the other makes it difficult to describe the compounds of this series
by first-principles calculations. Band-structure calculations within the LDA or
GGA only predict some of the ground state properties of these compounds cor-
rectly. In particular, they fail to describe the Mott-insulating phase of LaTiO3

and LaVO3 due to the underestimation of correlation effects originating from
strong electron-electron repulsion. For the remaining compounds of the series,
the mean-field like treatment of correlation within LDA or GGA results in too
small magnetic moments. Furthermore, band gaps and conduction-band spec-
tra do not agree well with experimental data [185, 191]. The LSDA+U method
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[192, 193], which introduces a static on-site Coulomb repulsion U felt by two
electrons of opposite spins occupying the same KS orbitals, removes some of
the deficiencies of the standard LDA or GGA in calculations for some of the
compounds of the LaBO3 series [186]. Recently, an approach coined U+GW was
introduced [17], which combines the LSDA+U description with a subsequent GW
calculation, to take into account dynamic contributions of the correlation miss-
ing in LSDA+U. Moreover, photo-emission spectra of LaTiO3 and LaVO3 have
been described successfully by a combination of LDA with dynamical mean-field
theory [34]. However, the results of these approaches all depend on the choice
of the effective Coulomb interaction strength U. Since there is no unique way to
determine U as indicated by the variety of different values of U used in the liter-
ature [186, 194], the effective Coulomb interaction strength has to be viewed as a
parameter in these calculations. A parameter-free description of the compounds
of the LaBO3 series from first principles is still missing.

In this chapter, results from first-principles GW calculations for the three com-
pounds LaCrO3, LaMnO3, and LaFeO3 are presented. For all GW calculations,
results of DFT calculations were used as a starting point employing the PBE func-
tional [25] within the GGA as well as the hybrid functional HSE [23, 24]. This
allows for a parameter-free description of the three materials. It is demonstrated
that this ansatz improves the description of band gaps and photo-emission spec-
tra of the conduction bands compared to the LDA and GGA results.

In the first part of the chapter, crystal and magnetic structures of the three
compounds are introduced. Secondly, the discussion of the KS band structures
calculated within GGA yield qualitative insight into their electronic structures.
Afterwards, it is demonstrated, how GW calculations employing PBE and HSE
results as starting points improve the quantitative agreement of the GGA results
with experimental data. A similar trend is observed for the spin-magnetic mo-
ments of the transition metals. Finally, some concluding remarks will be given
in the last section of the chapter.

6.1. Crystal and magnetic structures

The RT crystal structure of LaMnO3 [116] was already illustrated in figure 4.2
in chapter 4. The compounds LaCrO3 and LaFeO3 form similar crystal lattices
at RT [115, 117]. All compounds attain an orthorhombic crystal structure at RT,
where the oxygen octahedra are tilted and rotated compared to the octahedra
in the unit cell of the cubic crystal phases (figure 4.1, chapter 4). The resulting
crystal lattices (space group Pbnm) are composed of unit cells containing four
chemical units of LaBO3, which corresponds to a total of 20 atoms per unit cell.
All calculations presented later-on were carried out for the RT crystal structures
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Mn Cr/Fe

LaMnO3 (A type) LaCrO3, LaFeO3, (G type)

Figure 6.1.: Ground-state magnetic structures of LaBO3 with B = Cr,
Mn, and Fe (black spheres) and La and O represented by gray and
red spheres, respectively. Up and down spin-magnetic moments of
Cr, Mn, and Fe are illustrated by blue and pink arrows.

of the three compounds. Lattice constants and atomic positions were taken from
experiment (see appendix B.2).

Regarding the magnetic structure of the three compounds, it was discussed
briefly in chapter 4 that the spins of electrons occupying the d states of the
transition metals B in LaBO3 align in parallel according to Hund’s rule. In
the ground state, the d states of the transition metals of all three compounds
LaCrO3, LaMnO3, and LaFeO3 are partially filled and the alignment of the spins
leads to a finite magnetic moment proportional to the total spin of the electrons
at each transition-metal site. For all three compounds, an antiferromagnetic
(AFM) ordering of the spin-magnetic moments in the ground state has been re-
ported [134]. Different types of AFM spin ordering were categorized in reference
[195]. LaMnO3 exhibit an A-type AFM order, i.e., plains of ferromagnetically or-
dered spins couple antiferromagnetically to neighboring plains. In LaCrO3 and
LaFeO3, a G-type ordering was reported: the total spin-magnetic moment at one
transition-metal site couples antiferromagnetically to the magnetic moments at all
neighboring sites. The corresponding magnetic structures are illustrated in figure
6.1. For simplicity, cubic unit cells were chosen in figure 6.1 with the transition
metal cations occupying the eight corners of a cube. In the first-principles cal-
culations, the experimental geometry and the antiferromagnetic structures were
fully taken into account.
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6.2. KS band structures

Apart from their different magnetic structures, LaCrO3, LaMnO3, and LaFeO3

were all found to be insulators in optical conductivity measurements [188]. Con-
ventional band-structure calculations within the LSDA qualitatively reproduce
the magnetic as well as the insulating properties of all three compounds [185, 191].
Furthermore, it was demonstrated by Sarama et al. [196] that the valence-band
spectra of LaMnO3 and LaFeO3 obtained from LSDA calculations agree well with
photo-emission data. In this section, KS band structures of LaCrO3, LaMnO3, and
LaFeO3 in the RT crystal phase obtained from the GGA using the PBE functional
are illustrated in figures 6.2 and 6.3 to gain qualitative insight into the electronic
structure of the three compounds. In all calculations, the FLEUR code was used.
Input parameters are listed in appendix B.2.

The band structure of all three compounds differ from those of the perovskite
TMOs discussed in the previous chapter in several ways: the highest-lying va-
lence bands in all three compounds are composed of transition-metal d states.
Secondly, there is a large number of bands close in energy located at about 1
eV, 2.5 eV, and 4 eV above the Fermi energy in the conduction-band regime of
LaCrO3, LaMnO3, and LaFeO3, respectively. These bands are composed of La
4f states. Similarly to the band structures of the materials discussed earlier, the
main contribution to the valence bands originates from the oxygen 2p states.
In contrast to the other materials, these states hybridize more strongly with the
transition-metal d states in LaCrO3, LaMnO3, and LaFeO3 in the lower part of the
valence band spectra. This is indicated on the right side of the band structures
illustrated in figures 6.2 and 6.3, where the main contributions to the distinct
bands in certain energy regions are denoted by blue bars.

For a detailed analysis of the band structures, it is helpful to first consider
the electronic structure of the cubic crystal phases. As discussed in detail in
chapter 4, the transition-metal d states split into triply degenerate t2g and doubly
degenerate eg states in the cubic phase due to the interaction of the transition-
metal states with the crystal field generated by the the surrounding oxygen atoms.
In accordance with Hund’s rule, the electronic configuration of the Cr3+ and
Fe3+ cations in LaCrO3 and LaFeO3 are given by t32g↑t

0
2g↓e

0
g↑e

0
g↓ and t32g↑e

2
g↑t

0
2g↓e

0
g↓,

respectively, where ↑ and ↓ denote majority- and minority-spin states. Due to the
deviations from the cubic lattice, which lead to the formation of the orthorhombic
crystal phases of the two compounds, the degeneracy of the t2g and eg states is
lifted. However, the energy splitting between the two subsets of the transition-
metal d manifold is substantially larger than the splitting among the distinct t2g

and eg states. (Figure 4.5 in chapter 4 illustrates the splitting of the energy levels
schematically.) Consequently, the Cr 3d-derived bands in the energy interval
between −0.5 eV and −1.5 eV in figure 6.2 can be identified as t2g↑-like bands in
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Figure 6.2.: KS band structures of orthorhombic LaCrO3 (top) and
LaFeO3 (bottom) calculated within GGA using the PBE functional. The
Fermi energy is placed in the middle of the band gap. The bars on
the right indicate the orbital character of the bands.
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Figure 6.3.: KS band structure of orthorhombic LaMnO3 calculated
within GGA using the PBE functional. The Fermi energy is placed in
the middle of the band gap. The bars on the right indicate the orbital
character of the bands.

accordance with the electronic configuration of the Cr3+ cation in cubic LaCrO3.
The t2g↓-like bands and those conduction bands originating from the eg-like
states cannot be identified directly in figure 6.2, since they are located in the same
energy interval above the Fermi energy as those conduction bands composed of
La 4f and 5d states. In LaFeO3 in figure 6.2, the occupied t2g↑-like states hybridize
with the oxygen 2p states forming bands in the energy interval between −3 eV
and −2 eV whereas the highest-lying valence bands consist of Fe eg↑-like states.
The conduction bands lowest in energy consist of t2g↓-like states, which are well
separated from the bands in the interval between 1.5 eV and 2.5 eV due to the
crystal field splitting. The latter are composed of eg↓-like states.

The electronic structure of LaMnO3 differs from that of the other two com-
pounds, because the electronic configuration of the Mn3+ cation corresponds to
t32g↑e

1
g↑t

0
2g↓e

0
g↓ in the cubic crystal phase. Since the crystal field only lifts the de-

generacy between the t2g and eg states, cubic LaMnO3 should be metallic in the
ground state, i.e., the Fermi energy crosses the eg-derived valence bands. Indeed,
Pari et al. [185] obtained a metallic ground state from their LSDA calculations
for cubic LaMnO3 and concluded that the insulating ground state cannot be de-
scribed correctly within LSDA. However, it was demonstrated shortly after by
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Pickett and Singh [191] that the insulating ground state is well attained within
LSDA if the experimentally observed crystal and magnetic structure is assumed
in the DFT calculation. In the same year, it was suggested [197] that the open-
ing of the gap originates from a splitting between the two bands composed of
eg↑-type states, which is caused by a cooperative Jahn-Teller effect. The crucial
contribution of the Jahn-Teller effect to the formation of an insulating phase has
been confirmed recently [198]. Hence, the insulating phase of LaMnO3 can only
be described in first-principle calculation if the distortions originating from the
Jahn-Teller effect are properly taken into account, e.g., by assuming the RT crystal
structure in the calculation. The resulting KS band structure is shown in figure
6.3. It exhibits a small gap between the two bands composed of the eg↑-type
states. The other Mn 3d-derived valence bands lower in energy have t2g↑ char-
acter, the higher-lying conduction bands are of t2g↓ and eg↓ type. The splitting
between the latter again results from the influence of the crystal field.

After gaining qualitative insight into the electronic structure of LaCrO3, LaMnO3,
and LaFeO3, the next section deals with the quantitative analysis of band gaps
and densities of states obtained from both DFT and GW calculations.

6.3. Band gaps and photo-emission spectra

In this section, results from GW calculations for LaCrO3, LaMnO3, and LaFeO3

are presented, which were carried out with the SPEX code. Input data for these
calculations were generated by DFT calculations with the FLEUR code, where
the PBE functional within the GGA as well as the hybrid functional HSE have
been employed. Similar to calculations for the perovskite TMOs discussed in the
previous chapter, LOs located in the unoccupied part of the KS eigenvalue spectra
have been added to the conventional LAPW basis to improve the description of
the unoccupied states in the DFT calculations. For further details on technical
aspects of these calculations the reader is referred to the discussion in section 5.1
of the previous chapter. A list of the input parameters for the DFT and the GW
calculations can be found in appendix B.2.

Table 6.1 lists the fundamental band gaps of all three compounds determined
from optical conductivity measurements [188] as well as the band gaps obtained
from DFT and GW calculations. The PBE results systematically underestimate
the band gaps of all materials. The GWA using input data from the PBE calcu-
lations leads to an opening of the gaps of all compounds. However, only the
resulting QP gap of LaMnO3 is in good agreement with the experimental data,
but the QP gaps of LaCrO3, and LaFeO3 obtained from the PBE+GW scheme still
underestimate the results from the optical spectroscopy. On the other hand, DFT
calculations employing the hybrid functional HSE systematically overestimate
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Material Transition Band gaps (eV)

PBE PBE+GW HSE HSE+GW Exp.

LaCrO3 Γ → Γ 1.36 2.22 3.71 3.66 3.4

LaMnO3 T → Γ 0.31 0.84 2.30 2.69 –
Γ → Γ 0.80 1.15 2.57 2.93 1.1

LaFeO3 T → T 0.63 1.54 3.61 4.13 2.1

Table 6.1.: Fundamental band gaps and smallest direct transitions in the
KS and QP spectra obtained from calculations employing the PBE and
HSE functionals including corrections from GW calculations compared
to data from optical conductivity measurements [188].

the optical gaps. A GW calculation using HSE results as input data leads to a
decrease of the gap of LaCrO3. The gap calculated with this HSE+GW scheme
agrees well with the data from the optical spectroscopy. In contrast, the QP gaps
of LaMnO3, and LaFeO3 obtained from the HSE+GW calculations are even larger
than the HSE results such that the agreement with experimental data becomes
worse.

To further analyze the results from the first-principles calculations, the total and
partial densities of states of LaCrO3, LaMnO3, and LaFeO3 have been calculated
from the QP energies as described in section 3.3.4 of chapter 3. On the one hand,
this allows to systematically investigate changes in the DOS obtained from DFT
calculations upon inclusion of the corrections from the GWA in a broader energy
range. On the other hand, the DOS can be compared directly to spectra from
PES, as the GWA yields an approximate description of the physical processes
exploited in photo-emission experiments. Therefore, it is, in principle, favorable
to compare the QP spectra from GW calculations to results from PES instead of
optical spectroscopies1.

For the three materials discussed here, PES, namely x-ray photo-emission (XPS)
and ultra-violet photo-emission (UPS) spectroscopy, has been used to analyze
the occupied states of the QP spectra [189, 199, 200], whereas the unoccupied
parts were probed by Bremsstrahlung isochromat spectroscopy (BIS) in the case
of LaCrO3 [189] and by oxygen K-edge x-ray absorption spectroscopy (XAS) in
LaMnO3 and LaFeO3 [199, 200]. As it is not possible to probe the occupied and
unoccupied parts of the QP spectra simultaneously by PES, the authors from
the above references aligned the occupied and unoccupied parts of the spectra

1The link between the Green-function formalism and photo-emission spectroscopy is discussed in
more detail in section 2.3 of chapter 2 and section 5.3.2 of chapter 5
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manually. In reference [200], the gap between the two parts of the spectrum
of LaFeO3 is adjusted to match the size of the optical gap listed in table 6.1,
whereas the spectra of LaMnO3 presented in [199] are aligned according to the
band gap obtained from a DFT-based calculation. The reference energy used to
align the spectrum of LaCrO3 obtained from XAS illustrated in reference [189] re-
mains undefined. Hence, a direct comparison of results from our first-principles
calculations to the spectra presented in the above references does not allow for
a consistent interpretation of the calculated spectra. Therefore, the experimen-
tal data were aligned in this work such that the position of the first peaks in
the occupid and unoccupied part of the spectra match the position of the first
peak in the calculated DOS. This allows to determine how well the calculated
spectra can reproduce the shape as well as the the relative positions of spectral
features observed in experiment. In order to better match the results from PES
the calculated spectra were broadened with Gaussian functions to simulate the
instrumental broadening.

A comparison of the DOS of the three compounds LaCrO3, LaMnO3, and
LaFeO3 shown in figures 6.4, 6.5, and 6.6 reveals that the La 4f states form
a large, sharp peak in the unoccupied part of the DOS of all compounds. A
similar spectral feature is observed for LaCrO3 in BIS but these kind of features
do not show in the spectra of LaMnO3 and LaFeO3 probed by XAS. It was already
discussed in the previous section that the La 4f states form a number of very flat
bands close in energy, i.e., the La 4f states scarcely hybridize with other states. As
pointed out by Sarma et al. [189], XAS only probes the oxygen p admixture in the
unoccupied parts of the spectra due to dipole selection rules. In particular, it was
demonstrated in reference [189] that the dominant peak in the Bremsstrahlung
isochromat spectrum of LaCrO3 is missing in the spectra of LaCrO3 measured by
XAS. Therefore, it stands to reason that similar features originating from La 4f
state do not show in the x-ray absorption spectra of LaMnO3 and LaFeO3. Hence,
the spectra obtained from XAS are not suitable to determine the contributions
of La 4f states to the QP spectra. However, they do yield information about
features originating from other states such as the transition-metal d states and
the La 5d states. Keeping this is mind, the spectra of the three compounds
LaCrO3, LaMnO3, and LaFeO3 are now discussed in detail.

