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Introduction

e control and manipulation of electron spin currents in metals is one of the grand chal-
lenges in the ĕeld of spintronics. Being a truly multidisciplinary ĕeld it combines key in-
sights from magnetism research, semiconductor and mesoscopic physics, and optics with
technological advances such as the structure miniaturization of nanodevices. Even though
it is a relatively recent ĕeld, it relies closely on a long tradition of investigations. One of the
pioneering work was provided by Mott already in 1936 [1, 2], who explained the unusual
behavior of the resistance in ferromagnetic metals with the concept of spin-polarized cur-
rents. Furthermore, the discovery of the giant magnetoresistance effect (GMR) by Albert
Fert [3] and Peter Grünberg [4] in 1988 mark a breakthrough in spintronics, which was re-
warded with the Nobel price in 2007 and led to a very successful application: already eight
years aer its discovery, the effect was exploited in hard disk drives common to most PCs;
its spectacular innovation was the transformation of spin information into charge current.
Almost at the same time, Johnson and Silsbee [5, 6] for the ĕrst time succeeded to electri-
cally inject andmeasure a non-equilibrium spin accumulation inmetals, establishing a new
method to detect spin relaxation.
All these ĕndings rely on three fundamental characteristics of electrons,making themhighly
attractive for the transfer of information [7]: First, they can be polarized and store infor-
mation in their spin state (up or down). Secondly, their mobility allows to transfer the
information to another place, where, third, the information can be read out. Of course,
this works only if the information is not lost, i.e. the spin state has not changed during the
transport process.
e decay of a non-equilibrium spin state towards an equilibrium is generally called spin re-
laxation. e strength of spin relaxation is quantitatively speciĕed by a spin-relaxation time
T1, aer which the system has come close to equilibrium, or the related spin-relaxation
length λ, characterizing the length aer which the spin current has decayed. In order to
ensure the successful transfer of information, long spin relaxation times are desired1. Fur-
thermore, the active manipulation of the spin states must be able to beneĕt fully from these
properties; otherwise, the sheer existence of two spin states is of limited use. ese two
closely related issues are the major subject of most of theoretical and experimental investi-
gations in the ĕeld of spintronics.

1An exception are devices, for which short switching times are required.

v



vi Introduction

Spin relaxation is a very complex phenomenon. It strongly depends on the investigatedma-
terial, and can bemodulated by a great variety of parameters. Changing the dimensionality,
doping or alloying can reduce or enhance the spin relaxation by several orders of magni-
tude [8]. ere are several mechanisms of spin relaxation, but most of them are induced
by spin-orbit coupling, providing a spin-dependent potential, which together withmomen-
tum scattering processes can be considered as a randomizing force. e twomost important
mechanisms of spin relaxation are the Elliott-Yafetmechanism [9] and theD'yakonov-Perel'
mechanism [10]. Whereas the ĕrst one leads to a decrease of spin-relaxation times for large
momentum scattering rates, the latter mechanism yields the inverse behavior: large mo-
mentum scattering rates entail long spin-relaxation times.
e Elliott-Yafet mechanism is dominating in inversion-symmetric metals, in small-gap
semiconductors as well as in those with a large spin-orbit coupling. In contrast, the
D'yakonov-Perel' mechanism is uniquely present in systems without inversion symmetry
and based on the splitting of the energy levels caused by the interplay of asymmetry and
spin orbit-coupling together with momentum scattering.
Although spin relaxation in semiconductors has been studied intensively, there are not so
many studies on this subject in metals. eoretical investigations of spin relaxation due
to electron-electron scattering was recently published by [11], while ĕrst results for ab ini-
tio spin-relaxation times in metals caused by impurity-scattering have been published in
[12, 13]. Furthermore, an investigation of conduction electrons in polyvalent metals (Al)
was provided by [14].
Experimentally, spin relaxation in metals has been ĕrst studied in Na, Be and Li with the
conduction-electron spin resonance technique (CESR) [15], allowing for an indirect mea-
surement of spin-relaxation times. Already these early investigations have shown that spin-
relaxation times strongly depend on the impurity concentration. Furthermore, a linear
scaling with temperature has been observed [16, 17]. With the development of the spin-
injection technique in [5], the detection of spin-relaxation times became experimentally
feasible. Compared to the spin resonance technique, it has the advantage of not requiring
magnetic ĕelds and enabling the measurement of spin-relaxation times in ĕlms [6, 18, 19],
superconductors, spin-glasses, and Kondo systems. Just recently, the measurement of spin-
relaxation times via the inverse spin Hall effect was realized in two different setups [20, 21]
and spin relaxation in e.g. Pt, Pd, Au and Mo has been studied.
As already mentioned, the experimental investigations of spin-relaxation times in metals
have revealed, that spin-relaxation processes are dominated by scattering at impurities and
phonons. Whereas phonons can be frozen out, in preparing samples a small concentration
of impurities and defects cannot be avoided. A ĕrst goal of this thesis is to contribute to this
ĕeld of exciting physics, providing a systematic ab initio study of impurity scattering in the
bulk of noble metals. e calculations of spin-relaxation times together with momentum
relaxation allow to draw conclusions about the dominating spin-relaxation mechanisms.
Coming back to the aspect of downscaling of nanoelectronic devices, not only the charac-
teristic ofmaterials on an atomic scales gains importance, but also two-dimensional systems
get into the focus of research. Oen, at surfaces or thin ĕlms, physics completely change.
In some materials such as at the (111) surfaces of the noble metals copper, silver and gold
surface states form and dominate the electron dynamics. To understand these electronic
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excitations at surfaces even without spin-orbit coupling is of great interest, because their
temporal evolution determines the effectiveness of many important applications [22]. In
this extensive ĕeld of research, in the last years a lot of theoretical and experimental re-
search was done, which is not only due to the widespread of the subject; apart from the
great variety of systems which could be investigated, several very powerful methods for its
investigation have been developed [23]. While in (angle-resolved) photoemission experi-
ments an indirect measurement of surface-state lifetimes via the linewidth is possible [24],
two photon photoemission (2PPE) [25, 26] enables a direct measurement of lifetimes. In
addition, lifetime measurements using scanning tunneling microscopy and spectroscopy
[22] allows for a local investigation of surfaces, enabling the exclusion of defects and grain
boundaries. Similar as in photoemission spectroscopy, surface-state lifetimes can then be
extracted from the spectral linewidth. Just as spin-relaxation times, surface state lifetimes
are reduced by different scattering mechanisms [23], namely scattering at crystal defects,
phonons and by electron-electron scattering [27]. erefore, a second goal of this thesis
is to focus on the lifetime reduction of the (111) surface states of copper, silver and gold
caused by scattering at impurities and defects; these are dominant at low temperatures, and
in contrast to electron-electron scattering [27] and scattering at phonons they are not so
well studied so far. Filling this gap is the second aim of this thesis.
e third goal of this thesis is to combine the ĕrst two aspects, i.e. to gain inside into spin-
relaxation mechanisms at surfaces and in ultrathin ĕlms. As we ĕnd, the reduction of di-
mensionality affects the spin relaxation in non-trivial ways, due to effects of quantum con-
ĕnement or by the onset of structural asymmetry in deposited ĕlms.

e thesis is structured as follows. eĕrst two chapters give a short introduction to the the-
ories providing the basis of our calculations, namely density functional theory (DFT) [28,
29] in chapter 1 and the Korringa-Kohn-Rostoker method (KKR) [30, 31] for electronic-
structure calculations in chapter 2. e latter is based on Green functions and follows a
multiple scattering ansatz. erefore, it is very well suited for the numerical treatment of
scattering processes; the scattering ansatz is exploited in chapter 3, where a scheme to cal-
culate the band structure, the Fermi surface and the momentum-dependent wavefunction
on the Fermi surface is derived. Furthermore, the formalism used to describe impurity
scattering is introduced. e resulting scattering matrix yields the scattering rate from one
momentum state to a second one due to scattering at impurities in momentum space. It is a
central quantity from which a number of physical quantities can be obtained. In this work,
we use it for the calculation of momentum-relaxation times and residual resistivities.
In chapter 4 spin-orbit coupling is discussed which is of central importance to this work.
Aer giving a short introduction into the underlying theory, we will outline how it is in-
cluded in the multiple scattering formalism of the KKR method. e derivation of this
scheme and its implementation within the KKR code was an important part of this thesis.
It allows for the calculation of the (momentum-dependent) spin expectation values and the
Elliott-Yafet spin-Ęip parameters. We demonstrate that the degeneracy of wavefunctions
for inversion-symmetric systems due to spin-orbit coupling leads to unexpected phenom-
ena concerning the spin expectation values. Using a simple analytic model we show that
these are not due to a numerical mistake but of fundamental nature.
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Furthermore, the Lippmann-Schwinger equation applied to impurity scattering is extended
to spin-Ęip scattering processes. A general expression including the spin degrees of freedom
for the scatteringmatrix is given. Finally, we demonstrate how spin-conservingmomentum-
relaxation times as well as spin-Ęip relaxation times are obtained from the scatteringmatrix.
Chapter 5 provides some numerical tests of the implementation of spin-orbit coupling in
the code and discusses solutions of some of the problems we have encountered.
In the remaining three chapters 6 to 8, we ĕnally present our calculated results. e main
topic of chapter 6 are spin-conserving and spin-relaxation processes due to impurity scat-
tering in the fcc bulk metals copper and gold. In these systems, the Elliott-Yafet mechanism
for spin-Ęip scattering prevails. erefore, this chapter starts with a theoretical outline of
this mechanism. Aerwards, we discuss unexpected results from test calculations of spin-
conserving and spin-Ęip scattering rates. ese results are substantiated by similar ĕndings
obtained for a simple tight-binding program, documented in Appendix C. Furthermore, we
compare the calculated momentum-relaxation and spin-relaxation times to numerical and
experimental data.
A systematic study of momentum-relaxation and spin-relaxation times for 3d, 4sp, 4d, 5sp,
5d and 6sp impurities in gold and copper hosts is presented. e role of the spin-orbit
coupling in the host is investigated and the trends for spin-conserving and spin-Ęip scatter-
ing rates are compared. In order to understand the differences between these two trends,
Wigner delay times as well as residual resistivities are calculated.
At the end of this chapter we investigate correlated scattering processes, i.e. multiple scat-
tering at neighboring impurities, which have not been investigated so far.
Chapter 7 focuses on spin-conserving scattering processes occurring at the (111) surfaces
of copper, silver and gold. Surface-state lifetimes due to impurity scattering are calculated
for impurities in the surface, one layer below the surface as well as for adatoms. Signiĕcant
qualitative differences in the trends are obtained. At the end of this chapter, we present
surface-states lifetimes as well as residual resistivities in thin ĕlms for different ĕlm thick-
nesses.
For many applications such as the spin Hall effect [32] as well as for spin relaxation, spin-
orbit induced effects occurring on surfaces and thin ĕlms are of crucial importance. ere-
fore, in chapter 8 of this thesis we consider quasi two-dimensional copper and gold systems
as in the chapter before, but under the inĘuence of spin-orbit coupling. Furthermore, thin
ĕlms with broken symmetry are investigated, where the spin-transport processes are fun-
damentally different compared to symmetric systems due to the appearance of spin-orbit
ĕelds, leading to the D'yakonov-Perel' mechanism. In the presented results we show that
quantum conĕnement leads to hot spots for spin-Ęip scattering that are absent in the bulk,
and we investigate the shape and strength of spin-orbit ĕelds.
e results of this thesis are summarized in chapter 9.



CHAPTER 1

Density functional theory

In order to describe the chemical and physical properties of materials correctly, a quantum-
mechanical treatment of the many-particle system of electrons and nuclei with their basic
electrostatic Coulomb interactions is indispensable. Such systems are characterized by the
many-body Hamiltonian

Ĥ(r1, . . . , rN) = [T̂ + Û + V̂ext] (1.1)

= [−
N

∑
i=1
∇2
i +∑

i,j

1

∣ri − rj ∣2
+

N

∑
i=1
Vext(ri)] ,

where Vext denotes an external potential and ri are the positions of the particles. In the
above formula, atomic units h̵ = 1, me = 1/2 and e =

√
2 have been used. e solution of

the corresponding Schrödinger equation

ĤΨ = EΨ, (1.2)

the many-body wavefunction Ψ(r1,⋯, rN), is a very complicated object since it is a func-
tion of 3N spatial variables and N spin variables. It is obvious that it cannot be obtained
without an approximation and even if this was the case, it would have been a too compli-
cated object to understand and predict properties of real materials.
e ĕrst idea how to deal with this problem came byomas [33] and Fermi [34] in 1927,
who obtained a heuristic description of the many-electron system totally in terms of the
electronic density. With this ansatz they provided the conceptual root of modern den-
sity functional theory (DFT) which formally reduces the many-body problem to a single-
electron problem. e basic statement of DFT is that all ground state properties of the
system are uniquely determined by the ground state electron density n0(r). It goes back to
the original works of Hohenberg and Kohn in 1964 [28]. In this publication, Hohenberg
and Kohn showed that any property of a system of interacting electrons can be viewed as

1



2 1. Density functional theory

a functional of the ground state density n0(r). However, since the exact functional is not
known, the statement is rather abstract and just by itself of no practical use. e key to its
application was provided only shortly aer that in 1965 by Kohn and Sham [29] by intro-
ducing a ĕctitious, auxiliary electron system of non-interacting particles with an effective
potential Veff(r) constructed such that the density of the auxiliary non-interacting electron
system equals the density of the original system.
With this formulation Kohn and Sham paved the way to modern density functional theory
which since then has had many applications. It is nowadays the basis of most present-day
methods for treating electrons in atoms, molecules and solids.

1.1 Hohenberg-Kohn theorems

In their publication of 1964 [28], Hohenberg and Kohn formulated density-functional the-
ory as an exact theory of many-body systems. is fundamental work consists of two basic
theorems.

Theorem I For any system of interacting fermions in an external potential Vext(r), the
potential Vext(r) is determined uniquely, up to a constant, by the ground state particle den-
sity n0(r).

Corollary I Since both the kinetic energy and the Coulomb interaction are known, ac-
cording to the ĕrst theorem the Hamiltonian is fully determined, except for a constant shi
in the energy. erefore, the many-body wavefunctions for all states including the ground
state and all excited states are fully determined, too. Consequently, it follows that all prop-
erties of the system are completely determined by the ground state density only.

According to Levy [35], the unique energy functionalE[n] can be deĕned as the minimum
over all wavefunctions which yield the density n(r),

E[n] = min
Ψ→n
⟨Ψ∣T̂ + Û + V̂ext∣Ψ⟩ (1.3)

= F [n] + ∫ d3r n(r)Vext(r) .

In the latter equation, the universal functional F [n] with

F [n] = ⟨Ψ∣T̂ + Û ∣Ψ⟩ (1.4)

was introduced being universal in the sense that it does not depend on the external potential
Vext(r).

Theorem II For any particular Vext(r), the energy obtains its minimum for the ground
state density n0 and yields the ground state energy E0 = E[n0].
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Corollary II e functional E[n] alone is sufficient to determine the exact ground state
energy E0 and ground state density n0(r). In general, excited states of the electrons must
be determined by other means. Nevertheless, the work of Mermin [36] shows that ther-
mal equilibrium properties such as speciĕc heat are determined directly by the free-energy
functional of the density.

e proof of the Hohenberg-Kohn theorem is simple and based on the Rayleigh-Ritz prin-
ciple for the ground state energy, given by E0 = ⟨Ψ0 ∣Ĥ ∣Ψ0⟩. It enables the ground state
electron density to be calculated variational. For further information, see [37].
Originally, Hohenberg and Kohn formulated the two theorems for non-degenerate ground
states. However, at later times, the theorems were extended to the case of degenerate sys-
tems.

1.2 Kohn-Sham equations

Hohenberg and Kohn have transformed the formidable problem of ĕnding the minimum
of ⟨Ψ∣Ĥ ∣Ψ⟩ with respect to the 3N-dimensional trial wave function Ψ into the problem of
ĕnding theminimum ofE[n]. However, since the explicit form of the functionalE[n] (see
eq. (1.4)) is not known, the theorems themselves are of no practical use. e key for their
application was given by Kohn and Sham [29] who used the variational principle implied by
theminimal properties of the energy functional to derive single-electron Schrödinger equa-
tions. eir basic idea was to to introduce a ĕctitious auxiliary system of non-interacting
particles with an effective external potential Veff(r) constructed such that the density of the
auxiliary non-interacting system equals the density of the interacting systemof interest. e
one-to-one correspondence between the densities and the effective potentials is guaranteed
by the Hohenberg-Kohn-theorems applied for U = 0. In this case, the universal functional
F [n] reduces to the single-particle kinetic energy functional Ts[n], and the total-energy
functional results in

Es[n] = Ts[n] + ∫ d3r Veff(r)n(r) . (1.5)

Application of the Hohenberg-Kohn variational principle as formulated in eorem II in
section 1.1 then leads to

δ

δn(r)
[Es[n] + µ [N − ∫ d3r n(r)]] = δTs[n]

δn(r)
+ Veff(r) − µ = 0 (1.6)

wherewehave introduced the Lagrange parameterµ so that conservation of particles ∫ n(r) =
N is guaranteed.
Using single-particle wavefunctions Φi(r) allows to construct the density n(r) as well as
the kinetic energy functional Ts[n] in the form

n(r) =
N

∑
i=1
∣Φi(r)∣2 (1.7)
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and
Ts[n] =

N

∑
i=1
∫ d3r ∇Φ⋆i (r)∇Φi(r), (1.8)

respectively. e index i denotes both the spatial as well as the spin quantum numbers,
and N is the highest occupied state. Variation of E[n] with respect to the single-particle
wavefunctions ψi(r) then yields theN equations

[−∇2 + Veff(r) − µ]Φi(r) = ϵiΦi(r) , (1.9)

which are the so-called Kohn-Sham equations. e parameter ϵi was introduced to guar-
antee for the normalization of the orbitals Φi(r), thus ⟨Φi∣Φi⟩ = 1 .
For solving the Kohn-Sham equations, it is necessary to ĕnd a useful expression for the ef-
fective potential Veff(r), which is still unknown. erefore, Kohn and Sham suggested the
following splitting of the functional E[n] (see eq. (1.5))

E[n] = Ts[n] + ∫ d3r Vext(r)n(r) +
1

2∬
d3r d3r′

n(r)n(r′)
∣r − r′∣

+Exc[n], (1.10)

where the third term represents the well-established Hartree-functional; the fourth term is
the so-called exchange-correlation energy functional deĕned as

Exc[n] = F [n] − Ts[n] −
1

2∬
d3r d3r′

n(r)n(r′)
∣r − r′∣

. (1.11)

Application of the Hohenberg-Kohn variational principle (1.4) to eq. (1.10) results in

δTs[n]
δn(r)

+ Vext(r) + ∫ d3r′
n(r′)
∣r − r′∣

+ δExc[n]
δn(r)

− µ = 0. (1.12)

Comparison of the latter equation with eq. (1.6) allows to ĕnd an expression of the effective
potential Veff(r)

Veff(r) = Vext(r) + ∫ d3r′
n(r′)
∣r − r′∣

+ Vxc(r) (1.13)

with the exchange-correlation functional

Vxc(r) =
δExc[n]
δn(r)

. (1.14)

e Kohn-Sham equations (1.9) together with (1.7) and (1.8) are probably the most im-
portant equations in Density-Functionaleory. Although they are principally exact, their
practical solution requires approximations, since the exchange-correlation potential is not
known explicitly. e whole problem constitutes a self-consistent ĕeld problem, since the
effective potential depends on the density which, obviously, is directly connected to the
wave functions (see eq. (1.7)).
e Kohn-Sham equations can be solved iteratively, starting from a trial density which is
inserted into eq. (1.13) to obtain a ĕrst effective potential. is is used to calculate the wave
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functions via eq. (1.9) and, ĕnally, using eq. (1.7), a new density. e procedure is repeated,
until the difference between the starting density and the resulting one becomes sufficiently
small. A proof that the iteration process can always be made convergent to a stable solution
can be found in [38].
Aer having solved the Kohn-Sham equations, the ground state density can be used to cal-
culate the energy of the ground state. Considering that

Ts[n] =
N

∑
i=1
ϵi − ∫ d3r Veff(r)n(r) , (1.15)

the energy functional (see eq. (1.10)) becomes

E[n] =
N

∑
i=1
ϵi − ∫ d3r Veff(r)n(r) +

1

2∬
d3r d3r′

n(r)n(r′)
∣r − r′∣

+ ∫ d3r Vext(r)n(r) +Exc[n] . (1.16)

e total energy thus equals the sum over the eigenvalues ϵi minus the so-called double
counting terms. Expression (1.16) gives the ground state energy for the exact exchange-
correlation functional, provided that the inserted values for the density and the effective
potential are the results of the self-consistent solution.
Note that the eigenvalues ϵi do not equal the true single-particle excitation energies, since
they are introduced as Lagrange parameters without having a physical meaning. However,
in reality they are oen and quite successfully taken even as excitation energies.

1.3 e local spin-density approximation

Although density-functional theory as presented in the last sections, i.e. the Hohenberg-
Kohn theorems as well as the Kohn-Sham equations, is formally exact, its practical ap-
plication requires to approximate the exchange-correlation potential Vxc(r), which is not
known explicitly. e most simple approximation is to assume the effects of exchange and
correlation to be local in character. For the noble metals considered in this thesis this ap-
proximation leads to sufficiently good results, while it fails for other materials with more
complicated band structures. Following the above assumption leads to the so-called lo-
cal density approximation, or more general, the local spin-density approximation (LSDA),
which was already proposed by Kohn and Sham. It replaces the exact functional Exc[n],
i.e. Exc[n↑, n↓] by

ELSDA
xc [n↑, n↓] = ∫ d3r n(r)ϵLSDA

xc (n↑(r), n↓(r)) , (1.17)

where n↑ = n↑(r) and n↓ = n↓(r) are the (spin-dependent)densities of electrons and n(r) =
n↓(r) + n↑(r). Furthermore, ϵLSDA

xc (n(r)) is not a functional but a function evaluated at
each point r with the values of the up and down densities n↑(r) and n↓(r).
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en, the exchange-correlation potential Vxc(r) appearing in the Kohn-Sham equations
eq. (1.9) is easily calculated, because it is just the functional derivative of the exchange-
correlation energy. Variation of the exchange-correlation energy functional (1.17) results
in

δExc[n] =∑
s
∫ d3r [ϵhomxc + n

δϵhomxc

δns
]
r,s

δn(r, s) (1.18)

where the spin index s was introduced.
us, the exchange correlation potential becomes

V s
xc(n) = [ϵhomxc + n

δϵhomxc

δns
]
r,s

. (1.19)

It is convenient to split the correlation part from the exchange part ϵLSDA
xc (n) = ϵLSDA

c (n) +
ϵLSDA
x (n) since the latter one can be obtained by the Hartree-Fock method, neglecting cor-
relation but taking exchange effects into account. It is given by

ϵLSDA
x (n) = −3

2
( 3
π
)

1
3

n
1
3 (1.20)

and hence

V LSDA
x (n) = −2( 3

π
)

1
3

n
1
3 . (1.21)

e correlation part ϵLSDA
c (n) is more difficult to calculate, but can be accurately deter-

mined by a quantum Monte Carlo method [39]. Interpolation of the results allows to ex-
tract a parametrization for ϵLSDA

c (n) (see [40] and [41]).
For some systems with more inhomogeneous densities, however, the local density approxi-
mation fails and a more accurate description is necessary. An improvement can be reached
by taking not only the local density into account but also the gradient of the density

EGGA
xc [n] = ∫ d3r f(n(r),∇n(r)) . (1.22)

However, the function f(n(r),∇n(r)) is not unique and many different forms have been
suggested. emost commonone is the generalized gradient approximation (GGA) [42],[43],
which is very well tested and leads to good numerical results. For instance, an improve-
ment for the cohesive energies and lattice constants for the 3d transition metals is achieved.
Nevertheless, in the present work all results are obtained within the local spin density ap-
proximation which leads to good results for the applied materials.



CHAPTER 2

eKKR Green function method

emultiple-scatteringmethod for electronic structure calculationswas introduced in 1947
by Korringa [30] and in 1954 by Kohn and Rostoker [31] (KKR). At its heart is themultiple-
scattering ansatz which proved to be an especially powerful tool for the solution of the
Schrödinger equation, electronic structure and band structure calculations. e ĕrst step
in KKR is to determine the scattering properties of each scattering site, resulting in a single-
site scatteringmatrix. en, in a second step, multiple scattering by all atoms in the lattice is
taken into account by demanding that the incoming wave at one lattice site equals the sum
over the outgoing waves from all other scattering centers. In this way, geometric proper-
ties are separated from the potential properties of each atomic site which allows an efficient
calculation scheme.
Further improvement of the method was obtained when it was reformulated as a Green
function method [44, 45, 46]. While the separation between the single-site scattering and
the multiple scattering effects was retained, the Dyson equation provided an efficient way
to calculate the Green function of the considered system from the Green function of free
space. Furthermore, impurity scattering could be easily taken into account by considering
the Green function of the crystal as a reference and relating it to the Green function of the
crystal including the impurity via the Dyson equation [47]. e efficiency of this procedure
lies on the fact that no large supercells have to be constructed, which would have been the
case in a wavefunction method.
A further signiĕcant step into the development of the KKR scheme was the introduction of
the screened or tight-bindingmethod [48, 49]. Via a transformation of the reference system
a decoupling of remote lattice sites was achieved and the numerical efficiency of themethod
was enhanced enormously. e principal layer technique enables the computation time
to scale linearly with the number of atoms in systems with two-dimensional translational
symmetry. is is especially efficient for layered systems such as surfaces, interfaces and
multilayers and cleared the way for the study of e.g. interlayer exchange coupling or ballis-

7
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tic transport through junctions. Successful applications of the KKRmethod for calculations
of the electronic structure of solids within the frame of density functional theory include
bulk materials [50], surfaces [51], interfaces and tunnel junctions [52], and impurities in
bulk and on surfaces [53]. Spectroscopic properties and transport properties [54, 55, 56],
have also been studied using this method.
Furthermore, the KKR scheme can incorporate the Dirac equation, enabling fully relativis-
tic calculations [57].
e current chapter provides a brief introduction to the KKR method and follows the in-
troduction given in [58]. It starts by giving an overview about the basic aspects of Green
functions needed for understanding the following sections. Before illuminating the Green
function approach of the method, the single-site scattering problem is treated. en, the
full-potential treatment is explained and a sketch of the screened KKRmethod is given. We
close the chapter with the presentation of the self-consistency cycle of the KKR method.

2.1 e Green function approach

2.1.1 Obtaining physical quantities from Green functions

e central problem of density functional calculations as presented in the ĕrst chapter, sec-
tion 1.2, is the solution of the Kohn-Sham-equations in order to obtain the single-particle
wavefunctions Φi and the corresponding eigenvalues ϵi. However, all information about
the ground state is also contained in the single-particle Green functionG(r, r′;E). In par-
ticular, the local density of states and the charge density can be directly calculated from the
single-particle Green function G(r, r′;E). erefore, it is not mandatory to calculate the
Kohn-Sham orbitals Φi and the corresponding eigenvalues ϵi, if the single-particle Green
function is known.
eGreen function solves the Schrödinger equation at an energyE with a source at position
r′

[−∇2
r + V (r) −E]G(r, r′;E) = −δ(r − r′) . (2.1)

In terms of a complete set of eigenfunctions φi(r) and eigenenergies Ei of the Hamilton
operatorH = −∇2

r + V (r) the Green function can be written in its spectral representation

G(r, r′;E + iε) =∑
i

φi(r)φ⋆i (r′)
E + iε −Ei

. (2.2)

Using the Dirac identity it can be shown that the imaginary part of G(r, r′;E) is directly
related to the spectral- and space-resolved local density of states n(r,E)

n(r;E) = − 1
π
ImG(r, r;E). (2.3)
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Integration over the energy yields the expression for the charge density ρ(r)

ρ(r) = 2 ∑
i,Ei<EF

∣φi(r)∣2 = −
2

π ∫
EF

−∞
dE ImG(r, r;E) (2.4)

= − 2
π
Im∫

EF

−∞
dE Tr [r̂G(E)],

where r̂ = ∣r⟩ δ(r − r′) ⟨r′∣ is the position operator and the factor two accounts for the two
spin directions.
us, as claimed at the beginning of this section, the charge density can be directly calcu-
lated from the imaginary part of the diagonal elements of the Green function. It can be
interpreted as the local density of states n(r;E) at the position r.
On the other hand, the local density of states of a particular atom in a deĕned volume V
can be determined by integration over the atomic volume

nV (E) = −
2

π ∫V
d3r ImG(r, r;E). (2.5)

In general, from the spectral representation follows that the expectation value of any single-
particle physical quantity, represented by an operator Â, can be obtained via the relation

⟨A⟩ = − 1
π
Im∫

EF

−∞
dE Tr [ÂG(E)]. (2.6)

Hence, there is no need to evaluate the wavefunctions φi(r).
In eq. (2.2) a small imaginary part iεwas added to the energy in order to guarantee the con-
vergence of the integrals, and, aer performing the integration, the limit ε → 0+ is taken.
e reason for that procedure can be found in the analytical properties of the Green func-
tion: G(r, r′;E) has poles for real energies, but is analytic for ImE > 0. erefore it is
allowed and convenient for its computation to transform the energy integrals to contour
integrals closed in the upper complex energy plane

ρ(r) = − 2
π
Im∫

EF

EB

dz G(r, r; z) (2.7)

with z = E + iε, but the imaginary part ε is not small anymore. e contour starts atEB , an
energy below the bottom of the valence bands, but higher than the core states, goes into the
complex energy plane and comes back to the real frequency axis close to the Fermi energy.
e core states are treated differently, their wavefunctions are calculated via an integration
of the Schrödigner equation. en, their contribution to the density ρ(r) is simply obtained
by calculating their norm. For complex energies with an imaginary part ε, the structure of
the Green function is broadened and thus typically only 20 to 30 energy points are required
for a sufficiently accurate numerical evaluation of the integral. However, special care is nec-
essary for the points close to the Fermi level, since here the full structure ofG(E) reappears
as the real axis is approached.
Whereas the order of approximately 103 integration points are usually needed on the real
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axis, about 20 to 40 points suffice when the contour described above is chosen. Obviously,
in this way a large amount of computation time can be saved.
Additionally, for systems with two- or three-dimensional translational symmetry, compu-
tation time can be further reduced, since the smooth behavior of the Green function at large
ImE allows for a coarse k-mesh in the Brillouin zone integration.

2.1.2 Relationbetween theGreen functionofperturbed andunperturbed
system

We focus now on another important issue concerning Green functions and show how to
obtain them by relating Green functions of different systems with each other.
e formal solution of the Schrödinger equation (2.1) at a given energy, characterized by
the HamiltonianH =H0+V , withH0, V being the Hamiltonian of the original system and
the perturbing potential, respectively, reads

G(E) = 1

E + iε −H
= 1

E + iε −H0 − V
. (2.8)

e same holds for the Green functionG0 solving the Schrödinger equation corresponding
toH0. us, we can write

G(E)−1 = G0(E)−1 − V (2.9)

being equivalent to

G(E) = G0(E) +G0(E)V G(E) = G0(E)
1

1 − V G0(E)
. (2.10)

e latter equation, known as Dyson equation, can be expanded as

G(E) = G0(E) +G0(E)V G0(E) +G0(E)V G0(E)V G0(E) + . . . (2.11)

and hence allows an interpretation in terms of scattering events, representing an analogue
of a Born series for Green functions.
In analogy to Green functions, the Schrödinger equation for wavefunctions of a perturbed
system can be written as

(E −H0) ∣ψ⟩ = V ∣ψ⟩ . (2.12)

Furthermore, the solution ∣ψ⟩ can be expressed in terms of the unperturbed eigenstates ∣ψ0⟩,
the perturbing potential V (r) and the Green function of the unperturbed systemG0

∣ψ⟩ = ∣ψ0⟩ +G0(E)V ∣ψ⟩ . (2.13)
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e above equation is the famous Lippmann-Schwinger equation1. Substitution of the so-
lution ∣ψ⟩ on the right hand side of eq. (2.13) leads to the Born series

∣ψ⟩ = ∣ψ0⟩ +G0(E)V ∣ψ0⟩ +G0(E)V G0(E)V ∣ψ0⟩ . . . . (2.15)

If E does not belong to the spectrum of the unperturbed Hamiltonian H0, ∣ψ0⟩ vanishes
and the Lippmann-Schwinger equation reduces to the homogeneous equation

∣ψ⟩ = G0(E)V ∣ψ⟩ (2.16)

from which the bound states follow.
Now, we introduce the transition matrix T , deĕned by

V ∣ψ⟩ = T (E) ∣ψ0⟩ , (2.17)

relating the wavefunction ∣ψ⟩ of the perturbed system to the wavefunction ∣ψ0⟩ of the un-
perturbed system.
Using this deĕnition, both the Lippmann-Schwinger equation and the Dyson equation can
be formulated in terms of the T -Matrix instead of the potential V , hence

∣ψ⟩ = ∣ψ0⟩ +G0(E)T (E) ∣ψ0⟩ and (2.18)
G(E) = G0(E) +G0(E)T (E)G0(E). (2.19)

Furthermore, in some cases it is very practical to deal with the scattering matrix denoted
as S, which transforms an incoming into an outgoing wave. Because of norm conservation
during an elastic scattering process, S must be a unitary operator

S†S = 1. (2.20)

It can be shown that S is related to the transition matrix T by

S = 1 − 2i
√
ET . (2.21)

Inserting the above expression in eq. (2.20) leads to the optical theorem for the T -matrix

1

2
(T † − T ) = i

√
ET †T . (2.22)

Details concerning the operator S can be found in [59].
We will now come back to the solution of the Dyson equation (2.10). In order to solve it in
practice, the Hamiltonian H0 is chosen such that G0(E) can be easily calculated. For ex-
ample, in order to obtain the Green functionGbulk of a bulk crystal, the free space is taken

1In space, both the Dyson equation and the Lippmann-Schwinger equation are integral equations; in chapter
3, we will need the Lippmann-Schwinger equation (2.13) in direct space, thus

ψ(r) = ψ0(r) + ∫ d3r′ G0(r, r′;E)V (r′)ψ(r′) . (2.14)
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as reference system. In this case, G0 is known analytically and V is just the sum over all
atomic potentials. When calculating the Green function of a surface geometry Gsurface, an
adequate choice of the reference system is the corresponding bulk crystal, i.e. Gbulk. e
potential difference V entering in the Dyson equation is then simply the difference of the
potential at the surface and in the bulk.
Going one step further, this scheme also provides an easy way for calculating the Green
function of an impurity embedded in a bulk crystal or localized at the surface. In the ĕrst
case, G0 is identiĕed with the bulk Green function and V is the change caused by the im-
purity potential with respect to the bulk potential at the impurity site as well as the change
at the neighboring potentials. In the latter case, ĕrst the Green function of the surface is
needed: an essential condition to obtain an accurate solution of the Dyson equation is that
the perturbing potential V has to be well localized. e locality of the perturbed wave-
functions is not required – and usually not realized – but this behavior does not affect the
accuracy of the Dyson equation and favors the use of Green functions instead of wavefunc-
tions.
Naturally, the presented Green function method can be also applied to small clusters of im-
purities in bulk or at surfaces, provided that the change in potential is restricted to a well-
deĕned volume. ese facts make the Impurity-KKR Green function method applicable to
a great variety of interesting problems.

2.2 Single-site scattering

As already mentioned in the introduction of this chapter, the KKR Green function method
allows a decoupling of the potential and the structural properties of the system of scattering
atoms. erefore, in a ĕrst step the scattering of a single impurity with spherical potential
V embedded in free space is dealt with. In this case, the potential of the reference system is
zero, and the Green function g of free space which obeys the HamiltonianH0 = −∇2

r is

g(r, r′;E) = − 1

4π

eik∣r−r
′∣

∣r − r′∣
(2.23)

with k =
√
E [60, 61]. e corresponding eigenfunctions are plane waves with φk(r) =

eik⋅r. Considering the scattering by a central potential, it is useful to work in angular-
momentum representation, in which an incoming wavefunction φinc

k (r) is expanded in

φinc
k (r) = eik⋅r =∑

L

4πiljl(
√
Er)YL(k)YL(r) . (2.24)

Here, the combined indexL ∶= (l,m) is used, jl is the spherical Bessel function, and YL de-
notes the real spherical harmonics. Expanding the Green function g in spherical harmonics
results in

g(r, r′;E) =∑
L

YL(r)gl(r, r′;E)YL(r′) (2.25)

with
gl(r, r′;E) = −i

√
Ejl(
√
Er<)hl(

√
Er>), (2.26)
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where hl = jl+inl are spherical Hankel functions, nl are spherical Neumann functions [62],
while r<(r>) is the smaller (larger) of the radii r and r′. e Bessel functions jl(r) are ĕnite
in the limit r → 0, behaving asymptotically as rl, whereas hl(r) and nl(r) diverge as r → 0,
behaving as r−l−1.
In the following, a spherical scattering potential of ĕnite range

V (r) = {
V (r) for r ≤ rmax

0 for r > rmax

(2.27)

is assumed. en, a separation of coordinates ϕ(r) = ∑L YL(r̂)Rl(r;E) is possible, the
radial scattering wavefunctions Rl(r;E) satisfy the radial Schrödinger equation

[−1
r

∂

∂r2
r + l(l + 1)

r2
+ V (r) −E]Rl(r;E) = 0. (2.28)

e asymptotic form of the wavefunctions Rl(r;E) for r → ∞, where V = 0, following
from the above equation, is

Rl(r;E)→
Al√
Er

sin [
√
Er − lπ

2
+ δl(E)], (2.29)

where Al is a constant and δl is the phase shi with respect to the incoming wavefunction.
Outside the range of the potential, thus for r > rmax, the radial wavefunction Rl(r;E) is
just a linear combination of two independent solutions

Rl(r;E) = Bljl(
√
Er) +Clnl(

√
Er) (2.30)

with the constantsBl andCl. ey can be determinedwith the help of the asymptotic forms
of jl(r) and nl(r) for r →∞

jl(r) ∼
1

r
sin(r − lπ

2
) (2.31)

nl(r) ∼ −
1

r
cos(r − lπ

2
) (2.32)

and equations (2.29) and (2.30), leading to

Rl(r;E) = Al [jl(
√
Er) cos δl − nl(

√
Er) sin δl] for r > rmax. (2.33)

On the other hand, using the Lippmann-Schwinger equation (2.14) the expression

Rl(r;E) = jl(
√
Er) + ∫

rmax

0
r′2dr′ gl(r, r′;E)V (r′)Rl(r′;E). (2.34)

can be obtained. Combining the latter equation with eq. (2.26), for r > rmax follows

Rl(r;E) = jl(
√
Er) − i

√
Ehl(

√
Er)∫

rmax

0
r′2dr′ jl(

√
Er′)V (r′)Rl(r′;E). (2.35)
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e integral is just the atomic scattering (t-)matrix in angular-momentum representation

tl(E) = ∫
rmax

0
r′2dr′ jl(

√
Er′)V (r′)Rl(r′;E). (2.36)

With the above deĕnition the regular radial wavefunction results in

Rl(r;E) = jl(
√
Er) − i

√
Etl(E)hl(

√
Er) r > rmax, (2.37)

or, using eq. (2.33), in terms of the phase shi δl(E)

tl(E) = −
1√
E

sin δl(E)eiδl(E). (2.38)

Before closing the section we give the Green function for scattering at a central poten-
tial without proof. It can be written as the product of two linearly independent solutions
Rl (regular, i.e. ĕnite as r → 0) and Hl (irregular, i.e. diverging as r → 0) of the radial
Schrödinger equation, hence

G(r, r′;E) = −i
√
E∑

L

Rl(r<;E)Hl(r>;E)YL(r)YL(r′)

= −i
√
E∑

L

Gl(r, r′;E)YL(r)YL(r′). (2.39)

e boundary conditions for the regular solutions Rl are determined by eq. (2.37).
In analogy to eq. (2.34), the Lippmann-Schwinger equation for the irregular wavefunction
Hl writes as

Hl(r;E) = hl(
√
Er) + ∫

rmax

0
r′2dr′ gl(r, r′;E)V (r′)Hl(r′;E) . (2.40)

e boundary conditions forHl can be found using the identityGl = gl+gltlgl with gl given
by eq. (2.26)

Hl(r;E) = hl(
√
Er) for r > rmax . (2.41)

In practice, the general procedure to obtain the wavefuntions is the following: First, the
radial Schrödinger equation (2.28) is integrated outwards up to r = rmax to obtain Rl. e
continuity of the logarithmic derivative at r = rmax yields the t-matrix tl. en, in a second
step the irregular wavefunction Hl is calculated by an integration inwards starting at r =
rmax. Here, only one boundary condition (at r = rmax) has to be satisĕed. Finally, the Green
function of a single scatterer can be constructed according to (2.39) just by multiplying the
regular with the irregular wavefunctions.

2.3 KKR as a Green function method

In this section, we proceed to derive the full Green function taking multiple scattering
events into account.



2.3. KKR as a Green function method 15

A periodic crystal with spherical potentials2 given by

V (r +Rn) = V n(r) (2.42)

is assumed and the Green function is the solution of the Schrödinger equation

(−∇2
r + V n(r) −E)G(r +Rn, r′ +Rn′ ;E) = −δnn′δ(r − r′). (2.43)

Here, cell-centered coordinates r +Rn, r′ +Rn′ have been introduced, where r and r′ are
restricted to the cells n and n′ andRn andRn′ are the vectors pointing to the center of the
cells n and n′, respectively. For simplicity, we stay in the formalism of the atomic sphere
approximation (ASA), where the scattering potential is assumed to be spherically symmet-
ric around each scattering center (atomic site) within a sphere of radius rmax (which is also
called Wigner-Seitz radius RWS) and constant otherwise; the spheres are overlapping such
that the sum over the volumes of all spheres equals the total volume of the crystal.
In the case of n ≠ n′, the Green function satisĕes the homogeneous Schrödinger equa-
tion and thus can be expanded in regular solutions Rn

L(r;E), which in the atomic sphere
approximation have the form Rn

L(r;E) = Rn
l (r;E)YL(r̂). Close to the origin, they are

proportional to rl and represent the solutions for an incoming spherical Bessel function
jl(
√
Er)YL(r̂). An r-dependent potential demands more cumbersome calculations (see

section 2.4).
For n = n′, the Schrödinger equation becomes inhomogeneous, and the solution is the
Green function for a central potential eq. (2.39), but with a boundary condition of back-
scattering by all other potentials in the crystal. In contrast to the case of n ≠ n′, additionally
to the regular solution Rn

L, the corresponding irregular solutions Hn
L enter, behaving as

Hn
l ∝ r−l−1 at the origin and being identical with the spherical Hankel function hl(

√
Er)

outside the range of the potential.
Finally, the Green function for the whole crystal is a sum of the general solution of the
homogeneous equation plus a special solution of the inhomogeneous one

G(r +Rn, r′ +Rn′ ;E) =
− i
√
E∑

L

Rn
L(r<;E)Hn

L(r>;E)δnn′ + ∑
LL′

Rn
L(r;E)Gnn′

LL′(E)Rn′

L (r′;E). (2.44)

In the second summand, the homogeneous part, the so-called structural Green function
Gnn′

LL′(E) enters, which has not been deĕned yet and which shall be calculated in the fol-
lowing. We will use the Dyson equation in the form

G(r +Rn, r′ +Rn′ ;E) = g(r +Rn, r′ +Rn′ ;E)

+∑
n′′
∫ d3r′′ g(r +Rn, r′′ +Rn′′ ;E)V n′′(r′′)G(r′′ +Rn′′ , r′ +Rn′ ;E), (2.45)

2e procedure presented in the following is also valid when taking the full potential V (r) into account, the
special case of spherical symmetric is chosen just for reasons of brevity.
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taking free space as reference system. Substitution of expansion (2.44) and the correspond-
ing expression for the free Green function

g(r +Rn, r′ +Rn′ ;E) =
− i
√
E∑

L

jL(r<;E)hL(r>;E)δnn′ + ∑
LL′

jL(r;E)gnn
′

LL′(E)jL(r′;E) (2.46)

in equation (2.45) results in the algebraic Dyson equation

Gnn′

LL′(E) = gnn
′

LL′(E) + ∑
n′′L′′

gnn
′′

LL′′(E)tn
′′

l′′ (E)Gn′′n′

L′′L′(E) . (2.47)

Here, we have introduced the structural Green functions for free space gnn′LL′(E), which are
also denoted as free space structure constants. ey are given analytically by

gnn
′

LL′(E) = −(1 − δnn′)4πi
√
E∑

L′′
il−l

′+l′′CLL′L′′hL′′(Rn −Rn′ ;E) , (2.48)

where CLL′L′′ are the Gaunt coefficients deĕned as

CLL′L′′ = ∫ dΩ YL(r̂)YL′(r̂)YL′′(r̂) . (2.49)

While the potential V n(r) enters in the usual Dyson equation (2.45), here it is the atomic t-
matrix tnl (E) eq. (2.36) that enters the algebraicDyson equation. ederivation of eq. (2.47)
is lengthy and can be found in [63].
In practice, the structural Green functions Gnn′

LL′(E) are ĕrst calculated in k-space. ere-
fore, in a ĕrst step, the free space structure constants gnn′LL′(E) are Fourier transformed,
yielding

gLL′(k;E) =∑
n′
gnn

′

LL′(E)e
−ik⋅(Rn−Rn′) . (2.50)

e choice of n is arbitrary, because only the difference eik⋅(R
n−Rn′) enters and the sum has

to be performed over all n′. In analogy, theG(k;E) are deĕned as

GLL′(k;E) =∑
n′
Gnn′

LL′(E)e
−ik⋅(Rn−Rn′) . (2.51)

en, the algebraic Dyson equation 2.47 in reciprocal space becomes

GLL′(k;E) = gLL′(k;E) +∑
L′′
gLL′′(k;E)tl′′(E)GL′′L′(k;E) . (2.52)

It is solved by matrix inversion, making a cutoff at some l = lmax for which the t-matrix
becomes negligible. Usually, the choice of lmax = 3 or 4 is sufficient. en, the resulting
Green functionGLL′(k;E)has to be Fourier transformed to the real spacematrixGnn′

LL′(E).
e last two steps can be subsumed to the formula

Gnn′

LL′(E) =
1

VBZ
∫
BZ
d3k eik⋅(R

n−Rn′) [(1 − g(k;E)t(E))−1g(k;E)]
LL′

, (2.53)
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where g(k;E) and t(E) are matrices in L and L′ and the integral has to be taken over the
Brillouin zone volume VBZ.
Once the structural Green function G̊nn′

LL′(E) of the ideal crystal is known, the Green func-
tionGnn′

LL′(E) of the crystal with impurity can be evaluated by a modiĕed Dyson equation

Gnn′

LL′(E) = G̊nn′

LL′(E) + ∑
n′′L′′

G̊nn′′

LL′′(E)∆tn
′′

l′′ (E)Gn′′n′

L′′L′(E), (2.54)

where ∆tnl (E) = tnl (E) − t̊nl (E) is the difference between the t-matrices of the perturbed
and the ideal lattice3. Since this difference, caused by the perturbation of the potential, is
restricted to the vicinity of the impurity, the Green function in this subspace can be deter-
mined in real space by matrix inversion. e rank of the matrices to be inverted is given
by N ⋅ (lmax + 1)2, i.e. the number N of perturbed sites times the number (lmax + 1)2 of
angular momenta (l and ml) used in the expansion of the potential, the Green function
and the wavefunctions. In this thesis, the maximum angular momentum generally is set to
lmax = 3, which leads to a satisfying accuracy for the treated materials and problems.
For a single impurity it is oen sufficient to consider only the perturbation at the impurity
site and thus neglect the perturbation at neighboring sites. For a more accurate description,
the perturbations of the neighboring atoms have to be included. e difference between the
two results depends on several criteria, e.g. the strength of the scatterer, the geometry and
the scattering properties of the host system the impurity is embedded and above all the
range of displaced charge by the impurity.
A different possibility to increase the accuracy4, which is more general and not only valid
for impurity calculations, is to take the non-spherical contributions of the potential into
account. A summary of the full-potential treatment within the KKR method is the subject
of the next section.

