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Abstract

Recently image potential states were investigated using spin-polarized scanning tunnel-
ing microscopy (STM) [62]. A potential well between metal surfaces with a band gap
at the vacuum energy and the image potential creates hydrogen-like states above the
surface. Additionally these states exhibit a small spin splitting if the surface is fer-
romagnetic. DFT calculations with the Green function embedding technique allow to
treat surfaces with a semi-infinite substrate. To capture the image potential states the
DFT potential has to be modified to include the correct 1/z like asymptotic behavior
towards the vacuum. In our scheme this is efficiently done by calculating and adding the
corresponding embedding potential for the vacuum. Furthermore a bias can be applied
to the surface giving rise to field induced states commonly observed by STM.
This work presents details of the computational scheme as well as results for image
potential states of transition-metal surfaces with and without applied electric field.
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1 Introduction

The study of surfaces and thin films is a large and interesting topic within the field
of solid state physics. The physical properties of surfaces and thin films are changing
enormous compared to the bulk properties because of the broken symmetry. This on the
one hand gives rise to new applications such as more sensitive hard disc heads employing
the GMR effect or magneto optical data storage devices using thin film sandwiches with
designed magnetic properties and on the other hand to completely new technologies
like spintronics. While modern techniques like molecular beam epitaxy (MBE) and
sputtering allow to perform layer by layer growth of surfaces, experimental methods of
surfaces observation like photoemission and diffraction of electrons (low energy electron
diffraction (LEED), reflection high-energy electron diffraction (REED)) can resolve the
electronic structure of the system (even in situ). But still the theoretical description of
the electronic structure is a difficult task.

Beside the ordinary surface states image potential induced states have been discussed
deeply in the 1980th. They recently attracted renewed interest due to new experimental
approaches like spin-resolved scanning tunneling microscopy (STM) measurements [62].
As known from basic electrodynamics, a charge distribution in front of a metallic surface
will induce a screening charge. This gives rise to a 1/z like image potential in the
vacuum region. The potential well between metal surfaces with a band gap at the
vacuum energy and the image potential creates hydrogen-like states above the surface.
Additionally, these states exhibit a small spin splitting if the surface is ferromagnetic
and can be investigated using spin-polarized STM. In this work these image potential
induced states will be investigated by a computational quantum mechanical approach.

Nowadays, computational physics is becoming a third way of approaching physical
phenomena beside theory and experiment. Simulations are able to scope with a large
variety of lengthscales, starting from ab initio calculations of matter to simulations of
planet movements. While new theoretical approaches and new algorithms were devel-
oped which enables the computation of more complex systems also the computational
power increases exponentially. One of the most interesting example for the former was
the development of the density functional theory (DFT) by Kohn [59] which allows us to
treat many-body electron systems in a single particle picture and which is in principle
still an exact theory. The increase in computational power can be predicted by Moore’s
law [69], which states that the complexity of systems available for minimal cost will
double each year. Even though it is more likely a self-fulfilling prophecy than a law of
nature the statement suites well for the last centuries.

In the following the electronic structure of transition metal surfaces will be calculated
by an ab-initio program, based on DFT. In order to treat the surface region in a semi-
infinite way the Green function embedding technique introduced by Inglesfield [50] will
be used. The Green function embedding method allows to tread a perturbed region
like a surface or a finite region between two infinite leads by concentrating on this
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embedded perturbated region alone. Embedding potentials from the bulk system and
the analytically derived embedding potential from the vacuum region are employed for
the boundaries of the perturbed system. In order to model the image potential states
the embedding potential of the vacuum region has to be calculated numerically with a
1/z like potential which cannot be obtained from pure DFT calculation. Additionally
a constant electric field will be applied to the system. In this way a STM tip can be
modeled and changes of the Image Potential states can be studied.

In chapter 2 the necessary theory will be introduced. The Green function embedding
technique employs the DFT (section 2.1) and uses the FLAPW (section 2.2) basis set.
Therefore this two subjects will be covered at the start. Then the Green function embed-
ding technique by Inglesfield [50] will be introduced in section 2.4 after summarizing the
main properties of Green functions in general (section 2.3). The concept of the complex
bandstructure is needed for the computational implementation [117] of the embedding
technique and will therefore be explained in section 2.5. The following section 2.6 shows
how the computational implementation is done. The chapter ends with a summary of
the computational approach (section 2.7).

In the second part of this thesis (chapter 3) the localized states at surfaces will be
addressed. In special states introduced by the image potential in front of metallic
surfaces. They are called image potential states. They will be explained in section 3.2.
The experimental setups measuring these states are given in section 3.2.1 and it will be
shown how these states can be calculated within the Green function embedding approach
(section 3.2.2). At the end the influence of a constant electrical field is investigated in
section 3.3. The image potential states become field states. In section 3.3.1 it will be
shown how an electric field will be included in our computational method.

The last chapter 4 of the thesis is summarizing our results of the surface state of
Ag(111) (section 4.1) and the image potential states of Ag(100) and Fe(110). We cal-
culate the image plane by evaluating the center of screening charge in section 4.2 and
the image state energies of the silver and iron in 4.3.1 and 4.3.2 respectively. In the last
part the image potential induced field states are investigated. In section 4.4.1 this is
done for the Ag(100) surface. The field states of the magnetic Fe(110) will be shown in
4.4.2.



2 Theory

2.1 Density Functional Theory

It is said that shortly after Schrödinger’s equation for the electronic wavefunction had
been spectacularly validated for small systems like He and H2, ”Dirac declared that
chemistry had come to an end - its content was entirely contained in that powerful
equation. Too bad, he is said to have added, that in almost all cases, this equation was
far too complex to allow solutions.” [59] And still it is. Even with the most advanced
computers an exact solution of even tiny systems will not be possible. All the physics
is condensed in the many-body wavefunction of the system under consideration. If for
purposes of studying electron dynamics the Born-Oppenheimer approximation is used,
considering the much heavier nuclei as fixed in space the Schrödinger equation can be
written as:
(

− ~2

2m

∑

j

∇2
j −

∑

j,l

Zle
2

|rj − Rl|
+

1

2

∑

j 6=j′

e2

|rj − rj′|
+ Vext

)

Ψ(r1, r2, ..) = EΨ(r1, r2, ..)

(2.1)

Upper case letters giving the positions Rl and atomic numbers Zl of the nuclei and
lower case letters are used for the positions rj of the electrons. The energy is denoted
by E and the many-electron wavefunction depending on the position and spins of the N
electrons is represented by Ψ. Now it becomes obvious that without further appropriate
approximations we cannot handle the equation. Consider only the electronic wavefunc-
tion of an iron atom which depends on 26 (Ne) times 3 (space) coordinates. Storing the
wavefunction on a coarse grid with only 10 points per variable would yield 1078 numbers
to store and process [27]. Thus we can see that with many-electrons we are encountering
an exponential wall. It should be noted that all the physical properties of the electrons,
especially the density n(r) and the total energy E, depend on the position of the nuclei.
This two quantities play key roles in the Density Functional Theory (DFT).

The trick of the DFT is to work with the electron density instead of using the many-
electron wavefunction itself. By minimizing a functional of the electron density the
many-body problem can be tackled in a single body way. The mapping is exact in
principle but the density functional is not known. At this point approximations have
to be made. The commonly used approximations are the Local Density Approximation
(LDA) and the Generalized Gradient Approximation (GGA), explained in section 2.1.3.
Even simple approaches like LDA result in accurate results for a number of systems.

At the moment DFT calculations are used in an uncounted number of applications
to physical or chemical systems, reaching from fundamental research to applications in
industry. If standard1 DFT is not suitable new methods based on DFT grew. If DFT

1nondegenerate, nonmagnetic
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fails it provides clues for new theoretical approaches.
DFT can easily be extended to include (non-)collinear spins in order to calculate mag-
netic systems. Also it can be generalized to treat degenerated groundstates or a bunch of
degenerated ground states (ensemble DFT), to relativistic electrons, to bosonic instead
of fermionic systems or to investigate superconductors with electronic pairing mecha-
nisms. The theory of DFT can be extended also to include the movement of the nuclei.
Well known is the theory of Car and Parrinello [22] combining DFT with molecular
dynamics in one step. If an extension to the treatment of impurity problems or trans-
port is needed the embedded Green function approach can be applied based on DFT
calculations (see section 2.4). Multicomponent systems can be investigated and if time
dependency is the property of interest time dependent DFT [20] is available. For a
more detailed picture of the different DFT branches have a look at [56]. DFT fails for
systems where the electron-electron interaction is the dominating effect. At this point
new methods like GW can be applied or new theoretical techniques like exact exchange
have to be taken into consideration.

It is worth to be mentioned that ”for his development of the density-functional theory”
Walter Kohn was awarded the Nobel Prize in chemistry in 1998 together with John A.
Pople for the ”development of computational methods in quantum chemistry” [86].

2.1.1 Hohenberg-Kohn Theorem

Two statements are at the foundation of the Density Functional Theory (DFT) and were
published in 1964 by Hohenberg and Kohn [47]. For a system of N particles moving in
an external potential Vext(r):

1. Theorem:

n0(r) ⇒ Vext(r),Ψ0(r1, r2, ..) (2.2)

The electron density distribution n(r) determines uniquely the external potential
Vext(r) and thus the many-body wavefunction Ψ(r1, r2, ..). All ground-state prop-
erties and in particular the ground state wavefunction Ψ0(r1, r2, ..) are functionals
of the ground-state density n0(r).

2. Theorem:

E0 = min
n
E[n(r)] (2.3)

There exists an energy functional of the density, E[n(r)], which is stationary with
respect to the variation of the ground state density. This minimization principle
can be used to determine the ground state density E0.

In order to proof the first theorem we will restrict ourself to non-degenerated ground
states. The theorem can be extended to degenerated ground states but the proof will be
left to Kohn [58]. Let us assume two ground state wavefunctions Ψ0 6= Ψ′

0 with different
external potential Vext 6= V ′

ext leading to the same ground state density n0. We know that
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E0 = 〈Ψ0|HV |Ψ0〉 and E ′
0 = 〈Ψ′

0|HV ′ |Ψ′
0〉, whereby HV = T+U+Vext is the Hamiltonian

with kinetic energy T , interaction energy U (including classical electrostatic interaction
and correlation effects) and external potential Vext. We get

E0 < 〈Ψ′
0|HV |Ψ′

0〉 = 〈Ψ′
0|HV ′ + Vext − V ′

ext|Ψ′
0〉 = E ′

0 +

∫

n0(r)[Vext − V ′
ext]dr. (2.4)

The strict less is due to the non-degenerated ground state.
Analogous we get E ′

0 < E0 +
∫
n0(r)[V ′

ext − Vext]dr. The combination of both equations
results in a contradiction.

E0 + E ′
0 < E0 + E ′

0 Contradiction! (2.5)

The ground state density cannot be the same. Two different potentials will not give
the same ground state density and therefore the ground state density determines the
external potential uniquely. It follows as a corollary that since n(r) determines Vext(r),
it also determines the wavefunction Ψ. Thus all ground-state properties are functionals
of the ground-state density n0(r).

A simpler derivation of the second theorem than in the original paper was given by
Levy [65]. The unique energy functional E[n(r)] can be defined as the minimum over
all wavefunction, which deliver the density n(r).

E[n(r)] = min
Ψ→n

〈Ψ|T + U + Vext|Ψ〉 (2.6)

= F [n(r)] +

∫

n(r)Vext(r)dr (2.7)

The simple functional dependence of E[n(r)] on Vext can be observed in the equation.
The universal functional F [n(r)] = min Ψ→n〈Ψ|T +U |Ψ〉 is the same for all systems de-
scribed by the same Schrödinger equation. The interaction term U includes the electron-
electron and the electron-nuclei interaction. Thus the term introduces the many-body
effects.

U = −
∑

i,l

Zle
2

|rj − Rl|
+

1

2

N∑

i=1

N∑

j 6=i

e2

|rj − ri|
(2.8)

From (2.6) follows directly

E[n(r)] =
〈
Ψmin
n |T + U + Vext|Ψmin

n

〉
≥ E0, (2.9)

because of the Rayleigh-Ritz principle E0 = 〈Ψ0|H|Ψ0〉. On the other hand if we insert
the ground-state wavefunction Ψ0 into (2.6) we get

E[n0(r)] ≤ 〈Ψ0|T + U + Vext|Ψ0〉 = E0. (2.10)

We used that the ground-state energy is given by the ground state wavefunction. The
inequality follows from (2.6) because the energy functional is defined as the minimum
over all wavefunction which give the ground state energy. One of this wavefunction is
Ψ0. Since (2.9) is valid for any density we get E[n0(r)] ≥ E0. Together with (2.9) follows
E0 = E[n0(r)]. Thus

E0 = min
n
E[n(r)]. (2.11)

This variational principle can be used to determine the ground-state density and the
ground state energy, if the functional F [n(r)] is known.
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2.1.2 Kohn-Sham Equation

The theorems of Hohenberg and Kohn transformed the problem of finding the solution
of 〈Ψ|H|Ψ〉 with the 3N-dimensional trial function Ψ to the problem of minimizing
E[n(r)] with respect to the 3-dimensional function n(r). This seems to be a huge step
forward but the functional F [n(r)] is unknown. In 1965 Kohn and Sham [60] proposed
to approach the kinetic energy of the interacting electrons with that of an equivalent
non interacting system. The crucial point is that the kinetic energy of a non interacting
system can easily be calculated. The density of the interacting ground state is the sum
of the spin-up and spin-down density, but let us concentrate on the case without spin
for simplicity. The inclusion of spin can easily be done [56]. The density can be given
by

n(r, r′) =

∞∑

i=1

Niψ
∗
i (r)ψi(r

′), (2.12)

where Ni denotes the occupation number of the orbitals ψi. Also the kinetic energy can
be formulated in the usual way.

T =
∞∑

i=1

Ni〈ψi| −
~2

2m
∇2|ψi〉 (2.13)

Now a non-interacting reference system with the same ground state density n(r) and
energy than the interacting one will be assumed. The potential2 VR of the reference sys-
tem in the Hamiltonian is chosen such that the equivalence of the mentioned quantities
is reached.

HR =
N∑

i=1

(

− ~2

2m
∇2 + VR(ri)

)

(2.14)

Since there is no electron-electron interaction the eigenstates of the Hamiltonian can be
expressed in the form of Slater determinants and the density and the kinetic energy can
be written as

n(r) =

N∑

i=1

|ψi(r)|2, (2.15)

TR[n] =
N∑

i=1

〈ψi| −
~2

2m
∇2|ψi〉. (2.16)

The single-particle wavefunctions ψi are the N lowest eigenstates of the reference Hamil-
tonian

(

− ~2

2m
∇2 + VR(r)

)

ψi(r) = εiψi(r). (2.17)

2sometimes named effective potential Veff instead of potential of the reference system VR
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Still the potential of the reference system is unknown but will be derived later. The
universal density functional F can be written as

F [n] = TR[n] +
1

2

∫∫
n(r)n(r′)

|r − r′| drdr
′ + Exc[n]. (2.18)

The expression for F can be substitute into the total energy functional (2.6) resulting
in the Kohn-Sham (KS) functional:

EKS[n(r)] = TR[n(r)] +

∫

n(r)Vext(r)dr +
1

2

∫∫
n(r)n(r′)

|r − r′| drdr
′ + Exc[n] (2.19)

The density functional is expressed in terms of N (KS) orbitals ψi, minimizing the kinetic
energy under the fixed density constrain and satisfying equation (2.17). But let us come
back to the problem of determining the reference potential VR, which is used to calculate
the KS wavefunctions. This can be done by minimizing the KS functional (2.19) over
all densities that integrate to N particles.

µR =
δTR[n(r)]

δn
+ Vext +

∫
n(r′)

|r− r′|dr
′ +

δExc[n(r)]

δn
(2.20)

Here the functional derivative from the non-interacting kinetic energy is given by

δTR[n(r)]

δn
+ VR(r) = µR, (2.21)

because ER[n] = TR +
∫
nVRdr = E0. The chemical potential for the non interacting

system is given by µR. With (2.17) this leads directly to the famous self-consistent
Kohn-Sham equations:

[

− ~
2

2m
∇2 + Vext(r) +

∫
n(r′)

|r − r′|dr
′ +

δExc

δn(r)

]

ψi(r) = εiψi(r) (2.22)

with n(r) =

N∑

i=1

|ψi(r)|2 (2.23)

The functional derivative of the exchange-correlation energy δExc

δn(r)
is called exchange-

correlation potential. The exchange-correlation potential includes all correlation effects
and has to be approximated. It should be noted that an exact expression can be written
down as described in [16].

Exc[n] =
e2

2

∫

n(r)dr

∫
nxc(r, r− r′)

|r′ − r| dr′ (2.24)

Thereby the ’exchange correlation hole’

nxc(r, r− r′) = n(r′)

∫ 1

0

(g(r, r′, λ) − 1)dλ (2.25)

is introduced. Thus Exc[n] can be viewed as the Coulomb interaction of the density n[r]
with the corresponding holes. The pair-correlation function g(r, r′, λ) couples the density
with the interaction. The integral connects the electron correlation of the interacting to
the correlations in the non-interacting system.
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2.1.3 Approximation of Exc[n(r)]

The exchange-correlation energy can be written as

Exc[n(r)] =

∫

exc(r, [n(r′)])n(r)dr′ (2.26)

in a quasi local form. exc(r, [n(r′)]) gives the exchange-correlation energy per particle
at point r. It is functional depending on the density at point r′. The energy primarily
depends on the density at points r′ near r, such that |r − r′| ≈ λF. Hence Kohn called
exc(r, [n(r′)]) a nearsighted functional of n(r′) [59]. The simplest and most widely used
approximation is the Local Density Approximation (LDA).

ELDA
xc [n(r)] =

∫

exc(n(r))n(r)dr (2.27)

The remarkable point is that in LDA the exchange-correlation energy per particle is
a function of the density n(r). In case of an uniform electron gas of density n LDA
is exact, the exchange part is elementary and the correlation part can be given with
high precision using Monte Carlo methods. It was expected that LDA fails for densities
varying fast on the scale of the Fermi wavelength λF. But nevertheless it is observed
that LDA provides useful results for most applications. For example ionization ener-
gies of atoms, dissociation energies of molecules and of course for materials with quite
uniform electronic density such as bulk metals. In practice exc(n(r)) is given by us-
ing an explicit parameterization. These parameterizations are obtained by fitting to
quantum-mechanical many-body calculations. The parametrization mainly used in this
work is the one by Barth and Hedin (BH) [9]. The accuracy of the exchange energy is
of the order of 10%, while the usually smaller correlation energy is most of the times
overestimated up to a factor of two. Both errors cancel partially in most cases [59].
Beyond LDA the so called Generalized Gradient Approximation (GGA) is exten-
sively used. A derivation can be found e.g. at [56]. It introduces the dependence on the
gradient of the density into the exchange-correlation energy.

EGGA
xc [n(r)] =

∫

exc (n(r))n(r)dr +

∫

Fxc (n(r), |∇n(r)|)n(r)dr (2.28)

The parametrization for Fxc mainly used in this work is the one developed by Perdew-
Burke-Ernzerhof (PBE) [80]. LDA (or if spin dependent LSDA) and GGA fail to describe
systems which are dominated by electron-electron interaction effects.

2.1.4 DFT in a Nutshell

Instead of solving the exact Schrödinger equation of the many-particle problem an energy
functional with respect to the charge density can be minimized. The Hohenberg-Kohn
theorems state that such a functional exists, its minimum determines the ground state
energy and the corresponding density gives all the ground state properties. Still the
energy functional is unknown and hence the theorems are of little use. This problem
can be tackled by looking at a non interacting (reference) system in an effective potential
VR with the same ground state density and energy than the interacting system under
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consideration. The eigenstates of the reference system can easily by found if the effective
potential is known. Kohn and Sham derived the well known self-consistent equation

[

− ~2

2m
∇2 + Vext(r) +

∫
n(r′)

|r− r′|dr
′ + Vxc[n]

]

ψi(r) = εiψi(r) (2.29)

where the effective potential can be replaced by the external potential, the Coulomb
interaction and an exchange-correlation potential. All the correlation effects are hidden
in the exchange-correlation potential, which is the functional derivative of the exchange
energy with respect to the density.

Vxc(r) =
δExc

δn(r)
(2.30)

In practice the exchange correlation potential is approximated (e.g. by LDA or GGA).
From the eigenstates of the Kohn-Sham equation a new density is obtained that can
be used to recalculate the eigenstates. In this way the Kohn-Sham equation have to be
solved until self-consistency is reached.

n(r)

Vxc(r, n(r),∇n(r)..)

[

− h̄2

2m
∇2 + Vext(r) +

∫ n(r′)
|r−r

′|
dr′ + δExc

δn(r)

]

ψi(r) = εiψi(r)

εi, ψi(r)

nnew(r) =
∑

εi<εF
|ψi(r)|

2

nnew(r) − n(r) < ε

nnew(r)

Construct Vxc

Solving Kohn-Sham eq.
Calculate new density

Check convergency

Mix nnew, n

Self consistent nnew

Figure 2.1: Cycle used to solve the Kohn-Sham equation self-consistently.



