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Abstract

A novel scheme for detecting inhomogeneous internal currents in a fuel cell stack is sug-
gested. Plates of high conductivity, including small parallel slits, are placed between
each fuel cell in a stack. These may consist of aluminum. In this diploma thesis the
scheme is investigated for the case that the flowfield plates in use consist of graphite.
Whenever a local inhomogeneity in the current density of a particular cell occurs, cur-
rents in the adjacent metal plates emerge to compensate the difference to the next cell’s
current density distribution. Due to the slits in the metal plates, these currents are
enforced to the surface of the stack, where they can be detected more easily. Further
effects of the metal plates are first, the high conductivity of the small plates completely
prevents the inhomogeneities from spreading to neighboring cells. And secondly, even
at the particular cell the inhomogeneity is distributed equally over the undamaged area
of the cell. Thus this scheme leads to much better diagnostic possibilities and at the
same time reduces electric instabilities to an extent where they probable become harm-
less. This scheme will be explained first in a simple model to clarify the idea. But very
precise 3 dimensional computations using realistic parameters, representing real fuel cell
materials, are presented corroborating the results of the simple model. On the basis of
the measured surface currents, information about anomalies of the currents in the MEA
can be obtained by using the methods of tomography. Unfortunately tomography alone
does not lead to unique results in this case. But when assuming plausible defect struc-
tures one can exclude improbable deficiencies by applying a special form of simulated
annealing. In this way most defects can be localized and their extent be determined.
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Zusammenfassung

Es wird ein neuartiges Schema zur Bestimmung ungleichmäßiger interner Ströme in
einem Brennstoffzellen Stapel vorgeschlagen. Platten hoher Leitfähigkeit, die kleine par-
allele Schlitze enthalten, werden zwischen jede Brennstoffzelle in einem Stapel gesetzt.
Diese können zum Beispiel aus Aluminium bestehen. In dieser Diplomarbeit wird dieses
Schema für den Fall untersucht, dass die Bipolarplatten aus Graphit bestehen. Tau-
chen Inhomogenitäten in der Stromdichte einer Zelle auf, bilden sich Ströme in den
anliegenden Metallplatten, welche den Unterschied zu der Stromdichteverteilung der fol-
genden Zelle ausgleichen. Die Schlitze in der Platte zwingen diese Ausgleichsströme an
die Oberfläche des Stapels, wo sie besser detektiert werden können. Weitere Effekte der
Metallplatten sind erstens, dass es durch die sehr hohe elektrische Leitfähigkeit möglich
ist die Stromdichteverteilungen der einzelnen Brennstoffzellen voneinander zu entkop-
peln, wodurch Ungleichmäßigkeiten im elektrischen Strom sich nicht mehr auf benach-
barte Zellen ausbreiten können. Und zweitens, dass sogar in der defekten Brennstoffzelle
die Stromverteilung so ausgeglichen wird, dass es zu keinen Stromspitzen an Rändern
von Defekten kommt. Dieses Schema führt somit sowohl zu viel besserer Diagnostik als
auch zu einem stabileren Betrieb von Brennstoffzellenstapeln. Zuerst wird diese Methode
in einem einfachen analytischen Modell erläutert. Allerdings werden dessen Ergebnisse
durch sehr präzise dreidimensionale Berechnungen unter Verwendung realistischer Para-
meter, die reale Brennstoffzellenmaterialien repräsentieren, untermauert. Auf Basis der
gemessenen Oberflächenströme können, durch Verwendung von tomographischen Ver-
fahren, Informationen über Strom Anomalien erhalten werden. Unglücklicherweise führt
in diesem Fall das Anwenden von Tomographie allein zu keinen eindeutigen Ergebnis-
sen. Allerdings durch Annahme sinnvoller Defektstrukturen ist es, durch die Anwendung
einer speziellen Art von Simulated Annealing, möglich unwahrscheinliche Mängel auszu-
schließen. Auf diesem Weg können die meisten Defekte lokalisiert und deren Ausdehnung
bestimmt werden.
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1 Introduction

A fuel cell is a galvanic element similar to a battery. A galvanic element converts chemical
energy directly into electrical energy. In a battery the reducing agent and the oxidizing
agent are stored inside. If all of the reducing agent is oxidized and all of the oxidizing
agent is reduced, the battery is depleted and cannot produce any more current. In
an accumulator battery the electrochemical processes occurring in the discharge can be
reverted by applying an opposite current. Thus the battery can be recharged, at least
partly, since memory effects1 may prevent the completion of this process. Contrary to
the battery, the fuel cell converts chemical energy of constantly added fuel into electrical
energy. As fuel cells cannot deplete, there is in principle no upper limit for energy
conversion, but in fact degradation takes place. Thus a fuel cell has also a limited
lifetime, which does not depend on a specific amount of stored fuel. The causes of
degradation are manifold and part of current research. Due to the wide spectrum of
degradation effects the maximal lifetime of fuel cells vary between a few thousand hours
and some ten thousand hours [1, 2]. Better diagnostics for fuel cell applications and
stabilization of the operation by inhibition of damage spread would clearly contribute
to a longer and more stable lifetime.

The heart of a low temperature fuel cell is the Membrane Electrode Assembly (MEA)
covered on both sides with flowfield plates (typically consisting of graphite or steel[3]), in
which the gases or fluids of the fuel as well as the exhaust gases are transported. Since a
single fuel cell can typically produce a voltage of about 0.3 V (DMFC), 0.7 V (PEMFC)
to 0.9 V (SOFC) [4] only, several or many (about 100) fuel cells are connected - usually in
series - forming a stack[5]. There are interesting modifications of connecting fuel cells[6]
but for simplicity only the standard case (c.f. Fig. (1.1)) is taken into consideration.

It is not a trivial engineering task to keep even a single fuel cell in a stable state[7] for
a very long period even if the power requirements remain constant over that period. The
efficiency depends on the temperature, humidity[8] of the polymeric electrolyte2 and on
fuel as well as exhaust gas conditions[9, 10, 11]. All this can lead to irregularities in
the local electric current density produced by the MEA. Therefore the current density
can differ by a factor of 1.5 - 3 in a single MEA[12, 13, 14]. And here lies a problem
of the stack: An irregular electric current of one cell, still harmless for this one, may
accumulate due to the fact that the next fuel cells in series or the preceding ones or both
are influenced by these irregularities[15].

1The memory effect occurs in some types of accumulators, if recharged prior to complete depletion.
E.g. in a NiCd accumulator cadmium crystals are eliminated and are by that no longer available
for the electrochemical reaction.