The best estimate for the optical band gaps listed in table 6.1 has been obtained
from the combination of HSE results with the GWA in the case of LaCrO3 or GW
calculation using PBE results as input in the case of LaMnO3 and LaFeO3. Figures
6.4, 6.5, and 6.6 illustrate that the same combinations also yield the best estimate
for the photo-emission spectrum of the corresponding material.

In LaCrO3, the highest occupied states mainly contributing to the formation
of the first peak below EF in the total DOS of LaCrO3 in figure 6.4, have t2g-like
Cr 3d character, whereas the lower part of the valence spectrum is primarily
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Figure 6.4.: Total DOS of LaCrO3 and pDOS of Cr 3d, La 4f and 5d
states. Top row: Results from DFT calculations using the functionals
PBE (left) and HSE (right). Bottom row: DFT spectra shifted by the en-
ergy corrections obtained from GW calculations as well as the results
from PES (XPS and BIS [189]).

composed of oxygen 2p states. The overall shape of the DOS in the occupied
part of the spectrum is identical in all calculations. It consists of three large
peaks and a smaller one at the low end of the energy range displayed in figure
6.4. As the 3d states of Cr are more localized than the oxygen 2p states, the
self-interaction error (SIE) for the d states in PBE is larger. The partial correction
of the SIE by HSE my lead to a larger shift of the Cr 3d states down in energy
than for the oxygen 2p states. Consequently, the first peak below EF moves closer
to the oxygen 2p-derived spectral features in the HSE calculation.

The changes in the unoccupied part of the spectrum of LaCrO3 resulting from
the GWA using PBE input data are much more pronounced. They are even
larger if the HSE functional is used instead of the PBE functional on the DFT
level and in HSE+GW calculations. The peak formed by La 4f states moves to
higher energies and the unoccupied Cr 3d states are redistributed over a broader
energy range than in the PBE calculation. The redistribution of the Cr 3d states
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Figure 6.5.: Total DOS of LaMnO3 and pDOS of Mn 3d, La 4f and 5d
states. Top row: Results from DFT calculations using the functionals
PBE (left) and HSE (right). Bottom row: DFT spectra shifted by the
energy corrections obtained from GW calculations as well as the re-
sults from PES (UPS and XAS [199]). Note, that La 4f-derived features
cannot be probed by XAS. (See text for more detail)

enhances the hybridization with La 5d states especially in the HSE calculations.
The peak lowest in energy in the spectra obtained with PBE+GW and HSE is
composed of La 5d states. Whereas the La 4f-derived features in the DOS move
to even higher energies if corrections from GW calculations are added to the HSE
results, the hybridized Cr 3d and La 5d states stay in the same energy range and
the peak lowest in energy moves slightly down in energy. The DOS obtained
from the HSE+GW calculations agrees best with the spectra determined by XPS
and BIS. In particular, the broad shoulder on the low-energy side of the the large
peak in the BIS spectrum between 3 and 7 eV above EF is only reproduce by the
HSE+GW results.

For LaMnO3 and LaFeO3, the band gaps in the PBE DOS in figures 6.5 and 6.6
are small and barely visible due to the broadening of the calculated spectra with
Gaussian functions. In the PBE+GW calculations, the band gaps become larger
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Figure 6.6.: Total DOS of LaFeO3 and pDOS of Fe 3d, La 4f and 5d
states. Top row: Results from DFT calculations using the functionals
PBE (left) and HSE (right). Bottom row: DFT spectra shifted by the en-
ergy corrections obtained from GW calculations as well as the results
from PES and XAS [200]. Note, that La 4f-derived features cannot be
probed by XAS. (See text for more detail.)

but the occupied parts of the PBE spectra are only slightly changed. There is a
good overall agreement of the width and positions of spectral features between
the calculated PBE+GW valence spectra and the experimental data. In contrast,
spectral weight from the transition-metal d states located at the top of the valence
spectrum obtained from PBE and PBE+GW calculations is shifted to the lower
part of the valence band spectrum in HSE and HSE+GW calculations. The
resulting spectra do not agree well with the data measured by UPS and PES
especially in the case of LaFeO3.

In the unoccupied part of the spectra of LaMnO3 and LaFeO3, the most pro-
nounced change induced by adding corrections from the GWA to the PBE results
or by switching to the HSE functional is the upwards shift of the La 4f-derived
peak as in LaCrO3. However, it is not possible to obtain information about the
actual position of such features from the spectra measured by XAS for the rea-
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sons discussed earlier. However, XAS can probe the spectral features resulting
from the partial density of states of the transition-metal d states and the La 5d
states. For both materials, the positions as well as the shapes of these features
are best reproduced by the PBE+GW results. In contrast, the pDOS from Mn
3d in LaMnO3, figure 6.5, splits into two separate peaks in HSE and HSE+GW

calculations and the shape of the pDOS from the La 5d states changes w.r.t. the
PBE+GW results. Similar changes can also be observed in the pDOS from the
La 5d of LaFeO3. Hence, the pDOS resulting from the HSE and HSE+GW calcu-
lations of LaMnO3 and LaFeO3 for the unoccupied states do not reproduce the
spectra obtained from XAS.

Several aspects should be consider in order to better understand, why HSE+GW

calculations yield the best estimate for both the band gap and the photo-emission
spectrum of LaCrO3, whereas band gaps and spectra of LaMnO3 and LaFeO3 are
better described by PBE+GW. As pointed out in reference [17], the main con-
tribution to the screening of the electrons occupying the states close to EF in
LaMnO3 and LaFeO3 originates from transitions between occupied and unoc-
cupied transition-metal d states. Thus, the size of the RPA screening strongly
depends on the relative positions of the occupied and unoccupied d states. For
example, if the screened interaction W in a HSE+GW calculation for LaFeO3 is
replaced by the W obtained from a PBE+GW calculation, the QP band gap of
4.13 eV is reduced to 2.67 eV. In contrast, the screening due to transitions from
the occupied part of the valence spectrum into empty La 4f states has little effect
on the size of the QP band gaps. If these transitions are omitted in the calcula-
tion of the screened interaction W, the QP band gap of LaFeO3 obtained from
the corresponding PBE+GW calculation amounts to 1.58 eV as opposed to 1.54
eV if these transitions are taken into account. Even if the La 4f states might be
located at much too low energies in the PBE spectra of LaFeO3 and LaMnO3 like
in the case of LaCrO3, the influence on the size of the QP band gap obtained
from PBE+GW calculations is negligible.

As the band gaps of both LaMnO3 and LaFeO3 are strongly overestimated
in DFT calculations employing the HSE functional, the effect of screening as
described by the RPA polarization function within the GWA is underestimated.
This effect might be responsible for the further increase of the band gaps in
HSE+GW calculations. In contrast, the band gaps obtained from PBE calcu-
lations are too small. This typical underestimation has been attributed to the
missing exchange-correlation discontinuity in the generalized-gradient approx-
imation [201, 202]. The too small band gaps in PBE lead to an overscreening
in the PBE+GW calculation. This might be the reason why the QP band gaps
obtained from PBE+GW calculations are smaller than the gaps measured by
optical conductivity. Moreover, the transition-metal d states are filled up and
become more localized throughout the series LaBO3. Therefore, additional cor-
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relation effects not contained in the GWA might yield an important contribution
to the screening of the electrons in LaMnO3 and LaFeO3. Further calculations
employing methods beyond the GWA are necessary to clarify this issue.

6.4. Magnetic moments of B = Cr, Mn, and Fe in

LaBO3

The representation of the particle density in terms of the FLAPW basis functions,
eq. (3.48), allows to separate the former into contributions from the IR and the
MT spheres. The latter can be further split into the contributions from majority
and minority spin states denoted by ↑ and ↓ of each atom a according to

nσ
a =

∫

MT
d3r

∑

n

1
VBZ

∫

BZ
d3k|ϕaσ

nk(r)|2 , σ = ↑, ↓ . (6.1)

This allows to approximate the magnetic moment at each atomic site Ra by the
magnetic moment inside the MT sphere of atom a given by

ma = n↑
a − n↓

a . (6.2)

The magnetic moments of Cr, Mn, and Fe in LaCrO3, LaMnO3 and LaFeO3 were
calculated according to eqs. (6.1) and (6.2) using the KS and gKS eigenstates
obtained from DFT calculations, where the functionals PBE and HSE were em-
ployed.

Material Magnetic moment (µB)

PBE HSE Exp.

LaCrO3 2.50 2.75 2.8±0.2

LaMnO3 3.50 3.75 3.9±0.2

LaFeO3 3.85 4.19 4.6±0.2

Table 6.2.: Magnetic moments of B

= Cr, Mn, and Fe in LaBO3 calcu-
lated with PBE and HSE compared
to data from neutron-diffraction ex-
periments [134].

Table 6.2 shows the calculated mag-
netic moments at the transition-metal
sites of LaCrO3, LaMnO3, and LaFeO3

as well as the magnetic moments de-
termined by neutron-diffraction experi-
ments [134]. The PBE results system-
atically underestimate the experimental
data, whereas in calculations employing
the HSE functional the magnetic moment
of each compound becomes larger. The
HSE result for LaCrO3 agrees well with
the neutron-diffraction measurement but
the magnetic moments of Mn and Fe
in LaMnO3 and LaFeO3 are still smaller

then the experimental data. In general, the calculations employing the HSE
functionals improve the agreement with the experimental data for all three com-
pounds.
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However, the results from calculations listed in table 6.2 have to be dealt with
carefully. It was already mentioned that the above definition (6.2) employed
to calculate the magnetic moments only yields an estimate for the latter. The
contributions to the particle density from parts of the wave function which are
contained in the IR are not taken into account because the formalism does not
allow to attribute them to one of the atoms. Thus, the MT radii of the transition
metals must be chosen large enough such that the wave functions composing the
d states are mostly contained inside the MT spheres. Otherwise, the resulting
magnetic moments might strongly depend on the choice of the MT radius but
the value of that observable should not depend on the artificial partitioning of
space used in the FLAPW method.

In the first test calculations for the magnetic moments using the PBE functional,
input data generated by the FLEUR code were used were the value of the MT
radii of the transition metals Cr and Fe in LaCrO3 and LaFeO3 were smaller by
14% and 17%, respectively, as the values used for the calculations that yield the
magnetic moments in table 6.2. The resulting magnetic moments obtained from
this choice of the radii amount to 2.37 µB and 3.69 µB for Cr and Fe, respectively.
This indicates that the size of the magnetic moments is by no means independent
of the choice of the MT radii. However, the MT radii cannot be chosen large
enough such that the d states are fully contained inside the MTs. Although the
MT radii have been chosen as large as possible, a decomposition of the wave
functions into MT and IR contributions according to (3.48) reveals that up to
12% of the wave function is contained outside the MT sphere in the case of
LaCrO3. In LaMnO3 and LaFeO3 even 20% and 24% of the wave function are
not inside the MT spheres. Moreover, the contributions to the wave functions
which are localized inside the MT spheres change if the HSE functional is used
instead of the PBE functional. In LaFeO3, it becomes larger whereas in the other
two compounds it gets smaller. As this effect is not directly translated into an
increase or a decrease of the magnetic moments listed in table 6.2 there must be
other effects which also lead to changes in the magnetic moments. However, the
origin of these effects cannot be derived solely from these numbers. In summary,
the above analysis implies that the results exhibit an unphysical dependence on
the choice of the MT radii of the transition metals. Therefore, the indication that
HSE improves the PBE results should not be over-interpreted.

6.5. Discussion and Summary

In this chapter, first-principles GW calculations for the perovskite TMOs LaCrO3,
LaMnO3, and LaFeO3 have been presented. Results from DFT calculations were
used as starting points for the GWA, where two different functionals have been
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used to approximate the exchange-correlation potential: the PBE functional within
the GGA and the hybrid functional HSE. Whereas the insulating and antiferro-
magnetic ground-state electronic structures of all three compounds are repro-
duced qualitatively in PBE calculations, quantitative agreement with experimen-
tal data such as band gaps, magnetic moments at the transition-metal sites and
photo-emission spectra cannot be attained. The HSE results increase the size
of the magnetic moments and lead to better agreement with neutron-diffraction
data. On the other hand, the band gaps of all three compounds are overesti-
mated in HSE calculations. Nevertheless, HSE results constitute a good starting
point for GW calculations in the case of LaCrO3. The QP gap and the DOS ob-
tained from a HSE+GW calculation match the experimental data. On the other
hand, it is illustrated for LaMnO3 and LaFeO3 that the band gaps obtained from
HSE+GW are even larger than the HSE results in disagreement with experimen-
tal data. Furthermore, the resemblance of the DOS with photo-emission spectra
is also poor. For these two compounds, PBE results yield a better starting point
for a subsequent GW calculation. In LaMnO3, good quantitative agreement with
photo-emission spectra and the optical band gap is attained in PBE+GW calcula-
tions although the latter is slightly underestimated. In the PBE+GW calculation
for LaFeO3, the optical gap is more strongly underestimated. Nevertheless, the
GWA yields a sizable improvement over the PBE result. Furthermore, the rela-
tive positions of spectral features and the shape of the spectrum obtained from
PES is well reproduced by the DOS obtained from the PBE+GW calculation.

Further analysis of the photo-emission spectra and magnetic moments yield
several indications as to why the HSE and HSE+GW calculations yield the best
results for LaCrO3, whereas in LaMnO3 and LaFeO3 the results from PBE and
PBE+GW calculations lead to better agreement with data from optical and photo-
emission spectroscopies. It is discussed that the data from PBE calculations
may lead to an overestimation of the screening in a subsequent GW calculation,
whereas for GW calculations employing HSE results as input data an underesti-
mation is to be expected. This might lead to the too small and too large band
gaps in PBE+GW and HSE+GW calculations, respectively. Furthermore, a de-
pendence of the calculated magnetic moments on the choice of the MT radii of
the transition metals Cr, Mn, and Fe in LaCrO3, LaMnO3, and LaFeO3 is illus-
trated which is why these results should be dealt with carefully. Apart from these
minor discrepancies, it has been demonstrated that the parameter-free scheme
employing the GWA on top of results from DFT calculations improves the DFT
results substantially and good agreement between the theoretical results and
several quantities observed in experiment is achieved for all three compounds
LaCrO3, LaMnO3, and LaFeO3.



CHAPTER 7

MODELING SPECTRA OF SUBSPACES –
A CASE STUDY BEYOND THE GWA

The GW approximation (GWA) yields quasiparticle spectra in very good agree-
ment with experiments for a large variety of material classes. However, two
serious difficulties hamper further progress in ab initio calculations employing
the GWA: first, the size of the unit cell of many materials is still too large for re-
alistic GW calculations, despite the rapid growth of computational power in the
last decades. Second, the GWA may not be sufficient to treat correlation effects
especially in those materials with partially filled narrow bands. Such materials ex-
hibit many intriguing properties, for example, they may become Mott-insulating
at low temperatures. However, the description of the phase transition from a
metallic to a Mott-insulating phase is beyond the scope of perturbation theory
used in ab initio calculations employing the GWA. Thus, the growing interest
in modeling the electronic structure of these kind of systems translates into the
need to develop theories beyond the GWA.

The traditional approach to analyze spectra of materials with large unit cells
and, in particular, to study strongly correlated materials is to introduce a model
Hamiltonian, focusing on a small subspace of the full Hilbert space that is con-
sidered to yield the dominant contributions to the spectrum in the energy range
to be investigated. One of the most successful model Hamiltonians describing
strongly correlated materials, the Hubbard model, was already presented in chap-
ters 4, section 4.4.2. It approximates the electron-electron interaction in a given
subspace of the full Hilbert space by a local, statically screened effective Coulomb
interaction known as the Hubbard U. In recent years, the Hubbard model has
been frequently applied to real materials in the context of LDA + DMFT [32, 33]
reproducing the experimental spectra of selected materials rather accurately [34].

159
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Furthermore, a combined GW + DMFT scheme has been proposed in reference
[203]. It describes the states in a correlated subspace via a Hubbard-type model
and the remaining parts of the Hilbert space within the GWA thus exploiting
the advantages of both approaches. However, the Hubbard Hamiltonian cannot
be strictly derived from the many-body Hamiltonian, eq. (2.64). Therefore, it is
not entirely clear, which features of the excitation spectra of real materials can be
reproduced and which are not accessible in a Hubbard-model based approach.