10 CHAPTER 2. THEORY

2.2 FLAPW

There are many ways how the DFT can be used in a real numerical code to calculate the
electron densities and the eigenenergies of many-body systems. The different methods
can be separated by the representation of the KS orbitals they apply. They all have
to solve the KS equation (2.23) in a self-consistency loop in order to determine the KS
orbitals ψi(r) and hence the density n(r). The first intuitive approach might be to solve
the differential equation numerically on a grid. But that is not the way most methods
for solids tackle the equation, because in general planewaves are the tool of choice to
describe the physics of bulk materials. They can be introduced by an appropriate basis
set of functions φβ(r) transforming the differential equation into a matrix eigenvalue
problem. The KS orbitals can be expressed in the basis set by

ψi(r) =
∑

β

ci,βφβ(r) (2.31)

with expansion coefficients ci,β and therefore the KS equation can be written as:

(HKS(r) − εi)
∑

β

ci,βφβ(r) = 0 (2.32)

The matrix equation is not yet complete. We have to multiply with a basis function
φ∗
α(r) from the left side and to integrate over r to finally get

∫

φ∗
α(r)

(

(HKS(r) − εi)
∑

β

ci,βφβ(r)

)

dr = 0 (2.33)

⇔
∫
(
∑

β

φ∗
α(r)HKS(r)φβ(r) − εi

∑

β

φ∗
α(r)φβ(r)

)

ci,βdr = 0 (2.34)

⇒ (ĤKS − εiŜ)ci = 0. (2.35)

The overlap matrix is denoted by Ŝ. This matrix equation can now be solved for the
eigenvectors ci representing the KS orbitals ψi and the eigenvalues εi equal to the KS
eigenenergies. Still the basis set has to be defined. Two different basis sets based on
a planewave basis will be explained in the following. In general a basis set with plane
wavefunctions

φk,g(r) =
1√
V
ei(k+g)r (2.36)

expands the wavefunction into

ψν,k(r) =

N∑

β

cβ,ν,kφk,β(r). (2.37)

Compared to (2.31) the index i of the single particle KS orbitals ψi(r) is substituted by
the Bloch wave vector k and in case of crystals additionally by the band index ν. To
meet the definition of the planewave the index β labeling the basis functions corresponds
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to the wave vector g of the planewave. It is chosen from the reciprocal lattice to ensure
translation symmetry. Plane waves are orthonormal and hence the overlap matrix in
(2.35) melts down to the unit matrix and the KS matrix equation is given by

⇒ (ĤKS − εν,k)cν,k = 0. (2.38)

The matrix of the KS Hamiltonian ĤKS and the eigenvetor cν,k are

ĤKS =






∫
φ∗

k,g1
(r)HKS(r)φk,g′

1
(r)dr . . .

∫
φ∗

k,g1
(r)HKS(r)φk,g′

N
(r)dr

...
. . .

...
∫
φ∗

k,gN
(r)HKS(r)φk,g′

1
(r)dr . . .

∫
φ∗

k,gN
(r)HKS(r)φk,g′

N
(r)dr




 (2.39)

and

cν,k =






cg′
1
,ν,k
...

cg′
N
,ν,k




 . (2.40)

Note that the kinetic energy part T̂ of the Hamiltonian ĤKS is diagonal in the planewave
basis. This is obvious because the matrix elements are φk,g(r)(− ~2

2m
∇2)φk,g′(r) = ~2

2m
(k−

g′)2δg,g′. Furthermore ĤKS is real symmetric rather than complex hermitian in case of
inversion symmetric systems as will be derived at the end of the next chapter. Plane
waves, while certainly a good choice for describing Bloch waves, are not useful for
direct solutions of Schrödinger’s equation in a crystal. Near the nuclei the potential is
changing rapidly, thus also the wavefunctions vary vastly. Due to the highly oscillating
wavefunctions an unmanageable number of planewave basis functions would have to be
used. This is the reason why we either have to approximate the potential near the
cores or why we have to extend the basis to treat the rapidly changing potentials in
an appropriate way. If we want to use a pure planewave basis, pseudopotentials have
to be introduced to overcome the problems near the core. Thereby the region near
the atom cores is replaced by a sweet-tempered pseudopotential in such a way that the
valence energy spectrum is reproduced. On the other hand complex but efficient basis
sets, such as a set of linearized augmented-planewave (LAPW) or linearized muffin-
tin orbitals (LMTO) can be used. Regions of slow varying potential are described by
planewaves whereas regions of rapidly changing potential are expressed in a different
basis making the description in this region more economical.
The full-potential linearized augmented-planewave (FLAPW) method is a DFT method
employing a basis set of spherical harmonics plus radial functions to treat the potential
and wavefunctions in spheres close to the atom cores and planewaves in the interstitial
region between them. Due to the form of the spheres augmenting the planewave covered
interstitial region, we get a muffin tin like sampling of the space which is sketched in
figure 2.2. The radius of the spheres will therefore be called muffin-tin radius in the
following. The advantage of using the full potential (see chapter 2.2.3) in contrast
to the pseudo-potential mostly used in pure planewave (PW) codes introduces more
complexity. Transition metals, their compounds and materials containing rare-earth
elements seem to be best treated applying the LAPW method [96].
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PSfrag replacements

muffin tin

interstitial

Figure 2.2: Sampling of the space by muffin-tin spheres and interstitial regions in the
APW method. Blue circles represent the muffin-tin spheres.

The foundations for the FLAPW methods were laid in the 30th of the last century,
when Slater [99] developed the augmented-planewave (APW) method in 1937. A draw
back of the APW method is that the energies inside the muffin tins have to be the band
energies as explained in the following section. In 1975 Andersen [5] improved APW by
making a Taylor expansion around the band energies and thereby in a way linearized
the APWs. In the 1980th [114] any shape approximation of the potential used in LAPW
was dropped in favor of the full potential. For a closer review of the development of
FLAPW have a look at the book of Singh [96] or the PhD thesis of P. Kurz [63].

2.2.1 FLAPW Basis Set - Bulk

From a didactically point of view it is reasonable to introduce the augmented planewave
(APW) basis first. The basis functions are labeled by g and consists of single planewaves
in the interstitial region matched to radial functions in the muffin-tin region around the
cores. The single functions φAPW

k,g (r) are named APWs.

φAPW
k,g (r) =

1√
V







ei(k+g)r interstitial region

∑

lm [Aαglm(k)uαl (rα)]Ylm(r̂α) αth muffin tin
(2.41)

The coefficients Aαg
lm are determined by the condition that each basis function is con-

tinuous across the muffin-tin boundary. Any planewave can be expanded into spherical
harmonics via the Rayleigh expansion, simplifying the determination of the coefficient
at the boundary. The basis functions are normalized by the volume V of the unit cell.
The index α labels the different muffin tins and rα indicates that the coordinates are
relative to the center of the αth muffin tin. Ylm are spherical harmonics and ul the
solution of the radial Schrödinger equation

{

− ~2

2m

∂2

∂r2
+

~2

2m

l(l + 1)

r2
+ V (r) − El

}

rul(r) = 0. (2.42)

Here V (r) denotes the potential inside the sphere explained in chapter 2.2.3 and El are
energy parameters. If the energy parameters are kept fixed instead of being variational
coefficients they define the basis set and thus wavefunctions and band energies could be
calculated. Unfortunately for arbitrary energy parameters El this proceeding fails. The
APWs are solutions of the Schrödinger equation inside the sphere only for the energies
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El. If the band energies differ from the chosen energy parameters El the basis functions
have too little variational freedom to allow changes in the wavefunctions. Thus the
energy parameters have to be equal to the band energies and therefore they can not be
obtained directly3 from the diagonalization of the Hamiltonian matrix.
In 1975 Andersen [5] proposed an extension to the APW method solving the problem
by an expansion of ul(r) in a Taylor series around the energy parameter El.

ul(r, E) = ul(r, El) + u̇l(r, El)(E − El) + ... (2.43)

Only the constant and linear part is taken into account, hence in a way linearizes the
APW basis. The energy derivative of ul(r) can be obtained from the energy derivative
of equation (2.42).

{

− ~2

2m

∂2

∂r2
+

~2

2m

l(l + 1)

r2
+ V (r) − El

}

ru̇l(r) = rul(r) (2.44)

The new basis functions φk,g(r) are called LAPWs and consist of a couple of radial
functions and derivatives of radial functions in the muffin tins matched to a single
planewave in the interstitial region between them.

φk,g(r) =
1√
V







ei(k+g)r interstitial region

∑

lm [Aαglm(k)uαl (rα) +Bαg
lm (k)u̇αl (rα)]Ylm(r̂α) αth muffin tin

(2.45)

The coefficients Aαg
lm, B

αg
lm are determined by the conditions that each basis function

and its first radial derivative are continuous across the muffin-tin boundary. Since the
basis inside the muffin tins is expended into a Taylor series around El, extra variational
freedom to the basis inside the muffin tin is introduced. As a consequence the energy El

in (2.42) do not have to be the exact band energy but some parameter close to the band
energy. Thus it is possible to calculate the band energy by calculating the eigenvalues
of the Hamiltonian matrix.
Instead of the above mentioned classical formulas a scalar relativistic approximation to
the Dirac equation is applied and relativistic analogons to ul and u̇l equations are used
within the Fleur program described in chapter 2.2.4. The size of the basis set is chosen
by a cut off parameter for g.
The defined basis function are not orthogonal, leading to a non diagonal overlap matrix:

Ŝ =






∫
φ∗

k,g1
(r)φk,g′

1
(r)dr . . .

∫
φ∗

k,g1
(r)φk,g′

N
(r)dr

...
. . .

...
∫
φ∗

k,gN
(r)φk,g′

1
(r)dr . . .

∫
φ∗

k,gN
(r)φk,g′

N
(r)dr




 (2.46)

It is feasible to exploit the properties of the basis set and the symmetry of the system
under consideration in order to save some computational effort. All symmetry equivalent
atoms belong to one atom type. Atoms are symmetry equivalent if there exists a space
group operation mapping them onto each other. The quantities inside the muffin-tin
sphere (e.g. radial function ul(r)) are equal for all atoms of one atom type in the local co-
ordinates. Thus they have to be calculated only once and can be translated to the other

3but with some further effort. See e.g. [96].
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atoms of the same type. The computational afford can be significantly reduced if the
system under consideration exhibits inversion symmetry because planewaves transform
nicely under inversion symmetry. The inverted planewave is the complex conjugated.

I
(
eik·r

)
= e−ik·r =

(
eik·r

)∗
(2.47)

The interstitial part of the potential and wavefunction transforms this way and even
the muffin-tin part does. By using the Rayleigh expansion and the properties of the
spherical harmonics this can be proved [63]. Therefore if the system possesses inversion
symmetry the LAPW basis functions transform according to

φk,g(−r) = φ∗
k,g(r). (2.48)

This property of the basis functions simplifies the calculation to a large extent. The
matrix elements of the KS Hamiltonian (2.39) can be transformed.

Hg,g′

k =

∫

φ∗
k,g(r)HKS(r)φk,g′(r)dr (2.49)

=

∫

φk,g(−r)HKS(r)φ∗
k,g′(−r)dr (2.50)

=

∫

φk,g(r′)HKS(r′)φ∗
k,g′(r′)dr′ = Hg′,g

k (2.51)

In the last step r = −r′ was substituted and the inversion symmetry of the Hamiltonian
HKS(r) = HKS(−r) was utilized. Since Hg,g′

k = Hg′,g
k holds the Hamiltonian matrix ĤKS

is symmetric. Furthermore all operators are hermitian and Hg,g′

k =
(

Hg′,g
k

)∗

is valid.

This leads to

Hg,g′

k =
(

Hg′,g
k

)∗

= Hg′,g
k , (2.52)

therefore the elements of the Hamiltonian matrix are real. The same holds for the
overlap matrix and thus both the Hamilton matrix and the overlap matrix are real sym-
metric rather than complex hermitian.

2.2.2 FLAPW Basis Set - Film

A surface breaks the three dimensional translation symmetry of a bulk system down to
a system with two dimensional translation symmetry parallel to the interface. Perpen-
dicular to the surface we have a semi-infinite system. We will define the z direction to
be perpendicular to the surface throughout this work.
An interface could be treated with a supercell setup, whereby the unit cell consists of
slabs separated by a vacuum region and which is repeated in z direction. The vacuum
region and the slabs have to be large enough to avoid interface-interface interactions.
Problems arising from these interactions are called finite-size effects because they would
not accrue in an infinite supercell. These kinds of setups are commonly used. They
have the advantage that the bulk basis set can be employed and therefore films can be
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muffin tin
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D/2
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x
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Figure 2.3: Film setup: Inside the slab the space is sampled with muffin-tin spheres
(blue circles) and interstitial regions between them. The infinite vacuum
region is treated with different basis functions.

calculated without developing a different code. But the other side of the picture is that
the size of the unit cell increases drastically compared to a bulk unit cell resulting in a
computational demanding task.
A different possible approach is to define a new basis set that can handle the vacuum
region. The unit cell is a small slab, translation symmetric parallel to the surface and
bordered by infinite vacuum regions in z direction. The cell is small compared to the one
used in supercell calculations and the calculation times decrease. Still the slab should
be thick enough to avoid the finite size effect. This method is called film calculation.
Both methods have in common that the semi-infinite system is approximated by a finite
system. To model real semi-infinite systems new methods have to be used like the Green
function embedding technique which will be explained in chapter 2.4.
If we want to use a new basis set for the film calculation we have to divide the space
into three regions. The muffin tins near the cores, the interstitial region between them
and a vacuum region. The interstitial region stretches from −D/2 to D/2 in z direction
defining the film thickness D (figure 2.3). The basis inside the muffin tins is the same as
in the bulk case but the interstitial has to be treated differently. Since the periodicity
in z direction is lost we have to decompose the planewaves in the interstitial region into
a two dimensional periodical part parallel to the surface and an perpendicular part.

φPW
k‖,g‖,g⊥

(r‖, z) = eig⊥zei(k‖+g‖)r‖ (2.53)

with

g⊥ =
2πn

D̃
. (2.54)
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D̃ is chosen larger than the film thickness D to gain greater variational freedom. In order
to get the basis functions φvac for the vacuum region, we use a product of 2 dimensional
planewaves parallel to the surface and an assumed z dependent function u with

φvac
k‖,g‖

(r‖, z) = uk‖,g‖
(z)ei(k‖+g‖)r‖ (2.55)

which has to satisfy the corresponding 1-dimensional Schrödinger equation
{

− ~2

2m

∂2

∂z2
+ V0(z) − Evac +

~2

2m
(k‖ + g‖)

2

}

uk‖,g‖
(z) = 0. (2.56)

Evac is the vacuum energy parameter. Again the basis function is linearized by the energy
derivative u̇k‖,g‖

(z). The vacuum basis functions offer less variational freedom than the
basis set of the interstitial region does. (e.g. there are only two vacuum functions with
u̇k‖,g‖

(z) and uk‖,g‖
(z) at g‖ to fit to all possible planewaves at g‖ in the interstitial

region.)
The basis functions are now given by:

φk‖,g‖,g⊥(r‖, z) =
1√
V







eig⊥zei(k‖+g‖)r‖ interstitial region

∑

lm{A
αg
lm(k)uαl (rα)

+Bαg
lm (k)u̇αl (rα)}Ylm(r̂α) αth muffin tin

{Ag‖,g⊥(k‖)uk‖,g‖
(z)

+Bg‖,g⊥(k‖)u̇k‖,g‖
(z)}ei(k‖+g‖)r‖ vacuum

(2.57)

The coefficients Ag‖,g⊥ and Bg‖,g⊥ are determined by the condition that each basis func-
tion is continuous across the interstitial-vacuum boundary.

2.2.3 Potential and Charge Density Representation

As mentioned before the FLAPW method employs the full potential. In order to de-
scribe the potential exactly instead of a constant interstitial potential a warped inter-
stitial potential

∑

g Vge
ig·r is included. Also non spherical terms inside the muffin tin

are introduced. The expansion of potential and charge density is done similar to the
expansion of the wavefunction. This leads to the potential representation:

V (r) =

{ ∑

g Vge
ig·r interstitial region

∑

lm V
α
lm(r)Ylm(r̂α) muffin tin

(2.58)

In the Fleur code the symmetry of the system is exploited to reduce the amount of co-
efficients to store. Obviously the charge density and the potential possess the symmetry
of the lattice. In the interstitial region the planewaves can be replaced by symmetric
planewaves called stars.

Φ3D
S (r) =

1

Nop

∑

op

eiRg(r−τ) (2.59)

All planewaves that can be transformed into each other by the symmetry operation R
can be represented by one star. {R|τ} are the symmetry operations of the lattice space
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group [63]. In the vacuum region two dimensional stars Φ2D
S are used. Inside the muffin

tins the point group of the atom gives the relevant symmetry group. Thus we can also
reduce the spherical harmonics inside the muffin tins. The symmetric functions are
called lattice harmonics:

Kν(r̂) =
∑

m

cαν,mYl,m(r̂) (2.60)

leading to the final representation of the potential

V (r) =







∑

S VSΦ3D
S (r) interstitial region

∑

S VS(z)Φ2D
S (r) vacuum region

∑

ν V
α
ν (r)Kν(r̂α) muffin tin

. (2.61)

The electron density can be derived from the eigenfunctions as done before:

n(r) =
1

VBZ

∫

BZ

∑

ν

∑

Eν,k<EF

|ψν,k(r)|2dk (2.62)

Here ν denotes the band index, EF the Fermi energy and the integration boundary of k
is the Brillouin zone (BZ). In Fleur the integration over k is transformed into a weighted
sum over the k-point mesh. The k-points are chosen from the irreducible part of the
Brillouin zone. The weights depend on the integration method used. In order to cut
off the energies above the Fermi level a step function could be applied. But to avoid
charge oscillations during the self-consistency cycles a Fermi function instead of a step
function is used in the code. If the wavefunction in the interstitial region is expressed
by the planewave basis functions (2.41) we can rewrite equation (2.62) as

n(r) =
1

VBZ

∫

BZ

∑

ν

∑

Eν,k<EF

∑

g′

∑

g′′

(cg′,ν,k)∗cg′′,ν,ke
i(g′′−g′)rdk. (2.63)

Since we can expand the electron density in the interstitial region into planewaves
n(r) =

∑

g nge
i(gr) the planewave coefficients can be given by

ng =
1

VBZ

∫

BZ

∑

ν

∑

Eν,k<EF

∑

(g′,g′′,g′′−g′=g)

(cg′,ν,k)∗cg′′,ν,kdk. (2.64)

Hence for a consistent representation the g cut-off should be twice as large as the one
of the wavefunction basis. This increases the memory needed to store the coefficients.
The representation of the electron density can be chosen equivalent to the one of the
potential:

n(r) =







∑

S nSΦ3D
S (r) interstitial region

∑

S nS(z)Φ2D
S (r) vacuum region

∑

ν n
α
ν (r)Kν(r̂α) muffin tin

. (2.65)
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2.2.4 The Fleur code

Fleur is a Fortran code developed in the ’Institute für Festkörperforschung’ (IFF) at
the research center Jülich for (spindependent) DFT calculations employing a FLAPW
basis set. Both bulk and film calculations can be done. Furthermore extensions to non
collinear magnetism are implemented. It is (k-point) parallelized and can be used on a
cluster of 41 IBM p690 nodes named Jump located at the research center Jülich. Jump
has a total number of 1312 CPUs and an aggregate peak performance of 8.9 TFLOPS.
It is possible to run calculations on 1 to 32 CPUs parallel or parallel on multiples of
nodes (n times 32 CPUs). Throughout the program atomic units are used. The electron
charge e, mass of the electron m and ~ all set equal to unity, lengths are given in Bohr
radii (r0=rB=0.529177 Å) and energies are given in Hartree (1htr = 2Ry = 27.211 eV).
Additional information about the program can be found at [119].

2.3 Green Function

Since 1828, when the Green function was first used by Green in the theory of electro-
magnetism the application of the Green function has become a well established tool in
solid state physics. Compared to the wavefunctions the Green function contain all nec-
essary information with less additional and most of the time unused information [91].
The Green function can be defined as the solution of an inhomogeneous differential
equations4

[H(r) − ξ]G(r, r′; ξ) = −δ(r − r′), (2.66)

where ξ is a variable for an (in general complex) energy and H(r) represents the Hamil-
tonian

H(r) = −1

2
∇2 + Veff(r) (2.67)

H(r)ψi(r) = εiψi(r), (2.68)

with a complete set of eigenfunctions ψi satisfying the time independent single-particle
Schrödinger equation. Both Green function G(r, r′; ξ) and the set of eigenfunctions ψi
are subject to the same boundary conditions for r and r′ on the surfaces S of the domain
Ω. We can rewrite (2.66) and use that the eigenfunctions are, without loss of generality,
orthonormal

∑

i ψi(r)ψ∗
i (r

′) = δ(r − r′).