2Of course this problem occurs only in fuel cells, whose electrolyte is in fact a polymer membrane,
namely proton exchange membrane fuel cell and direct methanol fuel cell.
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6 CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic view of a standard low temperature (less than 250◦C) fuel cell
stack with 4 single cells. The 4 Membrane Electrode Assembly (MEA) plates containing
two catalytic and one electrolyte layers each are embedded between the flowfield plates.

It is therefore mandatory

� to have good diagnostics available by which irregularities of the currents occurring
at one cell can be detected enabling to change parameters and thus reduce the
irregularities.

� finding some means effectively suppressing the tendency for irregularities.

If one cell gets damaged (due to e.g. oxidation of the catalyst) it is difficult to locate the
particular cell. For a single cell some diagnostic methods to gain knowledge about the
current density distribution are known. Three methods have been presented by Stumper
et al. [16], the partial MEA approach, the sub-cell method and the current distribution
mapping. The last method is the most advanced one of these three, because it provides a
highly resolved current density map by measuring the current directly at many locations
of the cell. Although the method is highly advanced, it can only be applied to a single
fuel cell and is not eligible to be applied to a fuel cell in a commercial product. Diagnostic
methods, which can be applied to a fuel cell stack are the electrochemical impedance
spectroscopy (EIS) [17] and the current interruption method [18]. Using these methods
one can gain knowledge about different kinds of defects in a particular fuel cell of a stack.
However, it provides only integrated information for entire cells. A further possibility
consists of measuring the magnetic field and obtaining information about inner currents
by applying magnetotomography[19, 20]. At first sight this method looks very promising,
but suffers from the difficulty that the fields to be measured are small (of the order of
the magnetic field of the earth). In fact hitherto the method has only been discussed for
single cell problems[21].

A scheme which fulfills both the above requirements is developed[34]. In the present
form it is most easily applied to stacks with graphite flowfield plates. The idea is simple:
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Highly conducting plates (e.g. made of aluminum) positioned between the cells will
enforce a smoothing of the normal currents in the MEAs of the cells. (Throughout this
thesis normal currents denote currents pointing in stack direction3. All currents being
orthogonal to normal currents are called transverse currents. The same nomenclature
holds for conductivities.) However, this smoothing out can be achieved only by non
negligible transverse currents in the plates. Now slits appropriately placed in the highly
conducting plates should guide these parallel currents to the surface of the stack where
they can be detected. At the same time the highly conducting plates should suppress
any spreading of irregular currents to the adjacent fuel cells in series.

In chapter 2 an overview about the functionality of fuel cells is given. The basics about
fuel cell operation and their efficiency is discussed. At the end of this chapter a short
survey about some types of fuel cells is presented. The advantages and disadvantages of
each type of fuel cells are evaluated. In chapter 3 the above outlined scheme is applied
to a simple model containing plates of perfect conductivity. It will be shown that it is in
principle possible to get information about the state of individual cells and the location
of defects in a cell. Furthermore the inverse problem is adumbrated, which contains the
determination of the MEA condition on the basis of the stack surface currents. At this
point it will be shown, that problems occur, which cannot be solved by the simple model.
First, parasitic effects emerge in real fuel cells reducing the surface currents. Secondly,
the spreading of current irregularities and their inhibition by metal plates cannot even
be estimated by the simple model. Thirdly, due to the small number of surface currents,
the tomographic problem is not unique. These are the three major issues of this diploma
thesis. In chapter 4 first the finite-volume method is presented. This method is eligible
to calculate potentials (e.g. the electric potential φ, the magnetic vector potential ~A or
the air pressure p) in a complex body. Subsequently, the simulated annealing method
is described. It is a generic statistical optimization algorithm based on the principle of
crystallization in nature. Using this, it is possible to find a global minimum among many
local ones. In the following chapter the computations regarding the forward problem4 are
repeated but now for a realistic stack with realistic parameters. This requires solutions
of partial differential equations in 3 dimensions, which are done by the finite-volume
algorithm. It will turn out that the results of the simple model are usable in many cases
at least in first order. On the other hand the practical applicability and the extent of the
smoothing can only be verified by these numerical computations. The last point in this
chapter is the numerical computation of the numerical basis for the inverse problem. It
is used to investigate how and to which extent it is possible to determine the condition
of the MEA if only the surface currents in the slitted metal plates are known. This
investigation is the content of chapter 6. At the end of the thesis a conclusion summing
up all results is given.

3The normal currents, pointing in stack direction must not be mistaken for the normal current densities
used in the finite-volume method (c.f. Chapter 3), which are defined differently.

4The calculation of the current density distribution in the fuel cell for a given MEA condition.
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2 Fuel cell functionality

2.1 Operating principle

As mentioned in the introduction a fuel cell is a galvanic element, which converts chemical
energy of constantly added fuel into electrical energy. A galvanic element consists of an
electrolyte, a cathode, an anode and a casing. To produce an external electrical current
between the electrodes, the anode needs to be surrounded by fuel and the cathode by
an oxidizing agent. In fuel cells different kinds of fuels, like natural gas, methanol or
hydrogen, can be used (depending on the electrolyte). On the cathode side there is only
the choice between pure and atmospheric oxygen. The reaction is more efficient if pure
oxygen is used, nevertheless air has the advantage of being cheap and omnipresent in
terrestrial applications. The most efficient reaction occurs if hydrogen is used as fuel
and pure oxygen as the oxidizing agent. It is in addition the simplest reaction from a
chemical point of view. A mixture of oxygen and hydrogen is called detonation gas,
which reacts highly exothermic. In an exothermic reaction chemical energy is released.
Though by burning the detonation gas the chemical energy is completely converted into
heat. In the direct reaction

H2 +
1

2
O2 → H2O (2.1)

a total reaction enthalpy1 of about ∆HH20l = −286 KJ · mol−1 is released2, if water
is produced in liquid form. However, in a fuel cell the direct reaction is prevented by
keeping fuel and oxidizing agent separated. The total reaction is divided into the fuel
oxidation at the anode and the oxygen reduction at the cathode:

H2 → 2H+ + 2e−, anode reaction (2.2)

1

2
O2 + 2H+ + 2e− → H2O, cathode reaction (2.3)

1The reaction enthalpy ∆H is the change of heat. The inner energy U of a substance is primarily
given by the binding energy of its atoms. The change of inner energy ∆U in a reaction causes a
pressure-volume work p∆V and a change of heat. Thus, ∆H is given by the change of inner energy
minus the pressure-volume work: ∆H = ∆U + p∆V (in an exothermic reaction ∆U and ∆H is
negative).

2If chemical energy is released in a reaction, it is called an exothermic reaction and the change of
reaction enthalpy is negative. If energy needs to be added to the reactants to keep the reaction
running, it is called an endothermic reaction and the change in reaction enthalpy is positive.