In this chapter, results from a case study for a simple toy model are presented to
reveal possible limitations of a Hubbard-model based approach. The toy model
may simulate partially filled valence states in the presence of fully occupied or
completely empty states. The exact many-body spectrum of the toy model is
compared to the results from an effective, Hubbard-type model, which is de-
signed to reproduce the spectrum of the subspace composed of the partially
occupied states. In the first part of the chapter, the toy model is introduced
and the effective, Hubbard-type model will be constructed. Then, results of cal-
culations for two different setups of the toy model will be presented. Finally,
possible indications for the applicability of Hubbard-model based approaches in
ab initio calculation for real materials are discussed. The theoretical considera-
tions presented in the first part of the chapter were motivated by the work of
F. Aryasetiawan and coworkers and, in particular, by the idea of the downfolded
self-energy of many-electron systems introduced in reference [204].

7.1. Theory

In this part of the chapter the setup of the model is introduced, which is the
basis for all calculation presented later on. The model is drawn schematically in
figure 7.1 and will be referred to as "4-orbital model" for apparent reasons. It
consists of four orbitals φ1(r), . . . ,φ4(r), which are considered to be atomic-like
states. Each orbital can be occupied by one spin-up electron and one spin-down
electron. Electrons can move between the different orbitals and interact via the
Coulomb interaction. As indicated in figure 7.1, the states φ1(r) and φ2(r) as
well as φ3(r) and φ4(r) are degenerate. Each pair of degenerate states forms a
subspace.

In the first part of this section, it is described how the exact many-body spec-
trum of the 4-orbital model for a fixed number of N electrons occupying the
orbitals can be obtained using the occupation number formalism. In the sec-
ond part of the section, an effective, Hubbard-type model for one of the two
subspaces labeled d space will be constructed. The remaining subspace is then
called r space. The effective model only treats those two states explicitly, that
form the subspace d. Interactions between electrons in d space with those in
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Figure 7.1.: The 4-orbital model consists of four atomic-like states
φ1(r), . . . ,φ4(r) which form two different subspaces. Each orbital
can be occupied by a spin-up and a spin-down electron. Electrons
can move between different orbitals and interact via the Coulomb
potential.

subspace r must be included implicitly in the construction of the model. The
spectrum of the d space obtained from this effective model will then be com-
pared to the exact solution in later parts of this chapter.

For the sake of clarity and brevity the theoretical concepts introduced in this
section are all discussed within the context of the 4-orbital model. However, it
should be pointed out that these concepts are completely general and could thus
be equally applied to more sophisticated models and, in principle, even within
the context of first-principles calculations.

7.1.1. The 4-orbital model

Hamiltonian

To derive a Hamiltonian describing the 4-orbital model it is convenient to start
from the Hamiltonian of the N-electron Schrödinger equation in second quan-
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tized form given by

Ĥ =
∑

σ

∫

ψ̂†
σ(r)HH(r)ψ̂σ(r) d3r

+
1
2

∑

σσ ′

∫∫

ψ̂†
σ(r)ψ̂†

σ ′(r
′)v(r, r ′)ψ̂σ ′(r

′)ψ̂σ(r) d3r d3r ′

−
∑

σ

∫

ψ̂σ(r)Hd.c.(r)ψ̂σ(r) d3r .

(7.1)

Here, the Hamiltonian is written in a form which is slightly different form that
in eq. (2.64) to emphasize the resemblance with the Hamiltonian of the effective,
Hubbard-type model, eq. (7.26), derived later-on. The first term of (7.1) contains
the Hartree Hamiltonian HH(r), which is the sum of the one-particle Hamiltonian
h(r) = −1

2∇2
r + vext(r) and the Hartree potential VH(r). The latter is given by

VH(r) =

∫

v(r, r ′)ρ(r ′)d3r ′ , ρ(r) = −i
∑

σ

Gσ(r, t; r, t+) , (7.2)

where the exact one-particle density ρ(r) is obtained from the many-body Green
function Gσ(r, t; r, t+) defined in eq. (7.21). The Hartree potential VH(r) is also
implicitly contained in the second term describing the interaction between two
electrons via the Coulomb potential v(r, r ′). Hence, a third term has to be in-
troduced in order to subtract the contributions that are counted twice. This
double-counting correction for the 4-orbital model is by construction identical to
the Hartree potential itself

Hd.c.(r) = VH(r) . (7.3)

The four orbitals of the model form a complete basis set for the electronic states.
Hence, creation and annihilation operates ĉ†ασ and ĉασ can be defined, which
create or annihilate an electron with spin σ in one of the orbitals labeled by α.
Then, the field operators in formula (7.1) are replaced by linear combinations of
the new operators and the orbitals

ψ̂σ(r) =

4∑

α=1

φα(r) ĉασ , α ∈ {1, 2, 3, 4} . (7.4)

Consequently, the Hamiltonian of the 4-orbital model takes on the following
form

Ĥ =
∑

αβ

∑

σ

[

HH
αβ −Hd.c.

αβ

]

ĉ†ασĉβσ +
1
2

∑

αβµν

∑

σσ ′

Uαβµνĉ
†
ασĉ

†
βσ ′ ĉµσ ′ ĉνσ (7.5)

= −
∑

αβ

∑

σ

tαβĉ
†
ασĉβσ +

1
2

∑

αβµν

∑

σσ ′

Uαβµνĉ
†
ασĉ

†
βσ ′ ĉµσ ′ ĉνσ . (7.6)
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The matrices HH and Hd.c. are defined as

HH
αβ ≡

∫

φ∗
α(r)HH(r)φβ(r)d3r , (7.7)

Hd.c.
αβ ≡

∫

φ∗
α(r)Hd.c.(r)φβ(r)d3r . (7.8)

Hence, the matrix elements of the hopping matrix t are given by

− tαβ ≡
∫

φ∗
α(r)h(r)φβ(r)d3r . (7.9)

Finally, U is the matrix calculated from the Coulomb interaction according to

Uαβµν ≡
∫∫

φ∗
α(r)φ∗

β(r ′)v(r, r ′)φµ(r ′)φν(r)d3r d3r ′ . (7.10)

All calculations for the 4-orbital model presented later-on employ the Hamilto-
nian given by eq. (7.6). In this notation, the four orbitals are fully determined
by the diagonal elements −tαα of the hopping matrix, which can be interpreted
as atomic-like energy levels. The movement of an electron from an orbital φα(r)

into another orbital φβ(r) translates into the hopping from the energy level α
to β in the above notation. The probability of such a process to take place de-
pends on the value −tαβ of the corresponding hopping matrix element. In all
calculations, the matrix elements of both t and U were treated as parameters
and were not obtained by evaluating eqs. (7.9) and (7.10) explicitly. Hence, the
wave functions φα(r) did not enter explicitly in the calculations and were there-
fore never determined. In section 7.2, it will be discussed that a certain choice
of the matrix elements together with a fixed number of electrons in the system
allows to model different physical problems. Therefore, the actual choice of the
matrix elements is presented together with the results from the corresponding
calculations in section 7.2.

Exact solution

To obtain the eigenvalue spectrum of the 4-orbital model if N 6 8 electrons
occupy the four orbitals, the following Schrödinger equation is to be solved

Ĥ |ΨN
J 〉 = EN

J |ΨN
J 〉 (7.11)

where |ΨN
J 〉 are the eigenstates of the N-electron system labeled by J and the EN

J

are the corresponding eigenvalues. In order to determine |ΨN
J 〉 and EN

J eq. (7.11)
is transformed into a matrix equation. The construction of the Hamilton matrix
with elements Hab will be described in the following.
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First, all possible many-body wave functions for the given number of electrons
are constructed. Here, the occupation number formalism is used, where each
many-body wave function is represented by a vector of the following form

|N,a〉 = |n
↑
1 ,n↑

2 ,n↑
3 ,n↑

4 ; n↓
1 ,n↓

2 ,n↓
3 ,n↓

4〉 , (7.12)

and a labels the different many-body states. Each entry of the vector represents
one energy level α corresponding to one of the four atomic orbitals. If an electron
with spin up (↑) occupies orbital α, n↑

α is set to one. Otherwise, it is zero.
Likewise, n↓

α is set to one if a spin-down electron (↓) can be found in orbital α
and otherwise it is zero. For example, if the system contains three up and zero
down electrons there exist four different many-body wave functions, which are
represented by

|1110; 0000〉, |1101; 0000〉, |1011; 0000〉, |0111; 0000〉 . (7.13)

In the next step, it is defined how the creation and annihilation operators ĉ†ασ

and ĉασ act on a many-body state given by (7.12)

ĉ
†
α↑ |N,a〉 = (−1)Σ

↑
α (1 − n↑

α) |N+ 1,b〉 ,

ĉα↑ |N,a〉 = (−1)Σ
↑
α n↑

α |N− 1,b〉 ,
(7.14)

and

ĉ
†
α↓ |N,a〉 = (−1)Σ

↓
α (1 − n↓

α) |N+ 1,b〉
ĉα↓ |N,a〉 = (−1)Σ

↓
α n↓

α |N− 1,b〉 ,
(7.15)

with

Σ↑
α = n

↑
1 + n

↑
2 + . . . + n↑

α−1 , Σ↓
α = N↑ + n

↓
1 + n

↓
2 + . . . + n↓

α−1 . (7.16)

Here, N↑ represents the total number of electrons with spin up. The factors
n↑

α,n↓
α and (1 − n↑

α), (1 −n↓
α) are necessary to enforce the Pauli exclusion princi-

ple, whereas the factors (−1)Σ
↑
α , (−1)Σ

↓
α account for the Fermionic nature of the

electrons. The above definitions in (7.14) and (7.15) allow to calculate matrix ele-
ments Hab of the Hamiltonian (7.6) with respect to many-body states constructed
according to the definition in (7.12). Thus, eq. (7.11) can be transformed into a
matrix equation

HabC
N
bJ = EN

J C
N
bJ . (7.17)

Diagonalizing the matrix H yields the eigenvalues EN
J and the coefficients CN

aJ

that determine the many-body eigenstate |ΨN
J 〉 according to

|ΨN
J 〉 =

∑

a

CN
aJ|N,a〉 . (7.18)
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Formal definition of the d and r space

For all further considerations, it is necessary to define the subspaces d and r.
This can be done with the help of the wave functions φα(r) representing the
four orbitals of the model. The field operators can be split into a d field and an
r field

ψ̂σ(r) = ψ̂d
σ(r) + ψ̂r

σ(r) =
∑

i∈d

φi(r) ĉ
d
iσ +

∑

j∈ r

φj(r) ĉ
r
jσ (7.19)

where
d = {1, 2}, r = {3, 4} or d = {3, 4}, r = {1, 2} . (7.20)

The operator ψ̂†
σ(r) can be separated in the same way. Definition (7.20) indicates

that the d space is either formed by the lower two orbitals φ1(r), φ2(r) and
φ3(r), φ4(r) from the r space or vice versa. The operators ĉd

iσ, ĉr
jσ are identical

to the operators ĉασ defined previously but they act only on the states of the
corresponding subspace.

Green functions

The spectral representation of the many-body one-particle Green function has
been given in eq. (2.60) and is restated below in a slightly different form

Gσ(r, r ′;ω) =
∑

J

〈ΨN
0 |ψ̂σ(r)|ψN+1

J 〉〈ΨN+1
J |ψ̂†

σ(r ′)|ΨN
0 〉

ω− (EN+1
J − EN

0 ) + iη

+
∑

J ′

〈ΨN
0 |ψ̂†

σ(r ′)|ΨN−1
J ′ 〉〈ΨN−1

J ′ |ψ̂σ(r)|ΨN
0 〉

ω+ (EN−1
J ′ − EN

0 ) − iη
.

(7.21)

Here, the many-body eigenstates |ψN
J 〉, |ψN±1

J 〉 and eigenvalues EN
J , EN±1

J are
obtained from the solution of the Schrödinger equation (7.11) with N and (N±1)

electrons occupying the four orbitals.

By inserting the expansion for the field operators, eq. (7.4), into eq. (7.21) for
the Green function a (4 × 4) matrix G is obtained with matrix elements defined
by

Gσ(r, r ′;ω) =
∑

αβ

φ∗
α(r)Gαβ,σ(ω)φβ(r ′) . (7.22)

Furthermore, it follows from the decomposition of the field operators into the d
and r space, eq. (7.19), that the matrix of the Green function can be decomposed
into four blocks of (2 × 2) matrices

Gσ(ω) =





Gr
σ(ω) Grd

σ (ω)

Gdr
σ (ω) Gd

σ(ω)



 , (7.23)
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where the two matrices Gd
σ(ω) and Gr

σ(ω) represent the projection of the Green
function onto the states forming the d and r space, respectively. Consequently,
the partial density of states (pDOS) of the d and r space is given by

pDOS(ω) =
∑

i∈P

∑

σ

Im
(

GP
σ(ω)

)

ii
, P = d, r . (7.24)

Equation (7.24) yields the exact many-body spectra of the d and r space consisting
of δ-function like peaks. For numerical calculations, the infinitesimal positive
number η in the denominator of the Green function, eq. (7.21), is set to 0.05
transforming the δ-like excitations into Lorentzians of finite height and width.

7.1.2. Hubbard Hamiltonian for a subspace

In this section, an effective, Hubbard-type model for the d space is constructed.
This requires to determine the Hartree potential, eq. (7.2), which, in turn, re-
quires the knowledge of the exact one-particle density ρ(r). In addition, the
one-particle density ρd(r) in d space enters in the construction of the effective
model. According to the definition of the density in terms of the Green function,
eq. (7.2), ρ(r) can be calculated as

ρ(r) =
∑

σ

〈ΨN
0 |ρ̂(r)|ΨN

0 〉 , ρ̂(r) ≡
∑

σ

ψ̂†
σ(r)ψ̂σ(r) (7.25)

and ρd(r) can be obtained by substituting ψ̂d†
σ (r) and ψ̂d

σ(r) in the above equation
thus defining an operator ρ̂d(r). Replacing the field operators in the definition
of the density operators using (7.4) and (7.19) yields matrices of the densities
with elements ραβ and ρd

αβ, which can be calculated using the solution of the
Schrödinger equation (7.11).

Hamiltonian and Schrödinger equation

Within the basis representation of the atomic-like orbitals φα(r) a Hamiltonian
of an effective, Hubbard-type model for the d space is given by

ĤHub =
∑

ij∈d

∑

σ

[

H̃H
ij − H̃d.c.

ij

]

ĉ
d†
iσĉ

d
jσ +

1
2

∑

ijkl∈d

∑

σσ ′

Wr
ijkl ĉ

d†
iσĉ

d†
jσ ′ ĉ

d
kσ ′ ĉ

d
lσ . (7.26)

This Hamiltonian is formally identical to that of the 4-orbital model, eq. (7.6).
However, the summations in both terms comprise only those two states forming
the d space and the matrices H̃H, H̃d.c. and Wr have yet to be determined. In
the remaining parts of this section it is described how these matrices can be
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calculated to yield the most accurate, effective model for the d space of the 4-
orbital model.

If the matrices in the three terms of the above Hamiltonian have been calcu-
lated, the same methods used in previous parts of this section can be employed
to obtain the spectrum of the d space. In particular, many-body states have to
be constructed from the two orbitals forming the d space

|N, ã〉 = |n
↑
1 ,n↑

2 ; n↓
1 ,n↓

2〉 , nσ
i ∈ {0, 1} , i = 1, 2 , σ =↑, ↓ . (7.27)

Then, matrix elements HHub
ãb̃

of the Hamiltonian (7.26) with respect to these states
are calculated. Diagonalizing the resulting matrix yields the eigenvalues ẼN

J and
the coefficients CN

ãJ of the Schrödinger equation

HHub
ãb̃

CN
b̃J

= ẼN
J C

N
b̃J

. (7.28)

The corresponding eigenstates are given by

|Ψ̃N
J 〉 =

∑

ã

CN
ãJ|N, ã〉 . (7.29)

Screened interaction Wr

The interaction between a quasiparticle and a test charge is described by the
screened interaction W(r, r ′;ω), which is defined by the Dyson-type equation
(A.19). From the expression for W(r, r ′;ω) obtained within the random-phase
approximation (RPA), where the exact expression for the polarization function
P(r, r ′;ω) entering into eq. (A.19) is replaced by eq. (2.78), it can be seen directly
that the bare Coulomb interaction in eq. (A.19) is screened due to transitions
between all states of the Hilbert space, since eq. (2.78) comprises a summation
over all these states.