G(r, r′; ξ) =
δ(r − r′)

[ξ −H(r)]
(2.69)

=

∑

i ψi(r)ψ∗
i (r

′)

[ξ −H(r)]
(2.70)

In general a function of an operator acts on a set of eigenfunction as the same function
of eigenvalues does (F (H)ψi = F (εi)ψi) and thus we gain

G(r, r′; ξ) =
∑

i

ψi(r)ψ∗
i (r

′)

ξ − εi
. (2.71)

4sometimes defined with different sign and/or an additional factor of 4π.
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This expansion of G in terms of the eigenfunctions ψi is called the spectral representation
of G. In general the eigenspectrum of H can be discrete and continuous and therefore
the sum in (2.71) is a sum over discrete energies plus an integration over the contin-
uous part. Furthermore it is useful to transform from the r-representation to a more
general representation. The notation of choice is the one of Dirac with ψi(r) = 〈r|ψi〉,
G(r, r′; ξ) = 〈r|G(ξ)|r′〉, δ(r − r′)H(r) = 〈r|H|r′〉 and 1 =

∫
|r〉〈r′|dr. Thus equation

(2.71) can be rewritten in Dirac notation as

G(ξ) =
∑

i

|ψi〉〈ψi|
ξ − εi

+

∫

di
|ψi〉〈ψi|
ξ − εi

. (2.72)

The Green function is an analytic function of ξ everywhere in the complex plane apart
from the poles at the discrete eigenvalues of the Hamiltonian and branch cuts along parts
of the real axis which correspond to the continuous spectrum of H. From equation (2.71)
this can be seen directly. The Green function can be distinguish by

G+(r, r′; ξ) = lim
δ→0

∑

i

ψi(r)ψ∗
i (r

′)

(E + iδ) − εi
, (retarded Green function) (2.73)

G−(r, r′; ξ) = lim
δ→0

∑

i

ψi(r)ψ∗
i (r

′)

(E − iδ) − εi
. (advanced Green function) (2.74)

The retarded Green function G+ is defined for real ξ = E + iδ and is obtained from the
general G by taking the limit δ → 0 with E real and δ positive and infinitesimal. The
advanced Green function G− is defined in the same way but approaches the limes from
the other direction and therefore δ is negative and infinitesimal. For E belonging to the
continuous spectrum of the Hamiltonian, the retarded Green Function consists only of
outgoing the advanced Green Function only of incoming waves. For the other energies
both Green functions are the same [70]. The density of states (DOS) can be derived
[31] from the Green function by using the Dirac identity

lim
y→0

1

x± iy
= P

1

x
∓ iπδ(x), (2.75)

where P is the principle value but is of little importance because we will concentrate on
the imaginary part only. From the diagonal matrix element of the Green function we
get:

G±(r, r; ξ) = P
∑

i

ψi(r)ψ∗
i (r)

E − εi
∓ iπ

∑

i

δ(E − εi)ψi(r)ψ∗
i (r) (2.76)

⇒ =(G±(r, r;E)) = ∓π
∑

i

δ(E − εi)|ψi(r)|2 = ∓πn(r;E) (2.77)

n(r;E) is the local density of states (LDOS). We can derive the DOS N(E) =
∫
n(r;E)

by integration over r

Tr
(
=
(
G±(E)

))
= ∓π

∑

i

δ(E − εi) = ∓πN(E). (2.78)
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An important quantity which can be calculated directly from the local density of states
(2.77) is the charge density.

n(r) = ∓ 1

π
=
∫ EF

G±(r, r;E)dE (2.79)

This equation is the basis for the self-consistent embedding scheme described in 2.4.4. In
the following we will only work with the retarded Green function G+. As G is analytic
in the upper half plane integrations can be done along a path through the complex plane
and thereby the singularities of G on the real axis can be avoided.

2.4 Green Function Embedding

Perturbation regions which reduce or even destroy the symmetry of the system under
consideration are difficult to handle but they are crucial to understand the physical
properties of the system. For example impurities in crystals, while breaking the crystal
symmetry completely, influence the crystal behavior in an electric field or under me-
chanical stress. Interfaces or surfaces reduce the 3-dimensional symmetry of the bulk
system to a 2-dimensional system parallel to the interface and give rise to new elec-
tronic structures like surface states. A new technique is needed to treat such localized
impurities surrounded by an infinite unperturbated system. An effective method named
’Green function embedding’ was introduced by Inglesfield in 1981 [50] and is used in
this work.

In general to completely solve the time-independent Schrödinger equation, which is a
second order partial differential equation in a given volume we need a set of boundary
conditions. These conditions might be a set of values and derivatives of the wavefunction
at the boundary of the perturbed region. While this straightforward approach looks
reasonable, solving this task numerically is difficult. For each energy an initial value
exists for which the solving wavefunction grows or decays exponentially. This leads to
an exponentially growth of the error of any numerical inaccuracy of the initial value.
Inglesfield’s embedding technique circumvents this numerical problem. In the following
part a short derivation of this technique will be given. Imagine an embedded region Ω
with Green function G and wavefunction φ inside an outer region V0 with G0 and ψ0.
We have to find the minimized energy expectation value of a wavefunction Ψ, which is
given by φ inside and ψ0 outside the embedding region, by varying Ψ. The amplitudes

embedded region : Ω, G, φ (2.80)

outer region : V0, G0, ψ0 (2.81)

PSfrag replacements

outer region

embedded
region

Ω, G, φ

V0, G0, ψ0
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of φ and ψ0 have to match at the boundary S.

Ψ =

{
φ in Ω
ψ0 in V0

φ(rS) = ψ0(rS) (2.82)

The outer wavefunction ψ0 can be chosen in a way that the boundary conditions at the
outer surface of V0 are fulfilled and the amplitude can be adjusted such that the total
wavefunction Ψ is continuous across the boundary. But for a general trial function φ it
is not possible to have a continuous derivative of Ψ all over the boundary S. This leads
to an additional surface term in the expectation value of the energy.
To understand this keep in mind that the Hamiltonian is hermitian in the complete
volume:

∫

Ψ∗(r)HΨ′(r)d3r =

∫

Ψ′∗(r)HΨ(r)d3r (2.83)

and therefore
∫

V0+Ω

Ψ∗(r)∇2Ψ(r)d3r = −
∫

V0+Ω

∇Ψ∗(r)∇Ψ(r)d3r. (2.84)

Obviously no surface term exists, which is reasonable because the complete volume is
infinite. If we now evaluate the integral by taking into account the different regions and
denoting the derivative normal to the interface by ∂n we gain:

∫

V0+Ω

Ψ∗(r)∇2Ψ(r)d3r = −
∫

V0+Ω

∇Ψ∗(r)∇Ψ(r)d3r (2.85)

= −
∫

V0

∇ψ∗(r)∇ψ(r)d3r −
∫

Ω

∇φ∗(r)∇φ(r)d3r (2.86)

=
︸︷︷︸

2nd Green

∫

V0

ψ∗(r)∇2ψ(r)d3r −
∫

∂(V0+Ω)

ψ∗∂nψd
2r

+

∫

Ω

φ∗(r)∇2φ(r)d3r −
∫

∂(V0+Ω)

φ∗(−∂nφ)d2r (2.87)

Thus the energy expectation value is:

E =

∫
Ψ∗(r)HΨ(r)d3r
∫

Ψ∗(r)Ψ(r)d3r
(2.88)

=

∫

V0
ψ∗(r)Hψ(r)d3r+

∫

Ω
φ∗(r)Hφ(r)d3r+ 1

2

∫

∂(V0+Ω)
(φ∗∂nφ− ψ∗∂nψ)d2r

∫

V0+Ω
Ψ∗(r)Ψ(r)d2r

(2.89)

=
ε
∫

V0
ψ∗(r)ψ(r)d3r +

∫

Ω
φ∗(r)Hφ(r)d3r + 1

2

∫

∂(V0+Ω)
φ∗(∂nφ− ∂nψ)d2r

∫

V0+Ω
Ψ∗(r)Ψ(r)d3r

, (2.90)

because Hψ = εψ holds in the outer region. If the embedding region is small compared
to the outer region we can assume ε = E and the equation for the expectation value
simplifies to

E =

∫

Ω
φ∗(r)Hφ(r)d3r + 1

2

∫

∂(V0+Ω)
φ∗(∂nφ(rS) − ∂nψ(rS))d2r

∫

Ω
φ∗(r)φ(r)d3r

. (2.91)
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By assuming the continuity (2.82) on the surface one can vary the energy expectation
value for φ∗ and obtain:

(H(r) − E)φ(r) +
1

2
δ(n− nS) [∂nφ(r) − ∂nψ(r)] = 0 (2.92)

The second term acts on the surface only and n is the normal component of the vector
r. The problem in this equation is ψ(r) because its value is not known in advanced.
Note also that the normal derivative ∂nψ is energy dependent and therefore equation
(2.92) does not define an eigenvalue problem for E anymore. The equation can be seen
as a Schrödinger equation for the embedded region Ω which is matched to the energy E
and the solution ψ in the outer region V0.

2.4.1 Introducing the Embedding Potential

By introducing an embedding potential we can solve equation (2.92) without knowing
the normal derivative ∂nψ(r). In the outer volume V0 the Schrödinger equation and the
defining equation for the Green function G0 are

(H(r) − E)ψ(r) = 0 (2.93)

and (H(r) − E)G0(r, r′, E) = −δ(r − r′). (2.94)

After multiplying (2.93) with G0(r, r
′, E) and (2.94) with ψ(r) we can combine both

and build the integral over V0. This leads to
∫

V0

G0(r, r
′, E) (H − E)ψ(r) − ψ(r) (H − E)G0(r, r

′, E)dV (2.95)

=

∫

V0

δ(r − r′)ψ(r)dV = ψ(r′). (2.96)

The Hamiltonian can be expressed by H(r) = − 1
2
∇2 + V (r). If the potential V (r) is

local the equation reduces to

ψ(r′) = −1

2

∫

V0

G0(r, r′, E)∇2ψ(r) − ψ(r)∇2G0(r, r
′, E)dV (2.97)

=
︸︷︷︸

2nd Green′s law

−1

2

∫

∂V0

G0(r, r
′, E)∂nψ(r) − ψ(r)∂nG0(r, r

′, E)dS. (2.98)

We can choose a Green function G0 which holds von-Neumann conditions on S and thus
the formula simplifies to

ψ(r′) = −1

2

∫

∂V0

G0(r, r′, E)∂nψ(r)dS. (2.99)

In the following r′ at the surface S will be expressed by r′S. Using the notation GS for
the surface projection of the Green function G0 and inverting the equation for ∂ψ :

∂nψ(rS) = 2

∫

∂V0

G−1
S (rS, r

′
S, E)ψ(r′S)dS ′ (2.100)
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G−1
S is called ’embedding potential’ and can also be denoted by Σ.

∂nψ(rS) = 2

∫

∂V0

Σ(rS, r
′
S, E)ψ(r′S)dS ′ (2.101)

It is important that the embedding potential can be seen as a generalized logarithmic
derivative. The solution of the Schrödinger equation is determined uniquely by the
generalized logarithmic derivative together with the normalization of the wavefunction.
Σ is a linear operator acting on the wavefunction at the boundary returning the normal
derivative.
Equation (2.92) can now be written as

(H(r)−E)φ(r) +
1

2
δ(n− nS)

[

∂nφ(r)−2

∫

∂V0

Σ−1(rS, r
′
S, E)φ(r′S)dS ′

]

= 0 (2.102)

or in short and symbolic notation like

(Hemb(E) − E)φ(r) = 0. (2.103)

The identity (2.82) was used once more. By introducing the embedding potential we can
now treat the embedded region without knowing the normal derivative on the surface
of the outer region wavefunction.

2.4.2 Embedded Green Function

A direct solution of (2.103) for the wavefunction φ inside the embedded region Ω is in
general not possible because Hemb is energy dependent and therefore the equation is
non-linear. The quantity to look at is the embedded Green function G.

(Hemb(E) − E)G(r, r′, E) = −δ(r − r′) (2.104)

In a direct transfer the embedding potential can be used to obtain the surface normal
derivative of the Green function

∂nG(rS, r
′
S, E) = 2

∫

Σ(rS, r
′′
S, E)G(r′′S, r

′
S, E)dS ′′ (2.105)

Note that G is the embedded Green function in region Ω whereas the embedding po-
tential Σ is the surface projected Green function of G determined by the outer volume
V0 with different boundary conditions.

2.4.3 Summary of the Embedding Technique

Whenever we have to treat an embedded region within an outer region we can use the
explained method of embedding to find the Green function of the embedded region.
Equation (2.92) holds for the embedded region

(H(r) − E)φ(r) +
1

2
δ(n− nS) [∂nφ(r) − ∂nψ(r)] = 0 (2.106)
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but the surface normal derivative of the outer region wavefunction is not known.5 There-
fore the embedding potential Σ has to be introduced (2.101):

∂nψ(rS) = 2

∫

∂V0

Σ(rS, r
′
S, E)ψ(r′S)dS ′ (2.107)

Leading to an equation (2.103) for the embedded wavefunction φ which can in general
not be solved directly. Thus the embedded Green function (2.104) is the property to
investigate.

(Hemb(E) − E)G(r, r′, E) = −δ(r − r′) (2.108)

2.4.4 Self-consistent Embedding

It was already derived in section 2.3 that the charge density (2.79) can be calculated
from the Green function directly.

n(r) = − 1

π
=
∫ EF

G(r, r;E)dE (2.109)

This enables us to use the Green function embedding method within a self-consistency
cycle. After calculating the embedded Green function the charge density is calculated
and maybe mixed with previous ones. From the charge density the Hartree potential can
be derived which is then used in the calculation of a new Green function. This cycle can
be run until the charge density in each step does not differ from the previous one and thus
a self-consistent charge density is achieved. Most easily the principle of self-consistent
embedding [48] can be shown in the following flowchart. In a Green function embedding

n(r)

Embedding Potential Σ

(Hemb − E)G = −δ(r − r
′)

⇒ Gk(E)
n(r) = −

1

π

∫
EF

E0

∫
BZ

=(Gk(E))dkdE
V

calculation the self-consistency cycle is important in order to get good, stable and reliable
results. Furthermore the introduction of an external electric field to the system or
the alignment of the vacuum potential towards the image potential like behavior will
need the self-consistency cycle in order to reproduce the correct physical properties like
screened charges in the former and smooth potentials in the latter case.

5Since the embedding method will be used together with the DFT the Hamiltonian H(r) is substituted
by the introduced Kohn-Sham Hamiltonian HKS(r).
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2.5 Complex Band Structure

In general bulk states have to fulfill the Schrödinger equation Hψ = Eψ and the Bloch
theorem TRψ = eikRψ. The translation operator TR commutates with the Hamiltonian
and thus both have the same eigenfunctions. We can concentrate on real energies E
because they have physical meaning. The solution of the Schrödinger equation for an
infinite bulk should be normalized and therefore the Bloch waves (2.110) fulfilling the
Bloch theorem have to have real k-vectors.
If the bulk is facing a surface or a perturbation region, the pure bulk Bloch states
are insufficient to match with the solution in the surface or perturbation region. The
solution space in the bulk has to be increased. This can be done by adding the infinite
set of evanescent or Tamm waves (2.111) with complex k to the finite set of possible
Bloch states with real k-vector. The surface or perturbation region breaks the three
dimensional symmetry of the system and therefore complex k-vectors become possible.

Bloch wave

ψk(z + a) = eikaψk(z) (2.110)

evanescent wave

ψ±(z + a) = −e±κaψ±(z) (2.111)

The complex vectors k are giving possible solutions which decay exponentially (2.111)
towards the vacuum. Note that even though they only appear at surfaces or impurities
the evanescent states are actually bulk properties and can be calculated in the bulk
system if one formally allows complex k-vectors to characterize the solution of the
Schrödinger equation.

The Bloch bandstructure E(k) with real energy and real Bloch vector is becoming a
generalized bandstructure ε(k) with ε,k ∈ C. The subset of complex k-vectors with real
energies E are called real lines and all real lines built the complex bandstructure [57].
In the following a short summary of the main features of this complex band structure
(CBS) is given. In order to investigate the properties of the CBS an one dimensional
section E(kz) of the complex E(k) is made. That means k‖ is set to a real value. Thus
E(k) is a complex function of the complex variable kz. First of all E(k) is real if kz is
real. These are the lines in the Bloch bandstructure. But E(k) stays real for a defined
range of imaginary values of kz at the Brillouin zone boundary. This can be easily seen
because for kz = π/a ± iκ in (2.111) we get the usual form of Bloch theorem (2.110).
All pairs of bands are joined by loops of real lines with complex k. Not only at the zone
boundary the bands are connected by loops but also close to minima and maxima in
the bandstructure. At an extremum E0(k0) the derivative is dE/dkz = 0 and E behaves
like

E(kz) = E0 + cr(kz − k0)
2 (2.112)

where cr is a real constant. We get real energies for either real or imaginary values of
kz−k0. Thus the energy will be real on a line which crosses the real plane at the point k0

at right angles and on the real axis itself. Therefore the real energy has a saddle point at
k0 in the complex plane. For a more sophisticated proof take a look at [42]. Beside the
loops there also exist real lines running to infinity, where they cannot create loops. They
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Figure 2.4: Complex band structure of Ag. Black lines represent the Bloch band between
the Bloch vectors k = Γ and k = X. Red lines belong to complex bands
with Re(k) = Γ and green lines to complex bands with Re(k) = X. (The
theoretical lattice constant of a=4.147 Å is used.)

run of to =(kz) = ±∞ with kz = −i
√

[(kx +mπ/a)2 + (ky +mπ/a)2 − E] as derived in
[42]. In figure 2.4 the complex band structure of silver is plotted. Since only real lines
are building the CBS the energy is real. The parallel components of k are chosen to
be at the Γ point of the two-dimensional Brillouin zone. The black lines are building
the band structure of Bloch states with real k-vectors along a line in the bulk Brillouin
zone which is projected onto the same k‖ point of the two dimensional Brillouin zone.
The red lines are representing states with kz = qz + iκ where qz is equal to 0. The green
lines belong to qz = π

a
. It can be seen that the zone boundary of the band in the CBS

are not connected by loops but that the real lines run to infinity. More exciting CBS of
Cu(001), Fe(001) and Si(111) can be found in the publication of Wortmann et al. [117].
It is instructive to compare the complex bandstructure to the corresponding Bloch band
structure in figure 2.5. In this figure the region Γ −X is emphasized to pronounce the
analogy to the middle region of the CBS shown in figure 2.4. The bandstructure is
calculated employing Fleur the complex bandstructure using the GFleur code. A more
detailed investigation of the CBS can be found in the publications of Heine from 1963
[42] and 1964 [43].

2.6 The GFleur Code

The GFleur code [116] uses the Green function embedding technique in the framework
of the FLAPW Fleur code. The FLAPW basis set is chosen in the embedded region
and the startup potential and charge density is given by a Fleur supercell or bulk
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Figure 2.5: Bloch band structure of Ag. Region between Γ and X highlighted. (Calcu-

lated with the experimental lattice constant of 4.09 Å)

calculation. From the bulk system the embedding potential can be calculated and add
to an interface region cut out of the supercell setup. Since the embedding potential
of a vacuum region can be analytically calculated and add to one side of the system,
surfaces can be investigated. By this we can treat real semi-infinite surfaces, in contrast
to Fleur surface calculations. Instead of the embedding potential of a vacuum region an
embedding potential from another material can be added and thus a stack system can
be modeled. In both cases the Green function inside the embedded region is determined
by an extended Kohn-Sham equation considering the interface of the embedded region
[51, 52, 117, 118]. The embedded Green function can be used to calculate the electronic
structure or the transport through the system under investigation. As the charge density
can be derived from the Green function and the Green function depends itself on the
charge density of the system a self-consistent scheme can be used to calculate a self-
consistent charge density of the embedded region.

2.6.1 The GFleur Basis Set

Since the embedded region is periodic only in two dimensions perpendicular to the
boundary surface we have to introduce another basis than the Fleur bulk basis (2.45).
In principle, it is the same problem faced already in the FLAPW film calculations. The
bulk symmetry is broken in one direction and the basis set has to be modified. The
solution is analogous to the basis set of the Fleur film calculation (2.57). The basis
functions for the interstitial are separated into an in-plane component and a component
perpendicular to the boundary surface. Inside the muffin tins the basis functions are not
modified because the muffin tins are never cut at any interface. Thus the basis functions
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are:

φ3D
k‖,g‖,g⊥

(r‖, z) =
1√
V







ei(k‖+g‖)r‖eig⊥z interstitial region

∑

lm[Aαglm(k)uαl (rα)
+Bαg

lm (k)u̇αl (rα)]Ylm(r̂) αth muffin tin

(2.113)

Due to the lacking periodicity perpendicular to the surface g⊥ is set to

g⊥ =
2πn

D̃
. (2.114)

Again the similarity with the FLAPW film calculation becomes obviously. The value of
D̃ has to be larger than D but not too large. If D̃ and D are nearly the same it is hard to
get the correct value at the D boundaries, if D̃ is chosen too large the basis functions are
similar inside the D region and the basis becomes linear dependent. Draft 2.7 visualize
this. The number of basis functions is given by the number of chosen g‖ and g⊥. This
is done either by taking them from a spherical shaped subset in the reciprocal space
of radius rkmax or by a cylinder like shaped subset of radius rkmax.6 The hight of the
cylinder is determined by a parameter called ’napw’ by the condition that the number
of g⊥ is two times ’napw’ plus an additional one. But we have to treat two different
regions in an embedding code. On the one hand the three dimensional space inside the
embedding region (2.113). This space is subdivided into muffin tins and interstitial. On
the other hand it is appropriate to introduce a different basis for a second region. The
region covers the boundary surface and is two dimensional (2.115). At the surface the
basis is defined by

φ2D
k‖,g‖

(r‖) =
1√
V
ei(k‖+g‖)r‖ . (2.115)

Additionally the charge density and the potential inside the interstitial region are ex-
pended by a basis set at least twice as large as the wavefunction basis set.