9
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Figure 2.1: Schematic view of a hydrogen-oxygen fuel cell. The hydrogen is blown
through the anode flowfield. On the surface of the catalyst inside of the porous anode,
the hydrogen molecules are dissociated and the hydrogen atoms are ionized. The H+

ions permeate across the, electronic isolating and gas blocking, membrane, whereas the
electrons pass through an external load. On the cathode side the oxygen dissociates and,
together with the hydrogen ions, it is electrochemical reduced to water.

Following the Hess’s law3, the change in the reaction enthalpy in the fuel cell is equal
to the one in the direct reaction. Since the direct detonation gas reaction needs thermal
energy (the activation energy of an exothermic reaction) in form of a flame or a spark to
start, the divided reaction in the fuel cell does not start under normal conditions as well.
In low temperature fuel cells there is nearly no thermal energy added, but rather the
activation energy of the reactions at the electrodes is lowered by a catalyst. Often the
catalyst consists of platinum, because of its high stability in oxidizing and in reducing
environment. Since the thermal energy in a high temperature fuel cell is much higher,
the catalyst can be less noble. The thermodynamic aspects of the fuel cell reactions are
discussed in the following section in more detail.

As any galvanic element a fuel cell consists of an electrolyte, a cathode and an anode,
the unification of these components is called Membrane Electrode Assembly (MEA).
Additionally, there are flowfields on both sides of the MEA to distribute the fuel over
the anode surface, and the oxygen respectively over the cathode surface. Since gas

3The Hess’s law has been formulated in 1840 by Germain Hess: The change of reaction enthalpy is
constant, no matter if it runs directly or via many sub-reactions.[24]
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has to reach the electrolyte, the electrodes are porous. In fact the reactions listed in
Eq. (2.2) and Eq. (2.3) take place only at Three Phase Boundaries (TPB), where gas
phase, electric conducting catalyst and the ion conducting electrolyte are in contact.
The reason is obvious: the hydrogen molecules from the gas phase dissociate on the
catalyst surface and then ionize releasing electrons. The hydrogen could also ionize at
an arbitrary location on the catalyst surface, but since the ions cannot migrate to the
cathode without contact to an ion conductor, they will eventually recombine. As the
ions migrate through the membrane, and the electrons cannot, it is possible to bypass
the electron current via a load. Further details of the fuel cell structure are shown in
Fig. (2.1).

2.2 Thermodynamic aspects

The second law of thermodynamics: The entropy in a closed adiabatic system tends
to increase. Only in a reversible process the change of entropy is zero.

∆S ≥ 0 (2.4)

Due to the second law of thermodynamics Eq. (2.4) only a part of the reaction enthalpy
can be transferred into electrical energy. The convertible energy is called Gibbs free
energy and is given by:

∆G = ∆H − T∆S (2.5)

Here T denotes the absolute temperature of the system and T∆S the heat produced in
the reaction due to the change of entropy. Hence, the generates electrical energy Wel is
given by ∆G, if no other losses occur4:

Wel = ∆G (2.6)

The molar electric energy is given by the transferred charge −n · F times the voltage
U0, where F = NA · e is the Faraday constant and NA is the Avogadro number. F is the
total charge of a mol electrons, and n is the number of transferred electrons in a reaction
(c.f. Eq. (2.2) and Eq. (2.3)). In a galvanic element the Open Circuit Voltage (OCV)
U0 is the voltage between the electrodes without any current flowing. The open circuit
voltage is historically called electromotive force. But since U0 have the dimension of a
voltage and not that of a force, this name is misleading and U0 is referred to as OCV.
Thus, the Gibbs free energy of the reaction can be written as:

∆G = −n · F · U0 (2.7)

Respectively the OCV as:

U0 = − ∆G

n · F
(2.8)

4Obviously, this is not the fact in reality, since further energy is converted into heat due to other
processes (e.g. Ohm losses). For further details see section 2.4.
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Under normal conditions5 the Gibbs free energy is ∆G0 = −237 KJ ·mol−1, if water is
produced in liquid form. Therefore the OCV under normal conditions is:

U0
0 =

237 KJ ·mol−1

2 · 96494 C ·mol−1 = 1.23V (2.9)

To calculate the OCV for arbitrary temperatures, the temperature dependency of U0

has to be investigated:(
∂U0(T )

∂T

)
p

= − 1

n · F
· ∂
∂T

(∆H − T∆S) (2.10)

=
∆S

n · F

If the reaction entropy is constant over a temperature interval ∆T , the temperature
dependent OCV can be obtained by integration:

U0(T ) =

ˆ T

T0

(
∂U0(T ′)

∂T ′

)
p

dT ′ =
∆S

n · F
(T − T0) + U0

0 (2.11)

Since it is not an easy task to determine the entropy change ∆S by experiment, the OCV
is measured for different temperatures. As voltage is a relative quantity, the measure-
ment of the electrode potential requires a reference point. A list of electrode voltages
in reference to the Normal Hydrogen Electrode (NHE) H/H+ is given in Literature
(e.g.[24]). To calculate the actual OCV of a galvanic element, the voltages of both
electrodes in reference to the NHE can be looked up and subtracted:

∆U0
0 = U0

0|cathode − U0
0|anode (2.12)

For arbitrary conditions, the electrode potentials can be calculated by the
Nernst equation[27]

U0 = U0
0 +

R · T
n · F

· ln

( ∏
i a

νi
i|ox∏

j a
νj
j|red

)
(2.13)

where R denotes the gas constant, ai|ox the chemical activity6 of the oxidizing species,
aj|red the chemical activity of the reducing species and νi,j the corresponding stoichio-
metric coefficient. In the case of the hydrogen fuel cell, in which liquid water is produced,

5pressure p0 = 1013 hPa, temperature T 0 = 25°C
6By the activity coefficient f (0 ≤ f ≤ 1) corrected mole fraction c to describe the deviation from the

law of mass action. For higher mole fractions the activity coefficient deviates stronger from unity.
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the electrode potential can be calculated by:

U0
anode = U0

0|H/H+ +
R · T
2 · F

· ln
(
a2
H+

aH2

)
(2.14)

U0
cathode = U0

0|O2/H+ +
R · T
2 · F

· ln
(√

aO2 · a2
H+

aH2O

)
(2.15)

If the gases are ideal, the activities ai are equal to their partial pressures pi. If only
liquid water is produced in the cathode, the activity of water aH2O is unity. Under
normal conditions with an air breathing cathode this leads to

U0
anode = 0 (2.16)

U0
cathode = 1.23V +

8.314 J ·mol−1 ·K−1 · 298 K

2 · 96485 C ·mol−1 · ln
(√

0.21
)

= 1.219 V (2.17)

as U0
0|H/H+ is exactly the potential of the NHE (by that zero per definition) and both pH+

and pH2 are one. Thus the open circuit voltage of a hydrogen/air fuel cell
is ∆U = 1.219 V.