In [84], the effective interaction Wr(r, r ′;ω) between electrons in a subspace d
in a Hubbard model is introduced as

Wr(r, r ′;ω) = v(r, r ′) +

∫∫

v(r, r ′′)Pr(r ′′, r ′′′;ω)Wr(r ′′′, r ′;ω)d3r ′′ d3r ′′′ . (7.30)

The above equation is formally identical to eq. (A.19) for the fully screened inter-
action except that the full polarization function is replaced by Pr(r, r ′;ω). The
latter is constructed in such a way, that it does not include the polarization from
d-d transitions, since the corresponding screening channels are treated explicitly
within the Hubbard model due to the inclusion of the two-particle term. How-
ever, Pr(r, r ′;ω) accounts for all screening channels resulting from transitions r-r
in r space as well as r-d and d-r transitions between both subspaces d and r.
Hence, Pr(r, r ′;ω) is defined as

Pr(r, r ′;ω) = P(r, r ′;ω) − Pd(r, r ′;ω) , (7.31)
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where P(r, r ′;ω) is the full polarization and Pd(r, r ′;ω) the polarization in d
space, which can both be obtained from

R(d)(r, r ′;ω) = P(d)(r, r ′;ω) +

∫∫

P(d)(r, r ′′;ω)v(d)(r ′′, r ′′′)R(d)(r ′′′, r ′;ω)d3r ′′ d3r ′′′ .

(7.32)
For the 4-orbital model, the above equation for P(r, r ′;ω) and Pd(r, r ′;ω) can be
solved exactly since the exact response functions R(r, r ′;ω) and Rd(r, r ′;ω) can
be calculated according to

R(d)(r, r ′;ω) =
∑

J

〈ΨN
0 |ρ̂(d)(r)|ΨN

J 〉〈ΨN
J |ρ̂(d)(r ′)|ΨN

0 〉
ω− (EN

J − EN
0 ) + iη

−
∑

J ′

〈ΨN
0 |ρ̂(d)(r ′)|ΨN

J ′ 〉〈ΨN
J ′ |ρ̂(d)(r)|ΨN

0 〉
ω+ (EN

J ′ − EN
0 ) − iη

,

(7.33)

where |ΨN
J 〉 and EN

J are the eigenvalues and eigenstates obtained from the solu-
tion of eq. (7.11) and the density operators ρ̂(r) and ρ̂d(r) are given by (7.25).

Before applying the above formalism to the 4-orbital model, it should be men-
tioned that the ansatz to calculate Wr(r, r ′;ω) using eq. (7.30) is frequently re-
ferred to as constraint RPA (cRPA). However, this name is a little misleading,
since eq. (7.30) for Wr(r, r ′;ω) is formally exact. In reference [84], Pr(r, r ′;ω) is
calculated within RPA to obtain Wr(r, r ′;ω), since reference [84] focuses on calcu-
lations for real materials, for which Pr(r, r ′;ω) cannot be determined exactly. For
the 4-orbital model, eq. (7.30) for Wr(r, r ′;ω) is solved without any additional
approximations, since eq. (7.33) yields the exact expressions for R(r, r ′;ω) and
Rd(r, r ′;ω).

To calculate R(r, r ′;ω) and Rd(r, r ′;ω) for the the 4-orbital model, the field
operators in the definition of the density operators in eq. (7.33) are again replaced
by the expansion (7.4) transforming the response functions into matrices defined
by

R(r, r ′;ω) =
∑

αβµν

φ∗
α(r)φβ(r)Rαβµν(ω)φ∗

µ(r ′)φν(r ′) (7.34)

Rd(r, r ′;ω) =
∑

ijkl∈d

φ∗
i (r)φj (r)R

d
ijkl(ω)φ∗

k(r ′)φl(r
′) . (7.35)

For further calculations, a multiindex I = (αβ) is introduced to rewrite the
matrices R and Rd. Formally, this step corresponds to the introduction of a
product basis

R
(d)

IJ (ω) =

∫∫

M
(d)

I (r)R(d)(r, r ′;ω)M
(d)

J (r ′)d3r d3r ′ , M
(d)

I (r) = φ∗
α(r)φβ(r) .

(7.36)
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Now, matrices of the polarization functions PIJ(ω) and Pd
IJ(ω) can be obtained

from eq. (7.31) using regular matrix operations. Likewise, a matrix of the screened
interaction Wr

IJ(ω) can be calculated from eq. (7.30) and a back transformation
yields Wr

ijkl(ω).

Since the Coulomb interaction is screened due to dynamical many-body effects
incorporated into the polarization functions the matrix Wr

ijkl(ω) of the screened
interaction is frequency dependent. While this frequency dependence is natu-
rally taken into account in the Green function formalism, the Hamiltonian of the
Schrödinger equation (7.28) must not be frequency dependent. Here, the matrix
elements Wr

ijkl in (7.26) are obtained from the screened interaction Wr
ijkl(ω) at

ω = 0. This neglect of the frequency dependence of Wr
ijkl(ω) is an approxima-

tion that will only yield accurate results if the frequency dependence is weak.
In particular, it will be demonstrated in section 7.2 that the approximation to
the spectrum of the d space resulting from the Hubbard-type model becomes
increasingly inaccurate if Wr

ijkl(ω) 6= Wr
ijkl(0) for frequencies close to zero. Nev-

ertheless, this approximation is inevitable in the formalism used here and could
only be avoided by using other theoretical concepts like Green functions or the
path integral formalism to calculate the spectral function of the d space.

Effective Hartree Hamiltonian H̃H

If electrons occupy orbitals in r space, the resulting charge density yields a con-
tribution to the Hartree potential, which is felt by the electrons in d space as
well. This effect is not accounted for by the two-particle term of the Hamiltonian
(7.26), since this term only describes interactions between electrons in d space.
However, the Hartree potential can be included in the single-particle term of
the Hamiltonian (7.26) as demonstrated already for the Hamiltonian of the full
Hilbert space of the 4-orbital model, eq. (7.6). Hence, the effective Hartree Hamil-
tonian H̃H of the Hubbard-type model is to be constructed in such a way that
it reproduces the eigenvalue spectrum of the Hartree Hamiltonian HH(r) of the
4-orbital model in d space. Therefore, the eigenvalue spectrum of HH(r) has first
to be determined.

Within the basis representation of the atomic-like orbitals φα(r),HH(r) becomes
a (4 × 4) matrix, whose matrix elements are given by

HH
αβ = −tαβ + VH

αβ , (7.37)

where tαβ are the matrix elements of the hopping matrix defined in eq. (7.9) and
VH

αβ are the matrix elements of the Hartree potential, eq. (7.2). Diagonalizing the
matrix HH yields the eigenvalues ǫα and eigenvectors Cα = (c1α, c2α, c3α, c4α)T

of the corresponding eigenvalue problem

HH
αβCβ = ǫβCβ . (7.38)
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Although it is defined clearly at the beginning of each calculations, which of the
four orbitals constitute the d space, it has yet to be determined which of the four
eigenvalues of the Hartree Hamiltonian correspond to the eigenvalue spectrum
in d space. Therefore, the contribution of each of the four orbitals to a Hartree
eigenvector Cα is weighted by wjα = |cjα|2. The two eigenvalues belonging to
the eigenstates containing the largest contribution from the two states spanning
the d space are taken as the Hartree eigenvalue spectrum of the d space. They
will be referred to as ǫd

1 and ǫd
2 in the remaining part of this section.

The search for an effective Hartree Hamiltonian H̃H can now be reformulated as
the search for a matrix T̃ transforming the effective Hamiltonian into a diagonal
matrix Dd with elements ǫd

1 and ǫd
2 according to the following definition

Dd = T̃ H̃H
(

T̃
)−1

, Dd =

(

ǫd
1 0

0 ǫd
2

)

. (7.39)

To determine T̃, the Hartree Hamiltonian HH of the full Hilbert space of the
4-orbital model, eq. (7.37), is written as

HH =





Hr Hrd

Hdr Hd



 , (7.40)

where Hd and Hr are (2 × 2) matrices corresponding to the projections of HH

onto the states spanning the d and r space, respectively. Since the matrix Hd is
known, a matrix Td diagonalizing Hd can be determined

D̃ = Td Hd
(

Td
)−1

, D̃ =

(

ǫ̃1 0

0 ǫ̃2

)

. (7.41)

Furthermore, it can be shown that a matrix H̃H with the desired properties is
obtained if T̃ is set equal to Td

H̃H =
(

Td
)−1

Dd Td . (7.42)

(In appendix C.1, it is proved that the effective Hartree Hamiltonian H̃H with the
desired properties can be calculated using the transformation matrix Td.) If Hrd 6=
0, then D̃ 6= Dd. Therefore H̃H is, in general, not identical to Hd. Nevertheless,
the effective Hartree Hamiltonian defined by eq. (7.42) will reproduce the Hartree
eigenvalue spectrum of HH in d space.

Double-counting correction H̃d.c.

If the matrix H̃H is calculated according to eq. (7.42), the one-particle term of
(7.26) not only contains the Hartree potential originating from charges in r space
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but also the contributions to the Hartree potential from electrons in the d space.
However, the latter is already included in the two-particle term of the Hamil-
tonian (7.26). Thus, a double-counting correction is introduced to subtract the
contributions contained in both terms. The exact double-counting correction is
given by

H̃d.c.(r) = −i
∫

Wr(r, r ′)ρ̃(r ′)d3r ′ (7.43)

where Wr(r, r ′) corresponds to Wr(r, r ′;ω), defined in eq. (7.30), with ω = 0 and
the density ρ̃(r) is given by

ρ̃(r) =
∑

σ

〈Ψ̃N
0 | ρ̂d(r) |Ψ̃N

0 〉 . (7.44)

Unfortunately, in general ρ̃(r) cannot be determined, since the eigenstates |Ψ̃N
J 〉

are solutions of the Schrödinger equation (7.28), which can only be solved if the
exact double-counting correction is known.

To work with the effective, Hubbard-type model Hamiltonian, (7.26), it is in-
evitable to approximate expression (7.43) for H̃d.c.(r). In search for an adequate
approximation, the Hamiltonian (7.6) of the 4-orbital model is analyzed. Just
like the Hartree Hamiltonian in eq. (7.37), the hopping matrix t entering the
Hamiltonian (7.6) can be written as

t =





tr trd

tdr td



 . (7.45)

Furthermore, all contributions to the two-particle term of the Hamiltonian (7.6)
can be identified, for which the matrix elements Uαβµν of the Coulomb interac-
tion fulfill the following constraint

α ∈ d, ν ∈ r or α ∈ r, ν ∈ d or β ∈ d, µ ∈ r or β ∈ r, µ ∈ d . (7.46)

For the remainder of the section, the subset of matrix elements fulfilling eq. (7.46)
is denoted by Urd

αβµν. If the following assumption holds for the corresponding
matrix elements of t and U

trd = tdr = 0 and Urd
αβµν = 0 , (7.47)

the eigenstates |ΨN
J 〉 of the Schrödinger equation (7.11) of the 4-orbital model

can be separated into contributions |ΨN
J , d〉 and |ΨN

J , r〉 from the d and r space,
respectively

|ΨN
J 〉 = |ΨN

J , d〉 ⊗ |ΨN
J , r〉 . (7.48)

Then, the following identity holds

|Ψ̃N
J 〉 = |ΨN

J , d〉 (7.49)
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and
ρ̃(r) = ρd(r) , (7.50)

where ρd(r) is the density of the d space defined in eq. (7.25). Therefore, the
following approximation to the exact double-counting correction, eq. (7.43), will
be used in this work

H̃d.c.(r) ≈ −i
∫

Wr(r, r ′)ρd(r ′)d3r ′ . (7.51)

From eq. (7.51), a double-counting correction for the effective Hubbard-type
model can now be calculated, since all terms on the right-hand side are known.
A matrix H̃d.c. of H̃d.c.(r) as defined by (7.51) is obtained from the matrix expres-
sions for Wr(r, r ′) and ρd(r) derived earlier.

All matrices determining the Hamiltonian (7.26) can now be calculated. The
spectra obtained from the solutions of the two Schrödinger equations (7.11) and
(7.28) are compared in the next section.

7.2. Results

7.2.1. Influence of fully occupied states on valence electrons

In the first part of this section, results are presented from calculations with three
up and three down electrons occupying the energy levels of the 4-orbital model.
The resulting orbital occupation is shown schematically in the left picture of
figure 7.2. As indicated in the picture, the upper two orbitals form the d space
and the lower two the r space. The orbitals of the d space can be interpreted as
partially filled valence states in the presence of completely filled valence states
modeled by the orbitals in r space. Thus, the present setup of the 4-orbital model
exhibits some similarities to the electronic structure of the compounds LaBO3

with B = Cr, Mn, Fe, discussed in chapter 6, where the 3d states of the transition
metals form partially filled valence bands whereas the valence bands formed by
oxygen 2p states are completely filled with electrons in the ground state. Hence,
the analysis of the 4-orbital model might help to gain further insight into the
electronic structure of real materials.

To carry out calculation for the 4-orbital model, the hopping matrix elements
tαβ formally defined in (7.9) as well as the interaction matrix elements Uαβµν,
eq. (7.10), constituting the Hamiltonian (7.6) of the 4-orbital model have yet
to be determined. These matrix elements enter into the model calculations as
parameters. Features in the many-body spectra of the 4-orbital model can then
be related to one parameter of the model or to certain combinations of selected
parameters. In general, it is one of the big advantage of model calculations
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Figure 7.2.:

Left: If three up (↑) and three down electrons (↓) populate the four
orbitals, the d space can be interpreted as partially filled valence
band and the r space corresponds to a completely filled band.
Right: Choice of non-zero hopping and interaction matrix elements
ei, ti and Ui, i = I, II. (See text for further details.)

that the origin of spectral features although manifold in their appearance can be
clearly determined.

This work focuses on changes in the many-body spectrum originating from
the interaction between the charges in the two subspaces r and d. Therefore,
most matrix elements of t and U are set to zero keeping only a subset of six
non-zero elements. The six parameters are labeled ei, ti, Ui with i ∈ I, II and
their influence on the electrons occupying the different energy levels of the 4-
orbital model is indicated in figure 7.2 on the right side. A definition of these
parameters is given below:

• The diagonal elements of the hopping matrix t correspond to the energy
levels of the four orbitals. The values of the elements were fixed in all
calculations and are given in arbitrary units by

eI ≡ −7.5 = −t11 = −t22 , (7.52)

eII ≡ 0.0 = −t33 = −t44 . (7.53)

• In all calculations
tI ≡ −t34 = −1.0 . (7.54)

If tI 6= 0, the two orbitals in the d space hybridize forming a bonding and
an anti-bonding state. Since there are 6 electrons in the system, the bonding
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state will be completely filled and the anti-bonding state will be empty in
the single-particle picture. Consequently, the system becomes insulating.

• Due to the choice
tII ≡ −t13 = −t24 6= 0 (7.55)

electrons can hop between the two subspaces d and r.

• The electrons in d space are thought to be strongly correlated like electrons
occupying a narrow 3d band. Thus, two electrons occupying the same
orbital in d space feel a strong on-site Coulomb repulsion given by

UI ≡ U3333 = U4444 6= 0 . (7.56)

• Charges in d and r space should repel each other. This can be simulated
choosing UII to be non-zero, where UII is defined as

UII ≡ U1331 = U2442 6= 0 . (7.57)

In the following, the pDOS of the d and r space obtained for different choices
of the six parameters defined above are analyzed. Furthermore, the exact pDOS
of the d space is compared to the spectrum obtained from the effective, Hubbard-
type model. Throughout the whole chapter the pDOS of occupied states is always
plotted with a positive sign and the pDOS of unoccupied states has a negative
sign such that occupied and unoccupied states can be better distinguished graphi-
cally. The discussion of results starts by analyzing the influence of the parameters
tI, UI and UII on the many-body spectra.

Effect of tI, UI and UII on the spectra of the d and r space

In all calculations presented in this section, the parameter tII was set to zero in
order to demonstrate that distinct features of the many-body spectrum can be
directly related to the parameters tI, UI and UII. On the left side of figure 7.3
the pDOS of the d and r space are displayed. These spectra were obtained from
calculations with three different choices of the parameters tI, UI and UII. The
pDOS are aligned at the Fermi energy, which is identified as the energy in the
middle of the gap between the highest occupied and the lowest unoccupied state.
On the right side of of figure 7.3, the exact spectrum of the d space is compared
to the description obtained from the effective, Hubbard-type model for the given
choice of the parameters tI, UI and UII. The resulting spectra are not aligned at
the Fermi level to check how well the effective model reproduces the absolute
many-body eigenvalues of the exact solution.