6it is kmax with an additional r indicating a real variable in Fortran and has a historical reason
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The GFprep tool can cut regions out of Fleur supercells and extract the correspond-
ing potentials. A plain interface is much easier to handle than a curved interface. But
because of the FLAPW basis set a cut through the muffin tins at the boundary is forbid-
den. One solution to avoid the interface curving around the muffin tins is to introduce
a new region including the muffin tins and some additional space. This is sketched in
figure 2.6. The embedding region with width C is cut out of a FLAPW setup. The
plain boundary would cut through the muffin-tin spheres. Thus, instead of region C
the region D is cut ignoring the muffin tins cutting from outwards into the region. The
region between C and D is called delta region ∆ and the potential inside this region is
set to a constant value.

2.6.2 Construction of the Coulomb Potential

The Hartree potential VH can be derived from the charge density via the Poisson equa-
tion.

∆VH(r) = 4πρ(r) (2.116)

While for the muffin tins the potential can be calculated in a straightforward manner
for the interstitial region some more steps have to be taken. The Poisson equation can
be easily solved in reciprocal space.

VH(g) = 4π
ρ(g)

g2
for g 6= 0 (2.117)

Pseudocharge density As the charge density varies rapidly close to the cores solving
equation (2.117) directly is impractical. By applying the pseudocharge method devel-
oped by Weinert [112] this problem can be circumvented. While the charge density is
given by

ρ(r) =

{ ∑

s ρSΦ3D
S (r) interstitial region

∑

ν ρ
α
ν (r)Kν(r̂) muffin tin

(2.118)

the pseudocharge density is defined by

ρ̃(r) =







ρ(r) interstitial region
function with same multipol− muffin tin

moments as ρ(r)
. (2.119)

Φ3D
S are the symmetric planewaves called stars and Kν(r̂) are the lattice harmonics

introduced in the chapter concerning the Fleur code. The pseudocharge trick smoothens
the charge density inside the embedding region without missing the essential behavior
inside the muffin-tin region which is determined by the multipol moment. Thus we can
apply formula (2.117) after a Fourier transformation of ρ̃ in order to get the interstitial
potential Vint(g).

ρ̃(r)
FT
︷︸︸︷⇒ ρ̃(g)

Vint(g)=ρ̃(g)/g2

︷︸︸︷⇒ Vint(g) (2.120)
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Figure 2.8: The lateral averaged potential of a platinum substrate with four layers of
silver is plotted. The red curve gives the potential obtained from a supercell
calculation. The blue curves give the potential obtained in the Green func-
tion embedding calculation of the first three self-consistency cycles. The
potentials calculated without boundary conditions are represented by the
green lines.

Coulomb potential The potential is represented in the same way than the charge
density.

V (r) =

{ ∑

s VSΦ3D
S (r) interstitial region

∑

ν V
α
ν (r)Kν(r̂) muffin tin

(2.121)

The interstitial potential Vint(g) is only correct in the interstitial region. Some ap-
propriate supplementation as explained above is present inside the muffin tins. While
this method is complete for periodic boundary conditions (like in Fleur) in GFleur the
boundary conditions at the bulk interface and the behavior towards the vacuum have
to be considered. Still the potential V1,g taken from the Fourier transformed of the
pseudocharge (2.117) is used.7

V1,g = 4π
ρ̃(g)

g2
, for g 6= 0 (2.122)

The potential V1,g is periodic in D̃. In figure 2.8 the lateral averaged interstitial potential
is plotted for a system of 4 layers of Ag on a Pt substrate. The red line represents the

7
V1,g = Vint(g), renamed because the potential will be used also inside the muffin-tin spheres.
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potential resulting from the Fleur supercell calculation. V1(r) is given by green dots.
It can be seen that the green curve is periodic in D̃ but the slope of the potential
is wrong. To get the correct physical behavior additionally the homogeneous solution
∆Vcorr(r) = 0 fulfilling the boundary condition ∂nV (rvac) = 0 towards the vacuum has
to be taken into account. Furthermore the condition Vcorr(r0) = Vbulk(r0) at the bulk
interface r0 has to be fulfilled. The former boundary condition is given by a zero normal
derivative of the potential towards the vacuum (only for surface calculation).

0 = ∂nV1(rvac) + ∂nVcorr(rvac), (2.123)

because the potential is given by the sum of the solutions

V (r) = V1(r) + Vcorr(r). (2.124)

The blue dots in the figure represent the corrected potential V (r) where the vacuum
boundary condition is applied. There are three blue curves because the system was
calculated within three self-consistent loops. Each blue curve represents the result of
a V (r) calculation. While the first two curves are giving a too large workfunction the
potential of the third round is converging towards the bulk potential. In order to fulfill
∆Vcorr(r) = 0 we get a linear equation Vcorr(z) = a + bz in z direction normal to the
surface in case of g‖ = 0. Thus the slope of the potential can be corrected to get
∂nVcorr(rvac) = −∂nV1(rvac). Since we expect an exponential behavior of the potential
V1(rvac) from the surface to the vacuum an exponential fit can be used. By taking 4
values close to the D boundary a function f(x) = aeκx + bx+ c can be fitted. The value
for the slope is given by

b = −x1x3 − x4x1 + x4x2 − x2
2 − x2

3 + x2x3

3x3 − x4 − 3x2 + x1
. (2.125)

Otherwise the slope can also be calculated by a linear regression through the last points
towards the vacuum region. By this proceeding small periodic changes in the potential
values due to the Fourier transformation are corrected, whereas the exponential fit can
not correct this. The disadvantage is that a flat potential behavior in the vacuum
region is needed. From the least square method min(v =

∑n
i=1(yi − f(xi))

2) equivalent
to ∂

∂b
v = 0 and ∂

∂a
v = 0, we get with the linear function f(x) = a + bx for the linear

regression:

b =
n
∑
xiyi −

∑
xi
∑
yi

n
∑
x2
i − (

∑
xi)2

(2.126)

a =

∑
x2
i

∑
yi −

∑
xiyi

∑
xi

n
∑
x2
i − (

∑
xi)2

(2.127)

And for the standard derivative of y values, a value and slope we get

σy =

√
∑n

i=1(yi − f(xi))2

n− 2
(2.128)

σm = σy

√
n

n
∑
x2
i − (

∑
xi)2

(2.129)

σa = σy

√
∑
x2
i

n
∑
x2
i − (

∑
xi)2

. (2.130)
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The method of linear regression is tested but the convergence of the results become
worse if applied in self-consistent calculations. Therefore the exponential fitting method
will be used throughout the work.

2.6.3 Calculate the Embedded Green Function

The embedded Green function (2.104) can be calculated by the following inverted matrix
equation for each k‖ in the two dimensional Brillouin zone and each energy E.

Ggg′

k‖,E
[n] =

[

ESgg′

k‖,E
[n] −Hgg′

k‖,E
[n] − Σgg′

k‖,E

]−1

(2.131)

The elements of the overlap matrix Ŝ and the Kohn-Sham Hamiltonian matrix Ĥ are
given by:

Sgg′

k = < LAPW|LAPW′ >int=

∫

int

φk,g(r)φk,g′(r)dr (2.132)

=

∫

int

e−i(k+g)rei(k+g′)rdV =

∫

V

e−i(k+g)rei(k+g′)rΘ1(r)dV (2.133)

= Θ1(g
′ − g) (2.134)

Hgg′

k =

∫

int

φ∗
k,g(r)

(

−1

2
∇2 + V (r) + δ(n− nS)

1

2

∂

∂nS

)

φk,g′(r)dV (2.135)

=
︸︷︷︸

Green

∫

int

−1

2

(
∇φ∗

k,g(r)∇φk,g′(r)
)
dV + V gg′

int (2.136)

= T gg′

+ V gg′

int (2.137)

Thereby the elements of the Hamiltonian concerning the kinetic energy part can be
solved.

T gg′

k =

∫

int

1

2
(k + g)(k + g′)e−i(g−g′)rdV (2.138)

=

∫

V

1

2
(k + g)(k + g′)Θ1(r)e−i(g−g′)rdV (2.139)

=
(k + g)(k + g′)

2
Θ1(g

′ − g) (2.140)

In the equations only the interstitial part is considered. The muffin-tin part is a r-
integration over the muffin-tin sphere and is therefore not treated differently than in the
Fleur code. Thus the muffin-tin part was omitted for simplicity. The muffin-tin part is
extensively treated in the PhD thesis by P. Kurz [63]. The stepfunction Θ1(r) cuts out
the muffin tins and is shown in figure 2.11.
The outer muffin tins can be neglected and therefore the interstitial region looks rather
simple (figure 2.9). This stepfunction Θ1(r) can be treated analytically. The potential
is not considered yet. The potential in the delta region is set to zero. In order to de-
scribe the somehow more complicated interstitial region (figure 2.10) three stepfunctions
(figures 2.11, 2.12 and 2.13) have to be used.

V gg′

int =

∫

V

e−igrVint(r) Θ1(r)Θ2(r)Θ3(r)
︸ ︷︷ ︸

Θ(r)

eig
′rdV (2.141)
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The potential Vint is given in reciprocal space as showed in section 2.6.2. But it is
only correct in the interstitial region whereas inside the muffin tins an appropriate
substitution was made. Therefore the correct interstitial potential has to be cut out
of this interstitial representation. Since the interstitial part of the potential is more
complicated than the one of the overlap matrix or kinetic energy part respectively, the
potential has to be calculated in three steps.

Vint(g) Ṽint(g)

↓ FT ↑ FT

V (r) −→
︸︷︷︸

Θ(r)

V (r)Θ(r)

(2.142)

The stepfunction Θ(r) is given in real space whereas for the overlap matrix Ŝ and the
kinetic part of the Hamiltonian a stepfunction Θ1(g

′ − g) in reciprocal space is applied.
The last term needed in equation (2.131) is the matrix of the embedding potential. We

Figure 2.11: Θ1 Figure 2.12: Θ2 Figure 2.13: Θ3
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can write the the matrix elements of the embedding potential as

Σgg′

k‖,E
=

∑

S=L,R

∫

int

φk,g(r)∗δ(n− nS)δ(n′ − nS)Σk‖,E(r, r′)φk,g′(r′)drdr′. (2.143)

If we express the embedding potential in the two dimensional basis set (2.115)

Σk‖,E(r‖, r
′
‖) =

1

V

∑

g‖,g‖′

eig‖r‖Σk‖,E(g‖, g
′
‖)e

−ig′
‖
r′
‖, (2.144)

equation (2.143) can be rewritten:

Σgg′

k‖,E
=
∑

S=L,R

∫

int

e−i(k‖+g‖)r‖e−ig⊥zSδ(n− nS)δ(n′ − nS)Σk‖,E(r, r′)ei(k‖+g′
‖
)r′

‖eig
′
⊥zSdrdr′

=
1

V

[

e−ig⊥zLeig
′
⊥zLΣk‖,E(g‖, g

′
‖) + e−ig⊥zReig

′
⊥zRΣk‖,E(g‖, g

′
‖)
]

(2.145)

The matrix is complex even in the case of real Hamiltonian and overlap matrices. But
Σgg′

k‖,E
is also block diagonal in the three dimensional basis. All two dimensional quan-

tities like the embedding potential and T̂ matrix8 are handled in the two dimensional
basis. The three-dimensional Green function can be projected onto the two dimensions
parallel to the interface by

Gb,b′(g‖, g
′
‖) =

1

V ′

∑

g⊥,g
′
⊥

eig⊥zbG(g, g′)e−ig′⊥zb′ . (2.146)

2.6.4 Calculate the Embedding Potential

The embedding potential Σ was introduced to substitute the normal derivatives of the
outer region wavefunctions ψ in the extended Kohn-Sham equation of the embedded
region by a generalized logarithmic derivative Σ = 1

2
∂nψ
ψ

. Thus the embedding potential
gives on the one side the bulk on the other interface the vacuum ’boundary conditions’
to the system for a given energy E and a reciprocal vector k. A transfer matrix T̂ has to
be introduced in order to calculate the embedding potential. It will be shown that in an
appropriately chosen embedding region the eigenvalues of the transfer matrix are equal
to the eigenvalues of the translation operator TR. Applying the Bloch theorem we get
a generalized bandstructure with real and complex k-vectors. Finally the embedding
potential can be calculated from the eigenvectors of the transfer matrix [117].

Transfer Matrix

The transfer matrix maps the value and the derivative of the wavefunction on one side
of the embedded region to the other side.

ΨR =

(
ψR
∂nψR

)

= T̂

(
ψL
∂nψL

)

(2.147)

8The transfer matrix T̂ will be introduced in the following section.
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Since the transfer matrix describes the propagation of wavefunctions through the em-
bedded region it can be expressed by the Green function at the boundaries. Generally
the T̂ matrix can be related to the Green function by the Green theorem

ψ(r) = = −1

2

∫

SL+SR

[G(r, rb)∂nψ(rb) − ∂nG(r, rb)ψ(rb)]d
2r (2.148)

giving a linear relation between ψ and ∂ψ at the boundaries. We use von-Neumann
boundary conditions ∂nG(r, rb) = 0. Note that in this derivation we tread normal
derivatives with different signs. In the Green theorem the direction outwards of the
embedded region Ω is assumed. Though for the transfer matrix T̂ in z direction the
signs of ∂nΨR do not differ leading to

T̂ =

(
GRRG

−1
LR −1

2
GRL + 1

2
GRRG

−1
LRGLL

G−1
LR G−1

LRGLL

)

. (2.149)

Complex Bandstructure

The concept of a complex bandstructure of the solid was already introduced in chapter
2.5 but should be repeated here for a better understanding how the embedding poten-
tial will be calculated within the GFleur program. It can be shown that the translation
operator TRf(r) = f(r + R) commutates with the Hamiltonian. Thus the Bloch the-
orem (for an infinite crystal) holds that the eigenfunctions of the Hamiltonian can be
chosen such that they are also eigenfunctions of TR. The Bloch theorem states that the
wavefunctions of the system are of the Bloch type

ψn,k(r) = eikrun,k(r) (2.150)

with un,k(r) = un,k(r + R) ∀ vectors R of the Bravais lattice. The Bloch wave is a
planewave modulated by a lattice periodic function un,k(r). It can also be expressed by

ψ(r + R) = eikRψ(r). (2.151)

This follows directly from (2.150). The eigenvalues of the translation operators TR are

TRψ(r) = ψ(r + R) =
︸︷︷︸

(2.151)

eikRψ(r) (2.152)

⇒ λ = eikR. (2.153)

If the embedding region is chosen to be a principle layer of the system the transfer
matrix T̂ and the translation matrix T̂R are equal. We get the so-called generalized
Bloch condition

ΨR =

(
ψ(rL + R)

∂nψ(rL + R)

)

= T̂RΨL = λΨL (2.154)

and therefore with (2.147)

T̂ΨL = λΨL. (2.155)
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As the solutions of the Schrödinger equation should be normalizable the Bloch vectors
k are chosen to be real in bulk crystals. Still complex solutions are also possible. A
complex Bloch vector would lead to an exponential growth in some direction. In case of
surfaces this exponentially growing or decaying solutions are important and are called
evanescent states. If complex Bloch vectors are treated the well known bandstructure
E(k) has to be extended to a generalized bandstructure ε(k′) with ε,k′ ∈ C. The term
complex bandstructure is used for the so called ’real lines’ of this bandstructure.
Real energies together with real or complex Bloch vector are building these lines.

In standard electronic structure calculations the k-points determining λ are given and
the energy eigenvalues of the Hamiltonian (Hψ = Eψ) are calculated in accordance with
TRψ = λψ. In GFleur a set of energies gives the T̂ matrix which is used in equation
(2.154) leading to λ(E). Since the observed system has two-dimensional symmetry a
set of k‖ is given for the startup. The perpendicular component kz(k‖, E) is calculated.

Calculate the Embedding potential from the T̂ matrix

In the last step we have to solve (2.155) for its eigenvalue λ(E) leading to the CBS
and its eigenvectors (∂nψ, ψ)T . From the latter the embedding potential can be derived
by equation (2.101). Now let us summarize the chapter in a simplified flow chart for
a better understanding of the procedure of finding the embedding potential. Starting

E,k‖ T̂ matrix T̂ΨL = λΨL

Σ

CBS

with G Solve

λ

ψ, ∂nψ

Figure 2.14: Schematic flowchart explaining how the embedding potential Σ is calcu-
lated.

with a set of energies E and Bloch vectors k‖ parallel to the interface the transfer

matrix T̂ can be calculated. Therefore equation (2.149) can be used. In the last step
the generalized Bloch condition (2.155) has to be solved. The eigenvalues λ(E) are
constituting the complex bandstructure and the eigenvectors ψ and ∂nψ construct the
embedding potential by solving equation (2.101).

2.6.5 Vacuum Embedding Potential

The embedding potential towards the vacuum has to be calculated in a different way than
the bulk one. Using the CBS in order to construct the embedding potential is obviously
not possible. Instead the wavefunction towards the vacuum can be calculated easily from
the Schödinger equation of a free electron moving in the constant vacuum potential.
However due to the computational setup the calculation of the vacuum embedding
potential becomes a little tricky.
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Move the Embedding Potential Plane

Within the calculation of the embedding potential towards the vacuum side it is nec-
essary to consider the delta region. The delta region has to be introduced because the
embedding plane cannot cut through the muffin-tin spheres in order to get a planar
interface. Even though no muffin tins are present in the vacuum region, due to the
periodicity of D̃ a delta region in the vacuum is present. On both sides the difference
between D/2 and C/2 determines the size of the delta region and inside this region the
potential is set to a constant value. Within the GFleur code the potential inside the
delta region is set to zero. In practice we calculate the embedding potential at position
C/2 and move it through the region of constant potential to the embedding potential
at position D/2. Since the embedding potential Σ is given by the generalized logarith-
mic derivative we have to move the wavefunction and its first derivative through the
region in order to get the correct embedding potential at the final position. In general
for given boundary conditions for the left side ψ and ψ′ we can calculate the modified
wavefunction to the right side. The solution of the Schrödinger equation with V=0 is
given by

ψR(z) = c+e
iκRz + c−e

−iκRz, (2.156)

where κR is
√

2E − (k‖ + g‖)2. We set

ψ(0) = c+ + c− ∧ ψ′(0) = iκR(c+ − c−) (2.157)

for the boundary conditions at the left side and solve for the coefficients of (2.156):

c+ = ψ − c− ∧ ψ′

iκR
= ψ − 2c− ⇔ c− =

1

2
(ψ − ψ′

iκR
) (2.158)

We can solve now for the second coefficient and get

c+ =
1

2
(ψ +

ψ′

iκR
) ∧ c− =

1

2
(ψ − ψ′

iκR
). (2.159)

The first derivative of the wavefunction is needed.

ψ′
R = iκRc+e

iκRz − iκRc−e
−iκRz (2.160)

=
iκR
2

(

(ψ +
ψ′

iκR
)eiκRz − (ψ − ψ′

iκR
)e−iκRz

)

(2.161)

Now the embedding potential can be calculated.

Σ =
1

2

ψ′

ψ
=

iκR
2

(ψ + ψ′

iκR
)eiκRz − (ψ − ψ′

iκR
)e−iκRz

(ψ + ψ′

iκR
)eiκRz + (ψ − ψ′

iκR
)e−iκRz

(2.162)

Finally we get

ΣLR(z) =
iκR
2

[
ψ′

iκR
cos(κRz) + iψsin(κRz)

ψcos(κRz) + i ψ
′

iκR
sin(κRz)

]

, (2.163)

describing the embedding potential moved by z from the left to the right side in terms
of the left side wavefunction ψ and its derivative ψ′.
Another way of solving the problem is to investigate the transfer matrix T̂ as was done
in section 2.6.4.
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Analytic Vacuum Embedding Potential

A constant potential V = V0 is assumed in the vacuum. In order to use the correct
embedding potential towards the vacuum we have to take care of the delta region.
As explained we need the value of the wavefunction and its first derivative at the left
position. In GFleur this is at position C/2. The solving wavefunction of the Schrödinger
equation for the constant vacuum potential V = V0 propagating to the right side can
easily be found to

ψ(z) = eiκLz (2.164)

with κL =
√

2(E − V0) − (k‖ + g‖)2. The boundary conditions at the left side can be
set to

ψ(0) = 1 ∧ ψ′(0) = iκL, (2.165)

if C/2 is moved to z = 0. However within the program the planar embedding plane
is located at D/2 and thus we have to move from C/2 = 0 to D/2 by ∆D = z. This
can be done by applying the derived equation (2.163). Thus the embedding potential
at D/2 is given by

Σ =
iκR
2

[
κLcos(κRz) + iκRsin(κRz)

κRcos(κRz) + iκLsin(κRz)

]

. (2.166)

We can also calculate Σ by applying the transfer matrix (2.149). To do so we have to
calculate the necessary Green functions (GLL,.. and so on). This can be done and the
results are taken from equation (6.20)[116]. There they are given by

GLL(g‖g
′
‖) = GRR(g‖g

′
‖) = δ(g‖, g

′
‖)

2

k
cot(kd‖) (2.167)

GRL(g‖g
′
‖) = GLR(g‖g

′
‖) = δ(g‖, g

′
‖)

2

k

1

sin(kd‖)
. (2.168)

Substituting these expressions into (2.149) leads to (2.166).
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Figure 2.15: Computational method of calculating semi-infinte surface systems with the
Green function embedding technique.