2.3 Fuel cell polarization

Even though it is possible to calculate the theoretical open circuit voltage by Eq. (2.13),
it can not be measured in a real fuel cell. Gas permeation across the membrane can
occur by which the direct reaction takes place at the cathode. On the one hand the
chemical energy stored in the permeated fuel is converted into heat and is thus lost. On
the other hand the permeation leads to mixed potentials. Since there is a finite partial
pressure of fuel at the cathode, the one of the oxidizing agent is reduced and by that the
OCV (c.f. Eq. (2.13)). As the permeation is independent of the current drawn from the
fuel cell, it leads to a constant offset in the polarization curve U(j).

Under load there are various effects decreasing the cell voltage. These effects are
typically quantized as overpotentials7 η, which is the deviation of the actual cell voltage
U from the theoretical open circuit voltage:

η = U − U0 (2.18)

The most important overpotentials are:

� Activation overpotential ηA

� Ohmic overpotential ηΩ

� Concentration overpotential ηC

7The overpotential is also called overvoltage or polarization.
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Figure 2.2: The activation overpotential ηA is divided into anodic activation losses ηa
and cathodic activation losses ηc. The Ohmic losses are identified by ηΩ = IR. The
dashed line indicates the voltage without any current drawn from the fuel cell. The
continuous line indicates the situation under load.[25]

Ohmic losses occur in all fuel cell parts, but the other two effects take place at the
electrodes. Thus they can be separately observed at the anode and at the cathode. The
activation overpotential combined with the Ohmic losses across the MEA is shown in
Fig. (2.2).

2.3.1 Activation overpotential

Even if no current is drawn from the fuel cell, the reactants dissolve and ionize. Thus
surface charges form at the electrode/electrolyte interface. The positive ions concentrate
in the electrolyte and the electrons in the electrode. Although the MEA is globally still
neutral, an electric field analogous to the one of a plate capacitor forms at the interface.
This electric double layer is a further barrier for the ionized species to overcome. So
the total potential barrier is given by the intrinsic activation energy of a reaction step
plus the double layer potential. Even though the barrier has to be overcome in each
reaction step including a material transition, the activation overpotential is given only
by the Rate Determining Step (RDS)8. The current density limited by the activation

8A reaction can be divided into individual steps, like fuel adsorption on the catalyst or the ionization.
Since the reaction rate of the overall reaction is determined by each step, there is always one step
with the slowest kinetic. This, figuratively spoken, weakest link of the reaction chain is the rate
determining step.
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catalyst j0
0 [ mA

cm2 ]

lead 2.5 · 10−13

tin 3.0 · 10−11

silver 4.0 · 10−7

nickel 6.0 · 10−6

platinum 5.0 · 10−4

palladium 4.0 · 10−3

Table 2.1: Typical reference exchange current densities at normal conditions for various
metals.[28]

overpotential is given by the Butler-Volmer Equation[27]:

j = j0

[
exp

(
α · ηA · n · F

R · T

)
− exp

(
−(1− α) · ηA · n · F

R · T

)]
(2.19)

Besides the known quantities, there is the transfer coefficient α and the exchange current
density j0 in the Butler-Volmer equation. The transfer coefficient α denotes the fraction
of the change in activation overpotential, which leads to a change in the reaction rate.
For fuel cells this is typically α = 0.5. If no current is drawn from the fuel cell, both
exponential functions are equal, since the first one represents the anodic partial current
density and the second one the cathodic partial current density. The exchange current
density j0 is a function of the effective catalyst surface9 a, the molar fractions of the
reactants at the electrode x and a reference exchange current density j0

0 :

j0 = j0
0 · x · a (2.20)

The reference exchange current density depends strongly on the catalyst material. Typi-
cal values are given in Tab. (2.1). For a hydrogen/oxygen fuel cell, the hydrogen oxidation
is much faster than the oxygen reduction. Thus the oxygen reduction is the rate deter-
mining step. Under disregard of the anodic activation polarization the Butler-Volmer
equation simplifies to:

j = −j0 · exp
(
−α · n · F

R · T
ηA,c

)
(2.21)

Thus the cathodic activation overpotential is given by:

ηA,c = − R · T
α · n · F

· ln
(
|j|
|j0|

)
, with j < 0 (2.22)

9The effective catalyst surface is the ratio of the active catalyst surface to the geometrical one.
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Which is equal to the empirical Tafel equation

|ηA,c| = b · ln
(
|j|
|j0|

)
(2.23)

with the Tafel slope b.

2.3.2 Ohmic overpotential

All electron conductors have finite electronic conductivity and all ion conductors have
finite ionic conductivity. Since there are both kinds of conductors present in a fuel
cell, Ohmic losses can also be found in fuel cells. Ionic resistances ρion emerge in the
membrane and in the electrode, electronic resistances ρe can be found in the electrode
and flowfield plates. Furthermore there are contact resistances between different parts
of the fuel cell. As these surface effects can be allocated to either electronic or ionic
resistances, they are included in either ρe or ρion. Altogether these resistances lead to
the Ohmic overpotential

ηΩ = j(ρion + ρe) (2.24)

with the specific resistances ρion and ρe.

2.3.3 Concentration overpotential

As soon as current is drawn from the fuel cell, the reactants at the electrodes are con-
sumed in the reactions. Therefore the concentration of fuel in the direct vicinity of the
anode and the concentration of oxygen respectively in the direct vicinity of the cathode
drops immediately. Due to diffusion the reactants are transported from the flowfield to
the TPB, where the reactions take place. At high current densities the fuel and the
oxygen is consumed rapidly. Since the diffusion rates in the electrodes are finite, the
reactants may not be transported fast enough across the electrode to compensate the
consumption. Based on the Butler-Volmer equation, the concentration overpotential can
be written as:

ηC =
2 ·R · T
n · F

·
[
ln

(
cred

c0
red

)
− ln

(
cox

c0
ox

)]
, with α =

1

2
(2.25)

Here, cox is the concentration of the oxidizing species at the cathode surface, whereas
c0

ox is the concentration of the oxidizing species in the current free case. The same holds
for the concentrations of the reducing species cred and c0

red at the anode surface. The
more current is drawn from the fuel cell, the lower the reactant concentration at the
electrode surfaces. One can deduce, that there is a limiting current density, at which
the concentration of one reactant at the respective electrode surface is zero. Due to
the logarithmic dependency, ηC increases rapidly for low concentrations. In virtue of
the larger molecule size of oxygen in comparison to hydrogen, the hydrogen diffusion
is higher than the on of oxygen. Thus the anodic concentration overpotential can be
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Figure 2.3: A typical polarization curve is governed by the activation overpotential ηA

in the low current density domain, by the Ohmic overpotential ηΩ in the intermediate
domain, and by the concentration overpotential ηC in the high current density domain.
The relation of the losses due to the total overpotential ηtot to the remaining cell voltage
Ucell is shown at a possible operating point.

neglected and the oxygen diffusion becomes the rate determining step at high current
densities. Although the fuel diffusion can be neglected at the hydrogen/oxygen fuel cell,
the situation is different for the Direct Methanol Fuel Cell (DMFC), in which the anode
is flooded by a water-methanol mixture and carbon dioxide is produced at the anode.
Hence the fuel diffusion to the three phase boundaries is hindered by the evacuation of
the CO2.