2.4 Full-potential treatment within the KKRmethod

eatomic sphere approximation which was presented so far, describes the physics ofmany
systems quite reasonably and efficiently. Nevertheless, systems with lower symmetry such
as non-cubic crystals, surfaces or interfaces require a more accurate treatment beyond the
spherical approximation. If forces and lattice relaxations have to be calculated, the atomic
sphere approximation even fails and the correct description of the full anisotropic potential
becomes necessary.
e multiple scattering expansion eq. (2.44) of the KKR-Green function is still valid in
the case of a full potential treatment, so that the important separation between the single-
potential problem and the multiple-scattering problem remains the same. In this section,
we will introduce the basics of the full potential treatment, further details can be found in

3e difference ∆tnl (E) = tnl (E) − t̊nl (E) can be calculated equivalently using ∆tnl (E) =
∫ r2drR

0,n
l (r;E)∆V

n(r)Rn
l (r;E). e proof (for full potential, thus the t-matrix ∆tLL′) is given in the

Appendix, section A.4.
4apart from increasing the number of sites in the impurity calculation, i.e. in eq. (2.54)
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[63, 46, 64] and [65].
In contrast to the previous sections, the potential V (r) depends not only on the norm of r
but on the full vector, and scattering from an incoming wave with angular momentum L to
another wave characterized by L′ is no longer forbidden. Hence, the Lippmann-Schwinger
equation for the regular wavefunction (see eq. (2.34)) has to be written as

RL(r;E) = jl(
√
Er)YL(r̂) + ∫ d3r′ g(r, r′;E)V (r′)RL(r′;E) , (2.55)

and requires a three-dimensional instead of a one-dimensional integral.
However, expansion of the regularwavefunctionsRL(r;E) and the potentialV (r) in spher-
ical harmonics

RL(r;E) =∑
L′
RL′L(r;E)YL′(r̂) (2.56)

and
V (r) =∑

L

VL(r)YL(r̂) =∑
LL′

VLL′(r)YL(r̂)YL′(r̂) (2.57)

allows to reformulate the corresponding Lippmann-Schwinger-equation for the compo-
nents RL′L(r;E) (see also the Appendix, section A.3)

RL′L(r;E) = jl′(
√
Er)δLL′ + ∫

rmax

0
r′2dr′ gl′(r, r′;E)∑

L′′
VL′L′′(r′)RL′′L(r′;E) . (2.58)

e component of the potential VLL′(r) is deĕned as

VLL′(r) =∑
L′′
CLL′L′′VL′′(r), (2.59)

with the Gaunt coefficients CLL′L′′ deĕned in eq. (2.49). Although the integral in the
Lippmann-Schwinger-equation (2.58) is now one-dimensional, its solution is not as trivial
as it might seem at ĕrst glance, since a system of coupled equations has to be solved

∑
L′′
[(−1

r

∂

∂r2
r + l(l + 1)

r2
−E) δLL′′ + VLL′′(r)]RL′′L′(r;E) = 0. (2.60)

Substitution of gl′(r, r′;E) in terms of the regular and irregular solutions as expanded in
eq. (2.39) leads to a system of coupled equations

RLL′(r;E) = aLL′(r;E)jl(r;E) + bLL′(r;E)hl(r;E) (2.61)

with

aLL′(r;E) = δLL′ − i
√
E ∫

rmax

r
r′2dr′ hl(r′;E)∑

L′′
VLL′′(r′)RL′′L′(r′;E) (2.62)

bLL′(r;E) = −i
√
E ∫

r

0
r′2dr′ jl(r′;E)∑

L′′
VLL′′(r′)RL′′L′(r′;E). (2.63)

In the limit r → 0, the second term of eq. (2.61) approaches 0 and the characteristics of
RLL′(r;E) is determined by aLL′(r;E)

RLL′(r;E) ∼ aLL′(r;E)jl(r;E) for r → 0. (2.64)
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aLL′(0;E) is denoted as α-matrix

αLL′(E) = δLL′ − i
√
E ∫

rmax

0
r′2dr′ hl(

√
Er′)∑

L′′
VLL′′(r′)RL′′L′(r′;E), (2.65)

describing the enhancement of the solution RLL′(r;E) compared to the free solution
δLL′jl(

√
Er). e inverse ofαLL′(E) transforms the complex wavefunctionsRL(r) to real

wavefunctions UL(r) following [66]

UL(r) =∑
L′
RL′(r)α−1L′L (2.66)

and
RL(r) =∑

L′
UL′(r)αL′L . (2.67)

is property of the α-matrix will be used when calculating the scattering matrix Tkk′ in
section 3.3.
e atomic transitionmatrix (t-matrix) can be obtained similarly as in the case of a spherical
potential, thus by matching RLL′(r;E) to an outgoing free wave at the boundary S

tLL′(E) = ∫
rmax

0
r2dr jl(

√
Er)∑

L′′
VLL′′(r)RL′′L′(r;E), (2.68)

being equivalent to its deĕnition

tLL′(E) = ∫ d3r JL(r;E)V (r)RL′(r;E). (2.69)

In contrast to the t-matrix tl(E) for spherical potential, tLL′(E) is not diagonal any more
while it still holds

tLL′(E) = tL′L(E) (2.70)

if the potential is local; this condition is not fulĕlled, if spin-orbit coupling is included.
However, for local potential the property (2.70) follows from the symmetry of the Green
functionG(r, r′;E) = G(r′, r;E), a proof can be found in [60]. Furthermore, the t-matrix
fulĕlls the optical theorem (2.22), which in the special case of the atomic scattering matrix
can be reformulated as

1

2
(t⋆L′L − tLL′) = −i

√
E∑

L′′
t⋆L′′LtL′′L′ , (2.71)

or, for L = L′,
Im tLL =

√
E∑

L′′
∣tLL′′ ∣2 . (2.72)

Outside the range of the potential, equivalently to eq. (2.37),

RLL′(r;E) = δLL′jl(
√
Er) − i

√
EtLL′(E)hl(

√
Er) for r ≥ rmax (2.73)
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is valid.
Similar to the regular wavefunctionRL(r;E), the irregular one,HL(r;E), which diverges
at the origin is expanded in spherical harmonics as

HL(r;E) =∑
L′
HL′L(r;E)YL′(r̂) . (2.74)

Of course, it would be possible to solve the full-potential problem starting from scratch
by solving the systems of linear equations (2.60) but another, much simpler way can be
chosen, too. is ansatz is based on perturbation theory exploiting the fact that the non-
spherical part of the potential is usually weak compared to the spherical one. It occurs to be
much more favorable to ĕrst solve the problem for the spherical part of the potential (thus
taking Vl=0(r) instead of the full one), and obtain spherical wavefunctions Rsph

l (r;E) and
Hsph
l (r;E). e Green function corresponding to this problem is then

Gsph
l (r, r

′;E) = −i
√
ERsph

l (r<;E)H
sph
l (r>;E) . (2.75)

Aerwards, in a second step, the results of the spherical problem are used to solve the
Lippmann-Schwinger equation

RLL′(r;E) = Rsph
l (r;E)δLL′ + ∫

rmax

0
r′2dr′ Gsph

l (r, r
′;E)∑

L′′
∆VLL′′(r′)RL′′L′(r;E) ,

(2.76)
where only the non-spherical part of the potential enters

∆VLL′(r) = ∑
L′′≠0

CLL′L′′VL′′(r) = VLL′(r) − V00(r) . (2.77)

Additionally, since the potential inside and close to the core is almost spherical, the non-
spherical contribution can be safely neglected within a radius denoted by rmin. en, the
coupled equations (2.61) to (2.63) can be rewritten as

RLL′(r;E) = ALL′(r;E)Rsph
l (r;E) +BLL′(r;E)Hsph

l (r;E) (2.78)

with

ALL′(r;E) = δLL′ − i
√
E ∫

rmax

r r′2dr′ Hsph
l (r′;E)∑L′′∆VLL′′(r′)RL′′L′(r′;E) ,(2.79)

BLL′(r;E) = −i
√
E ∫

r

0 r
′2dr′ Rsph

l (r′;E)∑L′′∆VLL′′(r′)RL′′L′(r′;E) . (2.80)

For r < rmin,BLL′(r;E) in eq. (2.78) vanishes (see eq. (2.80)) andRLL′(r;E) simpliĕes to

RLL′(r;E) = ALL′(rmin;E)Rsph
l (r;E) for r < rmin

∼ ∆αLL′R
sph
l (r;E)

∼ αLL′jl(r;E) for r → 0 . (2.81)

In the last equation we have used αLL′(E) = ∆αLL′(E)αsph
l (E), where α

sph
l (E) is the α-

matrix corresponding to the spherical part of the potential V00(r).
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Equivalently to the difference in potential∆VLL′(r) we obtain a difference in the t-matrix
∆tLL′ = tLL′ − tlδLL′ , which can be calculated via

∆tLL′(E) = ∫
rmax

rmin

r2dr Rsph
l (r;E)∑

L′′
∆VLL′′(r)RL′′L′(r;E), (2.82)

or, more general,

∆tLL′(E) = ∫ d3r Rsph
L (r;E)∆V (r)RL′(r;E). (2.83)

e proof of the above equation can be found in the Appendix, section A.4.
Equation (2.76) is solved iteratively via the system of the coupled equations (2.78) to (2.80),
while it is sufficient to start the integration in equation (2.80) at rmin. e successive solu-
tions obtained for the regular RLL′(r;E) and the non-regular wavefunctions HLL′(r;E)
represent a Born series. Usually, convergence is reached within 3 or 4 iterations.
In contrast to the atomic sphere approximation where the spheres are allowed to overlap,
in the full-potential treatment the whole crystal is divided into space-ĕlling Wigner-Seitz
polyhedra. Outside these cells, the potential is cut off by the introduction of shape functions
Θn(r) deĕned as

Θn(r) = {
1 if r is inside the Wigner-Seitz cell of site n
0 otherwise.

(2.84)

e radius rmax, which in the ASA is the Wigner-Seitz radius, i.e. the radius of the ASA-
spheres, in the full-potential description it is meant to be the maximal radius of the non-
spherical Wigner-Seitz polyhedra.
en, the crystal potential in the n-th Wigner-Seitz cell can be rewritten as

V n(r) = Θn(r)V (r). (2.85)

As all other quantities the shape functions are expanded in spherical harmonics as

Θn(r) =∑
L

Θn
L(r)YL(r̂). (2.86)

e coefficients Θn
L(r) enter the expansions for the charge density and the potential, in

order to ensure the correct cutoff at the Wigner-Seitz cell boundary. More details about the
calculations of the shape truncation functions for Wigner-Seitz atomic polyhedra can be
found in [67, 68].

2.5 Screened KKR

e development of the so-called screened or tight-binding KKR formalism [48, 49] con-
stitutes a substantial improvement of the KKR method. It helps to reduce the calculation
time signiĕcantly and is in particular favorable for large systems, since it allows the solu-
tion of the Dyson equation to scale (in the ideal case) with O(N) instead of O(N3); here,
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N denotes the number of different atoms in one unit cell. e optimal scaling is reached
for layered systems.
is achievement became possible by a clever choice of a reference system: It can be chosen
such that the reference Green function falls off exponentially with distance, resulting in the
inversion of sparse, or even tridiagonal, matrices, which is much faster than a full matrix
inversion if only the diagonal elements of the inverse matrix are needed (as it is the case
in charge-density calculations). Due to the decoupling between distant atomic sites, the
corresponding transformation is called screening transformation and the method screened
KKR; because of its formal resemblance to tight-binding theory, the method is also called
tight-binding KKR.
Basically, there are three reasonswhy the screenedKKR formalismworks so efficiently. First
of all, it is based on the Dyson equation which allows the choice of an arbitrary reference
system of the same periodic structure, and not the free space only (see Appendix, section
A.1). Naturally, taking a constant potential as reference is the most evident choice, since
the Green function and structure constants are given by analytical expressions. However,
further analysis shows that in practice this choice is not the best. An adequate reference sys-
tem can be constructed in which there are no states in the energy region of interest (up to
1-2 Ry higher than EF ) and in which the structural Green functions fall off exponentially
with distance. Such a system is deĕned by a collection of repulsive muffin-tin potentials
(one around each site n) as

V ref,n(r) = {
VC for r ≤ Rrep

0 otherwise
. (2.87)

Rrep is the radius of the repulsive potential at site n, and VC a positive constant, usually
chosen to be a few Rydbergs, e.g. VC = 4 Ry or 8 Ry. For such a potential, the eigenvalue
spectrum starts from an energyEref

bot somewhat smaller than VC but much higher thanEF .
en, because of the absence of eigenvalues, for E < Eref

bot, the Green function of the refer-
ence system drops rapidly and in practice exponentially with distance; the same holds for
the true structural Green functions.
A further advantage of this choice of reference system is that one avoids a cumbersome cal-
culation of the free-space structure constants gLL′(k;E) by an Ewald summation. Because
of the rapid decay of the screened structural Green functionsGref nn′

LL′ , the matricesGref(E)
can be cut off in real space at a ĕnite value of ∣Rn′ −Rn∣, for fcc lattices typically aer two
lattice constants. en, the Dyson equation is solved by a direct matrix inversion, yielding
Gref nn′

LL′ .

2.6 Self-consistency Cycle in the KKRmethod

At the end of this chapter, we shortly present the algorithm for calculating the potential
self-consistently. As the KKR scheme is based on density-functional theory, the basic and
central quantity is the electronic density. We start with

1. an initial guess of input potential Vin(r), which is used
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2. to calculate the wavefunctions RL(r) andHL(r) and the t-matrix tLL′(E).
3. Determine the t-matrix of the reference system trefLL′(E) and

∆tLL′(E) = tLL′(E) − trefLL′(E).

4. en, the structural Green function Gref,nn′

LL′ (E) of the reference system can be cal-
culated.

5. e algebraic Dyson equation is solved to evaluate the structural Green function of
the real systemGnn′

LL′(E).
6. Calculate the Green function using the structural Green function and RL(r) and
HL(r). Integrate the Green function over complex energies Z from the bottom of
the valence band Ebot up to EF by using a complex-energy contour (see below) and
take the imaginary part to ĕnd the valence electron density
ρ(r) = − 1

π Im ∫
EF

Ebot
dZ G(r, r;Z).

7. Calculate the core-electron wavefunctions and core-electron density ρc;
here, themultiple-scattering formalism is not needed, because the corewavefunctions
are assumed to be highly localized at the atomic sites. Obtain the total density ρ(r) =
ρc(r) + ρv(r).

8. Find the output potential Vout(r) by solving the Poisson equation and adding the
exchange-correlation potential. If Vout(r) = Vin(r) to a reasonable accuracy, exit the
cycle, otherwise

9. Properly mix Vout(r) with Vin(r) to obtain a new input potential, and return to step
1

In ĕgure 2.1 we present a diagram showing the scheme used for self-consistent calculations
of the potential. is might be a bulk potential (in this case the term reference system is
more suitable than 'host', which can be found in the scheme) or an impurity potential. e
essential quantity to know is the reference or host Green function.
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Figure 2.1.: e self-consistency cycle used in the KKR method



CHAPTER 3

Multiple Scatteringeory

e multiple scattering ansatz is one essential characteristic of the KKR method and gives
access to the scattered wavefunctions at defects. rough these, many physical properties
can be calculated, such asmomentum-scattering times, residual resistivities, or surface state
lifetimes. e central quantity required for their calculation is the scattering matrix Tkk′ ,
describing the elastic scattering process from one state characterized by the reciprocal space
vector k′ to another characterized by k. In this chapter, Tkk′ is derived for scattering pro-
cesses where the coupling between the two spin channels is neglected. e formalism for
scattering processes including spin-Ęip scattering by spin-orbit coupling will be presented
in chapter 4.
We start with a derivation of the KKR wavefunctions, then explain how band structures are
obtained in the KKRmethod. Since elastic scattering processes at impurities at low temper-
atures are to be considered, it is assumed that scattering takes place at the Fermi energyEF

and therefore the Fermi surface is required; its calculation is analogous to that of the band
structure. Aer having calculated and normalized the wavefunctions on the Fermi surface,
scattering processes provoked by impurities will be treated. Both the expressions obtained
for the wavefunction of the host as well as of the impurity are used to derive a formula for
the scattering matrix Tkk′ . Finally, starting from Tkk′ , we will deduce expressions for the
residual resistivity, the momentum-relaxation time, the lifetime of surface states and the
Wigner delay time. e formalism presented in this chapter will be the foundation of the
treatment of spin-Ęip scattering processes as developed in chapter 4.
A general description of wavefunctions in KKR can be found in [69], while [70] focuses to
wavefunctions using screened KKR. For more information about impurity wavefunctions
we refer to [71].
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3.1 KKR expansion of the wavefunctions ψk(r) and band
structure calculations

3.1.1 e KKR expansion of the wavefunctionsψk(r)

In the previous chapter, the problem of multiple scattering events was solved on a level
of Green functions, because the full wavefunctions are not needed for the self-consistent
calculation of the potential. Nevertheless, we will require the wavefunctions for further
purposes such as the calculation of the scattering matrix Tkk′ in section 3.3. erefore, an
expression for the full wavefunction will be derived in this section, taking into account the
multiple scattering events which occur in a periodic crystal with many scattering sites. In
addition to the wavefunction, the band structure of a periodic crystal is obtained.
e procedure is based on a bookkeeping of incoming and outgoing waves: the amplitude
of the incoming wave at scattering site nmust be the superposition of the sum of scattered
waves from all other scattering sites n′ ≠ n plus a possible external incident wave. We start
by considering a periodic array of scatterers, and focusing on two scattering centers atRn

and Rn′ . A wave scattered at site Rn for r ≥ rmax can be expanded in outgoing waves
hL(r;E) = hl(

√
Er)YL(r̂) aroundRn:

ψsc(n)(r) =∑
L

c̃
sc(n)
kL hL(r;E) . (3.1)

Around the siteRn′ , the same wave can be resolved in incoming waves jL(r′;E)

ψinc(n′)(r′) =∑
L

c̃
(n′)
kL jL(r

′;E) (3.2)

where jL(r;E) = jl(
√
Er)YL(r̂).

Using site-centered coordinates and settingRn + r =Rn′ + r′ we obtain

∑
L

c̃
sc(n)
kL hL(r′ +Rn′ −Rn;E) =∑

L

c̃
(n′)
kL jL(r

′;E) . (3.3)

In order to simplify the above expression and derive a formula for the effective amplitude
c̃
(n)
kL , we use the theorem of transformation of the Hankel functions

hL(r′ +Rn′ −Rn;E) = i√
E
∑
L′
gnn

′

LL′(E)jL′(r′;E). (3.4)

e expansion coefficients gnn′LL′(E) are the free space structure constants deĕned in eq. (2.48).
Using the expansion of Hankel functions (3.4) in terms of Bessel functions, eq. (3.3) can be
transformed to

∑
L

c̃
(n′)
kL jL(r;E) =

i√
E
∑
L,L′

c̃
sc(n)
kL gnn

′

LL′(E)jL′(r;E) (3.5)

= ∑
L

i√
E
∑
L′
c̃
sc(n)
kL′ g

nn′

L′L(E)jL(r;E).
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Comparison of the coefficients links the incoming and scattered amplitudes

c̃
(n′)
kL = i√

E
∑
L′
gnn

′

L′L(E)c̃
sc(n)
kL′ (3.6)

= i√
E
∑
L′
gn
′n

LL′(E)eik⋅(R
n−Rn′)c̃

sc(n′)
kL′ .

Besides the equality gnn′L′L(E) = gn
′n

LL′(E) which follows from the property of the Green
function g(r, r′;E) = g(r′, r;E) as deĕned in eq. (2.23), the Bloch condition for a periodic
lattice was used in the last step. It allows to establish a relation between the amplitude c̃(n

′)
kL

at a positionRn′ and the amplitude c̃(n)kL of the wave atRn

c̃
(n)
kL = exp [ik ⋅R

n] c̃(0)kL = exp [ik ⋅ (R
n −Rn′)] c̃(n

′)
kL . (3.7)

In order to obtain the amplitude of the total incoming wave at the scattering centerRn′ , we
have to sum over all waves originating from all other identical scattering sites n

c
(n′)
kL ∶= ∑

n≠n′
c̃
(n)
kL (3.8)

= i√
E
∑
n≠n′
∑
L′
gnn

′

LL′(E)e−ik⋅(R
n−Rn′)c

sc(n′)
kL′

= i√
E
∑
L′
gLL′(k;E)csc(n

′)
kL′ .

e coefficients c(n)kL and csc(n)kL as introduced in the above equation are the coefficients for
the total incoming and scattered wave, respectively. I.e., they are summed over incoming
waves from all centers, while c̃(n

′)
kL and c̃sc(n

′)
kL were the contributions coming only from the

incoming wave due to siteRn. Additionally, the KKR structure constants

gLL′(k;E) =∑
n

gnn
′

LL′(E)e−ik⋅(R
n−Rn′) (3.9)

have been introduced. ey do not depend on the potential, but on the geometry of the
lattice only.
e total scattered wave of a scatterer at lattice siten is connected to the total incomingwave
at the same site via the t-matrix tnLL′(E) according to

c
sc(n)
kL = −i

√
E∑

L′
tnLL′(E)(c

ext(n)
kL′ + c

(n)
kL′), (3.10)

where cext(n)kL′ is the amplitude of a possible external wave incoming to the crystal. Combin-
ing eqs. (3.10) and (3.8) allows to establish the following system of equations

c
ext(n)
kL = ∑

L′L′′′
[δLL′ −∑

L′′
gLL′′(k;E)tnL′′L′(E)]

i√
E
(tnL′L′′′(E))

−1
c
sc(n)
kL′′′ . (3.11)
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In the absence of an external incoming wave cext(n)kL = 0, they can be rewritten as

∑
L′
[δLL′ −∑

L′′
gLL′′(k;E)tnL′′L′(E)] c

(n)
kL′ = 0 . (3.12)

From their solutions, the electronic eigenvalues in a periodic crystal without incomingwave
are derived. Non-trivial solutions of the system of equations (3.12) exist, if the necessary
and sufficient condition

det [δLL′ −∑
L′′
gLL′′(k;E)tnL′′L′(E)] = 0 (3.13)

is fulĕlled. Eq. (3.13) is called the KKR secular equation and allows to determine the band
structure E(k) of periodic crystals in KKR theory. Furthermore, it shows the separation
between potential and structural properties, which is typical for the KKRmethod: Whereas
the t-matrix tnLL′(E) solely depends on the single scattering event of the wave at the poten-
tial V n(r), the KKR structure constants gLL′(k;E) are determined by the given geometri-
cal arrangement of atoms in the crystal only. As we will see in the next section, the KKR
secular equation (3.13) can be analogously formulated in terms of the structure constants
Gref
LL′(k;E) of an arbitrary system instead of free space. In this case, the t-matrix must be

replaced by the difference∆tnLL′(E) = tnLL′(E)− trefnLL′ (E) of the corresponding t-matrices.
We have now all necessary ingredients to express the full wavefunction ψk(r + Rn). In
each cell n, the incoming wave scatters at the corresponding potential V n(r). According to
eqs. (2.73) and (2.56), the regular wavefunction RL(r;E) for r > rmax is given by

RL(r;E) =∑
L′
(δLL′jl(

√
Er) − i

√
EtLL′(E)hl(

√
Er))YL′(r̂) . (3.14)

erefore, the total wavefunction becomes

ψk(r +Rn) =∑
L

c
(n)
kLR

n
L(r;E) for r > rmax. (3.15)

On the other hand, for r < rmax, the regular wavefunctions are solutions of the Schrödinger
equation (2.60) and together with the expansion (2.56), the full wavefunctions write as

ψk(r +Rn) =∑
L

c
(n)
kLR

n
L(r;E) for r < rmax. (3.16)

Because of the continuity of the regular wavefunctions at r = rmax and the requirement of
the total wavefunction to be continuous, the coefficients cnkL are the same for all r and

ψk(r +Rn) =∑
L

c
(n)
kLR

n
L(r;E) (3.17)

holds for all r.
It is straightforward to generalize the method to the case of more than one atom per unit
cell, sayNat. Introducing an index µ = 1,⋯,Nat to account for the different atom types and
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reserving the index n for the periodic lattice positions, an atomic position in the crystal is
deĕned by the lattice vector Rn plus the site vector χµ connecting the lattice point to the
basis atom

Rnµ =Rn +χµ. (3.18)

en, the Fourier transforms are carried out with respect to n only such that we obtain an
expression analogous to eq. (3.9)

gµµ
′

LL′(k;E) =∑
n′
gnµn

′µ′

LL′ (E)e
−ik⋅(Rn−Rn′) . (3.19)

e t-matrix t(E) as well as the coefficients ck depend on the atom-type µ and eq. (3.12)
must be modiĕed according to

cµkL = ∑
µ′L′L′′

grµµ
′

LL′′(k;E)∆t
µ′

L′′L′(E)c
µ′

kL′ , (3.20)

where the index n = 0 was dropped to simplify the notation.
Finally, the KKR secular equation becomes

∑
µ′L′
(δµµ′δLL′ −∑

L′′
gµµ

′

LL′′(k;E)t
µ′

L′′L′(E)) c
µ′

kL′ = 0 . (3.21)

3.1.2 Normalization of the wavefunctions

e regular wavefunctions Rn
L(r;E) as deĕned in section 2.2, eq. (2.34) in the ASA and

section 2.4, eq. (2.56) for full potential calculations are normalized as scattering solutions
of a potential in free space. ey are fully determined due the requirement that theRn

L(r;E)
and their derivatives have to be continuous at r = rmax, which is theWigner-Seitz radius rWS

in the case of ASA and the maximal radius of the Wigner-Seitz polyhedra in full potential
calculations, respectively. However, for the normalization of the total wavefunctionsψk(r+
Rn) = ∑L cnkLRn

L(r;E) we need another normalization; the wavefunctions ψk(r;E)must
fulĕll the normalization condition

Nat

∑
µ=1
∫
Vµ
d3r ∣ψµk(r)∣

2 = 1 , (3.22)

which is achieved by choosing a prefactor of the coefficients cµkL accordingly. Since the
regular solutions RL(r;E) do not comprise a basis set, this is not an algebraic problem,
but requires integration. e periodicity of the system makes the choice of the lattice site n
arbitrary; however, we must account for all basis atoms in the cell, i.e. take the sum up to
Nat.
We will ĕrst develop the normalization condition for spherical potentials before discussing
the condition for non-spherical potentials.
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Normalization ofψk(r) in the atomic sphere approximation

In the atomic sphere approximation, the radial wavefunctions expand as
Rµ
L(r;E) = R

µ
l (r;E)YL(r̂) and thus the normalization condition (3.22) becomes

1 =
Nat

∑
µ=1
∫
Vµ
d3r ∣∑

L

cµkLR
µ
l (r;E)YL(r)∣

2

(3.23)

=
Nat

∑
µ=1
∑
L
∫

rmax

0
r2dr ∣cµkLR

µ
l (r;E)∣

2 ,

where the orthogonality of the spherical harmonics is exploited.

Normalization of the wavefunctions for full potential

In the case of full potential calculations, the non-spherical contributions to the potentials
have to be taken into account. Furthermore, the volume to be integrated over is that of the
non-spherical Wigner-Seitz cells. erefore, the shapefunctionΘ(r) (see eq. (2.84)) has to
be included in the normalization condition, which is one inside the cell and 0 outside

∑
µ
∫
Vµ
d3r Θµ(r) ∣ψk(r +χµ)∣2 = 1 . (3.24)

Expanding thewavefunctions according to eq. (3.61) and the shapefunctionΘµ(r) in spher-
ical harmonics

Θµ(r) =∑
L

Θµ
L(r)YL(r̂) (3.25)

leads to

1 = ∑
µ
∫
Vµ
d3r Θµ(r) ∣ψk(r +χµ)∣2 (3.26)

= ∑
µ
∫
Vµ
d3r ∑

L3

Θµ
L3
(r)YL3(r̂) ∑

L′1L1

cµ⋆kL1
Rµ⋆
L′1L1
(r;E)YL′1(r̂)

∑
L′2L2

cµkL2
Rµ
L′2L2
(r;E)YL′2(r̂) .

Since only the spherical harmonics depend on the direction of r, the integral over the spher-
ical coordinates can be performed and yields the Gaunt coefficients CL1L2L3 . e above
equation hence results in

1 = ∑
µ
∫
Vµ
d3r Θµ(r) ∣ψk(r +χµ)∣2

= ∑
µ
∑
L1L2

cµ⋆kL1
cµkL2 ∫

rmax

0
r2dr ∑

L′1L
′
2L3

Θµ
L3
(r)CL′1L′2L3R

µ⋆
L′1L1
(r;E)Rµ

L′2L2
(r;E)

= ∑
µ
∑
L1L2

cµ⋆kL1
cµkL2

ρµL1L2
(E) , (3.27)
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where we have introduced

ρµL1L2
(E) = ∫

rmax

0
r2dr ∑

L′1L
′
2L3

Θµ
L3
(r)CL′1L′2L3

Rµ⋆
L′1L1

(r;E)Rµ

L′2L2

(r;E) . (3.28)

e quantity ρµL1L2
(E) containing the integral over r and the summation over L′1, L′2 and

L3 does not depend on k. erefore, it has to be calculated only once for all k. In practice,
the spherically symmetric contribution (L3 = 0) is calculated independently from the non-
spherically symmetric one, since in this case the Gaunt coefficients CL1L2L3=0 reduce to
CL1L20 = 1/

√
4πδL1L2 and the shape functionΘµ

L3
(r) toΘµ

0(r) =
√
4π.

Once ρµL1L2
(E) is known, the normalized coefficients cµkL are ĕnally determined by

cµkL → [∑
µ′
∑
L1L2

cµ
′⋆

kL1
cµ
′

kL2
ρµ
′

L1L2
(E)]

− 1
2

cµkL . (3.29)

3.1.3 e KKR secular equation in terms of the reference system

Although we have already presented a method to obtain the KKR energy eigenvalues in
the last section, a second, slightly different method should be introduced [71]. It avoids
the cumbersome evaluation of the free-space structure constants and uses the structural
Green function of a reference system instead, making it more efficient for practical use. Its
derivation starts with the Lippmann-Schwinger-equation (2.13) in its integral form

ψk(r+Rn;E) = ψr
k(r+Rn;E)+∑

n′
∫ d3r′ Gr(r+Rn, r′+Rn′ ;E)∆V n′(r′)ψk(r′+Rn′),

(3.30)
which relates the wave function ψk(r + Rn;E) of the considered system with the wave
function ψr

k(r +Rn;E) of a reference system, which has the crystal periodicity but is oth-
erwise arbitrary. It is described by the Green functionGr(r +Rn, r′ +Rn′ ;E). ∆V n(r) =
V n(r) − V r,n(r) denotes the difference of the potential at site n.
If the energy E is not part of the energy spectrum of the reference system, as it is the case
for the system of repulsive potentials described in section 2.5, the ĕrst term ψr

k(r+Rn;E)
of the Lippmann-Schwinger equation (3.30) vanishes. en, the above equation simpliĕes
to the homogeneous integral equation

ψk(r +Rn;E) =∑
n′
∫ d3r′ Gr(r +Rn, r′ +Rn′ ;E)∆V n′(r′)ψk(r′ +Rn′) . (3.31)

In the following, we will insert the expansions of the wavefunctions as well as the Green
function in the above equation; furthermore, we assume that the potential of the reference
system is spherical, hence V r,n(r) = V r,n(r). Again, the system of repulsive potentials from
section 2.5 fulĕlls this condition.
As derived in the previous section, the wavefunctions expand as (see eq. (3.17))

ψk(r +Rn) =∑
L

cnkLR
n
L(r;E) . (3.32)
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e same holds for the true reference system

ψr
k(r +Rn) =∑

L

cr,nkLR
r,n
L (r;E) . (3.33)

As shown in chapter 2, eq. (2.44), the Green function Gr(r +Rn, r′ +Rn′ ;E) can be ex-
panded in its spherical components according to

Gr(r +Rn, r′ +Rn′ ;E) =

∑
L1

Gr,s,nn
l1
(r, r′;E)YL1(r̂)YL1(r̂′)δnn′ + ∑

L1,L2

Rr,n
L1
(r;E)Gr,nn′

L1L2
(E)Rr,n′

L2
(r′;E), (3.34)

where the ĕrst term is the single-site scattering term, resulting from the scattering within
cell n, whereas the second one contains the backscattering of all other atoms.
e single-site Green function can be expanded in regular and irregular solutions of the
Schrödinger equation Rr,n

L (r;E) andH
r,n
L (r;E) as

Gr,s,nn
l (r, r′;E) = −i

√
ERr,n

l (r<;E)H
r,n
l (r>;E) , (3.35)

where we have exploited that the reference potential is spherical at each site n.
In order to calculate the coefficients cnkL, we insert the expansions (3.32), (3.33) and (3.34)
in the homogeneous Lippmann-Schwinger equation (3.31) and obtain

∑
L1L2

cnkL2
Rn
L1L2
(r;E)YL1(r̂) =

∑
n′
∫ d3r′ ⋅ [∑

L1

Gr,s,nn
l1
(r, r′;E)YL1(r̂)YL1(r̂′)δnn′

∑
L3

∆V n′

L3
(r′)YL3(r̂′) ∑

L2L4

cn
′

kL2
Rn′

L4L2
(r′;E)YL4(r̂′)

+ ∑
L1L2

Rr,n
l1
(r;E)YL1(r̂)G

r,nn′

L1L2
(E)Rr,n′

l2
(r′;E)YL2(r̂′)

∑
L3

∆V n′

L3
(r′)YL3(r̂′) ∑

L4L5

cn
′

kL4
Rn′

L5L4
(r′;E)YL5(r̂′)] .

(3.36)

e spherical contribution to the integral is

∫ dΩ′ YL1(r̂′)YL2(r̂′)YL3(r̂′) = CL1L2L3 . (3.37)

Using the deĕnition of VL1L2(r′), see eq. (2.59),

VL1L2(r) =∑
L3

CL1L2L3VL3 , (3.38)
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eq. (3.36) simpliĕes to

∑
L1L2

cnkL2
Rn
L1L2
(r;E)YL1(r̂) =

∑
L1L2

cnkL2 ∫ r′2dr′ Gr,s,nn
l1
(r, r′;E)∑

L4

∆V n
L1L4
(r′)Rn

L4L2
(r′;E)YL1(r̂)

+∑
n′
∑

L1L2L4

cn
′

kL4 ∫ r′2dr′ Rr,n
l1
(r;E)YL1(r̂)G

r,nn′

L1L2
(E)Rr,n′

l2
(r′;E)

∑
L5

∆V n′

L2L5
(r′)Rn′

L5L4
(r′;E).

(3.39)

As the radial solutions Rn
L1L2
(r;E) obey the radial Lippmann-Schwinger equation (A.31)

Rn
L1L2
(r;E) = Rr,n

l1
(r;E) + ∫ r′2dr′ Gr,s,nn

l1
(r, r′;E)∑

L3

∆V n
L1L3
(r′)Rn

L3L2
(r′;E) ,

(3.40)
the ĕrst term on the right-hand side can be merged with the le-hand side, hence

∑
L1L2

cnkL2
Rr,n
L1
(r;E)δL1L2YL1(r̂) =

∑
n′
∑
L1L2

∑
L4

cn
′

kL4 ∫ r′2dr′ Rr,n
l1
(r;E)YL1(r̂)G

r,nn′

L1L2
(E)Rr,n′

l2
(r′;E)

∑
L5

∆V n′

L2L5
(r′)Rn′

L5L4
(r′;E) . (3.41)

Exploiting the linear independence of the spherical harmonics yields

cnkL1
=∑

n′
∑
L2

∑
L4

cn
′

kL4 ∫ r′2dr′ Gr,nn′

L1L2
(E)Rr,n′

l2
(r′;E)∑

L3

∆V n′

L2L3
(r′)Rn′

L3L4
(r′;E) . (3.42)

e integral on the right side can be evaluated using the deĕnition of the ∆t-matrix (see
Appendix A.4, eq. (A.34))

∆tnL1L2
(E) = ∫ r2dr Rr,n

l1
(r;E)∑

L3

∆V n
L1L3
(r)Rn

L3L2
(r;E) (3.43)

with∆tnL1L2
(E) = tnL1L2

(E) − tr,nL1L2
(E). Because of the periodicity of the potential, the t-

matrix is identical for all lattice sites. us,∆tnL1L2
(E) =∆t0L1L2

(E) for all n and eq. (3.42)
becomes

cnkL1
= ∑

n′
∑
L2L3

Gr,nn′

L1L2
(E)∆t0L2L3

(E)cn′kL3

= ∑
n′
∑
L2L3

Gr,nn′

L1L2
(E)∆t0L2L3

(E)e−ik⋅(R
n−Rn′)cnkL3

= ∑
L2L3

Gr
L1L2
(k;E)∆t0L2L3

(E)cnkL3
. (3.44)
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is can be written as

∑
L2

(δL1L2 −∑
L3

Gr
L1L3
(k;E)∆t0L3L2

(E)) c0kL2
= 0 , (3.45)

which is the sought-aer secular equation for the band structure calculation.
Taking the free space as reference system, the t-matrix tr,nl (E) becomes zero, the struc-
tural Green functions Gr

LL′(k;E) are simply the free structure constants gLL′(k;E) and
eq. (3.45) reduces to

∑
L′
(δLL′ −∑

L′′
gLL′′(k;E)t0L′′L′(E)) c0kL′ = 0 , (3.46)

which is equivalent to the secular eq. (3.12) derived in the previous section.
In analogy to the previous section, the above equation can be extended to the case of several
atoms being in a unit cell. en, the structural Green function of the reference systemwrites
as

Gr,µµ′

LL′ (k;E) =∑
n′
Gnµn′µ′

LL′ (E)e−ik(R
n−Rn′) , (3.47)

and eq. (3.44) must be modiĕed according to

cµkL = ∑
µ′L′L′′

Grµµ′

LL′′(k;E)∆t
µ′

L′′L′(E)c
µ′

kL′ , (3.48)

where the index n = 0 was dropped to simplify the notation.
Finally, the KKR secular equation becomes

∑
µ′L′
(δµµ′δLL′ −∑

L′′
Grµµ′

LL′ (k;E)∆t
µ′

L′′L′(E)) c
µ′

kL′ = 0 , (3.49)

which formally is an eigenvalue problem with eigenvectors

cµkL;µ = 1, . . . ,Nat, L = 1, . . . , Lmax (3.50)

and eigenvalues λ = 0. e scheme used in the band structure calculation employing
eq. (3.49) is explained in appendix A.2.

3.1.4 e Fermi surface

At T = 0, all energy levels are up to the Fermi energy EF are occupied. In momentum
space, this energy corresponds to an energy isosurfaceE(k) = EF, which is determined by
the band structure and denoted as Fermi surface. For the free electron gas, it is simply a
sphere, since the energy E is proportional to k2. However, even for simple metals like Cu,
Ag or Au the shape of the Fermi surface exhibits signiĕcant deviations from that of the free
electron gas. For example, the Fermi surfaces of Cu and Au are shown in chapter 6. For
complex materials it might be a very complicated object.
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eFermi surface allows to gain inside intomany characteristics ofmaterials such as scatter-
ing and transport processes. Due to the Fermi Dirac distribution (especially at low temper-
atures) mainly electrons close to the Fermi energy contribute and determine the transport
properties of a material. In the current work, elastic scattering processes without energy
dissipation will be treated, i.e. scattering processes, in which the electrons keep their energy
and only the k-vector changes. Hence, scattering processes are only allowed from one k-
vector on the Fermi surface to another reciprocal space vector k′ also being on the Fermi
surface.
e calculation of the Fermi surface is very similar to the band structure calculation as ex-
plained in the previous section and in appendix A.2; the energy is pinned to E = EF while
the k vector is varied such that eq. (3.49) is fulĕlled.
Once the k-vectors kF obeying eq. (3.49) are found, the corresponding coefficients cn,µkL

can be determined by calculating the eigenvectors cµkL in eq. (3.49). In order to identify
the full wavefunctions ψk(r) at the Fermi surface, the regular solutions RL(r;E) of the
Schrödinger equation have to be calculated by solving the Schrödinger equation as de-
scribed in chapter 2, section 2.2 or 2.4, respectively. Besides, the coefficients cn,µkL are needed
for the calculation of the scatteringmatrixTkk′ , describing the scattering amplitude for scat-
tering from one state with crystal momentum k′ to another state characterized by k. e
scattering matrix Tkk′ will be derived in section 3.3.

3.2 Impurity scattering

Whenever an impurity or a defect exists in a crystal, the periodicity is broken, and the wave-
functions are not Bloch functions anymore. Hence, they cannot be determined as described
in the previous sections. However, thewavefunctionsψimp

k (r+Rn;E) of the impurity prob-
lem with the boundary condition of an incoming wave ψk(r +Rn;E) are given by the full
Lippmann-Schwinger equation (3.30)

ψimp
k (r +R

n;E) = ψk(r +Rn;E)

+∑
n′
∫ d3r′G(r +Rn, r′ +Rn′ ;E)∆V n′(r′)ψimp

k (r
′ +Rn′) . (3.51)

Here,∆V n′(r′) = V imp,n′(r′)−V n′(r′) denotes the difference of the impurity potential and
that of the periodic host system, whereasG(r+Rn, r′+Rn′ ;E) is the corresponding Green
function of the homogeneous (host) system. Since the perturbation is localized, the differ-
ence between the potentials∆V n′(r′) is non-zero for a ĕnite number of sites only. Hence,
the sum over n′ has no longer to be performed over the whole crystal but can be restricted
to the ĕnite number of perturbed lattice sites, in contrast to the case of the homogeneous
system in section 3.1.
In analogy to the expansion (3.17) of the wavefunction of the homogeneous system, the
wavefunction ψimp

k (r +Rn;E) in the presence of an impurity expands as

ψimp
k (r +R

n;E) =∑
L

cimp,n
kL Rimp,n

L (r;E) , (3.52)
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whereRimp,n
L (r;E) is the regular solution of the Schrödinger equation at the lattice site n of

the impurity problem. Because of the locality of the perturbation, for atoms far away from
the impurity where ∆V (r) ≈ 0, it simpliĕes to the regular solution of the homogeneous
system, i.e. Rimp,n

L (r;E) ≈ Rn
L(r;E).

In a ĕrst step, we will consider the case of a spherical potential, thus∆V n′(r′) =∆V n′(r′),
while in a second step, the full potential ∆V n′(r′) will be treated. As the exact deriva-
tions are lengthy, they are just outlined in the following sections and discussed in detail in
appendix A.5.1 and A.5.2.

3.2.1 Impurity scattering in the atomic sphere approximation

e procedure pursued to obtain the impurity coefficients cimp
kL is the following: We insert

the expansion for the wavefunctions calculated within the ASA

ψimp
k (r +R

n;E) =∑
L

cimp,n
kL Rimp,n

l (r;E)YL(r̂) , (3.53)

the Green function eq. (2.44) and the difference of the potentials

∆V n(r) = V imp,n(r) − V n(r) (3.54)

into the Lippmann-Schwinger equation (3.51). Integration over the spherical part, replac-
ing the radial integral by the t-matrix∆tnl (E) = t

imp,n
l (E) − tnl (E) and comparison of the

coefficients yields the relation

cimp,n
kL = cnkL +∑

n′
∑
L1

Gnn′

LL1
(E)∆tn′l1 (E)c

imp,n′

kL1
. (3.55)

Viewed as a matrix multiplication, the above expression is equivalent to

(cimp
k ) = [ ∑

n′,L1

(δLL1δnn′ −Gnn′

LL1
(E)∆tn′l1 (E))]

−1

(ck) , (3.56)

where (cimp
k ) and (ck) are column matrices with elements cimp,n

kL and cnkL, respectively. In
terms of the structural Green function of the impurity instead of the host Green function
the above relation can be formulated as

cimp,n
kL1

= ∑
n′,L2

(δL1L2δnn′ +G
imp,nn′

L1L2
(E)∆tn′l2 (E)) c

n′

kL2
. (3.57)

e equality of [1 +Gimp(E)∆t(E)] and [1 −G(E)∆t(E)]−1 can be proven easily by trac-
ing it back to the Dyson equation (2.10)

Gimp(E) = G(E) +G(E)∆t(E)Gimp(E) . (3.58)

We start with the assumption

[1 −Gimp(E)∆t(E)] = [1 −G(E)∆t(E)]−1 . (3.59)
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is can be rewritten as

1 = [1 −G(E)∆t(E)] [1 +Gimp(E)∆t(E)] (3.60)
= 1 −G(E)∆t(E) +Gimp(E)∆t(E) −G(E)∆t(E)Gimp(E)∆t(E).

Subtraction of 1 on both sides and factoring out ∆t(E) yields the Dyson equation (3.58),
q.e.d..
e form (3.57) is more convenient in practice than (3.56), and is used in the calculations
of this thesis.

3.2.2 Impurity scattering in the case of a full potential

If the full potential of the host or the impurity is taken into account, the relation as well as
the derivation of the impurity coefficients cimp,n

kL in terms of the homogeneous ones cnkL is
very similar to that described for ASA in the last section. en, the potential V (r) depends
not only on the norm of r but the full vector, scattering from one orbital with angular mo-
mentumL1 to another orbital characterized byL2 is no longer forbidden and the expansion
of the wave function (3.32) has to be modiĕed

ψk(r +Rn) = ∑
L1

cnkL1
Rn
L1
(r;E)

= ∑
L1L2

cnkL1
Rn
L2L1
(r;E)YL2(r) . (3.61)

Here, the wave function RL2L1(r) represents the scattering solution for an incoming wave
with angular momentum L1 to a wave with angular momentum L2.
Similar to the wavefunction, the Green functionG(r+Rn, r′+Rn′ ;E) has to be expanded
as (see eq. (2.44) in section 2.3)

G(r+Rn, r′ +Rn′ ;E)
= −i
√
E∑

L1

Rn
L1
(r<;E)Hn

L(r>;E)δnn′ +∑
n′
∑
L1L2

Rn
L1
(r;E)Gnn′

L1L2
(E)Rn′

L2
(r′;E)

= −i
√
E∑

L1

∑
L2L3

Rn
L2L1
(r<;E)YL2(r̂>)Hn

L3L1
(r>;E)YL3(r̂>)δnn′

+∑
n′
∑
L1L2

∑
L3L4

YL3(r̂)Rn
L3L1
(r;E)Gnn′

L1L2
(E)Rn′

L4L2
(r′;E)YL4(r̂′) ,

(3.62)

while the difference of the potentials∆V n′(r′) is expanded in terms of spherical harmonics
as

∆V n′(r′) =∑
L

∆V n′

L (r′)YL(r̂) . (3.63)

As in the case of the spherical potential, the Lippmann-Schwinger equation (3.51) provides
the basis for establishing the relation between the perturbed and the unperturbed coeffi-
cients. Replacing the Green function, the wavefunctions as well as the potential difference
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by the right-hand sides of eqs. (3.61), (3.62) and (3.63), integration over the solid angles,
identiĕcation of the atomic scatteringmatrix∆tL1L2(E) and comparison of the coefficients
while exploiting the linear independence of the spherical harmonics and the radial wave-
functions Rn

L2L1
(r;E) results in

cimp,n
kL1

= cnkL1
+∑

n′
∑
L2L3

Gnn′

L1L2
(E)∆tL2L3c

imp,n′

kL3
. (3.64)

Finally, we arrive at the general expression

cimp,n
kL1

= ∑
n′,L2

(δL1L2δnn′ +∑
L3

Gimp,nn′

L1L3
(E)∆tn′L3L2

(E)) cn′kL2
. (3.65)

Naturally, the above equation can be generalized to the case of Nat atoms per unit cell as
introduced in section 3.1.3. en, eq. (3.65) transforms to

cimp,nµ
kL1

= ∑
n′µ′,L2

(δL1L2δnn′δµµ′ +∑
L3

Gimp,nn′µµ′

L1L3
(E)∆tn

′µ′

L3L2
(E)) cn

′µ′

kL2
. (3.66)

ese expressions reduce to the ones for spherical potentials (eqs. (3.55) and (3.57)) when
replacing the full potential∆t-matrix by the spherical one∆tL1L2 = δL1L2∆tL2 .

3.3 e scattering matrix Tkk′

In chapter 2 we have already deĕned the transition matrix T (E), eq. (2.17), relating the
wave function ∣ψ⟩ of a perturbed system to the wave function ∣ψ0⟩ of the unperturbed sys-
tem [72]. Wewill now consider T (E) in its reciprocal-space representation, i.e. Tkk′ , where
it represents the scattering amplitude from one state characterized by the state vector k′ to
a second state described by k. For the purposes of this thesis, Tkk′ is of central importance,
since all physical quantities, i.e. the momentum scattering times, the surface state lifetimes
as well as surface residual resistivities calculated later-on are derived from Tkk′ . Although
scattering might have several reasons such as electron-electron or electron-phonon cou-
pling, we will deal with impurity or defect scattering only. In this case, the scatteringmatrix
Tkk′ is deĕned as

Tkk′ = ∫ d3r ψ⋆k′(r;E)∆V (r)ψ
imp
k (r;E) (3.67)

= ∑
n
∫
cell n

d3r ψ⋆k′(r +Rn;E)∆V n(r)ψimp
k (r +R

n;E) ,

where the sum is to be understood as the sum over all perturbed cells/sites included in the
impurity calculations.
In the following, we will simplify the latter expression and express the scattering matrix in
terms of the coefficients ckL and cimp

kL , the structural Green function of the impurityGimp,nn′

LL′

as well as the atomic scattering t-matrix ∆tLL′ and the related ∆-matrix ∆LL′ . As in the
previous sections, we will start with the atomic sphere approximation and then proceed
with the full-potential treatment.
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3.3.1 Spherical potential

In the ASA, inserting the expansion of the wave functions eq. (3.53) in the deĕnition of
Tkk′ , eq. (3.67) leads to the expression

Tkk′ =∑
n
∫
cell n

d3r

∑
L

cn⋆k′LR
n⋆
l (r;E)YL(r̂)∆V n(r)∑

L′
cimp,n
kL′ Rimp,n

l′ (r;E)YL′(r̂) . (3.68)

Integration over the spherical coordinates yields

Tkk′ = ∑
n
∑
L

cn⋆k′Lc
imp,n
kL ∫

cell n
r2dr Rn⋆

l (r;E)∆V n(r)Rimp,n
l (r;E) . (3.69)

In the present form the remaining integral cannot be replaced by the atomic scattering ma-
trix∆tl(E), since in the deĕnition of∆tl(E), eqs. (A.34) and (A.35), the wavefunction of
the homogeneous system appears and not its complex conjugate Rn⋆

l (r;E). erefore, we
deĕne the above integral as∆-matrix

∆l(E) ∶= ∫
cell n

r2dr Rn⋆
l (r;E)∆V n(r)Rimp,n

l (r;E) . (3.70)

ere are several ways to proceed in order to calculate the∆-matrix∆l(E). Of course, one
possibility is to calculate the integral directly, which will be done later when the scattering
matrix is calculated taking spin-orbit coupling into account.
However, if spin-orbit coupling is neglected, there are other possibilities to obtain ∆l(E),
too. e most simple one in the case of a pure spherical potential is to remember that the
complex radial wave function Rn

l (r;E) is real except a complex phase factor [73], thus
Rn
l (r;E) = exp [iδl]Un

l (r;E), where Un
l (r;E) is real. erefore, its complex conjugate

is simply Rn⋆
l (r;E) = exp [−2iδl]Rn

l (r;E). e exponents δl are the l-dependent phase
shis which describe the difference in phase at theWigner-Seitz radius of the wavefunction
compared to the wavefunction of free space. e phase shis can be obtained from the
atomic t-matrix, since the relation

tl(E) = −
1√
E

sin δl(E)eiδl (3.71)

holds, thus
δl(E) =

1

2i
ln [−2i

√
Etl(E) + 1] . (3.72)

en, the integral in eq. (3.69) can be identiĕed with the∆t-matrix and the scattering ma-
trix becomes

Tkk′ =∑
n
∑
L

cn⋆k′L exp [−2iδl]∆tnl c
imp,n
kL . (3.73)

Inserting expression (3.57) for the impurity coefficients, the above relation becomes

Tkk′ =∑
nn′
∑
LL′

cn⋆k′L exp [−2iδl]∆tnl (δLL′δnn′ +G
imp,nn′

LL′ (E)∆tn′l′ (E)) cn
′

kL′ . (3.74)
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e scattering matrix Tkk′ fulĕlls the optical theorem1

∑
k′
∣Tkk′ ∣2 δ(Ek −Ek′) = −

1

π
ImTkk , (3.75)

which will be useful when calculating the momentum relaxation time τk of a state k. An
expression for τk will be derived in section 3.5.