2.7 Summary of the Computational Method

The detailed picture of the the computational procedure given so far will be dropped in
favor of giving a better overview of the method.
In order to calculate a surface with infinite leads from ab initio density functional the-
ory the method of Green function embedding can be used. In a first step from the
self-consistent charge density of a bulk system the embedding potential can be calcu-
lated for different surface orientations. In a second step the electronic structure of a
supercell is calculated. A region of the supercell is then cut and used for the embedding
region within the Green function embedding scheme. The left border of the embedding
region will be attached to the infinite lead through the embedding potential calculated
before. The right border is built by a vacuum region. There the embedding poten-
tial can be calculated analytically. In the two dimensional interface area the system
is translational invariant and infinite. This computational setup is sketched in figure
2.15. In a third step the embedded Green function can be calculated from the embed-
ding region bordered by the two embedding potentials within a self-consistency cycle.
Thereby the Coulomb potential is gained from the charge density via the Poisson equa-
tion. Two boundary conditions are needed to solve the equation completely. On the left
side boundary the value of the bulk potential is used and on the vacuum side the slope
towards the vacuum is set to zero. The self-consistency cycle can be used because the
charge density is obtained from the embedded Green function and because the embed-
ded Green function itself depends on the charge density.
If an electric field should be applied to the surface region we can implement this in our
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method by changing the boundary condition for the Coulomb potential and the embed-
ding potential of the vacuum region. The slope of the potential towards the vacuum is
set to the slope introduced by a constant electric field. The correct physical behavior of
the potential results.
In the next chapter this computational scheme will be extended to treat image potential
states. In front of metal surfaces the potential decays like 1/z, due to the screening
charge induced. The potential in the surface region obtained from the DFT calculation
employing the common approximations LDA or GGA is not correctly reproducing the
expected 1/z behavior. Instead the potential decays exponentially towards the vacuum.
In order to investigate the image potential states, which are a direct result of the 1/z
decay, the potential has to be modified. The vacuum embedding potential is now cal-
culated numerically by solving the Schrödinger equation on a discrete grid using the
Numerov algorithm for a model potential (with or without electric field) with the pa-
rameter zI representing the image plane. In order to avoid an discontinuous gradient
of the potential curve the modeled image potential is mixed with the Coulomb poten-
tial. The mixing region and mixing function is entering our calculations as a second
parameter.



3 Localized States

In this work localized states in front of transition metal surfaces are investigated. In
the first step the well known phenomenon of surface states is explained in section 3.1.
Then image potential induced states are treated in section 3.2. These states are located
close to the vacuum energy and can be measured by a variety of experimental techniques
(section: 3.2.1). Usual DFT approaches fail to constructed the image potential states
and our method to implement them nevertheless is introduced (section: 3.2.3). How
the image potential states react if an electric field is applied will be shown in section
3.3. Our method can be extended to allow calculations of surfaces in an electric field.
By this the calculation of image potential induced field states become feasible and the
implementation into the embedding method will be shown in section 3.3.1.

3.1 Surface States

At the surface the electronic structure changes enormously compared to the bulk one.
The broken 3-dimensional symmetry gives rise to electronic states where the wavefunc-
tion is concentrated at the surface of the crystal. To be more precise, the periodicity
of the wavefunction in the z direction (normal to the surface) is no longer required in
case of an interface. The different boundary conditions for the wavefunction give rise to
states which are forbidden in the bulk. Depending on their physical origin these states
can be divided into crystal or barrier derived surface states.
The former are named Tamm states [106]. This kind of surface states is split off by the
surface potential into a band gap of the bulk bands. Tamm showed that these solutions
are possible in a modified Kronig and Penney [61] potential. (E.g. on silver (100) at
the M point of the two dimensional Brillouin zone a Tamm surface state split of from
the d-bands.)
The barrier derived surface state is called Shockley surface state [95]. They appear in a
projected energy gap of the bulk bands, due to the termination of the infinite crystal.
Shockley observed a periodic potential with variable inter-atomic spacing a. For large
spacing no surface state exists and the energy bands look like free electron bands. For
small a bands arise in the band structure and for even smaller a two discrete states split
off from the band. The term ’surface resonance’ is used for surface states leaking into
the substrate. The concept of complex band structures explained in section 2.5 is useful
for the treatment of surface states, because finding surface states can be regarded as the
problem of matching wavefunctions outside the surface to those inside the bulk crystal.
The latter are called evanescent waves. If the Bloch theorem is extended to the complex
k-vectors these evanescent waves result. Thus it is clear that surface states exist most of
the time in band gaps joint by loops of real lines with complex k. There the evanescent
waves needed for matching can be found [43]. Additionally surface states can exist at
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all energies due to matching to one of the real lines running to infinity as mentioned in
[42].

3.2 Image Potential States

Beside the crystal induced surface states, namely Shockley and Tamm states, there can
be image potential induced surface states in metals.
If an electron is placed at position z in front of a metallic surface an electric charge
is induced into the metal. The induced charged is positive and screens the outer neg-
ative charge. From the Maxwell equations it follows that the electric field has to be
perpendicular to the metal surface at the interface.

In order to construct the electric field

PSfrag replacements
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Figure 3.1: Construction of the image poten-
tial.

outside the bulk usually an image charge
of opposite sign is placed inside the bulk
at a distance z′ equal to −z. The dis-
tance between the charge outside and its
image charge inside the bulk is two times
the distance between the surface and the
outer charge position, thus 2z. This is
shown in figure 3.1. Note that the elec-
tric field inside the bulk is not the cor-
rect physical one but it is used just for
construction purpose. If we now apply
the law of Coulomb force to the setup
of two electric charges of different sign
placed in a distance of 2z the potential
outside the bulk can be given by (3.5)
in the one dimensional picture. This is
the so called image potential. The po-
tential decays 1/z like towards the con-

stant vacuum potential Vvac. This behavior is characteristic for the image potential.

Coulomb force and potential

F =
1

4πε0
q1q2

x1 − x2

|x1 − x2|3
(3.1)

F = −∇V (3.2)

1D image potential

F =
1

4πε0
(−e2)

z + z

|z + z|3 (3.3)

= − e2

4πε0

1

4z2
(3.4)

⇒ V = Vvac −
e2

4πε0

1

4z
(3.5)

In the simplest model system an infinitely high potential wall could be placed at the
interface forcing an electron to rebound from the surface. An electron with energy be-
low the vacuum energy is now trapped inside a potential well formed by the infinite
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potential wall towards the bulk and the 1/z decaying potential towards the vacuum
side. The eigenenergies of the electron can be calculated by solving the one dimensional
Schrödinger equation.

(

− ~2

2m

∂2

∂z2
+ V

)

ψ(z) = Eψ(z) (3.6)

⇒
︸︷︷︸

(3.5)

(

− ~2

2m

∂2

∂z2
− e2

4πε0

1

4z
+ Vvac

)

ψ(z) = Eψ(z) (3.7)

It is the same equation as the radial part of the s-wavefunction for the hydrogen atom,
except a factor of 4. Thus the eigenenergies are

En = Evac −
m

32

(
e2

4πε0~2

)2
1

n2
(3.8)

= Evac −
1

16

ERy

n2
. (3.9)

Whereas the length scales are stretched by a factor of 4 the energies are compressed by
a factor of 16 compared to the hydrogen atom. The Rydberg energy ERy is 13.6 eV. In
summary, the coulomb tail of the potential form a Rydberg series of possible electron
states (3.9). This series of electronic states are called image potential states or Rydberg
surface states in literature. In general they are unoccupied but they can be occupied
by lifting the energy of a surface electron by an emitted photon or an electric field. But
of course in this simple model the potential wall is not a good representation of the
metallic surface. If for example unoccupied states of the bulk close to the vacuum level
exists the outer electron would penetrate into the bulk, occupying one of the unoccupied
states. Since all states above the Fermi level are unoccupied a band gape close to the
vacuum level is required. A bandgap in a metal above the Fermi level is not forbidden
because a metal is defined by a continuous bands across the Fermi level which is some
eV below the vacuum level of the system. In this model an electron with energy below
the vacuum energy is confined between the metal with a band gap close to the vacuum
level and the coulomb tail of the image potential towards the vacuum. The simple model
with infinite potential wall has to be extended. Since the electron is not only considered
to be outside the crystal the finite probability to find the electron at the surface changes
the potential depending on the band structure of the crystal. This effect is taken into
account by the so called image plane zI in the potential and a quantum defect a in the
energy. The image plane zI can be seen as an effective position of the metal surface and
thus can be calculated in an electro-static picture. The parameter a was already used
in one of the first theoretical papers about Rydberg states by Echenique and Pendry
in 1978 [30]. They treated the states as standingwave resonances of an electron caught
in a box of the semi infinite solid and the surface barrier normal to the surface. This
considerations lead to the following equations:

V = Vvac −
e2

4πε0

1

4(z − zI)
(3.10)

En(a) = Evac −
1

16

ERy

(n+ a)2
(3.11)
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Figure 3.2: Charge in front of a metal with a bandgap close to the vacuum level. Elec-
trons are caught in the potential well between band gap and coulomb tail
of the potential towards the vacuum. Thereby hydrogen-like states, called
image states, result.

According to [21] there are two different ways to calculate the image plane position zI

in the static case. Using a jellium model Lang and Kohn [64] showed how the image
plane can be given by the center of a field-induced charge distribution. Calculations of
the image plane for several metal and transition metal surfaces are done using either
Goodwin’s model (see [41]) of the crystal wavefunctions or by ab initio calculations
[113, 53, 67].
Secondly a model potential can be constructed. The model-potential barrier is a function
of several parameters including the image plane. A well known model is the JJJ-model
by Jones, Jennings and Jepsen [55]. Fitted to the experimental results the image plane
can be calculated [24].

Unfortunately image potential states cannot be calculated from first principle DFT
calculations directly because the commonly used approximations LDA and GGA fail
to produce the correct asymptotic image tail of the potential. By additionally taking
into account the long range correlation effects, e.g. by GW-approximations, the image-
like behavior in the vacuum can be achieved. But the computational effort to treat
these correlation effects is huge [33]. In this work the DFT result for the semi-infinite
bulk is calculated within the Green function embedding approach and the 1/z potential
is modeled by adding the corresponding embedding potential to the vacuum site. A
detailed description will follow in chapter 3.2.2.

Surface induced image potential states can be observed in experiments. Image poten-
tial states were first detected in experiments with metals by low-energy-electron diffrac-
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tion (LEED) measurements [92] and thereafter by a variety of different techniques. The
experimental approaches will be described in detail in section 3.2.1. The experiments
offer a possibility to observe local changes in the workfunction by measuring the conver-
gence of the binding energies of the Rydberg states.1 Furthermore the binding energies
provide information about the shape of the surface structure. Another interesting appli-
cation arise if the image potential states are occupied. Then the image potential states
form a free two dimensional electron gas nearly completely decoupled from the substrate
which allows to study low dimensional electron dynamics [70].

Image Potential States of Magnetic Materials

The interaction of the image states with a ferromagnetic surface results in a lifting of
the spin degeneracy of these states. This can be explained by the spin dependence of the
band structure. The energy bands of ferromagnets depends on their spin magnetic mo-
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Figure 3.3: Magnetic exchange splitting of the image potential states (n = 1 shown),
due to the spin dependent influence of the projected band of the substrate.

ment with respect to the magnetization direction. In general electrons with parallel spin
magnetic moment have lower energies (majority spin) and antiparallel electrons (minory
spin) have higher energies. Thus also the band gap binding the electrons in image states
becomes spin dependent resulting in spin dependent image potential states. It is obvious
that the spin splitting is material dependent because the splitting is determined by the
band gap boundaries. If the edges of the gap are reached the splitting increases. The
splitting is expected to increase from Ni to Co to Fe and this has been verified by several

1Contrariwise the DFT calculation has to give a correct workfunction in order to calculate the image
states correctly.
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experiments [82, 28]. Nekovee, Crampin and Inglesfield [71] showed that the splitting
has in fact two different origins with opposite effects. The first one is bulk induced. The
spin up and spin down electrons are scattered from different substrate potentials. The
second contribution to the spin splitting is surface barrier induced. The surface barrier
influencing the outer electrons is also spin dependent due to exchange interaction. The
bulk induced effect is dominant. The surface-barrier contribution is smaller and has a
sign opposite to the substrate contribution.

3.2.1 Experimental Approach to Image Potential States

While photoemission dominates the field of occupied states there are several compara-
ble techniques available to investigate unoccupied states. These techniques are inverse
photoemission (IPE) [102] , two-photon photoemission (2PPE) [34, 28] , time resolved
photoemission spectroscopy [115] , bremsstrahlung isochromat spectroscopy (BIS) [4]
, X-ray absorption [36] and electron energy loss spectroscopy [1]. Additionally image
potential states can be observed with (spin-resolved) scanning tunneling microscopy
(STM) [10, 66, 62]. Following the spin resolved STM experiment will be closely in-
vestigated because it allows to observe the spin resolved image potential states under
electric field which is comparable to the theoretical results obtained in this work. Fur-
thermore photoemission will be explained in detail because it is at the fundament of
several other methods and the concepts of IPE and 2PPE will be given because they
allow to investigate image potential states with high energy resolution.

STM

The idea of the vacuum tunneling dates back to the 1960ths, when Giaever [38] and
Esaki2 and several other groups were experimentally investigating tunneling phenomena
in semiconductors and superconductors. Already in 1976 the first attempt to tunnel
through vacuum with a positionable tip was published by W.A. Thompson [109] from the
IBM T. J. Watson Research Center in New York. This publication drew the attention
of his colleagues Binnig and Rohrer at the IBM Research Division in Zürich. They
submitted their first patent disclosure on STM in January 1979, started to build the
first scanning tunneling microscope and published first measurements in 1982 [13, 12].
Binnig and Rohrer shared half the Nobel price four years later for ’the design of the
scanning tunneling microscope’. It should be mentioned that already in 1972 a field-
emission microscope named ’topograliner’ was proposed by R. Young et al., which had
common basic principles of operating like the STM except that the tip was far away
from the surface in contrast to STM and therefore field-emission was rather used than
tunneling current. Binnig and Rohrer remarked in their worth-reading Nobel lecture
that Young ”came closer than anyone else”[11].

The physical principle is rather simple and discussed in introductory courses to quan-
tum mechanics. Nevertheless the basic principle will be given for the sake of complete-

2Both awarded the Nobel price in physics 1973 ’for their experimental discoveries regarding tunneling
phenomena in semiconductors and superconductor’ together with Josephson ’for his theoretical pre-
dictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena
which are generally known as the Josephson effects’.
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Figure 3.4: Principle of the scanning tunneling microsopy (STM). By applying an elec-
tric field, states above the Fermi level can be occupied and electrons in this
states can tunnel to unoccupied states of the tip. The tunneling current
depends exponentially on the tip-sample distance.

ness. Quantum mechanics allow the electron to tunnel trough barriers, whereas classical
mechanics would force them to recoil. This effect can be exploited to obtain a micro-
scope with atomic resolution. A metal tip is placed within a distance of 5 to 10 Å above
a conducting sample. The vacuum region separating both builds the potential barrier.
An applied bias enabled the electrons to tunnel from the tip to the sample and vice
versa for a bias of opposite sign. This tunneling current is exponentially dependent on
the vertical separation of the two leads. This dependency makes the high accuracy of
the STM measurement feasible.

Let us assume an one dimensional model of the STM. Two metals are separated by
the vacuum potential barrier. Let us further assume that both metals have the same
workfunction, zero temperature resulting in a sharp Fermi edge and that no bias is ap-
plied to the system. Elastic tunneling, that is tunneling without change in energy, is not
possible because both Fermi energies are equal (figure 3.4.a). Occupied energy levels
of the sample do not match with unoccupied states of the tip. Now if a small bias is
switched on the two Fermi levels separate. A tunneling current can flow and the value
of the current can be calculated (figure 3.4.b). The wavefunction decays in z direction
exponentially and is given by

ψ(z) = ψ(0)e−κz and κ =

√

2mφ

~2
, (3.12)

where the decay ’constant’ κ is a function of the distance between the band energy of
the electron and the vacuum level. In case of small bias voltages the electrons are all
close to the Fermi energy and thus their decay constant is nearly the same and can
be expressed by the workfunction φ = Evac − Eµ resulting in the equation above. The
probability to find a tunneled electron at the tip at distance s is given by

P = |ψ(z = s)|2 = |ψ(0)|2e−2κs. (3.13)
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The tunneling current is proportional to the sum over all electron states Eµ, from where
the electrons are able to tunnel. These states are determined by the applied bias.

I(s, V ) ∝ e−2κs

EF∑

Eµ=EF−eV

|ψµ(0)|2 (3.14)

= e−2κs

∫ EF

EF−eV

∑

µ

δ(Eµ − E)|ψµ(0)|2dE (3.15)

= e−2κs

∫ EF

EF−eV

n(s, E)dE (3.16)

The exponential dependence of the tunneling current from the distance allows measure-
ments with high vertical resolution. A STM can be run in several modes allowing to
investigate either the topography of the sample or to use the STM as a spectroscope. In
order to get information about the topography the STM can be used either in constant
distance or constant current mode. The constant distance mode is fast but it has two
drawbacks. First the surface does not have to be planar and therefore can have a slope
or the tip moves uncontrolled horizontal during the run. Secondly a rapid changing sur-
face might result in a tip crashing onto the sample destroying the STM tip3. The second
method of constant current is the favored one. The feed-back loop keeps the current
constant by varying the distance. The distance is controlled by piezo elements and the
displacement of the tip is tracked. While an atomic scale, with vertical resolutions of
order 0.01 Å can be achieved the recorded images do not have to be equivalent to the
sample topography. As can be seen in equation (3.16) by replacing the summation over
the discrete states by an energy integration the current. Hence the tip position are not a
direct measurement of the landscape but a measurement of n(s, E), the local density of
states (LDOS), at position s. Keep in mind that the electronic structure of the tip is not
taken into account by the simple model leading to equation (3.14). Apart from the two
mentioned operation modes to obtain the sample LDOS two spectroscopy modes can be
used. The STM is then sometimes called STS, an abbreviation for scanning tunneling
spectroscope. To relate the topography to the electronic structure a dI/dV mode can
be used. This mode is called ’differential conductivity spectroscopy mode’ [110] or just
dI/dV mode. In this mode the distance is kept constant and the bias is modulated by
a small AC bias voltage δV . The derivative of I with respect to the voltage in equation
(3.16) leads to [44]:

dI(s, V )

dV
∝ n(s, EF + eV ) (3.17)

The LDOS is connected to the dI/dV data at an energy chosen by the applied bias V.
Thus the dI/dV mode enhances the spin-sensitive contrast compared to the constant
current mode if the energy is chosen in the energy range where the difference between
the spin dependent DOS is highest.
Another method is the dz/dV mode. Here the change of the tip position during modula-
tion of the bias voltage is recorded. This mode can be used to determined local changes

3Due to this disadvantage the constant distance mode is sometimes referred to as ’the fastest way to
destroy the STM tip’.
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Figure 3.5: Principle of the spin dependent STM [17] in a simple Stoner model. The
magnitude of the tunneling current is symbolized by the line thickness of the
arrows. The more unoccupied states in the tip can be occupied via tunneling
the higher is the magnitude of tunneling current.

in the workfunction of the sample or the energy position of the image potential states.
So far the influence of the tip has been neglected. Three dimensional model systems
taking into account the tip sample interaction are available, i.e. Tersoff, Hamman and
Baratoff [107, 7] applying the Bardeen approach [8] of a transfer Hamiltonian to the
small tip and an atomically corrugated surface.
Through the tunneling process the electrons conserve their energy, momentum and spin.
In the usually used tungsten or platinum tips there is no spin dependency because the
number of states for both spin directions is equal. But a spin-polarized STM (SP-STM)
can be constructed by coating the tip with magnetic materials such as Fe or Gd. The
tunneling current becomes spin dependent because the density of states of the tip is
spin-dependent. The tunneling current is dominated by the contribution of the elec-
trons from either majority band or minority band. If the magnetization direction of
the tip is changed the tunneling current is dominated by the contribution of electrons
with the opposite spin direction. Hence by changing the tip magnetization a magnetic
contrast of the sample can be obtained. This principle is drafted in figure 3.5. In the left
picture the tunneling current is mainly determined by the minority band contribution,
visualized by the thicker arrow representing the tunneling current, because the tip has
more unoccupied states in the minority band. If the magnetization of the tip is switched
to the antiparallel case the number of unoccupied states of the spin down band decrease
drastically and on the contrary the number of unoccupied states of the spin up band
increases. The tunneling current is now dominated by the majority band of the sample
even though less electrons above the Fermi edge contribute to the current compared to
the minority band of the substrate. It is the number of unoccupied states of the tip
with the same spin that is responsible for the current dependence. The same principle
holds for a tip coated with a material that shows permanent magnetization. Different
magnetic domains of the sample result in a different tunneling current. In this way the
topology of the magnetic sample can be measured without changing the tip magentiza-
tion. This mode is commonly used due to the easier setup. For a theoretical approach
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to SP-STM have a look at the PhD thesis of S. Heinze [44] or his science article [45]
and for some examples consult the script of Ph. Ebert [110]. For a detailed analysis of
the tunneling process from one ferromagnet to another via a tunneling barrier have a
look at [100]. STS can be used to measure image potential states as demonstrated by
Binnig et al. in 1985 [10]. Recently Kupetzka et al. [62] used a SP-STM to investigate
the spin-splitting of the image potential states and Pivetta, Ploigt et al. [84, 85] made
STM image potential measurements of metal surfaces with overlayer of non magnetic
materials.