2.3.4 The fuel cell polarization curve

These three effects together lead to the typical fuel cell polarization curve. A schematic
view of the curve is given in Fig. (2.3). It can be unambiguously divided into three
domains. In the low current density domain the activation overpotential leads to a dip.
As mentioned before, the activation overpotential is mostly given by the catalyst. Thus,
if the catalytic active area is increased, or if palladium is used for the catalyst, the
voltage loss in the low current density domain will be reduced. Since these voltage losses
affect the cell voltage even at higher current densities, the improvement of the catalyst
leads to a higher cell voltage at all current densities.

The polarization curve in the intermediate current density domain has a constant
slope, as it is governed by Ohmic losses. To attenuate the voltage losses in the interme-
diate domain, the resistances of fuel cell components have to be reduced. This could be
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Figure 2.4: Associated with the polarization curve demonstrated in Fig. (2.3) is a power
density curve p(j). Since the electric power density is given by p = j · U and the cell
voltage drops at high current densities, the fuel cells power density has a maximum
pmax. It should be mentioned, that the maximal power density might not be the optimal
operating point, since the cell voltage and by that the fuel cell efficiency (c.f. section 2.4
paragraph “Voltage efficiency”) could already be too low at this current density.

accomplished by diminishing the MEA thickness.

At high current densities, the reactant diffusion to the electrodes becomes the rate
determining step. This effect cannot be lowered or even wiped out. However, it is
possible to shift the limiting current density to higher values by improving the electrode
porosity.

It is possible to define a resistance at the operating point UOP in the polarization curve
by ρ = ∂UOP/∂j. If this point is located in the Ohmic domain, the linearized resistance
is valid for rather large deviations ∆U = U − UOP. This operating point resistance will
be important at a later point.

Usually it is meaningful to estimate the fuel cell performance on basis of its max-
imal electrical power. Therefore power density curves (c.f. Fig. (2.4)) are interesting
evaluation tools.

2.4 Fuel cell efficiency

The greatest advantage of fuel cells in comparison to classical combustion engines is the
maximal efficiency, since it is not limited by the Carnot efficiency:

ηcarnot = 1− Tlow

Thigh

(2.26)
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Thus it is possible to convert much more chemical energy per mol fuel into electrical
energy than e.g. in a gas power plant. If fuel cells are used as electrical energy sources
for electrotraction, they have to compete with the efficiency of diesel engines, which is
less than 45%. But even if the fuel cell efficiency is not bound to the Carnot efficiency,
the actual one is much below 100%.

There are some effects determining the overall fuel cell efficiency:

� thermodynamics

� internal voltage losses

� fuel permeation across the membrane

Thermodynamic efficiency The theoretical maximal efficiency of the fuel cell is given
by thermodynamics. Due to the second law of thermodynamics (c.f. Eq. (2.4)) the en-
tropy tends to increase. Thus a fraction of the reaction enthalpy ∆H is always converted
into heat. This fraction is given by the change of entropy and the absolute temperature
T∆S. Therefore, the thermodynamic efficiency is given by:

εth =
∆G

∆H
= 1− T∆S

∆H
(2.27)

The change of reaction enthalpy in Eq. (2.1) is ∆H = −286 KJ ·mol−1. Under normal
conditions with liquid water as the product, the Gibbs free energy is ∆G = −237 KJ ·
mol−1. Thus the thermodynamic efficiency of the hydrogen/oxygen fuel cell is:

εth =
237 KJ ·mol−1

286 KJ ·mol−1 = 0.82 (2.28)

This value strongly depends on the chemical reaction. For example the entropy change
of the C + 1/2O2 → CO reaction is negative, which can occur in high temperature
fuel cells. Therefore, the thermodynamic efficiency of this reaction is larger than one.
Though all reactions comes along with positive entropy changes, which are interesting
for fuel cell applications.

Voltage efficiency In virtue of Ohmic losses a resistor in an electrical circuit heats
up. The dissipated power is given by P = RI2, with the resistance R of the resistor.
This also happens in all electric and ionic conducting materials of fuel cells. A further
fraction of the cell voltage is used to run the chemical reaction, which is given by the
activation loss. The voltage efficiency combines all losses due to electrode kinetics and
Ohmic losses. It is defined by the measurable open circuit voltage U0 and the actual cell
voltage U at a certain current density:

εV =
U

U0

(2.29)
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This efficiency has typically a value of about:

εV ≈ 0.7 (2.30)

Current efficiency The current efficiency is a combination of the Faradaic efficiency εF
and the fuel utilization N . As it is hardly possible to distribute the fuel homogeneously
throughout the MEA, more fuel is blown across the flowfield channels than necessary
to run the reaction. The fraction of the fuel injected into the flowfield to the actual
needed fuel denotes the utilization. This modifiable factor is typically set to 0.85 [29].
The Faradaic efficiency includes fuel losses due to permeation or leakage. It is defined
as the fraction of the cell current I to the theoretical current depending on the reaction
speed10 v.

εF =
I

Itheo
=

I

F · n · v
(2.31)

Thus the current efficiency is given by:

εC = εF ·N =
I ·N
F · n · v

(2.32)

If pure hydrogen and pure oxygen is used and neither fuel permeation nor fuel leakage
occurs, the Faradaic efficiency is one. In this case the current efficiency is equal to the
fuel utilization:

εC ≈ 0.85 (2.33)

Overall efficiency The overall fuel cell efficiency is the product of all individual effi-
ciencies:

εFC = εth · εV · εC =
∆H − T∆S

∆H
· U
U0

· I ·N
F · n · v

≈ 0.5 (2.34)

In this example the efficiency is just by a little margin higher than the maximal diesel
engine efficiency. But the spectrum of fuel cell systems is very broad and the efficiency
of these differ strongly. By improving the electrode kinetics or running the fuel cell at
lower current densities it is possible to increase the efficiency. Furthermore if the fuel
utilization is unity, which could be accomplished by fuel recirculation, the efficiency in
this example would be about εFC ≈ 0.58. The maximal diesel efficiency is obtained
only under perfect conditions. For example, the diesel engine efficiency of a car in a
traffic congestion drops down to less than 10%. The efficiency of a possible fuel cell
driven car would still be much higher. In Fig. (2.5) an efficiency comparison of different
power generating systems is presented, which also shows the broad spectrum of fuel cell
efficiencies.