3.3.2 Full potential

Considering a non-spherical potential, expansion of the wavefunctions and the potential in
the deĕnition of the scattering matrix Tkk′ , eq. (3.67), yields

Tkk′ = ∫ d3r ∑
L1

cn⋆k′L1
Rn⋆
L1
(r,E)∑

L2

∆VL2(r)YL2(r̂)∑
L3

cimp,n
kL3

Rimp,n
L3
(r,E) . (3.76)

Integration over the solid angles leads to the same problem as in the previous section: the
integral over the radial part cannot be identiĕed with the atomic scatteringmatrix, since the
complex conjugate of the host wavefunction appears in the integral. In order to trace it back
to the deĕnition of the ∆t-matrix, we refer to the α-matrix αL1L2 as deĕned in eq. (2.65).
As explained in chapter 2, section 2.4, the inverse of theα-matrix transforms the regular (in
general complex) wavefunctions RL1(r) to real wavefunctions UL1(r), eq. (2.66). ere-
fore, the complex conjugate can be rewritten as

R⋆L1
(r) = [∑

L2

UL2(r)αL2L1]
⋆

= ∑
L2L3

RL3(r)α−1L3L2
α⋆L2L1

. (3.77)

Inserting the above expression in eq. (3.76) we obtain

Tkk′ = ∫ d3r ∑
L1

cn⋆k′L1
Rn⋆
L1
(r,E)∆V (r)∑

L2

cimp,n
kL2

Rimp,n
L2
(r,E)

= ∑
L1L2

cn⋆k′L1
cimp,n
kL2

∑
L3L4

α−1L4L3
α⋆L3L1 ∫ d3r RL4(r)∆V (r)R

imp,n
L2
(r,E)

= ∑
L1L2

c⋆nk′L1
cimp,n
kL2

∑
L3L4

α−1L4L3
α⋆L3L1

∆tL4L2(E) , (3.78)

thus
Tkk′ = ∑

L1L2L3L4

cn⋆kL1
α−1L3L2

α⋆L2L1
∆tL3L4c

imp,n
k′L4

. (3.79)

For a spherical potential, the above expression must reduce to eq. (3.73), which can be
proven easily by inserting

αL1L2 = δL1L2 ∣αL1L2 ∣ eiδl1 and (3.80)
∆tL1L2 = δL1L2∆tl1 (3.81)

in expression (3.79).
1In its original form, the optical theorem is 1

2
(T † − T ) = i

√
ET †T , which in the case of atomic t-matrices

simpliĕes to 1/2(t⋆L′L−tLL′) = i
√
E∑L′′ t

⋆
L′′LtL′′L′ . Knowing, that the atomic t-matrices tLL′ are symmetric

and setting L = L′ leads to the above form.
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3.4 Wigner delay time

In order to analyze the time scale of the scattering process, it is useful to deĕne the Wigner
delay time tD as

tD = 2
dδl
dE

, (3.82)

where δl denotes the phase shi as introduced in chapter 2 eq. (2.29). e above deĕnition
follows from the interpretation of the scattering process of a wave packet. eWigner delay
time tD describes the delay of a scattered wave compared to an unperturbed one, or, in other
words, the time which the electron spends at the impurity during the scattering process.
More information and a detailed derivation of the Wigner delay time can be found in [60]
and [72].

3.5 e lifetime τk
Having calculated the scattering matrix Tkk′ and assuming elastic scattering, the micro-
scopic scattering probability Pkk′ can be found via the relation

Pkk′ =
2π

h̵
Nc ∣Tkk′ ∣2 δ(Ek −Ek′) , (3.83)

where N is the total number of atoms in the crystal and c is the impurity concentration –
hence,Nc is the number of impurities present in the crystal. Assuming that each impurity
scatters independently, the lifetime of a state k can be found by summing up the scattering
probabilities for scattering of k into all states k′

τ−1k =∑
k′
Pk′k =

2π

h̵
Nc∑

k′
∣Tk′k∣2 δ(Ek −Ek′) . (3.84)

e summation over k′ can be transformed to an integral

∑
k′
= V

(2π)3 ∫
d3k′ , (3.85)

where V is the volume of the crystal. e integration over d3k′ can be separated into an
integral over surfaces withEk′ = const. and an integration in the direction k′� perpendicular
to them

∑
k′
= V

(2π)3 ∫
Emax

0
dEk′ ∫

S(Ek′)

dSk′

h̵vk′
. (3.86)

erefore, the inverse lifetime (3.84) results in

τ−1k =
1

VBZ

2πNc

h̵2 ∫
S(EF)

dSk′

vk′
∣Tk′k∣2 , (3.87)

replacing (2π)3 /V by the volume of the Brillouin zone VBZ, carrying out the integration
over the energy dEk′ and setting Ek = EF, since we are interested in lifetimes at the Fermi
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energy EF. If only the total momentum relaxation time should be calculated, the optical
theorem

1

VBZ
∫
S(EF)

dSk′

h̵vk′
∣Tkk′ ∣2 = −

1

π
ImTkk (3.88)

can be used. en, the integration over the Fermi surface can be omitted and the inverse
momentum relaxation time is given by

τ−1k = −
2

h̵
Nc ImTkk . (3.89)

3.6 Residual resistivity

In a metal, the mean free path Λk of an electron with wavevector k is given by the product

Λk = vkτ̃k , (3.90)

where vk is the Fermi velocity and τ̃k denotes themean time between two scattering events.
is so-called transport scattering time τ̃k does not equal the momentum relaxation time
τk calculated in the last section. It is obtained by a self-consistent solution of the Boltzmann
equation [59]

τ̃kvk
Nc Vn
4π2 ∫S(EF)

dSk′

h̵vk′
∣Tkk′ ∣2 = vk +

Nc Vn
4π2 ∫S(EF)

dSk′

h̵vk′
τ̃k′

vk ⋅ vk′

vk
∣Tkk′ ∣2 . (3.91)

As in the last section,Nc denotes the number of impurities in the crystal, and Vn is the vol-
ume of a unit cell n. Once the transport scattering time τ̃k is known, the residual resistivity
per impurity concentration cρ can be calculated. It is given by

1

cρ
= 1

3

e2

4π3h̵ ∫S(EF)
dSk vkτ̃k . (3.92)

e factor 1/3 is due to averaging the Fermi velocity over the three dimensions of space. If
residual resistivities for 2-dimensional (host) systems such as thin ĕlms have to be calcu-
lated, the factor has to be replaced by 1/2 and the residual resistivity per impurity concen-
tration becomes

cρ = [ e2

8π3h̵ ∫S(EF)
dSk vkτ̃k]

−1

. (3.93)

In such two-dimensional systems, the integral over the Fermi surfaces reduces to a line
integral.



CHAPTER 4

Spin-orbit coupling

Spin-orbit coupling is the most important mechanism which couples the spin moment of
an electron to its orbital motion. In the interplay with ordinary momentum relaxation, it
determines the spin-relaxation time and the spin-Ęip lifetime for electrons, which is one
of the major subjects of the present thesis. erefore, at the beginning of this chapter a
short introduction to the theoretical concept of spin-orbit interaction will be given. Up to
now, the description of the scattering processes within the KKR-formalism has been done
without spin-orbit coupling. In this chapter, wewill extend themethod to systems under the
presence of spin-orbit coupling anddescribe its implementationwithin theKKR-formalism.
However, wework in an approximationwhere the charge-density is calculatedwithout spin-
orbit coupling, while spin-orbit coupling is then included in the ĕnal step of wavefunction
and t-matrix calculation for scattering properties.
We present a scheme to calculate the spin expectation operators and point out the problems
arising when considering degenerated states. A simple model will be used to conĕrm that
our unexpected results regarding this aspect are correct. Finally, the concept of momentum
relaxation caused by impurity scattering is extended to systems where spin-orbit coupling
effects are included and a formula for spin-relaxation times is derived.

4.1 eory of spin-orbit coupling

Spin-orbit coupling denotes the interaction of a particle's spin with its motion. From a clas-
sical point of view, this can be understood by considering a moving electron in an electric
ĕeldE. A Lorentz transformation to the frame of reference of themoving electron leads to a
magnetic ĕeldB ∼ v×E which couples to the magnetic moment of the electron. However,
spin-orbit coupling is a purely relativistic effect, and therefore not inherent in the frame of
the non-relativistic Schrödinger equation or even the scalar relativistic approach. e aim

43
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of this section is to derive a correction term to the Schrödinger equation coupling the mag-
netic momentσ of the electron to its orbital momentumL. erefore, one has to start with
the fully relativistic Dirac equation for an electron in an external scalar potential V (r) and
a vector potentialA(r)

HΨ(r) = ih̵ ∂
∂t

Ψ(r) = EΨ(r) (4.1)

with the Hamiltonian

H = −eV (r) + βmc2 +α ⋅ [cp + eA(r)] (4.2)

for an electron with charge −e and rest massm.
eα-matrix is a vector of 4 × 4-matrices

α = (
0 σ

σ 0
) (4.3)

consisting of the Pauli spin matrices

σx = (
0 1

1 0
) , σy = (

0 −i
i 0

) and σz = (
1 0

0 −1
) , (4.4)

while β is a matrix of same rank, built of 2 × 2 unit matrices I2

β = (
I2 0

0 −I2
) . (4.5)

e eigenfunctionsΨ(r) of (4.1) are four-component vectors usually written as

Ψ(r) = (
ψ(r)
ξ(r)
) , (4.6)

and the two-component vectors ψ(r) and ξ(r) are called large and small component of
the wave function. Inserted into eq. (4.1) and using eq. (4.2), two differential equations
coupling the large and small component are obtained

(E − 2mc2 + eV (r))ψ(r) = α ⋅ (cp + eA(r)) ξ(r) (4.7)
(E + 2mc2 + eV (r)) ξ(r) = α ⋅ (cp + eA(r))ψ(r) . (4.8)

A substitution of eq. (4.8) in eq. (4.7) allows to formulate an equation for the large com-
ponent, also denoted as Pauli-equation. For non-magnetic systems, the vector potential
A(r) = 0 vanishes. Furthermore, in the non-relativistic limit, i.e. v ≪ c, the Pauli-equation
reduces to the Schrödinger equation but with the additional term

eh̵

2 (M(r)c)2
σ ⋅ (∇V (r) × p) , (4.9)
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comprising the coupling of the electron spin to the cross-productE×p. Here, the relativistic
massM(r) enters instead of the rest massm. An expression forM(r) will be given in the
following section 4.2, eq. (4.20).
en, the following transformation

σ ⋅ (∇V (r) × p) = 1

r

dV (r)
dr

σ ⋅ (r × p)

= 1

r

dV (r)
dr

σ ⋅L
(4.10)

is valid and leads to the sought-aer coupling of the electron spin to its orbital momentum
L. Deĕnition of the spin operator S = σ/2 yields the correction term

VSOC =
eh̵

2M(r)2c2
1

r

dV (r)
dr

L ⋅ S , (4.11)

provided that the potential is spherical symmetric V (r) = V (r). is term is added to the
non-relativistic or the scalar relativistic Hamiltonian HSRA, respectively, and is oen also
denoted as spin-orbit Hamiltonian HSOC. en, the correction to the energy is obtained
within ĕrst order perturbation theory.
In principle, the potential comprises contributions of all other electrons within the atom as
well as the potential caused by the nucleus. In order to simplify calculations, this potential
is replaced by a mean-ĕeld potential which is found during calculation, e.g. within density
functional theory. e exact treatment of the potential in this thesis will be sketched in
section 4.2.1. e strongest inĘuence on the spin-orbit interaction comes from the strong
nuclear ĕeld, whose derivative close to the core behaves as 1/r dV /dr ∼ −Z ∣e∣/r3; the de-
pendence on the atomic number Z is also the reason why the inĘuence of spin-orbit cou-
pling is stronger in heavy atoms.
In the derivation of eq. (4.11), the deĕnition of the angular momentum L = r × p has been
used. In the above form, it becomes evident that s-electrons do not contribute to spin-orbit
coupling. e positive sign of the operator L ⋅ S indicates that spin- and orbital moment
prefer to orient antiparallely giving rise to Hund's rule.
Although the spin-orbitHamiltonian is proportional toL, p-electrons experience a stronger
spin-orbit coupling than d- or f -electrons, since the p-wavefunction has a larger amplitude
close to the nucleus (the wavefunctions of angular momentum l start off as ∼ rl), where
the effect of spin-orbit coupling is largest (caused by the proportionality of the spin-orbit
coupling Hamiltonian to 1/r3).
For further information, we refer to [74] or to any book on quantum mechanics, e.g. the
books by Rose [75].

4.2 Evaluation of the spin-orbit Hamiltonian

e spin-orbit potential VSOC as deĕned in eq. (4.11) is composed of a factor

ξ(r) = eh̵

2M(r)2c2
1

r

dV (r)
dr

, (4.12)
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also called the spin-orbit coupling parameter, and the term L ⋅ S. Whereas the parameter
ξ(r) determines the strength of the spin-orbit coupling, the term L ⋅ S accounts for the
coupling of the orbital momenta to the spin. In order to include the term VSOC in the KKR-
formalism, we write eq. (4.11) in matrix notation

(
V ↑↑SOC(r) V ↑↓SOC(r)
V ↓↑SOC(r) V ↓↓SOC(r)

) = ξ(r)
⎛
⎝
(L ⋅ S)↑↑ (L ⋅ S)↑↓

(L ⋅ S)↓↑ (L ⋅ S)↓↓
⎞
⎠
, (4.13)

where ↑ and ↓ denote the spin directions. In the following we will ĕrst make some remarks
on the coupling constant ξ(r) before evaluating the L ⋅ S-matrix. e evaluation will be
carried out in the basis of the real spherical harmonics

⎛
⎝
(L ⋅ S)↑↑LL′ (L ⋅ S)

↑↓
LL′

(L ⋅ S)↓↑LL′ (L ⋅ S)
↓↓
LL′

⎞
⎠
= 1

2
⟨YL(r̂) ∣(

Lz L−

L+ −Lz
)∣YL′(r̂)⟩ . (4.14)

4.2.1 e spin-orbit coupling parameter ξ(r)

As already mentioned in the introduction, in principle the potential V (r) entering in the
spin-orbit coupling comprises the contributions of all other electrons as well as the nucleus.
However, for a practical evaluation only the spherically symmetric component of themean-
ĕeld potential is taken. Both approximations lead to relatively good results since spin-orbit
coupling is strong in the region close to the nucleus and negligibly weak in the interstitial
region, where non-spherical terms appear (see ĕgure 5.1 in chapter 5.
In order to calculate the derivative of the spherical potential dV (r)/dr at r, the potential is
split into two parts

V (r) = V (r)e−e + V (r)Z−e. (4.15)

is is useful, since the contribution coming from the interaction of the nucleus with the
electrons V (r)Z−e is known analytically

VZ−e(r) =
⎧⎪⎪⎨⎪⎪⎩

−2Z
r for r ≥ RN

− 3Z
RN
+ Zr2

R3
N

for r < RN,
(4.16)

where RN is the radius of the nucleus, approximated by [76]

RN ≈ 1.2 ⋅A1/3 10−15Å ≈ 1.2

0.529177
⋅A1/3 10−5a.u.. (4.17)

Here, A is the total number of nucleons (protons and neutrons) contained inside the nu-
cleus, which is assumed to have a homogeneous charge distribution.
e derivative of this contribution is hence

dVZ−e(r)
dr

=
⎧⎪⎪⎨⎪⎪⎩

2Z
r2 for r ≥ RN

2Zr
R3

N
for r < RN.

(4.18)
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e derivative of the electronic part has to be calculated numerically, and is simply calcu-
lated as the differential quotient at the position r

dVe−e(ri)
dr

= 1

2
(V (ri+1) − V (ri)

ri+1 − ri
+ V (ri) − V (ri−1)

ri − ri−1
) , (4.19)

where ri are the radial points on which the potential is deĕned in the code. Inside the nu-
clear radius, the electronic part of the potential is much smaller than the ĕrst contribution,
whereas it becomes important for increasing r.
In the evaluation of ξ(r), the relativistic mass M(r) has to be included, taking the mass
enhancement close to the core into account. With the above considerations about the po-
tential,M(r) becomes

M(r) =m + 1

2c2
(E − Ve−e(r) + 2

Z

r
) . (4.20)

en, using atomic units, e = 2me = h̵ = 1, the spin-orbit coupling constant results in

ξ(r) = 1

2M(r)2
1

r

dV (r)
dr

. (4.21)

4.2.2 Evaluation of L ⋅ S in terms of real spherical harmonics

e term L ⋅ S can be decomposed according to

L ⋅ S = LxSx +LySy +LzSz . (4.22)

Exploiting the deĕnitions of the ladder operators

L± = Lx ± iLy (4.23)
S± = Sx ± iSy , (4.24)

the above decomposition can be written as

L ⋅ S = 1

2
(L+S− +L−S+) +LzSz . (4.25)

e z-component of the spin operator measures the direction of the spin, thus

Sz ∣↑⟩ = +
1

2
∣↑⟩ and (4.26)

Sz ∣↓⟩ = −
1

2
∣↓⟩ , (4.27)

where ∣↑⟩ and ∣↓⟩ denote eigenstates of the spin operator with spin oriented in 'up'- and
'down'-direction, respectively.
On the contrary to Sz , the operators S+ and S− change the spin state according to

S− ∣↑⟩ = ∣↓⟩ , S− ∣↓⟩ = 0 , (4.28)
S+ ∣↓⟩ = ∣↑⟩ , S+ ∣↑⟩ = 0. (4.29)
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In matrix-form, equation (4.25) can then be rewritten as

⎛
⎝
(L ⋅ S)↑↑ (L ⋅ S)↑↓

(L ⋅ S)↓↑ (L ⋅ S)↓↓
⎞
⎠
= 1

2
[(

0 0

L+ 0
) + (

0 L−

0 0
)] + 1

2
(
Lz 0

0 −Lz
)

= 1

2
(
Lz L−

L+ −Lz
) , (4.30)

where, in the basis set of spherical harmonics, L+, L− and Lz are matrices of the size 2l + 1.
For the evaluation within the KKR-formalism we require the above matrix in the basis set
of the real spherical harmonics denoted with YL(r̂)

⎛
⎝
(L ⋅ S)↑↑LL′ (L ⋅ S)

↑↓
LL′

(L ⋅ S)↓↑LL′ (L ⋅ S)
↓↓
LL′

⎞
⎠
= 1

2
⟨YL(r̂) ∣(

Lz L−

L+ −Lz
)∣YL′(r̂)⟩ . (4.31)

However, we start with the evaluation of the L ⋅ S-matrix in complex spherical harmonics
YL(r̂) = Ylm(r̂), since they are eigenfunctions to the Lz-operator and also simplify the
application of the ladder operators.
e projection ⟨Ylm∣Lz ∣Yl′m′⟩ is diagonal, i.e.

⟨Ylm∣Lz ∣Yl′m′⟩ = δll′δmm′m, (4.32)

or, written in matrix notation,

⟨Ylm∣Lz ∣Ylm′⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−l 0 ⋯ 0

0 −l + 1 ⋯
⋱

⋮ 0 ⋮
⋱

⋯ l − 1 0

0 ⋯ 0 l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.33)

e ladder operatorsL+ andL− changem, thus the z-component of the angularmomentum
following

L± ∣Ylm⟩ =
√
l(l + 1) −m(m ± 1) ∣Ylm±1⟩ , (4.34)

or,

⟨Ylm∣L+∣Ylm′⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0
√
2l 0

0
√
4l − 2

⋱ ⋱
⋮

√
l(l + 1) ⋮

⋱
√
4l − 2 0

0 ⋯ 0
√
2l 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4.35)
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and

⟨Ylm∣L−∣Ylm′⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
√
2l 0 ⋯ 0

0 0
√
4l + 2

⋱ ⋱
⋮

√
l(l + 1) ⋮
⋱ ⋱

√
4l + 2 0

0
√
2l

0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.36)

respectively.
In order to calculate the action of the three operators Lz , L+ and L− on the set of basis
functions of real spherical harmonics, the transformation of complex spherical harmonics
to real spherical harmonics is required. Choosingm > 0, it is

Yl,−m = i√
2
[Yl,−m − (−1)mYlm] (4.37)

Yl,0 = Yl,0

Yl,m = 1√
2
[Yl,−m + (−1)mYlm] , m > 0.

e inverse transformation yielding the complex spherical harmonics as linear combina-
tions of the real spherical harmonics is given by

Yl,−m = 1√
2
[Yl,m − iYl,−m] (4.38)

Yl,0 = Yl,0

Yl,m = (−1)
m

√
2
[Yl,m + iYl,−m] , m > 0.

A detailed derivation of the action of Lz and the ladder operators L+ and L− on the real
spherical harmonics can be found in Appendix B.
Inserting the results of Appendix B into eq. (4.30) allows to obtain the spin-orbit coupling
matrix L ⋅ S in the appropriate basis set of real spherical harmonics.
In principle, another much easier way can be chosen: e L ⋅ S-matrix could be evaluated
in the relativistic κ-µ-basis set deĕned as

κ = {
l for j = l − 1

2

−l − 1 for j = l + 1
2

and (4.39)

µ = Lz + Sz , (4.40)

where j(j+1) is the expectation value of the squared total angular momentum operator. In
this basis set, the L ⋅S-matrix is diagonal [75], and can be subsequently transformed to the
basis set of real spherical harmonics. However, in the presence of non-spherical potentials,
the κ-µ-representation does not have an important advantage any more.
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4.3 Spin-orbit coupling in KKR formalism

4.3.1 e spin-dependent Lippmann-Schwinger equation

Taking spin-orbit coupling into account, the wavefunction becomes spin-dependent
(ψ↑(r;E), ψ↓(r;E))T and is calculated as a perturbation of the spherical solution of the
system without spin-orbit coupling characterized by ψ↑0(r;E), ψ

↓
0(r;E), G

↑↑
0 (r, r′;E) and

G↓↓0 (r, r′;E)1. erefore, the Lippmann-Schwinger equation

(
ψ↑(r)
ψ↓(r)

) = (
ψ↑0(r)
ψ↓0(r)

)

+ ∫ d3r′ (
G↑↑0 (r, r′) 0

0 G↓↓0 (r, r′)
)(
VSOC(r′)↑↑ VSOC(r′)↑↓

VSOC(r′)↓↑ VSOC(r′)↓↓
)(
ψ↑(r′)
ψ↓(r′)

) (4.41)

is solved, which is identical to the solution of the full-potential problem, eq. (2.76), as de-
scribed in chapter 2, section 2.4. To simplify the notation, the dependence of the wavefunc-
tion and the Green function on the energy E is omitted.
e perturbation potential is the spin-orbit correction term VSOC as deĕned in eq. (4.11),
which couples the two spin components. If full-potential calculations are performed, the
non-spherical components ∆V ↑↑non−sph.(r) and ∆V ↓↓non−sph.(r) of the potential are added to
the terms diagonal in spin space to the perturbation Hamiltonian. erefore, VSOC is re-
placed by∆V in eq. (4.41) which is deĕned as

(
∆V (r)↑↑ ∆V (r)↑↓

∆V (r)↓↑ ∆V (r)↓↓
) =

(
VSOC(r)↑↑ VSOC(r)↑↓

VSOC(r)↓↑ VSOC(r)↓↓
) + (

∆V ↑↑non−sph.(r) 0

0 ∆V ↓↓non−sph.(r)
) . (4.42)

For non-magnetic systems, the equality ∆V ↑↑non−sph.(r) = ∆V ↓↓non−sph.(r) holds. In the fol-
lowing, we assume that the incoming wave has only one spin component, thus

(
ψ↑0(r)
ψ↓0(r)

) = (
ψ↑0(r)
0
) (4.43)

or

(
ψ↑0(r)
ψ↓0(r)

) = (
0

ψ↓0(r)
) . (4.44)

e total wavefunctions, i.e. the solutions of the Lippmann-Schwinger equation (4.41) with
incoming wave in up direction (4.43) will be denoted by

(
ψ↑↑(r)
ψ↓↑(r)

) , (4.45)

1In a non-magnetic system, ψ↑0(r;E) and ψ
↓
0(r;E) (orG

↑↑
0 (r, r′;E) andG

↓↓
0 (r, r′;E), respectively) are even

the same.
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and by

(
ψ↑↓(r)
ψ↓↓(r)

) (4.46)

for an incoming wave in down direction.
e two different choices lead to the two Lippmann-Schwinger equations

(
ψ↑↑(r)
ψ↓↑(r)

) = (
ψ↑0(r)
0
)

+ ∫ d3r′ (
G↑↑0 (r, r′) 0

0 0
)(

∆V ↑↑(r′) ∆V ↑↓(r′)
∆V ↓↑(r′) ∆V ↓↓(r′)

)(
ψ↑↑(r′)
ψ↓↑(r′)

) (4.47)

and

(
ψ↑↓(r)
ψ↓↓(r)

) = (
0

ψ↓0(r)
)

+ ∫ d3r′ (
0 0

0 G↓↓0 (r, r′)
)(

∆V ↑↑(r′) ∆V ↑↓(r′)
∆V ↓↑(r′) ∆V ↓↓(r′)

)(
ψ↑↓(r′)
ψ↓↓(r′)

) . (4.48)

e above two equations are not only valid for the wavefunctions (ψ↑↑(r), ψ↓↑(r))T and
(ψ↑↓(r), ψ↓↓(r))T , but can be analogously formulated for the basis functions, the regular
solutions of the Schrödinger equation R↑nL (r) and R

↓n
L (r).

Merging the two equations (4.47) and (4.48) into one matrix equation and replacing the
full wavefunctions with the regular wavefunctions as explained above, we obtain the full
Lippmann-Schwinger equation

(
R↑↑L (r) R↑↓L (r)
R↓↑L (r) R↓↓L (r)

) = (
R0,↑
L (r) 0

0 R0,↓
L (r)

)

+ ∫ d3r′ (
G↑↑0 (r, r′) 0

0 G↓↓0 (r, r′)
)(

∆V ↑↑(r′) ∆V ↑↓(r′)
∆V ↓↑(r′) ∆V ↓↓(r′)

)(
R↑↑L (r′) R↑↓L (r′)
R↓↑L (r′) R↓↓L (r′)

) (4.49)

for the regular wavefunctions.
In order to solve this equation, it is helpful to expand the variables Gσσ

0 (r, r′), ∆V σσ′(r)
and Rσσ′

L (r) in terms of spherical harmonics YL(r̂)2

Gσσ
0 (r, r′) = ∑

L′
YL′(r̂)Gσσ

0,l′(r, r′)YL′(r̂′) (4.50)

∆V σσ′(r) = ∑
L

∆V σσ′(r)YL(r̂) (4.51)

Rσσ′

L (r) = ∑
L′
Rσσ′

L′L(r)YL′(r̂) and (4.52)

R
0,↑(↓)
L (r) = ∑

L′
R

0,↑(↓)
L′L (r)YL′δL′L(r̂). (4.53)

2As we start from the spherical solution of the host system, Gσσ
0,L′(r, r′) = Gσσ

0,l′(r, r′) and the regular wave-
functionsR0,↑(↓)

L′L (r) are diagonal in L.
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Inserting the above expressions in the Lippmann-Schwinger equation (4.49), a system of
coupled equations is obtained. In a ĕrst step this yields

∑
L′
YL′(r̂)(

R↑↑L′L(r) R↑↓L′L(r)
R↓↑L′L(r) R↓↓L′L(r)

) =∑
L′
YL′(r̂) [(

R0,↑
L′L(r)δL′L 0

0 R0,↓
L′L(r)δL′L

)+

∫ d3r′ (
G↑↑0,l′(r, r′) 0

0 G↓↓0,l′(r, r′)
)YL′(r̂′)∑

L′′
YL′′(r̂′)(

∆V ↑↑L′′(r′) ∆V ↑↓L′′(r′)
∆V ↓↑L′′(r′) ∆V ↓↓L′′(r′)

)

∑
L′′′
YL′′′(r̂′)(

R↑↑L′′′L(r′) R↑↓L′′′L(r′)
R↓↑L′′′L(r′) R↓↓L′′′L(r′)

)] . (4.54)

e linear independence of the spherical harmonics YL′(r̂) allows to omit the summation
over L′, and the above equation can be simpliĕed to

(
R↑↑L′L(r) R↑↓L′L(r)
R↓↑L′L(r) R↓↓L′L(r)

) = (
R0,↑
L′L(r)δL′L 0

0 R0,↓
L′L(r)δL′L

)

+ ∑
L′′L′′′

∫ dΩ′YL′(r̂′)YL′′(r̂′)YL′′′(r̂′)∫ r′2dr′

(
G↑↑0,l′(r, r′) 0

0 G↓↓0,l′(r, r′)
)(

∆V ↑↑L′′(r′) ∆V ↑↓L′′(r′)
∆V ↓↑L′′(r′) ∆V ↓↓L′′(r′)

)(
R↑↑L′′′L(r′) R↑↓L′′′L(r′)
R↓↑L′′′L(r′) R↓↓L′′′L(r′)

) .

(4.55)

e integral over the angular part ∫ dΩ′ YL′(r̂′)YL′′(r̂′)YL′′′(r̂′) can be identiĕed with
the Gaunt coefficients CL′L′′′L′′ (see eq. (2.49)). Deĕning the double-indexed perturbation
Hamiltonian as

∑
L′′
CL′L′′′L′′∆V

σσ′

L′′ (r′) =∆V σσ′

L′L′′′(r′) , (4.56)

ĕnally results in

(
R↑↑L′L(r) R↑↓L′L(r)
R↓↑L′L(r) R↓↓L′L(r)

) = (
R0,↑
L′L(r)δL′L 0

0 R0,↓
L′L(r)δL′L

)

+ ∫ r′2dr′ (
G↑↑0,l′(r, r′) 0

0 G↓↓0,l′(r, r′)
)

∑
L′′′
(
∆V ↑↑L′L′′′(r′) ∆V ↑↓L′L′′′(r′)
∆V ↓↑L′L′′′(r′) ∆V ↓↓L′L′′′(r′)

)(
R↑↑L′′′L(r′) R↑↓L′′′L(r′)
R↓↑L′′′L(r′) R↓↓L′′′L(r′)

) .

(4.57)

e above equation comprises only a one-dimensional integral over r′ instead of the three-
dimensional integral in eq. (4.49) and is solved iteratively. e procedure followed in this
work will be sketched in the next paragraph.

Solution of the Lippmann-Schwinger equation for the regular wavefunctions
For the solution of the Lippmann-Schwinger equation (4.57) for the regular wavefunctions,
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the radial Green function of the spherical potential G↑↑(↓↓)0,l (r, r′) is expressed in terms of
the known radial solutions R0

l (r) andH0
l (r)

G
↑↑(↓↓)
0,l (r, r

′) = −i
√
ER

0,↑(↓)
l (r<)H0,↑(↓)

l (r>) (4.58)

with
r> =max(r, r′) and r< =min(r, r′). (4.59)

is leads to a decomposition of the regular wavefunctions

(
R↑↑L′L(r) R↑↓L′L(r)
R↓↑L′L(r) R↓↓L′L(r)

) = (
A↑↑L′L(r) A↑↓L′L(r)
A↓↑L′L(r) A↓↓L′L(r)

)(
R0,↑
L′L(r)δL′L 0

0 R0,↓
L′L(r)δL′L

)

+ (
B↑↑L′L(r) B↑↓L′L(r)
B↓↑L′L(r) B↓↓L′L(r)

)(
H0,↑
L′L(r)δL′L 0

0 H0,↓
L′L(r)δL′L

) (4.60)

with

(
A↑↑L′L(r) A↑↓L′L(r)
A↓↑L′L(r) A↓↓L′L(r)

) = (
δL′L 0

0 δL′L
)−i
√
E ∫

rmax

r
r′2dr′ (

H0,↑
L′L(r′)δL′L 0

0 H0,↓
L′L(r′)δL′L

)

∑
L′′′
(
∆V ↑↑L′L′′′(r′) ∆V ↑↓L′L′′′(r′)
∆V ↓↑L′L′′′(r′) ∆V ↓↓L′L′′′(r′)

)(
R↑↑L′′′L(r′) R↑↓L′′′L(r′)
R↓↑L′′′L(r′) R↓↓L′′′L(r′)

) (4.61)

and

(
B↑↑L′L(r) B↑↓L′L(r)
B↓↑L′L(r) B↓↓L′L(r)

) = −i
√
E ∫

r

0
r′2dr′ (

R0,↑
L′L(r′)δL′L 0

0 R0,↓
L′L(r′)δL′L

) ⋅

∑
L′′′
(
∆V ↑↑L′L′′′(r′) ∆V ↑↓L′L′′′(r′)
∆V ↓↑L′L′′′(r′) ∆V ↓↓L′L′′′(r′)

)(
R↑↑L′′′L(r′) R↑↓L′′′L(r′)
R↓↑L′′′L(r′) R↓↓L′′′L(r′)

) . (4.62)

Equations (4.60), (4.61) and (4.62) can now be solved iteratively starting from the spherical
solution without spin-orbit coupling

(
R↑↑L′L(r) R↑↓L′L(r)
R↓↑L′L(r) R↓↓L′L(r)

) = (
R0,↑
L′L(r)δL′L 0

0 R0,↓
L′L(r)δL′L

) . (4.63)

e iteration scheme described above is the so-called Fredholm-method [77]. Another way
to solve the equations yielding the same results makes use of the Volterra method [66].

Relation to the ∆t-matrix Once the matrices A and B are known, the correction to
the atomic scattering matrix ∆tσσ

′ can be calculated. e current paragraph deals with
establishing a relation of the∆t-matrix to the matricesA andB.
Outside the range of the potential, for r > rmax, the second term of equation (4.61) becomes
zero

(
A↑↑L′L(r) A↑↓L′L(r)
A↓↑L′L(r) A↓↓L′L(r)

) = (
δL′L 0

0 δL′L
) (4.64)
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and thus (4.60) reduces to

(
R↑↑L′L(r) R↑↓L′L(r)
R↓↑L′L(r) R↓↓L′L(r)

) = (
R0,↑
L′L(r)δL′L 0

0 R0,↓
L′L(r)δL′L

)

+ (
B↑↑L′L(S) B↑↓L′L(S)
B↓↑L′L(S) B↓↓L′L(S)

)(
H0,↑
L′L(r)δL′L 0

0 H0,↓
L′L(r)δL′L

) . (4.65)

A comparison of the last equation with the deĕnition of the ∆t-matrix (see eq. (2.37) for
the ASA or eq. (2.73) for the case of a full potential),∆t can be identiĕed as

(
∆t↑↑L′L(E) ∆t↑↓L′L(E)
∆t↓↑L′L(E) ∆t↓↓L′L(E)

) = i√
E
(
B↑↑L′L(S) B↑↓L′L(S)
B↓↑L′L(S) B↓↓L′L(S)

) . (4.66)

Hence, according to eq. (4.62),∆t can be explicitly calculated as

(
∆t↑↑L′L(E) ∆t↑↓L′L(E)
∆t↓↑L′L(E) ∆t↓↓L′L(E)

) = ∫
rmax

0
r′2dr′ (

R0,↑
L′L(r′)δL′L 0

0 R0,↓
L′L(r′)δL′L

)

∑
L′′′
(
∆V ↑↑L′L′′′(r′) ∆V ↑↓L′L′′′(r′)
∆V ↓↑L′L′′′(r′) ∆V ↓↓L′L′′′(r′)

)(
R↑↑L′′′L(r′) R↑↓L′′′L(r′)
R↓↑L′′′L(r′) R↓↓L′′′L(r′)

) . (4.67)

4.3.2 e spinor wavefunctions including spin-orbit coupling

In the presence of spin-orbit interaction, the k-dependent wavefunction as deĕned in
eq. (3.32) has to be generalized to

(
ψ↑k(r +Rn;E)
ψ↓k(r +Rn;E)

) =∑
L

c↑nkL (
R↑↑nL (r;E)
R↓↑nL (r;E)

) +∑
L

c↓nkL (
R↑↓nL (r;E)
R↓↓nL (r;E)

) . (4.68)

Hence, it becomes a spinor with the two components ψ↑k(r +Rn;E) and ψ↓k(r +Rn;E),
which are referred to as spin-up and spin-down components.
In the above expansion (4.68), the radial wavefunction

R↑nL (r;E) = (
R↑↑nL (r;E)
R↓↑nL (r;E)

) (4.69)

denotes the spinor wavefunction of an incomingwave only containing a spin up component

(
jL(r;E)

0
) = jL(

√
Er)YL(r̂)(

1

0
) , (4.70)

whereas

R↓nL (r;E) = (
R↑↓nL (r;E)
R↓↓nL (r;E)

) (4.71)
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is the spinor wavefunction of an incoming wave only comprising a spin down component,
respectively

(
0

jL(r;E)
) = jL(

√
Er)YL(r̂)(

0

1
) . (4.72)

In eq. (4.68), the second spin index denotes the boundary condition, thus the spin state of
the incoming wave while the ĕrst index refers to the scattered, outgoing wave.
Expanding the regular wavefunctions Rσσ′n

L (r;E) in their orbital components, equation
(4.68) becomes

(
ψ↑k(r +Rn;E)
ψ↓k(r +Rn;E)

) =∑
LL′
[c↑nkL (

R↑↑nL′L(r;E)
R↓↑nL′L(r;E)

) + c↓nkL (
R↑↓nL′L(r;E)
R↓↓nL′L(r;E)

)]YL′(r̂) (4.73)

or, rewriting the wavefunctions in matrices

(
ψ↑k(r +Rn;E)
ψ↓k(r +Rn;E)

) =∑
LL′
[(
R↑↑nL′L(r;E) R↑↓nL′L(r;E)
R↓↑nL′L(r;E) R↓↓nL′L(r;E)

)(
c↑nkL
c↓nkL
)]YL′(r̂) . (4.74)

Again, as for the spin index in eq. (4.68), the second index L indicates the boundary con-
dition, thus the orbital momentum of the incoming wave while the ĕrst index L′ refers to
the scattered, outgoing wave.

4.4 e coefficients cn,↑
kL

and cn,↓
kL

In order to evaluate the full, spin-dependent Bloch wavefunction including spin-orbit cou-
pling

(
ψ↑k(r)
ψ↓k(r)

) =∑
L

c↑nkL (
R↑↑nL (r)
R↓↑nL (r)

) +∑
L

c↓nkL (
R↑↓nL (r)
R↓↓nL (r)

) , (4.75)

not only the regular wavefunctions whose calculation has been described in the previous
section, but also the coefficients cn,↑kL and cn,↓kL are needed. ey can be evaluated using the
Lippmann-Schwinger equation for the full wavefunction (4.41). As reference system, we
choose in analogy to the derivation of the coefficients without spin-orbit coupling in section
3.1.3 the system of repulsive potential deĕned in section 2.5. Under these conditions, the
Lippmann-Schwinger equation is homogeneous and reduces to

(
ψ↑(r)
ψ↓(r)

) = ∫ d3r′ (
G↑↑0 (r, r′) 0

0 G↓↓0 (r, r′)
)(

∆V ↑↑(r′) ∆V ↑↓(r′)
∆V ↓↑(r′) ∆V ↓↓(r′)

)(
ψ↑(r′)
ψ↓(r′)

) , (4.76)
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or, using expansions (4.68) and (4.50),

∑
LL′
[c↑nkL′ (

R↑↑nLL′(r)
R↓↑nLL′(r)

) + c↓nkL′ (
R↑↓nLL′(r)
R↓↓nLL′(r)

)]YL(r̂) =∑
L

YL(r̂)[

∫ d3r′ (
G↑↑0,l(r, r′) 0

0 G↓↓0,l(r, r′)
)YL(r̂′)∑

L′
YL′(r̂′)(

∆V ↑↑L′ (r′) ∆V ↑↓L′ (r′)
∆V ↓↑L′ (r′) ∆V ↓↓L′ (r′)

)

∑
L′′L′′′

[c↑nkL′′ (
R↑↑nL′′′L′′(r′)
R↓↑nL′′′L′′(r′)

) + c↓nkL′′ (
R↑↓nL′′′L′′(r′)
R↓↓nL′′′L′′(r′)

)]YL′′′(r̂′)

+∫ d3r′∑
L′′′′
(
R↑l (r)G

↑↑
0,LL′′′′R

↑
l′′′′(r′) 0

0 R↓l (r)G
↓↓
0,LL′′′′R

↓
l′′′′(r′)

)YL′′′′(r̂′)

∑
L′
YL′(r̂′)(

∆V ↑↑L′ (r′) ∆V ↑↓L′ (r′)
∆V ↓↑L′ (r′) ∆V ↓↓L′ (r′)

)

∑
L′′L′′′

[c↑nkL′′ (
R↑↑nL′′′L′′(r′)
R↓↑nL′′′L′′(r′)

) + c↓nkL′′ (
R↑↓nL′′′L′′(r′)
R↓↓nL′′′L′′(r′)

)]YL′′′(r̂′)].

(4.77)

Here, the ĕrst term on the right side results from the single-site scattering, whereas the sec-
ond term is the back-scattering term. Gσσ′

LL′ is the structural Green function of the reference
system, which does not imply spin-orbit coupling. As in the derivation in section 4.3.1,
the summation over L can be omitted. For each summand the integral over the spherical
coordinates results in the Gaunt coefficients, and with the transformation of the spin-orbit
Hamiltonian according to (4.56), the above equation yields

∑
L′
[c↑nkL′ (

R↑↑nLL′(r)
R↓↑nLL′(r)

) + c↓nkL′ (
R↑↓nLL′(r)
R↓↓nLL′(r)

)] =

∫ r′2dr′ (
G↑↑0,l(r, r′) 0

0 G↓↓0,l(r, r′)
) ∑
L′′′L′′

(
∆V ↑↑LL′′′(r′) ∆V ↑↓LL′′′(r′)
∆V ↓↑LL′′′(r′) ∆V ↓↓LL′′′(r′)

)

[c↑nkL′′ (
R↑↑nL′′′L′′(r′)
R↓↑nL′′′L′′(r′)

) + c↓nkL′′ (
R↑↓nL′′′L′′(r′)
R↓↓nL′′′L′′(r′)

)]

+∫ r′2dr′ ∑
L′′′′
(
R0↑
l (r)G

↑↑
0,LL′′′′R

0↑
l′′′′(r′) 0

0 R0↓
l (r)G

↓↓
LL′′′′R

0↓
l′′′′(r′)

)

∑
L′′L′′′

(
∆V ↑↑L′′′′L′′′(r′) ∆V ↑↓L′′′′L′′′(r′)
∆V ↓↑L′′′′L′′′(r′) ∆V ↓↓L′′′′L′′′(r′)

)

[c↑nkL′′ (
R↑↑nL′′′L′′(r′)
R↓↑nL′′′L′′(r′)

) + c↓nkL′′ (
R↑↓nL′′′L′′(r′)
R↓↓nL′′′L′′(r′)

)] .

(4.78)



4.4. e coefficients cn,↑kL and cn,↓kL 57

e ĕrst term on the right side can be summed up with the le side, since the regular solu-
tions (Rn,↑↑(↑↓)

LL′ (r),Rn,↓↑(↓↓)
LL′ (r))

T
fulĕll the Lippmann-Schwinger equations (see eq. (4.57))

(
R↑↑L′L(r)
R↓↑L′L(r)

) = (
R0,↑
L′L(r)δL′L

0
) + ∫ r′2dr′ (

G↑↑0,l′(r, r′) 0

0 G↓↓0,l′(r, r′)
) ⋅

∑
L′′′
(
∆V ↑↑L′L′′′(r′) ∆V ↑↓L′L′′′(r′)
∆V ↓↑L′L′′′(r′) ∆V ↓↓L′L′′′(r′)

)(
R↑↑L′′′L(r′)
R↓↑L′′′L(r′)

) (4.79)

and

(
R↑↓L′L(r)
R↓↓L′L(r)

) = (
0

R0,↓
L′L(r)δL′L

) + ∫ r′2dr′ (
G↑↑0,l′(r, r′) 0

0 G↓↓0,l′(r, r′)
) ⋅

∑
L′′′
(
∆V ↑↑L′L′′′(r′) ∆V ↑↓L′L′′′(r′)
∆V ↓↑L′L′′′(r′) ∆V ↓↓L′L′′′(r′)

)(
R↑↓L′′′L(r′)
R↓↓L′′′L(r′)

) . (4.80)

erefore, equation (4.78) can be simpliĕed to

∑
L′
[c↑nkL′ (

R0,↑n
LL′ (r)δLL′

0
) + c↓nkL′ (

0

R0,↓n
LL′ (r)δLL′

)] =

∫ r′2dr′∑
L′′′′
(
R0↑
l (r)G

↑↑
0,LL′′′′R

↑
l′′′′(r′) 0

0 R0↓
l (r)G

↓↓
0,LL′′′′R

↓
l′′′′(r′)

) ⋅

∑
L′′L′′′

(
∆V ↑↑L′′′′L′′′(r′) ∆V ↑↓L′′′′L′′′(r′)
∆V ↓↑L′′′′L′′′(r′) ∆V ↓↓L′′′′L′′′(r′)

) [c↑nkL′′ (
R↑↑nL′′′L′′(r′)
R↓↑nL′′′L′′(r′)

) + c↓nkL′′ (
R↑↓nL′′′L′′(r′)
R↓↓nL′′′L′′(r′)

)] . (4.81)

Using the deĕnition of the∆t-matrix (4.67), one obtains

(
R0↑
l (r) 0

0 R0↓
l (r)

)(
c↑nkL
c↓nkL
) = ∑

L′′L′′′′
(
R0↑
l (r) 0

0 R0↓
l (r)

)(
G↑↑0,LL′′′′ 0

0 G↓↓0,LL′′′′
) ⋅

[c↑nkL′′ (
∆t↑↑nL′′′′L′′(E)
∆t↓↑nL′′′′L′′(E)

) + c↓nkL′′ (
∆t↑↓nL′′′′L′′(E)
∆t↓↓nL′′′′L′′(E)

)] (4.82)

and thus

(
c↑nkL
c↓nkL
) = ∑

L′′L′′′′
(
G↑↑0,LL′′′′ 0

0 G↓↓0,LL′′′′
)(

∆t↑↑nL′′′′L′′(E) ∆t↑↓nL′′′′L′′(E)
∆t↓↑nL′′′′L′′(E) ∆t↓↓nL′′′′L′′(E)

)(
c↑nkL′′

c↓nkL′′
) . (4.83)

Finally, the coefficients (c↑nkL′′ , c
↓n
kL′′)

T can be calculated following

∑
L′L′′
[(
δLL′δL′L′′ 0

0 δLL′δL′L′′
) − (

G↑↑0,LL′ 0

0 G↓↓0,LL′
)(

∆t↑↑nL′L′′(E) ∆t↑↓nL′L′′(E)
∆t↓↑nL′L′′(E) ∆t↓↓nL′L′′(E)

)] ⋅

(
c↑nkL′′

c↓nkL′′
) = 0.

(4.84)
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e above equation is the KKR secular equation for systems including non-spherical com-
ponents of the potential as well as spin-orbit coupling, as it is eq. (3.49) for systems without
spin-orbit coupling. It can be used for band structure calculations and for the calculation
of the Fermi surface, i.e. the k-points at the Fermi energy EF, as well as the corresponding
coefficients (c↑nkL′′ , c

↓n
kL′′)

T .
e method used to calculate the Fermi surface is the same as already described in chapter
3 and the Appendix, sections A.2 and 3.1.4 for systems without spin-orbit coupling.
In order to obtain the ĕnal, correctly scaled coefficients cn↑kL and cn↓kL, the norm of the full
wavefunctions must be calculated which is discussed in the following paragraph.

Normalization of the wavefunctions (ψ↑
k
(r +χµ),ψ↓

k
(r +χµ))T In order to nor-

malize the wavefunctions comprising an up- and down-component, the coefficients cµ↑kL
and cµ↓kL must be chosen such that

Nat

∑
µ=1
∫
Vµ
d3r (∣ψ↑k(r + χ

µ)∣2 + ∣ψ↓k(r + χ
µ)∣2) = 1 (4.85)

for each k, which is achieved by choosing an appropriate prefactor of (cµ↑kL, c
µ↓
kL)

T . Again,
we have dropped the indexn, indicating the lattice site while introducing the indexµ, which
accounts for the number of atoms Nat in the unit cell. e procedure is similar to that fol-
lowed in the case of the full potential (see chapter 3, section 3.1.2). Hence, the integration in
eq. (4.85) has to be performed over non-spherical Wigner-Seitz cells and the shapefunction
Θ(r) has to be introduced

Nat

∑
µ=1
∫ d3rΘµ(r) (∣ψ↑k(r +χ

µ)∣2 + ∣ψ↓k(r +χ
µ)∣2) = 1 . (4.86)

e square of the absolute value of the wavefunction ∣ψ↑k(r +χµ)∣
2 and ∣ψ↓k(r +χµ)∣

2 is

∣ψ↑k(r +χ
µ)∣2 + ∣ψ↓k(r +χ

µ)∣2

= (
ψ↑k(r +χµ)
ψ↓k(r +χµ)

)
†

(
ψ↑k(r +χµ)
ψ↓k(r +χµ)

)

= ∑
L′1L1

⎡⎢⎢⎢⎢⎣
(c↑µ⋆kL1

c↓µ⋆kL1
)
⎛
⎝
R↑↑µ⋆L′1L1

(r) R↓↑µ⋆L′1L1
(r)

R↑↓µ⋆L′1L1
(r) R↓↓µ⋆L′1L1

(r)
⎞
⎠

⎤⎥⎥⎥⎥⎦
Y ⋆L′1
(r̂)

∑
L′2L2

⎡⎢⎢⎢⎢⎣

⎛
⎝
R↑↑µL′2L2

(r) R↑↓µL′2L2
(r)

R↓↑µL′2L2
(r) R↓↓µL′2L2

(r)
⎞
⎠
(
c↑µkL2

c↓µkL2

)
⎤⎥⎥⎥⎥⎦
YL′2(r̂)

= ∑
L1L2

∑
L′1L

′
2

Y ⋆L′1
(r̂)YL′2(r̂)

∑
σσ′
[cσµ⋆kL′1

cσ
′µ

kL′2
(R↑σµ⋆L1L

′
1
(r)R↑σ

′µ
L2L

′
2
(r) +R↓σµ⋆L1L

′
1
(r)R↓σ

′µ
L2L

′
2
(r))] .