The spectra in figure 7.3 A were obtained by choosing tI = −1.0 and UI and
UII were set to zero. Only the hybridization between the two orbitals in d space
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Figure 7.3.:

Left: pDOS of the r and d space obtained from the exact solution of
the 4-orbital model demonstrating the influence of the parameters tI,
UI and UII on the many-body spectrum. In A, tI = −1.0 and UI and
UII equal 0. In B, UI = 4.0 is added and in C UII = 4.0 is included
additionally.
Right: The same pDOS of the d space displayed in the graphs on the
left are compared to the spectra obtained from the effective, Hubbard-
type model (Hub). In all cases the two curves are indistinguishable
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already described above is observed resulting in a bonding and anti-bonding
contribution to the pDOS of the d space. Hence, for this particular choice of
parameters all electrons are treated as independent particles. Consequently, the
pDOS of the r space consists of only one peak located at the energy −7.5 due
to the choice of the parameter eI determining the position of the two orbitals in
r space. The effective model exactly reproduces the pDOS in d space, because
the given choice of parameters leads to H̃H = Hd = td and all matrix elements of
H̃d.c. and Wr are exactly zero, since U = 0.

For the calculations yielding the spectra labeled B in figure 7.3 the value of
UI was raised to 4.0. All other parameters were the same as in the calculations
yielding the spectra in figure 7.3 A. The on-site Coulomb interaction UI leads to
the formation of satellites called Hubbard bands in the pDOS of the d space. For
UI = 4.0 the Hubbard bands are located at energies 2.0 and −2.0 with respect to
the Fermi level. The shape of the pDOS in r space is unchanged, but the peak is
shifted to lower energies with respect to the Fermi level. This is a consequence
of the Hartree potential felt by the electrons in d space, which originates from
the non-zero value of UI and which leads to a shift of the energetic positions of
the peaks in the pDOS of the d space to higher energies. Due to the alignment
of the spectra at the Fermi energy, this shift gives rise to a downwards shift of
the pDOS of the r space.

The upwards shift of energetic d positions can be seen in the graph to the
right of figure 7.3 B. Furthermore, it is seen that this shift and all other spectral
features are again exactly reproduced by the effective model. As a direct con-
sequence of the choice of the parameters the two subspaces are still completely
separated. Therefore, the approximation (7.51) for the double-counting correc-
tion (7.43) becomes exact. Furthermore, the double-counting correction cancels
the contribution of the Hartree potential in H̃H exactly such that the identity
H̃H = td still holds. In addition, the only non-zero matrix elements of Wr are
identical to the only non-zero matrix elements of U given by UI. In general,
there is no screening of the Coulomb potential in d space from charges in the r
space as long as electrons cannot move between the two subspaces, i.e. tII = 0.
This can be understood by looking at the definition of the response function
R(rt, r ′t ′) ≡ δn(r, t)/δφ(r ′, t ′)|φ=0, eq. (A.14). If electrons cannot leave the r space,
the density in r space is constant and the response function is zero. As long as
the r-space charge is not polarizable, it will not screen the Coulomb potential in
d space.

There is still no screening of the Coulomb potential in the d space if UII is set
to 4.0 as long as tII = 0 and tI and UI have the same values as in the previous
calculations. The resulting spectra are shown in figure 7.3 C. The choice of
UII = 4.0 leads to the formation of two satellites in the pDOS of the r space, of
which the smaller satellite located around −23 is barely visible in the spectrum.
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Furthermore, it yields an additional contribution to the Hartree potential such
that the relative distance between the peak positions of the pDOS of the d and r
space is increased further. Apart from this shift in the peak positions, the shape
of the pDOS in d space is unchanged.

The graph on the right of figure 7.3 C again compares the exact spectra of the
d space with that from the Hubbard-type model. The matrix elements of the Wr

are again identical to the matrix elements given by UI due to the lack of screen-
ing. However, H̃H 6= Hd since UII 6= 0; but the effective Hartree Hamiltonian
constructed according to eq. (7.42) can exactly reproduce the shift of the peaks
of the pDOS to higher energies due to the additional contribution to the Hartree
potential originating from UII. Furthermore, eq. (7.51) for the double-counting
correction is still exact, since condition (7.47) is fulfilled for the given choice of
parameters. Thus, the effective model can reproduce the spectrum of the d space
correctly if all three parameters tI, UI and UII are non-zero. In the next section,
it is demonstrated that a one-to-one agreement of the spectra from the effective
model with those from the exact solution cannot be achieved if the two subspaces
are coupled, i.e. tII 6= 0.

The parameter tII – if subspaces communicate

To demonstrate the effect of tII itself on the many-body spectrum, UI and UII were
again set to zero. The pDOS of the d and r space obtained from a calculation
with tI = −1.0 and tII = −3.0 is shown in figure 7.4 on the left side. The largest
qualitative change compared to the spectra in figure 7.3 A, where tII = 0, occurs
in the pDOS of the r space, since the hybridization between the states in d and
r space resulting from tII 6= 0 leads to the formation of a bonding and an anti-
bonding state in the r space. Thus, the single peak in the spectrum of the r space
observed in figure 7.3 A is split into two peaks.

A closer look at the spectra in figure 7.4 reveals that charge density from the
r space is shifted to the d space. This can be observed due to the emergence of
small peaks in the spectra of each subspace d and r, which are located at the
position of the main peaks of the spectrum of the other subspace. The formation
of two additional peaks in the pDOS of the d space can be seen more clearly in
the right graph of figure 7.4, where the exact pDOS is compared to the spectrum
obtained from the solution of the effective, Hubbard-type model. Furthermore,
it can be seen directly that these two features in the exact solution are missing
in the spectrum of the effective model. Since the Hilbert space of the effective
model is constructed from those states forming the d space, the electrons have to
stay in d space because they have nowhere else to go. Therefore, the additional
peaks seen in the pDOS of the exact solution are not reproduced. Furthermore,
the height of the peaks in the spectrum from the effective model are unchanged
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Figure 7.4.:

Left: The exact pDOS of the d and r space, where tI = −1.0, tII = −3.0
and UI and UII were set to zero.
Right: The pDOS of the d space compared to the spectrum of the ef-
fective, Hubbard-type model (Hub) for the same choice of parameters.

compared to the spectrum in 7.3 A, because the number of particles occupying
the states in d space in calculations employing the effective, Hubbard-type model
is 2 by construction. However, the actual number of particles in the d space given
by the trace of the exact matrix of the density ρd(r), eq. (7.25), turns out to be
larger than 2.

The discrepancies between the spectra obtained from the exact solution and
the effective model result from the particular construction of the effective model.
Therefore, these deficiencies cannot be easily cured without changing the model
itself. However, the model was chosen in the first place in order to check how
well it reproduces the exact solution, because in the present form it resembles
the Hubbard models employed in calculations for real materials. Furthermore,
it should be emphasized that the deviations do not result from an inaccuracy of
the treatment of correlations, which can only be approximated in calculations for
real materials. They originate from the single-particle term of the Hamiltonian
(7.6). In particular, the matrices H̃d.c. and Wr in the Hamiltonian (7.26) of the
effective model are exactly zero in the example discussed here, since U = 0. Last
but not least, it should be pointed out that the effective model is at least able
to reproduce the exact positions of the two main peaks in the spectrum of the
d space, since H̃H calculated according to (7.42) readily accounts for the small
shifts of the two main peaks in the spectrum of the d space resulting from tII 6= 0.

For the calculations discussed next, UI was set again to 4.0. The remaining
parameters were kept constant, in particular, UII is still zero. The resulting spectra
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Figure 7.5.:

Left: The exact pDOS of the d and r space, where tI = −1.0, tII = −3.0
and UI = 4.0. Here, UII is zero.
Right: The exact pDOS of the d space compared with the spectrum of
the effective, Hubbard-type model (Hub) for the same parameters.

are displayed in figure 7.5. Compared to figure 7.3 B, the only new features
in the spectra obtained from the exact solution of the 4-orbital model are two
additional satellites in the spectra of the r and the d space located at roughly −10.
The hybridization between the states in d and r space originating from tII 6= 0
combined with UI 6= 0 result in a potential Uind induced in the r space. Similar
to the effect of UII demonstrated in figure 7.3 C, Uind generates satellites in the
spectrum of the r space. Due to the hybridization between the states of the two
subspaces, part of the charges forming the satellite is shifted to the d space such
that two satellites at the same position can be found in the pDOS of the d space.
From the previous discussion it is clear that these satellites cannot be reproduced
by the effective model whereas the two Hubbard bands do show in the spectrum
of the effective model in figure 7.6. However, the energetic positions of both the
two main peaks as well as the Hubbard bands are not exactly reproduced by the
Hubbard-type model.

The treatment of the two-particle term and particularly the construction of the
interaction matrix elements Wr in the Hamiltonian (7.26) of the effective model
are not the origin of the observed discrepancies between the spectra. In fact,
the only non-zero matrix elements of Wr are again identical to UI for the given
choice of parameters, since the effect of screening is zero. The corresponding
proof is lengthy and is therefore deferred to appendix C.2. Since Wr is known
exactly and the single-particle term of the Hubbard-type model is constructed to
reproduce the one-particle contributions to the many-body spectrum exactly, the
deviations between the exact spectrum and the results from the effective model
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must be related to the double-counting correction.

For the given choice of parameters, the condition in (7.47) indeed is no longer
fulfilled and (7.51) is merely an approximation to the exact double-counting cor-
rection (7.43). As a result of the hybridization between the two subspaces, it was
observed that the true number of particles obtained from ρd(r) is larger than the
number of particles occupying the states in d space in calculations employing the
effective model. Consequently, the double-counting correction becomes too large
if the density ρ̃(r) entering the exact double-counting term is replaced by ρd(r).
Therefore, the spectrum obtained from the effective model is shifted downwards
in energy with respect to the peak positions of the exact pDOS of the d space in
figure 7.6.

To demonstrate that the hybridization between the subspaces is the main source
of the differences between the spectra, a series of calculations was carried out for
tII = −3.0, tII = −5.0 and tII = −7.0 with tI = −1.0 and UI = 4.0 in all calculations.
In figure 7.6, the resulting spectra of the effective model and the exact pDOS of
the d space are displayed in the graphs labeled A1, A2, A3. Obviously, the
differences between the eigenvalues of the exact solution and those from the
Hubbard-type model, which determine the position of the peaks in the spectra,
become larger if tII increases. For comparison, another series of spectra denoted
by B1, B2 and B3 is shown in figure 7.6, which was obtained by changing UI

from 6.0 to 9.0 and to 12.0 keeping the non-zero hopping matrix elements tI
and tII at a constant value of −1.0 in all calculations. Since there is still a small
hybridization between the two subspaces, the spectra from the effective model
still deviate from those obtained from the exact solution. However, the increase
in the deviations between the spectra due to changes of UI is much smaller than
the changes due to an increase of tII. These small changes can again be related to
the double-counting correction, since changes of UI lead to different eigenstates
|ΨN

J 〉 of the Schrödinger equation (7.11). These eigenstates enter the calculations
of the density ρd(r), eq. (7.25), which in turn enters eq. (7.51) for the double-
counting correction. On the other hand, the majority of the changes originating
from the increase of UI are reproduced qualitatively and quantitatively by the
effective model, since Wr = U.

Finally, the effect of the combination of the parameters tII and UII on the many-
body spectrum is analyzed. The calculations were carried out with tI = −1.0,
tII = −5.0 and UII = 4.0. Furthermore, UI was set to zero in all calculations. The
resulting spectra are shown in figure 7.7. As demonstrated previously in figure
7.3 C, UII leads to the formation of satellites in the pDOS of the r space. Due
to the hybridization between the two subspaces, satellites at the same positions
can now also be found in the pDOS of the d space. In addition, the formation
of two small Hubbard bands located roughly at 9.0 and 13.0 can be observed in
the spectrum of the d space although UI = 0. The emergence of Hubbard bands
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Figure 7.6.:

Left: Exact spectrum and Hubbard-type model (Hub) description of
the d space, where tI = −1.0 and UI = 4.0 in all calculations and tII
changes from −3.0 in A1 to −5.0 in A2 and −7.0 in A3.
Right: In B1, B2 and B3 the values of tI = −1.0 and tII = −1.0 were
kept constant and UI was changed from 6.0 in B1 to 9.0 in B2 and 12.0
in B3.
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Figure 7.7.:

Top: The exact pDOS of the d and r space, where tI = −1.0, tII = −5.0
and UII = 4.0. In all calculations, UI is set to zero.
Bottom: The exact pDOS of the d space compared to the spectrum
of the effective, Hubbard-type model (Hub) for the same choice of
parameters.
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Figure 7.8.: Frequency dependence of the induced on-site Coulomb
interaction Wr

3333(ω) obtained from (left) four different choices of tII
with UII = 4.0 and (right) four different choices of UII with tII = −3.0.

is a direct consequence of the screening of the Coulomb potential UII, which is
non-zero for the given choice of parameters. The screening induces an on-site
Coulomb repulsion in the d space, i.e.

Wr
iiii(ω) 6= 0 , i ∈ d , (7.58)

which leads to the formation of Hubbard bands.

The effective Hubbard-type model does not reproduce the exact spectrum of
the d space very well for the given choice of parameters as demonstrated in the
graph on the bottom of figure 7.7. The satellites at the positions of the peaks
in the r space are not reproduced at all for the reasons discussed previously.
Furthermore, the positions of the two main peaks in d space come out wrong.
The same is true for the position of the Hubbard bands, which are also present
in the spectrum from the effective model but which are very small as can be seen
in the inset of the graph.

The deficiencies of the Hubbard-type model have several reasons. On the one
hand, the density ρd(r) entering into the approximation for the double-counting
term (7.51) still differs from ρ̃(r) in the exact expression for the double-counting
correction for the reasons discussed before. On the other hand, an additional
approximation has to be made now in the construction of the Hamiltonian (7.26)
for the effective model, namely the neglect of the frequency dependence of Wr(ω).
Figure 7.8 shows the frequency dependence of the induced on-site Coulomb
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interaction Wr
3333(ω) for different choices of tII in the graph to the left and for

variations of UII on the right. In both graphs, Wr
3333(ω) ≈Wr

3333(0) only for ω . 2.
Furthermore, the frequency dependence becomes larger if either one of the two
parameters is increased. The changes of the absolute value of Wr

3333(ω) largely
depend on the choice of the values for UII. However, there is no screening
at all if tII = 0, such that the effect truly originates from the combination of
the two parameters tII and UII. For all choices of tII and UII investigated here,
Wr

3333(ω) starts to deviate from its ω→ 0 limit at frequencies much smaller than
the frequency range comprising the exact spectrum of the d space. Hence, any
changes in the pDOS of the d space related to the frequency dependence of
Wr

3333(ω) are not accounted for by the effective, Hubbard-type model.

In summary, for any choice of tII other than zero the effective, Hubbard-type
model cannot reproduce the exact many-body spectrum quantitatively. The main
source of error is the inequality |Ψ̃N

J 〉 6= |ΨN
J , d〉 originating from tII 6= 0, since the

double-counting correction, eq. (7.43), can no longer be exactly determined and
the true number of particles in d space deviates from the number of particles
that is kept constant in the construction of the effective model.

7.2.2. Valence electrons and empty states

In the second part of this section, results are presented from calculations with
one up and one down electron occupying the orbitals of the 4-orbital model,
which results in the orbital occupation shown schematically in the left picture of
figure 7.9. If the orbital filling discussed in the first part of this section simulates
a partially filled valence band in the presence of a fully occupied band, the
present setup can be interpreted as a model for a partially filled valence band
and a conduction band. Here, the lower two energy levels of the 4-orbital model
form the d space and the unoccupied levels 3 and 4 make up the r space.