Photoemission

In 1887 Hallewachs and Herz performed first experiments that revealed interaction of
light with solids and showed the effect which Einstein explained in 1905 as the photo-
electric effect4. He gave the fundamental photoelectronic equation:

Emax
kin = hν − Φ0 (3.18)

Φ0 is the workfunction of the sample and hν the energy of the photon. The maximum
energy of an emitted electron of the solid is given by the difference of the energy of the
photon and the energy needed to lift an electron from the Fermi edge to the vacuum
level. Photons from a monochromatic source are directed on a sample and the energy
Emax

kin of the via the photoelectric effect emitted photoelectrons can be measured (figure
3.6).

In a single-particle picture the distribution of the
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Figure 3.6: PE schematic

photoelectrons is an image of the occupied density
of states. Since the first years of photoemission
spectroscopy (PES) a lot of technical improvements
have been made resulting in energy resolution up to
1 meV available nowadays.

The distinct techniques of PES can be classified
by the energy of the light used to probe the ma-
terial. Valence band states can be investigated by
photons with energies of some eV whereas core levels
are probed by photons with energies above 1 keV.
In general synchrotron light can be used. Thereby
the photon energy can be selected from a continu-
ous spectrum with high intensity and brightness but to more expense than laboratory
sources. In laboratories ultraviolet photoemission (UPS) employing line spectra of dis-
charge lamps filled with rare gases in the energy range of 10-50 eV can be used to
investigate valence band states. The measurement can also be done angle resolved
(ARUPS). For investigations of the core level states x-ray can be used (XPS). X-ray
tubes emit light, depending on the anode materials, with energies above 1 keV.

By employing the perturbation theory in first order a theoretical description of PES
can be derived. This is known as Fermi’s golden rule. The photocurrent is given [49] by

J(k) =
k

4π2

∑

s

∑

i

| < ψk,s|HPE|ψi > |2δ(εk,s − εi − ~ω), (3.19)

4Einstein was awarded the Nobel prize in physics in 1921 ”for his services to Theoretical Physics, and
especially for his discovery of the law of the photoelectric effect”.
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where HPE can be derived from the electron field interaction

H =
1

2me
[p − e

c
A]2 + eV (r) = H0 +

e

2mec
[A,p]+ +

e2

2mec2
A2

︸ ︷︷ ︸

HPE

. (3.20)

ψk,s is the final state s resulting from the initial state ψi after emitting an electron with
momentum k and energy εk. The sum is carried out over all possible excited states ψk,s

and over all occupied electronic states in the emitter. Most of the time the quadratic
term in HPE is neglected (dipole approximation). Equation (3.19) can be rewritten

Jk(k) =
k

4π2

∑

s

∫

dr

∫

dr′ψ∗
k,s(r)HPE

∑

i

ψi(r)ψ∗
i (r

′)δ(εk,s−εi−~ω)HPEψk,s(r
′)(3.21)

=
k

4π2

∑

s

=
∫

dr

∫

dr′ψ∗
k,s(r)HPEG(r, r′, εk,s − ~ω)HPEψk,s(r

′). (3.22)

The sum over states in the equation above can be expressed by the spectral function
A(E).

A(E) =
∑

i

ψi(r)ψ∗
i (r

′)δ(E − Ei) =
1

π
=G(r, r′, E) (3.23)

This equation for the photocurrent is convenient to evaluate because the Green function
is given by the initial states alone. But many aspects of photoemission can be explained
better by a single-particle picture. Thereby the sum over all possible initial states ψi
in equation (3.19) is neglected, resulting in a transition from an occupied one-electron
orbital to the propagating electron state. To derive an expression we have to write the
matrix elements like

〈ψk,s|ψi〉 = 〈k;N−1, s|N, 0〉 = 〈k;N−1, s|c†(r)c(r)|N, 0〉. (3.24)

Extending the equation above with a complete set of (N-1) states and using the electron
creation operator c†(r) and annihilation operator c(r), we get

〈k;N−1, s|HPE|N, 0〉 =

∫

dr〈k;N−1, s|c†(r)

(
∑

j

|N−1, j〉〈N−1, j|
)

c(r)|N, 0〉HPE.

(3.25)

Using this expression for the intrinsic contribution (j=s) in (3.19) gives:

Jk(k) =
k

4π2

∫∫

drdr′〈k;N−1, s|c†(r)|N−1, s〉HPEA(r, r′, εk,s − ~ω) (3.26)

×HPE〈N−1, s|c(r)|k;N−1, s〉 (3.27)

A(r, r′, E) is the interacting spectral function. Core states, energy bands and surface
states measured in photoemission can be regarded as quasiparticle states in the inter-
acting spectral function.

A(r, r′, εk,s−~ω) =
∑

s

〈N, 0|c†(r)|N−1, s〉〈N−1, s|c(r)|N, 0〉δ(εk,s−εi−~ω) (3.28)
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The intrinsic contribution to the photocurrent dominates for high kinetic energies of the
electrons and finite systems. Nowadays PES is used for investigation of the electronic
structure of solids and surfaces and most of the knowledge about band structure and
Fermi surfaces is a direct result of PES experiments. Reinert et al. give an extensive
introduction to PES and its application in reference [89]. Another review by C. Fadley
on core- and valence-level photoemission can be found in reference [110].

Two Photon-Photoemission Spectroscopy

The two photon photonemission (2PPE) spectroscopy is used to measure positions and
lifetimes of intermediate states between the Fermi energy and the vacuum energy with
high resolution. Therefore a pulsed laser creates an initial photon. This photon excites
an electron from an occupied state of the bulk Ei to the unoccupied state Eim above the
fermi energy. A second photon is then used to excite the electron in the intermediate
state Eim above the vacuum level Evac that can be detected energy resolved. This
procedure is sketched in figure 3.7.

Obviously the energy of the initial electron has
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Figure 3.7: 2PPE schematic

to be smaller than the workfunction to avoid single
photon emission which would cover the 2PPE sig-
nal. On the other hand the energy has to be large
enough to excite the electron to the intermediate
states which are in case of image potential states
quite close to the vacuum energy. In addition to
that the lifetime of the electron in the intermediate
state has to be longe enough to be excited by the
second photon. In practice this forces the intensity
of the photon beam to be large, limited by the heat-
ing introduced to the sample. Since image potential
states on metal surfaces are long living and can eas-
ily be treated by 2PPE experiments they are the “most successful application of 2PPE
spectroscopy” [34] and vice versa 2PPE is one of the most useful method to measure
image potential states.



3.2. IMAGE POTENTIAL STATES 53

Inverse Photoemission

The inverse photoemission is the time inverted (single photon) photoemission process
explained in section 3.2.1 and sketched in figure 3.6. An electron with given initial
energy Ei and defined angle of incidence is impinged into an unoccupied state Ef of the
sample (figure 3.8).

The energy difference between the initial energy
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Figure 3.8: IPE schematic

and the energy of the final state is emitted by a
photon due to the energy conservation.

Ei = Ef + ~ω (3.29)

The final energy Ef is given by the energy level of
the unoccupied state. Surely it is above the Fermi
energy EF to be unoccupied. Furthermore it is clear
that the initial energy has to lie above the vacuum
energy. Inverse photoemission and photoemission
complement each other but the energy resolution of
inverse photoemission is limited. The resolution is
up to an order of magnitude lower than in case of photoemission. For a deeper theoretical
review see the report of Bostel and Thörner [19].

3.2.2 Image Potential States in GFleur

The potential towards the vacuum decays 1/z like in front of a metal surface as was de-
rived in section 3.2 already. It is known that DFT gives an incorrect asymptotic behavior
of the potential toward the vacuum due to the local and semi-local approximations used
for the evaluation of the exchange correlation functional. An exponential asymptotic
decay of the potential is the result of the approximations. In order to also find the image
potential induced surface states the potential outside the surface has to be corrected.
This can be done by starting with the exponentially decaying surface potential and mix-
ing it with the coulomb tail of the correct potential at some distance. For GFleur an
embedding potential for this constructed potential in the vacuum is calculated and add
to the surface (embedded) region.

3.2.3 Implementation into the GFleur Code

Estimate the embedding potential The embedding potential of the vacuum region
with the corrected potential is calculated numerically. Therefore an integration mesh
in the vacuum region is generated. The analytic image potential is set up on the mesh
and the value of the wavefunction and its first derivative is calculated by solving the
Schrödinger equation numerically with given initial values. The embedding potential can
be expressed by ψ and ψ′ at the embedding plane. In order to calculate the wavefunctions
at the boundary the Schrödinger equation has to be solved.

(

−1

2
∇2 + V0(r) − E

)

ψ(r) = 0 (3.30)
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Figure 3.9: The embedding potential of the 1/z like potential is calculated numerically.
Therefore the Schrödinger equation is solved on an integration mesh between
C/2 and zb. The values of ψ and ψ′ at C/2 give the embedding potential
which is then moved through the ∆ region analytically. The embedding
plane is located at D/2.

Here we can make an anzatz for the potential to be V0(r) = V0(z) and thus the wave-
functions can be given by

ψk‖
(r) = ei(k‖+g‖)r‖ψ(z). (3.31)

If we use this approach the Schrödinger equation (3.30) becomes

(
1

2
(k‖ + g‖)

2 − 1

2

∂2

∂z2
+ V0(z) − E

)

ψ(z) = 0 (3.32)

⇒ ψ(z) = cei
√

2(E−V0(z))−(k‖+g‖)2·z. (3.33)

At zb in the vacuum the potential V0(zb) can be approximated by a constant V0. We
get

ψ(z) = ceiκz (3.34)

with κ2 = 2(E − V0) − (k‖ + g‖)
2. With this initial wavefunction for every g‖ at zb

the wavefunction at z0 can be calculated numerically by the Numerov or Runge-Kutta
algorithms. Both methods are known for a long time and showed to be suitable for an
uncounted number of applications. While Boris V. Numerov developed his method in
1923 the work by C. Runge and M.W. Kutta was already done in 1895.5 The more
suitable algorithm is the one by Numerov because it is one order higher than Runge-
Kutta and is simpler to implement. The Numerov algorithm can easily be derived by a
Taylor series as will be shown in appendix A.1. For one integration step it is given by

ψn+1 =
2
(
1 − 5

12
∆2
xk

2
n

)
ψn −

(
1 + 1

12
∆2
xk

2
n−1

)
ψn−1

1 + 1
12

∆2
xk

2
n+1

+O(∆6
x). (3.35)

5Just for curiosity: Both Numerov and Runge have there own lunar crater named after them.
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Figure 3.10: Smoothen the DFT potential (blue) my mixing the correct 1/z like potential
(brown) in some defined mixing region into it until the correct behavior of
the potential (red) is modeled.

written tidily for the mesh points n. Since in the GFleur implementation the vacuum
region is at the right side the formula has to be rewritten as

ψn =
2
(
1 − 5

12
∆2
xk

2
n+1

)
ψn+1 −

(
1 + 1

12
∆2
xk

2
n+2

)
ψn+2

1 + 1
12

∆2
xk

2
n

+O(∆6
x), (3.36)

in order to integrate numerically from the right to the left side.
We finally get the wavefunctions ψE,g‖

and their derivatives ψ′
E,g‖

at z0. We can construct

the embedding potential out of them by employing equation (2.101). The position z0 is
equal to the position C/2 of the GFleur embedded region. The delta region has to be
taken into account. The potential inside the delta region is set to zero. The embedding
potential can be moved by (2.163) as was shown in section 2.6.5.

Smoothen the potential The potential in the embedded vacuum region is till expo-
nentially decaying and has to be modified in order to get a smooth behavior. In figure
3.10 the mixing scheme is sketched. The red curve is the resulting potential which is the
DFT (blue) calculated one before and the model potential (brown) behind the mixing
region. Inside the mixing region both the DFT and the model potential are combined.
As explained in 2.6.2 the Hartree potential is given by solving the Poisson equation and
adding a linear correction.

VH(r) = V1(r) + Vcorr(r) (3.37)
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The Hartree potential will be corrected by mixing the coulomb potential into it.

V ′
H = f(z)

(

Vvac −
1

4(z − zI)

)

︸ ︷︷ ︸

Vmodel

+ (1 − f(z))VH (3.38)

=
︸︷︷︸

3.37

f(z)Vmodel + (1 − f(z)) (V1 + Vcorr) (3.39)

In practice the correction of the Hartree potential is changed. We can rewrite the
formula and solve for a new correction term added to the potential V1. The potential V1

is not fulfilling the correct boundary conditions towards the vacuum and the bulk side.

V ′
H = V1 + V ′

corr (3.40)

⇒
︸︷︷︸

3.39

V ′
corr = f(z)(Vmodel − V1 − Vcorr) + Vcorr (3.41)

The mixing function f(z) is chosen to

f(z) =







0 z < z′

0.5 − 0.5 · cos(π · z−z′
zmix

) z′ < z < z′+zmix

1 z > z′+zmix

(3.42)

for simplicity.

3.2.4 Verification of the Implementation

Constant Potential The first test is to run the image potential part of the code for
a constant potential V0 equal to the vacuum level without any potential mixing. The
calculated embedding potential should be the same as the one calculated analytically
by formula (2.166). For the case of (k‖ + g‖)

2 = 0 the embedding potential is given by

ψ(z) = cei
√

2(E−V0)−(k‖+g‖)2 (3.43)

⇒ ψ′

2ψ
=

i√
2

√

E − V0 = Σ. (3.44)

Figure 3.11 shows the embedding potential of the vacuum calculated by the GFleur pro-
gram applying (2.166) for z=0. The GFleur program using the numerically-integrated
embedding potential for constant potential and the analytic solution (3.44) are com-
pared. The numerical and the analytic calculated solutions fit. Now we take the delta
region into consideration. We use (2.163) in order to move through the delta region, if
we integrate numerically. The real part of the embedding potential moves downwards
and still the solutions fit (figure 3.12).
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Figure 3.11: The embedding potential for a constant vacuum potential calculated an-
alytically (dotted line) and numerically (solid lines) are compared. The
results match perfectly. Both real and imaginary part of the embedding
potential are plotted.
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Figure 3.12: The embedding potential for a constant vacuum potential calculated an-
alytically (dotted line) and numerically (solid lines) are compared after
moving them analytically through the delta region of zero potential. It can
be seen that the real part of the embedding potential of both calculations
is shifted downwards.
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Gridpoints The number of gridpoints used for the numerical integration determines
the gridspacing, if the image boundary is kept constant. The gridspacing determines the
numerical quality of the integration. In the following plots 3.13 the number of gridpoints
is increased from 104 to 105 and 106. The image boundary zb is set to 100 a.u. and the
image plane zI to zero giving the distance between the integration steps. We tested
gridspacings of 10−2, 10−3 and 10−4 a.u.. The gridspacing should be around 10−4 a.u.
to get reasonable results. This can be reached by increasing the gridpoints as done here
or by decreasing the starting point of the integration zb. The first costs CPU time the
latter might lead to numerical instability of the integration, if the zb is chosen too close
to the image plane.
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Figure 3.13: The embedding potential for a constant vacuum potential calculated nu-
merically and moved analytically through the delta region of zero potential
is drawn for increasing number of gridpoints between z0 and zb. The num-
ber of gridpoints determined the quality of the numerical solution of the
Schrödinger equation. The gridspacing changes from 10−2 in the upper left
corner and 10−3 to 10−4 a.u. in the lower row. It can be seen that for
gridspacings larger than 10−4 a.u. the embedding potential exhibits numer-
ical problems.
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Imaginary Energy without Vcorr In order to show the correct implementation of com-
plex energies two calculation are done with an energy with imaginary part of 0.03 htr.
This is a large value compared to around 10−5 htr used to broaden the delta peaks in
the following surface calculations. The first calculation is done with the image potential
generated vacuum embedding potential. This could be achieved by setting the potential
equal to the vacuum level instead of using a 1/z like image potential. The second run is
done with the analytic vacuum embedding potential. Due to the imaginary part in en-
ergy all structures of the data are washed out but the results are the same for both runs.

After these tests we are convinced that our code to give high accurate embedding
potentials if the gridspacing is chosen reasonably.
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Figure 3.14: Testing the numerically determined embedding potential with complex en-
ergies of =(E) = 0.81 eV. Both analytic and numerical calculated embed-
ding potentials result in the same density of states of the system tested.

Mixing To test the mixing, calculations with two different mixing regions are done. In
figures 3.15 and 3.16 the potentials of an Ag(111) surface are shown for either a mixing
region of 20 or 50 grid points. It can be seen that for larger mixing region the potential
is varying slower and smoother. But it can happen that the Coulomb potential exhibits
an unphysical local maximum. This would lead to an unphysical behavior of the image
potential states. In contrast to a large mixing region the change of the potential is
drastically in a small mixing region. The result is less smooth but without the problem
of a local maximum.
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Figure 3.15: The potential of the topmost layers of Ag(111) is plotted. The potential
given by a Fleur supercell calculation (red) and the potential of the Green
function embedding calculation (blue) can be seen. Thereby the potential
of the embedding method is changed by a 1/z like potential in a mixing
region 20 grid points.
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Figure 3.16: A mixing region 50 grid points is chosen this time. The blue curve repre-
senting the potential obtained by the Green function embedding technique
is mixed with the 1/z like potential in such a large region that a local
maximum results. The mixing region has to be adjusted.
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Figure 3.17: A constant electric field ξ is applied to the surface. Image potential induced
field states are created. With increasing index the Rydberg states are
pushed further towards the surface. This results into an increase in energy
higher than the lower indexed states. Thus a large separation of these
higher states can be seen.

3.3 Surface with External Constant Electric Field

If an electric field ξ is applied the image potential states at the surface are energetically
shifted. In a simple model the potential can be approximated by an infinite triangular
well. The eigenvalues Et.w.

n can be given by [54]:

Et.w.
n = −

(
~

2e2

2m
ξ2

) 1

3

an (3.45)

The an are the root of the Airy function [111] of nth order. The energetically shift of
the image potential states can be observed intrinsically in STM measurements. Here
an electric field is always applied to the sample. The first to investigate the image
potential induced states with an applied electric field were Binnig et al. in 1985 [10].
Binnig et al. called the states field states and that is the term we will use in the
following. The systems they treated were the clean and oxygen covered Ni(100) surface
and they could resolve the first 4 to 5 image states by analyzing the dI/dV spectrum.
No spin resolved measurement was done. Still Ni is a demanding material to investigate
with spin resolved STM because the splitting of the image state without electric field
is measured with spin-polarized IPE (SP-IPE) to be only 13±3 meV for Ni(001) [104]
and 18±3 meV for Ni(111) [76]. A better material to investigate is Fe(110) because
the image potential splitting is found to be 57±5 meV by SP-IPE [77]. Measurements
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on Fe(110) with SP-STM are done in the group of Wiesendanger [62]. The behavior of
localized states in general and specially the behavior of the image potential states are
sketched in figure 3.17. If compared to figure 3.2 it can be seen that the states shift up
in energy. Furthermore the position of the state with respect to surface changes.

3.3.1 Implementation into the GFleur Code

In order to implement the electric field into our calculations the Hartree potential has
to be changed. The constant electric field leads to a modified slope in the vacuum
potential used for the correction (see chapter 2.6.2) of the solution of the Poisson equa-
tion. Additionally the embedding potential has to be adjust. In order to calculate the
correct embedding potential the slope of the constant electric field is continued from
the embedding plane towards the vacuum. The embedding potential is then calculated
by a numerical integration equivalent to the procedure used for the 1/z like potential
explained in section 3.2.3. Moving through the delta region is done analytically. The
embedded Green function and consequently the charge density is calculated within the
self-consistent scheme. Thereby on the one hand the correct potential inside the metal-
lic material can be reproduced and on the other hand the correct slope of the potential
towards the vacuum will be obtained.

Verification of the Implementation

In the series of figures 3.18 the potential of a surface is plotted on a discrete grid of the
GFleur embedded region perpendicular to the surface. 6 atoms can be identified at the
minima in the potential curve. The red curve is representing the potential resulting from
the Fleur supercell calculation, the green curve the uncorrected and the blue curve the
corrected potential in the GFleur program. In the first picture no electric field is applied
to the system. The corrected potential nearly fits the potential given by the supercell
calculation and is shown for comparison with the potential behavior if an electric field is
applied. In the upper right plot of figure 3.18 an electric field is present. The potential
before the self-consistency cycle is plotted. As can be seen in the picture the constant
electric field is also present in the metallic material before the self-consistent calculations
are done. The slope of the constant electric field is simply added to all the potentials
inside and outside the crystal. No screening effects take place which are expected in
case of a metal surface. With increasing number of self-consistent steps this slope inside
the bulk is decreasing until the potential inside is flat and the constant electric field is
screened 3.18c). The slope of the potential of the converged result is the same as the
one applied. Thereby the correct physical properties of a metallic surface in an electric
field are reproduced.