(4.87)
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Similar to the procedure used for systems without spin-orbit coupling the deĕnition

ρµσσ
′

L1L2
= ∫

rmax

0
r2dr ∑

L′1L
′
2L3

Θµ
L3
(r)CL′1L′2L3

∑
σ′′
Rµ⋆σ′′σ
L′1L1

(r)Rµσ′′σ′

L′2L2
(r) (4.88)

allows to rewrite the normalization condition (4.85) as

Nat

∑
µ=1
∫ d3rΘµ(r) (∣ψ↑k(r +χ

µ)∣2 + ∣ψ↓k(r +χ
µ)∣2) = ∑

µ
∑
σσ′
∑
L1L2

cµ⋆σkL1
cµσ

′

kL2
ρµσσ

′

L1L2

= 1. (4.89)

e quantity ρµσσ
′

L1L2
calculates similarly to ρµL1L2

described in section 3.1.2.
Finally, the correctly scaled coefficients cµ↑kL and cµ↓kL, which fulĕll the normalization condi-
tion (4.85) are given by

cµσkL → [∑
µ
∑
σσ′
∑
L1L2

cµ⋆σkL1
cµσ

′

kL2
ρµσσ

′

L1L2
]
− 1

2

cµσkL. (4.90)

4.5 Expectation values of the spin operators

For a number of applications it is necessary to calculate the expectation values Sxk, S
y
k and

Szk of the spin operators Si, i = x, y, z at the Bloch states k. We will deal with this subject
here because of two reasons: First, the scheme to calculate them is very similar to that of the
normalization of the coefficients, which was the subject of the previous section. Secondly,
the spin expectation values are required for the determination of the coefficients c↑µkL and
c↓µkL in the case of spin degeneracy. e latter is explained in the next section.
For each point k on the Fermi surface, the expectation value of the spin is determined by
S = 1/2h̵ σ, i.e. in atomic units (h̵ = 1),

Sxk =
1

2
⟨ψk∣σx∣ψk⟩ , (4.91)

Syk =
1

2
⟨ψk∣σy ∣ψk⟩ , (4.92)

Szk =
1

2
⟨ψk∣σz ∣ψk⟩ , (4.93)

where σx, σy and σz are the Pauli matrices as deĕned in eq. (4.4).
Hence, Sxk, S

y
k and Szk can be calculated according to

Sx,µk = 1

2 ∫Vµ
d3r (

ψ↑k(r +χµ)
ψ↓k(r +χµ)

)
†

(
0 1

1 0
)(
ψ↑k(r +χµ)
ψ↓k(r +χµ)

)

= 1

2 ∫Vµ
d3r [ψ↑⋆k (r +χ

µ)ψ↓k(r +χ
µ) + ψ↓⋆k (r +χ

µ)ψ↑k(r +χ
µ)] , (4.94)
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Sy,µk = 1

2 ∫Vµ
d3r (

ψ↑k(r +χµ)
ψ↓k(r +χµ)

)
†

(
0 −i
i 0

)(
ψ↑k(r +χµ)
ψ↓k(r +χµ)

)

= 1

2 ∫Vµ
d3r [(−i)ψ↑⋆k (r +χ

µ)ψ↓k(r +χ
µ) + iψ↓⋆k (r +χ

µ)ψ↑k(r +χ
µ)] ,(4.95)

and

Sz,µk = 1

2 ∫Vµ
d3r (

ψ↑⋆k (r +χµ)
ψ↓⋆k (r +χµ)

)
†

(
1 0

0 1
)(
ψ↑k(r +χµ)
ψ↓k(r +χµ)

)

= 1

2 ∫Vµ
d3r [∣ψ↑k(r +χ

µ)∣2 − ∣ψ↓k(r +χ
µ)∣2] . (4.96)

In a more general form, the above equations can be subsumed to

Si,µk =
1

2 ∫Vµ
d3r ∑

L,L′
[(
R↑↑µL (r) R↑↓µL (r)
R↓↑µL (r) R↓↓µL (r)

)(
c↑µkL
c↓µkL
)]

†

(
σi11 σi12
σi21 σi22

)(
R↑↑µL′ (r) R↑↓µL′ (r)
R↓↑µL′ (r) R↓↓µL′ (r)

)(
c↑µkL′

c↓µkL′
) (4.97)

or

Si,µk =
1

2
∑
L,L′
(c↑µkL c↓µkL)

⋆ (
Σ↑↑µ,iLL′ Σ↑↓µ,iLL′

Σ↓↑µ,iLL′ Σ↓↓µ,iLL′

)(
c↑µkL′

c↓µkL′
) , i = x, y, z, (4.98)

where the notation

(
Σ↑↑µ,iLL′ Σ↑↓µ,iLL′

Σ↓↑µ,iLL′ Σ↓↓µ,iLL′

) = ∫
Vµ
d3r (

R↑↑µL (r) R↑↓µL (r)
R↓↑µL (r) R↓↓µL (r)

)
†

(
σi11 σi12
σi21 σi22

)(
R↑↑µL′ (r) R↑↓µL′ (r)
R↓↑µL′ (r) R↓↓µL′ (r)

) (4.99)

has been introduced. e expectation values of the total spin components are

Sxk =
Nat

∑
µ=1

Sx,µk ,

Syk =
Nat

∑
µ=1

Sy,µk ,

Szk =
Nat

∑
µ=1

Sz,µk (4.100)

and thus
Stot
k =

√
(Sxk)

2 + (Syk)
2 + (Szk)

2. (4.101)

4.6 e coefficients ck for the case of Kramers degeneracy

In non-magnetic systems with inversion symmetry, for example in fcc copper, silver or gold
crystals, all states on the Fermi surface belonging to (kF,EF) are twofold degenerate. In
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this case, there are two eigenfunctionsψ1
k(r) andψ2

k(r)which are orthogonal to each other
and have opposite spin expectation values

⟨ψ1
k∣σi∣ψ1

k⟩ = −⟨ψ2
k∣σi∣ψ2

k⟩ , i = x, y, z ; (4.102)

this is known as Kramers degeneracy. However, the coefficients c1,2kL belonging to the two
wavefunctions ψ1

k(r) and ψ2
k(r) do not always initially fulĕll the above condition, since

they are calculated as eigenvectors of the KKR-matrix (see section 3.1.4) using the Lapack-
routine [78] ZGEEV, which computes the eigenvalues and, optionally, the le and/or right
eigenvectors of nonsymmetric complex matrices. erefore, an explicit orthogonalization
is necessary

(
c̃2,↑k
c̃2,↓k
) = (

c2,↑k
c2,↓k
) −
[(c1,↑k c1,↓k )

⋆ ⋅ (
c2,↑k
c2,↓k
)]

[(c1,↑k c1,↓k )
⋆ ⋅ (

c1,↑k
c1,↓k
)]
(
c1,↑k
c1,↓k
) , (4.103)

which reduces to

(
c̃2,↑k
c̃2,↓k
) = (

c2,↑k
c2,↓k
) − [(c1,↑k c1,↓k )

⋆ ⋅ (
c2,↑k
c2,↓k
)](

c1,↑k
c1,↓k
) (4.104)

if (c1,↑k , c1,↓k )
T is normalized. e orthogonality can be easily proven by multiplying

(c̃2,↑k , c̃2,↓k )
T with (c1,↑⋆k , c1,↓⋆k ). Note that the above operation does not conserve the norm

and a normalization of (c̃2,↑k , c̃2,↓k )
T is necessary.

Although the wavefunctions ψ1
k(r) and ψ2

k(r) are now orthogonal, the degeneracy allows
any linear combination of the two wavefunctions. e appropriate linear combination is
determined by the particular physical problem at hand in each case. For the problem of
spin relaxation that is investigated in the present thesis, two types of linear combination
are most interesting: one that maximizes Szk and one that gives Sxk = S

y
k = 0 for all k. e

two choices are not equivalent and correspond to different, though similar, experimental
situations. e former condition would correspond to the creation of a spin population by
acting with an externalB-ĕeld along the z-axis, which is then switched off, while the latter
corresponds to the case when electrons, which are polarized exactly in the z-direction are
injected to the material from an external source, e.g. a ferromagnet.
We continue now to seek a linear combination of the degenerate coefficients c1k and c2k,
which is constructed such that it fulĕlls the required conditions. To simplify the notation,
we write

ψ1,2
k = R ⋅ c

1,2
k (4.105)

instead of

(
ψ1,2↑
k (r +χµ)

ψ1,2↓
k (r +χµ)

) =∑
µ
∑
L

[(
R↑↑µL (r) R↑↓µL (r)
R↓↑µL (r) R↓↓µL (r)

)(
c1,2↑µkL

c1,2↓µkL

)] (4.106)

and, likewise
Si,1,2k = 1

2
⟨ψ1,2

k ∣σ
i∣ψ1,2

k ⟩ = c
1,2†
k Σic1,2k , i = x, y, z (4.107)
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for the spin expectation values (4.98) with

Σi = 1

2 ∫
d3r R†σiR . (4.108)

e coefficients of the linear combination can be expressed as

d1,2
k = f

1,2
k c1k + g

1,2
k c2k (4.109)

with f 1,2
k , g1,2k ∈ C and

∣f 1,2
k ∣

2 + ∣g1,2k ∣
2 = 1. (4.110)

Since the phase of d1,2
k is irrelevant, one of the parameters f 1,2

k , g1,2k , e.g. f 1
k can be chosen

to be a real number. Due to condition (4.110), we can set

f 1
k = cos

αk

2
and

g1k = sin
αk

2
eiβk , (4.111)

resulting in
d1
k = cos

αk

2
c1k + sin

αk

2
eiβkc2k. (4.112)

e orthogonality of the c1,2k as well as the new coefficients d1,2
k

dm†
k ⋅ d

n
k = δmn, m,n = 1,2 (4.113)

then leads to
d2
k = − sin

αk

2
c1k + cos

αk

2
eiβkc2k . (4.114)

For simplicity, we will skip the index k in the following discussion. Nevertheless, all pa-
rameters, coefficients and spin expectation values depend on k.
An evaluation of the spin expectation value Sid1 = d

1†
k Σid1

k in terms of the old coefficients
and spin expectation values yields

Sid1 = (cos
α

2
)
2

Sic1 + (sin
α

2
)
2

Sic2 + (sin
α

2
)(cos α

2
) [eiβc1†Σic2 + e−iβc2†Σic1]

= (cos α
2
)
2

Sic1 + (sin
α

2
)
2

Sic2 + (sin
α

2
)(cos α

2
)2Re[eiβc1†Σic2]

= cosα Sic1 + sinα Re [eiβc1†Σic2] . (4.115)

In the last step, we have used eq. (4.102) as well as the double-angle formulae for trigono-
metric functions. Deĕning

Sic1,c2 = c
1†Σic2 i = x, y, z (4.116)

in accordance with eq. (4.107), the expectation value (4.115) results in

Sid1 = cosαS
i
c1 + sinα Re [eiβSic1,c2] i = x, y, z. (4.117)
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Figure 4.1.: Total spin expectation values Stot
k for a copper fcc crystal on the Fermi sur-

face. While the le panel shows Stot
k for an arbitrary reference system for each

k (i.e. the initial 'choice', taking the orthogonalized coefficients such as they
result from the eigenvalue routine), the right panel represents the total spin ex-
pectation values for linear combinations of ck such that the z-component Szk is
maximized.

At this point, one has to decide which condition the spin expectation values in the new
reference system should fulĕll. As already indicated, the z-axis will be chosen as spin quan-
tization axis, but this choice might either be understood as

Szd1 =max. (4.118)

or
Sxd1 = S

y
d1
= 0 . (4.119)

In the following, both cases will be considered. We start with the ĕrst one, hence maximiz-
ing Szd1 . e two parameters α and β are then determined by the conditions

∂Szd1
∂α

= 0 and

∂Szd1
∂β

= 0, (4.120)

which result in the two equations

− sinαSzc1 + cosα Re [eiβSzc1,c2] = 0 and
sinα Im [eiβSzc1,c2] = 0. (4.121)
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en, α and β are given by

β = argSzc1,c2

α = tan−1
⎡⎢⎢⎢⎢⎣

Re [eiβSzc1,c2]
Szc1

⎤⎥⎥⎥⎥⎦
. (4.122)

In contrast, condition (4.119) leads to

β = 1

2i
ln [−

Sxc1S
y⋆
c1,c2 − S

y
c1S

x⋆
c1,c2

Sxc1S
y
c1,c2 − S

y
c1S

x
c1,c2

]

α = − tan−1
⎡⎢⎢⎢⎢⎣

Sxc1
Re [eiβSxc1,c2]

⎤⎥⎥⎥⎥⎦
= − tan−1 [ Syc1

Re [eiβSyc1,c2]
] . (4.123)

e total spin expectation value Stot
k is different in the two cases although the difference

is very small and not visible in a ĕgure. However, the distribution of the spin expectation
values Stot

c on the Fermi surface for the initial coefficients ck differ remarkably from that of
Stot
d for one of the choices Sx = Sy = 0 or Sz = max.. is is illustrated in ĕgure 4.1 for

copper. e integrated difference for copper and gold crystals can be found in table 4.1 and
will be analyzed in the next subsection. In addition, we will average the spin expectation
values over the Fermi surface and compare our results to other numerical data.
As a further test of our ĕndings, we constructed a simple model in order to show that the
two conditions are not equivalent. is issue will be the subject of the section aer the next
4.6.2.

4.6.1 Comparison of the spin-expectation value Stot of copper and gold
to other numerical data

In the previous section we derived linear combinations of the degenerate coefficients c1k and
c2k such that either the condition Sz = max. or Sx = Sy = 0 is fulĕlled. Now, a quantitative
analysis of the two possible choices for copper and gold fcc crystals is presented. e results
are subsumed in table 4.1.
Apparently, the choice of Sz = max. leads to non-vanishing spin-components Sx and Sy.
While this is only a small effect for copper, lower than 1 per mille, for a gold crystal the
average of Sx and Sy over the Fermi surface is of the order of about 1% of the total spin ex-
pectation value Stot. In addition, the total spin expectation value (averaged over the Fermi
surface) is affected, too; themaximization of Sz leads to slightly higher values of Stot. How-
ever, as already stated in the last section, the difference is very small andwould not be visible
in a ĕgure. In all calculations of momentum- and spin-relaxation times in this thesis which
are presented in chapter 6 for bulk systems and in chapter 8 for thin ĕlms, the second con-
dition (4.119) Sx = Sy = 0 is chosen.
Comparing the distribution of the spin expectation value for copper in the right panel of
ĕgure 4.2 to the distribution shown in [79], a good agreement is found. For a more accurate
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ASA FP
Sz =max. Sx = Sy = 0 Sz =max. Sx = Sy = 0

Cu Sx 2.5 ⋅ 10−4 0 2.2 ⋅ 10−4 0
Sy 3.6 ⋅ 10−4 0 2.8 ⋅ 10−4 0
Sz 0.4988682 0.4988679 0.49901815 0.4990179
Stot 0.4988685 0.4988679 0.49901835 0.4990179

Au Sx 1.3 ⋅ 10−2 0 0.6 ⋅ 10−2 0
Sy 1.3 ⋅ 10−2 0 1.0 ⋅ 10−2 0
Sz 0.4678345 0.4673311 0.4782259 0.4779915
Stot 0.4684714 0.4673311 0.47846055 0.4779915

Table 4.1.: Spin expectation values S = ⟨Sk⟩FS (with Sk = 1/2 ⟨ψk∣σ∣ψk⟩) and Stot =
⟨Stot

k ⟩FS of copper and gold averaged over the Fermi surface for the two different
conditions Sz = max. and Sx = Sy = 0. While the total spin expectations Stot

for the latter condition equal the expectation value of Sz , choosing the ĕrst one
leads to ĕnite, non negligible spin expectation values of the x and y spin compo-
nents. For gold, a difference in the total spin expectation values between the two
possible conditions averaged over the Fermi surface of the order of 1% is found.

comparison, we introduce the parameters ak and bk deĕned as

∣ak∣2 =
Nat

∑
µ=1
∫
Vµ
d3r ψ↑⋆k (r +χ

µ)ψ↑k(r +χ
µ) and (4.124)

∣bk∣2 =
Nat

∑
µ=1
∫
Vµ
d3r ψ↓⋆k (r +χ

µ)ψ↓k(r +χ
µ), (4.125)

which are oen used to quantify the strength of spin-orbit coupling e.g. in [14]. e quan-
tity ∣bk∣2 is called spin-mixing parameter or Elliott-Yafet parameter (see section 6.1.1 in
chapter 6). As one can easily prove, the relation of ∣ak∣2 and ∣bk∣2 to the normalization of
the wavefunction and the spin expectation value Szk is given by

∣ak∣2 + ∣bk∣2 = 1 and (4.126)
∣ak∣2 − ∣bk∣2 = 2Szk, (4.127)

being equivalent to

∣ak∣2 =
1

2
+ Szk and (4.128)

∣bk∣2 =
1

2
− Szk. (4.129)
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Figure 4.2.: Spin-mixing parameters ∣bk∣2 for copper (le) and gold (right) fcc bulk crystals aer a
linear combination of the degenerate coefficients c1k and c

2
k such that the conditionS

x =
Sy = 0 is fulĕlled. While the distributions for copper and gold are qualitatively similar
to each other, the order of magnitude of the absolute values of ∣bk∣2 differs strongly. As
expected, the effect of spin-orbit coupling is much larger for gold than for copper. To
compare, for copper, the distribution of the spin expectation valueSzk = 1/2−∣bk∣

2 aer
the maximization of Sz is shown in ĕgure 4.1.

Furthermore, the strength of spin-orbit coupling is oen quantiĕed by ρ↑↓ [79], which is
also denoted as spin-mixing parameter and deĕned as

ρ↑↓ = ⟨1 − 2∣Szk∣⟩FS . (4.130)

Similar to bk, it should vanish in the absence of spin-orbit coupling. It is related to the
averages of ∣ak∣2 and ∣bk∣2 over the Fermi surface according to

⟨∣ak∣2⟩FS = 1 − ρ
↑↓

2
and (4.131)

⟨∣bk∣2⟩FS =
ρ↑↓

2
. (4.132)

However, in this thesis we use the ĕrst deĕnition of the spin-mixing parameter, i.e. bk.
e distributions of ∣bk∣2 on the Fermi surfaces of copper and gold are shown in ĕgure 4.2;
whereas a qualitative similarity can be observed for copper and gold, the order ofmagnitude
of the absolute values differs strongly. As expected, the effect of spin-orbit coupling is much
larger for gold than for copper.
Furthermore, we have calculated the spin-mixing parameter ⟨∣bk∣2⟩FS = ρ

↑↓/2 averaged over
the Fermi surface. e results for calculations within the atomic sphere approximation as
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ASA FP
Sz =max. Sx = Sy = 0 Sz =max. Sx = Sy = 0

Cu our results 1.13 ⋅ 10−3 1.13 ⋅ 10−3 9.81 ⋅ 10−4 9.82 ⋅ 10−4
other calc. 1.5 ⋅ 10−3

Au our results 3.16 ⋅ 10−2 3.27 ⋅ 10−2 2.15 ⋅ 10−2 2.20 ⋅ 10−2
other calc. 3.0 ⋅ 10−2

Table 4.2.: Spin-mixing parameters ⟨∣bk∣2⟩FS = ρ
↑↓/2 averaged over the Fermi surface of

copper and gold. Comparison of our results to numerical data from ref. [79].
Note that in ref. [79], data are given in ρ↑↓ and are therefore twice as large as the
values speciĕed here.

well as full-potential calculations can be found in table 4.2 together with numerical data
from [79]3; especially for gold, large differences between the full potential calculation and
that within the atomic sphere approximation can be observed. Considering this argument,
the agreement of our spin mixing parameters with those from reference [79] is reasonable.

4.6.2 Inequivalence of the conditions Sz = max. and Sx = Sy = 0 in a
simple model

In order to demonstrate that the two conditions eq. (4.118) and eq. (4.119) do not lead to the
same result we construct a simple model system consisting of two bandsE>(k) andE<(k),
where the latter one is chosen to have a lower energy. e states around each k-point are
linear combinations of the s-orbital s0 and the three p-orbitals ϕx, ϕy and ϕz . Without
spin-orbit coupling, the wavefunction at k in the upper band is

∣ψ0⟩ = aψϕx + bψϕy + cψϕz + dψs0 , (4.133)

and in the lower band
∣χ0⟩ = aχϕx + bχϕy + cχϕz + dχs0, (4.134)

respectively. Treating spin-orbit coupling as a perturbation to ĕrst order in the spirit of
Elliott [9] we obtain the perturbed states

∣χ+⟩ = (
∣χ0⟩ + λ

2∆E ⟨ψ0∣Lz ∣χ0⟩ ∣ψ0⟩
λ

2∆E ⟨ψ0∣Lx + iLy ∣χ0⟩ ∣ψ0⟩
) (4.135)

and

∣χ−⟩ = (
− λ

2∆E ⟨ψ0∣Lx − iLy ∣χ0⟩ ∣ψ0⟩
∣χ0⟩ − λ

2∆E ⟨ψ0∣Lz ∣χ0⟩ ∣ψ0⟩
) (4.136)

3Note that in ref. [79], data are given in terms of ρ↑↓ and are therefore twice as large as the values speciĕed in
table 4.2.
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with∆E(k) = E>(k) −E<(k). Inserting the explicit forms of the wavefunctions ∣ψ0⟩ and
∣χ0⟩ and applying the momentum operators Lx, Ly and Lz leads to

∣χ+⟩ = (
∣χ0⟩ + λ

2∆E iγ ∣ψ0⟩
λ

2∆E (η + iζ) ∣ψ0⟩
) (4.137)

and

∣χ−⟩ = (
λ

2∆E (−η + iζ) ∣ψ0⟩
∣χ0⟩ − λ

2∆E iγ ∣ψ0⟩
) , (4.138)

where the abbreviations

η = a⋆ψcχ − c⋆ψaχ (4.139)
ζ = b⋆ψcχ − c⋆ψbχ (4.140)
γ = b⋆ψaχ − a⋆ψbχ (4.141)

have been introduced. Naturally, expressions equivalent to eqs. (4.137, 4.138) can be found
for ∣ψ+⟩ and ∣ψ−⟩ just by interchanging the two states χ and ψ. e two perturbed states
∣χ+⟩ and ∣χ−⟩ (or ∣ψ+⟩ and ∣ψ−⟩, respectively) are not normalized to 1, but they fulĕll the
conditions

⟨χ+∣χ+⟩ = ⟨χ−∣χ−⟩ and (4.142)
⟨χ+∣χ−⟩ = ⟨χ−∣χ+⟩ = 0. (4.143)

As can be easily shown, they have the same energy.
In the following, linear combinations of ∣χ+⟩ and ∣χ−⟩ are introduced, in the form

∣χ̃+⟩ = + cos α
2
∣χ+⟩ + sin α

2
eiβ ∣χ−⟩ and (4.144)

∣χ̃−⟩ = − sin α
2
∣χ+⟩ + cos α

2
eiβ ∣χ−⟩ , (4.145)

with α and β determined according to eqs. (4.121) such that the new states ∣χ̃⟩ fulĕll the
condition of Sz being maximal

β = argSzχ+,χ−

α = tan−1
⎡⎢⎢⎢⎢⎣

Re [eiβSzχ+,χ−]
Szχ+

⎤⎥⎥⎥⎥⎦
. (4.146)

Here, in analogy to eqs. (4.107) and (4.116) we have used the deĕnitions of the expectation
values

Siχ± = ⟨χ±∣σi∣χ±⟩ and (4.147)
Siχ+,χ− = ⟨χ+∣σi∣χ−⟩ for i = x, y, z . (4.148)

In the following, we will show that these new states do not fulĕll

Sxχ+ + tanα Re [eiβSxχ+,χ−] = 0, (4.149)
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which is equivalent to eq. (4.123), i.e., the new states do no fulĕllSx = Sy = 0. e proof will
be carried out by assuming that eqs. (4.146) and (4.149) are simultaneously fulĕlled and by
thus ending in a contradiction.
With

eiβ =

¿
ÁÁÀSz⋆χ+,χ−

Szχ+,χ−
(4.150)

and

tanα =
Re [eiβSzχ+,χ−]

Szχ+
=
Re [
√

Sz⋆
χ+,χ−

Sz
χ+,χ−

Szχ+,χ−]

Szχ+
, (4.151)

equation (4.149) becomes

0 = Sxχ+ +
Re [
√
Sz⋆χ+,χ− ⋅ Szχ+,χ−]
Szχ+

Re

⎡⎢⎢⎢⎢⎣

¿
ÁÁÀSz⋆χ+,χ−

Szχ+,χ−
Sxχ+,χ−

⎤⎥⎥⎥⎥⎦
. (4.152)

Multiplication with Szχ+ yields

0 = Sxχ+S
z
χ+ + ∣Szχ+,χ− ∣

1

2

⎡⎢⎢⎢⎢⎢⎣

¿
ÁÁÀSz⋆χ+,χ−

Szχ+,χ−
Sxχ+,χ− +

⎛
⎝

¿
ÁÁÀSz⋆χ+,χ−

Szχ+,χ−

⎞
⎠

⋆

Sx⋆χ+,χ−

⎤⎥⎥⎥⎥⎥⎦
= Sxχ+S

z
χ+ +

1

2
[Sz⋆χ+,χ−Sxχ+,χ− + Szχ+,χ−Sx⋆χ+,χ−] . (4.153)

In order to demonstrate that the above equation is not fulĕlled, the expectation values
Szχ+,χ− = ⟨χ+∣σz ∣χ−⟩, Szχ+ = ⟨χ+∣σz ∣χ+⟩, Sxχ+,χ− = ⟨χ+∣σx∣χ−⟩ and Sxχ+ = ⟨χ+∣σx∣χ+⟩ must
be determined explicitly. In terms of η, ζ and γ the expectation values are

Szχ+,χ− = ⟨χ+∣σz ∣χ−⟩ = χ+↑⋆χ−↑ − χ+↓⋆χ−↓ (4.154)

= ( λ

2∆E
)
2

[2 Re [γ⋆ζ] + 2i Re [ηγ⋆]] ,

Szχ+,χ+ = ⟨χ+∣σz ∣χ+⟩ = χ+↑⋆χ+↑ − χ+↓⋆χ+↓ (4.155)

= 1 + ( λ

2∆E
)
2

[∣γ∣2 − ∣η∣2 − ∣ζ ∣2]

= − ⟨χ−∣σz ∣χ−⟩ ,

Sxχ+,χ− = ⟨χ+∣σx∣χ−⟩ = χ+↑⋆χ−↓ + χ+↓⋆χ−↑ (4.156)

= 1 − ( λ

2∆E
)
2

[∣γ∣2 + ∣η∣2 − ∣ζ ∣2 − 2i Re [η⋆ζ]]
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and

Sxχ+,χ+ = ⟨χ+∣σx∣χ+⟩ = χ+↑⋆χ+↓ + χ+↓⋆χ+↑ (4.157)

= ( λ

2∆E
)
2

[2 Re [ζ⋆γ] − 2 Im [η⋆γ]]

= ( λ

2∆E
)
2

[2 Re [ζ⋆γ]]

= −⟨χ−∣σx∣χ−⟩ .

e term Im [η⋆γ] = 0 because the parameters η and γ represent expectation values of the
angular momenta lx and lz which must be real.
Inserting the results of eqs. (4.155) to (4.158) in eq. (4.153) results in

Sxχ+S
z
χ+ +

1

2
[Sz⋆χ+,χ−Sxχ+,χ− + Szχ+,χ−Sx⋆χ+,χ−] = (

λ

2∆E
)
2

4 Re [γ⋆ζ] (4.158)

which in terms of the amplitudes aχ, bχ, cχ and aψ, bψ, cψ becomes

( λ

2∆E
)
2

4 Re [γ⋆ζ] =

( λ

2∆E
)
2

4 Re [∣bψ ∣2a⋆χcχ + ∣bχ∣2a⋆ψcψ − bψbχa⋆χc⋆ψ − b⋆ψb⋆χaχcψ] . (4.159)

For non-vanishing amplitudes and spin-orbit coupling parameter λ ≠ 0 the above expres-
sion does not vanishes; therefore, we have proven that even in this simple model the two
conditions Sx = Sy = 0 and Sz =max are not equivalent.

4.7 Impurity scatteringwithin thepresenceof spin-orbit cou-
pling

Finally, we want to consider scattering processes at an impurity in a system with spin-orbit
coupling. In this case, both the scattering wavefunction due to the impurity

(
ψimp↑
k (r +Rn;E)

ψimp↓
k (r +Rn;E)

) =∑
L

[cimp↑n
kL (

Rimp↑↑n
L (r;E)

Rimp↓↑n
L (r;E)

) + cimp↓n
kL (

Rimp↑↓n
L (r;E)

Rimp↓↓n
L (r;E)

)]

=∑
LL′
(
Rimp↑↑n
L′L (r;E) Rimp↑↓n

L′L (r;E)
Rimp↓↑n
L′L (r;E) Rimp↓↓n

L′L (r;E)
)(
cimp↑n
kL

cimp↓n
kL

)YL′(r̂)
(4.160)

and the wavefunction of the host system

(
ψ↑k(r +Rn;E)
ψ↓k(r +Rn;E)

) =∑
LL′
(
R↑↑nL′L(r;E) R↑↓nL′L(r;E)
R↓↑nL′L(r;E) R↓↓nL′L(r;E)

)(
c↑nkL
c↓nkL
)YL′(r̂) (4.161)
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are spin-dependent. In order to establish a relation between the coefficients (cimp↑n
kL , cimp↓n

kL )T

and (c↑nkL, c
↓n
kL)

T , the spin-dependent Lippmann-Schwinger equation has to be considered

(
ψimp↑
k (r +Rn;E)

ψimp↓
k (r +Rn;E)

) = (
ψ↑k(r +Rn;E)
ψ↓k(r +Rn;E)

)

+∑
n′
∫ d3r′ (

G↑↑(r +Rn, r′ +Rn′ ;E) G↑↓(r +Rn, r′ +Rn′ ;E)
G↓↑(r +Rn, r′ +Rn′ ;E) G↓↓(r +Rn, r′ +Rn′ ;E)

)

⋅ (
∆V ↑↑(r′) ∆V ↑↓(r′)
∆V ↓↑(r′) ∆V ↓↓(r′)

)(
ψimp↑
k (r′ +Rn′ ;E)

ψimp↓
k (r′ +Rn′ ;E)

) . (4.162)

e Green function has now non-zero off-diagonal elements, both the single-site term and
the back-scattering term, if spin-orbit effects in the host are taken into account, too. e
single-site term can be written as

(
Gs.s.↑↑(r +Rn, r′ +Rn′ ;E) Gs.s.↑↓(r +Rn, r′ +Rn′ ;E)
Gs.s.↓↑(r +Rn, r′ +Rn′ ;E) Gs.s.↓↓(r +Rn, r′ +Rn′ ;E)

)

=∑
LL′

YL(r̂)(
Gs.s.↑↑
LL′ (r, r′;E) Gs.s.↑↓

LL′ (r, r′;E)
Gs.s.↓↑
LL′ (r, r′;E) Gs.s.↓↓

LL′ (r, r′;E)
)YL′(r̂′) (4.163)

with

Gs.s.σσ′

LL′ (r, r′;E) = −i
√
E

⎧⎪⎪⎨⎪⎪⎩

∑L′′∑σ′′ Rσσ′′

LL′′(r;E)Hσ′′σ′

L′L′′(r′;E) for r ≤ r′

∑L′′∑σ′′Hσσ′′

LL′′(r;E)Rσ′′σ′

L′L′′(r′;E) for r > r′ . (4.164)

e back-scattering term is

(
Gb.s.↑↑(r +Rn, r′ +Rn′ ;E) Gb.s.↑↓(r +Rn, r′ +Rn′ ;E)
Gb.s.↓↑(r +Rn, r′ +Rn′ ;E) Gb.s.↓↓(r +Rn, r′ +Rn′ ;E)

) (4.165)

=∑
LL′
∑
σσ′

⎛
⎝
R↑σL (r)Gσσ′nn′

LL′ (E)R
↑σ′
L′ (r′) R↑σL (r)Gσσ′nn′

LL′ (E)R
↓σ′
L′ (r′)

R↓σL (r)Gσσ′nn′

LL′ (E)R
↑σ′
L′ (r′) R↓σL (r)Gσσ′nn′

LL′ (E)R
↓σ′
L′ (r′)

⎞
⎠

=∑
LL′
∑
L′′L′′′

∑
σσ′
YL′′(r̂)YL′′′(r̂′)

⎛
⎝
R↑σL′′L(r)Gσσ′nn′

LL′ (E)R
↑σ′
L′′′L′(r′) R↑σL′′L(r)Gσσ′nn′

LL′ (E)R
↓σ′
L′′′L′(r′)

R↓σL′′L(r)Gσσ′nn′

LL′ (E)R
↑σ′
L′′′L′(r′) R↓σL′′L(r)Gσσ′nn′

LL′ (E)R
↓σ′
L′′′L′(r′)

⎞
⎠
.

For the following derivation, it will be helpful to decompose the last matrix in a product of
three matrices

∑
σσ′

⎛
⎝
R↑σL′′L(r)Gσσ′nn′

LL′ (E)R
↑σ′
L′′′L′(r′) R↑σL′′L(r)Gσσ′nn′

LL′ (E)R
↓σ′
L′′′L′(r′)

R↓σL′′L(r)Gσσ′nn′

LL′ (E)R
↑σ′
L′′′L′(r′) R↓σL′′L(r)Gσσ′nn′

LL′ (E)R
↓σ′
L′′′L′(r′)

⎞
⎠
=

(
R↑↑L′′L(r) R↑↓L′′L(r)
R↓↑L′′L(r) R↓↓L′′L(r)

) ⋅
⎛
⎝
G↑↑nn

′

LL′ (E) G↑↓nn
′

LL′ (E)
G↓↑nn

′

LL′ (E) G↓↓nn
′

LL′ (E)
⎞
⎠
⋅ (
R↑↑L′′′L′(r′) R↑↓L′′′L′(r′)
R↓↑L′′′L′(r′) R↓↓L′′′L′(r′)

) .

(4.166)
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e matrix containing the difference in potential is given by

(
∆V ↑↑(r′) ∆V ↑↓(r′)
∆V ↓↑(r′) ∆V ↓↓(r′)

) = (
V ↑↑imp(r′) V ↑↓imp(r′)
V ↓↑imp(r′) V ↓↓imp(r′)

) − (
V ↑↑(r′) V ↑↓(r′)
V ↓↑(r′) V ↓↓(r′)

) . (4.167)

Hence, it is the difference between the system including an impurity and spin-orbit cou-
pling and the host system under the presence of spin-orbit coupling.
In order to derive the coefficients of the impurity wavefunction in terms of the coefficients
of the host, one has to proceed like in the case of a full-potential wavefunction described in
section 3.2, but taking the two spin components into account. Inserting the orbital expan-
sions (4.160), (4.161), (4.163) and (4.165) in the Lippmann-Schwinger equation (4.162),
integrating over the spherical coordinates and using the Lippmann-Schwinger equation of
the radial wavefunction of the impurity

⎛
⎝
Rimp↑↑n
L1L

(r;E) Rimp↑↓n
L1L

(r;E)
Rimp↓↑n
L1L

(r;E) Rimp↓↓n
L1L

(r;E)
⎞
⎠
= (

R↑↑nL1L
(r;E) R↑↓nL1L

(r;E)
R↓↑nL1L

(r;E) R↓↓nL1L
(r;E)

)+

∫ r′2dr′ ∑
L2

(
Gs.s.↑↑
L1L2
(r, r′;E) Gs.s.↑↓

L1L2
(r, r′;E)

Gs.s.↓↑
L1L2
(r, r′;E) Gs.s.↓↓

L1L2
(r, r′;E)

)∑
L4

(
∆V ↑↑L2L4

(r′) ∆V ↑↓L2L4
(r′)

∆V ↓↑L2L4
(r′) ∆V ↓↓L2L4

(r′)
)

⎛
⎝
Rimp↑↑n
L4L

(r′;E) Rimp↑↓n
L4L

(r′;E)
Rimp↓↑n
L4L

(r′;E) Rimp↓↓n
L4L

(r′;E)
⎞
⎠

(4.168)

as well as the expression for the∆t-matrix

⎛
⎝
∆tn↑↑L1L2

(E) ∆tn↑↓L1L2
(E)

∆tn↓↑L1L2
(E) ∆tn↓↓L1L2

(E)
⎞
⎠
= ∫ r2dr ∑

L3

(
Rn↑↑
L3L1
(r;E) Rn↑↓

L3L1
(r;E)

Rn↓↑
L3L1
(r;E) Rn↓↓n

L3L1
(r;E)

)

∑
L5

(
∆V n↑↑

L3L5
(r) ∆V n↑↓

L3L5
(r)

∆V n↓↑
L3L5
(r) ∆V n↓↓

L3L5
(r)
)
⎛
⎝
Rimp↑↑n
L5L2

(r;E) Rimp↑↓n
L5L2

(r;E)
Rimp↓↑n
L5L2

(r;E) Rimp↓↓n
L5L2

(r;E)
⎞
⎠

(4.169)

yields the simpliĕed equation

∑
L

(
R↑↑nL1L

(r;E) R↑↓nL1L
(r;E)

R↓↑nL1L
(r;E) R↓↓nL1L

(r;E)
)(
cimp↑n
kL

cimp↓n
kL

) =

∑
L

(
R↑↑nL1L

(r;E) R↑↓nL1L
(r;E)

R↓↑nL1L
(r;E) R↓↓nL1L

(r;E)
)(
c↑nkL
c↓nkL
)

+∑
n′
∑

L2L3L

(
R↑↑L1L3

(r) R↑↓L1L3
(r)

R↓↑L1L3
(r) R↓↓L1L3

(r)
)
⎛
⎝
G↑↑nn

′

L3L2
(E) G↑↓nn

′

L3L2
(E)

G↓↑nn
′

L3L2
(E) G↓↓nn

′

L3L2
(E)
⎞
⎠

⋅ (
∆t↑↑L2L

(E) ∆t↑↓L2L
(E)

∆t↓↑L2L
(E) ∆t↓↓L2L

(E)
)(
cimp↑n
kL

cimp↓n
kL

) .

(4.170)
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e above eq. (4.170) can be reduced to

(
cimp↑n
kL

cimp↓n
kL

) = (
c↑nkL
c↓nkL
)

+∑
n′
∑
L2L3

⎛
⎝
G↑↑nn

′

LL2
(E) G↑↓nn

′

LL2
(E)

G↓↑nn
′

LL2
(E) G↓↓nn

′

LL2
(E)
⎞
⎠
(
∆t↑↑L2L3

(E) ∆t↑↓L2L3
(E)

∆t↓↑L2L3
(E) ∆t↓↓L2L3

(E)
)
⎛
⎝
cimp↑n
kL3

cimp↓n
kL3

⎞
⎠
, (4.171)

which ĕnally leads to the sought-aer relation between the impurity coefficients (
cimp↑n
kL

cimp↓n
kL

)

and the host coefficients (
c↑nkL
c↓nkL
)

(
c↑nkL
c↓nkL
) =∑

n′
∑
L′L′′

⎡⎢⎢⎢⎢⎣

⎛
⎝
δnn′δLL′δLL′′ 0

0 δnn′δLL′δLL′′

⎞
⎠

−
⎛
⎝
G↑↑nn

′

LL′ (E) G↑↓nn
′

LL′ (E)
G↓↑nn

′

LL′ (E) G↓↓nn
′

LL′ (E)
⎞
⎠
(
∆t↑↑L′L′′ ∆t↑↓L′L′′

∆t↓↑L′L′′ ∆t↓↓L′L′′
)
⎤⎥⎥⎥⎥⎦

⎛
⎝
cimp↑n′
kL′′

cimp↓n′
kL′′

⎞
⎠
. (4.172)

In a simpliĕed matrix notation, the above result can be written as

(
cimp↑
k

cimp↓
k

) =
⎡⎢⎢⎢⎢⎣

⎛
⎝
1 0

0 1

⎞
⎠
− (

G↑↑(E) G↑↓(E)
G↓↑(E) G↓↓(E)

)(
∆t↑↑ ∆t↑↓

∆t↓↑ ∆t↓↓
)
⎤⎥⎥⎥⎥⎦

−1

(
c↑k
c↓k
) . (4.173)

or, skipping the spin indices, as

cimp
k = [1 −G(E) ⋅∆t]−1 ck. (4.174)

In analogy to the impurity coefficients without spin-orbit coupling, section 3.2, eq. (3.65),
the latter relation can be formulated in terms of the structural Green function of the impu-
rityGimp(E)

cimp
k = [1 +Gimp(E) ⋅∆t] ck , (4.175)

which is used in the calculations of this thesis.

4.8 e spin-dependent scattering matrix T σσ′
kk′

In the last section, we have used the Lippmann-Schwinger equation to establish a relation
between the wavefunction of an arbitrary host system under the presence of spin-orbit cou-
pling and the same system perturbed by an impurity. erefore, these two systems differ
in their potentials∆V (r), which is a 2 × 2-matrix in spin-space. Using the relations of the
previous section allows us to ĕnd the spin-dependent scattering matrix T σσ′kk′ for scattering
processesmediated by the potential difference∆V (r), quantifying the scattering amplitude
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for scattering from a state characterized by k′ with spin σ′ to another state of momentum
k and spin σ. In particular, we have in mind that the Fermi surface of the host shows a
Kramers degeneracy as described in section 4.6. en, the host states at k have to be cho-
sen by a criterion, e.g. Sx = Sy = 0. An additional quantum number σ = (↑, ↓) indicates
then the choice of Sz > 0 or Sz < 0. is particular σ enters in the deĕnition of the scat-
tering matrix T σσ′kk′ . In case of absence of spin-orbit coupling in the host, σ is reduced to a
pure spin quantum number. For a deeper analysis, we refer the reader to chapter 6.
Hence, the spin-dependent scattering matrix T σσ′kk′ yields

T σσ
′

kk′ = ∫ d3r
⎛
⎝
ψσ

′,↑
k (r;E)

ψσ
′,↓

k (r;E)
⎞
⎠

†

(
∆V ↑↑(r) ∆V ↑↓(r)
∆V ↓↑(r) ∆V ↓↓(r)

)(
ψimp,σ,↑
k′ (r;E)

ψimp,σ,↓
k′ (r;E)

) (4.176)

= ∑
n
∫
Vn
d3r∑

LL′

⎡⎢⎢⎢⎢⎣
(
R↑↑nL′L(r;E) R↑↓nL′L(r;E)
R↓↑nL′L(r;E) R↓↓nL′L(r;E)

)
⎛
⎝
cσ
′,↑n

kL

cσ
′,↓n

kL

⎞
⎠

⎤⎥⎥⎥⎥⎦

†

YL′(r̂)

∑
L′′
(
∆V n↑↑

L′′ (r) ∆V n↑↓
L′′ (r)

∆V n↓↑
L′′ (r) ∆V n↓↓

L′′ (r)
)YL′′(r̂)

∑
L′′′L′′′′

(
Rimp↑↑n
L′′′′L′′′(r;E) Rimp↑↓n

L′′′′L′′′(r;E)
Rimp↓↑n
L′′′′L′′′(r;E) Rimp↓↓n

L′′′′L′′′(r;E)
)(
cimp,σ,↑n
k′L′′′

cimp,σ,↓n
k′L′′′

)YL′′′′(r̂)

= ∑
n
∫ r2dr ∑

LL′L′′′L′′′′
(c∗,σ

′,↑,n
kL c∗,σ

′,↓,n
kL

)(
R∗↑↑nL′L (r;E) R∗↓↑nL′L (r;E)
R∗↑↓nL′L (r;E) R∗↓↓nL′L (r;E)

)

(
∆V n↑↑

L′L′′′′(r) ∆V n↑↓
L′L′′′′(r)

∆V n↓↑
L′L′′′′(r) ∆V n↓↓

L′L′′′′(r)
)(
Rimp↑↑n
L′′′′L′′′(r;E) Rimp↑↓n

L′′′′L′′′(r;E)
Rimp↓↑n
L′′′′L′′′(r;E) Rimp↓↓n

L′′′′L′′′(r;E)
)(
cimp,σ,↑n
k′L′′′

cimp,σ,↓n
k′L′′′

) .

By deĕning the∆-matrix (in analogy to the deĕnition (3.70) in section 3.3) as

(
∆↑↑nLL′(r;E) ∆↑↓nLL′(r;E)
∆↓↑nLL′(r;E) ∆↓↓nLL′(r;E)

) = ∫ r2dr ∑
L′′L′′′

(
R∗↑↑nL′′L(r;E) R∗↓↑nL′′L(r;E)
R∗↑↓nL′′L(r;E) R∗↓↓nL′′L(r;E)

)

(
∆V n↑↑

L′′L′′′(r) ∆V n↑↓
L′′L′′′(r)

∆V n↓↑
L′′L′′′(r) ∆V n↓↓

L′′L′′′(r)
)(
Rimp↑↑n
L′′′L′ (r;E) Rimp↑↓n

L′′′L′ (r;E)
Rimp↓↑n
L′′′L′ (r;E) Rimp↓↓n

L′′′L′ (r;E)
) ,

the above relation can be simpliĕed to

T σσ
′

kk′ =∑
n
∑
LL′
(c∗,σ

′,↑,n
kL c∗,σ

′,↓,n
kL

)(
∆↑↑nLL′(E) ∆↑↓nLL′(E)
∆↓↑nLL′(E) ∆↓↓nLL′(E)

)(
cimp,σ,↑n
k′L′

cimp,σ,↓n
k′L′

) . (4.177)

4.9 Momentum- and spin-relaxation times τ and T1

In the same way as presented for systems without spin-orbit coupling in chapter 3, section
3.5, the transition probability for scattering from a state characterized by k, σ into a state
with k′, σ′ is given by

P σ′σ
k′k =

2π

h̵
Nc ∣T σ′σk′k ∣

2
δ(Ek −Ek′). (4.178)
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e inverse of the spin-conserving scattering times τ ↑↑k , τ ↓↓k and the spin-Ęip scattering times
τ ↑↓k , τ ↓↑k are then determined by summation over all states k′

(τσ′σk )
−1 = ∑

k′
P σ′σ
k′k (4.179)

= 2πNc

VBZh̵2
∫
S(EF)

dSk′

vk′
∣T σ′σk′k ∣

2 .

e relaxation times averaged over the Fermi surface are then obtained via

1

τσ′σ
= 1

VBZ
∫
S(EF)

dSk

h̵vk
τσ
′σ

k . (4.180)

In accordance with reference [80] we deĕne the momentum-relaxation time τ by

τ = 2 ( 1

τ ↑↑
+ 1

τ ↓↓
)
−1

(4.181)

and the spin-relaxation time T1 by

T1 = (
1

τ ↑↓
+ 1

τ ↓↑
)
−1
. (4.182)





CHAPTER 5

Implementation and testing of the spin-orbit
coupling

5.1 Computational details

As illustrated in chapter 4, section 4.3.1, the calculation of thewavefunctions including spin-
orbit coupling requires the solution of the Lippmann-Schwinger equation. e Lippmann-
Schwinger equation can be either solved in a Born series by a relatively simple iteration, or,
better, by making use of the so-called Volterra method [66]. e Volterra method also im-
plies an iteration scheme, and it is already implemented to solve the Lippmann-Schwinger
equation for full-potential calculations, eq. (2.76).
In both methods each iteration step comprises integrations over products of the wave-
functions and the spin-orbit Hamiltonian1. However, for calculations within the scalar-
relativistic approximation (SRA), small numerical instabilities arising from the product of
the large spin-orbit Hamiltonian for small r with the very small value of the regular wave-
functions lead to strong Ęuctuations of numerical origin aer a couple of iterations, and
therefore to a divergence of the Born series. is problem does not appear in the full-
potential problemwithout spin-orbit coupling, because the perturbation caused by the non-
spherical components of the potential vanishes close to the nucleus.
In order to solve this numerical problem and achieve convergence of the
Lippmann-Schwinger equation including spin-orbit coupling, the following trick has been
used, which is also physically motivated. We avoid the divergence of the spin-orbit Hamil-
tonian for r → 0 by replacing the potential inside the nucleus by its analytical form

VZ−e(r) =
⎧⎪⎪⎨⎪⎪⎩

−2Z
r for r ≥ RN

− 3Z
RN
+ Zr2

R3
N

for r < RN , (5.1)

1For the Born series, this is demonstrated in eq. (4.62) and (4.61).
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Figure 5.1.: Prefactor of the spin-orbit Hamiltonian 1/(2M(r)2)1r
dV
dr in atomic units for different

nuclear radiiRN,num as a function of radial point index ir. e points are not equidis-
tant. Due to a exponential radial mesh, the point ir = 500 is still very close to the
origin.

assuming a homogeneous charge distribution in a spherical nucleus of radiusRN. is was
already illustrated in chapter 4, section 4.2.1, and leads to a kink in the spin-orbit Hamil-
tonian as shown in ĕgure 5.1. For r < RN, a further divergence of the Hamiltonian is
prevented. However, tests have shown that in the SRA for many elements even the inclu-
sion of the correct nuclear radius does not lead to convergence of the Lippmann-Schwinger
equation. erefore, a larger radius than given by eq. (4.17) is chosen; theminimal required
value of Rnum,N, for which the Lippmann-Schwinger equation converges depends also on
the number of radial points used for the integration. Using more radial points, lower nu-
clear radii are needed.
is numerical trick can be justiĕed by showing that the size of the nuclear radius for not too
large radii hardly affects the resulting wavefunctions and the t-matrix. In order to estimate
the errors made by this approximation we have calculated

∑
LL′
∣tLL′ − trefLL′ ∣

2 , (5.2)

where we have taken the t-matrix using 901 radial points and the minimal radiusRnum,N =
1.5 RN, which lead to convergence, as reference t-matrix tref .
e results are shown in ĕgure 5.2 for a cutoff of lmax = 2. All test calculations in this section
have been performed for gold in the SRA. Even for nuclear radii, which are 20 times larger
than the correct one and 353 radial points the integrated errors are still very small. is
behavior hardly changes when going to lmax = 3 or full potential calculations (see ĕgure
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Figure 5.2.: ∑LL′ ∣tLL′ − trefLL′ ∣
2 for different nuclear radii, ASA calculations, E = 0.415Ryd and

lmax = 2. As reference t-matrix trefLL′ , the t-matrix for 901 radial points and the
smallest nuclear radius Rnum,N = 1.5 RN, leading to convergence of the Lippmann-
Schwinger equation, has been taken. e blue curve shows the integrated differences
∑LL′ ∣tLL′ − trefLL′ ∣

2 from the t-matrix which has been obtained from 353 radial points,
which is the number of points usually chosen for calculations in the atomic sphere
approximation.

5.3). Choosing a larger nuclear radius drastically reduces the number of iterations needed
to solve the Lippmann-Schwinger equation. is dependence is shown in the upper panel
of ĕgure 5.4 for lmax = 2 and ASA calculations. For a nuclear radius which is chosen to be
20 times larger than it would be according to eq. (4.17), 20 iterations are sufficient, while
the error in the t-matrix is still small (see ĕgure 5.2). For all calculations performed in this
thesis, a numerical nuclear radiusRnum,N = 10RN has been chosen, because deviations for
other elements than gold might be larger.
Before closing this section, we come to another aspect already mentioned at the beginning
of this section. In contrast to the non-spherical components of the potential, the spin-
orbit Hamiltonian decays fast with increasing r. erefore, it is necessary to include the
spin-orbit Hamiltonian only within a sphere with radius rSOC,max, for which the spin-orbit
coupling is relevant. In order to check how large this radius has to be chosen, we have cal-
culated the t-matrix for different rSOC,max. e error in the t-matrix is shown in the lower
panel of ĕgure 5.4. However, since in most cases we have included the non-spherical com-
ponents of the potential together with the spin-orbit Hamiltonian and treated them on the
same footing, this cutoff has not been used.
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Figure 5.3.: Top: ∑LL′ ∣tLL′ − trefLL′ ∣
2 for different nuclear radii. e reference t-matrix is for all

curves the t-matrix for rmin = 3RN and 901 radial points. Bottom: e same as in the
le panel but using a logarithmic scale.

5.2 Test of the atomic scattering matrix

In order to check the accuracy of the t-matrix including spin-orbit coupling, we compared
the t-matrix for ASA calculations to the t-matrix calculated with a KKR-code in which the
Dirac equation is solved for spherical potentials [81]. e comparisonwasmade aer trans-
forming the t-matrix to the relativistic κ-µ-basis, which brings the t-matrix into a diagonal
form if the potential is spherically symmetric. e results for platinum, gold and lead are
shown in ĕgure 5.5. We have plotted the real as well as the imaginary part of the t-matrix
for the s, p and d-orbitals, thus ts(E), tp(E) and td(E) for energies ranging from −1 to
1 Rydberg. For almost all elements and energies, a very good agreement is obtained; ex-
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Figure 5.4.: Top: Number of iterations needed to solve the Lippmann-Schwinger equation up to
the accuracy of 10−7 (red curve) and 10−5 (blue curve) as function of the nuclear radius.
Bottom: ∑LL′ ∣tLL′ − trefLL′ ∣

2 as a function of rSOC,max in atomic units, for which the
spin-orbit Hamiltonian HSOC(r) in atomic units is included. To compare, the radius
for the ASA-spheres amounts to rASA = 3.01 a.u.. Note that a logarithmic scale has
been used.

clusively for lead differences in the imaginary part of the t-matrix have been found for low
energies.
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Figure 5.5.: Comparison of the real and imaginary part of the t-matrix for the s, p and d-orbitals
for platinum (top), gold (middle) and lead (bottom). e lines are the results obtained
with the Dirac equation [81], while the points represent the results calculated with the
newly developed code. e agreement is very good with the exception of lead at low
energies, where there are deviations in the imaginary part of the t-matrix.