To carry out calculations, matrix elements of the hopping matrix t and the
interaction matrix U entering the Hamiltonian (7.6) have to be defined. Like
in the calculations presented before, most matrix elements are set to zero. The
non-zero elements are given by

eI ≡ −t11 = −t22 , (7.59)

eII ≡ −t33 = −t44 , (7.60)

tI ≡ −t12 , (7.61)

tII ≡ −t13 = −t24 , (7.62)

UI ≡ U1111 = U2222 , (7.63)

UII ≡ U1331 = U2442 . (7.64)

The effect of these parameters on the electrons in the system is illustrated in
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Figure 7.9.:

Left: One up (↑) and one down electron (↓) populate the 4-orbital
model. The lower two orbitals in d space simulate a partially filled
valence band, the upper states in r space a conduction band.
Right: Choice of non-zero hopping and interaction matrix elements
ei, ti and Ui, i = I, II. (See text for further details.)

the right picture of figure 7.9. In all calculations presented here, eI is set to 0.0
and eII = 7.5. The parameters tI and UI denote matrix elements different from
those in the calculations presented earlier in this section, since now the d space is
composed of the lower two orbitals in the present setup. Previously, the influence
of the parameters tI and UI as well as the effect of UII on the spectrum of the
d space was investigated. For the present definition of the d space, these three
parameters have almost the same effect. In fact, if tII = 0, the only difference is
observed for UII 6= 0, which does not lead to an additional contribution to the
Hartree potential due to the lack of charges in r space in the present setup.

However, for tII 6= 0 changes in the many-body spectra may occur, which
require the presence of empty states and have therefore not been observed previ-
ously. The newly observed spectral features can be attributed to the combination
of two effects, of which one originates from the parameters UI and the other
one is caused by tII. The parameter tI was set to −1.0 in all calculations. This
parameter is chosen to be negative to make the system insulating as explained
earlier. The remaining parameter UII was set to zero.

The influence of the parameter UI on the pDOS of the d and r space for three
different values 2.0, 8.0 and 20.0 for UI is demonstrated in the graphs A1, A2
and A3 of figure 7.10. Here, tII was also set to zero. Thus, no electrons can
hop between the two subspaces and the choice of UI 6= 0 has no influence at all
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Figure 7.10.:

Left: Exact spectrum of the d and r space, with tI = −1.0, tII = 0.0 and
UII = 0.0 in all calculations and UI was increased from 2.0 in A1 to
8.0 in A2 and 20.0 in A3.
Right: In B1, B2 and B3, the pDOS of the d space and the spectrum
of the Hubbard-type model (Hub) are shown for the same values of
tI, UI and UII as in A1, A2 and A3. The parameter tII is set to −1.0 in
all calculations.
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on the pDOS of the r space, which is solely determined by the choice of eII. In
the pDOS of the d space, UI 6= 0 leads to the formation of two Hubbard bands.
Furthermore, it yields a contribution to the Hartree potential, which leads to the
observed shift of the unoccupied part of the pDOS in d space to higher energies.
The spectrum from the effective Hubbard model is not shown in the graphs A1,
A2 and A3 in figure 7.10 but it is clear from the previous discussions that the
effective model exactly reproduces the pDOS of the d space for the given choice
of parameters, since all non-zero matrix elements in the Hamiltonian (7.26) can
be determined exactly.

The situation changes if tII becomes non-zero, which leads to a hybridization
between the states forming the d and r space. The graphs B1, B2 and B3 of
figure 7.10 show a comparison of the exact pDOS of the d space with the spectra
obtained from the effective model. In all calculations, tII was set to −1.0 and the
parameter UI was again changed from 2.0 to 8.0 and 20.0. All other parameters
were the same as in the calculations yielding the spectra shown in figure 7.10 A1
through A3.

The largest difference between the spectrum of the effective model and the
exact pDOS of the d space can be observed in figure 7.10 B2. Here, UI is almost
identical to eII. Therefore, the unoccupied part of the pDOS in d space is located
in the same energy range as the pDOS of the r space, as can be seen in 7.10 A2.
Thus, even the small value −1.0 of tII leads to a strong hybridization between
the states in r space and the unoccupied part of the spectrum of the d space.
Consequently, the unoccupied part of the pDOS in d space consists of one larger
peak and four satellites of different height. The effective, Hubbard-type model is
not capable of reproducing these features which originate from the hybridization
between the two subspaces. This has been discussed previously in the context
of the discrepancies between the spectrum of the effective model and the exact
pDOS of the d space observed in figure 7.6. Here, the effective model completely
fails to reproduce the unoccupied part of the exact spectrum, because the hy-
bridization between the unoccupied states in d space with the orbitals in r space
becomes particularly large for UI ≈ eII. On the other hand, the hybridization
between the occupied states in d and the empty states in r space is much smaller.
Hence, the corresponding part in the spectrum of the effective model is in good
agreement with the occupied part of the pDOS.

If UI is small as in B1, the unoccupied part of the pDOS in d space is only
slightly shifted to higher energies. Thus, the hybridization between all parts
of the spectrum of the d and r spaces is small and the effective model can
reproduce the exact pDOS both qualitatively and almost quantitatively. The
overall agreement of the spectra is also good if UI is as large as in B3, because
the unoccupied part of the d-space spectrum is located at much higher energies
than the peak positions of the pDOS in r space. Consequently, the hybridization
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between the subspaces is also small causing only minor discrepancies between
the spectrum of the effective model and the exact spectrum.

Finally, it should be emphasized that the effect observed in 7.10 B2 only occurs
in the present setup if UI ≈ eII and tII 6= 0. In general, the occurrence of such an
effect requires the hybridization between the subspaces. Furthermore, one of the
two subspaces has to be empty. Otherwise, a contribution to the Hartree potential
felt by the electrons in one subspace will always increase the relative distance
between the peak positions of the spectra of the subspaces, as demonstrated, e.g.,
in figure 7.3 B and C.

7.3. Discussion and Summary

The interaction between partially filled and fully occupied atomic orbitals as well
as the interplay between partially occupied and empty orbitals was investigated
using a simple toy model. For both scenarios, an effective, Hubbard-type model
was constructed to describe the subspace containing only those orbitals, which
were partially occupied. The resulting spectra were compared to the density
of states obtained from the exact solution. Provided that the Hubbard model
is constructed according to the scheme introduced here, it can reproduce the
exact solution both qualitatively and almost quantitatively for the majority of
configurations realized with different choices of the model parameters. More-
over, discrepancies between the results from the Hubbard model and the exact
solution can be attributed to the design of the Hubbard-type model itself and
are not mere artifacts resulting from the choice of parameters used in the model
calculations. Hence, the results of the calculations yield some general indica-
tions for the construction of Hubbard-type models used to describe correlated
subspace, which can help to design more sophisticated model setups or to im-
prove ab initio calculations based on Hubbard-type models. In the construction
of these models, the following aspects should be considered carefully.

If the atomic orbitals in the correlated subspace do not hybridize strongly with
other orbitals not contained in the subspace, the Hubbard model can yield an
accurate approximation for the exact many-body spectrum of the subspace. This
approximation even becomes exact if the hybridization is zero. It is important
to realize that the hybridization can also be influenced indirectly by the strength
of the interaction between the particles in the subspace. For example, if the on-
site Coulomb interaction in the correlated subspace of the toy model is of the
same size as the energy difference between single-particle energies of orbitals
inside and outside of the subspace, the linear combinations of the atomic orbitals
yielding the exact many-body states contain large contribution from all these
orbitals, even if the hopping matrix elements between the orbitals itself are small.
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In this case, the many-body states and the corresponding eigenvalue spectrum
cannot be reproduced by a Hubbard-model based approach taking into account
only the states of the subspace.

Secondly, the excitation energies obtained from the Hubbard model will only
resemble the exact many-body excitation energies if all mean-field type contribu-
tions contained in the Hamiltonian of the whole N-electron system are properly
taken into account in the construction of the the Hubbard Hamiltonian. For ex-
ample, charges not contained in the subspace described by the Hubbard model
yield a contribution to the Hartree potential felt by the electrons in the subspace.
Since the two-particle term of the Hubbard Hamiltonian only captures the interac-
tion between particles in the subspace, this contribution to the Hartree potential
has to be included in the one-particle term of the Hamiltonian. The technique
introduced here incorporates these contributions to the Hartree potential into
the one-particle term of the Hubbard Hamiltonian. In principle, the procedure
could be generalized to incorporate the effect of any single-particle potential into
the one-particle term. However, this design of the one-particle term comes at a
price: by construction, it incorporates all contributions to the Hartree potential
including those from interactions between the charges in the subspace. The lat-
ter ones are also accounted for by the two-particle term of the Hubbard model
and have to be subtracted. Otherwise, they would be taken into account twice
in the calculation. From the above considerations, it is, in principle, clear which
contributions have to be subtracted. However, even for the simple toy model
the expression for the double-counting correction cannot be evaluated exactly as
soon as the orbitals in the subspace hybridize with orbitals that are not contained
in the subspace. The model calculations presented here clearly demonstrate that
the capability of the Hubbard model to reproduce the exact excitation energies
of the many-body spectrum of the subspace largely depends on the treatment of
the double-counting correction.

Last but not least, the treatment of interactions between particles in the sub-
space can lead to differences in the calculated spectra. In reference [84], an expres-
sion for the effective interaction between two particles in a subspace was derived,
which is, in general, frequency dependent. However, the neglect of this frequency
dependence is inevitable in the construction of the Hubbard Hamiltonian which
therefore will only yield accurate results if the frequency dependence is small.
In the model calculations presented here, the exact, frequency-dependent inter-
action between two particles in a subspace was calculated for different choices
of the model parameters. It was shown that the frequency dependence of the
screened interaction is influenced by the overlap of the single-particle orbitals
and also by the size of the Coulomb integrals. Hence, the specific properties of
each electronic system determine if the frequency dependence is negligible or
not.
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In summary, the Hubbard model can yield an accurate description of the spec-
trum of a correlated subspace if the hybridization between the orbitals inside and
outside the subspace is small. If the hybridization is too strong, the subspace
could be augmented such that all orbitals with a large overlap are contained. In
addition, a well-thought-out double-counting correction has to be designed if the
Hubbard model is to reproduce the exact eigenvalue spectrum of the many-body
solution in the subspace quantitatively. Finally, if the frequency dependence
of the screened interaction is strong, the spectrum obtained from the Hubbard
model will only yield a poor approximation to the exact density of states of
the subspace. This problem might as well be circumvented by changing the
definition of the subspace. However, if the frequency dependence is crucial for
the accurate description of the problem at hand, other theoretical concepts like
the Green function or the path integral formalism have to be employed, which
naturally incorporate the frequency dependence of the interaction.



CHAPTER 8

CONCLUSION

The goals of this thesis were a) to explore the structure-composition-properties
relation in complex perovskite transition-metal oxides from the electronic struc-
ture point of view employing state-of-the-art first-principle methods based on
density-functional theory (DFT) and the GW approximation (GWA), and b) to
investigate the limitation of model approaches, in particular the Hubbard model,
frequently used to analyze the electronic structure of materials where the system
size or the strength of the electron-electron correlation hamper the applicabil-
ity of ab initio schemes. The findings of the investigations are discussed and
summarized in this chapter.

The established success of DFT-based schemes originates from their wide range
of applicability in electronic structure calculations for the ground-state proper-
ties of real materials and their capability to predict the electronic structure of
new materials thus meeting the demands of modern, intelligent materials design.
Moreover, the combination of these approaches with the GWA, a Green-function
technique based on many-body perturbation theory, has emerged as the method
of choice to investigate the single-particle excitation spectra of solids. Through-
out this work, the FLAPW method is used for all first-principles calculations.
As an all-electron approach, this method is particularly suitable to describe mul-
ticomponent materials comprising transition metals or rare earths such as the
perovskite transition-metal oxides. Furthermore, it is considered the most pre-
cise computational scheme in solid state physics today to calculate the electronic
structure from first principles.

This versatile technique was first applied in GW calculations to a series of pro-
totypical perovskite transition-metals oxides including the ferroelectrics BaTiO3

and PbTiO3, the antiferroelectrics PbZrO3 and PbHfO3, the high-κ dielectrics
BaZrO3 and BaHfO3 as well as SrTiO3 and CaTiO3, which are all predicted to be
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insulating in agreement with experimental data. A comparison of the band gaps
obtained from GW calculations for the room-temperature crystal phases with
optical gaps taken from experiment shows good agreement for all compounds.
It was also demonstrated that small distortions from the high-temperature cubic
crystal phases yielding the room-temperature crystal structures lead to signifi-
cant quantitative changes of the band gaps. This emphasizes the necessity to
consider the correct room-temperature crystal structure in electronic structure
calculations if the results are to be compared with experimental data. On the
other hand, the energies of high-lying core states are little affected by the room-
temperature distortions of the crystal structure. The energy corrections obtained
from the GWA for these states are small and the results resemble those from
DFT calculations. Good agreement with experimental data is attained as well.

As the chemical composition of the above perovskite transition-metal oxides is
similar, changes in the electronic structure obtained for the high-temperature cu-
bic crystal phases with respect to changes in the composition of the compounds
were also investigated in this work. The valence bands of all compounds are com-
posed of oxygen 2p states and the low-lying conduction bands are composed of
transition metal d states except for PbZrO3 and PbHfO3 where they are com-
posed of Pb 6p states. Thus, the fundamental band gaps of CaTiO3, SrTiO3, and
BaTiO3 are very close. The band gaps of BaZrO3 and BaHfO3 are also similar
but much larger than the one of BaTiO3, because the d states of Zr and Hf are
less tightly bound than those of Ti while the chemical and physical properties of
Zr and Hf are virtually identical due to the lanthanide contraction. In contrast,
the size of the band gaps of PbTiO3, PbZrO3, and PbHfO3 are again comparable,
because the Ti 3d and the Pb 6p states forming the lowest unoccupied states in
these materials are located roughly at the same energies.

Secondly, GW calculations were carried out for the three compounds LaCrO3,
LaMnO3, and LaFeO3. In the three band insulators, the electron correlation is
considered to be enhanced due to the partial filling of the d bands of the transi-
tion metals. The partial filling also leads to the formation of finite spin-magnetic
moments at the transition-metal sites that order antiferromagnetically. Results
from DFT calculations obtained from the generalized-gradient approximation em-
ploying the PBE functional or from calculations using the hybrid functional HSE
are investigated as starting points for many-body perturbation theory. The size
of the magnetic moments and the fundamental band gaps are underestimated in
PBE calculations. If the HSE functional is used instead, the magnetic moments
are improved with respect to experimental data but the band gaps are system-
atically overestimated. Nevertheless, the HSE results yield a good starting point
to employ the GWA in the case of LaCrO3 allowing to quantitatively reproduce
the fundamental band gap as well as photo-emission spectra. For LaMnO3 and
LaFeO3, the calculated spectra and band gaps are in better agreement with ex-
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perimental data if the PBE results are used as starting point for GW calculations.
However, the band gap of LaFeO3 is still slightly underestimated.

In summary, the single-shot GW approximation based on PBE or HSE results
from DFT calculations employing the FLAPW method substantially improves
the band gaps and photo-emission spectra obtained from DFT calculations for
all perovskite transition-metal oxides investigated in this work. Furthermore, it
yields good agreement with experimental data apart from minor discrepancies.
Small deviations can result from approximations inherent to the ab inito scheme,
e.g., the expression used to approximate the exchange-correlation energy in DFT
calculations or the neglect of vertex corrections in the GWA. For example, the
band gaps of LaMnO3 and LaFeO3 obtained from calculations employing the
HSE functional are strongly overestimated such that the influence of screening
in a subsequent GW calculation is underestimated. In contrast, the band gap
of LaFeO3 predicted by PBE calculations is much too small. This leads to an
overestimation of the effect of screening. These examples demonstrate that the
single-shot GW approach depends on the DFT starting point, whose accuracy is
determined by the level of approximation used in the DFT calculation. A scheme
in which the GW self-energy is determined self-consistently could remove this
deficiency of the present approach. Furthermore, the necessity to include vertex
corrections describing excitonic effects in calculations for the dielectric function
has been discussed in the investigation of the absorption spectra of SrTiO3 and
BaTiO3.

Last but not least, it was demonstrated that spin-orbit coupling (SOC) has a siz-
able effect on the conduction band spectrum of PbTiO3 and, especially, PbZrO3

and PbHfO3 due to severe changes in the energies of the Pb 6p states. How-
ever, GW calculations for complex oxide materials like the perovskite transition-
metal oxides, which fully incorporate the SOC, are not feasible at present. Self-
consistent GW calculations as well as the inclusion of vertex corrections and
the SOC in the GWA should thus be the subject of future investigations in first-
principles calculations for perovskite transition-metal oxides.