Now systems with different strength of the electric fields can be calculated self con-
sistently. They will be used for the investigation of the image potential induced state
in electric fields.
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Figure 3.18: In the first picture no electric field is applied to the surface. The Green
function embedding technique gives a similar potential (blue) than a Fleur

supercell calculation (red). An electric field is introduced by changing the
boundary condition towards the vacuum. An electric field of 0.01htr

Ȧ
is ap-

plied and a series of self-consitentcy steps is shown. After the first iteration
the potential inside the substrate increases linearly (upper right picture).
In the last picture the potential after 40 iterations is plotted. Inside the
substrate the potential is screened and he correct slope in the vacuum region
is produced.

3.3.2 External E-Field and Image Potential States

If we take the image potential induced states into consideration, the potential towards
the vacuum needs a correction to catch the 1/z behavior. In fact the correction to the
Hartree potential is quite straightforward. In formula (3.38) Vmodel has to be changed
leading to

V ′
H = f(z)

(

Vvac + ξ(z − zΣ) − 1

4(z − zI)

)

+ (1 − f(z))VH. (3.46)

The resulting potential is needed for the numerical calculation of the embedding poten-
tial leading to the image potential induced states. In figures 3.19 and 3.20 the potential
is given for different positions of the image plane for an Ag(100) surface. In the pink
curve the image potential is plotted. In order to see that the correct slope of the applied
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Figure 3.19: The image plane is placed at zI = 0 a.u.. The 1/(z − zI) potential is given
by the pink line. A constant electric field is applied to the surface. The
resulting slope in the potential is close to the expected value (light blue
line) after self consitency is reached.
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Figure 3.20: The image plane is moved to zI = 3 a.u.. Therefore the 1/(z− zI) potential
given by the pink line would lead to a different model potential. In this
picture the potential is not yet mixed.
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electric field is reproduced the blue line is drawn with the given slop. In the left picture
zI is set to zero in the right picture zI is chosen to be 3 a.u. relative to the position of
the topmost atom. In this test a mixing is not included but the embedding potential is
already calculated from the image potential.
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4 Calculations

The computational method we will use in the following is summarized in chapter 2.7.
In section 4.1 the results of an Ag(111) surface calculation are given. A surface state
close to the Fermi energy is observed at Γ and compared to experimental results. In
this calculation furthermore the differences between a film setup and an embedding ap-
proach are discussed. We use this calculation to evaluate the accuracy of the embedding
method.
In section 4.3 the image states of Ag(100) and Fe(110) are investigated without applied
electric field. Thereby the non-magnetic Ag(100) is chosen to test our approach on a
simple surface with huge bandgap. The bandgap allows to rule out resonance states and
thereby to observe the free electron behavior of the image potential states dispersion.
The magnetic Fe(110) is chosen to calculate the magnetic exchange splitting of the im-
age states. The splitting was investigated by several experiments.
In the last section both systems (Ag(100) and Fe(110)) are calculated with applied
electric fields and the image potential induced field states are investigated. STM mea-
surements are compareable to this setup and are done in various groups.

4.1 Surface State

4.1.1 Surface State of Ag(111)

To check the accuracy of the computational method applied to localized states in a first
step the surface state of Ag(111) is calculated. The surface state is located 63 meV below
the Fermi energy at the gamma point of the projected Brillouin zone. Thus the state is
occupied and can be investigated by photoemission spectroscopy. Such measurements
were done by Reinert et al. on Ag, Au and Cu [90]. We will take their measurements
for comparison with our calculated results.
Before the Green function embedding method is used we will start by investigating the
electronic structure at the surface by a film calculation with Fleur. The film setup
was introduced in chapter 2.2.2. By comparing the film setup results and the results
obtained by Green function embedding the advantages of latter becomes obviously.
In the film setup GGA (PBE) is chosen for the exchange-correlation potential, the
muffin-tin radius is set to 2.3 a.u. and the planewave cutoff is 3.7 a.u.−1. A series of
calculations is done with increasing number of layers in the film calculation. In figure
4.1 the Ag surface projected band structure is shown for four different calculations. The
result of a 11 layer film setup is given in the upper left corner of figure 4.1. A surface
state close to the Fermi level is visible at k‖ = Γ. It splits into two lines because of
finite size effects. Since the film has a finite size the two surfaces interact resulting in
the splitting of the surface state. Additionally, we get a finite number of lines in the
projected band instead of a continuous band because the states are calculated for a finite
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Figure 4.1: Fleur film calculations for different systems. On the left hand side the
projected bandstructure of 11 layers of silver and 17 layers of silver are shown.
The projected bands are discretised due to the finite system size. Also the
surface state is splitted because the both surfaces states can interact. With
increasing number of layers this effects become less important. In order to
get rid of the surface state splitting one surface can be covered by a different
material, destroying the surface state on this surface. The results of a layer
of oxygen onto one of the surfaces can be seen on the right hand side. The
surface state is not split but additional states are introduced.

system and the continuous band results from an infinite substrate. The interaction of
the two surfaces is decreasing with film thickness as can be seen by comparing with the
bandstructure of the 17 layer system drawn in the lower left corner. With an infinite
substrate the splitting will disappear and the projected band will be continuous. This
is what GFleur will provide. An alternative solution to the problem of surface state
splitting is to cover one film surface with a different material annihilate one surface
state. The remaining surface state cannot interact with the surface state with at same
energy on the other surface anymore and the splitting is vanishing. This is done by
a layer of oxygen instead of one of the topmost Ag layer. The results are shown on
the right hand side of figure 4.1. The splitting of the surface state disappears but new
states are created, due to the oxygen. Note that the system is not inversion symmetric
any more and the computational effort increases. In order to get a reasonable value of
the surface state energy a 21 layer film calculation is done. The unit cell contains 21
Ag atoms and is inversion symmetric. In figure 4.2 the projected band structure of the
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Ag(111) surface is given. The region close to the Fermi level is enlarged in order to
resolve the splitting. The position of the surface states is determined to −28/−49 meV
and presented in the table 4.1. The position is some meV above the measured one.
More layers and a relaxation of the surface would probably result in a better agreement
with the experiment.

Now the Green function embedding method will be used with the same exchange
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Figure 4.2: The bandstructure of the Ag(111) supercell of 21 layers at k‖ = Γ towards

M is plotted. The splitting of the surface state can be seen in the enlarged
subfigure.

correlation potential. A seven layer slab of silver atoms is separated by a vacuum region
of 19.78 a.u.. The muffin-tin radius is set to 2.235 a.u., the planewave cutoff for the
wavefunction basis to 3.7 a.u.−1 and the cutoff for the potential basis set to 18.2 a.u.−1.
The charge density of the embedded region built from the three topmost layers of the
slab is then calculated self consistently by the Green function embedding method. A
set of 15 energies and 55 k-points from the irreducible part of the Brillouin zone are
chosen and the basis set cutoff is reduced to 3.5 a.u.−1. The energies are taken from
a half circle in the imaginary plane, running from the lowest valence band energy to
the Fermi energy. The g vectors defining the basis are taken from a spherical region of
the reciprocal space in the self-consistent run. In the case of the embedding potential
calculation the g vectors are chosen from a cylindrical region. In order to obtain the
plot 4.3, the k-resolved density of states n(E,k) (spectral function) has to be calculated
for 1600 different energies and 200 points in the two dimensional Brillouin zone along
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Figure 4.3: k-resolved density of states n(E,k) of Ag(111) along ΓM . Bright colors
representing huge DOS. The calculated surface state can be compared to
the experimental result given by the black line.

the high symmetry line ΓM . Note, that in the plot the data is mirrored at the Γ
point and therefore 400 k-points are drawn. The energy has a small imaginary part in
order to resolve the localized state, because the state is a delta peak in n(E,k). The
broadening by different values of imaginary energy are tested and the value of 1.36 meV
is determined to give good resolution without washing out the state. Experimental
results from Reinert et al. [90] are given as black line in figure 4.3. The experimental
value is nicely reproduced. Note that the energy scale is meV resolved.

E [meV] kF [Å−1]

DFT & film 21 layers −28/−49 0.053/0.072
DFT & embedding −59 0.075
exp. (PE) [90] −63±1 0.080

Table 4.1: Theoretical results compared to experimental value of the Ag(111) surface
state position.
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4.2 Image Plane

The image plane zI introduced in chapter 3.2 can be seen as the center of screening charge
in the electrostatic case [64]. The screening charge is induced into metallic surfaces if an
electric field is applied. The charge distribution is roughly approximated by using the
lateral average pseudocharge. The distribution can be calculated for different applied
electric fields. This approach gives reasonable results.

4.2.1 Screening Charge Ag(100)

We use the relaxed setup and the exchange correlation potential of LDA to calculate
the center of gravity of the screening charge. By calculating the mean screening charge
position from the lateral-averaged charge we get approximately 2.7 a.u.. Our calculated
value is close to the result obtained by Ishida and Liebsch [53] who got 2.86 a.u.. The
positions are given on the vacuum side relative to the atomic surface. In figure 4.4 the
lateral-averaged screening charge are plotted for three different values of the electric
field. The screening charge is given by the difference between the charge distribution
with and without an applied electric field.
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Figure 4.4: Screening charge σ induced into the Ag(100) surface with different values
of electric field. z = 0 marks the atomic surfaces. The center of screening
charge can be regarded as the image plane position zI.
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Figure 4.5: Screening charge σ induced into the Fe(110) surface for different values of
the applied electric field.

4.2.2 Screening Charge Fe(110)

In order to estimate the position of the the image plane the center of gravity of the
screening charge is calculated for several values of the applied field. The self-consistent
LDA calculation in the unrelaxed setup is taken. The lateral-averaged pseudo charge
is used and a position of the image plane of around 3.1 a.u. results. To our knowledge
there is no further published position for the Fe(110) image plane calculated by ab initio
methods available. Figure 4.5 shows our calculated screening charges for several different
values of applied electric field.
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4.3 Image Potential States

We will calculate the image potential states of Ag(100) and Fe(110) in the following
sections. For both surfaces the surface setup will be explained in detail because the
influence of the surface relaxation will be investigated. Therefore the results of setups
employing the experimental lattice constant are compared to setups using the theoretical
estimated lattice constant with relaxed surface layers.

4.3.1 Image Potential States of Ag(100)

Surface Setup The image potential states are influenced by the potential in the vac-
uum region. Therefore the workfunction of the surface should be correct estimated.
Since the relaxation of the atoms at the surface result in a change of the workfunction
the surface relaxation has to be taken into account. In order to estimate the relaxed
atom positions the Fleur code offers the option to calculate forces on individual atoms.
Before the forces of the topmost layers of atoms can be calculated the lattice constant
of the substrate has to be determined. This is done by calculating the bulk system of
minimal energy with respect to the lattice constant. For the calculation LDA in the
parametrization by v. Barth and Hedin [9] (called BH in the following) and for GGA
in parametrization by Perdew, Burke and Ernzerhof [80] (abbreviated by PBE) is used.
The total energy of the bulk system is calculated for several different lattice constants.
The results are plotted in fig 4.6, where the red line is a guide to the eye. The mini-
mum of the total energy is extracted by a parabolic fit (green curve) through a set of
the lowest data points. The resulting lattice constants are 3.993 Å (LDA) and 4.147 Å
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Figure 4.6: Estimated the theoretical lattice constant of Ag bulk by searching for the
setup with lowest total energy.

(GGA). The results are in good agreement with the results given by Asato et al. [6]
who calculated 3.989 Å (LDA) and 4.138 Å (GGA). Pivetta et al. [84] estimated the
lattice constant to 4.19 Å and Clarke et al. [25] 4.15 Å in case of a GGA. Asato and
Pivetta used GGA with PW91 the parametrization by Perdew and Wang [81]. In com-
parison with the experimental lattice constant of 4.09 Å[120] the general trend can be
reconfirmed that LDA gives a too small lattice constant and on the contrary that GGA
slightly overestimated the value.



74 CHAPTER 4. CALCULATIONS

The forces acting on the atoms of the three topmost layers are calculated in the fol-
lowing with the lattice constant of lowest energy. A planewave cutoff of 4.0 a.u. and
45 k-points give converged results. Clarke et al. state that the ∆dij are expected to be
insensitive to the choice of the functional. Using their argument we only investigate the
relaxation employing the GGA approximation. Thereby ∆dij is the change in separation
between the first and second layer given as a percentage of the bulk interlayer distance
(∆dij = (dij − d0)/d0). Our results are in well agreement with other calculated values
and they are summarized in tabular 4.2. Thus for the surface setup we get spacings
sketched in figure 4.7.

this work Clarke et al. Bohnen et al. Methfessel et al.
c=4.147 Å [25] [18] [68]

∆d12 −1.15 −1.86 −1.3 −1.8
∆d23 +0.92 +0.68 +1.0 -
∆d34 +0.85 - - -

Table 4.2: Relaxation of Ag(100) in percent of the unrelaxed interlayer spacing.

PSfrag replacements

LDA

1.997 Å

2.014 Å

2.015 Å

1.974 Å

PSfrag replacements

GGA

2.074 Å

2.092 Å

2.093 Å

2.050 Å

Figure 4.7: Positions of the relaxed Ag(100) surface atoms. The topmost three layers
are relaxed.

Workfunction The Green function embedding method is applied until self consistency
is reached. In order to evaluate the influence of the exchange correlation approximation
and system relaxation used three calculations of the workfunction for each approxi-
mation are done. The first calculation uses the experimental lattice constant while the
second uses the theoretical lattice. The third calculation is additionally taking the relax-
ation of the three topmost layers into account. The FLAPW-method with a 9 layer film
setup using GGA and LDA is employed for comparison for all three cases. The work-
function calculated with the Fleur program is determined by a series of self-consistent
9 layer film calculation with increasing planewave cutoff and number of k-points in the
Brillouin zone. The values of parameters are increased until the results of the work-
function become stable. The results of our workfunction calculation are summarized
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c [Å] layer method φ [eV]
relaxed

4.09 -

FLAPW (Fleur)

LDA (BH)
5.12

3.993 - 5.15
3.993

√
5.14

4.09 -
GGA (PBE)

4.27
4.147 - 4.25
4.147

√
4.25

4.09 -
LDA (BH)

5.59
3.993 - 5.47
3.993

√
FLAPW+embedding 5.46

4.09 - (GFleur)
GGA (PBE)

4.72
4.147 - 4.69
4.147

√
4.58

Table 4.3: Calculated workfunction of Ag(100). Results of the Fleur film calculations
in the upper and the results obtained from Green function embedding in the
lower part of the table.

in table 4.3. The LDA calculations always overestimate the workfunction. The GGA
results are comparable to the experimental values. We will use the GGA in the following
to determine the image potential states. Our results can be compared to experimental
and theoretical workfunction. In table 4.4 published values for the workfunction of the
Ag(100) surface are summarized. Experimental results are given in the upper and cal-
culated values in the lower part of the table. It can be seen that the Green function
approaches slightly overestimate the value for the workfunction of Ag(100) while slab
calculations come close to the experimental values found by 2PPE or PE measurements.
It seems to be a general phenomenon that the Green function method gives slightly
higher workfunctions than the corresponding DFT film or supercell calculation. For the
Cu and Au surface this was also observed by Ohwaka, Ishida and Liebsch [74]. They
calculated φAu(111)=5.67 eV, φAu(001)=5.71 eV, φCu(111)=5.19 eV and φCu(100)=5.01 eV
all slightly above the experimental workfunctions.

Calculate the Image Potential States We calculate the embedding potential from
the CBS of bulk silver. The embedding region is cut out of a supercell calculation
with 9 layers. The region includes the middle layer, the 4 surface layers and a vacuum
region of 17 a.u.. The embedding potential is replacing the atom layer to the left of the
atomic layer in the middle of the slab. The planewave cutoff determining the size of the
interstitial basis set is chosen to 3.4 a.u.−1. The muffin-tin radius of the Ag atoms is
chosen to 2.235 a.u.. The embedding potential is calculated with a planewave cutoff of
3 a.u.−1 and napw1 set to 15. A self-consistent charge density of the embedding region
is calculated with a mesh of 16 k-points in the irreducible part of the projected two
dimensional Brillouin zone and 15 energies lying on a half cycle in the imaginary plane.

1napw=number of augmented plane waves
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method published φ [eV]

Schuppler et al. [94] Bi2PPES 1990 4.43 ± 0.01
Giesen et al. [39] 2PPES 1987 4.42 ± 0.02
Reihl et al. [88] IPE 1987 4.35 ± 0.05
Chelvayohan et al. [23] PE 1982 4.22 ± 0.04
Dweydari et al. [29] PE 1974 4.64 ± 0.02

Pivetta et al. [84] DFT - PAW 2005 4.36
GGA (PW91), c=4.19 Å

Ishida and Liebsch1 [53] DFT+embedding 2002 4.71
FLAPW/LDA

Ishida [52] DFT+embedding 2001 4.80
FLAPW/LDA

Aers and Inglesfield [2] DFT+embedding 1989 4.95
LAPW/LDA (BH)

Smith et al. [101] DFT - local orbital 1980 4.2
LDA (Wigner)

Table 4.4: Workfunction of Ag(100) given in literature. Experimental values in the
upper part of the table. Results of DFT calculations are summarized in the
lower part of the table. 1Improved version of the embedding potential generated from
the CBS of bulk Ag compared to reference [52].

The position of the image plane is set fixed to the position calculated by Ishida and
Liebsch [53]. By a first-principle surface embedded Green function approach they got a
position of 2.86 a.u. on the vacuum side of the surface relative to the atomic position2

of the topmost layer. In literature Aers and Inglesfield [2] and Weinert et al. [113] give
values of the image plane close to the one calculated by Ishida et al.. The mixing region
starts 14 a.u. in the vacuum region behind the atomic plane. The mixing function is
applied in a region of 7.97 a.u. (50 points on the FFT grid). Thereby the potential is
only slightly modified. The calculated local density of states (LDOS) at k‖ = Γ for
the unrelaxed GGA calculation is plotted in figure 4.8. The result for the case of the
relaxed silver surface in (100) orientation can be seen in figure 4.9. Comparing both
reveals that the relaxation of the surface results in a better agreement of the image state
energies with experimental data. The effect on the first image state located closest to
the surface is a shift of around 50 meV. The higher Rydberg states are less influenced
by moderate changes of the surface due to their positions further outside in the vacuum.
The experimental results of a 2PPE experiment by Schuppler et al. are given in table
4.5 and as dotted line in the picture. Our calculated states are below the experimental
results except for the measurement of Reihl and Nicholls [88]. They got a value close to
our result for n = 1. To our knowledge there are no other ab initio calculations of the
image potential states of Ag(100) available in literature in order to compare our results
whereas theoretical approaches with model potentials of course always reach close to

2Sometimes the geometric surface is used for reference. The geometrical surface is placed 1/2 interlayer
spacings above the surface while the atomic plane is given by the atomic position of the topmost
layer.
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Figure 4.8: The LDOS of the Ag(100) surface at k‖ = Γ (unrelaxed GGA) is plotted.
The first four image potential states can be seen. Experimental values are
given by vertical dotted lines. Delta peaks broadened by =(E) = 10−4 htr
(2.7 meV).

the measured values [34].

method E1 [eV] E2 [eV] E3 [eV]

Goldmann et al. [40] IPE −0.5±0.2 - -
Schuppler et al. [94] 2PPE −0.533±0.015 −0.162±0.015 −0.075±0.015
Altmann and Dose [4] BIS −0.5±0.2 - -
Reihl et al. [87] IPE ∼ −0.5 - -
Reihl and Nicholls [88] IPE −0.67 - -

this work:
GGA unrelaxed embed- −0.668 −0.193 −0.090

relaxed ding −0.613 −0.182 −0.087

Table 4.5: The positions of the image potential states of Ag(100) observed by experiment
are compared to our results.

Calculate the Dispersion Relation In order to calculate the behavior of the image
potential states a set of 21 k-points along a high symmetry line of the two dimensional
Brillouin zone starting at Γ is chosen with a mesh of 200 energy points. The setup is
unchanged to the one used for calculating the image potential positions. In figure 4.10
the dispersion relation of the first image potential states of the Ag(100) surface can be
observed. The dispersion of a free electron is given by the bright turquoise line in the
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Figure 4.9: The LDOS of Ag(100) at k‖ = Γ (relaxed GGA) is plotted with =(E) =
10−4 htr (2.7 meV). The three topmost layers are relaxed. The positions
of the image potential states are close to the experimental values given by
vertical dotted lines.

plot for comparison. By a first qualitative investigation the effective mass of the state
is close to the electron mass. This result is expected because the electrons are located
far outside the surface and therefore are free in the two dimensional plane parallel to
the surface. In 1985 Garcia et al. [37] measured that in case of surface corrugations the
effective mass is above 1.3me.