CHAPTER 6

Spin relaxation in noble metals

At low temperatures, when the electron-phonon and electron-electron scattering are frozen
out, scattering at impurity atoms is the most serious source of resistivity in metals. ese
scattering processes result in a rapid loss of momentum coherence, which for metals has
been found in experimental studies [7] to be typically in the order of ten femtoseconds.
Compared to this momentum relaxation time τ – the average time a carrier loses its origi-
nalmomentumdue to a scattering event – electrons have a relatively persistent spin, i.e. long
spin-relaxation time T1. T1 describes the time aer which a system reaches an equilibrium
spin population by exchanging energy, momentum and angular momentum with the lat-
tice, and can amount to several nanoseconds. e mobility of electrons as well as the fact
that spin coherence can survive quite long bear a promise on the ability of transferring infor-
mation by electron spins and making spintronics a viable potential technology. erefore,
signiĕcant effort has gone into the investigation of the dominant spin-relaxation mecha-
nisms. e ultimate goal is the reduction of spin relaxation in order to keep T1 as long as
possible. In this thesis we contribute to this research by investigating spin relaxation due to
impurity scattering in the noble metals copper and gold.
Spin relaxation is caused by many different effects and mechanisms [7]. us, it strongly
depends on the material, speciĕc characteristics of the sample (e.g. the sample size, the
type and the concentration of impurities) and experimental details such as the tempera-
ture or the density of excited spins. Despite of the great variety of mechanisms causing
spin-Ęip scattering processes, for the noble metals one mechanism appears to be domi-
nant: the Elliott-Yafet mechanism [9, 82] based on momentum scattering at impurities,
phonons and electrons. In addition, there exists a mechanism of spin-Ęip scattering due to
the impurity spin-orbit coupling. If structural inversion symmetry is broken and e.g. sur-
faces or semiconductors [7] are investigated, a supplementary mechanism, the so-called
D'yakonov-Perel mechanism [10] becomes important. Since the latter is absent in the in-
vestigated bulk materials, it will be discussed in chapter 8 along with spin-relaxation at
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surfaces.
In the current chapter, the effects of spin-orbit coupling due to impurity scattering in the
noble metals copper and gold will be discussed. While in the ĕrst section the predominant
spin-Ęip mechanisms are described, the second section deals with some numerical aspects
of the calculations. Unexpected deviations from expected symmetries are presented and
the obtained results are compared to calculations performed by other groups and to exper-
imental data.
Finally, in the third section momentum- and spin-relaxation times for 3d, 4sp, 4d, 5sp, 5d
and 6sp impurities in fcc copper and gold bulk crystals are studied systematically. Addi-
tionally, interference effects in scattering between two impurities are investigated.

6.1 Dominant mechanisms of spin relaxation in noble met-
als

As sketched in the introduction, in noble metals mainly two mechanisms account for spin
relaxation, the Elliott-Yafet mechanism and spin-Ęip scattering due to spin-orbit coupling
of impurities. In the following, the theoretical concepts of these two mechanisms will be
shortly presented. For more details about the Elliott-Yafet mechanism we refer to [8].

6.1.1 Elliott-Yafet mechanism

e Elliott-Yafet mechanism is the predominant source of spin-relaxation in materials with
structure inversion symmetry and comes along with momentum scattering. It is based on
the fact that in the presence of spin-orbit coupling the degenerate electronic Bloch states
Ψ↑k andΨ

↓
k have no pure spin character anymore. Instead, they are a mixture of spin up and

spin down states

Ψ↑k = [ak(r)(
1

0
) + bk(r)(

0

1
)] eik⋅r (6.1)

Ψ↓k = [a
⋆
−k(r)(

0

1
) − b⋆−k(r)(

1

0
)] eik⋅r. (6.2)

Here, ak(r) and bk(r) are complex functions, having the periodicity of the lattice and Ψ↑k
andΨ↓k are chosen to be polarized along the z-direction, such that

⟨Ψ↑k∣Sz ∣Ψ
↑
k⟩ = −⟨Ψ

↓
k∣Sz ∣Ψ

↓
k⟩ and (6.3)

⟨Ψ↑k∣Sz ∣Ψ
↓
k⟩ = −⟨Ψ

↓
k∣Sz ∣Ψ

↑
k⟩ = 0 . (6.4)

Since in most cases the average a of ak over the whole Fermi surface is close to unity and
b≪ 1, it is still reasonable to denoteΨ↑k andΨ↓k as 'up' and 'down' states.
Ordinarily, spin-conserving scattering at phonons and impurities induces transitions be-
tween two states with the same spin character but a different k, hence scattering fromΨσ

k to
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Ψσ
k′ . For states with non-vanishing bk transitions also occur between states of opposite spin

direction, i.e. scattering from Ψσ
k to Ψ−σk′ . In the following, the perturbation which causes

the scattering is denoted with δH . It is assumed that the spin-orbit coupling of the impurity
is insigniĕcant, i.e. ⟨↑ ∣δH ∣ ↓⟩ ≈ ⟨↓ ∣δH ∣ ↑⟩ ≈ 0, where the notations

∣↑⟩ = (
1

0
) and ∣↓⟩ = (

0

1
) (6.5)

have been used. e probability of a scattering event in a ĕrst approximation is given by the
square of the expectation values

P ↑↑kk′ =
2π

h̵
∣⟨Ψ↑k ∣δH ∣Ψ

↑
k′⟩∣

2 (6.6)

= 2π

h̵
∣⟨akeik⋅r ∣δH ∣ak′eik

′⋅r⟩ + ⟨bkeik⋅r ∣δH ∣ bk′eik
′⋅r⟩∣2 or

P ↑↓kk′ =
2π

h̵
∣⟨Ψ↑k ∣δH ∣Ψ

↓
k′⟩∣

2 (6.7)

= 2π

h̵
∣− ⟨akeik⋅r ∣δH ∣ b⋆−k′eik

′⋅r⟩ + ⟨bkeik⋅r ∣δH ∣a⋆−k′eik
′⋅r⟩∣2 ,

respectively.
While the probability for spin-conserving scattering is of the order of ∣a∣4, the probability
for spin-Ęip scattering is proportional to the factor ∣a∣2∣b∣2 and therefore the ratio between
spin-Ęip and spin-conserving scattering approximately yields

P ↑↓kk′

P ↑↑kk′
≈ ∣b∣

2

∣a∣2
≈ (⟨ξ⟩

∆
)
2

. (6.8)

In the last step, the results of ĕrst-order perturbation theory have been used [9], accord-
ing to which ∣b∣ / ∣a∣ ≈ ξ/∆, where ξ corresponds to the strength of the spin-orbit coupling
entering as a perturbation parameter and∆ is the interband distance (see also eqs. (4.137)
and (4.138)).
e explicit values of the ratio (⟨ξ⟩ /∆)2 span a wide range. For light metals, the value of
(⟨ξ⟩ /∆)2 is very small (e.g. 10−10 for Li), whereas for heavy metals it might be in compari-
son very large (e.g. 10−2 for Cs) or even 0.8 for Au [15].

6.1.2 Spin-Ęip scattering due to impurity spin-orbit coupling

Spin-Ęip scattering due to impurity spin-orbit coupling has been neglected in the previous
section. Naturally, the approximation breaks down if its spin-orbit coupling becomes rele-
vant. Generally, this spin-Ęip scattering cannot be treated independently from the Elliott-
Yafet mechanism, since every spin-Ęip process induced by the impurity spin-orbit coupling
can be reverted by the Elliott-Yafet mechanism and vice versa. In calculations, this inter-
ference must be considered by adding up the amplitudes of both effects and not the proba-
bilities.
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single impurity two impurities

SOC in imp. in imp. in imp. in imp.
only and host only and host

Cu host

(∆τσσ)2 5.1 ⋅ 10−6 2.0 ⋅ 10−3 3.3 ⋅ 10−4 6.7 ⋅ 10−4
(∆τσ−σ)2 5.0 ⋅ 10−4 2.0 ⋅ 10−2 3.0 ⋅ 10−2 2.5 ⋅ 10−2

Au host

(∆τσσ)2 9.9 ⋅ 10−4 4.6 ⋅ 10−4 1.3 ⋅ 10−3 1.9 ⋅ 10−3
(∆τσ−σ)2 7.9 ⋅ 10−3 1.0 ⋅ 10−2 2.0 ⋅ 10−2 2.7 ⋅ 10−2

Table 6.1.: Mean square difference of τ ↑↑k and τ ↓↓k or τ ↑↓k and τ ↓↑k , averaged over the Fermi
surface for one and two nickel impurities in a copper and a gold host, full poten-
tial calculations. ∆τσσ and ∆τσ−σ are deĕned in eqs. (6.10). In the calculation
of the scattering matrix (and therefore evidently of the relaxation times, too), all
nearest neighbours are included. Note that for a single impurity and single-site
calculations in the atomic sphere approximation, the differences become negligi-
ble. To compare themean square errors with the absolute values of the scattering
times see table 6.2 and 6.3.

Generally, all impurities are considered to scatter independently from each other. How-
ever, correlated-scattering effects might become important if the impurity concentration
becomes high or if impurities tend to cluster. We will investigate this aspect at the end of
the current chapter, section 6.5.1.

6.2 Unexpected deviations

Before analyzing our numerical results for relaxation times due to impurity scattering, we
present some observations made during the calculation process.
From time-reversal symmetry one would intuitively expect that the k-dependent
spin-conserving anisotropic scattering times τ ↑↑k and τ ↓↓k as well as the spin-relaxation times
τ ↑↓k and τ ↓↑k as deĕned in chapter 4, eq. (4.180), behave according to

τ ↑↓k = τ ↓↑−k and (6.9)
τ ↑↑k = τ ↓↓−k .

is is because the time-reversal operation changes k to −k and the spin σ to −σ. However,
an explicit derivation starting from the expression for T σσ′kk′ , σ,σ′ ∈ (↑, ↓) occurs to be not
trivial. erefore, we proceed with a numerical evaluation of eq. (6.10), which, as we ĕnd,
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Figure 6.1.: Spin relaxations times τ ↑↓k (le) and τ ↓↑k (right) for a Ga impurity in fs per 1% in copper
bulk. Spin-orbit coupling is present both in the host and the impurity potential. A
small difference between the two distributions can be seen, manifesting in a light blue
'C' in the middle of the Fermi surface in the le panel or an inverted 'C' in the right
panel, respectively. Aer averaging the inverse of τ ↑↓k and τ ↓↑k according to eq. (6.11)
and plotting T1k as in ĕgure 6.2, the anisotropy vanishes.

is not always fulĕlled.
Especially for systems with more than one impurity the differences between τ ↑↑k and τ ↓↓k
(or τ ↑↓k and τ ↓↑k ) can be quite large. To give an impression of the order of magnitude of the
deviations, we deĕne the root mean-square errors∆τσσ and∆τσ−σ as

∆τσσ ∶= ( 1

VBZ
∫

dSk

h̵vk
∣τ ↑↑k − τ

↓↓
k ∣

2)
1
2

(6.10)

∆τσ−σ ∶= ( 1

VBZ
∫

dSk

h̵vk
∣τ ↑↓k − τ

↓↑
k ∣

2)
1
2

.

Exemplarily, table 6.1 gives (∆τσσ)2 and (∆τσ−σ)2 for nickel impurities embedded in a
copper and a gold host for systems with one and two impurities. In all calculations, scatter-
ing within a cluster comprising the nearest neighbours is included. Apart from that, results
are presented for two different scenarios: First, spin-orbit coupling is taken into account
in the impurity potential only and secondly, spin-orbit coupling is present in the host as
well as in the impurity potential. e deviations appear for both cases, and except for a
single impurity in a Cu host, they are approximately of the same order of magnitude. Ad-
ditionally, in ĕgure 6.1 the distribution of τ ↑↓k and τ ↓↑k for a single Ga impurity in copper
bulk is presented. e small anisotropy manifests in a visible light blue 'C' in the middle of
the Fermi surface in the le panel and the inverted 'C' in the right panel, which disappears
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when calculating the average spin relaxation time

T1k = (1/τ ↑↓k + 1/τ
↓↑
k )
−1 , (6.11)

presented in ĕgure 6.2.
Averaging the momentum-relaxation times τ ↑↑k , τ ↓↓k and the spin-relaxation times τ ↑↓k , τ ↓↑k
over the Fermi surface yields

τ ↑↑ = τ ↓↓ (6.12)
τ ↑↓ = τ ↓↑

up to a relative numerical accuracy of about 10−12.
Aer extensive checking we act on the assumption that the deviations are not caused by a
numerical problem, since qualitatively, the same deviations appear within the frame of a
simple tight-binding model, too. e model and the tests are documented in Appendix C.
e physics which provokes the asymmetry still has to be understood.

6.3 Comparison to other numerical and experimental data

In this section we compare the obtained relaxation times for some of the calculated systems
to other calculations [13, 80, 83] and experimental data obtained with conduction electron
spin resonance (CESR) [16].
As a ĕrst step, the distributions of themomentum relaxation time τk and the spin relaxation
time T1k for Ni, Zn and Ga impurities in copper bulk on the Fermi surface are considered.
e results shown in ĕgures 6.2 agree very well with the distributions shown in [80, 83].
Small deviations can be explained by differences in the methods. Although the calculations
in references [80, 83] have been performed within the KKR formalism, too, a fully rela-
tivistic approach solving the Dirac equation has been chosen there. On the other hand, in
our calculations the full potential is included, while the calculations of references [80, 83]
have been performed within the atomic sphere approximation neglecting the non-spherical
components of the potential. Furthermore, a different size of the region where charge re-
laxation is allowed has been chosen: In contrast to [80, 83], where four nearest-neighbor
shells, hence 55 atoms, around the interstitial impurity have been included in the calcula-
tions, we have restricted this region to a cluster of 13 atoms, corresponding to all nearest
neighbors. e cutoff of the orbital momentum lmax in the expansion of the wavefunctions
and the Green function as well as the lattice constant might play a role, too. ese two
values are not speciĕed in the respective references. In our calculations, we have used the
cutoff lmax = 3 and the experimental lattice constants a = 3.62 Å for copper and a = 4.08 Å
for gold.
Examining the distributions of the momentum relaxation times for the three impurities Ni,
Ga and Zn on the Fermi surface of copper in the three ĕgures in the le column of ĕgure
6.2, we observe that τk has the full symmetry of the Brillouin zone (48-fold Oh), while T1k
has a reduced symmetry (C4v, rotations around the z-axis and reĘections). is is due to
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Figure 6.2.: Distribution of themomentum relaxation times τk for spin-conserving scattering (le)
and spin-Ęip scatteringT1,k (middle and right) forNi (top), Zn (center) andGa (bottom)
impurities in fs at a concentration of 1% impurities embedded in a fcc copper host
crystal. e three ĕgures in the second column represent the situation of spin-orbit
coupling included in the impurity potential only while the three ĕgures in the third
column are results for spin-orbit coupling in the host and the impurity. For τk, only
very small differences are found if spin-orbit coupling is included in the host or not.
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impurity SOC in SOC in other calculations [80]
type imp. only imp. and host

K 1.0 ⋅ 10−2 1.0 ⋅ 10−2
Ca 1.3 ⋅ 10−2 1.3 ⋅ 10−2
Sc 1.0 ⋅ 10−2 1.0 ⋅ 10−2
Ti 5.1 ⋅ 10−3 5.1 ⋅ 10−3
V 3.6 ⋅ 10−3 3.6 ⋅ 10−3
Cr 3.3 ⋅ 10−3 3.3 ⋅ 10−3
Mn 3.8 ⋅ 10−3 3.9 ⋅ 10−3
Fe 5.8 ⋅ 10−3 5.9 ⋅ 10−3
Co 1.3 ⋅ 10−2 1.3 ⋅ 10−2
Ni 5.7 ⋅ 10−2 5.6 ⋅ 10−2 5.7 ⋅ 10−2
Zn 7.6 ⋅ 10−2 7.6 ⋅ 10−2 7.8 ⋅ 10−2
Ga 1.7 ⋅ 10−2 1.7 ⋅ 10−2 1.7 ⋅ 10−2
Ge 7.4 ⋅ 10−2 7.5 ⋅ 10−3 7.2 ⋅ 10−3
As 3.3 ⋅ 10−3 3.3 ⋅ 10−3 4.3 ⋅ 10−3
Se 3.6 ⋅ 10−3 3.7 ⋅ 10−3

Au 0.14 0.15
(ASA) 0.16 0.48

Table 6.2.: Momentum relaxation times τ = 2 (1/τ ↑↑ + 1/τ ↓↓) in ps for 3d and 4sp impurities
in a fcc copper host, assuming an impurity concentration of 1%. All calculations
are non spin-polarized and have been performed including a cluster of 13 atoms,
corresponding to the nearest neighbors. emomentum relaxation timesmerely
change when spin-orbit coupling in the cluster is neglected or not. e other
calculations are done by M. Gradhand et al. [80].

the assumption that the incoming state is prepared with a spin along the z-axis.
Furthermore, differences between the three impurities Ni, Ga and Zn become obvious. e
reason for this discrepancy can be found in the different scattering properties of the three
elements: While Ni is a typical d-scatterer, Zn and Ga are sp-scatterers, among which Zn
s-scattering is dominant and for Ga scattering mostly occurs in the p-channel. For Ni, the
momentum scattering rate is observed to be lowest in [100] direction (the momentum re-
laxation time is longest). In contrast, for Zn and Ga scattering in this direction is maximal
and therefore leads to short momentum relaxation times. For Zn, momentum relaxation
times are highest in regions close to the necks, whereas Ga shows the longest momentum-
relaxation times between the necks, in the [110] directions.
Considering the spin-relaxation times for spin-orbit coupling being included in the impu-
rity potential only (second column of the same ĕgure 6.2), the qualitative distribution of
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impurity our calculations other calc. [80] experimental
type data [16]

SOC in SOC in
imp. only imp. + host imp. only imp. + host

K 122.7 7.9
Ca 142.5 7.2
Sc 137.6 5.5
Ti 22.6 3.5
V 2.4 1.7
Cr 0.59 0.63
Mn 0.29 0.32
Fe 0.26 0.29
Co 0.45 0.54
Ni 2.0 3.1 1.6 3.9 2.2 ± 0.2
Zn 48.2 34.6 49 41 64 ± 9
Ga 21.0 16.7 22 16 30 ± 4
Ge 9.0 8.6 10 7.1 14 ± 2
As 4.7 2.2 5.7 4.6 8.6 ± 0.7
Se 2.8 1.8

Au 0.35 0.45 0.56 0.47 0.62 ± 0.21
(ASA) 0.47

Table 6.3.: Spin relaxation times T1 = (1/τ ↑↓ + 1/τ ↓↑)−1 in ps per atomic percent for 3d and
4sp impurities in fcc copper bulk, non spin-polarized calculations.

T1k is similar to that of τk for Ni impurities. In contrast, the spin-relaxation time T1k for Zn
and Ga impurities shows a completely different behavior. Obviously, the parts of the Fermi
surface where ordinary momentum scattering is strong are not the same as for spin-Ęip
scattering. is is reasonable for s-scattering, since s-orbitals (l = 0) do not participate in
the spin-orbit coupling. For p-scattering, however, spin-orbit coupling effects are expected
to be stronger than in the d-channel, since p-electrons are generally located closer to the
nucleus and therefore 'feel' the nuclear potential more strongly (see chapter 4). at this
not the case also manifests in the comparison of the momentum relaxation time and the
spin-relaxation time for the whole series of 3d and 4sp impurities in ĕgure 6.3. While the
inverse momentum-relaxation time for the 4sp impurities increases up to the maximum of
the 3d series, the spin-Ęip scattering rate remains very weak. is apparent paradox per-
sists, as we will see, in the case of 4d and 5sp as wells as 5d and 6sp impurities. We will see
how it is resolved in sections 6.4 and 6.5.
e distribution of the spin-relaxation time is shown in the third column of ĕgure 6.2.
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Figure 6.3.: Inversemomentum-relaxation times τ−1 for spin-conserving scattering (le) and spin-
relaxation times T−11 (right) in ps−1 per atomic percent for a copper (upper panels) and
a gold (lower panels) host bulk crystal. e blue curves represent the scattering rate
under the presence of spin-orbit coupling in the impurity only, whereas the red curves
are lifetime calculations for spin-orbit coupling in the host and in the cluster. For both
curves scatteringwithin a cluster including the thirteen nearest neighbours is taken into
account.

ere, spin-orbit coupling is included in the whole system, thus in the impurity and the
host. Especially for the Zn and the Ga impurities, the distributions strongly differ from
those of the situation, when spin-orbit coupling effects are included in the host only. Com-
paring the latter two contributions with the spin expectation values of the copper host (see
ĕgures 4.1 and 4.2 in chapter 4), it becomes obvious that this change is due to the spin-orbit
effects of the host. In [001] direction, where the spin expectation values are lowest, spin-
orbit coupling effects of the host are the largest and therefore spin-Ęip scattering in this
direction is enhanced. On the other hand, in a stripe between the necks spin-orbit coupling
of the host is lowest and the characteristics of the distribution of T1k on the Fermi surface
are determined by the properties of the impurity.
Having analyzed the distribution of themomentum- and spin-relaxation times on the Fermi
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surface exemplarily for three impurities, we continue the comparison of our results to those
of references [13], [80] and [83]. Additionally, in table 6.2 and ĕgure 6.3 the results of dif-
ferent calculations for anisotropic momentum-relaxation times for 3d and 4sp impurities
are presented1. Obviously, for a copper host, the momentum-relaxation times hardly differ
when spin-orbit coupling is included in the copper host or not. Comparing our results with
those from reference [83], one notices that the agreement is very good forNi, Zn, Ga andGe
impurities, while for Au the deviation is considerable. e reason for that deviation might
be due to the high relaxation time, i.e. weak scattering. In such a case, small differences can
lead to large discrepancies. In order to check whether this is due to the difference of full
potential and atomic sphere approximation, we have repeated our calculations in the latter
approximation. As can be seen in table 6.2, this turns out not to be the reason, since our re-
sult in ASA hardly differ. As expected, for themomentum-relaxation times the treatment of
spin-orbit coupling effects in the host does not determine the momentum-relaxation time.
On the contrary, for a gold host, where spin-orbit coupling effects are much larger, a small
difference can be observed (compare le panel of ĕgure 6.3).
Regarding the spin-relaxation times (see table 6.3 and ĕgure 6.3), even for a copper host the
differences between the calculations with and without spin-orbit coupling in the host are
more pronounced. Especially for the early 4sp-3d elements such as K, Ca, Sc and Ti, which
are mainly s-scatterers and therefore have a very low spin-orbit coupling, spin-relaxation
times are essentially determined by the host spin-orbit coupling.
It is interesting to compare the effects of spin-orbit coupling in the host for the three ele-
ments Ni, Zn and Ga. While in the presence of spin-orbit coupling in the host, the spin-
relaxation time for aNi impurity is increased, it is reduced for Zn andGa impurities. Hence,
apparently for Ni impurities spin-orbit coupling effects of the host interfere destructively
with the ones of the impurity. In the picture of the Elliott-Yafet mechanism, a spin-Ęip in-
duced by the impurity can be reverted by a spin-Ęip of the host and vice versa. at this
happens for Ni impurities but not for Zn and Ga impurities, might be due to the distri-
bution of the momentum-relaxation times and the spin-orbit effects on the Fermi surface.
While for Ni impurities momentum scattering is highest in the same part of the Fermi sur-
face where the spin-orbit coupling effect of the host is maximal, favoring the interference in
those regions, for Zn and Ga impurities these two effects dominate in different parts of the
Fermi surface, and thus can be considered as non-interfering, so that the relaxation rates
are additive.
For a gold host (see the lower panels of ĕgure 6.3), the differences in the spin-relaxation
times between calculations where spin-orbit coupling is present in the impurity only and
those where it is present also in the host, are much more pronounced. e effect of the host
is most distinct for the sp-scatterers. e maximum of the scattering rate is shied from
Fe when the spin-orbit coupling of the host is neglected to V when spin-orbit coupling is
regarded both in the host and the impurity. e reason is that the spin-Ęip in a gold host
with spin-orbit coupling is largely determined by the momentum scattering (i.e. it happens
due to the Elliott-Yafet mechanism) and for V and Cr the strongest momentum relaxation

1All calculations are performed within a shell of the 13 nearest neighbors. is is assumed to be enough, since
even single-site calculations – which are not shown here – almost lead to the same results.
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is observed.
Comparing the absolute scattering rates ofmomentum scattering and spin-relaxation in the
two different hosts, the expected strength of the spin-orbit coupling of Au becomes obvious:
While the momentum-relaxation rate is almost the same, the spin-relaxation rate for Au is
much larger (approximately by a factor of 4), since spin-Ęip processes occur more oen.

6.4 Relation of T1 to Wigner delay times tD
Wewill now come back to the paradox that the spin-relaxation rate for the 4sp impurities is
very low, although themomentum scattering rate is high and the spin-orbit coupling effects
are expected to be stronger for p-electrons than for d-electrons2.
In order to explain this paradox, we use an approximative formula for the inverse spin-
relaxation time T1

T −11 =
2vFc

V0

2

3

4π

EF
∑
l>0

l (l + 1)
2l + 1

sin2 [δl+1/2 − δl−1/2] , (6.13)

giving the spin relaxation rate in terms of the generalized phase shis δj , where j = l±1/2 is
the total momentum quantum number. e above formula is exact for a free electron host,
and exclusively accounts for the spin-orbit induced scattering from the impurity potential.
Hence, spin-orbit effects of the host are not included. Equation (6.13) is obtained by relating
the spin-Ęip scattering cross section σSF from reference [12, 84]

σSF =
2

3

4π

EF
∑
l>0

l (l + 1)
2l + 1

sin2 [δl+1/2 − δl−1/2] (6.14)

with the spin relaxation time T1 via [85]

σSF =
V0
2vFc

T −11 . (6.15)

e difference of the phase shis δl+1/2 − δl−1/2, entering in eq. (6.13), can be rewritten in
terms of the energy-splitting of the (l+1/2)- and the (l−1/2)-orbital and theWigner delay
times tD deĕned in section 3.4, eq. (3.82)

δl+1/2 − δl−1/2 ≈ (El+1/2 −El−1/2)
dδl
dE
= 1

2
∆El+1/2,l−1/2 tD . (6.16)

Here, it is assumed that δl+1/2(E) and δl−1/2(E) have the same functional form, δl(E),
but mutually displaced in the energy axis by ∆El+1/2,l−1/2. Calculations show this to be
approximately correct.
Using the identity sinx2 = 1/2 (1 − cos 2x), we obtain

T −11 ≈
2vFc

V0

2

3

4π

EF
∑
l>0

l (l + 1)
2l + 1

1

2
[1 − cos∆EtD] . (6.17)

2For the 4d, 5sp and the 5d, 6sp impurities a similar behavior is observed as can be seen in ĕgures 6.7 and 6.8.



6.4. Relation of T1 to Wigner delay times tD 95

-5

 0

 5

 10

 15

 20

 25

 30

K Ca Sc Ti V Cr Mn Fe Co Ni Zn Ga Ge As Se

t D
 [

R
yd

-1
]

s
p
d

Figure 6.4.: Wigner delay time tD in atomic units (Ryd−1) for 3d and 4sp impurities in copper bulk,
calculated from s, p and d orbitalmomenta. e delay-times for the d-orbitals aremuch
larger than those for the s- and p-orbitals, for which even negative delay times have
been calculated. ese negative times can be interpreted such that the ĕrst waves of a
wavepacket have already le the impurity site, while the last ones have not yet entered.

is equation allows the following physical interpretation of the spin-Ęip scattering process
induced by momentum scattering: e electron wavepacket enters the impurity and 'feels'
the spin-orbit induced splitting of the energy levels l + 1/2 and l − 1/2 due to the spin-orbit
coupling of the impurity potential; this energy splitting causes a precession of the electron
spin. e second quantity entering in eq. (6.17) is the Wigner delay time tD. It denotes
the time the electron requires for the (momentum) scattering process and remains at the
impurity site. Hence, if the delay-time is long, the electron is exposed to the impurity spin-
orbit coupling. e term 1 − cos∆E tD is typical for a beating effect between two states
– here l − 1/2 and l + 1/2 – split by an energy ∆E, for a time interval tD. It is obvious
that, in the presence of resonant scattering, when tD becomes long, the precession will be
signiĕcant.
A calculation of the Wigner delay times tD for the s-, p- and d-partial waves of the 3d and
4sp impurities in copper bulk, ĕgure 6.4, shows that the delay times for the d-partial waves
are much longer than those of the s- and p-orbitals. is is because transition elements
cause resonant d-wave scattering, as is well known, and explains why spin-relaxation due to
d-scattering ismuch stronger compared to that of p-scattering. For a qualitative explanation
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Figure 6.5.: Wigner delay times tD in eV−1 and splitting of the two energy levels E5/2 and E3/2
in eV induced by spin-orbit coupling at the Fermi level EF. While the splittings ∆ω
increase with the ĕlling of the d-shell as well as the principal quantum number, the
delay times have a peak for almost half-ĕlled d-shells. To convert the values of tD given
in eV−1 to SI-units, note that 1eV−1 ≈ 0.66fs.

it is sufficient to approximate the Cu host by a free electron gas and use the phase shis δl
obtained for the spherical part of the potential. For some elements, tD calculated from the
s- and p-orbitals becomes negative. According to Newton [60], small negative delay times
for wave packets are possible. An interpretation is that the front part of the wave packet
already leaves the impurity while the rear part has not yet arrived. In this case, the absolute
value of the delay time is also called advancement time.
In order to attest our interpretation, we have applied this simple model to the 3d, 4d and
5d impurities in copper bulk. erefore, we have only taken into account the splitting of
the d-partial wave, i.e. ∆E = (Ed5/2 −Ed3/2), because for the d impurities it is expected to
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provide the main contribution to the scattering rate. us,

T −11 ∝ sin2 [δ5/2 − δ3/2]
∝1 − cos∆E tD .

(6.18)

Whereas the splittings∆E and theWigner delay times tD for the 3d, 4d and 5d impurities in
copper bulk are shown in ĕgure 6.5, the approximated results using eq. (6.18) are compared
to our numerical data in ĕgure 6.6. e splitting of the energy levels increases both with
the ĕlling of the d-shell as the d-wavefunctions are retracted towards the nucleus, and the
principal quantum number as the impurity atoms are heavier. In contrast, the trends of the
Wigner delay times have a peaked structure with maxima for V, Nb and Ta, which are in the
same column of the periodic table. e trends obtained for the approximated inverse spin
relaxation times T −11 , ĕgure 6.6, qualitatively agree with the numerical results, although the
maximum of the three trends has shied to impurities with a lower atomic number (from
Fe to Mn for the 3d impurities, Tc to Nb for the 4d impurities, and from Re to Ta for the
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5d impurities). is might be due to the approximations made in this model such as the
assumption of a free electron host and the use of the phase shis of the spherical part of the
potential and not the generalized ones. However, qualitatively the model explains very well
the different behavior of the d- and the sp-scatterers and shows the general importance of
resonant scattering for spin relaxation.

6.5 Momentum- and spin-relaxation times for 3d, 4sp, 4d,
5sp, 5d and 6sp impurities in copper and gold fcc bulk

6.5.1 Scattering at single impurities

Aer having compared and discussed the momentum- and spin-relaxation times for the 3d
and 4sp elements in copper and gold hosts for single impurities we will take a look at the
4d, 5sp, 5d and 6sp elements (see the red curves of ĕgures 6.7 and 6.8). Basically, the trends
for the 4d and 5d series are similar to the curves of the 3d and 4sp series: Both momentum-
and spin-Ęip scattering rates have a peak in the middle of the d series; additionally, mo-
mentum scattering is strong for the late sp elements while the spin-Ęip scattering rate is
low. For a gold host, an increase of T −11 for the late elements is observed, originating from
the spin-orbit effects of the host (see the two curves in ĕgure 6.3). is is again a manifesta-
tion of the Elliott-Yafet mechanism , i.e., momentum scattering becomes important again,
due to the strong spin mixing of the Au Fermi surface. Comparing the order of magnitude
of the three rows for the copper host, almost no difference can be noticed between the 3d
and 4d impurities, or the 4sp and 5sp impurities, respectively. However, for the 5d and
6sp elements, the spin-relaxation rate is much higher, while the momentum scattering rate
does not increase. is is due to the higher atomic numbers of these elements which yield a
higher spin-orbit coupling sinceHSO ∝ Z . For a gold host, qualitatively the same behavior
is observed, while quantitatively the values of the spin-Ęip scattering rates are larger.
It is instructive to analyze the ratio T1/τ , which corresponds to the number of momen-
tum scattering events per spin-Ęip event. e results are presented in ĕgure 6.9 for copper
and gold hosts. In a copper host, the ratio T1/τ covers a wide range: While for the early
sp-scatterer more than 104 scattering events occur before one spin Ęips, throughout the 3d
series the ratio strongly decreases, ending up with a minimum for Ni; for a Ni impurity,
one Ęip occurs approximately every 55momentum scattering events. For the 4sp elements,
T1/τ increases again, i.e., the spin-Ęip scattering rate is low in comparison to the momen-
tum scattering rate. is follows from our considerations in the last section, where we have
found, that the 4sp impurities exhibit a strong momentum scattering, but a weak spin-Ęip
scattering, as the s- and p-wave scattering is not resonant.
Comparing the trends for impurities of the three periods in copper, a qualitative similarity
is observed. However, quantitatively, large differences can be noticed: as one moves lower
in the periodic table, i.e. consider impurities with higher atomic numbers, the ratio T1/τ
decreases. Hence, the relative number of spin-Ęip scattering events rises. Again, this be-
havior is due to the spin-orbit Hamiltonian being proportional Z .
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Figure 6.7.: Inverse momentum relaxation time τ−1 for spin-conserving scattering (le) and spin-
Ęip scattering relaxation rates T−11 (right) in ps−1 per 1% impurity concentration in a
copper host crystal. While the red curves represent calculations for single impurities, all
other values (τ−1dimer/2 andT

−1
1 dimer/2) have been obtained for two correlated impurities,

placed at nearest neighboring (magenta curve) and second (black curve), third (green
curve) and forth (blue curve) nearest neighboring sites. e greatest deviation from
the result of a single impurity (i.e. τ−1dimer/2 − τ

−1 or T−11 dimer/2 − T
−1
1 , respectively)

can be observed for two impurities being nearest neighbors. e positions of nearest
neighbors, second, third and forth nearest neighbors are demonstrated in ĕgure 6.10.
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Figure 6.8.: Inverse momentum relaxation time τ−1 for spin-conserving scattering (le) and spin-
Ęip scattering relaxation rates T−11 (right) in ps−1 per 1% in a gold host crystal. As
for a copper host shown in ĕgure 6.7, effects of interaction between two impurities are
studied.
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Figure 6.9.: Ratio of the spin-relaxation time versus themomentum relaxation time T1/τ , i.e. num-
ber of spin-conserving scattering processes per one spin-Ęip event for copper (upper
panel) and gold (lower panel). While in a copper host, T1/τ strongly depends on the
type of impurity and especially for the light s-scatterer more than 104 scattering pro-
cesses are necessary before one spin-Ęip occurs, in goldmaximally 30momentum scat-
tering events per one spin-Ęip event take place. is reĘects the dominating role of the
Au host in spin relaxation.
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Figure 6.10.: Position of the single impurity in the fcc structure as well as the position of two im-
purities at nearest neighboring sites, second, third and forth nearest neighboring sites
(from le to right).

Considering the lower panel of ĕgure 6.9, which shows the ratio T1/τ for impurities in a
gold host, the picture strongly differs from that of the copper host; compared to copper,
the trends throughout the three series are rather Ęat, the ratio T1/τ only ranges from ap-
proximately 30 (for As, Sb, Pb) down to three scattering events per one spin-Ęip for Cu,
Ag, Os, Ir impurities. In contrast to the behavior within a copper host, in a gold crystal the
ratio T1/τ is of the same order of magnitude for the impurities of the three different rows
of the periodic table. e two latter observations (the low ratio in general as well as the
rather small difference between different impurities) let us conclude that the ratio is mainly
determined by the spin-orbit coupling effects induced by the gold host (Elliott-Yafet mech-
anism); apparently, the effects of impurity spin-orbit coupling play a minor role.
Furthermore, considering the trends in ĕgure 6.9, a kink in the curve for silver and gold
impurities in the copper host and for copper and silver impurities in the gold host are ob-
served. is immediate decrease of the T1/τ is due to the fact, that copper, silver and gold
belong to the same column of the periodic table and therefore have a similar electron con-
ĕguration, yielding a very low (momentum) scattering rate. Hence, almost all scattering
processes are due to the different strength of spin-orbit coupling of the three noble metals,
scaling with the atomic number. erefore, for these impurities a very small number of
momentum scattering processes occur before one spin Ęips.
Aer having analyzed scattering processes at single impurities we will proceed with the in-
vestigation of correlated scattering processes, which will be the subject of the next section.

6.5.2 Correlation between proximity of impurities and scattering

In the previous section the momentum and spin relaxation times at low impurity concen-
trations of 1% in copper and gold host crystals have been discussed, assuming that each
impurity scatters independently. However, if the impurity concentration increases signiĕ-
cantly or the impurities tend to cluster, this approximation breaks down and a correlation
between impurity positioning and scattering rates must be investigated. In the picture of
incoming and scattered waves, correlated scattering processes can be understood as follows:
If several impurities are close to each other, interference between waves scattered at these
impurities as well as multiple scattering events become possible. Such effects might lead to
changes in the momentum- and spin-relaxation times.
erefore, we have studied momentum- and spin-relaxation times for two impurities situ-
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ated at close-by sites, i.e. at nearest neighboring positions, second, third, and forth-nearest
neighboring sites (see ĕgure 6.10). We included in our self-consistent calculations the near-
est neighboring host sites of both impurities, leading to calculations with 20 sites for two
impurities being nearest neighbors, and 22, 24 and 25 sites for 2nd, 3rd, and 4th nearest
neighbors, respectively.
e results for the correlated scattering rates per impurity concentration for two impurities
(i.e. τ−1dimer/2 or T −11 dimer/2) are presented in ĕgure 6.7 for a copper host and ĕgure 6.8 for a
gold host and compared to the scattering rates τ−1 and T −11 for single impurities. Appar-
ently, for most elements τ−1dimer/2 ≈ τ−1 (or T −11 dimer/2 ≈ T −11 , respectively) is valid, hence
no correlated scattering between two impurities is observed. e greatest difference can
be seen for the 3d, 4d and 5d scatterers, when impurities are placed at nearest neighboring
positions.
An explanation can be given with the help of the density of states. As typical examples for
d-scatterers and sp-scatterers, in ĕgure 6.11 we present the density of states of Cr, Ni and
Zn impurities in a copper host for a single impurity as well as nearest neighbors, second
and third nearest neighbors. For (single) Cr and Ni impurities we observe a sharp peak in
the density of states coming from the d-state, while for the Se impurity a broader, though
less intense peak is observed. It mostly originates from a p-band. e position of the peak
relative to the Fermi level EF (or the absolute value of the density of states at E = EF,
respectively) determines the scattering properties of the system including the impurities,
since only electrons at the Fermi level can participate at scattering processes. e higher
the density of states, the larger is the number of electrons which can participate in the scat-
tering process. erefore, the Cr impurity causes a much stronger scattering than e.g. a Ni
impurity.
We focus now on the density of states for the systems with two impurities: For all three
types of impurities a splitting of the peak can be noticed, which is most pronounced for the
system, for which the two impurities are placed at nearest neighboring sites. is splitting
corresponds to a hybridization of the d-states of the two neighboring impurities for Cr and
Ni and the p-states for Se. However, the hybridization occurs mostly close to the center of
the peak. For elastic scattering processes, mainly the situation at the Fermi energy plays a
role. is explains the fact that only for the Cr impurities considerable correlation effects
can be observed, since only for Cr impurities the hybridization takes place at the Fermi
level. Although we have shown the density of states of three types of impurities only, their
behavior is typical also for the others.

6.6 Conclusion

In the current chapter a systematic study of momentum-relaxation and spin-relaxation
times for 3d, 4sp, 4d, 5sp, 5d and 6sp impurities in the noble metals copper and gold was
presented. We started giving a short introduction into the two dominant spin-relaxation
mechanisms at low temperatures, namely the Elliott-Yafet mechanism and spin-relaxation
due to impurity spin-orbit coupling. Aer that, some unexpected ĕndings have been com-
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Figure 6.11.: Density of states for Cr (top), Ni (middle) and Se (bottom) impurities in copper bulk
for a single impurity (red curve), two impurities placed at nearest neighboring posi-
tions (magenta curve), second (black curve) and third (green curve) nearest neighbor
sites.

mented on. We compared some of our results for the momentum-relaxation and spin-
relaxation times to other numerical and experimental data. e agreement was quite good.
Analyzing the distribution of the momentum- and spin-relaxation times for Ni, Zn, and Ga
impurities on the Fermi surface of copper, large differences have been observed. ey were
traced back to the different scattering properties of the three elements.
A comparisonof the trends for themomentum-relaxation ratewith that of the spin-relaxation
rate for the whole series of 3d and 4sp elements (as well 4d and 5sp, 5d and 6sp) led to the
conclusion that strong momentum scattering does not necessarily entail strong spin-Ęip
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scattering. Whereas for the d-scattering elements both momentum and spin relaxation are
large, for the sp-scatterers having a large momentum-relaxation rate spin relaxation is very
low. An explanation for that different behavior was given by a consideration of the Wigner
delay times; for those impurities, where resonant d-scattering is dominant, the Wigner de-
lay time occurs to be an order of magnitude longer than that for the sp-scatterers3. Hence,
electrons scattering at the 3d, 4d and 5d impurities have much more time to 'feel' the im-
purity spin-orbit coupling and therefore exhibit a much stronger spin relaxation. is has
consequences especially in a copper host, because the spin-orbit coupling of the copper host
is weak. However, for the late sp-scatterers in a gold host the spin-Ęip scattering rate also
increases due to the spin-orbit coupling of the gold host. Furthermore, we have shown that
the approximate formula for the spin relaxation as a function of the Wigner delay time and
the spin-orbit induced splitting of the energy-levels for the 3d, 4d and 5d impurities in the
copper host leads to results, which qualitatively agree well with our numerical data.
e trends for 3d, 4sp, 4d, 5sp, 5d, and 6sp impurities qualitatively showed the same be-
havior in copper and gold hosts. However, while the ordinary momentum scattering rate
is of the same order of magnitude, spin relaxation is signiĕcantly enhanced in the case of a
gold host.
e dominating role for spin relaxation of the gold host also manifests in the ratio T1/τk.
While for copper T1/τk strongly depends on the type of the impurity (and its strength of
spin-orbit coupling), ranging from 3 to more than 104 momentum scattering processes per
one spin-Ęip, in gold even for the light impurities with very low spin-Ęip scattering rate
only 30 momentum scattering processes occur before one spin Ęips. For copper, a clear
minimum of the quotient is reached for the late d-scatterers, while the early s-scatterers
(especially K, Ca and Sc) exhibit the largest values of T1/τk, i.e. the lowest relative spin-Ęip
scattering.
Finally, a correlation between the proximity of impurities and scattering has been inves-
tigated. Signiĕcant changes in the spin-conserving and the spin-Ęip scattering have been
observed for the d impurities with approximately half-ĕlled d-shells, when the two impu-
rities are nearest neighbors. An analysis of the density of states of three impurities, chosen
exemplarily, let us conclude that correlation effects are due to resonance-splitting and can
be seen only for those impurities whose d-resonance is close to the Fermi energy.

3We have demonstrated this behavior for the example of the 3d and the 4sp impurities in the copper host.





CHAPTER 7

Lifetime reduction of surface states caused by
impurity scattering in simple metals

In order to describe the dynamics of charge transport, localization and quantum informa-
tion on metal surfaces, it is of crucial importance to understand the temporal evolution
of quasiparticles (electrons and holes) in surface states, characterized by a momentum-
dependent lifetime τk. Understanding these lifetimes is quite complicated, because they
reĘect the properties of the correlated many-electron system and depend on a variety of
parameters both of intrinsic and extrinsic nature. e ĕeld of research is very wide because
of the great variety of mechanisms and materials which can be investigated as well as the
number of experimental and theoretical techniques which can be employed. erefore, in
the last years much theoretical and experimental effort has been spent for a better under-
standing, and though a lot of questions are still open, tremendous progress has been made
[23].
e lifetime of surface states is limited because the quasiparticles are scattered off themany-
particle system, loosing energy and changing their momentum. Inmetallic systems, mainly
three different types of scattering processes dominate (assuming the quasiparticles to be
electrons): electron-electron scattering, electron-phonon scattering and scattering of quasi-
particles at defects, impurities and grain boundaries. Which one of the three processes is
most important depends on many criteria such as the temperature, the crystal and elec-
tronic structure of the material, the characteristic of the considered surface state, and the
presence of disorder in the material, i.e. the concentration of defects and impurities.
Experimentally, surface-state lifetimes can bemeasured by three different techniques: Angle-
resolved photoemission and scanning tunneling microscopy and spectroscopy, that pro-
vide indirect measurements via the broadening of linewidth, and two-photon photoemis-
sion that allows a direct measurement of lifetimes in the time domain. e advantage of
scanning tunneling microscopy and spectroscopy is the possibility to avoid impurities or to
probe them on an atomic scale, whereas photoemission experiments integrate over a com-
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paratively large sample area with all its defects, impurities and other imperfections of the
surface. is might be the reason for the observed discrepancies in the linewidth of the
noble metal surface states obtained in these two experimental setups [27].
e ĕrst type of interaction, i.e. electron-electron scattering, reĘects the intrinsic proper-
ties of the considered surface state. Close to the Fermi energy, electron-electron scattering
is small due to the limited phase space of the end states, whereas it becomes important at
higher energies1. An investigation of the electron-electron correlation of the (111) surface
state of noble metals with photoemission experiments can be found in [27].
Electron-phonon interaction results in elastic or almost elastic scattering, because phonons
carry relatively low energy2. e strength of phonon-scattering strongly depends on the
temperature; at low temperatures the contribution of phonons can be neglected, since they
are almost frozen. In order to estimate the contribution of electron-phonon scattering to
the total lifetime reduction of a speciĕc material, experimental studies are done at differ-
ent temperatures but in a given temperature range where electron-phonon scattering is as-
sumed to be dominating; then, a linear dependence of the linewidth on the temperature
is assumed, which allows for an extrapolation of the phonon-contribution to a given tem-
perature [86, 87]. Lifetime reduction of the noble metal surface states due to scattering
at phonons has been both studied in photoemission spectroscopy [86, 87, 88] as well as
with scanning tunneling microscopy (STM) and spectroscopy (STS) [22, 24, 89]. A general
overview about the investigation of surface-state lifetimes with STM and STS is provided
by [90], while in [23] all theoretical and experimental investigations of the last few years are
treated. Finally, a lifetime measurement for different concentrations of Co adatoms on the
Cu (001) surface with two-photon photoemission can be found in [91].
As a consequence of the above considerations about the contributions of electron-electron
and electron-phonon scattering to lifetime reduction, we can conclude that, at low tempera-
tures and energies close to the Fermi level, both are negligible; however, scattering at defects
and impurities oen is the limiting factor because the creation of a small number of surface
defects cannot be avoided. It is therefore worthwhile to provide a systematic theoretical
study of lifetime reduction due to impurity scattering, which is the topic of this chapter.
e systems investigated are the (111) surfaces of the noble metals Cu, Ag and Au, where
the surface states appear in the projected energy gap of the bulk bands. Lifetime reduction
due to scattering at 3d and 4sp impurities below, in and on top of the ĕrst surface layer are
investigated.
In the ĕrst part of the chapter we will discuss some numerical aspects of the calculation be-
fore analyzing the considered Cu, Ag and Au (111) surfaces and their corresponding Fermi
surfaces. en, we proceed comparing surface-state lifetimes for scattering at 3d and 4sp
impurities in the surface and at adatoms for copper surfaces. e latter trend, i.e. scattering
at adatoms, is investigated in more detail before a systematic study of lifetime reduction in
Cu, Ag and Au ĕlms for different thicknesses is provided.
For the sake of completeness, trends of scattering rates at magnetic impurities will be dis-

1At the noble metal surfaces a Fermi liquid behavior is expected, hence the electron-electron scattering rate
scales as (E −EF)2.

2e Debye temperature usually does not exceed a few hundred Kelvin, corresponding to a few tens of meV.
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Figure 7.1.: Fermi surfaces of Cu ĕlms oriented in [111] direction for 6, 10, 18 and 40 layers
(from le to right). For the calculations three 'vacuum layers' have been added
on each side. e calculations have been performed within the atomic sphere
approximation (ASA).e splitting between the two surface states (represented
by the two innermost rings) decreases with the number of layers. Absolute val-
ues for the splittings are given in table 7.1.

cussed.
Finally, for copper ĕlms, surface resistivities are investigated, being closely related to the
topic of surface-state lifetimes. Trends for different ĕlm thicknesses are compared to each
other as well as to the trends obtained for surface-state lifetimes.

7.1 Computational andnumerical aspects of the calculations

Comparable calculations for residual resistivities and momentum scattering times in bulk
systems [69, 92] have been performed within the spherical potential approximation. As
demonstrated in chapter 3, the formalism as well as the computational effort in ASA is
much lower than for full potential (FP) calculations. However, at surfaces, where the sym-
metry is broken, it is reasonable that non-spherical components of the potential might play
an important role. Especially, scattering at adatoms are expected to be sensitive on the
FP/ASA treatment. erefore, the ĕrst part of the current chapter deals with the compari-
son of surface-state lifetimes for ASA and FP calculations.
In our calculations a ĕnite-thickness ĕlm is always considered. e situation of a half-
inĕnite crystal with a single surface is approximated by increasing the ĕlm thickness. Fur-
thermore, the vacuum region is described by empty atomic sites at 3 (or in some calculations
4) layers above the surface; these are called 'vacuum layers'.