Finally, the limitation of the applicability of the Hubbard model in simulations
of the electronic structure of real materials is investigated. The Hubbard model
allows to gain insight into the electronic structure of strongly correlated materi-
als as it takes the on-site term of the electron-electron interaction explicitly into
account. As the explicit treatment of the electron-electron interaction is numer-
ically expensive, only a small part of the whole excitation spectrum of a real
material can be simulated. This raises the question how the parameters of the
Hubbard model have to be determined in order to yield the best approximation
for this particular part of the spectrum.

A test system was constructed to simulate partially filled single-particle states
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located close in energy to fully occupied or empty states. The exact many-
body excitation spectrum, which is obtained from solutions of the N-electron
Schrödinger equations employing the particle-number formalism, is compared
to the spectrum simulated by a Hubbard model for a given subspace of the full
test system. The Hubbard model is constructed in such a way that the effec-
tive single-particle term exactly reproduces all single-particle contributions to
the Hamiltonian of the N-electron Schrödinger equation. The electron-electron
interaction term of the model comprises the screened interaction obtained from
constraint RPA (cRPA). In principle, cRPA allows to calculate the exact interaction
strength between particles in any given subspace of the test system as the exact
many-body response function of the test system can be determined. However,
the frequency dependence of the screened interaction has to be neglected in the
construction of the Hubbard model.

It is illustrated that the Hubbard model qualitatively reproduces the exact
spectrum of the subspace for large parts of the parameter space. However, the
spectrum is only reproduced quantitatively if the states defining the subspace do
not hybridize with those states not contained in the subspace. In particular, the
simulation of the spectrum becomes increasingly inaccurate if the hybridization
gets large even if the electron-electron interaction between charges inside and
outside the subspace are manually set to zero. In addition, the neglect of the
frequency dependence of the screened interaction may cause further deviations.
In summary, a Hubbard model of a subspace that is well separated in energy
from states outside the subspace may yield an accurate approximation for the
spectrum of the subspace. If the hybridization between states inside and outside
the subspace is large, these states should be included in the construction of the
Hubbard model to obtain a satisfactory description of the exact spectrum.



APPENDIX A

MANY-BODY PERTURBATION THEORY

A.1. Hedin Equations

In this section, the Hedin equations [13] to determine the self-energy are de-
rived using the Schwinger functional derivative method [68, 69]. To obtain the
self-energy a time-dependent, external potential φ(r1, t1) is introduced as a math-
ematical tool. It is set to zero once the self-energy is obtained. Furthermore, the
interaction (or Dirac) representation of the field operators is used. Consequently,
the Heisenberg operators in the representation of the N-electron Hamiltonian,
eq. (2.64), have to be replaced by the corresponding Dirac operators ψ̂†

D, ψ̂D and
the following term has to be added to the Hamiltonian

φ̂(τ) =

∫

d3rφ(r, τ)ψ̂†
D(r, τ)ψ̂D(r, τ) . (A.1)

The Dirac operators are related to the Heisenberg operators via

ψ̂(r, t) = Û†(t, 0)ψ̂D(r, t)Û(t, 0) (A.2)

with the time evolution operator Û given by

Û(t, t0) = T̂ exp
[

−i
∫ t

t0

dτ φ̂(τ)

]

. (A.3)

To simplify the notation, the sets of space-time coordinates (r1, t1), (r2, t2) and
so on are denoted from now on by natural numbers 1, 2 etc. and the following
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abbreviations are used:

δ(12) = δ(r1 − r2)δ(t1 − t2) , (A.4)

v(12) = v(r1 − r2)δ(t1 − t2) , (A.5)
∫

d1 =

∫

d3r1

∫

dt1 , (A.6)

1+ = (r1, t1 + η) . (A.7)

In the interaction representation the Green function (2.56) is given by

G(12) = −i
〈N, 0| T̂ [Û(∞, −∞) ψ̂

†
D(1)ψ̂D(2)] |N, 0〉

〈N, 0| Û(∞, −∞) |N, 0〉
. (A.8)

Taking the functional derivative of G with respect to φ leads to

δG(12)

δφ(3)
= G(12)G(33+) − G2(1323+) , (A.9)

which can be solved for the two-particle Green function. The second term on the
right-hand side in the equation of motion of the quasiparticle Green function,
eq. (2.66), is thus replaced by

−i
∫

v(1+3)G2(1323+)d3 = −i
(∫

v(13)G(33+)d3
)

︸ ︷︷ ︸
VH(1)

G(12) + i
∫

v(1+3)
δG(1, 2)

δφ(3)
d3

= VH(1)G(12) +

∫

Σ(13)G(32)d3 .

(A.10)

The first term on the right-hand side is identified as the product of the Hartree
potential VH and G using the identity n(1) ≡ −iG(11+). In the second term, the
self-energy was introduced that can be written as

Σ(12) = i
∫∫

v(1+3)
δG(14)

δφ(3)
G−1(42)d3d4

= −i
∫∫

v(1+3)G(14)
δG−1(42)

δφ(3)
d3d4

= i
∫∫

W(1+3)G(14)Γ(42; 3)d3d4 . (A.11)

From the first to the second line, the following identity was exploited

δ

δφ(4)

∫

G(13)−1G(32)d3 =

∫

d4
[

G(13)
δG−1(32)

δφ(4)
+
δG(13)

δφ(4)
G−1(32)

]

= 0 ,

(A.12)
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while in the third line two quantities were introduced: the screened interaction
W and the vertex function Γ . The latter is defined as functional derivative of the
inverse Green function with respect to the effective potential

Γ(12; 3) = −
δG−1(12)

δφeff(3)

∣

∣

∣

∣

φ=0
, (A.13)

and φeff is the sum of the potential φ and the Hartree potential. It can be
expressed via the response function R

φeff(1) = φ(1) + VH(1) = φ(1) +

∫∫

v(13)
δn(3)

δφ(2)

∣

∣

∣

∣

φ=0
︸ ︷︷ ︸

≡ R(32)

φ(2)d2d3 , (A.14)

which in turn can be written as a geometric series using the polarization function
P

R(12) = P(12) +

∫∫

P(13)v(34)R(42)d3d4 . (A.15)

The polarization function P describes reactions of the density to changes in the
effective potential

P(12) =
δn(1)

δφeff(2)

∣

∣

∣

∣

φ=0
. (A.16)

With the help of R, the inverse dielectric function can be written as a geometric
series as well

ε−1(12) =
δφeff(2)

δφ(2)

∣

∣

∣

∣

φ=0
= δ(12) +

∫

v(13)R(32)d3 , (A.17)

whose inversion yields

ε(12) = δ(12) −

∫

v(13)P(32)d3 . (A.18)

Finally, an expression for the screened interaction is given by

W(12) =

∫

ε−1(13)v(32)d3 = v(12) +

∫∫

v(13)P(34)W(42)d3d4 . (A.19)

The screened potential W is the potential felt by a test charge at position 2, which
is generated by a quasiparticle at position 1.

To complete the derivation of the Hedin equations, the following expression
for the inverse Green function is obtained from the Dyson equation (2.74)

G−1(12) = G−1
H (12) − Σ(12) . (A.20)
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This can be used to rewrite the equation for the vertex function as

Γ(12; 3) = δ(12)δ(13) +
δΣ(12)

δφeff(3)
, (A.21)

and with the identity

δG(12)

δφeff(3)
=

δ

δφeff(3)

∫∫

G(14)G−1(45)G(52)d4d5

= 2
δG(12)

δφeff(3)
+

∫∫

G(14)
δG−1(45)

δφeff(3)
G(52)d4d5

(A.22)

the vertex function becomes

Γ(12; 3) = δ(12)δ(13) −

∫∫∫∫
δΣ(12)

δG(45)
G(56)Γ(67; 3)G(74)d4d5d6d7 (A.23)

and analogously

P(12) = −i
δG(11+)

δφeff(2)
= −i

∫∫

G(13)Γ(34; 2)G(41)d3d4 . (A.24)

The equations (A.11), (A.19), (A.23), (A.24) together with the Dyson equation
(2.74) constitute Hedin’s set of integro-differential equations, whose self-consistent
solution, in principle, solves the many-electron problem exactly.

A.2. Vertex Correction from vxc in the GWA

Using the Kohn-Sham Green function G0, eq. (2.82), instead of the Hartree Green
function GH in the first iteration of the Hedin equations changes the vertex func-
tion Γ in eq. (A.23), since the exchange-correlation potential constitutes a static
but non-vanishing self-energy

Σ0(1, 2) = δ(12)vxc(1) . (A.25)

It was shown by Del Sole, Reining, and Godby [205] that the first iteration of the
Hedin equations still produces a self-energy of the GW form

Σ(12) = iG0(12)W̃(12) (A.26)

if the screened interaction is renormalized yielding an effective screened interac-
tion given, in operator form, by

W̃ = v [1 − P0(v+ Kxc)]−1 , (A.27)
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where the exchange-correlation kernel Kxc is given by the functional derivative
of vxc with respect to the single-particle density

Kxc(12) =
∂vxc(1)

∂n(2)
(A.28)

and P0 is the polarization function in the RPA, eq. (2.78).

Del Sole et al. employed the self-energy obtained from eq. (A.26) in a band
structure calculation for Si and found only little changes in the relative positions
of the quasiparticle bands. Morris et al. [70] used the same scheme to study a
variety of physical properties of some closed-shell atoms and jellium. Their cal-
culations even show that inclusion of the vertex corrections yield results inferior
to those obtained from the GW approximation without vertex correction. It was
argued that the reason for the failure of the LDA starting point with the inclusion
of the theoretically consistent vertex lies within the self-interaction error in the
LDA. The self interaction should lead to correcting terms in the diagrammatic
expansion of the self-energy. Therefore, inclusion of higher-order terms might
remedy the reported unphysical behavior of the approximation for Σ given by
eq. (A.26). Earlier works [74, 76] employed vertex corrections by systematically
adding higher-order diagrams in the calculation of the RPA polarizability and
the GW self-energy and confirm the results of reference [205].





APPENDIX B

INPUT PARAMETERS

The input parameters used in calculations with FLEUR and SPEX for all com-
pounds investigated in this work are tabulated in this section. The notation used
in the tables is explained below.

To improve the representation of semicore levels and unoccupied states LOs
for each atom in the unit cell can be added to the LAPW basis and the MPB.
The LOs are tabulated according to their band index and angular moment, for
example the notation s n,m connotes that two LOs describing an s state were
used, where the first one is located in band n and the second one in band m,
respectively. An underlined number indicates that the corresponding LO is used
to describe a semicore level. All other LOs are located in the conduction bands.

For each input parameter used in a SPEX calculation a keyword is defined.
The keyword together with the parameter(s) are passed along to the SPEX code,
which interprets the data on the basis of the definition of the keyword. All
input parameters used in SPEX calculations are tabulated with respect to the
corresponding keywords, which are explained in the following. A complete list
of all keywords can be found in the documentation of the SPEX code [18]. All
energies are measured in Hartree (htr).

Keyword Argument Definition

GCUT x Plane-wave cutoffG ′
max for the IPWs of the MPB mea-

sured in bohr−1 (cf. section 5.1.1)

LCUT n Cutoff Lmax (one for each atom) for the angular mo-
ment of the radial functions of the MPB (cf. section
5.1.1
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Keyword Argument Definition

BANDS n Bands per atom in the unit cell
BANDS is not a regular SPEX keyword but similar to

the keyword NBANDS (cf. documentation [18]).

BZ Nx Ny Nz Defines a k-point set Nx × Ny × Nz according to
(3.41).

MB x Corresponds to the reformulated cutoff value
(4π/vmin)1/2 introduced in section 5.1.1, which is
measured in bohr−1.

SEL n,m Determines the pairs of LAPW radial functions
uσ

al0(r) for each atom whose products form the MT
functions of the MPB. The integer number n corre-
sponds to the maximum l quantum number of the
radial functions used in the construction of the MPB
radial functions to represent products of occupied
states, m plays the same role in the representation
of the unoccupied states.
SEL is not a regular SPEX keyword but is similar to the

actual keyword SELECT (cf. documentation [18]).

FSPEC x y Defines the exponential frequency mesh for the
Hilbert transformation in eq. (3.37). In this work,
the argument x denotes the first nonzero mesh point
and the second argument is a factor defining the
positions of the other mesh points fi according to
y = (fi+1 − fi)/(fi − fi−1).

MESH n+m x Defines an imaginary frequency mesh, which is used
e.g. to calculate the polarization function in eq. (3.37).
The total number of mesh points is n+m, where the
n points are distributed evenly between zero and the
last frequency point x. An additional number of m
points can be added to obtain a finer sampling of the
frequencies close to zero.

CONTOUR D d In this work, D is chosen to be a range that defines
an equidistant mesh (relative to the KS energy) used
for the contour integration in eq. (3.40). The second
argument d defines the step size of an equidistant
mesh for the screened interaction.
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B.1. Input parameters – part 1

Input parameters for FLEUR and SPEX calculations for the compounds presented
in chapter 5 are listed below. Lattice constants and atomic positions were taken
from experiment. The latter can be found in the according references. Therefore,
they are not listed here. Calculations were carried out for the cubic phase and the
crystal phase attained at RT. If the latter differs from the cubic phase, a second
set of parameters is listed. (If no data for the crystal phase at RT could be found,
the data measured at a temperature closest to RT were used.)

CaTiO3

cubic phase at T = 1647K [107] orthorhombic phase at T = 296K [107]

lattice const. (bohr) a = 7.345 a = 10.149; b = 10.257; c = 14.412
atoms per unit cell 5 20

FLEUR FLEUR

Gmax 5.8 bohr−1 5.6 bohr−1

atom lmax MT radius local orbitals lmax MT radius local orbitals

Ca 12 3.00 bohr s 3,5,6,7,8,9
p 3,5,6,7,8,9
d 4,5,6,7,8,9
f 5,6,7,8,9,10

12 2.70 bohr s 3,5,6,7,8
p 3,5,6,7,8
d 4,5,6,7,8
f 5,6,7,8

Ti 8 2.00 bohr s 3,5,6,7
p 3,5,6,7
d 4,5,6,7
f 5,6,7

8 1.90 bohr s 3,5,6,7
p 3,5,6,7
d 4,5,6,7
f 5,6,7

O 6 1.65 bohr s 3,4,5
p 3,4,5,6
d 4,5,6
f 5,6

6 1.48 bohr s 3,4
p 3,4,5
d 4,5
f 5,6

SPEX SPEX

GCUT 3.8 bohr−1 3.5 bohr−1

BANDS 200 85
BZ 6 × 6 × 6 2 × 2 × 2
MB 6.0 bohr−1 4.3 bohr−1

FSPEC 0.01 htr 1.05 0.015 htr 1.05
MESH 6+3 10.0 htr 6 10.0 htr
CONTOUR {−0.1. . .0.1,0.01}; 0.01 (htr) {−0.1. . .0.1,0.02}; 0.02 (htr)

atom LCUT SEL local orbitals LCUT SEL local orbitals

Ca 7 4,4 s 3,5 p 3,5 d 4 f 5 6 4,4 s 3 p 3
Ti 7 4,4 s 3,5 p 3,5 d 4 f 5 6 4,4 s 3 p 3
O 7 4,4 s 3 p 3 d 4 f 5 5 2,3



204 B. Input parameters

SrTiO3

cubic phase at T = 296K [108]

lattice const. (bohr) a = 7.372
atoms per unit cell 5

FLEUR

Gmax 5.8 bohr−1

atom lmax MT radius local orbitals

Sr 12 3.00 bohr s 4,6,7,8,9,10
p 4,6,7,8,9,10
d 5,6,7,8,9,10
f 5,6,7,8,9,10

Ti 8 2.00 bohr s 3,5,6,7
p 3,5,6,7
d 4,5,6,7,8
f 5,6,7,8

O 6 1.65 bohr s 3,4,5
p 3,4,5,6
d 4,5,6
f 5,6

SPEX

GCUT 4.0 bohr−1

BANDS 200
BZ 6 × 6 × 6
MB 5.5 bohr−1

FSPEC 0.01 htr 1.05
MESH 6+3 10.0 htr
CONTOUR {−0.1. . .0.1,0.01}; 0.01 (htr)

atom LCUT SEL local orbitals

Sr 6 4,4 s 4,6 p 4,6 d 5 f 5
Ti 6 4,4 s 3,5 p 3,5 d 4 f 5
O 6 4,4 s 3 p 3 d 4 f 5