Eq. (2.34) represents the electric energy only. If thermal discharge is also used by
power-heat coupling, an efficiency of about 85% is possible.

10The reaction speed is defined as the fuel quantity in numbers of mol, which is consumed per second.
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Figure 2.5: The efficiency of power generators varies as a function of the scale. The
efficiency domain of the fuel cell is very broad, which is due to the large spectrum of fuel
cell systems.[26]

2.5 Fuel cell types

There are many different types of fuel cells. The division between fuel cell types is done
by the electrolyte, except for the direct methanol fuel cell, which is a special type of the
proton exchange membrane fuel cell. This is meaningful, as the electrolyte determines
which kind of ions are transported, which temperature range the fuel cell can be run
in and which catalyst can be used. Each type of fuel cells has its own advantages and
drawbacks. However one common reasons why they are not produced in series yet is,
that all fuel cell types are too expensive, and therefore cannot compete with state of the
art power generators.

2.5.1 Proton exchange membrane fuel cell (PEMFC)

The heart of the PEMFC is the proton conducting polymer membrane. For the time be-
ing fuel cells with Nafion membranes have the highest power density among the PEMFCs.
Similar to Teflon, the Nafion membrane consists of polymer chains. While the Teflon
polymers are linear chains of CF2 monomers, the Nafion chain has additional sulphonal
groups (SO3H). If water is added to the polymer, the sulphonal groups dispense hy-
drogen ions. Hence the membrane becomes proton conductive when humidified. The
electrodes are usually made of platinum-particle containing carbon-carriers. Either pure
hydrogen or hydrogen from reformation processes is feed into the PEMFC. The cathode
can be flooded by pure oxygen or by air. Since the PEMFC is a hydrogen/oxygen fuel
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cell and the transported ion is the proton, the oxidizing of hydrogen at the anode and
the oxygen reduction at the cathode are given by the reaction equations Eq. (2.2) and
Eq. (2.3).

The PEMFC can produce high power densities of some hundred milliwatts per square
centimeter. It has high mechanical stability and operating times of some ten thousand
operating hours. As mentioned before, the electrochemical reaction only takes place at
the three phase boundaries, and in the direct vicinity. Therefore all platinum particles
are useless, which are not located at a three phase boundary. This leads to platinum
usages being one order of magnitude higher than economically tolerable. Furthermore,
the ion conductivity of the Nafion membrane depends on the humidification, which leads
to a complicated water management. If the humidification is too low, the membrane
drys out and the conductivity drops to zero. If the humidification is too high, the
membrane erodes and the conductivity drops, too. In addition, the platinum catalyst
is very sensible to carbon monoxide poisoning, as the CO molecule binds the active
locations of the catalyst and occupy them for a long time.

2.5.2 Direct methanol fuel cell (DMFC)

As mentioned before, the DMFC is a modification of the PEMFC. The fuel cell design
is equal to the design of the PEMFC, but the reactions are rather different. In contrast
to the gaseous hydrogen in the PEMFC, the fuel in this type is feed in liquid form. It
is a water-methanol mix. The methanol oxidation at the anode can be described by the
following stoichiometric formula:

CH3OH +H2O → CO2 + 6H+ + 6e− (2.35)

Since protons are transported across the membrane as well, the oxygen reduction is equal
to Eq. (2.3).

Storing hydrogen is still a major issue, since the density is even under a pressure of
200 bar very low. Furthermore the hydrogen compression is a highly energy consuming
process. But as the fuel is feed in liquid form into the DMFC, no gas tanks are required.
Since methanol can be stored in liquid form under a pressure of 8 bar, only simple tanks
are necessary. Therefore the peripheral systems of the DMFC are less complex and less
expensive. Thus it is even possible to build very small fuel cell systems (e.g. as an
energy source for cell phones). The water in the liquid fuel ensures the humidification
of the membrane, thus no membrane dehydration occurs.

In spite of the advantages of the DMFC there are a lot of drawbacks. The reaction
kinetics at the anode are slower than in the PEMFC. This leads to lower power densities
and higher platinum loads. In fact the required platinum is by a factor of twenty higher
than in a PEMFC. Furthermore CO2 is produced in the electrochemical reaction, which
needs to be removed from the anode to ensure high fuel concentration at the three phase
boundaries. Thus a lower maximal current density due to concentration overpotential
can be expected.
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2.5.3 Alkaline fuel cell (AFC)

The electrolyte in the alkaline fuel cell is a liquid base. Mostly it is concentrated caustic
potash (KOH). For low temperature applications (60°C − 90°C) the concentration is
about 35-50 wt.-% . The AFC had been applied in the Apollo space shuttle program,
using caustic potash concentrations of about 85 wt.-% at operating temperatures of
about 250°C11. In contrast to the acid based fuel cells, no protons are transported in
the AFC but hydroxide ions. This leads to a water production at the anode and a water
consumption at the cathode. The respective reactions are:

H2 + 2OH− → 2H2O + 2e−, anode reaction (2.36)

1

2
O2 +H2O + 2e− → 2OH−, cathode reaction (2.37)

In virtue of the alkaline environment, the reaction kinetics are higher than in fuel cells
with acidic electrolytes. Thus it is possible to achieve high current densities, and high
efficiencies without the usage of platinum catalyst. Typical catalyst materials in the
AFC are nickel and silver. Since these metals are much cheaper than platinum, it is
more affordable than the PEMFC. The circulating electrolyte facilitates the water and
heat management, as both can be removed via the electrolyte loop.

Nevertheless the AFC has as well drawbacks. If caustic potash and carbon dioxide
has contact, potassium carbonate is formed:

CO2 + 2KOH → K2CO3 +H2O (2.38)

In addition the following reaction takes place under carbon dioxide containing ambiance:

CO2 + 2OH− → CO2−
3 +H2O (2.39)

First, this leads to a dilution of the caustic potash, as the KOH is consumed. Secondly,
the hydroxide ions are lost, which carry the ion current in the AFC. Thirdly, the car-
bonate molecules do not solve in water and thus deposit inter alia in the pores of the
electrolyte confining membrane and clog them. Therefore the carbon dioxide needs to
be removed from any participating gas flows. This can be accomplished by using pure
oxygen or filtering carbon dioxide from air12.