7.1.1 Fermi surfaces of copper, silver and gold (111) ĕlms

Before investigating surface-state lifetimes, we shortly present the Fermi surfaces of the con-
sidered ĕlms, which are all crystallized in the fcc structure and oriented in [111] direction.
e investigated materials are the three noble metals copper, silver and gold, whose elec-
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number of layers ∆k[2π/a](a.u.)] ∆E[Ryd]

6 1.1 ⋅ 10−1 4.9 ⋅ 10−2
10 2.8 ⋅ 10−2 1.3 ⋅ 10−2
18 4.4 ⋅ 10−3 2.3 ⋅ 10−3
40 4.5 ⋅ 10−5 2.4 ⋅ 10−5

Table 7.1.: Splittings of the two surface states for symmetric Cu ĕlms as a function of the
number of layers in atomic units. e splitting ∆k on the Fermi surface corre-
sponds to a splitting in energy given by ∆E(k) = (∂Ek/∂k) ⋅∆k. All results
have been obtained within the atomic sphere approximation.

tronic structure and Fermi surfaces are very similar to each other. As these systems are char-
acterized by a two-dimensional periodicity, the Fermi surface consists of one-dimensional
curves that in this case forms ring-like structures. e number of rings on the Fermi surface
scales linearly with the number of layers, which can be seen in ĕgure 7.1 for the example
of a copper (111) Fermi surface for ĕlms with 6, 10, 18 and 40 copper layers (from le to
right). e two innermost rings represent the so-called surface states which are formed in
the gap of the surface-projected band-structure due to the boundary condition of a sur-
face [93]. Surface states are localized at the atom layers close to the surface as can be seen
in ĕgures 7.2 and 7.10 and decay exponentially into the bulk and into the vacuum. Since
in a ĕnite ĕlm there are two surfaces, also two surface states appear. For ĕnite ĕlms, they
form a bonding and an anti-bonding state. e coupling of these two states manifests in a
splitting between the two inner rings of the Fermi surfaces, decreasing with increasing ĕlm
thickness since the overlap of the two surface states decreases exponentially. For 40 layers,
the splitting of the two states almost vanishes. Absolute values of the splittings for copper
surfaces obtained within the atomic sphere approximation are given in table 7.1.
In ĕgure 7.2, the charge per atom for two k-points belonging to the two different surface
states is shown as function of the layer for ĕlms with 6 (le panel) and 40 (right panel) layers
of copper3. Whereas for 6 layers the charge density of the surface states is still high in the
center of the ĕlm, it is receded to a very low value at the center of the ĕlm consisting of 40
copper layers. e highest charge density of the surface states can be observed in the ĕrst
surface layer; apart from that, it is still very high in the second surface layer as well as in the
ĕrst vacuum layer.
Considering the Fermi surfaces of silver and gold ĕlms (see ĕgure 7.3), a peculiarity for sil-
ver can be noticed. In the case of the silver ĕlms, the bottom of the band of the surface state
is located only slightly below the Fermi energy, such that the coupling of the two surface
states for thin ĕlms pushes one of the them above the Fermi level. erefore, for silver ĕlms
with 6 and 10 layers only one surface state appears as a ring on the Fermi surface. As it will
be shown in section 7.3, this has consequences for the resulting surface state lifetimes, too.

3e two k-points are chosen in [010] direction on the Fermi surface, but because the inner part of the Fermi
surface is isotropic, this choice does not affect the results.
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Figure 7.2.: Charge per layer at the Fermi energy EF of the two surface states as a function
of the layer index for ĕlms with six layers (le) and forty layers (right) of copper.
e two selected k-points on the innermost ring or the second inner ring, re-
spectively, are representative for the whole ring and chosen in [010] direction.
e vertical black lines in the ĕgures indicate the position of the surfaces. Note
the different scales of the two diagrams. Whereas for the ĕlm with six copper
layers the density of states for the two surface states in the center of the ĕlm is
still large, in the case of 40 layers it is almost zero; therefore, the coupling of
the two surface states is weak and almost no splitting on the Fermi surface is
observed. e sum over all layers for each k-points equals one, due to normal-
ization of wavefunctions. E> and E<, respectively, denote the innermost and
the second-innermost Fermi-ring.

7.1.2 e optical theorem

Aer having calculated the Fermi surfaces, we can now proceed with the investigation of
lifetime reduction due to impurity scattering. erefore, we place impurities in the surface
layer, one layer below the surface as well as in adatom positions on top of the surface at
the fcc threefold-hollow site. To calculate the surface-state lifetimes as described in chapter
3, we use the same scheme which we have already applied to bulk systems to calculate the
momentum relaxation times τk. e perturbed region, where charge relaxation is allowed,
generally is restricted in our calculations to a cluster of 13 sites, thus the shell of nearest
neighbors4. All scattering rates, i.e. inverse lifetimes τ−1k , are given in units of ps per atomic
percent of impurities, adatoms or defects.
Contrary to the case of the bulk systems investigated in chapter 6, there are no numeri-
cal or experimental references to compare our results. Although in principle surface-state
lifetimes of copper, silver and gold (111) surfaces have been measured, they have not been

4In section 7.1.4, it will be shown that this choice is sufficient to obtain reasonable results.
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Figure 7.3.: Fermi surfaces of ĕlmswith six layers (upper panels) and 18 layers (lower panels)
of silver (le) and gold (right), oriented in [111] direction. For the Fermi surface
of the ĕlm consisting of six layers of silver, only one surface state appears; this is
due to the localization of the surface state only slightly below the Fermi energy
and the large coupling of the two states for thin ĕlms. For 18 layers, the splitting
is much smaller and the surface state with the higher energy again appears on
the Fermi surface.

investigated under the aspect of impurity scattering. Impurity scattering has been prefer-
ably avoided.
However, another possibility to attest the numerical correctness of the results is given by the
optical theorem. According to the optical theorem (see section 3.5, eq. (3.88)), the imagi-
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nary part of the diagonal elements of the scattering matrix must obey

− 2Nc

h̵
Im Tkk =

2πNc

VBZh̵
∫
S(Ek)

dSk′

h̵vk′
∣Tkk′ ∣2 ≡ τ−1k . (7.1)

Both sides of the above equation are shown in ĕgure 7.4 for a non spin-polarized calculation
of Fe impurities in the ĕrst surface layer (le panel) and Fe adatoms (right panel) on top of
a ĕlm consisting of six layers of copper. Additionally, in the same ĕgure results obtained
within the atomic sphere approximation (upper panels) as well as for taking the full poten-
tial (lower panels) into account are presented. For a better view, the inverse lifetimes τ−1k are
presented for all k-points in the irreducible part of the Fermi surface (which is 1/12 of the
full Brillouin zone for systems without spin-orbit coupling) as a function of a k-point index,
following circle by circle, starting from the innermost ring to the outer boundary of the Bril-
louin zone. us, the two surface states are those with the smallest indices. e agreement
of the two sides is very good, although for the two surface states in the case of Fe adatoms
calculated within full potential calculations, a small difference can be observed. To obtain
the above accuracy especially for the latter case (adatom and full potential calculations), a
meticulous convergence of numerical parameters has been necessary. For example, it oc-
curs that four vacuum layers on each side of the ĕlm are required instead of three which
lead to good results for calculations performed within the atomic sphere approximation.
Additionally, a very large number of k-points for the calculation of the structural Green
function, eq. (2.47), is required. Further comparisons of scattering rates obtained within
ASA and FP calculations follow in a later part of this section and of surface resistivities in
section 7.5.
A supplementary check of the results has been done by calculating the average of the inverse
lifetimes ⟨τ−1k ⟩ over the bulk states for Fe impurities in the surface layer as well as one layer
below the surface; scaling it with the number of layersN , the averageN ⋅ ⟨τ−1k ⟩ results in a
value comparable to that obtained for an Fe impurity in copper bulk.

7.1.3 Comparison of ASA and FP calculations

Now, we return to the question whether there are deviations between inverse surface-state
lifetimes τ−1k obtainedwithinASA andFP calculations. Aswe have seen in chapter 6, section
6.3, for impurities in bulk systems, the calculated scattering rates agree very well; however,
this might be different for systems with broken symmetry such as surfaces, where non-
spherical components of the potential become more important.
In order to compare the two calculation schemes, inverse surface-state lifetimes for the
whole series of 3d elements for adatoms and impurities in the surface of a copper ĕlm con-
sisting of 6 layers are investigated. For simplicity, only one surface state (the innermost
ring) will be considered. e results are presented in ĕgure 7.5. In the two panels of the
le column, the scattering rates for single-site calculations are presented, while in the two
ĕgures of the right column the shell consisting of the nearest neighbors (hence 13 atoms)
has been included. For impurities in the ĕrst surface layer (the results are shown in the
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Figure 7.4.: Scattering rates τ−1k for Fe impurities in the ĕrst surface layer (le panels) and
Fe adatoms (right panels) in/on a ĕlm of 6 layers of copper as a function of the
index of the k-point on the Fermi surface in 1/12 of the Brillouin zone, repre-
senting the irreducible part for systems without spin-orbit coupling. In order
to check the correctness of the calculations, both sides of the optical-theorem
equation are shown. e agreement is very good, only for the case of Fe adatoms
and full potential calculations a small deviation for the two surface states can
be observed. In this case, the obtained results are very sensitive to the chosen
numerical parameters, and a careful convergence has been necessary.

two upper panels), the agreement of the two different calculation schemes is very good,
both for single-site calculations and calculations where the nearest neighbors have been in-
cluded. is is not the case for adatoms as can be observed in the two lower panels of ĕgure
7.5; a considerable deviation is visible, even when a cluster including all nearest neighbors
is taken into account. However, although a quantitative difference can be observed, the
trends are similar.
Comparing the scattering rate at impurities in the surface layer (shown in the upper panels
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Figure 7.5.: Scattering rates τ−1k for impurities in the ĕrst surface layer (upper panels) and
adatoms (lower panels) obtained within the atomic sphere approximation and
full-potential calculations. While the agreement between the two calculations
is very good for impurities in the ĕrst surface layer, for adatoms the two calcu-
lation schemes lead to qualitatively similar but quantitatively different results.
Additionally, in the le panels the comparison has been done for single-site cal-
culations, while in the right panels results for calculations are shown for which
a cluster of the nearest neighbors has been included.

of ĕgure 7.5) to the scattering at adatoms (lower panels of the same ĕgure), a signiĕcant
qualitative difference is evident. While the trend for impurities in the ĕrst surface layer re-
sembles that which we have found for scattering at impurities in bulk, ĕgure 6.7 in chapter
6, the trend for the scattering rate at adatoms does not. Additionally, for the latter case a
large difference between single-site calculations (le panels) and those including nearest
neighbors (right panels) can be observed. An analysis of these aspects follows in a later part
of this chapter.
We conclude that quantitative differences between full potential calculations and calcula-
tions performed within the atomic sphere approximation are observed. However, in the
following qualitative analysis we will restrict ourselves to ASA calculations. is can be
justiĕed by the fact that the observed trends qualitatively are the same for both calculations.
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Figure 7.6.: Le: Scattering rates τ−1k for adatoms in a ĕlm of 40 copper layers for different
cluster sizes (ASA calculations). While a large difference between single-site
calculations and those including nearest neighbors can be observed, larger clus-
ter sizes hardly change the obtained scattering rates. Right: Scattering rates τ−1k

for adatoms on a ĕlm of 40 copper layers. Presented are single-site calculations,
calculations including the adatom with the neighboring sites ('13 atoms'), cal-
culations including the adatom and the surrounding vacuum sites only, and cal-
culations including the adatom and the surface nearest neighbors only. We ob-
serve that especially for the early 3d elements, the surrounding vacuum strongly
inĘuences the scattering rate.

7.1.4 Convergence with cluster size

In the previous section, we have already seen that for adatoms large differences between
single-site calculations and those including a cluster of nearest neighbors are observed. e
above ĕnding raises the question whether the cluster consisting of nearest neighbors only
is large enough to obtain converged results. erefore, calculations including additionally
the shells of the second nearest neighbors and the third-nearest neighboring sites in the ĕrst
vacuum layer (25 atoms) and third nearest neighbors (43 atoms) are performed. e results
are presented in the le panel of ĕgure 7.6; when including more than nearest neighbors,
scattering rates hardly change. erefore, in the following we restrict ourselves to the shell
of nearest neighbors.

7.2 Analysis of surface-state lifetimes for adatoms

Considering the trend of the inverse surface-state lifetimes for scattering at adatoms (see
e.g. ĕgure 7.12) it catches one's eye that the observed trend remarkably differs from the one
obtained for impurities in the ĕrst surface layer as well as from the trends for the scattering
rates at impurities in bulk systems (see chapter 6, e.g. ĕgure 6.7). e main reason for this
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Figure 7.7.: Density of states per spin for paramagnetic (le panels) and magnetic (right panels) Ti,
Cr and Co adatoms on a copper ĕlm consisting of 40 layers of copper. In the case of
paramagnetic adatoms, for Ti (and all elements with smaller atomic numbers than Cr)
the d-resonance is above the Fermi energy, while for all elements with larger atomic
numbers than Cr the d-resonance is below EF. For impurities in the surface, this
explains why scattering has a maximum for a Cr impurity. In contrast, for magnetic
adatoms two maxima are observed corresponding to the d-resonances of the two spin
channels crossing the Fermi energy.

different behavior is that the perturbation caused by an adatom is totally different from the
situation of an impurity in the surface layer or in a bulk lattice. While in the latter case only
a copper atom is replaced by a different, foreign atom, the addition of an adatom on top
of the surface changes the geometry of the total system. en, the strength of scattering
depends on parameters such as the size and the delocalization of the adatom (because of
the lack of surrounding atoms in the vacuum layer) as well as on the reduced overlap with
the bulk states.
e difference between the trends for adatoms and impurities in the ĕrst surface layer is
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most striking for the ĕrst elements of the row (such as Sc, Ti, V) and the sp scatterers Ga
and As. For the latter ones, the scattering rate is maximal if they are placed in the surface
but minimal when positioned as adatoms.
In contrast, while the scattering rate for Sc, Ti and V is low for impurities in the surface
and in the bulk, the inverse scattering rate for surface states is at the same level as for the d
scatterer with half-ĕlled d-shells. Additionally, as already stated in the previous section, for
these light elements the deviation between single-site calculations and those where nearest
neighbors are included is relatively large. Apparently, for these elements the scattering rate
cannot be explained with their density of states, which is shown (for Ti, Cr and Co adatoms)
in the le panels of ĕgure 7.7.
However, the densities of states help to explain the results obtained for impurities in the sur-
face and – at least partly – the results of the single-site calculations. e trend calculated for
impurities in the ĕrst surface layer resembles the trend of the momentum scattering times
in bulk systems and is therefore what is expected. For the d scatterer, the scattering rate is
determined by the position (in energy) of the d-resonance relative to the Fermi energy. e
maximal scattering rate is obtained for V and Cr impurities, for which the d-resonance is
centered at the Fermi level (see ĕgure 7.7); for the earlier elements, the peak is at higher en-
ergies, whereas for elements with higher atomic numbers the resonance is below the Fermi
energy5 and the scattering rate decreases and obviously vanishes for Cu. For the sp scatterer
it increases again, according to Linde's rule [94, 95].
In order to understand the trend of τ−1k calculated for scattering at adatoms, we start from
the observation already made in the previous section that the single-site results remarkably
differ from those obtained within a cluster of nearest neighbors. is lead us to the ques-
tion which sites of the cluster contribute most to the scattering rate. erefore, we have
performed calculations where we have included – apart from the adatom – the surrounding
vacuum sites only, or, the surface nearest neighbors only, respectively. e results are pre-
sented in the le panel of ĕgure 7.6. While the surface-state scattering rates at the adatom
together with the copper atoms in the ĕrst surface layer hardly differ from the single-site
results, the inclusion of the surrounding vacuum sites leads to scattering rates which are
already close to those obtained for scattering within the whole shell consisting of all nearest
neighbors. Hence, the largest contribution arises from the surrounding vacuum potentials.
is effect is relatively large for the early 3d scatterers and low for all other elements. A
possible reason for this behavior is that these elements have a relatively large atomic radius
(which is rat = 1.62 Å for Sc, 1.45 Å for Ti, 1.34 Å for V) [96] and therefore extend more
into the vacuum than for example a Ga adatom with rat = 1.22 Å; apparently, the large
extent entails stronger scattering rates because of the larger overlap of the perturbed region
with the host wavefunctions.
In order to analyze and understand the single-site results for scattering at adatoms, orbital-
momentum resolved scattering rates are investigated. erefore, we deĕne the scattering

5Although the densities of states are shown for adatoms the qualitative picture, i.e. the position of the resonances
relative to the Fermi level does not change for impurities in the surface.
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Figure 7.8.: Angular-momentum resolved scattering rates for adatoms on a ĕlm consisting
of 40 layers of copper. e inclusion of the s, pz and the dz2 channel in the
single-site scattering matrix T 00

LL′ (compare eq. (7.2)) describes the total scat-
tering rate already well. For the early elements, s-scattering is dominant, while
the consideration of only the s-channel for the sp scatterers Zn-As by far over-
estimates the total scattering. is behavior can be understood by the investi-
gation of Friedel-oscillations (see ĕgure 7.9), which verify the assumption of a
constructive interference for a Co adatom and destructive interference for Ga
and Ge adatoms.

matrix T nn′LL′ as6

T nn
′

LL′ ∶=∑
L′′

∆n
LL′′ (δL′′L′δnn′ +∑

L′′′
Gimp,nn′

L′′L′′′ ∆tn
′

L′′′L′) (7.2)

which is related to the scattering matrix Tkk′ in reciprocal space by

Tkk′ =∑
nn′
∑
LL′

cn⋆kLT
nn′

LL′c
n′

k′L′ . (7.3)

en, the single-site contribution n = n′ = 0 is resolved to different L-channels. e results
are presented in ĕgure 7.8 for T 00

ss , T 00
pp , T 00

dz2dz2
, T 00

dd and T 00
spzdz2 ,spzdz2

together with the total

6For a better understanding of expressions 7.2 and 7.3 compare the deĕnition of Tkk′ in section 3.3.
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single-site contribution. Due to the presence of the surface, which breaks the symmetry to
some extent, we expect that interference is possible among s, pz and dz2 waves. As can be
observed, the inclusion of the s-, pz- and dz2-channel already leads to a curve similar to the
total single-site result. For the ĕrst elements of the row, scattering in the s-channel is dom-
inant, while for the sp scatterer (starting from Zn) the restriction of T 00 to the s-channel
only overestimates the whole scattering rate; thus, apparently, destructive interference oc-
curs.
In order to analyze interference effects, we have calculated the Friedel oscillations for Co,
Ga and Ge adatoms, i.e. the difference of the local density of states integrated over the ASA
sphere in the vacuum on an axis parallel to the surface compared to that of the host vacuum
site, i.e. nl(EF)−nvac

l (EF). It is presented in ĕgure 7.9 as function of the distance from the
adatom site. For a Co adatom, the s-, pz- (though being very small) and dz2-components of
the waves are in phase and, in agreement with the orbital-resolved scattering rate in ĕgure
7.8, a constructive interference can be observed. In contrast, for Ga and Ge adatoms the os-
cillations in the s- and p-channel are not in phase and interfere destructively. is explains
why for these elements the high scattering observed in the s-channel does not lead to high
total scattering rates.

7.2.1 Scattering to bulk and surface states

e method used to calculate the surface-state lifetimes given in section 3.5, eq. (3.87),
allows to distinguish between scattering to bulk and to surface states. e total scattering
rate of a (surface) state characterized by a wavevector k is composed of a contribution τ surfk

given by
1

τ surfk

= 2πNc

VBZh̵
∫
S(EF),surf

dSk′

h̵vk′
∣Tkk′ ∣2 , (7.4)

where the integration is performed only over the surface states, and, analogously, a contri-
bution τbulkk , where only the bulk states of the Fermi surface are taken into account

1

τbulkk

= 2πNc

VBZh̵
∫
S(EF)bulk

dSk′

h̵vk′
∣Tkk′ ∣2 . (7.5)

Obviously, considering the deĕnitions of τk, τ surfk and τbulkk , the relation

1

τk
= 1

τ surfk

+ 1

τbulkk

(7.6)

is fulĕlled.
e two contributions have been calculated for ĕlms consisting of 6 and 40 layers of copper
for impurities in the layer below the surface, in the surface layer as well as for adatoms
and are presented in ĕgure 7.11. For impurities in the surface layer and below the surface,
scattering to bulk states is expected to be much larger than scattering to surface states. is
is fulĕlled very well for the 3d scatterers, but not for the sp scatterers. Even in the case of
impurities below the surface, for the ĕlm with six copper layers (compare the panel at the
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Figure 7.9.: Friedel-oscillations calculated for Co, Ga and Ge adatoms. e momentum-
resolved difference of the local density of states as a function of distance to the
adatom site is calculated, i.e. nl(EF) − nvac

l (EF), with nvac
l (EF) being the den-

sity of states of the vacuum site of the host and nl(EF) the density of states,
perturbed by the adatom. While for a Co adatom the s-, pz- and d-channel os-
cillate in phase, for Ga and Ge adatoms a destructive interference of the s- and
pz-channel is observed. For Ga and Ge adatoms, d-scattering is very small and
can be neglected.
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Figure 7.10.: Charge per atom in layer for the two surface states of a copper ĕlm with six layers and
for one of the two surface states of a ĕlm with 40 copper layers. For the thinner ĕlm,
the charge in each layer is larger than for the 40 layers-ĕlm, because the number of
layers in which the surface states can penetrate is limited. is might be the reason
for which scattering rates (for scattering at adatoms) increase with decreasing number
of layers (compare ĕgure 7.12).

le bottom of ĕgure 7.11), the scattering rate to surface states at Ga, Ge and As impurities
is higher than the scattering rate to bulk states. Interestingly, this is opposite to the ĕlm
of 40 copper layers, where scattering to bulk states prevails. For the case of adatoms, the
two contributions behave reversed; while the scattering at 3d adatoms is clearly dominated
by scattering to other surface states, for sp-adatoms scattering to bulk states is lower than
scattering to the two other surface states.
e reason for the different behavior of the scattering in 6 and 40 layers of copper is not
fully understood. However, scattering to surface states in the thinner ĕlms might be higher
than in the thicker ĕlms, because the localization of surface wavefunctions in the vacuum,
surface and subsurface layer, where the impurity is placed, is larger in the thin ĕlms (see
ĕgure 7.10).
Finally, while the lifetimes τk of the bulk states scale inversely with the number of layers, the
surface-state lifetimes τk with increasing number converge to a constant value (see ĕgure
7.12), which is considerably smaller than the momentum scattering rate τ−1 for impurities
in bulk. A possible reason for this decrease might be the delocalization of the surface state
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Figure 7.11.: Total inverse surface-state lifetimes τ−1k for the innermost surface state together with
the contributions of scattering rates to bulk and surface states 1/τbulkk and 1/τ surfk

for ĕlms with 6 layers of copper (le panels) and 40 copper layers (right panels) for
adatoms (top), impurities in the ĕrst surface layer (center) and impurities in the layer
below the surface (bottom).

mainly over three layers; the ĕrst two surface layers and the ĕrst vacuum layer. Assuming
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that in the bulk there are N atoms, among them one impurity, then the overlap of a bulk
state with the impurity is given by 1/N . In contrast, ifN atoms are in the surface, the surface
state expands over a volume of 3N atoms and, therefore, has an overlap of 1/3N with the
adatom, leading to smaller scattering rates.

7.3 Surface-state lifetimes for Cu, Ag and Au ĕlms

Having analyzed the surface-state lifetimes for impurities in and on copper ĕlms, we inves-
tigate scattering rates for 3d and 4sp impurities and adatoms in/on silver and gold ĕlms.
Additionally, we compare inverse surface-state lifetimes for different numbers of layers7.
e calculated data, shown in ĕgure 7.12, are qualitatively similar for all three hosts. Scatter-
ing rates off adatoms are largest for the ĕrst elements of the row and remain almost constant
until Mn; just as in the case of the copper ĕlm (see previous section), this should be due to
the larger atomic radius entailing a larger extent of these elements into the vacuum. Fur-
thermore, all three host materials show a clear trend that scattering at adatoms on a ĕlm of
six layers is enhanced compared to that of larger numbers of layers. Again, the reason is the
higher localization of the surface state for thin ĕlms; the surface states extend over a smaller
number of layers, entailing a larger overlap with the impurities, and, therefore higher scat-
tering rates.
Concerning scattering at impurities in the surface, the situation is more complicated. Qual-
itatively, for all three host materials a clear maximal scattering rate for the 3d elements with
half-ĕlled shells (V, Cr) is observed as well as high inverse lifetimes for the sp scatterer.
Hence, as expected, the global trend reĘects the situation of scattering at impurities in the
bulk which has been already discussed in chapter 6 and in the previous section 7.2. How-
ever, large quantitative differences among the three host materials are observed when con-
sidering the thickness-dependency as well as the comparative scattering strength of 3d and
4sp impurities. While for a copper host, the scattering rate does not depend much on the
ĕlm thickness, for silver ĕlms the thickness makes a big difference. Actually, the silver host
is expected to show a strong thickness dependence because of the relatively shallow position
of the surface state (starting below the Fermi energy). In thin ĕlms quantum-conĕnement
effects push one of the two surface states above EF, resulting in a signiĕcant change of the
available phase space for scattering.
A comparison to other theoretical or experimental results is not possible because of the
lack of data; although the investigated surfaces and even surface states have been subject to
a lot of experiments, according to our knowledge no experiments have been performed in
which the surface-state lifetimes due to scattering at the speciĕc impurities at the Fermi level
have been measured. However, the order of magnitude of scattering rates calculated in the
present thesis should allow for an experimental detection; to compare, in inverse photoe-
mission spectroscopy a linewidth of about 23 meV ≈ 35 ps−1h̵ for Cu, 6 meV ≈ 9 ps−1h̵ for
Ag and 21 meV ≈ 33 ps−1h̵ for Au for electron-electron scattering processes is measured.
A measurement for 1 % of defects should be, therefore, within the experimental resolution.

7Similar as in the previous section, for a qualitative analysis we restrict to ASA calculations.
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Figure 7.12.: Inverse surface-state lifetimes τ−1k for adatoms (le panels) and impurities in
the ĕrst surface layer (right panels) for Cu, Ag andAu ĕlmswith different num-
ber of layers. For all three host materials, the trend for scattering at impurities
in the surface correspond to that already observed for scattering in the cor-
responding bulk metals; however, the dependency on the number of layers
highly differ for silver ĕlms. While for copper and gold ĕlms a slight increase
of τ−1k with increasing ĕlm thickness is observed, for silver ĕlms the inverse
scattering rate decreases. is different behavior might be related to the fact
that for silver ĕlms with 6 and 10 layers only one surface state accounts for
scattering, since the other one is above the Fermi energy. e scattering rates
for scattering at adatoms on silver and gold ĕlms show the same trend as on
copper ĕlms.
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7.4 Scattering at magnetic impurities

So far, only scattering at non-magnetic impurities and adatoms has been considered. How-
ever, above the Kondo temperature, some of the 3d impurities become magnetic and scat-
tering at the two spin channels has to be treated separately. e resulting lifetimes are shown
in ĕgure 7.13. As adatoms, the 3dmetals starting from Ti to Co are magnetic, while for im-
purities in the surface Ti is still paramagnetic. e 4sp elements are paramagnetic. e
magnetism of the 3d elements leads to a double-peak structure in the trend of the surface-
state lifetimes, which is already known e.g. for residual resistivity in bulk and originates
from the offset of the d-resonance of the two spin channels, which is mutually shied due
to the exchange interaction. is becomes obvious when considering the density of states,
shown in ĕgure 7.7. As already stated for impurities in bulk and in the surface layer, scat-
tering rates become large when the d-resonance crosses the Fermi energy. However, for
magnetic impurities the d-resonance is shied for the two spin channels, such that scatter-
ing becomes large twice, i.e. for each spin channel crossing the Fermi energy. erefore, a
ĕrst peak of the inverse lifetimes is observed for Ti, where the d-resonance of the spin-up
channel is centered at the Fermi level, while a second peak appears for Fe/Co, where this
is the case for the spin-down channel. For Cr impurities, where scattering rates are large
in the case of paramagnetic impurities, the inverse lifetime is low since EF is between the
d-resonances of the two spin channels.
As alreadymentioned, the consideration ofmagnetic impurities/adatoms is valid only above
the Kondo temperature. However, at high temperatures the phonon contribution becomes
important, and, scaling linearly with temperature [86], at room temperature (for not too
high impurity concentrations), dominates the reduction of lifetimes. erefore, lifetime re-
duction caused by impurity scattering can be better observed at lower temperatures, where
most impurities are non-magnetic. e Kondo temperature varies over orders of magni-
tude, depending exponentially on the position of the d-resonance and on the hybridization.
erefore, there is no 'unique' temperature above which all 3d impurities become simulta-
neously magnetic. At low temperature, however, they should all be non-magnetic. In this
case, the non-magnetic density of states in the local-density approximation (see section
1.3) does not represent the physical density of states, except exactly at the Fermi energyEF,
where it is probably a good approximation. is follows from the fact that, as it has been
shown in model calculations [97], the phase shi and density of states at EF in the Kondo
phase, at T = 0, coincide with the corresponding quantities calculated in the mean-ĕeld
approximation when the electron correlation is ignored.

7.5 Residual resistivity

Surface-state lifetimes are strongly related to the concept of surface resistivity ρsurf , deĕned
as the ratio of a voltage drop per unit length to the surface current per unit width. erefore,
ρsurf is a property of the material and does not (or at least should not) depend on the size
of the sample.
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Figure 7.13.: Inverse lifetimes for scattering at magnetic adatoms (top) and impurities in
the surface layer (bottom) of a copper ĕlm of 40 layers. e magnetism of the
3d elements leads to a double-peak structure of the inverse surface-state life-
times τ−1k because of the offset in the density of states of the two spin channels
(see ĕgure 7.7). e ĕrst maximum is reached for Ti, when the d-resonance of
the spin-up channel crosses the Fermi level, while the second maximum cor-
responds to the localization of the d-resonance of the spin down channel at
EF.

Surface resistivities can be calculated in analogy to residual resistivities in bulk materials
ρbulk as explained in section 3.6 using the Boltzmann equation (3.91) and eq. (3.92) or
eq. (3.93), respectively. In order to attest the correctness of our calculations of surface resis-
tivities and to compare ρsurf with the values obtained for residual resistivities in bulk ρbulk,
we start with a presentation of ρbulk, calculated for the 3d impurities in copper bulk.

7.5.1 Residual resistivity in copper bulk

In contrast to momentum relaxation times τk, residual resistivities due to scattering at 3d
impurities in copper bulk have been measured and calculated within ab initio calculations
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Figure 7.14.: Residual resistivities ρ [µΩ cm] per one atomic percent of 3d and 4sp impurities in
copper bulk. Our results for full potential calculations (FP) are compared to numerical
results of reference [69, 92] obtainedwithin the spherical potential approximation and
experimental results from [98, 99, 100].

already 30 years ago. erefore, in ĕgure 7.14 we present our results of ρbulk[µΩ cm]/1%
together with numerical [69, 92] and experimental [98, 99, 100] data. e agreement of our
results with those of the references is reasonable. Whereas we have been performed full po-
tential calculations, the numerical results of [69, 92] have been obtained within a spherical
potential approximation.
Comparing the residual resistivities with the inverse momentum relaxation times τ−1k (see
ĕgure 6.7 in section 6.5), a difference in the curves can be observed: While the resistivity of
the 4sp elements increases only to approximately half of themaximumof the 3d-metals, the
maximal inverse momentum relaxation time is of the same order for 3d and 4sp impurities.
is is caused by the different relaxation times entering in ρ and τ−1: While τk is the mo-
mentum relaxation time, for the calculation of ρ the transport relaxation time is required.
e difference stems from the fact that for the transport time, resulting from the Boltzmann
equation 3.91, back-scattering is far more important than forward scattering, while for the
lifetime they are equally important. e d-resonance contributes to back-scattering more
than the p-states.
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Figure 7.15.: Comparison of surface resistivities, measured in µΩ per atomic percent for
impurities in the ĕrst surface layer (top) and on top of the surface (bottom).
All calculations have been performed for a ĕlm consisting of 6 layers of copper.
In the le panels single-site calculations are shown, while in the right panels a
cluster of 13 sites, i.e. nearest neighbors have been included in the calculations.

7.5.2 Surface resistivity

In this section, we present surface resistivities due to scattering at 3d impurities in the ĕrst
surface layer and positioned as adatoms on copper ĕlms. In contrast to resistivities in bulk,
ρsurf is given in Ω and not in Ωm.
Similar as for the surface-state lifetimes, in a ĕrst step, we have compared the surface re-
sistivities obtained in ASA and FP calculations, respectively (see ĕgure 7.15); furthermore,
single-site results are compared to those where the nearest neighbors have been included.
Aerwards, we have considered scattering processes for 3d and 4sp impurities and adatoms
on copper surfaces for different numbers of layers, presented in ĕgure 7.16.
Considering ĕgure 7.15, we ĕnd similarities to the observations made for the surface-state
lifetimes, ĕgure 7.5 in section 7.1.3; whereas the surface resistivities obtained within ASA
and full potential calculations for impurities in the ĕrst surface layer are very similar, de-
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Figure 7.16.: Surface resistivities, measured in µΩ per atomic percent for impurities in the
ĕrst surface layer (le) and on top of the surface (right), obtained within full
potential calculations. Results are shown for different ĕlm thicknesses starting
from 6 to 40 layers of copper. In contrast to the dependence on the number of
layers for the surface-state lifetimes (compare ĕgure 7.12), only a small devia-
tion can be observed. All calculations have been performed within a cluster of
13 sites. For comparison, the surface resistivities ρsurf have been scaled with
the number of layers, otherwise ρsurf → 0 for increasing slab thickness, since
in the limit of very thick ĕlms a single impurity or adatom does not result in a
ĕnite resistivity.

viations of the order of 10 to 15% are found for adatoms; however, even within the ASA,
the qualitative trend is correct. Contrarily, the surface resistivities calculated for adatoms
within single-site calculations lead to very poor results; this is not the case for impurities in
the ĕrst surface layer, where the agreement of calculations within a shell of nearest neigh-
bors and single-site calculations is good.
e qualitative trend for the surface resistivities due to scattering at impurities in the ĕrst
surface layer is very similar to that obtained for residual resistivities in bulk, presented in the
previous subsection, ĕgure 7.14. We observe a peak for the 3d scatterers (with a maximum
for Cr impurities) and a high resistivity for the 4sp scatterers. Again, for the resistivities d-
scattering gains importance compared to the trend obtained for the surface-state lifetimes,
shown e.g. in ĕgure 7.12. e same argument as for impurities in bulk holds; whereas for the
surface-state lifetime forward- and back-scattering are equally important, for the transport
relaxation time back-scattering has much more weight. Since the d-resonance contributes
more to back-scattering than the p-states, larger resistivities are found. For the same reason,
the plateau of the early sp- and d-adatoms, observed in the surface-state scattering rate τ−1k ,
disappears in the resistivity, and a peak shows up for the strong d scatterers (V and Cr).
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Additionally, we have studied the dependence of the surface resistivity on ĕlm thickness;
the results are presented in ĕgure 7.16. We have calculated surface resistivities both for
adatoms (right panel) and impurities in the ĕrst surface layer (le panel) for ĕlms with 6,
18 and 40 layers of copper. In order to compare the surface resistivities for different ĕlm
thicknesses, we have scaled ρsurf with the number of layers; otherwise, the surface resistivity
due to single adatom or impurity, respectively, would converge to zero for increasing slab
thickness.
is scaled quantity ρsurf slightly increases with increasing ĕlm thickness, but compared to
the behavior of surface-state lifetimes, ĕgure 7.12, the dependency is ratherweak. Addition-
ally, whereas for inverse surface-state lifetimes a decrease is observed, surface resistivities
behave inversely. e reason for this difference might be due to the splitting of surface
states: While for the inverse lifetimes only the scattering rate obtained for the surface state
corresponding to the innermost Fermi-ring is shown, the surface resistivity does not de-
pend on a special k-point and results from an integration over all states. Hence, also the
contribution of the surface state with lower energy enters, whose scattering rate increases
with increasing number of layers; this behavior is also related to the decrease of ∣k∣ of the
innermost surface state with increasing number of layers, resulting in a shorter lifetime.
To conclude, surface resistivities are much less sensitive to parameters such as the number
of layers or the approximation of the calculation method (ASA or FP) than inverse surface-
state lifetimes. e trends for scattering at impurities in the surface and at adatoms show
some differences for the 4sp elements, but the qualitative behavior for the 3d elements is
similar. In this way, the results obtained for surface resistivities differ from the inverse
surface-state lifetimes, because the latter show a trend for scattering at adatoms which is
completely different from scattering at impurities in the surface.

7.6 Conclusion

Even though at low temperatures and energies close to the Fermi level impurity scattering
at noble metal surfaces is assumed to provide the dominating contribution to the scattering
rate, this effect has not been studied systematically in earlier works. In this chapter, surface-
state lifetimes due to scattering at 3d and 4sp impurities below, in, and on top of the ĕrst
surface layer of (111) copper, silver and gold ĕlms have been investigated.
While the calculated inverse lifetimes for scattering at impurities below and in the surfaces
show basically the main characteristics which have already been observed for scattering
at impurities in bulk materials, we have found unexpected results especially for scattering
at adatoms. In contrast to all other results, the trend found for scattering at 3d- and 4sp-
adatoms onCu, Ag andAu surfaces does not directly reĘect the position of the 3d-resonance
relative to the Fermi level, or, at least, this does not seem to be the dominating criterion.
An analysis has revealed that the extent of the adatom into the surrounding vacuum plays
a great role; the extent into the vacuum is related to the atomic radius, which is relatively
large for the ĕrst elements of the row, and, therefore explains the high scattering rates for
these adatoms.
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Furthermore, an angular-momentum resolved study of the single-site scattering rates for
adatoms has been presented, allowing for a scattering in speciĕc L-channels of the single-
site T -matrix T 00

LL′ only. While a constructive interference of the s- and the d-channel is
observed for the 3d elements, for the 4sp scatterers the s- and the pz-channel interfere de-
structively. e results are fortiĕed and conĕrmed by a calculation of Friedel-oscillations
for Co, Ga and Ge adatoms.
e applied method allows to distinguish between scattering to bulk and to surface states,
and the contributions of the total inverse surface-state lifetimes for impurities below the
surface, in and on top of the surface have been presented separately for different num-
bers of layers. As expected, scattering at adatoms leads to especially high contributions
to other surface states, whereas scattering at impurities below the surface mostly occurs to
bulk states. However, the dependency on layer thickness as well as differences observed for
3d and 4sp impurities is not obvious and still needs to be understood.
A comparison of inverse surface-state lifetimes for Cu, Ag and Au ĕlms shows trends very
similar to each other, with the dominant features described in detail for copper ĕlms. How-
ever, when considering the dependency on ĕlm thickness, differences for silver ĕlms are
revealed. is discrepancy might be due to the interplay of the position of the bottom of
the surface band relative to the Fermi level and the large splitting of the two surface states
for thin ĕlms. For silver, the bottom of the surface band is by far closest to the Fermi energy
compared to copper and gold ĕlms. erefore, for thin silver ĕlms only one surface state is
present at the Fermi level.
Furthermore, we have calculated surface-state lifetimes for magnetic impurities. e ob-
tained trend shows the double-peak structure caused by the d-resonances of the two spin
channels crossing the Fermi level.
Finally, residual resistivities in copper bulk and surface resistivities for impurities in the sur-
face layer and on top of the surface for copper ĕlms are presented. e resulting trends are
compared to those obtained for the surface-state lifetimes. e most important difference
is the observation that the surface resistivity (normalized to the number of layers) hardly
depends on the ĕlm thickness, whereas the inverse surface-state lifetimes remarkably dif-
fer for distinct thicknesses. e reason for this behavior probably is the different nature of
the investigated quantities: While the inverse lifetime depends on k, and especially for thin
ĕlms differs for the two surface states, where the splitting is large, the surface resistivity is
integrated over all states.
Further investigations of surface-state lifetimes including spin-orbit coupling effects will be
presented in chapter 8.



CHAPTER 8

Effects of spin-orbit coupling in noble metal thin
ĕlms

In the last two chapters we have investigated spin-orbit coupling effects in copper and gold
fcc bulk crystals, chapter 6, and surface-state lifetimes for fcc copper, silver and gold (111)
ĕlms without spin-orbit coupling, chapter 7. Both effects are induced by impurity scatter-
ing. Now, we will combine these two aspects and ĕnally investigate effects of spin-orbit
coupling in noble metal ĕlms. In doing so, we will consider two different scenarios, en-
tailing different mechanisms of spin relaxation; ĕrst, we will consider symmetric ĕlms, in
which – analogously to bulk crystals – all k-points on the Fermi surface are two-fold de-
generate. en, the Elliott-Yafet mechanism as well as impurity spin-orbit coupling induce
spin relaxation. Secondly, ĕlms without inversion symmetry will be considered. e lack
of structural inversion symmetry lis the spin degeneracy, leading to a splitting of bands,
i.e. a splitting of rings on the Fermi surface. is type of splitting is a general phenomenon
observed in the bulk of semiconductors, asymmetric semiconductor heterostructures, or
metal surface states. Depending on details of the band structure, it is known as Rashba
[101, 102] or Dresselhaus [103] splitting. In its presence, another mechanism of spin relax-
ation takes effect, the D'yakonov-Perel' mechanism [10]. is mechanism is rather char-
acterized by spin dephasing than spin relaxation, since it is caused by precession around a
local spin axis together with ordinary momentum scattering.
In the ĕrst part of this chapter we will give an introduction to the above-mentioned theo-
retical concepts. en, we present results obtained for gold and copper ĕlms. We consider
that the epitaxial growth direction of the ĕlms is along the z-axis, which is also taken as
the spin quantization axis of the system. We start with the investigation of symmetric (111)
and (001) ĕlms with different ĕlm thicknesses and calculate the corresponding spin-mixing
parameter. Furthermore, spin-Ęip scattering processes due to scattering at self-adatoms are
studied, and results for spin-conserving and spin-Ęip scattering lifetimes are presented.
Aerwards, asymmetric copper and gold (111) and (001) ĕlms will be investigated; their
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symmetry has been broken by covering them with one layer of Zn. For both surface orien-
tations and different ĕlm thicknesses, spin-orbit ĕelds are calculated and compared to each
other.
e chapter ends with a summary of the most important results.

8.1 Spin-orbit coupling effects in systems without structural
inversion symmetry

8.1.1 e Rashba effect

We consider systems without internal or external magnetic ĕeld. For such systems, disre-
garding the question whether space-inversion is given or not, the time-reversal transfor-
mation does not alter the physical properties of the system. Since time reversal reverts the
direction of motion (i.e. k to −k) as well as the spin (i.e. σ to −σ), the energy of a spin-
up particle with momentum k has the same energy as a spin-down particle moving in the
opposite direction (with wave vector −k)

E↑k = E
↓
−k . (8.1)

is property is also known as Kramers degeneracy [104]. For systems invariant under
space inversion, additionallyEσ

k = Eσ
−k, σ =↑, ↓ is valid and, therefore, all bands are twofold

degenerate1. In contrast, in systems without structure inversion symmetry, where V (r) ≠
V (−r), this degeneracy is lied; the presence of a non-centrosymmetric potential implicates
a potential gradient or electric ĕeld E(r). is becomes clear when considering the Taylor
expansion of the potential V (r)

V (r) = V (0) + eE(0) ⋅ r + . . . . (8.2)

Hence, in lowest order, the inversion asymmetry can be characterized by an electric ĕeld
E(r). Amoving electron with an effective massm⋆ propagating with a velocity v = 1/m⋆ k
will experience this ĕeld Lorentz-transformed in its local frame as a magnetic ĕeld

B = 1

c
v ×E = 1

cm⋆
k ×E , (8.3)

coupling to the electron spin. Multiplying this ĕeld with the spin (i.e. the Pauli-matrices)
yields the expression

HR = αRσ ⋅ (k ×E) , (8.4)
which equals the spin-orbit Hamiltonian of eq. (4.10) and is called the Rashba or Bychkov-
Rashba Hamiltonian [101, 102].
We will rewrite the Rashba Hamiltonian in terms of the so-called spin-orbit ĕeldΩ(k) [8]

HR =
h̵

2
σ ⋅Ω(k) . (8.5)

1is is the case for the bulk crystals considered in chapter 6 and the symmetric surfaces studied in a later part
of the current chapter.
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e direction ofΩ(k) at each k deĕnes the spin quantization axis, while its absolute value
determines the strength of the splitting. Of course, the spin-orbit ĕeldsΩ(k) are material-
speciĕc and depend on the spin-orbit coupling strength, the band gap, the proximity to the
surface and other parameters. We will present spin-orbit ĕelds for Cu and Au surfaces in
section 8.3.
e effect is present in different structures. First, it appears in bulk semiconductors of the
zinc-blende type [103, 105], where the two atoms in the unit cell are not equivalent and,
therefore, inversion symmetry is not fulĕlled. en, the spin-orbit ĕeld at and close to the
conduction-band minimum can be written as

ΩD(k) =
αh̵2√
2m⋆Eg

[kx (k2y − k2z)ex + ky (k2z − k2x)ey + kz (k2x − k2y)ez] , (8.6)

where Eg is the band gap of the semiconductor and α is a material-dependent parameter
(e.g., for GaAs α = 0.07). e corresponding Hamiltonian HD = h̵/2 σ ⋅ΩD(k) is known
as Dresselhaus Hamiltonian and leads to a spin splitting proportional to k3.
Secondly, the Rashba Hamiltonian allows to describe the splittings appearing in a two-
dimensional electron gas. is is realized e.g. in asymmetric quantum well heterostruc-
tures [106, 107] as well as in the surface states of metallic and semi-metallic systems [108],
e.g. Ag, Au [109] and Bi (111) surfaces or surface alloys. Choosing the z-axis in direction
of growth of the heterostructure (or perpendicular to the surface, respectively) and adding
up the kinetic energy, the full Hamiltonian takes the form

HR = Hkin +HR

=
p2
∥

2m⋆
+ αR (σ × p∥)∣z

=
p2
∥

2m⋆
+ αR (σxpy − σypx) . (8.7)

is form allows for an analytic solution. Assuming the k-vector to be oriented in the plane
of the two-dimensional electron gas and k∥ = k∥ (cosϕ, sinϕ,0), the eigenstates can be
written as a product of plane waves and two-component spinors

Ψ↑,↓k∥ =
eik∥⋅r∥

2π
⋅ 1√

2
(
ie−iϕ/2

±eiϕ/2
) . (8.8)

e corresponding eigenenergies are

E↑,↓k∥ =
k2
∥

2m⋆
+ αR (σ × k∥)∣z

=
k2
∥

2m⋆
± αR ∣k∥∣

= 1

2m⋆
(k∥ ± kSOC)2 −∆SOC (8.9)
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with kSOC = m⋆αR and∆SOC = m⋆α2
R/2. Apparently, for all k∥ except the high-symmetry

state k∥ = 0, the two states are split and have a difference in energy

∆Ek↑,↓∥
= 2αR ∣k∥∣ . (8.10)

In addition, due to the presence of structure inversion asymmetry and the spin-orbit inter-
action, the origin of the parabola is lowered in energy by∆SOC. e orientation axis of the
spin is given by the expectation values of the Pauli matrices σ

2S↑,↓k∥ = ⟨Ψ
↑,↓
k∥
∣σ∣Ψ↑,↓k∥ ⟩ = ±

⎛
⎜⎜
⎝

sinϕ

− cosϕ
0

⎞
⎟⎟
⎠
, (8.11)

hence depends on the direction of k∥ only and not on its absolute value. Apart from that,
the spins of the two electrons are – for all k∥ – oriented opposite to each other. e resulting
spin-structure on the Fermi surface will be shown in ĕgure 8.12 in section 8.3 at the exam-
ple of the spin-split surface state of copper (111).
Before ĕnishing this section and coming to the spin dephasing mechanism induced by the
Rashba spin-splitting of bands, we will brieĘy comment on the order of magnitude of the
observed splitting for different structures. Interestingly, the splitting found for metallic
or semimetallic surface states can be much larger than for semiconductor heterostructures.
First, this is the consequence of higher Rashba parameters, e.g. for aGaAs/InAs heterostruc-
ture αR = 0.09 eVÅ [110] compared to αR = 0.33 eVÅ [109] for a Au (111) surface state.
Secondly, one has to take into account that the splitting is proportional to k – for Au, k is
determined by the Fermi surface (see section 8.3) and leads to a splitting of the order of
0.1eV, while in semiconductor heterostructures, the conduction band being much closer
to the center of the Brillouin zone, it is much smaller. More information about the Rashba
effect at metal surfaces can be found in [108]. A more detailed general overview is given in
[74].

8.1.2 e D'yakonov-Perel' mechanism

In chapter 6 we have seen that in case of the Elliott-Yafet spin-Ęip mechanism present in
systems with structure inversion symmetry, the increase of momentum scattering yields an
enhancement of spin relaxation and therefore shorter spin-relaxation times. In contrast, in
systems without structure inversion symmetry, the D'yakonov-Perel' mechanism [10] leads
to the inverse effect. I.e., enhanced momentum scattering results in longer spin-relaxation
times. In the following we will show that this is a consequence of the form of the Rashba
spin splitting derived in the last section. We will follow arguments presented in [8, 111].
e spin-orbit ĕeldΩ(k), which can be interpreted as an internal magnetic ĕeld, provokes
a k-dependent precession around the direction ofΩ(k)with frequency ∣Ω(k)∣. In order to
illustrate the above statements, we consider a system which can be described by the Rashba
Hamiltonian eq. (8.5) and assume a wave packet ψ at time t = 0, characterized by a wave
vector k with a spin S(0) oriented in an arbitrary direction. If the spin does not point in
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the same direction as the spin-orbit ĕeldΩ(k), it will be partly projected to the ↑ and the ↓
eigenfunction, i.e. ψ(0) = a ∣↑⟩ + b ∣↓⟩. en, aer a time t the wavefunction has evolved to

ψ(t) = ei h̵k
2

2m⋆ t [eiΩt
2 a ∣↑⟩ + e−iΩt

2 b ∣↓⟩] . (8.12)

e Rashba term in the Hamiltonian has caused a difference in phase of the two eigen-
states ψ↑k and ψ↓k of the order of δϕ = Ωt. As a consequence, the spin expectation value
S(t) = 1/2 ⟨ψ(t) ∣σ∣ψ(t)⟩ becomes time-dependent, and the spin of the electron precesses
around the direction of the spin-orbit ĕeld Ω(k) with frequency Ω = ∣Ω(k)∣. Of course,
this happens only if the energy spread of the wave packet is larger than the spin-splitting
h̵Ω.
Assuming that this condition is fulĕlled, D'yakonov and Perel' considered a scattering event
at time t1 from state k to state k′. e scattered electron is assumed not to change its spin
expectation value S(t1) during scattering and, arriving at k′, it starts to precess around
the local precession axisΩ(k′), which in general differs fromΩ(k). Aer a certain time t,
longer than themomentum-relaxation time2 τp, the electron has experienced a few random
scattering events followed by precession around different axes and its original spin orienta-
tion axis is lost. Hence, the interplay of momentum scattering and precession rather leads
to spin dephasing than spin relaxation.
In the following, a relation between the momentum-relaxation time τp and the spin de-
phasing time T2 will be established. e alternation of scattering and precession can be
described as a spin precession around a Ęuctuating magnetic ĕeld, whose magnitude and
direction change randomly aer the average time step of τp. Hence, the spin phase follows
a random walk and the total accumulated spin angle δϕ aer time t is both proportional to
the number of random-walk steps

√
N =

√
t/τp as well as to the change in phase at each

step ⟨Ω⟩ τp

δϕ = ⟨Ω⟩ τp
√

t

τp
= ⟨Ω⟩

√
tτp . (8.13)

Here, analogously to the deĕnition of τp, the quantity ⟨Ω⟩ is deĕned as an average of the
local spin-orbit ĕelds ⟨Ω(k)⟩ over all possible wave vectors k.
Deĕning the spin-relaxation time as the time where δϕ ∼ 1, the result

T2 =
1

⟨Ω⟩2 τp
(8.14)

is obtained. e important conclusion of the above estimate for the spin dephasing time T2
is that it behaves inversely to the momentum-relaxation time τp; the higher the momentum
scattering rate τ−1p , the longer the initial spin is retained. From a physical point of view,
this corresponds to the concept of motional narrowing. If the momentum relaxation time
is short, the electron spin does not have the time to precess in any particular direction, and
the random changes in 'force' cancel each other.