Decay of the Image Potential States The image potential states while localized
mainly on the vacuum side can penetrate into the substrate with exponentially decaying
probability density. This can be investigated by analyzing the local density of states at
the different muffin-tin positions. In figure 4.11 the local density of states of the first
three image states is plotted for each of the five muffin-tin types. Indeed the decay
into the substrate follows the assumed ψ = exp(−κz) behavior. By employing linear
regression we get κn=1=0.091, κn=2=0.088, κn=3=0.086 and κn=4=0.086 a.u.−1. The
LDOS of the first image state is higher than the one of the others because it is located
closer to the surface than any other state of the Rydberg series. Furthermore it decays
also fastest. This can be explained by the CBS of Ag. In figure 2.4 the CBS is shown
between the high symmetry points Γ and X. In the (100) direction all k-vectors between
them are projected onto Γ. An arrow in the figure marks the position of the band gap
at the vacuum level. The higher the Rydberg state the closer the state is located at the
band edge. The bandgaps are either connected by loops or the band edge is continued
with an infinite lines in the CBS. In this case a loop connects the band edges. The
closer the Rydberg state the smaller is the decay. The corresponding values obtained
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Figure 4.10: Dispersion relation calculated at the unrelaxed Ag(100) surface. Plotted
is the k-resolved LDOS. The introduced lines represent the experimental
values by Schuppler et al. [94] with an effective mass of 1me.

from the CBS of the silver substrate are κCBS
n=1=0.094, κCBS

n=2=0.091, κCBS
n=3=0.091, and

κCBS
n=4=0.090 a.u.−1 close to the values calculated from the LDOS. The decay is quite

slow, around 6.5 layers are needed before a decay to 1 % is reached.

 0

 5

 10

 15

 20

 25

-4 -3 -2 -1 0
top

D
O

S 
[a

br
.]

layer

n=1
n=2
n=3

Figure 4.11: The image state decay is investigated in the relaxed Ag(100) surface setup.
The LDOS at the topmost layer is highest. The LDOS decays towards
the continuum exponentially. The higher the index of Rydberg series the
smaller is the LDOS in the substrate because the states are located farther
in the vacuum.
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Figure 4.12: Estimated lattice constant of Fe bulk. The total energy of the system is
given with respect to the bulk lattice constant. The lowest value is fitted
by the green curve in the plot.

4.3.2 Image Potential States of Fe(110)

Before the energies of the image states can be investigated the surface setup has to be
explained.

Surface Setup The surface will be relaxed. Therefore the theoretical bulk lattice
constant for the chosen exchange correlation potential is estimated like in the case of
silver. We obtain 2.833 Å in case of the GGA (PBE) calculation and 2.742 Å for the
LDA calculation using the parameters by BH. These results are in very good agreement
with 2.83 Å for GGA and 2.74 Å for LDA calculated by Asato et al. [6] and with 2.744 Å
calculated by Pentcheva [79] with LDA employing also the BH parametrization. The
experimental bulk lattice constant is given by 2.87 Å [78]. Again the forces acting on
the topmost layers are calculated and the positions are changed until the system with
zero forces is found. Two calculations are done with 30 k-points in the 2 dimensional
irreducible Brillouin zone, a planewave cutoff of 4.0 a.u.−1 and the GGA. In the first, the
two topmost layer are relaxed and in the second the three topmost layers are relaxed.
The results are summarized and compared to published values in table 4.6. The order
of magnitude of the relaxation and trend that the layers alter between inwards and
outwards relaxation can be reproduced. The influence of the third layer relaxation onto

this work B loński & Kiejna Stibor et al. Spencer et al. Eder et al.
3layers 2layers [15] [14] [105] [103] [32]

∆d12 −0.23 −0.23 −0.1 −0.11 −0.08 −0.13 −0.2
∆d23 +0.61 +0.62 +0.3 +1.16 +0.40 +0.20 -
∆d34 −0.21 - −0.5 +1.14 −0.25 −0.06 -

Table 4.6: Relaxation of Fe(110) in percent of the unrelaxed interlayer spacing. Stibor
et al. [105] relaxed four and B loński et al. [15] the seven topmost layers. Our
results show a qualitative correct behavior.
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2.016 Å

1.999 Å

Figure 4.13: Positions of relaxed Fe(110) surface atoms. The three topmost layers are
relaxed. Arrows on the left side indicate the relaxation direction.

the two topmost layers is marginal, but nevertheless in the following setups all three
topmost layers are relaxed. Thus for the surface setup we get spacings sketched in figure
4.13.

Workfunction The workfunction of a nine layer film and the workfunctions calculated
by Green function embedding are summarized in table 4.7. In case of the FLAPW
film setup a planewave cutoff of 4.0 a.u.−1 and a mesh of 132 k-points is taken. The
embedding results are obtained by the same setup used in the calculation of the image
potential states and will therefore be explained in detail in the next paragraph. In

c [Å] layer method φ [eV]
relaxed

2.87 -

FLAPW (Fleur)
LDA (BH)

5.52
2.742

√
5.72

2.87 -
GGA (PBE)

4.75
2.833

√
4.78

2.87 -
LDA (BH)

5.49
2.742

√
FLAPW+embedding 5.70

2.87 - (GFleur)
GGA (PBE)

4.67
2.833

√
4.70

Table 4.7: Calculated workfunctions of Fe(110) for different exchange-correlation poten-
tials, surface setups and methods. The results of the film calculations in the
upper and the results of the Green function embedding method in the lower
part of the table.

table 4.8 published values of the Fe(110) workfunction are given. Again the Green
function method by Inglesfield seems to slightly overestimate the workfunction. The
result obtained for the Fleur film calculation with the GGA for the exchange-correlation
potential is in good agreement with the GGA slab calculation by B loński et al.. We get
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method published φ [eV]

Fischer et al. [35] 2PPE 1992 5.12 ±0.06
Pirug et al. [83] X-ray PE (XPS) 1980 5.05

B loński and Kiejna [15] VASP, DFT - PAW 2007 4.75 (4.76)
GGA

B loński and Kiejna [14] VASP, DFT -pseudopotential 2004 4.82 (4.81)
GGA

Nekovee et al. [71] DFT+embedding - LAPW 1993 5.30
LDA (BH)

Aldén et al. [3] TB-LMTO Green func.[97] 1992 5.21
LDA (BH/C.A.)

Skriver et al. [98] TB-LMTO Green func.[97] 1992 5.16
LDA (C.A.)

Table 4.8: Published workfunctions of the Fe(110) surface (Relaxed result given in paren-
theses). Experimental results in the upper and theoretical estimations in the
lower part of the table.

the same value of 4.75 eV in case of the unrelaxed system and similar result of 4.78 eV
in case of the relaxed system.

Calculate the Image Potential States We calculate the embedding potential from
the CBS of bulk iron. The embedding region is cut out of a supercell calculation with 9
layers. The region includes the 4 surface layers and a vacuum region of approximately
14 a.u.. The embedding potential is replacing the atom layer in the middle of the slab.
Within the Fleur calculations a planewave cutoff, determining the size of the interstitial
basis set, is chosen to 3.7 a.u.−1. The muffin-tin radius of the Fe atoms is chosen to
2.31 a.u.. The embedding potential is calculated with a planewave cutoff of 3 a.u.−1 and
napw set to 15 defining the basis set. A self-consistent charge density of the embedding
region is calculated with a mesh of 20 k-points in the irreducible part of the projected
two dimensional Brillouin zone and 15 energies lying on a half cycle in the imaginary
plane.
An image plane at zI = 3.835 a.u. (one interlayer spacing) measured from the atomic
position of the topmost layer is used in the setup employing the GGA. The mixing
region is starting at zm = 7.2 a.u. and is reaching over 8.37 a.u. (50 FFT grid points).
In case of the relaxed setup the position of the mixing region is changed slightly to be
zm = 7.1 a.u.. In figure 4.15 the LDOS of the relaxed Fe(110) setup is plotted using
the GGA. The first image state of the minority spin still shows a little double peak due
to the additional state mentioned above. In case of the LDA a different image plane
position is chosen. We use the calculated value of the screening position of zI = 3.1 a.u..
The mixing parameter has to be adjusted to zm = 12.2 a.u. in order to obtain the
experimental value of the first image state. In general the positions of the image states
and the magnetic exchange splitting are stable under reasonable changes in position
of the image plane and mixing parameter. Only the energy of the first Rydberg state
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Figure 4.14: Spin resolved LDOS of Fe(110) at k‖ = Γ (unrelaxed GGA). Dotted lines
indicate experimental values by Fischer et al. [35]. All energies are given
relative to the vacuum energy. Delta peaks broadened by a complex energy
of =(E) = 10−5 htr (0.27 meV).

can be influenced by the parameters. The calculated image state energies are in good
agreement with the measured values. In table 4.9 our results are summarized. The image
state position of the majority spin is given by Nekoveek et al. and our work whereas the
experimental values are not spin resolved. We are not getting better results by taking
care of the relaxation of the topmost layers. As shown before the relaxation is of the
order of half a percent of the bulk interlayer spacing and is therefore not influencing the
electronic structure of the surface to a large extent.
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Figure 4.15: LDOS of Fe(110) at k‖ = Γ (relaxed GGA). The artificial broadening is
introduced by a complex energy of =(E) = 10−5 htr (0.27 meV).

method year E1 [eV] E2 [eV] E3 [eV]

Fischer et al. [35] 2PPE 1992 −0.73 −0.18 −0.05
Himpsel [46] IPE 1991 −0.70±0.15 - -
Scheidt et al. [93] IPE 1983 - - -

Nekovee et al. [71] embedding 1993 −0.71 - -

this work:
LDA unrelax. 2007 −0.76 −0.22 −0.10

relaxed embedding 2007 −0.81 −0.22 −0.09
GGA unrelax. 2007 −0.71 −0.20 −0.09

relaxed 2007 −0.79 −0.20 −0.09

Table 4.9: Experimental and theoretical energies of the image potential states of Fe(110).
The image plane for both of our LDA/GGA calculations is fixed. The energy
of the n = 1 image states is moved by the mixing paramenter to be in good
agreement with experiment and previous theoretical values.
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method year ∆E1 [meV] ∆E2 [meV] ∆E3[meV]

Thomann et al. [108] 2PPE 2000 85±20 - -
Passek et al. [77] IPE 1995 57± 5 - -
Fischer et al. [35] 2PPE 1992 < 80 - -

Nekovee et al. [71] embedding 1993 55 - -
Himpsel [46] model 1991 27 - -
Borstel et al. [19] model 1987 30-200 - -

this work:
LDA unrelax. 2007 133 25 10

relaxed embedding 2007 108 20 5
GGA unrelax. 2007 124 16 7

relaxed 2007 167 18 5

Table 4.10: Splitting of the image potential states of Fe(110). Our splitting is larger
than values of previous publications. The splitting is stable under changes
of image plane position or applied mixing but it turns out to be influenced
by the surface setup.

Magnetic Exchange Splitting The magnetic exchange splitting is investigated and
compared with published data (see table 4.10). Obviously our calculations reproduce
the splitting in a qualitative way. While the splitting for the Rydberg states higher than
n = 2 are nearly unchanged by the exchange correlation functional, the layer setup or
the mixing parameter chosen, the splitting of the first state is changing. The relaxed
setup is giving a bigger splitting of the states if GGA is employed. If the LDA is used
in the relaxed setup the splitting becomes smaller. Nekovee et al. [71, 72, 73] got a
splitting of 55 meV in very good agreement with the experimental result [77] by using
also the Green function embedding technique. In contrast to our calculations they used
the LDA in a smaller embedding region consisting of only one atom and some vacuum
region.
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4.4 Image Potential Induced Field States

An electric field is applied to the surface setup and the energies of the image potential
states are investigated. Experimentally, the investigation of image potential states via
STS is equivalent to our calculation in a first approximation (e.g. neglecting the in-
fluence of the tip [75, 26]). In STM experiments the energies of the image states can
be measured and in spin-polarized STM experiments even the splitting of the image
states can be resolved. The STM spectra are smeared due to the influence of the tip [75]
making the evaluation of the spectra difficult. Strictly speaking in this measurements
not the image potential states are investigated but image potential induced field states
because in all STM measurements an electric field is applied to the surface. We will use
the computational method as explained in chapter 2.7. The calculations are done for
both systems with setups described in detail in the previous section.
For a first example the Ag(100) surface is calculated. Compareable measurements with
STM were done by Pivetta et al. [84]. The image potential induced field states show
the same qualitative dispersion than the measurement of the image potential states of
Ni with applied electric field of Binnig et al. [10] in 1985 with non spin-resolved STM.
After silver we investigate the Fe(110) surface. Especially the change in magnetic ex-
change splitting was traced for different values of applied electric field strength. The
results can be compared to measurements done with spin-resolved STM [62]. The tran-
sition of field states located in a band gap of the substrate to resonances which are
formed at energies with the bulk states present can be observed in both calculations.

4.4.1 Field States of Ag(100)

First the unrelaxed GGA setup explained in 4.3.1 is used for different applied electric
fields reaching from 0 to 0.5 eV/Å. For each electric field the local density of states is
calculated at k‖ = Γ. The properties of the image potential states can be extracted
from the broadened delta peaks of the plot. The artificial broadening is introduced by a
complex energy of =(E) = 10−4 htr (2.7 meV). In figure 4.16 the local density of states
is given at an applied electric field strength of 0.025 eV/Å. The resulting energies of the
image potential states for several different electric fields are plotted in figure 4.17. We
find that with increasing electric field the energy of the field states rises. The qualitative
behavior of the calculated field states is in accordance to experimental results [10] and

reproduces the En ∝ ξ
2

3 behavior found for an infinite triangular potential well model
given by Eq. (3.45). While most of Fig. 4.20 might have been deduced from a much
simpler calculation, a detail in this plot shows the advantage of our semi-infinite ab
initio calculation. At about 1.9 eV above the vacuum level a bending of the curve can
be seen (especially for n = 2 and n = 3 states). We claim that this is a result of the
image potential states reaching the bulk states of the silver surface. Thus the field states
become resonance states. An investigation of the transition from an image state to an
image resonance in the case of zero field with increasing k‖ was published by Nekovee
and Inglesfield [72]. Here we get a transition due to the increasing of the electric field
pushing the image states up in energy and thus out of the band gap.
In figure 4.18 the local density of states of Ag(100) is given for energies far above the
vacuum energy without applied electric field. In the region below the vacuum energy
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Figure 4.16: LDOS of Ag(100) at k‖ = Γ (unrelaxed GGA) with applied field of

0.025 eV/Å. The states of the Rydberg series are separated because they
are pushed towards the substrate by the electric field.
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Figure 4.17: Field states of Ag(100) at k‖ = Γ (unrelaxed GGA). At around 1.9 eV a
change in slope can be seen. At this point the band edge of the substrate
is reached and the field states become resonance states.
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four delta peaks are visible at the image potential energies. Then a region of a free
electron-like square root behavior follows. At about 1.9 eV the projected bulk band
appears. In order to investigate the transition from image states to resonance states
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Figure 4.18: LDOS of Ag(100) at k‖ = Γ (unrelaxed GGA). The band edge of the
substrate can be found at around 1.9 eV by a rapid increase in local density
of states. Its position is marked by a vertical black line.

the two pictures 4.19 are given. The upper LDOS is obtained by calculating the LDOS
with an electric field of 0.129 eV/Å. Three delta peaks are present below band edge
at 1.9 eV. Above this energy four broadened peaks are visible. The discrete states are
interacting with the continuum band of the bulk. Resonance states are resulting. In the
lower picture the electric field is increased to 0.231 eV/Å. Only two delta peaks remain
because the third one is already pushed into the bulk band. The separation between
the states is large compared to the system with lower electric field and the states are
moved to higher energies.
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Figure 4.19: Field states of Ag(100) at k‖ = Γ (unrelaxed GGA) for E-field of

0.129 eV/Å and 0.231 eV/Å. The band edge of the substrate at around
1.9 eV is marked by a vertical black line. The field states become reso-
nance states.
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Relaxed Surface The image potential induced field states are calculated for the relaxed
surfaces. The surface relaxation of Ag(100) is explained in section 4.3.1. Only small
qualitative changes can be seen by comparing figure 4.20 with figure 4.17 presenting the
results for the unrelaxed surface. From the LDOS at zero electric field the band edge
is determined to be 1.79 eV above the vacuum energy. By investigating the CBS of the
silver substrate shown in figure 2.4 the band edge can be found at 1.73 eV. Both values
agree nicely if the artificial introduced broadening of the LDOS is considered.
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Figure 4.20: Field states of Ag(100) at k‖ = Γ (relaxed GGA). Only marginal changes
compared to the unrelaxed setup are visible. The shaded area marks the
projected band of the silver substrate at 1.73 eV above the vacuum level.
At this energy a transition from the field states to the resonance states
takes place and can be observed by the change of slope.
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4.4.2 Field States of Fe(110)

The unrelaxed GGA setup from 4.3.2 is calculated for different values of the applied
electric field. In the subfigure the change in magnetic exchange splitting is shown. This
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Figure 4.21: Field states of Fe(110) at k‖ = Γ (unrelaxed GGA). The differences of the
image state position between minority and majority spin are plotted in the
small subfigure.

is the most exciting result of the calculation. In figure 4.22 the result is shown enlarged.
Two remarkable features are visible. At a point of about 0.32 eV/Å the splitting of the
second image potential state becomes larger than the splitting of the first state. This
point is marked ’A’ in the picture. This has also been observed experimentally [62].
A second feature is the bending of the curve marked by point ’B’ in the plot. This
bending can be observed for the image states n = 2 to n = 4. The same behavior for
the first image state is expected above the calculated energy. The interpretation needs
another visualization combining both pictures. In figure 4.23 both plots are combined.
The vertical lines are marking the beginning of the curvature of the n = 4, n = 3 and
n = 2 state from left to right. The horizontal line3 in the upper part is connecting all
three lines and indicates that in all three cases the bending begins at 2.4 eV. We expect
this feature to result from the projected band structure of the substrate. A bulk band
begins and instead of image states resonance states are resulting [72]. To confirm this
the local density of states of the field free system is investigated in figure 4.24. If the
energy is above the vacuum energy a free electron like behavior with some oscillations
due to the integration over finite regions is observed. The majority state reaches the
projected bulk band at ∼2.4 eV, the projected bulk band of the minority spin is ∼3.9 eV
above the vacuum energy. By evaluating the CBS of the Fe substrate the band edge is

3crossing all others at a right angle
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Figure 4.22: Magnetic exchange splitting, Fe(110) at k‖ = Γ (unrelaxed GGA). Two
remarkable features are highlighted. At point ’A’ the splitting of the second
image state becomes larger than the splitting of the first image state. At
point ’B’ the slope of the curvature changes. Both features can be explained
by the projected band structure of the substrate.

determined to 2.46 eV and 3.95 eV. Now the bending can be explained. If the energies
of the majority field states reach the band edge of the majority state the states are
deflected. This results in a larger spin splitting.
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Figure 4.23: In the upper panel the field states of Fe(110) (unrelaxed GGA) at k‖ = Γ
are shown. The difference between the majority and the minority state is
plotted in the lower panel. The slope of this magnetic exchange splitting
is changing. These positions are mapped onto the field states plot by the
vertical lines with colors corresponding to the number of the Rydberg state.
It can be seen that they all cross there field state curve at the same energy of
around 2.4 eV. This is indicated by the black horizontal line. The projected
band of the majority spin starts at around 2.4 eV. It explains the features
seen in the magnetic exchange splitting plot.
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A Appendix

A.1 Numerov Algorithm

The Numerov algorithm can be used for solving a second order differential equation
without first derivative but with linearity of the function numerically. An important
differential equation fulfilling the requirements is the Schrödinger equation. We will
concentrate on the one dimensional case in the following.

(
d2ψ(x)

dx2
+ k2(x)

)

ψ(x) = 0 (A.1)

The Taylor series for ψ(x+ ∆x) is

ψ(x + ∆x) = ψ(x) + ∆xψ
′(x) +

∆2
x

2
ψ(2)(x) +

∆3
x

6
ψ(3)(x) + ... (A.2)

Adding the series of ψ(x− ∆x) and solve for the second derivative we get:

ψ(2)(x) =
ψ(x+ ∆x) + ψ(x− ∆x) − 2ψ(x)

∆2
x

− ∆2
x

12
ψ(4)(x) +O(∆4

x) (A.3)

So far the approach was quite straightforward, but in a next step we act on the
Schrödinger equation with 1 + (∆2

x/12)d2/dx2 and get

ψ(2)(x) + k2(x)ψ(x) +
∆2
x

12
ψ(4)(x) +

∆2
x

12

(
k2(x)ψ(x)

)
= 0. (A.4)

Now substituting (A.4) into (A.3) leads to

ψ(x+ ∆x) + ψ(x− ∆x) − 2ψ(x) + h2k2(x)ψ(x) +
∆4
x

12

d2

dx2

(
k2(x)ψ(x)

)
+O(∆6

x) = 0.

(A.5)

We can express d2

dx2 (k2(x)ψ(x)) by a finite difference formula:

d2

dx2

(
k2(x)ψ(x)

)
≈ k2(x+ ∆x)ψ(x + ∆x) + k2(x− ∆x)ψ(x− ∆x) − 2k2(x)ψ(x)

∆2
x

(A.6)

Thus the Numerov algorithm for one step is obtained after rearranging from (A.4) to:

ψ(x + ∆x) =
2
(
1 − 5

12
∆2
xk

2(x)
)
ψ(x) −

(
1 + 1

12
∆2
xk

2(x− ∆x)
)
ψ(x− ∆x)

1 + 1
12

∆2
xk

2(x+ ∆x)
+O(∆6

x)

(A.7)
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