A derivative of the AFC is the Molten Carbonate Fuel Cell (MCFC). The electrolyte
is a molten salt consisting of alkali carbonates, which is conducting for carbon oxide ions
CO2−

3 . Since alkali carbonates melt at higher temperatures, the operating temperature
is above 600°C. In the MCFC there are no problems regarding carbon dioxide. Of course
the MCFC has its own problems concerning the high temperature and the molten salt
electrolyte. This type of fuel cell will not be discussed here in detail.

11The Apollo alkaline fuel cell had an operating pressure of 200 bar to prevent potash boiling.
12Carbon dioxide can be removed from the air by a soda lime filter, or by leading the air through old

caustic potash.
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2.5.4 Solid oxide fuel cell (SOFC)

The operating temperature of the solid oxide fuel cell is the highest of all fuel cell types.
It is above 700°C, partly even above 1000°C. The electrolyte of the SOFC is an oxygen
ion O2− conducting solid oxide, mostly Yttrium Stabilized Zirconium oxide (YSZ). The
anode is a composite consisting of nickel and YSZ to increase the number of three phase
boundaries, while the cathode consists of Lanthanum Strontium Manganese (LSM). If
hydrogen is feed into the SOFC the following reactions take place at the electrodes:

H2 +O2− → H2O + 2e−, anode reaction (2.40)

1

2
O2 + 2e− → O2−, cathode reaction (2.41)

Though other fuel types, like natural gas, can be used in the SOFC.

The ion conductivity is based on crystal defects, whose number is greatly increased by
yttrium doping. To jump from one crystal site to an empty one, the oxygen ion needs
to overcome a potential wall. The energy needed to change the crystal site is called
the activation energy, which is a material parameter. The jump rate is given by this
activation energy, the applied electric field and the thermal energy. Since the electric field
is given by the electrode potential and the activation energy by the material, the only
free parameter to increase the jump rate is the temperature. Thus high temperatures
are needed to ensure sufficient ion conductivity. Along with the high temperatures come
advantages. As reaction kinetics are faster at higher temperatures, no noble catalyst is
needed and the activation losses are minimal. Due to the solid oxide electrolyte neither
poisoning nor pore clogging occurs and no water management is needed. Furthermore
the SOFC has a good tolerance to overload, underload and short-circuiting.

Due to the high temperatures there are on the one hand the mentioned advantages,
on the other hand there are also many disadvantages. Since the entropic losses are linear
in temperature (c.f. Eq. (2.5)), both the OCV and the thermodynamic efficiency is lower
than in other fuel cell types. However, the higher entropic losses can be used to maintain
the high operating temperature. Furthermore expensive interconnector and casing ma-
terials are necessary. These are build of cermets (e.g. LaCrO3) or iron/chrome alloys.
To use interconnectors build of standard stainless steel, temperatures of approximately
600°C should not be exceeded, since the hardness of stainless steel drops considerably
above this temperature. The mechanical properties of the SOFC materials are crucial.
The thermal expansion coefficient of all materials must be sufficient low and as equal as
possible among one another to prevent ruptures in the structure. Even SOFCs with ther-
mal stable materials need about fifteen minutes to heat up, which makes the application
of SOFCs in the automotive market very problematic for the time being.

By lowering the operating temperature under 600°C the interconnector material issue
could be solved. Since the ion conductivity of YSZ at these temperatures is too low,
it could no longer be used in such an intermediate temperature SOFC. Candidates for
YSZ replacement are cerium oxide and gadolinium oxide. Although these materials have
higher ionic conductivities at lower temperatures, the thermal stability is dubious.
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Obviously, based on the information given in this chapter, it is a complicated task to
satisfactorily operate fuel cells. The efficiency and lifetime depends on many parameters,
of which only few are directly adjustable. The PEMFC and DMFC have a problematic
water management, the AFC is very sensitive to carbon dioxide and the the SOFC
operation includes a difficult heat management. These are only the major issues of the
discussed fuel cells. Even if some problems are of minor importance in a single fuel
cell, the situation becomes more complicated in a stack. The minor issues could rise
to major ones in a stack, as they might accumulate. Therefore it is mandatory to find
further diagnostic methods, which are applicable to stacks. In the following chapter the
previous outlined diagnostic scheme is presented, which also leads to improved operation
stability.
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3 Diagnostics of fuel cell stacks

In this chapter the novel diagnostic scheme for fuel cell stacks is presented[34]. It permits
to find damages occurring in a fuel cell of a stack not only without interfering with the
fuel cell operation, but also greatly stabilizing the stack operation. First in section 3.1
a model is presented, which in spite of its simplicity contains all the ingredients of the
phenomenon. This is an idealized model, which cannot even give assumptions about
the applicability of this method. After clarifying the diagnostic scheme, more general
statements are done in section 3.2. Although these statements are more general, they
are embedded in an ideal model as well.

3.1 A simple model

Plates of very high conductivity (e.g. aluminum) are placed between all fuel cells of
a stack (c.f. Fig. (3.1)). The plates have all the same number NS of slits dividing the
plates into NS + 1 equal stripes. These stripes are not electrically isolated of each other.
Instead they are connected at their ends in such a way that a transverse current can
flow through the plate only by zigzagging through it touching the border of the plate at
the locations si. At these locations the transverse currents can be measured, providing
information about which particular fuel cell and which part of its MEA does not work
correctly. The latter information can be obtained since adjacent plates are rotated by 90◦

and therefore its stripes are perpendicular to those of the previous and next plate. The
determination of the location and intensity of the damage on the basis of the measured
bridge currents is called the inverse problem.

An example may clarify the phenomenon further: Consider one plate of perfect con-
ductivity m between two fuel cells M1 and M2 both having an effective MEA area A.
Assuming a damaged area a with zero conductivity in the first fuel cell M1, the current
density in the remaining undamaged area increases to:

jd =
I0

A− a
, where I0 is the total electric current (3.1)

As the resistance of plate m is assumed to be negligible, the normal component of the
current density must be the same everywhere in the remaining fuel cell area of M1. The
current across the stripe with the damaged area a is given by

id = jd ·
(

A

NS + 1
− a
)

=
A · I0

(NS + 1)(A− a)
− a · I0

A− a
(3.2)

27
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Figure 3.1: Schematic view showing a plate m of a material (e.g. aluminum) with very
high conductivity. The plate is located between the fuel cells M1 and M2 and split into
stripes (slits indicated by shaded areas). The main direction of the current is indicated
by an arrow. It is assumed that the MEA of M1 has a damaged area a acting as an
insulator. Because of the very high conductivity in m, the current density in each of
the cells is practically constant - except in the area a where it is zero. Due to current
conservation, transverse currents will rise in m flowing through the connections between
the stripes at locations s1 and s2.