2deĕned as the inverse of the average momentum scattering rate Pkk′ , averaged over all k and k′
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Figure 8.1.: Distribution of the spin-Ęip parameter ∣bk∣2 on the Fermi surfaces for copper (top) and
gold (bottom) ĕlms, oriented in [111] direction for ĕlms with six (le), eight (middle)
and ten (right) layers. Whereas for the six-layer ĕlms ∣bk∣2 is largest in some of the bulk
states, for the ĕlms consisting of eight and ten layers the two surface states show the
largest spin-mixing parameter. emaximal values of ∣bk∣2 increasewith ĕlm thickness.
is tendency is also found, when the average of ∣bk∣2 over the Fermi surface of the three
ĕlms is compared. e averages are speciĕed in table 8.1. Note that the distributions of
∣bk∣2 are presented on a logarithmic scale. While the qualitative behavior of the copper
and the gold ĕlms is very similar, as expected higher spin-mixing parameter are found
for the gold slabs.

8.2 Symmetric ĕlms

8.2.1 e Elliott-Yafet spin-mixing parameter ∣b∣2

We will start our presentation of spin-orbit coupling effects on surfaces of symmetric ĕlms
and consider fcc copper and gold (111) and (001) ĕlms. e two orientations differ in one
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important aspect: Whereas at (111) surfaces the formation of surface states takes place be-
cause of the band-gap in L-direction, at (001) surfaces no such surface states exist at EF.
As we will see, this changes the physics.
Due to the inversion symmetry, all states on the Fermi surface are twofold degenerate; so we
expect the Elliott-Yafet mechanism (as explained in section 6.1.1) to induce spin relaxation.
In analogy to the situation in fcc bulk, see section 4.6, the degeneracy at each k-point leads
to an arbitrary choice of the spin orientation axis, being different for each k on the Fermi
surface. erefore, a common spin quantization axis has to be chosen, and a linear combi-
nation of the degenerate wavefunctions corresponding to this axis must be calculated. We
choose the z-axis, the direction perpendicular to the surface, as spin orientation axis. e
spin-orbit coupling provokes that the wavefunctions are a mixture of up and down states as
explained in section 6.1.1.
In order to estimate the strength of spin-orbit coupling on the Fermi surface, we have calcu-
lated the parameter ∣ak∣2 and ∣bk∣2 as deĕned in eq. (4.125), corresponding to the real-space
integrals of the two components ψ↑↑k (r) and ψ

↑↓
k (r). Furthermore, its averages ∣a∣2 and ∣b∣2

over the Fermi surfaces are determined.
e distribution of ∣bk∣2 on the Fermi surface for ĕlms oriented in [111] direction are pre-
sented in the upper panels of ĕgure 8.1 for copper and in the lower panels of the same ĕgure
for gold. e Fermi surfaces are similar to those of the ĕlms without spin-orbit coupling,
presented in chapter 7. e two innermost rings correspond to the two surface states; the
splitting between them is mostly caused by the coupling between the surface states belong-
ing to the two ĕlm surfaces and therefore strongly depends on the ĕlm thickness. However,
as we have included spin-orbit coupling in our calculations, the Rashba effect also leads to
a splitting which adds up to the splitting caused by the ĕnite thickness. Evidently, for thin
ĕlms the latter one is much larger and totally covers the effect of the spin-orbit coupling.
However, for sufficiently thick ĕlms, the splitting induced by the hybridization of the two
surface states converges to zero and the Rashba splitting prevails. Since the calculation of
the Fermi surface for thick ĕlms is numerically very expensive, we have chosen another way
to determine the size of the Rashba splitting. It can be estimated by considering asymmetric
ĕlms, which are the subject of the next section.
Considering the distribution of the spin-mixing parameter ∣bk∣2 on the Fermi surface of the
(111) ĕlms (ĕgure 8.1), a similarity for copper and gold can be observed: Whereas for the
ĕlms with six layers, the Elliott-Yafet parameter is largest for some bulk states in the outer
regions of the Fermi surfaces, for the ĕlms with eight and ten layers spin-mixing is highest
for the two surface states. Furthermore, an increase of the maximal obtained value of ∣bk∣2

with ĕlm thickness can be observed. is trend is also found when the average ∣b∣2 of ∣bk∣2

over the whole Fermi surface is considered. e averages of the spin-mixing parameter for
all ĕlms (copper and gold, different thicknesses, both orientations) are listed in table 8.1.
Comparing the values obtained for the [111] orientation to those obtained in Cu and Au
bulk given in table 4.2, large differences are observed. At the surface, the Elliott-Yafet pa-
rameter is remarkably larger than for the bulkmaterials. For gold, the ratio is about 1.5, and
for copper, the enhancement of ∣b∣2 is even much more pronounced, being approximately
7. Obviously, the effect of spin-orbit coupling is enhanced by the break of symmetry due
to the surface geometry and the formation of surface states. Considering the distribution
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∣a∣2 ∣b∣2

Cu (111) 6 layers 0.999 1.41 ⋅ 10−3
8 layers 0.999 1.49 ⋅ 10−3
10 layers 0.998 1.69 ⋅ 10−3

(001) 6 layers 0.997 2.94 ⋅ 10−3
8 layers 0.998 2.03 ⋅ 10−3

Au (111) 6 layers 0.968 3.23 ⋅ 10−2
8 layers 0.966 3.41 ⋅ 10−2
10 layers 0.964 3.59 ⋅ 10−2

(001) 6 layers 0.964 3.51 ⋅ 10−2
8 layers 0.722 0.278

Table 8.1.: Elliott-Yafet parameters ∣a∣2 and ∣b∣2 averaged over the Fermi surfaces for copper
and gold ĕlms oriented in [111] and [001] direction. While their distributions
∣ak∣2 and ∣bk∣2 on the Fermi surface strongly differ for the various thicknesses,
the averages are very similar. In all cases, an increase with thickness can be ob-
served. Furthermore, the spin-mixing parameters obtained for the [001] surfaces
aremuch larger than those of the (111) surfaces. is is due to the anti-crossings,
occurring at the boundaries of the Brillouin zone for the (001) geometry and
leading to spin hot spots.

of ∣bk∣2 on the Fermi surfaces, this is (at least for the ĕlms with eight and ten layers) ob-
vious, because the spin-mixing parameter are largest for the surface states. Although we
have found an increase of ∣b∣2 with increasing ĕlm thickness, we do not necessarily expect a
further increase for thicker ĕlms; there might be an oscillatory effect, converging to a value
of ∣b∣2 lower than that calculated for the 10-layer ĕlms, since eventually the bulk value has
to be reached in the limit of large thickness.
We will now turn to the (001) surfaces. In contrary to the (111) surfaces, at these surfaces
there exist no surface states, see ĕgure 8.2. erefore, lower spin-mixing parameters might
be expected. Interestingly, a different effect occurs, yielding locally very large spin-Ęip pa-
rameters, which are actually much larger than for the (111) surfaces: At the edge of the
Brillouin-zone, anti-crossings of bands occur, leading to wavefunctions with a large contri-
bution of both spins. ese points are so-called spin hot spots, which have been predicted
for all polyvalent metals in [14]. e effect is observed for copper as well as for gold (001)
surfaces for both thicknesses, though the maximal values of ∣bk∣2, indicating the strength
of the effect, strongly differ. is might be an artefact of the accuracy of the calculation –
especially for copper, the k-points on the Fermi surface with high ∣bk∣2 are very localized
and the k-points on the Fermi surface are calculated on a discrete mesh, which might not
exactly coincide with those k for which ∣bk∣2 is maximized. Of course, these spin hot-spots
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Figure 8.2.: Elliott-Yafet parameter ∣bk∣2 on the Fermi surfaces for copper (top) and gold (bottom)
(001) ĕlms with six (le) and eight (right) layers. In both cases, ∣bk∣2 is small and almost
constant for all states apart from a few 'hot spots' at the edge of the Brillouin zone,
which are encircled and marked with an arrow for the copper ĕlms. In these regions,
anti-crossings of bands lead to states with high contributions of spin-up and spin-down
components and therefore large bk. e hot spots aremost pronounced for theAu (001)
ĕlm with 8 layers. Note that for the color code a logarithmic scale has been used. e
averages of ∣bk∣2 over the whole Fermi surface are given in table 8.1.

enhance the Elliott-Yafet parameters ∣b∣2 averaged over the Fermi surface (see table 8.1); for
copper, for the (001) ĕlms they are approximately twice as large as for the (111) ĕlms, while
for gold, they reach values which are almost ten times larger.
Aer having discussed the Elliott-Yafet spin-mixing parameter, we will go on with the in-
vestigation of scattering at adatoms on these surfaces, i.e. spin-conserving and spin-Ęip life-
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τbulk τ surf τ T bulk
1 T surf

1 T1

Cu 6 layers 0.822 3.13 ⋅ 10−2 0.104 394.2 15.8 58.3
8 layers 0.709 3.77 ⋅ 10−2 0.145 381.0 6.4 36.8
10 layers 0.660 4.34 ⋅ 10−2 0.169 462.6 2.8 20.0

Au 6 layers 0.579 3.36 ⋅ 10−2 0.108 8.2 1.36 2.98
8 layers 0.525 4.09 ⋅ 10−2 0.144 10.0 0.38 1.91
10 layers 0.541 4.96 ⋅ 10−2 0.183 11.6 0.16 1.2

Table 8.2.: Momentum-relaxation τ and spin-relaxation times T1 in ps per one atomic per-
cent induced by scattering at adatoms on copper and gold (111) ĕlms. In addi-
tion to the averages over the whole Fermi surface, averages over the two surface
and the bulk states are given. Whereas the momentum-relaxation times increase
with increasing ĕlm thickness, for the spin-relaxation times T1 a strong decrease
is observed. All values are obtained by averaging over the scattering rates, i.e. τ−1k

and T −11k and not over the times τk and T1,k themselves.

times. is will be the topic of the next section.

8.2.2 Spin-Ęip and spin-conserving lifetimes due to scattering at adatoms

In chapter 7, we have investigated surface-state lifetimes due to scattering at impurities
and adatoms at noble metal (111) surfaces. ere, the effect of spin-orbit coupling was
neglected. In this section, we take spin-orbit coupling into account and calculate spin-
conserving and spin-Ęip lifetimes. We restrict our calculations to copper and gold ĕlms,
oriented in [001] and [111] direction, considering scattering processes at copper adatoms
for copper ĕlms and gold adatoms for gold ĕlms. Because of the degeneracy of the wave-
functions at each k-point, spin-conserving T ↑↑kk′ , T

↓↓
kk′ as well as spin-Ęip T

↑↓
kk′ , T

↓↑
kk′ scatter-

ing matrix elements can be calculated for all k, k′ on the Fermi surface. Integration over
k′ then yields the momentum-dependent spin-conserving lifetimes τ ↑↑k , τ ↓↓k and the spin-
Ęip lifetimes τ ↑↓k and τ ↓↑k , respectively. However, in analogy to the deĕnitions in section
4.9, we present the inverse momentum-relaxation time τ−1k , the average of the inverse spin-
conserving relaxation times τ ↑↑k and τ ↓↓k , and the inverse spin-relaxation time

T −11,k =
1

τ ↑↓k
+ 1

τ ↓↑k
. (8.15)

e distributions of τ−1k and T −11,k on the Fermi surfaces for (111) ĕlms (with 6 and 8 layers)
are shown in ĕgures 8.3 and 8.4. Qualitatively, the distributions for 10 layers are very sim-
ilar to these, and are therefore omitted. Spin-conserving and spin-Ęip scattering rates are
highest for the surface states (note the logarithmic scale of the color code) close to the cen-
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T bulk
1 /τbulk T surf

1 /τ surf T1/τ

Cu 6 layers 425 505 558
8 layers 537 169 259
10 layers 2738 65 119

Au 6 layers 14.2 40.5 27.7
8 layers 19.1 9.3 13.5
10 layers 21.5 3.3 6.4

Table 8.3.: Ratio of the spin-relaxation T1 and the momentum-relaxation times τ , speciĕed
for the average over the complete Fermi surface as well as over the bulk and the
surface states.

ter of the Brillouin zone. However, a quantitative analysis reveals differences for the three
ĕlm thicknesses both for copper and gold ĕlms; therefore, we have calculated the averages
of the scattering rates τ−1k and T −11,k over the two surface states, the bulk states as well as over
the total Fermi surface, yielding τbulk, τ surf , τ , and T bulk

1 , T surf
1 , and T1, respectively. e

results are speciĕed in table 8.2. Whereas the momentum-relaxation times averaged over
the full Fermi surface increase with ĕlm thickness3, the spin-relaxation times T1,k strongly
decrease. is trend is observed both for copper as well as gold surfaces. As expected, the
spin relaxation times for gold aremuch shorter than for copper because of the stronger spin-
orbit coupling. An analysis of the averages ofT1,k over the bulk and the surface states reveals
that the strong decrease of the spin-relaxation time with increasing ĕlm thickness is mainly
due to the distinct spin-relaxation times averaged over the surface states; the stronger inter-
action of the two surface states for the ĕlms with six layers leads to a reduction of spin-Ęip
scattering. It would be worth to investigate this trend for thicker ĕlms. As already stated
for the spin-mixing parameter, the trends found for T1 and τ for the three ĕlm thicknesses
do not necessarily continue for thicker ĕlms, because oscillatory effects might occur. e
origin of such an oscillatory behavior might be due to the ĕnite size and the formation of
quantum-well states in the ĕlm. In order to analyze such a behavior, thicker ĕlms have to
be investigated.
Considering the ratio T1/τ , i.e. the number of scattering processes per one spin-Ęip event,
given in table 8.3, the inverse behavior of τ and T1 as a function of layer thickness results in
a strong variation of ratios; the addition of two supplementary layers yields a reduction of
T1/τ by a factor of two. is behavior is observed both for the copper and the gold ĕlms,
although the calculated values for gold are much smaller than those for copper. A direct
comparison of T1/τ with the values for impurities in copper and gold bulk is not possi-
ble, since – of course – the investigation of copper 'impurities' in copper, or gold in gold,

3Note that the inverse of the relaxation times, i.e. the scattering rates τ−1k and T −11,k are averaged over the Fermi
surface and not the lifetimes themselves.
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6 layers 

8 layers 

Figure 8.3.: Distribution of the spin-conserving τ−1k and spin-Ęip T−11,k scattering rates in
[ps−1/at.%] on the Fermi surfaces for (111) copper ĕlms with six (top) and eight (bot-
tom) layers. e color code is given on a logarithmic scale. Scattering rates are highest
for the surface states and decrease towards the outer boundary of the Brillouin zone.

respectively, does not lead to any impurity scattering. However, it is worthy to make a gen-
eral comparison of the order of magnitude found for impurities in bulk, presented in ĕgure
6.9. For copper bulk, ratios in the range of 55 (for Ni impurities) up to 104 for the light
impurities have been found, while in a gold host a much smaller range, from about 3 to
30 scattering processes per one spin-Ęip event have been calculated. Hence, the ratios ob-
tained for scattering at adatoms are relatively large, even for the thicker ĕlms, where lower
ratios have been found. However, as found in chapter 7, scattering at adatoms is different
from impurity scattering, and therefore other mechanisms are dominant; the perturbation
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6 layers 

8 layers 

Figure 8.4.: Distribution of the spin-conserving τ−1k and spin-Ęip T−11k scattering rate in
[ps−1/at.%] on the Fermi surfaces for (111) gold ĕlms with six (top) and eight (bot-
tom) layers. Similar as for the copper ĕlms, ĕgure 8.3, for both ĕlm thicknesses, τk and
T1k are shortest for the surface states and decrease towards the outer boundary of the
Brillouin zone. Whereas the order of magnitude of the spin-conserving and spin-Ęip
scattering rates are the same for bothmetals, the spin-Ęip scattering rates T−11k aremuch
higher for gold than for copper. A logarithmic color scale has been used.

caused by an adatom is much stronger than that of an impurity, where merely a host atom
is replaced by the impurity. Note that the lowest ratios T1/τ in bulk were obtained for res-
onant scattering, while a self-adatom (Cu or Au) does not produce resonant scattering.
Before analyzing the scattering rates for the (001) ĕlms, we return to the distributions of τk
and T1,k on the Fermi surface and consider the symmetry; without spin-orbit coupling, one
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Figure 8.5.: Inverse spin-relaxation timesT−11,k in ps
−1 per atomic percent for the innermost surface

state of the copper ĕlm (le) and the two surface states of the gold ĕlm (right) with 6
layers, which have been already shownwith lower resolution in ĕgure 8.3 and ĕgure 8.4,
respectively. e higher resolution reveals the reduction of symmetry due to spin-orbit
coupling. Whereas the irreducible part of the Brillouin zone for τk amounts to 1/12 of
the full Brillouin zone, it is reduced to 1/6 for T1,k.

irreducible part of the Fermi surface is 1/12 of the full Brillouin zone. is is also what has
been found when considering τk. Spin-orbit coupling reduces this symmetry by a factor of
two. As it is a small effect, it is only very weakly visible for some of the bulk states of the
gold ĕlms in ĕgure 8.4. However, it is present in all states. We only demonstrate it for one
of the surface states of a copper 6-layer ĕlm and the two surface states of the 6-layer gold
ĕlms, presenting these states in a higher resolution in ĕgure 8.5.
Aer having analyzed momentum- and spin-relaxation times for scattering at adatoms on
the top of (111) surfaces, we will investigate the same quantities for (100) surfaces. As we
have already discussed in the previous section, the absence of surface states strongly changes
the physics of the two systems. Distributions of τ−1k and T −11,k on the Fermi surfaces are pre-
sented in ĕgure 8.6 for copper and in ĕgure 8.7 for gold ĕlms. For the (001) ĕlms, large
differences in the distributions of τk and T1,k are observed4; while momentum-relaxation
rates are largest for the states close to the center of the Brillouin zone, the k-points on the
Fermi surface with highest spin relaxation are found to be at the spin hot spots already de-
tected by their high values of ∣bk∣2, situated close to the boundaries of the Brillouin zone. In

4is difference is much more pronounced for the copper ĕlms as for the gold ĕlms.
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6 layers 
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hot spot 

Figure 8.6.: Distribution of the inverse spin-conserving τ−1k and spin-Ęip lifetimes T−11,k on the
Fermi surfaces for copper (001) ĕlms with six (top) and eight (bottom) layers. Whereas
the momentum scattering rates for spin-conserving scattering are largest for the states
close to the center of the Brillouin zone, spin-Ęip scattering rates are largest for some
points at the outer boundaries of the Brillouin zone. For the 6 layer-ĕlm, these points
are encircled and marked with an arrow.

addition, for the 8 layer-ĕlms, relatively large spin-relaxation rates are found for the state
closest to the center of the Brillouin zone, presumably because it is the one most extending
into the vacuum, i.e., having the largest overlap with the adatoms.
e spin hot spots make the numerical treatment of the (001) ĕlms difficult, because locally
spin-orbit coupling becomes very large. A high resolution and an exact tracing of the bands
in these regions of the Fermi surface is necessary but not yet possible with the currently ex-
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τ T1 T1/τ

Cu (111) 6 layers 0.104 58.3 558
8 layers 0.145 36.8 259
10 layers 0.168 20.0 119

(100) 6 layers 0.097 126.7 1306
8 layers 0.185 281.3 1521

Au (111) 6 layers 0.108 2.98 27.7
8 layers 0.144 1.91 13.5
10 layers 0.183 1.2 6.4

(100) 6 layers 0.093 2.65 28.5
8 layers 0.041 0.095 2.3

Table 8.4.: Spin-conserving scattering times τ and spin-relaxation times T1 in ps per atomic
percent of adatomconcentration averaged over the Fermi surfaces for copper and
gold (111) and (001) ĕlms. Whereas the momentum-relaxation times for copper
and gold are of the same order of magnitude, strong differences are observed for
T1. Except for the (001) gold ĕlms, the momentum-relaxation times increase
with increasing thickness. For the copper ĕlms, the spin-relaxation times for the
[001] orientation are much longer than for [111].

isting code. erefore, the distributions of the scattering rates τ−1k and T −11,k might be not
very accurate, because they are already the result of the integration of ∣T σσ′kk′ ∣

2 over the Fermi
surface. Evidently, the same holds for the averages T1 and τ .
Although not visible in the distributions of τ−1k and T −11,k, the spin-orbit coupling leads to
a reduction of symmetry for the spin relaxation time, just as in the case of the (111) ĕlms.
Whereas the inverse momentum-relaxation time τ−1k exhibits an eightfold symmetry on the
Fermi surface, the spin-relaxation scattering rate T −11,k merely obeys a fourfold symmetry.
Despite possible numerical inaccuracies for the (001) ĕlms, we will compare the averages
of the spin-relaxation and momentum-relaxation times for the different orientations. e
momentum-relaxation times for the (001) ĕlms are larger than for the (111) ĕlms. is be-
havior becomes reasonable when considering the contributions of τ−1k for the (111) surface
states, table 8.2, which dominate the whole effect.
Comparing the spin-relaxation times for the two surface orientations, differences between
the copper and the gold ĕlms are observed. Whereas we ĕnd much longer spin relaxation
times for the copper (001) ĕlms, T1 of the gold ĕlms is in the same order of magnitude
for the 6-layer ĕlm and much shorter for the 8-layer ĕlm. For copper, the increase of spin-
relaxation times can be explained by the lack of surface states, forwhich high spin-relaxation
rates have been found. In contrary, for the gold ĕlms this lack is compensated by the spin-
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Figure 8.7.: Distribution of the spin-conserving and spin-Ęip scattering rates τ−1k (top) and T−11,k

(bottom) on the Fermi surfaces due to scattering at adatoms on gold (001) ĕlms. Results
for ĕlms with six (top) and eight (bottom) layers are presented. Whereas momentum-
scattering rates are largest in the center of the Brillouin zone, k-points with large spin-
Ęip scattering rates are found for a small number of k-points situated close to the
boundary of the Brillouin zone and also in the center of the Brillouin zone. Concerning
this aspect, the behavior of T−11,k differs from that of the copper (001) ĕlms, for which
high spin-Ęip scattering rates have been found exclusively at the boundary.

Ęip scattering induced by the strong spin hot spots and relatively spin-Ęip high scattering
rates for the states close to the center of the Brillouin zone. An investigation of thicker ĕlms
would be interesting.
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8.3 Asymmetric ĕlms

In this section we will discuss effects of spin-orbit coupling for asymmetric ĕlms. In exper-
iment, ultrathin ĕlms are frequently deposited on a substrate, while their surface remains
free. In this situation, the wavefunction of the ĕlm are subject to asymmetric boundary
conditions which break the inversion symmetry. e details of the resulting band structure
depend of course on the exact nature of the substrate, but the general qualitative features do
not. erefore we choose here one layer of Zn as as symmetry-breaking 'substrate' in order
to study these features.
We investigate copper and gold (111) and (001) ĕlms with 5, 7 and 9 layers to which one
layer of Zn has been attached on one side. e break of symmetry results in the liing of the
degeneracy of all states, and hence a splitting of all rings on the Fermi surface. However,
the splitting is usually too small to easily resolve it visually; hence, as before, the number of
visible rings on the Fermi is the same as what one would expect in the degenerate case as
can be seen in the le columns of the ĕgures 8.8, 8.9, 8.10 and 8.11. e color code visual-
izes the absolute value of the asymmetry-induced splitting∆E(k) of the Fermi surface; its
values are given in mRyd and are calculated with the help of the Fermi velocity vk via the
relation

∆E(k) = ∂Ek

∂k
⋅∆k

= h̵vk∆k .
(8.16)

Note that in ĕgures 8.8 to 8.11 a logarithmic scale of the color-code has been used. e
splitting∆E(k) corresponds to the absolute value of the spin-orbit ĕeldsΩ(k) presented
in the right columns of the four ĕgures; the direction ofΩ(k) is determined by the spin ex-
pectation value S(k). In particular, the spin expectation values of the two split states point
in opposite directions; considering the Rashba-Hamiltonian eq. (8.5), it becomes clear that
the spin-orbit ĕeldΩ(k)must point in the direction of the state with the higher energy – a
magnetic dipolem = −1/2 ⟨σ⟩ ⋅ µB tends to orient parallel to a magnetic ĕeld to reduce its
energy.
On the right panels of ĕgures 8.8 to 8.11, the direction of the spin-orbit ĕeldsΩ(k) is shown,
while a color-code is used to show its magnitude ∣Ω(k)∣. For legibility reasons, in the right
panel the k-points are not chosen as dense, thus the color-codes are slightly different.
e ĕgures 8.8 and 8.9 display the spin-orbit ĕelds on the Fermi surfaces of the (111) and
(001) copper and gold ĕlms. In analogy to the symmetric ĕlms, the innermost state is a
surface state which decays exponentially in the ĕlm, but, in contrast to the symmetric sur-
faces, the asymmetry leads to the suppression of the second surface state originating from
the second surface of the ĕlm. e splitting of the surface state therefore corresponds to the
Rashba splitting purely induced by spin-orbit coupling. As expected from the theoretical
considerations in section 8.1.1, the z-component of the spin expectation values vanishes for
these two states and the spin is oriented perpendicular to the k-vector on the Fermi surface.
is is shown in ĕgure 8.12 at the example of the ĕlm with 7 layers of copper and one layer
of Zn; Sx and Sy are presented as a function of the angle in the kx-ky-plane, starting from
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Figure 8.8.: Spin-orbit ĕelds Ω(k) in mRyd of Cu (111) ĕlms consisting of 5, 7 and 9 layers and
an additional layer of Zn. In the le column, the splitting in energy of the split states
on the Fermi surface is demonstrated, corresponding to ∣Ω(k)∣. Note the logarithmic
scale of the color code. Furthermore, the direction of Ω(k) is visualized in the right
column; the length of the arrows is chosen to be the same for all k. e largest ĕelds are
found for some states close to the boundary of the Brillouin zone. Apart from that, the
Rashba-splitting of the surface states leads to high (absolute) values ofΩ(k). Note that
the absolute scale of the le and the right panels slightly differs; for a better visualization,
the k-point set was chosen less dense in the right panel.
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Figure 8.9.:e same ĕgure as in ĕgure 8.8 but for gold (111) ĕlms with an additional layer of Zn.
Similar as for the copper ĕlms, strong ĕelds are found for the surface states as well as
for some states in outer parts of the Brillouin zone. e maximal calculated values of
∣Ω(k)∣ are approximately four times larger than those obtained for copper.
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∆E [mRyd] ∆E [meV]

Cu 5 Cu + 1 Zn 2.41 32.79
7 Cu + 1 Zn 2.23 30.34
9 Cu + 1 Zn 2.15 29.25

Au 5 Au + 1 Zn 8.53 116.1
7 Au + 1 Zn 9.99 135.9
9 Au + 1 Zn 10.33 140.5

Table 8.5.: Splitting of the surface states for copper and gold (111) ĕlms. In order to break the
inversion symmetry, one layer of Zn has been added on one side of the ĕlm. ∆E has been
determined for the k-points in the direction of ky . However, the isotropic nature of the
Fermi surface close to center of the Brillouin zone yields the splitting to be independent
of the direction chosen for its determination.

the ky-axis in clockwise direction. e picture is the same for the surface states of all copper
and gold ĕlms.
e exact values of the Rashba-splittings are given in table 8.5, calculated at kF = (0, ky) for
the kF with smallest absolute value ∣kF∣, i.e., the innermost ring5. e calculated Rashba-
splitting of gold, table 8.5, agrees very well with experimental results obtained within angle-
resolved photoemission spectroscopy; splittings between 110meV [109] and 150meVhave
been measured. For copper, the splitting is approximately four times smaller than for gold,
and therefore probably at the edge of the resolution of photoemission spectroscopy; at 30
K, a bandwidth of about 30 meV has been measured [86], which is expected to be due to
phonon-scattering. Of course, the origin of the broadening cannot be identiĕed exactly and
might be a mixture of different effects.
We will continue the investigation of the spin-orbit ĕelds presented in ĕgure 8.8 and 8.9.
Although we observe relatively strong ĕelds for the surface state, the largest splittings∆E =
∣Ω(k)∣ are found for some k-points close to the outer boundaries of the Brillouin zone. e
reason for this strong increase towards the boundary of the Fermi surface still has to be
understood. Whereas the splitting of the surface state, i.e. the Rashba-splitting, is expected
to remain almost constant with varying ĕlm thickness, the splitting of the bulk states is
expected to decrease, since in the limit of very thick ĕlms the boundary condition should
play a minor role and the inversion-symmetric bulk result should be recovered. However,
it is difficult to deduce this from our data; the positions of the rings on the Fermi surface
strongly change with varying ĕlm thickness, whichmakes a direct comparison difficult. An
investigation of thicker ĕlms probably would be helpful for a better analysis.
Considering the direction of the spin-orbit ĕelds, as expectedwe ĕnd them to be in the plane

5Because the surface band is practically isotropic in k, the Rashba-splitting is almost constant on the whole
ring.
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Figure 8.10.:e same ĕgure as in ĕgure 8.8 but for copper (001) ĕlms with 5 and 7 layers and an
additional layer of Zn. Largest ĕelds are observed for some states in the outer parts of
the Brillouin zone, originating from the Zn layer.

of the Fermi surface for the surface states; however, departing from the center of the Fermi
surface, the z-component gains importance, but there are no states which completely point
out of plane. e z-component is always smaller than the parallel components. A compar-
ison of the directions of Ω(k) reveals a difference between the gold and the copper (111)
ĕlms; while for the copper ĕlms all spin-orbit ĕelds of neighboring rings point in a simi-
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Figure 8.11.:e same ĕgure as in ĕgure 8.10 but for gold (001) ĕlms with 5 and 7 layers and an
additional layer of Zn. e spin-orbit ĕelds are slightly larger than those found for
the gold ĕlms oriented in 111-direction. e states with a dark blue color in the le
panels show a very large splitting, but are not included in the calculation of Ω(k).
ey do not contribute to theD'yakonov-Perel' mechanismof spin dephasing, because
the necessary condition of the splitting to be smaller than the energy spread of the
wave packet is not fulĕlled. We have attributed to them the minimal obtained value
of ∣Ω(k)∣ for visualization purposes. ese states are not shown in the right panels.
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lar direction, for gold this is not the case; there are rings among the bulk-like states whose
spin-orbit ĕelds point in the opposite direction compared to the neighboring ones.
For the copper ĕlm consisting of 9 layers, Ęuctuations of the direction on one of the rings
are observed. ese are probably of numerical origin, because the absolute values ofΩ(k)
at these k-points are very small and therefore can be neglected.
So far, we have studied the spin-orbit ĕelds at the Fermi surfaces of the (111) ĕlms. Now,
we proceed with the (001) case. e results are presented in ĕgure 8.10 for ĕlms with 5
and 7 layers of copper and one layer of Zn, and ĕgure 8.11 for gold ĕlms also covered by
one layer of Zn. One important difference compared to the spin-orbit ĕelds of the (111)
ĕlms is the lack of surface states, for which ∣Ω(k)∣ was relatively large. Both for copper
and gold, ∣Ω(k)∣ is small for the states close to the center of the Brillouin zone, decreases
when going to larger ∣k∣, but strongly increases again when approaching the outer bound-
aries of the Brillouin zone. Considering ∣Ω(k)∣ for the copper (001) ĕlms, maximal values
are observed for states, which do not appear in the Fermi surfaces of the symmetric ĕlms
and must therefore originate from the layer of Zn. A calculation of the layer-resolved den-
sity at some k-points of these bands has conĕrmed this assumption, because these states
have been found to be located at the Zn layer. In order to exclude that the large splitting is
due to the spin-orbit coupling of the Zn layer, we have repeated our calculations neglecting
the spin-orbit coupling of Zn and found similar results. ese states are also present in the
Fermi surfaces of the gold ĕlms, they are shown in the le panels of ĕgure 8.11 in dark blue.
ey exhibit a much larger splitting than for the copper ĕlms of the order of 40 mRyd, due
to the stronger spin-orbit coupling for gold. e splittings are so large, that we do not show
∣Ω(k)∣ for these k-points and just attributed to them the minimum value of ∣Ω(k)∣ for vi-
sualization purposes. erefore, they are missing in the right panels. e neglect of these
states in the calculation ofΩ(k) is justiĕed regarding that the D'yakonov-Perel' mechanism
of spin dephasing only takes place, if the energy spread of the wave packet is larger than the
splitting∆E. is condition is not fulĕlled for these k-points.
Comparing the direction of the spin-orbit ĕelds of the (001) surfaces to thoses of the (111)
surfaces, a similarity can be detected; most states tend to point in the kx-ky-plane, although
spin-orbit ĕelds with a non-vanishing z-component can be found especially for the states
in the regions close to the outer boundaries of the Brillouin zone.

8.4 Conclusion

In this chapter spin-orbit coupling effects on noble metal surfaces of ĕnite ĕlms have been
investigated. We presented calculations both for symmetric and antisymmetric ĕlms, ori-
ented in [111] and [001] direction. Whereas for the symmetric ĕlms similar mechanisms of
spin relaxation as in the investigated bulk materials occur, see chapter 6, in the case of sys-
tems without structure-inversion symmetry different mechanisms yield to spin-relaxation.
erefore, in the ĕrst part of this chapter we discussed the special form of the spin-orbit
Hamiltonian for systems without structure-inversion symmetry and its consequences on
the bandstructure. e interplay of spin-orbit coupling and the lack of inversion sym-
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Figure 8.12.: Spin expectation valuesSx andSy of theRashba-split surface states of a ĕlm consisting
of 7 layers of Cu and one layer of Zn as function of the angle ϕ that describes the
deviation from the ky-axis in clockwise direction. Whereas in the le panel the spin
expectation value of the innermost surface state which is higher in energy is shown, in
the right panel Sx and Sy of the lower-lying Rashba-split surface state are presented.
e expectation values of the two states are opposite to each other. As expected, the
expectation value Sz vanishes for the surface states; this is not the case for the bulk
states as can be seen from ĕgure 8.8.

metry leads to the Rashba effect, i.e. the splitting of (surface) states. As a consequence,
spin dephasing via the D'yakonov-Perel' mechanism occurs. In contrast to the Elliott-Yafet
mechanism, present in systems which are invariant under inversion, the D'yakonov-Perel'
mechanism predicts long spin-relaxation times when large momentum-scattering rates are
obtained. Spin dephasing is caused by a precession of the spin around a local magnetic ĕeld,
the spin-orbit ĕeldΩ(k), arising by the spin-orbit induced (energy)-splitting of states.
Before discussing our numerical results for the asymmetric ĕlms, we present calculations
for symmetric ĕlms, for which, similar to the investigated bulk systems in chapter 6, all
states k on the Fermi surface are two-fold degenerate. For copper and gold ĕlms oriented
in [111] and [001] direction, the Elliott-Yafet parameter ∣bk∣2 as well as its averages over the
Fermi surface ∣b∣2 have been calculated. We have found strong differences between the two
surface orientations. Largest spin-mixing parameter have been found for the two surface
states. In contrast, for the (001) surfaces, where surface states are lacking, we have calculated
extraordinary high values of ∣bk∣2 for some states k of the Fermi surface, close to the outer
boundary of the Brillouin zone. ese k-points, called spin hot spots, are due to band anti-
crossings, and for the gold ĕlms values up to ∣bk∣2 ≈ 0.5 have been found. e Elliott-Yafet
parameters are strongly enhanced compared to the values obtained for the bulk materials.
e enhancement is much larger for copper, where it amounts to a factor of about 7, than
for gold, for which the ratio ∣bSF∣2 / ∣bbulk∣2 ≈ 1.5 for the (111) surfaces. For the (001) sur-
faces, approximately two times larger values are obtained.
Furthermore, for the symmetric ĕlmswehave considered scattering processes at self-adatoms,
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i.e. Cu adatoms on top of copper ĕlms, and gold adatoms on gold. We have calculated both
spin-conserving as well as spin-Ęip lifetimes. Whereas the momentum-relaxation times
for the copper and gold ĕlms slightly increase with increasing ĕlm thickness, the spin-Ęip
lifetimes T1 exhibit a strong decay. Of course, the spin-Ęip lifetimes calculated for gold
are much shorter than those on copper. e ratios T1/τ , i.e. the number of spin-conserving
scattering events per one spin-Ęip process, strongly decrease with increasing ĕlm thickness;
obviously, for the thinner ĕlms, spin-Ęip scattering is disadvantaged by the large hybridiza-
tion of the two surface states from the two sides of the ĕlm. However, the trend found for
the calculated ĕlm thicknesses will not necessarily continue for thicker ĕlms.
e calculation of spin-conserving and spin-Ęip lifetimes for the (001) ĕlms has been oc-
curred to be numerically difficult, since the precise integration over the Fermi surface re-
quires a dense mesh of k-points; the reason are anti-crossings of bands, yielding very local-
ized spin hot spots.
For both surface orientations a reduction of symmetry by a factor of two is found for the
spin-relaxation times T1, while the full symmetry is kept for the distribution of τk. Hence,
for the (111) surfaces, the 12-fold symmetry of the Brillouin zone for τk is lowered to a 6-
fold symmetry for T1,k, and for the (001) surfaces, a 4-fold symmetry for T1,k instead of a
8-fold symmetry of τk could be veriĕed.
A comparison of the lifetimes averaged over the Fermi surfaces of the two orientations for
copper reveals much longer spin-relaxation times for the surfaces oriented in [001] direc-
tion. e reason for that is the lack of surface states that results in high scattering. For the
gold ĕlms, deviating results for the two thicknesses are obtained due to the appearance of
spin hot spots.
In the second part of this chapter we have investigated effects of spin-orbit coupling occur-
ring for copper and gold ĕlms, where an asymmetry is introduced by covering them with
one layer of Zn. e break of symmetry results in a splitting of states, liing the degeneracy
of all k-points on the Fermi surface. For the (111) surface state, the splitting corresponds to
the Rashba-effect; the corresponding spin-orbit ĕeldsΩk for the surface states are in-plane.
In contrast, for the bulk-like states all three components ofΩk are not negligible, although
the z-component (out of plane) is smaller than the in-plane components. e value of the
Rashba-splitting calculated for the Au (111) surface states agrees very well with experimen-
tal data; the Rashba-splitting of copper is four times smaller and so far could not be resolved
in photoemission spectroscopy.
High absolute values of spin-orbit ĕelds Ωk are found for the (111) surface states and for
some states at the outer boundaries of the Brillouin zone, both for the copper and the gold
ĕlms. ese states have their origin in the Zn layer.
In (001) ĕlms, the lack of surface states leads to small values ofΩk for the states close to the
center of the Brillouin zone. Highest ĕelds are found for states at the outer border of the Bril-
louin zone. For the gold (001) ĕlms, some of the states exhibit giant splittings. ese states
have not been taken into account in the calculation of spin-orbit ĕelds, since the splittings
are too large to account for the D'yakonov-Perel' mechanism of spin-dephasing. Further-
more, a calculation of a layer-resolved density of states has revealed that they are located at
the Zn layer just as in the (111) ĕlms.
We expected the splitting of the bulk states to decreasewith increasing layer thickness, even-
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tually vanishing as the sample becomes bulk-like at large thickness. Whether this is the case
could not be clearly deduced from our results, since relatively strong changes of the position
of the states on the Fermi surface are observed. An investigation of thicker ĕlms would be
interesting, remaining for future work.





CHAPTER 9

Conclusion

In this thesis, we pursued threemain goals: First, we systematically investigatedmomentum-
and spin-relaxation times due to impurity scattering in the noble metals copper and gold.
Secondly, we studied extensively the lifetime reduction of surface-states induced by scatter-
ing at adatoms and impurities in the ĕrst and second surface layers of the (111) surfaces of
copper, silver and gold. Finally, the third aim of this work was to combine the two previous
aspects and investigate the effects of spin-orbit coupling on scattering at the noble-metal
surfaces copper and gold.
In all our calculations we used the KKR-Green functionmethod for electronic structure cal-
culations, which is particularly suited for the numerical treatment of scattering processes
because of its multiple scattering ansatz.

Spin relaxation in copper and gold bulk

e ĕrst step on our way to calculate momentum- and spin-relaxation times was the inte-
gration of spin-orbit coupling in the KKR-formalism and its implementation in the code.
We calculated the spin expectation values and spin-mixing parameters on the Fermi sur-
faces and solved the problems occurring for degenerate states. We showed that the resulting
spin-mixing parameter for copper and gold agree well with those given in the literature.
In order to obtain momentum- and spin-relaxation times, the Lippmann-Schwinger equa-
tion for impurity scattering including spin-orbit coupling was solved and the scatteringma-
trix in momentum space was calculated.
e inversion symmetry of the fcc bulk metals copper and gold leads to a degeneracy of all
k-points on the Fermi surface. erefore, spin relaxation is induced by the Elliott-Yafet
mechanism and impurity spin-orbit coupling. We have provided a systematic study of
momentum- and spin-relaxation times induced by scattering at the 3d, 4sp, 4d, 5sp and
5d impurities in copper and gold hosts. e inĘuence of the spin-orbit coupling in the
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host has been investigated, showing that the spin-orbit induced effects are large for a gold
host and small for a copper host. In addition, this ĕnding helped to explain why simi-
lar momentum-relaxation but deviating spin-relaxation rates for copper and gold hosts are
found. e spin-relaxation times for the gold host are much shorter than those calculated
for the copper host.
Furthermore, strong qualitative differences between the trends for momentum- and spin-
relaxation times have been found. While momentum-relaxation rates are high for the d
and the sp impurities, the trends for spin-relaxation rates exhibit only a maximum for the
d impurities, and not for the sp scatterers. is behavior is much more pronounced for
the copper host than for the gold host, since the spin-relaxation rates in gold are highly
inĘuenced by the spin-orbit coupling of the gold host. e different behavior of the spin-
conserving and spin-Ęip scattering rates for the d and sp scatterers could be explained with
the help of a simple model, relating the spin-relaxation rates to the Wigner delay times, ac-
counting for the time the wavepacket requires for the scattering process. Larger delay times
are found for the d scatterers, while short times for the s and p impurities have been ob-
tained. Hence, we concluded that resonant scattering is very important for spin relaxation,
as the electrons spend much more time at the d-resonance than at the sp impurities and
therefore are exposed a much longer time to the impurity spin-orbit coupling.
When investigating the ratio of spin-relaxation and momentum-relaxation times, i.e. the
number of momentum-scattering processes per one spin-Ęip we ĕnd large differences be-
tween the copper and the gold host. Whereas in the copper host ratios between 104 for light
impurities and 3 for the chemically similar elements Ag and Au have been found, in gold
we observe ratios within a much smaller range, reaching from 30 to 3. us, for gold the
spin-orbit coupling effects of the host prevails – spin-relaxation is dominated by the Elliott-
Yafet mechanism.
e investigation of correlated scattering by impurity dimers completes the study of spin-
relaxation in bulk materials. We showed that correlated scattering effects are important
only for the d impurities situated at nearest neighboring sites. For these, scattering times
are enhanced up to a factor of 1.5 compared to scattering at independent impurities.

Lifetime reduction of surface states

e second goal of this thesis was to study the reduction of surface-state lifetimes induced
by scattering at adatoms and impurities in and below the ĕrst surface layer of copper, silver
and gold (111) ĕlms. erefore, the spin-conserving scatteringmatrix inmomentum-space
was calculated for all states on the Fermi surface. Integration over the Fermi surface then
yields the surface-state lifetimes and the momentum-relaxation times for the bulk states.
e analysis of the scattering rates at the 3d and the 4sp impurities in and on a copper ĕlm
showed that scattering at adatoms qualitatively strongly differ from scattering at impurities
in and below the surface. e perturbation caused by an adatom is much stronger than that
which is caused by replacing a copper atom by another element. Furthermore, the extent of
the adatom into the surrounding vacuum plays a big role.
In order to understand the trend observed for the scattering rates at adatoms, we havemade
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an orbital-momentum resolved calculation. We found that for the d scatterers a constructive
interference of the s- and the d-channel takes place, whereas for the sp scatterers the s- and
the p-channel interfere destructively. is ansatz could be conĕrmed by a calculation of the
Friedel oscillations.
e dependence of the surface-state lifetime on the ĕlm thickness has also been examined.
e surface-state lifetimes of the innermost surface state decrease with increasing number
of layers, which ismostly due to an energy shi of the states at the two surfaces, as well as due
to the reduction of the overlap of the surface states with the impurity for larger thicknesses,
when the state can penetrate more into the bulk.
However, in the calculation of surface resistivities, which also have been extracted from the
scattering matrix, this effect is hardly seen, because this quantity entails a further averaging
over all states, surface- and bulk-like states.
To complete the picture, surface-state lifetimes induced by scattering at magnetic adatoms
on the copper ĕlm have been studied. As expected, we observed a double-peak structure
as the impurity atomic number is varied, which is due to the split d-resonance crossing the
Fermi level.

Spin-orbit induced effects on copper and gold thin ĕlms

e third goal of this thesis was the investigation of spin-orbit induced effects occurring in
copper and gold ĕlms with different surface orientations. We have considered symmetric
thin ĕlms as well as thin ĕlms where the inversion symmetry was broken by replacing one
layer of Cu/Au by one layer of Zn. e prevailing spin-relaxation mechanisms are com-
pletely different for these two kinds of systems; whereas in the symmetric systems all states
are twofold degenerate (similar as in the bulk samples) and therefore spin relaxation via the
Elliott-Yafetmechanism takes place, the break of symmetry for the asymmetric slabs lis the
degeneracy and leads to a splitting of all states on the Fermi surface; then, the D'yakonov-
Perel' mechanism leads to spin dephasing.
For the symmetric ĕlms, we started with the discussion of the Elliott-Yafet parameter. For
all ĕlm thicknesses and both surface orientations ((001) and (111)) we have calculated spin-
Ęip parameter which are enhanced compared to the values that we have found for the bulk
systems. Whereas for the (111) surfaces largest parameters have been found for the surface
states, anticrossings of bands on the Fermi surfaces of the (001) ĕlms lead to spin hot spots
close to the Brillouin zone edge and very large values of ∣b∣2. is effect is much larger for
the gold than for the copper ĕlms.
Furthermore, the study ofmomentum- and spin-relaxation times due to scattering at adatoms
on top of the (111) surfaces revealed a strong dependence on ĕlm thickness; whereas
momentum-relaxation times increase with ĕlm thickness, spin-relaxation times show a
strong decrease. is behavior has been found for copper and for the gold ĕlms. Consid-
ering scattering rates at adatoms on (001) surfaces, we found strong differences for copper
and gold. For the copper ĕlms, the lack of the surface states for this surface orientation re-
sults in much longer spin-relaxation times. In contrast, the strong spin hot spots appearing
on the Fermi surfaces of the gold ĕlms compensate the lack of surface states.
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In asymmetric ĕlms, the splitting of states caused by the lack of inversion symmetry together
with spin-orbit coupling lead to the formation of local effectivemagnetic ĕelds, the so-called
spin-orbit ĕelds. Spin dephasing is obtained by precession of the electron spin around these
local spin-orbit ĕelds together with momentum scattering, resulting in a change of the pre-
cession axis aer each scattering event. We have calculated the spin-orbit ĕelds for copper
and gold (001) and (111) ĕlms. We found a Rashba-splitting of the surface states which
agrees with experiment and previous calculations. In addition, we found signiĕcant con-
tributions from the bulk-like states for both orientations, especially in the vicinity of the
Zn-like states.



APPENDIXA

Some details on the KKR-formalism

A.1 Derivation of the Dyson equation for an arbitrary refer-
ence system

In order to derive the Dyson equation for an arbitrary reference system, we start from the
algebraic Dyson equation (2.47)

Gnn′

LL′(E) = gnn
′

LL′(E) + ∑
n′′L′′L′′′

gnn
′′

LL′′(E)tn
′′

L′′L′′′G
n′′n′

L′′′L′(E) (A.1)

where the gnn′′LL′′(E) represent the free space structure constants. In matrix notation, the
above equation can be rewritten as

G(E) = g(E) + g(E)t(E)G(E). (A.2)

Since this equation is valid for an arbitrary V (r), i.e. t(E), the same holds for a reference
system of potentials with V ref(r) (to be given in detail below) placed at the lattice sites of
the crystal

Gref(E) = g(E) + g(E)tref(E)Gref(E). (A.3)

Equations (A.1) and (A.3) can be rewritten as

g(E)−1 = G(E)−1 − t(E) (A.4)

and
g(E)−1 = (Gref(E))−1 − tref(E), (A.5)

respectively. Combination leads then to

(G(E))−1 = (Gref(E))−1 − (t(E) − tref(E)), (A.6)
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and a simple transformation to the sought-aer Dyson equation

G(E) = Gref(E) +Gref(E)∆t(E)G(E), (A.7)

with
∆t(E) = t(E) − tref(E). (A.8)

A.2 Practical calculation of the band structure

To obtain the band structure E(k), i.e. the solution of eq. (3.45) or (3.49), respectively, the
problem is transformed to an eigenvalue problem. erefore, in a ĕrst step eq. (3.49) is
rewritten as

∑
µ′,L′L′′

[δµµ′ (∆tµ
′

LL′(E))
−1
−Gr,µµ′

LL′ (k;E)]∆t
µ′

L′L′′(E)c
µ′

kL′′ = 0, (A.9)

separating the scattering properties of a single atomic potential described by∆tµLL′(E) from
the structure described by the lattice siteRn and the structural Green functionGr,µµ′

LL′ (k;E).
Interpreting the vector ∆tµ

′

LL′′(E)c
µ′

kL′ as an eigenvector of the system belonging to the
eigenvalue

λ(k,Ek) = 0, (A.10)

eq. (A.9) can be reformulated as

(∆t−1(E) −Gr(k;E))∆t(E)ck = λ(k,Ek)∆t(E)ck. (A.11)

e matrix (∆t−1(E) −Gr (k;E)) is the so-called KKR-matrix, since it contains all infor-
mation about the band structure E(k) of the system.
In order to calculate the band structure, it is sufficient to determine the eigenvaluesλ(k,Ek)
of the KKR-matrix and then search the pairs (k,E) for which one of the eigenvalues be-
comes zero.
A realization of this method for systems without spin-orbit coupling was realized by P.
Zahn [70]. In his implementation, the non-hermitian KKR-matrix [∆t−1(E) −Gr (k;E)]
is transformed to a hermitian matrix in order to obtain real eigenvalues. en, the recip-
rocal space vector k is kept constant while the energy is varied. For each energy point the
eigenvalues λ(k;E) are calculated and the number of negative (or positive) eigenvalues is
counted - whenever one of the eigenvalues changes its sign, the number changes and a point
of the band structure is obtained. For more information about the transformation of the
KKR-matrix and other calculational details see [70].
However, the procedure becomes complicated for brute-force applicationwhenever compli-
cated structures such as band crossings occur. In this case, it might be that two eigenvalues
change their sign, but the number of positive and negative eigenvalues stays the same (see
ĕgure A.1).
Additionally, for systems including spin-orbit coupling and/or taking the non-spherical



A.2. Practical calculation of the band structure 167

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.36  0.38  0.4  0.42  0.44

Re λ
Im λ

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

LΓ

λ
λ

extra

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

LΓ

Re λ
Re λ

extra

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

LΓ

Im λ
Im λ

extra

Figure A.1.: Eigenvalues of theKKR-matrix ofAu bulk, full potential calculationwithout spin-orbit
coupling, as a function of reciprocal space vectorsk in 111-direction. Top le: Real and
imaginary part of the eigenvalues at E ĕxed to E = −3.83eV . e crossing of bands
leads to the intersection with the x-axis of two eigenvalues in one interval [k, k+∆k].
Additionally, at k ≈ 0.365, the real part of λ becomes zero while the imaginary part
does not. Top right: Real and imaginary part of exact and extrapolated eigenvalues.
Bottom: Real and imaginary part of exact and extrapolated eigenvalues restricted to
small eigenvalues. e extrapolated eigenvalues agree very well for intervals, in which
the run of the curve is almost linear, for more complex curves a small deviation can be
seen.

contributions of the potential into account (full potential calculation) the transformation is
which transforms the t-matrix to a hermitian matrix is not obvious. Hence, the eigenvalues
are complex and both the real part and the imaginary part must be zero1.
e above reasons make it necessary to modify the method for band structure calculation
in order to overcome the above-mentioned problems. We developed a new, more gen-

1e real and the imaginary part of λmight have exclusive zeros as can be seen in ĕgure A.1.