B.1. Input parameters – part 1 205

BaTiO3

cubic phase at T = 474.15K [206] tetragonal phase at T = 300K [109]

lattice const. (bohr) a = 7.566 a = 7.542; c = 7.625
atoms per unit cell 5 5

FLEUR FLEUR

Gmax 5.9 bohr−1 5.6 bohr−1

atom lmax MT radius local orbitals lmax MT radius local orbitals

Ba 12 3.00 bohr s 5,7,8,9,10,11
p 5,7,8,9,10,11
d 6,7,8,9,10,11
f 6,7,8,9,10

12 2.90 bohr s 5,7,8,9,10,11
p 5,7,8,9,10,11
d 6,7,8,9,10,11
f 6,7,8,9,10

Ti 8 2.05 bohr s 3,5,6,7
p 3,5,6,7
d 4,5,6,7,8
f 5,6,7,8

8 1.70 bohr s 3,5,6,7
p 3,5,6,7
d 4,5,6,7
f 5,6,7

O 8 1.85 bohr s 3,4,5
p 3,4,5,6
d 4,5,6
f 5,6

8 1.60 bohr s 3,4,5
p 3,4,5
d 4,5,6
f 5,6

SPEX SPEX

GCUT 4.2 bohr−1 4.2 bohr−1

BANDS 220 200
BZ 4 × 4 × 4 4 × 4 × 4
MB 6.5 bohr−1 5.5 bohr−1

FSPEC 0.01 htr 1.05 0.01 htr 1.05
MESH 6+3 10.0 htr 6+3 10.0 htr
CONTOUR {−0.1. . .0.1,0.01}; 0.01 (htr) {−0.1. . .0.1,0.01}; 0.01 (htr)

atom LCUT SEL local orbitals LCUT SEL local orbitals

Ba 6 4,4 s 5,7 p 5,7 d 6 f 6 7 4,4 s 5,7 p 5,7 d 6,7 f 6
Ti 6 4,4 s 3,5 p 3,5 d 4 f 5 7 4,4 s 3 p 3 d 4
O 6 4,4 s 3 p 3 d 4 f 5 5 4,4 s 3 p 3
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BaZrO3

cubic phase at T = 298K [110]

lattice const. (bohr) a = 7.926
atoms per unit cell 5

FLEUR

Gmax 5.8 bohr−1

atom lmax MT radius local orbitals

Ba 14 3.00 bohr s 5,7,8,9,10,11
p 5,7,8,9,10,11
d 6,7,8,9,10,11
f 5,6,7,8,9,10

Zr 12 2.15 bohr s 4,6,7,8
p 4,6,7,8
d 5,6,7,8
f 5,6,7,8

O 8 1.80 bohr s 3,4,5
p 3,4,5,6
d 4,5,6
f 5,6

SPEX

GCUT 3.8 bohr−1

BANDS 240
BZ 6 × 6 × 6
MB 6.0 bohr−1

FSPEC 0.01 htr 1.05
MESH 6+3 10.0 htr
CONTOUR {−0.1. . .0.1,0.01}; 0.01 (htr)

atom LCUT SEL local orbitals

Ba 7 4,4 s 5 p 5
Zr 7 4,4 s 4 p 4
O 7 4,4
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BaHfO3

cubic phase at T = 300K [111]

lattice const. (bohr) a = 7.882
atoms per unit cell 5

FLEUR

Gmax 6.05 bohr−1

atom lmax MT radius local orbitals

Ba 14 3.00 bohr s 5,7,8,9,10,11
p 5,7,8,9,10,11
d 6,7,8,9,10,11
f 5,6,7,8,9,10

Hf 12 2.13 bohr s 5,7,8,9
p 5,7,8,9
d 6,7,8,9
f 4,6,7,8,9

O 8 1.80 bohr s 3,4,5
p 3,4,5,6
d 4,5,6
f 5,6

SPEX

GCUT 3.8 bohr−1

BANDS 220
BZ 6 × 6 × 6
MB 6.0 bohr−1

FSPEC 0.01 htr 1.05
MESH 6+3 10.0 htr
CONTOUR {−0.1. . .0.1,0.01}; 0.01 (htr)

atom LCUT SEL local orbitals

Ba 7 4,4 s 5,7 p 5,7 d 6 f 5
Hf 7 4,4 s 5,7 p 5,7 d 6 f 4,6
O 7 4,4 s 3 p 3 d 4 f 5
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PbTiO3

cubic phase at T = 823K [163] tetragonal phase at T = 293K [112]

lattice const. (bohr) a = 7.426 a = 7.374; c = 7.831
atoms per unit cell 5 5

FLEUR FLEUR

Gmax 6.0 bohr−1 5.6 bohr−1

atom lmax MT radius local orbitals lmax MT radius local orbitals

Pb 14 2.05 bohr s 7,8,9,10,11
p 7,8,9,10,11
d 6,7,8,9,10,11
f 6,7,8,9,10

12 3.00 bohr s 7,8,9,10,11
p 7,8,9,10,11
d 6,7,8,9,10
f 6,7,8,9,10

Ti 12 2.80 bohr s 3,5,6,7
p 3,5,6,7
d 4,5,6,7,8
f 5,6,7,8

10 1.75 bohr s 3,5,6,7
p 3,5,6,7
d 4,5,6,7
f 5,6,7

O 10 1.65 bohr s 3,4,5
p 3,4,5,6
d 4,5,6
f 5,6

8 1.55 bohr s 3,4,5
p 3,4,5,6
d 4,5,6
f 5,6

SPEX SPEX

GCUT 5.0 bohr−1 4.4 bohr−1

BANDS 200 200
BZ 4 × 4 × 4 4 × 4 × 4
MB 6.5 bohr−1 6.5 bohr−1

FSPEC 0.01 htr 1.05 0.01 htr 1.05
MESH 6+3 10.0 htr 6+3 10.0 htr
CONTOUR {−0.1. . .0.1,0.01}; 0.01 (htr) {−0.1. . .0.1,0.01}; 0.01 (htr)

atom LCUT SEL local orbitals LCUT SEL local orbitals

Pb 6 4,4 s 7 p 7 d 6 f 6 6 4,4 s 7 p 7 d 6,7 f 6
Ti 6 4,4 s 3,5 p 3,5 d 4 f 5 6 4,4 s 3 p 3 d 4
O 6 2,3 s 3 p 3 d 4 f 5 5 2,3 s 3 p 3
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PbZrO3

cubic phase at T = 850K [113] orthorhombic phase at T = 200K [207]

lattice const. (bohr) a = 7.893 a = 11.102; b = 22.249 c = 15.510
atoms per unit cell 5 40

FLEUR FLEUR

Gmax 6.1 bohr−1 4.8 bohr−1

atom lmax MT radius local orbitals lmax MT radius local orbitals

Pb 14 2.80 bohr s 7,8,9,10
p 7,8,9,10
d 6,7,8,9,10
f 6,7,8,9,10

12 2.80 bohr s 7,8
p 7,8
d 6,7,8
f 6,7

Zr 12 2.10 bohr s 4,6,7,8
p 4,6,7,8
d 5,6,7,8
f 5,6,7,8

10 2.10 bohr s 4,6
p 4,6
d 5
f 5

O 8 1.80 bohr s 3,4,5
p 3,4,5,6
d 4,5,6
f 5,6

6 1.75 bohr s 3
p 3
d 4

SPEX SPEX

GCUT 4.5 bohr−1 2.9 bohr−1

BANDS 200 100
BZ 4 × 4 × 4 2 × 1 × 2
MB 6.5 bohr−1 3.5 bohr−1

FSPEC 0.025 htr 1.05 0.025 htr 1.05
MESH 6+3 10.0 htr 6 10.0 htr
CONTOUR {−0.1. . .0.1,0.02}; 0.01 (htr) {−0.1. . .0.1,0.02}; 0.02 (htr)

atom LCUT SEL local orbitals LCUT SEL local orbitals

Pb 7 4,4 s 7 p 7 d 6 f 6 4 3,4 d 6
Zr 7 4,4 s 4,6 p 4,6 d 5 f 5 4 3,4 s 4 p 4
O 7 4,4 s 3 p 3 d 4 f 5 4 2,3



210 B. Input parameters

PbHfO3

cubic phase at T = 500K [114] orthorhombic phase at T = 200K [114]

lattice const. (bohr) a = 7.818 a = 11.050; b = 22.142 c = 15.471
atoms per unit cell 5 40

FLEUR FLEUR

Gmax 6.0 bohr−1 4.6 bohr−1

atom lmax MT radius local orbitals lmax MT radius local orbitals

Pb 14 2.90 bohr s 7,8,9,10,11
p 7,8,9,10,11
d 6,7,8,9,10
f 6,7,8,9,10

12 2.85 bohr s 7,8
p 7,8
d 6,7,8
f 6,7

Hf 12 2.10 bohr s 5,7,8,9
p 5,7,8,9
d 6,7,8,9
f 4,6,7,8,9

10 2.00 bohr s 5,7
p 5,7
d 6
f 4,6

O 8 1.80 bohr s 3,4,5,6
p 3,4,5,6
d 4,5,6
f 5,6,7

6 1.75 bohr s 3
p 3
d 4

SPEX SPEX

GCUT 4.5 bohr−1 2.9 bohr−1

BANDS 200 100
BZ 4 × 4 × 4 2 × 1 × 2
MB 6.2 bohr−1 3.7 bohr−1

FSPEC 0.025 htr 1.05 0.025 htr 1.05
MESH 6+3 10.0 htr 6 10.0 htr
CONTOUR {−0.1. . .0.1,0.02}; 0.01 (htr) {−0.1. . .0.1,0.02}; 0.02 (htr)

atom LCUT SEL local orbitals LCUT SEL local orbitals

Pb 7 4,4 s 7 p 7 d 6 f 6 4 3,4 d 6
Hf 7 4,4 s 5,7 p 5,7 d 6,7 f 4 4 3,4 s 4 p 4 d f 4
O 7 4,4 s 3 p 3 d 4 f 5 4 2,3
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B.2. Input parameters – part 2

Input parameters for FLEUR and SPEX calculations for the compounds presented
in chapter 6 are listed below. Lattice constants and atomic positions were taken
from experiment. The latter can be found in the according references and are
not listed here.

For calculations employing hybrid functionals, an additional convergence pa-
rameter nmax has been introduced in the implementation in FLEUR. Details can
be found in reference [85]. For the HSE calculations presented in chapter 6, nmax

was set to 650 for LaCrO3 and LaMnO3 and to 700 for LaFeO3.

LaCrO3

orthorhombic phase at T = 298K [115]

lattice const. (bohr) a = 10.356; b = 14.664; c = 10.424
atoms per unit cell 20

FLEUR

Gmax 4.2 bohr−1

atom lmax MT radius local orbitals

La 12 2.80 bohr s 5,7,8 p 5,7,8 d 6,7,8 f 5,6,7
Cr 8 2.28 bohr s 3,5,6 p 3,5,6 d 4,5,6 f 5,6
O 6 1.31 bohr s 3 p 3 d 4

SPEX

GCUT 3.0 bohr−1

BANDS 55
BZ 2 × 2 × 2
MB 5.0 bohr−1

FSPEC 0.025 htr 1.05
MESH 6 10.0 htr
CONTOUR {−0.1. . .0.1,0.02}; 0.02 (htr)

atom LCUT SEL local orbitals

La 6 3,4 s 5 p 5
Cr 5 3,4 s 3 p 3
O 4 2,3
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LaMnO3

orthorhombic phase at T = 293K [116]

lattice const. (bohr) a = 10.463; b = 14.541; c = 10.852
atoms per unit cell 20

FLEUR

Gmax 4.4 bohr−1

atom lmax MT radius local orbitals

La 12 2.90 bohr s 5,7,8 p 5,7,8 d 6,7,8 f 5,6,7
Mn 8 2.26 bohr s 3,5,6 p 3,5,6 d 4,5,6 f 5,6
O 6 1.31 bohr s 3 p 3 d 4

SPEX

GCUT 2.9 bohr−1

BANDS 52
BZ 2 × 2 × 2
MB 4.8 bohr−1

FSPEC 0.025 htr 1.05
MESH 6 10.0 htr
CONTOUR {−0.1. . .0.1,0.02}; 0.02 (htr)

atom LCUT SEL local orbitals

La 6 3,4 s 5 p 5
Mn 5 3,4 s 3 p 3
O 4 2,3
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LaFeO3

orthorhombic phase at T = 293K [117]

lattice const. (bohr) a = 10.512; b = 14.866; c = 10.493
atoms per unit cell 20

FLEUR

Gmax 4.4 bohr−1

atom lmax MT radius local orbitals

La 12 2.95 bohr s 5,7,8 p 5,7,8 d 6,7,8 f 5,6,7
Fe 8 2.36 bohr s 3,5,6 p 3,5,6 d 4,5,6 f 5,6
O 6 1.33 bohr s 3 p 3

SPEX

GCUT 2.9 bohr−1

BANDS 50
BZ 2 × 2 × 2
MB 4.8 bohr−1

FSPEC 0.025 htr 1.05
MESH 6 10.0 htr
CONTOUR 0.1. . .0.1,0.02}; 0.02 (htr)

atom LCUT SEL local orbitals

La 6 3,4 s 5 p 5
Fe 5 3,4 s 3 p 3
O 4 2,3





APPENDIX C

A CASE STUDY BEYOND THE GWA

C.1. Proof of formula (7.42)

A mathematical proof will be given here as to why the transformation matrix Td

yields the effective Hartree Hamiltonian H̃H with the desired properties accord-
ing to eq. (7.42) in section 7.1.2, chapter 7. In the following, the eigenvectors of
the matrix Hd are denoted by Cd

j = (c1j, c2j)
T and the vectors (1, 0)T and (0, 1)T

are labeled Ej, j = 1, 2. The matrix Td diagonalizing Hd was already introduced
in eq. (7.41). Then, H̃H also has the eigenvectors Cd

j and the desired eigenvalues
ǫd

j .

H̃HCd
j

(7.42)
=

(

Td
)−1

Dd Td Cd
j (C.1)

=
(

Td
)−1

Dd Ej (C.2)

=
(

Td
)−1
ǫd

j Ej (C.3)

= ǫd
j

(

Td
)−1
Ej (C.4)

= ǫd
j C

d
j (C.5)

C.2. The lack of screening for UII = 0

In subsection 7.2.1, it was claimed that there is no screening of the on-site
Coulomb interaction in the subspace d, if the parameters tI, tII and UI are non-
zero but UII = 0. If this is true, the only non-zero matrix elements of Wr in the
two-particle term of the Hubbard Hamiltonian (7.26) are identical to the matrix
elements determined by the choice of UI.
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The elements of the matrix Wr(ω) of the screened interaction can be ordered
in such a way, that the lower right (4 × 4) block labeled

(

Wr(ω)
)

22 contains all
matrix element from projections onto the states in the d space

Wr(ω) =

( (

Wr(ω)
)

11

(

Wr(ω)
)

12

(

Wr(ω)
)

21

(

Wr(ω)
)

22

)

. (C.6)

Then, the elements of
(

Wr(ω)
)

22 for ω = 0 define the matrix Wr in the two-
particle term of the Hubbard Hamiltonian. To calculate the matrix Wr(ω), the
matrix Pr(ω) of the polarization function defined in (7.31) has first to be deter-
mined, which in turn requires to solve the matrix equations yielding Pd(ω) and
P(ω)

P(d)(ω) = R(d)(ω) ·
[

1 + U ·R(d)(ω)
]−1

. (C.7)

For the given choice of parameters, the matrices P(ω) and U are of the following
form

P(ω) =

( (

P(ω)
)

11

(

P(ω)
)

12

(

P(ω)
)

21

(

P(ω)
)

22

)

, U =

(

0 0

0
(

U
)

22

)

. (C.8)

Furthermore, the block matrix
(

P(ω)
)

22 is identical to Pd(ω) and the only non-
zero matrix elements of U in

(

U
)

22 are determined by UI. It follows immediately
that Pr(ω) acquires the form

Pr(ω) =

( (

P(ω)
)

11

(

P(ω)
)

12

(

P(ω)
)

21 0

)

(C.9)

and

Wr(ω) =
[

1 − U ·Pr(ω)
]−1 ·U

=

(

1 0

−
(

U
)

22

(

P(ω)
)

21 1

)−1

·
(

0 0

0
(

U
)

22

)

= U .
(C.10)

Consequently, Wr =
(

U
)

22 for the given choice of parameters. Thus, the bare
Coulomb interaction in d space is not screened.
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