168 A. Some details on the KKR-formalism

eral scheme to calculate the points (k,E) fulĕlling the condition λ(k,Ek) = 0, which is
sketched in the following:
We start by calculating the eigenvalues λ(k,E) for a given pair of (k,E), keep the energy
E constant while varying the reciprocal space vector k. To obtain the eigenvalues at the
next k-point (k +∆k) there are two possibilities: Either the eigenvalues can be calculated
directly by diagonalizing the KKR-matrix or ĕrst order perturbation theory can be used to
extrapolate the eigenvalues at (k+∆k,E) from the eigenvalues calculated at (k,E). Doing
both, every eigenvalue at the new k-point (k+∆k,E) calculated exactly can be traced back
to the corresponding eigenvalue at k (by virtue of the extrapolation) and all crossings of the
eigenvalues with the x-axis can be easily identiĕed.
For the second method, i.e. the extrapolation from k to k +∆k we expand Gr(k;E) for
small∆k around k writing

Gr (k +∆k;E) ≈ Gr (k;E) +∆k ⋅ ∇kG
r (k;E). (A.12)

In the following it must be distinguished whether one of the eigenvalues at (k,E) is de-
generate or not. We will ĕrst discuss the procedure for the non-degenerate case, and then
continue with degenerate eigenvalues. First order perturbation theory for non-hermitian
matrices is used as developed in [112, 113]. e le and right eigenvectors of the KKR-
matrix (∆t−1(E) −Gr (k;E)) corresponding to λ(k,E) = 0 are deĕned as

(∆t−1(E) −Gr (k;E)) ∣ϕλ,k⟩ = 0 (A.13)

or
⟨ϕ̃λ,k∣ (∆t−1(E) −Gr (k;E)) = 0, (A.14)

respectively. e right eigenvector is related to the coefficients ck following

∣ϕλ,k⟩ =∆t(E)ck. (A.15)

e projector Pλ,k of the right and the le eigenvector is then calculated as

Pλ,k = ∣ϕλ,k⟩⟨ϕ̃λ,k∣. (A.16)

According to the perturbation theory for non-hermitian matrices developed in [112, 113],
the extrapolated eigenvalues at k +∆k for non-degenerate eigenvalues λ are given by

λ(k +∆k) ≈ λ(k) + ∣∆k∣Tr [Pλ,k
dGr (k;E)

dk
] , (A.17)

where the derivative dGr(k;E)/dk is calculated in the direction of∆k.
If the eigenvalue λ is n-times degenerate, there are n linearly independent right and le
eigenvectors

∣ϕiλ,k⟩,⟨ϕ̃iλ,k∣ , i = 1, n . (A.18)

In this case, a generalized matrix of the product of the ith right eigenvector and the jth le
eigenvector can be deĕned

Pijλ,k = ∣ϕ
i
λ,k⟩⟨ϕ̃

j
λ,k∣. (A.19)
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Analogously to perturbation theory for non-degenerate eigenvalues for hermitian matrices
(for example see [114]) and the above result for non-hermitian matrices, the ĕrst order cor-
rection of the eigenvalues λk are obtained by calculating the eigenvalues λ

′i
k of the quadratic

n times n-matrix
Tr [Pijλ,k

dGr (k;E)
dk

] , i, j = 1, n . (A.20)

Finally, we obtain for the eigenvalues at k +∆k

λ(k +∆k) ≈ λ(k) + ∣∆k∣λ′ik , i = 1, n . (A.21)

Since the eigenvalues in general are complex (because of the non-hermiticity of the KKR-
matrix), in a ĕrst step we look for the roots of the imaginary part and then check whether
the real part is zero or not. If both the imaginary and the real part of the eigenvalue shows a
zero-crossing, i.e. change their sign in the interval [k,k +∆k], a linear extrapolation allows
to estimate the k-vector kcross, for which the condition λ = 0 is fulĕlled.
For the case of non-degenerate eigenvalues kcross is given by

kcross ≈ k −
Imλk

Im [Tr [Pλ,k dG
r (k;E)
dk ]]

⋅ ∆k

∣∆k∣
(A.22)

whereas for n-times degenerate eigenvalues the degeneracy might be lied and maximally
n different crossing points kcross can be obtained

kcross ≈ k −
Imλk
Imλ

′i
k

⋅ ∆k

∣∆k∣
i = 1, n. (A.23)

In order to obtain a sufficient accuracy the cluster of reference atoms for the calculation of
Gr (k;E) has to be chosen large. Otherwise the crossing of the real and the imaginary part
with the x-axis differ considerably as is demonstrated in ĕgure A.2 and table A.1. In table
A.1, the real part of the eigenvalue at the zero point of the imaginary part as a function of
the numbers of atoms in the cluster of the reference system for the example of gold at the
Fermi energy in [100] direction is speciĕed. We see that the accuracy strongly increases
with the cluster size, while the value of the calculated kcross shows only a small deviation.

Finally, in ĕgure A.2 we show an example of a band structure calculation for gold bulk with-
out spin-orbit coupling as well as including spin-orbit coupling. While important changes
can be seen in the band structure for energies below the Fermi level, the value of the Fermi
wave vector kcross = kF in the [100] direction stays almost the same.

A.2.1 e Fermi surface

e calculation scheme of the Fermi surface is very similar to the band structure calculation
as explained in the last section; the energy is ĕxed to E = EF while the k vector is varied.
Whenever one of the eigenvalues of the matrix (∆t−1(E) −Gr(k;E)) becomes zero, one
point of the Fermi surface is obtained.
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Figure A.2.: Top: Eigenvalues of the KKR-matrix of Au bulk without spin-orbit coupling, as a func-
tion of reciprocal space vectors k in [100] direction at the Fermi energy for different
sizes of the cluster of the reference system. If the cluster size is chosen too small, (le
panel, 55 atoms in the cluster) the real and the imaginary part of the eigenvalues do
not cross the x-axis simultaneously. A large cluster size is necessary (right panel, 249
atoms) to obtain a good accuracy. Bottom: band structure for Au bulk without spin-
orbit coupling as well as including spin-orbit coupling in [111] (le panel) and [100]
(right panel) direction. Spin-orbit coupling lis the degeneracy of some bands, and,
in the [111] direction leads to an anticrossing of bands. However, at the Fermi level
almost no difference can be detected.

Once thek-vectorskF obeying eq. (3.49) are found, the corresponding eigenvectors ∣ϕλ=0,kF
⟩ =

∆tµLL′(E)c
0,µ
kL′ can be determined, which allow to obtain the coefficients cn,µkL . In order to

identify the full wavefunctions ψk(r) at the Fermi surface, the regular solutions RL(r;E)
of the Schrödinger equation have to be calculated by solving the Schrödinger equation as
described in chapter 2, section 2.2 or 2.4, respectively.
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number of atoms in reference cluster Re λ(kcross,EF) kcross[2π/a]

55 1.1 ⋅ 10−3 0.887397
79 2.5 ⋅ 10−4 0.887114
135 7.3 ⋅ 10−5 0.887036
249 4.2 ⋅ 10−7 0.887025

Table A.1.: Real part of the eigenvalue λ(kcross,EF) at the zero point of the imaginary part of
λ(kcross,EF) as a function of the numbers of atoms in the cluster of the reference system
for the example of fcc gold at the Fermi energy in [100] direction. e accuracy strongly
increases with the cluster size, while the value of the calculated kcross shows only a small
deviation.

A.3 e radial Lippmann-Schwinger equation for
non-spherical potential

e aim of this section is to derive the Lippmann-Schwinger equation for the non-spherical
wavefunction-components Rimp

L′L(r;E) of a system characterized by V imp(r), which in the
following are to be understood as perturbation to a system characterized by V (r)with cor-
responding componentsRL′L(r;E). e relations are not only valid for the impurity prob-
lem; they hold for two arbitrary systems with∆V (r) = V imp(r)−V (r). However, since we
will apply them to the case of an impurity in a host, we address all variables of the perturbed
system with 'imp'.
We start the derivation from the radial Lippmann-Schwinger equation valid for the radial
wave functionsRimp

L (r;E), expressing it in terms of the radial wavefunctionRL(r;E) and
the Green functionG(r, r′;E) of the host system and the difference in potential∆V (r)

Rimp
L (r;E) = RL(r;E) + ∫ d3r′ G(r, r′;E)∆V (r′)Rimp

L (r′;E) . (A.24)

Using the expansions

Rimp
L (r;E) = ∑

L′
Rimp
L′L(r;E)YL′(r̂), (A.25)

RL(r;E) = ∑
L′
RL′L(r;E)YL′(r̂), (A.26)

G(r, r′;E) = ∑
LL′

GLL′(r, r′;E)YL(r̂)YL′(r̂′) and (A.27)

∆V (r′) = ∑
L

∆VL(r′)YL(r̂′), (A.28)
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the above equation results in

∑
L′
Rimp
L′L(r;E)YL′(r̂) =∑

L′
RL′L(r;E)YL′(r̂)+

∫ d3r′ ∑
L′L′′

YL′(r̂)GL′L′′(r, r′;E)YL′′(r̂′)

∑
L′′′

∆VL′′′(r′)YL′′′(r̂′) ∑
L′′′′

Rimp
L′′′′L(r′;E)YL′′′′(r̂′), (A.29)

which can be simpliĕed to

∑
L′
Rimp
L′L(r;E)YL′(r̂) =∑

L′
RL′L(r;E)YL′(r̂)+

∫ r′2dr′ ∑
L′L′′L′′′′

YL′(r̂)GL′L′′(r, r′;E)∆VL′′L′′′′(r′)Rimp
L′′′′L(r;E). (A.30)

e linear independence of the spherical harmonics ĕnally leads to

Rimp
L′L(r;E) = RL′L(r;E) + ∫ r′2dr′ ∑

L′′L′′′
GL′L′′(r, r′;E)∆VL′′L′′′(r′)Rimp

L′′′L(r;E)

(A.31)
q.e.d..
Before closing the section, we will shortly express the scattering matrix∆tLL′(E) in terms
of the RLL′(r;E). e scattering matrix∆tLL′(E) is deĕned as

∆tLL′(E) = ∫ d3r RL(r)∆V (r)Rimp
L′ (r) , (A.32)

and thus

∆tLL′(E) = ∫ d3r∑
L′′
RL′′L(r)YL′′(r̂)∑

L′′′
∆VL′′′(r)YL′′′(r̂) ∑

L′′′′
Rimp
L′′′′L′(r)YL′′′′(r̂)

= ∫ r2dr ∑
L′′L′′′′

RL′′L(r)∆VL′′L′′′′(r)Rimp
L′′′′L′(r). (A.33)

A.4 e∆tn
l
-Matrix

In this section it has to be proven that

∆tnl (E) = ∫ r2dr Rr,n
l (r;E)∆V

n(r)Rn
l (r;E), (A.34)

by tracing this equation back to the deĕnition of the atomic scattering matrices tnl (E) and
tr,nl (E), thus to the deĕnition

∆tnl (E) = tnl (E) − t
r,n
l (E). (A.35)
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We proceed following Zeller [64]. Using the deĕnition∆V n(r) = V n(r)−V r,n(r) and the
propertyGr

l(r, r′;E) = Gr
l(r′, r;E), the radial Lippmann-Schwinger equations

Rr,n
l (r;E) = jl(r;E) + ∫ r′2dr′ Gr

l(r, r′;E)V r,n(r′)Rr,n
l (r

′;E)

= jl(r;E) + ∫ r′2dr′ Rr,n
l (r

′;E)V r,n(r′)Gr
l(r′, r;E) (A.36)

and
Rn
l (r;E) = jl(r;E) + ∫ r′2dr′ Gr

l(r, r′;E)V n(r′)Rn
l (r′;E), (A.37)

eq. (A.34) can be rewritten as

∆tnl (E) =

∫ r2dr [jl(r;E) + ∫ r′2dr′ Rr,n
l (r

′;E)V r,n(r′)Gr
l(r′, r;E)]V n(r)Rn

l (r;E)

−∫ r2dr Rr,n
l (r;E)V

r,n(r) [jl(r;E) + ∫ r′2dr′ Gr
l(r, r′;E)V n(r′)Rn

l (r′;E)] .

(A.38)

From that follows

∆tnl (E) =∫ r2dr jl(r;E)V n(r)Rn
l (r;E)

+ ∫ r2dr ∫ r′2dr′ Rr,n
l (r

′;E)V r,n(r′)Gr
l(r′, r;E)V n(r)Rn

l (r;E)

− ∫ r2dr jl(r;E)V r,n(r)Rr,n
l (r;E)

− ∫ r2dr ∫ r′2dr′ Rr,n
l (r;E)V

r,n(r)Gr
l(r, r′;E)V n(r′)Rn

l (r′;E) .

(A.39)

e second and the forth term cancel; the ĕrst and the third term are just the atomic scat-
tering matrices tnl (E) and t

r,n
l (E),

∆tnl (E) = ∫ r2dr jl(r;E)V n(r)Rn
l (r;E) − ∫ r2dr jl(r;E)V r,n(r)Rr,n

l (r;E)

= tnl (E) − t
r,n
l (E) , (A.40)

q. e. d..

A.5 Impurity scattering

In this section, we derive the relation of the impurity-wavefunction coefficients cimp,n
kL to the

coefficients cnkL of the host crystal. As described in chapter 3, section 3.2, we start from the
Lippmann-Schwinger-equation 3.51

ψimp
k (r +R

n;E) =

ψk(r +Rn;E) +∑
n′
∫ d3r′ G(r +Rn, r′ +Rn′ ;E)∆V n′(r′)ψimp

k (r
′ +Rn′) (A.41)
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and insert the expansions of the wavefunctions as well as the Green function in terms of
spherical harmonics YL(r̂).

A.5.1 Atomic sphere approximation

In the atomic sphere approximation, the expansion in orbital components is

ψimp
k (r +R

n;E) =∑
L

cimp,n
kL Rimp,n

l (r;E)YL(r̂), (A.42)

and

G(r +Rn, r′ +Rn′ ;E) =
∑
L

Gs,nn
l (r, r′;E)YL(r̂)YL(r̂′)δnn′ + ∑

LL′
Rn
L(r;E)Gnn′

LL′(E)Rn′

L′(r′;E), (A.43)

where the ĕrst term is the solution of the homogeneous system (see e.g. section 2.3, eq. (2.44))
with

Gs
l(r, r′;E) =

⎧⎪⎪⎨⎪⎪⎩

−i
√
ERl(r;E)Hl(r′;E) for r ≤ r′

−i
√
ERl(r′;E)Hl(r;E) for r > r′

. (A.44)

e difference in potential is given by

∆V n(r) =∆V n(r) = V imp,n(r) − V n(r) . (A.45)

Inserting the three eqs. (A.42), (A.43) and (A.45) in the Lippmann-Schwinger equation
eq. (A.41), the latter equation yields

∑
L

cimp,n
kL Rimp,n

l (r;E)YL(r̂) =∑
L

cnkLR
n
l (r;E)YL(r̂)

+∑
n′
∫ d3r′ [∑

L

Gs,nn
l (r, r′;E)YL(r̂)YL(r̂′)δnn′∆V n′(r′)∑

L′
cimp,n′

kL′ Rimp,n′

l′ (r′;E)YL′(r̂′)

+∑
LL′

Rn
l (r;E)YL(r̂)Gnn′

LL′(E)Rn′

l′ (r′;E)YL′(r̂′)∆V n′(r′)∑
L′′
cimp,n′

kL′′ Rimp,n′

l′′ (r′;E)YL′′(r̂′)] .

(A.46)

Integration over the angles dΩ′ leads to

∑
L

cimp,n
kL Rimp,n

l (r;E)YL(r̂) =∑
L

cnkLR
n
l (r;E)YL(r̂)

+∑
n′
∫ r′2dr′ [∑

L

Gs,nn
l (r, r′;E)YL(r̂)δnn′∆V n′(r′)cimp,n′

kL Rimp,n′

l (r′;E)

+∑
LL′

Rn
l (r;E)YL(r̂)Gnn′

LL′(E)Rn′

l′ (r′;E)∆V n′(r′)cimp,n′

kL′ Rimp,n′

l′ (r′;E)] , (A.47)
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or

∑
L

cimp,n
kL [Rimp,n

l (r;E) − ∫ r′2dr′ Gs,nn
l (r, r′;E)∆V n(r′)Rimp,n

l (r′;E)]YL(r̂)

=∑
L

cnkLR
n
l (r;E)YL(r̂)

+∑
n′
∑
LL′

Rn
l (r;E)YL(r̂)Gnn′

LL′(E)c
imp,n′

kL′

∫ r′2dr′Rn′

l′ (r′;E)∆V n′(r′)Rimp,n′

l′ (r′;E) ,
(A.48)

respectively.
For the next step, we need the Lippmann-Schwinger equation of the radial wavefunction,
which we write in the form

Rn
l (r;E) = R

imp,n
l (r;E) − ∫ r′2dr′ G,nn

l (r, r
′;E)∆V n(r′)Rimp,n

l (r′;E) . (A.49)

e right-hand side of eq. (A.49) is just the term in brackets of eq. (A.48). Replacing this
by Rn

l (r;E), we obtain

∑
L

cimp,n
kL Rn

l (r;E)YL(r̂) =∑
L

cnkLR
n
l (r;E)YL(r̂)

+∑
n′
∑
LL′

Rn
l (r;E)YL(r̂)Gnn′

LL′(E)c
imp,n′

kL′ ∫ r′2dr′Rn′

l′ (r′;E)∆V n′(r′)Rimp,n′

l′ (r′;E) .

(A.50)

Using the∆t-matrix, eqs. (A.34) and (A.35), the latter equation (A.50) further simpliĕes to

∑
L

cimp,n
kL Rn

l (r;E)YL(r̂) =

∑
L

cnkLR
n
l (r;E)YL(r̂) +∑

n′
∑
LL′

Rn
l (r;E)YL(r̂)Gnn′

LL′(E)∆tn
′

l′ (E)c
imp,n′

kL′ . (A.51)

e above equation is fulĕlled, if each coefficient satisĕes

cimp,n
kL = cnkL +∑

n′
∑
L′
Gnn′

LL′(E)∆tn
′

l′ (E)c
imp,n′

kL′ , (A.52)

or
∑
n′
∑
L′
(δLL′δnn′ −Gnn′

LL′(E)∆tn
′

l′ (E)) c
imp,n′

kL′ = cnkL, (A.53)

respectively. erefore, we ĕnally obtain the sought-aer expression for the impurity coef-
ĕcients

cimp,n
kL = [ ∑

n′,L′
(δLL′δnn′ −Gnn′

LL′(E)∆tn
′

l′ (E))]
−1

cn
′

kL′ . (A.54)
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A.5.2 Full potential

Dealing with the full potential entails a more cumbersome derivation of the relation be-
tween the perturbed and the unperturbed coefficients cimp,n

kL and cnkL, although the deriva-
tion leads to a very similar expression as obtained in the atomic sphere approximation. e
enhanced complexity is due to the fact that scattering from one orbital with angular mo-
mentum L to another orbital characterized by L′ is no longer forbidden; therefore, we end
up with a non-spherical atomic scattering t-matrix tLL′ , corresponding to the expansion of
the potential in L and L′ (VLL′(r)).
Hence, inserting the expression for the wavefunctions

ψk(r +Rn) =∑
LL′

cnkLR
n
L′L(r;E)YL′(r̂), (A.55)

the potential
∆V n′(r′) =∑

L

∆V n′

L (r′)YL(r̂) (A.56)

and the Green function

G(r+Rn, r′ +Rn′ ;E)
= −i
√
E∑

L

Rn
L(r<;E)Hn

L(r>;E) +∑
n′
∑
LL′

Rn
L(r;E)Gnn′

LL′(E)Rn′

L′(r′;E)

= −i
√
E ∑

LL′L′′
Rn
L′L(r<;E)YL′(r̂>)Hn

L′′L(r>;E)YL′′(r̂>)

+∑
n′

∑
LL′L′′L′′′

YL′′(r̂)Rn
L′′L(r;E)Gnn′

LL′(E)Rn′

L′′′L′(r′;E)YL′′′(r̂′)

(A.57)

into the Lippmann-Schwinger equation

ψimp
k (r +R

n;E) = ψk(r +Rn;E)

+∑
n′
∫ d3r′ G(r +Rn, r′ +Rn′ ;E)∆V n′(r′)ψimp

k (r
′ +Rn′) , (A.58)

which provides the basis for the derivation results in

∑
LL′

cimp,n
kL Rimp,n

L′L (r;E)YL′(r̂) =∑
LL′

cnkLR
n
L′L(r;E)YL′(r̂)

+∫ d3r′ ∑
L′L′′

YL′(r̂)Gs,nn
L′L′′(r, r

′;E)YL′′(r̂′)∑
L′′′

∆V n
L′′′(r′)YL′′′(r̂′)

∑
L′′′′L

cimp,n
kL Rimp,n

L′′′′L (r′;E)YL′′′′(r̂′)

+∑
n′
∫ d3r′ ∑

L′L′′′
∑

L′′L′′′′
Rn
L′L′′(r;E)YL′(r̂)Gnn′

L′′L′′′′(E)Rn′

L′′′L′′′′(r′;E)YL′′′(r̂′)

∑
L′′′′′

∆V n′

L′′′′′(r′)YL′′′′′(r̂′) ∑
LL′′′′′′

cimp,n′

kL Rimp,n′

L′′′′′′L(r
′;E)YL′′′′′′(r̂′).

(A.59)
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In analogy to the previous section A.5.1, eq. (A.44), we have used the abbreviation

Gs,nn′

L′L′′(r, r
′;E) = −i

√
E∑

L

RL′L(r<;E)HL′′L(r>;E) . (A.60)

As already mentioned in chapter 3, in a ĕrst step the integration over the solid angles
dΩ′ is performed; the integral over the three spherical harmonics YL′′(r̂′), YL′′′(r̂′) and
YL′′′′(r̂′) (or YL′′′(r̂′), YL′′′′′(r̂′) and YL′′′′′′(r̂′) for the second summand) yields the Gaunt
coefficients CL′′L′′′L′′′′ (or CL′′′L′′′′′L′′′′′′ , respectively). Combining them with the potential
∆V n

L (r) brings us to the deĕnition of the potential∆V n
LL′(r)

∑
L′′
CLL′L′′∆V

n
L′′(r′) =∆V n

LL′(r′). (A.61)

With these simpliĕcations, the Lippmann-Schwinger equation (A.59) results in

∑
L′
YL′(r̂)∑

L

cimp,n
kL Rimp,n

L′L (r;E) =∑
L′
YL′(r̂)∑

L

cnkLR
n
L′L(r;E)

+∑
L′
YL′(r̂)∫ r′2dr′ ∑

LL′′L′′′′
Gs,nn
L′L′′(r, r

′;E)∆V n
L′′L′′′′(r′)c

imp,n
kL Rimp,n

L′′′′L (r
′;E)

+∑
L′
YL′(r̂)∑

n′
∫ r′2dr′ ∑

LL′′L′′′L′′′′
Rn
L′L′′(r;E)Gnn′

L′′L′′′′(E)Rn′

L′′′L′′′′(r′;E)

∑
L′′′′′′

∆V n′

L′′′L′′′′′′(r′)c
imp,n′

kL Rimp,n′

L′′′′′′L(r′;E) .

(A.62)

Since the spherical harmonics are linearly independent, the sum over L′ and the multipli-
cation with YL′(r̂) can be le out, and we obtain

∑
L

cimp,n
kL Rimp,n

L′L (r;E) =∑
L

cnkLR
n
L′L(r;E)

+ ∫ r′2dr′ ∑
LL′′L′′′′

Gs,nn
L′L′′(r, r′;E)∆V n

L′′L′′′′(r′)c
imp,n
kL Rimp,n

L′′′′L (r′;E)

+ ∑
n′
∫ r′2dr′ ∑

LL′′L′′′L′′′′
Rn
L′L′′(r;E)Gnn′

L′′L′′′′(E)Rn′

L′′′L′′′′(r′;E)

∑
L′′′′′′

∆V n′

L′′′L′′′′′′(r′)c
imp,n′

kL Rimp,n′

L′′′′′′L(r
′;E) . (A.63)

Similar as in the previous section A.5.1, we rewrite the Lippmann-Schwinger equation for
the radial wavefunctions Rimp,n

L′L (r;E), the regular solutions of the Schrödinger equation,
(see Appendix A.3, eq. (A.31)) as

Rn
L′L(r;E) = R

imp,n
L′L (r;E) − ∫ r′2dr′ ∑

L′′L′′′′
Gs,nn
L′L′′(r, r

′;E)∆V n
L′′L′′′′(r′)R

imp,n
L′′′′L (r

′;E) .

(A.64)
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It can be used to subsume the term on the le-hand side of eq. (A.63) with the term on the
right-hand side containing the single-site Green function, yielding

∑
L

cimp,n
kL Rn

L′L(r;E) =∑
L

cnkLR
n
L′L(r;E)

+ ∑
n′
∫ r′2dr′ ∑

LL′′L′′′L′′′′
Rn
L′L′′(r;E)Gnn′

L′′L′′′′(E)Rn′

L′′′L′′′′(r′;E)

∑
L′′′′′′

∆V n′

L′′′L′′′′′′(r′)c
imp,n′

kL Rimp,n′

L′′′′′′L(r
′;E) . (A.65)

e last term on the right-hand side contains the atomic scattering matrix

∆tnL′′′′L = ∫ r′2dr′ ∑
L′′′L′′′′′′

Rn
L′′′L′′′′(r′;E)∆V n

L′′′L′′′′′′(r′)R
imp,n
L′′′′′′L(r

′;E) (A.66)

and hence equation (A.65) becomes

∑
L

cimp,n
kL Rn

L′L(r;E) =∑
L

cnkLR
n
L′L(r;E)

+∑
n′
∑
L

∑
L′′L′′′′

Rn
L′L′′(r;E)Gnn′

L′′L′′′′(E)∆tn
′

L′′′′Lc
imp,n′

kL . (A.67)

e above equation is satisĕed, if each summand of the sum over L fulĕlls

cimp,n
kL = cnkL +∑

n′
∑
L′L′′

Gnn′

LL′(E)∆tn
′

L′L′′c
imp,n′

kL′′ . (A.68)

A.6 Calculation of the Green functionGimp,nn′

LL′
atEF

Although the impurity Green functionGimp,nn′

LL′
2 is well behaved at real energyEF, its calcu-

lation via the Dyson equation becomes problematic, as the host Green function has poles at
real EF. A way out of this problem is to exploit the fact, that the Green function is analytic
for imaginary energies.
e Green function at the (real) Fermi energy can be expanded in a Taylor series according
to

Gimp(EF) ≈ Gimp(EF + iΓ) + (−iΓ)Gimp′(EF + iΓ) +
1

2
(−iΓ)2Gimp′′(EF + iΓ). (A.69)

For its evaluation we need the ĕrst and the second derivative of G at the complex energy
EF + iΓ. A numerical approximation of the ĕrst derivation is given by

Gimp′(EF + iΓ) ≈
Gimp(EF + iΓ + z) −Gimp(EF + iΓ − z)

2z
, (A.70)

2e Green function either of the unperturbed or the perturbed system is needed to calculate the impurity
coefficients cimp

kL as well as the scattering matrix Tkk′ and consequently the lifetime τk.
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and of the second derivative by

Gimp′′(EF + iΓ) ≈
Gimp(EF + iΓ + z) − 2Gimp(EF + iΓ) +G(EF + iΓ − z)

z2
. (A.71)

At this point, the analycity of the Green function is required, because under this condition
it does not matter whether z is a real or a complex number. Choosing z to be real, the
two derivatives (and the Green function itself, too) can be calculated just with the Green
function at the three energies EF + iΓ, EF + iΓ + z and EF + iΓ − z (lying on a line parallel
to the real energy axis).





APPENDIXB

Evaluation of L ⋅ S in terms of real spherical
harmonics

In order to calculate the action of the three orbital-momentum operators L+, L− and Lz
on real spherical harmonics YL(r̂), the results of eqs. (4.33), (4.35) and (4.36), namely the
action of the above operators on the basis set of complex spherical harmonicsYL(r̂), as well
as the transformations from one basis set to the other (eqs. (4.38) and (4.39)) are required.
In matrix notation, these transformations become

∣Ylm⟩ = ∑
m′
Umm′ ∣Ylm′⟩ or (B.1)

∣Ylm⟩ = ∑
m′
U †
mm′ ∣Ylm′⟩ , (B.2)

respectively, where the matrices U and U † are given by

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

i√
2

0 ⋯ 0 ⋯ 0 − (−1)
li√

2

0 i√
2

⋯ 0 ⋯ − (−1)
l−1i√
2

0

⋮ ⋮ ⋱ ⋮ . .
.

⋮ ⋮
0 0 ⋯ 1 ⋯ 0 0

⋮ ⋮ . .
.
⋮ ⋱ ⋮ ⋮

0 1√
2

⋯ 0 ⋯ (−1)l−1√
2

0

1√
2

0 ⋯ 0 ⋯ 0 (−1)l√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.3)

181



182 B. Evaluation of L ⋅ S in terms of real spherical harmonics

and

U † =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1√
2i

0 ⋯ 0 ⋯ 0 1√
2

0 1√
2i

⋯ 0 ⋯ 1√
2

0

⋮ ⋮ ⋱ ⋮ . .
.

⋮ ⋮
0 0 ⋯ 1 ⋯ 0 0

⋮ ⋮ . .
.
⋮ ⋱ ⋮ ⋮

0 (−1)l−1i√
2

⋯ 0 ⋯ (−1)l−1√
2

0
(−1)li√

2
0 ⋯ 0 ⋯ 0 (−1)l√

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (B.4)

ese transformation matrices can be used to transform a matrix M̂ from the basis set of
complex spherical harmonics (MC

mm′) to that of real spherical harmonics (MR
mm′) following

MR
mm′ = ⟨Ylm∣ M̂ ∣Ylm′⟩ = ∑

m1,m2

⟨Ylm∣ Ylm1 ⟩ ⟨Ylm1 ∣ M̂ ∣Ylm2⟩ ⟨Ylm2 ∣Ylm′ ⟩

= ∑
m1,m2

U †
m1mM

C
m1m2

Um′m2

= ∑
m1,m2

(U †)
m1m

MC
m1m2

(UT )
m2m′

. (B.5)

We can now apply the three angular momentum operatorsLz , L+ andL− on the real spher-
ical harmonics. Starting with Lz , we obtain

LzYl,−m = i√
2
[LzYl,−m − (−1)mLzYlm] (B.6)

= i√
2
[−mYl,−m −m(−1)mYlm]

= −mi 1√
2
[Yl,−m + (−1)mYlm]

= −mi Yl,m

and

LzYl,m = 1√
2
[LzYl,−m + (−1)mLzYlm] (B.7)

= 1√
2
[−mYl,−m +m(−1)mYlm]

= −m
i

i√
2
[Yl,−m − (−1)mYlm]

= mi Yl,−m.

erefore, the matrix ⟨Ylm∣Lz ∣Yl′m′⟩ becomes

⟨Ylm∣Lz ∣Yl′m′⟩ = −im δll′δm,−m′ , (B.8)



183

or, in matrix notation

⟨Ylm∣Lz ∣Ylm′⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 il

i(l − 1) 0

⋱ . .
.

⋮ 0 ⋮

. .
.

⋱
0 −i(l − 1)
−il 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (B.9)

Application of the raising operator form ≥ 2 leads to

L+Yl,−m = i√
2
[L+Yl,−m − (−1)mL+Ylm]

= i√
2
[
√
l(l + 1) +m(−m + 1)Yl,−m+1 − (−1)m

√
l(l + 1) −m(m + 1)Yl,m+1]

= i√
2
[
√
l(l + 1) +m(−m + 1)( 1√

2i
Yl,−m+1 +

1√
2
Yl,m−1)

−(−1)m
√
l(l + 1) −m(m + 1)((−1)

m+1
√
2

Yl,m+1 +
(−1)−(m+1)i√

2
Yl,−(m+1))]

=
√
l(l + 1) +m(−m + 1) [1

2
Yl,−m+1 +

i

2
Yl,m−1] +

√
l(l + 1) −m(m + 1) [ i

2
Yl,m+1 −

1

2
Yl,−(m+1)] . (B.10)

Form = −1, we obtain

L+Yl,−1 =
i√
2
[L+Yl,1 +L+Yl,−1]

= i√
2

√
l(l + 1)Yl,0 +

√
l(l + 1) − 2 [ i

2
Yl,2 −

1

2
Yl,−2] , (B.11)

form = 0

L+Yl,0 = L+Yl,0
=
√
l(l + 1)Yl,1

=
√
l(l + 1) [ −1√

2
(Yl,1 + iYl,−1)] , (B.12)

form = 1

L+Yl,1 =
1√
2
[L+Yl,−1 −L+Yl,1]

=
√
l(l + 1)Yl,0√

2
+
√
l(l + 1) − 2 [−1

2
Yl,2 −

i

2
Yl,−2] (B.13)
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and, ĕnally, form ≥ 2

L+Yl,m = 1√
2
[L+Yl,−m + (−1)mL+Ylm]

= 1√
2
[
√
l(l + 1) +m(−m + 1)Yl,−m+1 + (−1)m

√
l(l + 1) −m(m + 1)Yl,m+1]

= 1√
2
[
√
l(l + 1) +m(−m + 1)( 1√

2i
Yl,−m+1 +

1√
2
Yl,m−1)

+(−1)m
√
l(l + 1) −m(m + 1)((−1)

m+1
√
2

Yl,m+1 +
(−1)−(m+1)i√

2
Yl,−(m+1))]

=
√
l(l + 1) +m(−m + 1) [ 1

2i
Yl,−m+1 +

1

2
Yl,m−1] +

√
l(l + 1) −m(m + 1) [−1

2
Yl,m+1 −

i

2
Yl,−(m+1)] . (B.14)

us, the matrix takes the form

⟨Ylm∣L+∣Ylm′⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −
√
2l
2 0 ⋯ 0 − i

√
2l
2 0

√
2l
2 0 −

√
4l−2
2 − i

√
4l−2
2 0 − i

√
2l
2

0 ⋱ ⋱ ⋱ . .
.

. .
.

. .
.

0

0 − i
√
l(l+1)√
2

0

⋮ i
√
l(l+1)√
2

0
√
l(l+1)√

2
⋮

0 −
√
l(l+1)√

2
0

0 . .
.

. .
.

. .
.

⋱ ⋱ ⋱ 0
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√
2l
2 0 i

√
4l−2
2 −

√
4l−2
2 0

√
2l
2

0 i
√
2l
2 0 ⋯ 0 −

√
2l
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(B.15)
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For the lowering operator we obtain analogously, settingm ≥ 2,

L−Yl,−m = i√
2
[L−Yl,−m − (−1)mL−Ylm]

= i√
2
[
√
l(l + 1) +m(−m − 1)Yl,−m−1 − (−1)m

√
l(l + 1) −m(m − 1)Yl,m−1]

= i√
2
[
√
l(l + 1) +m(−m − 1)( 1√

2i
Yl,−m−1 +

1√
2
Yl,m+1)

−(−1)m
√
l(l + 1) −m(m − 1)((−1)

m−1
√
2

Yl,m−1 +
(−1)−(m−1)i√

2
Yl,−m+1)]
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√
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2
Yl,−m−1 +

i

2
yl,m+1] +

√
l(l + 1) −m(m − 1) [ i

2
Yl,m−1 −

1

2
Yl,−m+1] , (B.16)

L−Yl,−1 =
i√
2
[L−Yl,1 −L−Yl,−1]

= i√
2

√
l(l + 1)Yl,0 +

√
l(l + 1) − 2 [ i

2
Yl,2 +

1

2
Yl,−2] , (B.17)

L−Yl,0 = L−Yl,0
=
√
l(l + 1)Yl,−1

=
√
l(l + 1) [ 1√

2
(Yl,1 − iYl,−1)] (B.18)

L−Yl,+1 =
1√
2
[L−Yl,−1 −L−Yl,1]

= −1√
2

√
l(l + 1)Yl,0 +

√
l(l + 1) − 2 [1

2
Yl,2 −

i

2
Yl,−2] , (B.19)

and

L−Yl,m = 1√
2
[L−Yl,−m + (−1)mL−Ylm]

= 1√
2
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l(l + 1) +m(−m − 1)Yl,−m−1 + (−1)m

√
l(l + 1) −m(m − 1)Yl,m−1]
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2
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2
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=
√
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2i
Yl,−(m+1) +

1

2
Yl,m+1] +

√
l(l + 1) −m(m − 1) [−1

2
Yl,m−1 −

i

2
Yl,−m+1] . (B.20)
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Similar to the raising operator, the matrix of the lowering operator ⟨Ylm∣L−∣Yl′m′⟩ in terms
of real spherical harmonics ĕnally becomes

⟨Ylm∣L−∣Ylm′⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
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√
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√
l(l+1)√

2
0

0 . .
.

. .
.

. .
.

⋱ ⋱ ⋱ 0

i
√
2l
2 0 i

√
4l−2
2

√
4l−2
2 0 −

√
2l
2

0 i
√
2l
2 0 ⋯ 0
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(B.21)

However, it would not be necessary to evaluate the matrix ⟨Ylm∣L−∣Ylm′⟩ as we did, since
the raising and the lowering operator are adjunct to each other, i.e.

L†
+ = L− and (B.22)

L†
− = L+ . (B.23)

Hence, as can be veriĕed easily considering eq. (B.15) and eq. (B.21), the equality

⟨Ylm∣L−∣Ylm′⟩ = ⟨Ylm′ ∣L+∣Ylm⟩
⋆ (B.24)

holds.



APPENDIXC

Tight-binding formalism for spin-Ęip scattering
due to spin-orbit coupling

e results for the momentum and spin-relaxation times caused by scattering at impurities
as presented in chapter 6 led to quite unexpected results, as they do not fulĕll the previously
expected symmetry properties. We assumed previously that τσσ′k equals τ−σ−σ′−k for reasons
of time-inversion symmetry. As shown in chapter 6, section 6.2 at the example of a Nickel
impurity in copper bulk (see table 6.1) this is not the case if non-spherical contributions of
the potential are taken into account or if more than one impurity is considered. erefore,
a simple tight-binding model for spin-Ęip scattering due to spin-orbit coupling was devel-
oped in order to examine the symmetry properties of τσσ′k and to test whether the results
calculated with the KKR program are correct.
In the ĕrst section, the basic ideas of the formalism will be presented, while in the second
section some results obtained within this model are discussed.

C.1 Basic ideas

C.1.1 e spin-orbit Hamiltonian in the tight-binding formalism and its
eigenstates

In real space, the basis functions ∣σLR⟩ are characterized by the spin index σ, the lattice
siteR and the angular momentum L. In order to keep the formalism as simple as possible
we restrict our consideration to s and p orbitals, thus choose L ∈ (s, px, py, pz).
e total Hamiltonian is composed of an atomic partHat and the hopping partHhop,

H =Hat +Hhop. (C.1)
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In real space, the atomic part of the Hamiltonian at each lattice pointR is

Hat(R) =∑
Lσ

∣σLR⟩ ⟨σLR∣ ϵL

+ 1

2
∑

LL′σσ′
(ξLL′σσ′ ∣σLR⟩ ⟨σ′L′R∣ + ξLL′σσ′ ∣σ′L′R⟩ ⟨σLR∣),

(C.2)

where ξLL′σσ′ ∶= ξ (L ⋅ S)LL′σσ′ is the on-site matrix element of the spin-orbit Hamiltonian
and the parameter ξ determines the magnitude of the spin-orbit coupling.
For simplicity, we conĕne ourselves to simple cubic crystal structures and nearest neighbor
hopping

Hhop = δσσ′∑
RL

∑
R′L′

tLL′ ∣σLR⟩ ⟨σ′L′R′∣ , (C.3)

thus the sum over R′ comprises the nearest neighbors only. tLL′ is the hopping matrix
element which quantiĕes the hopping from the orbital L at lattice siteR to L′ at the neigh-
boring siteR′.
A change of representation to k-space makes it useful to deĕne Bloch functions

∣σLk⟩ = 1√
N
∑
R

eik⋅R ∣σLR⟩ , (C.4)

whereN is the number of atoms in the crystal and the Bloch functions are orthonormal

⟨σLk ∣σ′L′k′⟩ = δLL′δσσ′δkk′ . (C.5)

It is easy to show that the Hamiltonian is diagonal in k

Hσσ′kk′

LL′ = ⟨σLk∣H ∣σ′L′k′⟩ =Hσσ′

LL′(k)δkk′ (C.6)

with the deĕnition

Hσσ′

LL′(k) ∶= ⟨σLk∣H ∣σ′L′k⟩ =Hσσ′

at,LL′ + δσσ′ ∑
R′∈NN

eik⋅R
′
tL

0
L′
R′

. (C.7)

e eigenfunctions are expanded as

ψk = ∑
Lσ

cLσ(k) ⟨σLk)⟩ (C.8)

= 1√
N
∑
Lσ

cLσ(k)∑
R

eik⋅R ∣σLR⟩

= ∑
R

eik⋅R
1√
N
∑
Lσ

cLσ(k) ∣σLR⟩ .

ey can be found by solving the eigenvalue problem

H(k)ψk = ϵkψk . (C.9)
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e above equation can be transformed to an equation for the coefficients cLσ(k)

∑
L′σ′

Hσσ′

LL′(k)cL′σ′(k) = ϵkcLσ(k) . (C.10)

In reciprocal space, the Green function G(k; z) of the system can then be found either via
inversion or via the spectral representation

G(k; z) = (z −H(k))−1 (C.11)

= ∑
n

∣ψnk⟩ ⟨ψnk∣
z − ϵk

with z ∈ C .

Fourier transformation ofG(k; z) to real space leads to

G(R,R′; z) = 1

VBZ
∫ d3k G(k; z)eik⋅(R−R′) (C.12)

and
Gσσ′

LL′(R,R′; z) =
1

VBZ
∫ d3k ⟨σ′L′R′∣G(k; z) ∣σLR⟩ . (C.13)

eGreen function is required for the calculation of the scatteringmatrixT aswill be shown
in the next section. Furthermore, the Green function will be useful for calculating the den-
sity of states

ρ(R; z) = − 1
π
Im Tr G(R,R; z) (C.14)

where the trace denotes a summation over the diagonal elements of the matrix
Gσσ′

LL′(R,R; z).

C.1.2 Impurity scattering

In order to construct an impurity Hamiltonian and at the same time keep things as simple
as possible, we assume that only the on-site Hamiltonian changes, but the hopping stays the
same

∆H =H imp −H =H imp
at −Hat. (C.15)

For example, ∆H might be caused by a difference in the spin-orbit coupling parameter ξ
or a different on-site element ϵL, L ∈ (s, px, py, pz).
e Green functionGimp of the system including the impurity can be found via the Dyson
equation

Gimp = G +G∆H Gimp (C.16)
= [1 −G∆H ]−1 ⋅G .

It is sufficient to include the matrix elements of G at the impurity site only, if solely these
elements of Gimp are to be found. is scheme can be easily generalized to more than one
impurity, just the matrices∆H andGimp become larger.
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ϵs ϵp ξLS tss tspσ tppσ tppπ

0.0 3.0 0.5 −1.5 0.5 −2.0 0.5

Table C.1.: Parameters for the TB-problem.

e Green function Gimp is needed for calculating the scattering matrix T ; the relation
between the two quantities can be found from the Lippmann-Schwinger equation for a
scattered state ψscat

nk (which is not an eigenstate ofH) in the presence of an impurity

ψimp
nk = ψnk + ψscat

nk (C.17)
= ψnk +G∆H ψimp

nk

= ψnk +G∆H(1 +Gimp∆H) ψnk
≡ ψnk +G T ψnk ,

hence
T =∆H +∆H Gimp ∆H . (C.18)

Finally, the transition amplitude T σσ′kk′ yields

T σσ
′

kk′ = ⟨ψσnk∣T ∣ψσ
′

n′k′⟩ (C.19)

= ∑
RLσ

∑
R′L′σ′

c⋆RLσ(k)T σσ
′

LL′cRL′σ′(k′) .

e spin- and momentum relaxation times τσσ′k , σ,σ′ ∈ (↑, ↓) are then found by integrating
T σσ

′

kk′ over the Fermi surface

τσσ
′

k = ∫ d3k′ ∣T σσ′kk′ ∣2 (C.20)

= ∫
dSk′

vk′
∣T σσ′kk′ ∣2 .

C.2 Test results

For test purposes, we choose the TB-parameters as speciĕed in table C.1, which lead to a
bandstructure shown in ĕgure C.1. e hopping t-matrix tLL′ is derived from these within
the Slater-Koster-scheme [115].
e red curve reĘects the situation of a spin-orbit coupling parameter of ξ = 0.5, while the
black dots show the bandstructure of the system without spin-orbit coupling.
For the following calculations, spin-orbit coupling is chosen to be non-zero in the impurity
only, and the spin-orbit parameter ξ in the impurity Hamiltonian is set to ξ = 0.5. e
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Figure C.1.: Bandstructure of the TB-system. e black dots represent the bandstructure of the
system without spin-orbit coupling, while the red points reĘect the situation of a spin-
orbit coupling parameter of ξ = 0.5.

momentum- and spin-relaxation times or the scattering matrix T σσ′kk , respectively, are cal-
culated at E = −6.0. At this energy, the k-points at the Fermi surface are not degenerate
and the Fermi surface is almost spherical.

Single impurity

e simplest case is a single impurity at the origin

R1 =
⎛
⎜⎜
⎝

0

0

0

⎞
⎟⎟
⎠
. (C.21)

en, the momentum- and spin-relaxation times behave as

τσσ
′

k = τσσ
′

−k and (C.22)
τσσ

′

k = τσ
′σ
−k thus (C.23)

τσσ
′

k = τσ
′σ

k . (C.24)
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e ĕrst equation must be valid because the system is invariant under space inversion sym-
metry. e second equality is expected because of time-reversal symmetry, which Ęips the
spin (thus changes σ to −σ) and reverts themomentum k to −k, while the third equivalence
follows from the two upper ones.

Two impurities

Also in the case of two impurities situated at

R1 =
⎛
⎜⎜
⎝

0

0

0

⎞
⎟⎟
⎠

and R2 =
⎛
⎜⎜
⎝

1

0

0

⎞
⎟⎟
⎠
, (C.25)

the system is invariant under space inversion1, which manifests in

τσσ
′

k = τσσ′−k . (C.26)

In contrast, our calculations show that the second equality (C.23) is not valid any more,
hence

τσσ
′

k ≠ τσ′σ−k . (C.27)

e relative difference which is almost independent of the choice of the absolute value of
the spin-orbit coupling parameter ξ is

∣τ ↑↑k − τ
↓↓
−k∣ ≈ 0.1% (C.28)

∣τ ↑↓k − τ
↓↑
−k∣ ≈ 1%, (C.29)

where we have chosen a representative k-point k = (0,1.34,0.77) on the Fermi surface for
which this large deviation is found. However, the averages over the Fermi surface fulĕll

τ ↑↑ = τ ↓↓ and (C.30)
τ ↑↓ = τ ↓↑ (C.31)

up to the numerical accuracy of about 10−9.

ree impurities

When placing three impurities at the positions

R1 =
⎛
⎜⎜
⎝

0

0

0

⎞
⎟⎟
⎠

, R2 =
⎛
⎜⎜
⎝

1

0

0

⎞
⎟⎟
⎠

and R3 =
⎛
⎜⎜
⎝

0

1

0

⎞
⎟⎟
⎠
. (C.32)

1is is valid for arbitrary positions of the impurities when an appropriate center is chosen.
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k1 k2

τ ↑↑k 0.106798 0.112749
τ ↓↓−k 0.106888 0.1126949
τ ↓↓k 0.106811 0.1126480
τ ↑↑−k 0.106827 0.1126653

τ ↑↓k 8.509927 ⋅ 10−5 7.88453 ⋅ 10−5
τ ↓↑−k 8.496228 ⋅ 10−5 7.82864 ⋅ 10−5
τ ↓↑k 8.453999 ⋅ 10−5 7.882741 ⋅ 10−5
τ ↑↓−k 8.498709 ⋅ 10−5 7.912631 ⋅ 10−5

Table C.2.: Lifetimes at k1 = (0,1.29,0.83) and k2 = (1.19,0.43,0.85), two representative
k-points on the Fermi surface with large deviations for three impurities.

the system is not invariant under space inversion any more and we ĕnd

τσσ
′

k ≠ τσσ′−k (C.33)

and
τ ↑↑k ≠ τ

↓↓
k . (C.34)

Analogously to the case of two impurities we also ĕnd

τσσ
′

k ≠ τσ′σ−k . (C.35)

In table C.2 the values of τσσ′k are given at two k-points. e average over the Fermi surface
is – as for two impurities – gives

τ ↑↑ = τ ↓↓ and (C.36)
τ ↑↓ = τ ↓↑ (C.37)

up to a numerical accuracy of about 10−9.
A reĕnement of themesh chosen for thek-integration over the Fermi surface did not change
these results signiĕcantly.

C.3 Conclusion

emomentum- and spin-relaxation times calculated for the cases of two and three impu-
rities demonstrate that the expected equivalence of τσσ′k and τ−σ−σ′−k on the Fermi surface due
to time-reversal symmetry is not fulĕlled. us, within this simple tight-bindingmodel, the
same behavior of τσσ′k as within the KKR formalism is found. e reasons of this symme-
try breaking are still to be understood. However, the results obtained in this simple model
allows us to trust in the results of the much more complicated KKR formalism.
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