and the one across the undamaged stripes by:

iud =
A · I0

(NS + 1)(A− a)
(3.3)

Thus, the difference current

idiff = iud − id =
a · I0

A− a
(3.4)

has now to be distributed over the remaining fuel cell area of M1. This requires a
transverse compensation current and because of the slits, part of the current has to pass
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damage Position is1 is2 is1/is2
top −iQ −2 · iQ 0.5

middle −iQ iQ −1
bottom 2 · iQ iQ 2

Table 3.1: Currents at locations s1 and s2 for the ideal system with negligible resistance
of the m plate.

the locations si. To obtain a homogeneous current density in M2 a compensation current
of

iQ =
a · I0

(NS + 1) · (A− a)
(3.5)

has to flow from each intact stripe via the metal plate m to the defect one. If there are
two slits in the plate m as shown in Fig. (3.1), two different currents are detected, one
at s1 and the other at s2. If the damaged area is for example in the lower part of the
MEA, the currents are

is1 = 2 · iQ (3.6)

and
is2 = iQ (3.7)

with the definition:

iQ =
a · I0

3 · (A− a)
(3.8)

As expected, the magnitude of the current at the location si changes with the size of
the damaged area. If the damage occurs at another location, the relations between the
currents change as well. The results for the three distinguishable damage locations are
given in Tab. (3.1).

As can be seen from Tab. (3.1), in the case under consideration a unique relation
between the position of a localized damage and the currents is1 and is2 exists. In fact,
from the values it can be inferred how significant the damage is and in which stripe of
the MEA (defined by the stripes of plate m) the damage has appeared. A corresponding
analysis done at the previous plate m′ (not shown in Fig. (3.1)) provides information in
which stripe of M1 (this time defined by the plate m′) the damage has occurred. Since
the stripes of plate m′ are perpendicular to the stripes of m, the combination of them
divides the area of M1 into 9 rectangles and thus it can be inferred from the surface
currents connecting the stripes in which of the 9 rectangles the damage is located and
how big it is.

If the damage is not local but extended or if several local damages occur at the same
time and not only at one fuel cell, the situation becomes much more complex.

Besides novel diagnostic possibilities, the additional plates have the effect of suppress-
ing all inhomogeneous currents caused by a somehow erratic or not correctly working
fuel cell. The inhomogeneities in the current density distribution are smoothed out at
once, avoiding any peak currents at the damaged cell as well as at the adjacent cells.
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vertical damage Position horizontal damage position i1 i2

top left −iQ −iQ
bottom left iQ −iQ

top right −iQ iQ
bottom right iQ iQ

Table 3.2: Currents at the bridges in the confining metal plates for the ideal system with
negligible resistance of the m plate. The current iQ is defined by Eq. (3.5) for NS = 1.

Thus a much more stable and therefore a much more reliable operation of the fuel cell
stack is predicted.

The simple model does not present estimates how well this scheme will work in reality.
E.g. a competition between currents migrating through the graphite layers and those in
the plates will take place and reduce the currents at the locations si. The simple model
does not contain information how strong this effect is and whether or not currents at
the locations are still measurable in practice in spite of this effect. A realistic answer to
these questions requires detailed numerical computations. The numerical procedure as
well as their results will be presented in chapter 5.

3.2 Generalization

In the previous section the diagnostic scheme has only been discussed for one metal plate
with two slits. To describe the method in its full power and in its full complexity, the
transition to arbitrary numbers of slits NS in both metal plates confining a MEA has to
be done. Furthermore the issue of the inverse problem needs to be addressed.

Since the slits in the MEA confining metal plates are perpendicular, a virtual segmen-
tation of the MEA into

Nseg = (NS + 1)2 (3.9)

segments is achieved. This segmentation is called virtual, since neither the MEA nor the
flowfield plates are changed in any way. A segment is the smallest element a damage can
be reduced to. Thus this virtual segmentation defines the resolution of the diagnostic
method. The higher the number of slits, the higher is the resolution. Including both
metal plates, the number of currents defining the state of one MEA is:

Ncur = 2 ·NS (3.10)

For the easiest case NS = 1 there are four distinguishable defect locations, which are
shown in Tab. (3.2).

3.2.1 The thin MEA approximation

[36]Ohm’s law
~j(~r) = σ(~r) · ~E(~r) (3.11)
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describes the dependency of the current density on the electric field in electronic con-
ductors. For currents carried by electrons in the graphite or metallic flowfield plates
the electronic conductivity σel is in a very good approximation constant. Although the
conductivity may change due to temperature variations, it is invariant to an alteration of
the electric field. This does not hold inside of the MEA, as the current across it is carried
by ions and catalytic processes take place at the electrodes. Even though the migration
of ions is driven by the electric field, the resulting current depends in a complex, non
linear way on the voltage drop.

One can circumvent this difficulty when investigating only the neighborhood of an
operating point (EOP, jOP) by defining the quantity

σlin =
∂jOP

∂EOP

(3.12)

which has the dimension of a conductivity. Now it is possible to use

~j(~r)−~jOP(~r) = σlin ·
(
~E − ~EOP

)
(3.13)

to calculate the deviation from the operating point. The disadvantage of this procedure
is twofold: First, even an only locally malfunctioning MEA does not remain in the linear
regime of the operation point. Secondly, σlin is a physically not elusive quantity for
characterizing the processes taking place in the MEA.

To avoid all these problems the local normal current density jn in the MEA is investi-
gated. This quantity has a clear physical meaning: Catalyst and electrolyte degradation
at a certain point lead to a reduction or even to a total inhibition of the normal current
density jn at just this location of the MEA.

This quantity is obtained in the following way:

Let ~rA be a location at the external anode surface as well as ~rC the equivalent point
at the external cathode surface. Furthermore jn(~rA) is the current entering the MEA at
the location ~rA. Due to the very low mobility of the ions in the electrolyte, most of the
ions will migrate straight through it. Since the transverse currents in the catalyst layers
should also be comparatively small1 one obtains as a very good approximation:

jMEA(~r) ≈ jn(~rA) ≈ jn(~rC) (3.14)

The local current density jMEA gives a direct information about the state of the MEA
at each location. Furthermore it defines in a unique way the boundary conditions for
the regions outside the MEA, in which the Ohm’s law can be applied. Of course this
approximation Eq. (3.14) works best if the MEA is very thin. Due to that, it is called
the “thin MEA approximation”.

1There may exist layers, still within the MEA but outside of electrolyte and catalysts, having a possibly
non negligible transverse conductivity. For simplicity this refinement is not considered. In principle
there is no reason not to take those layers into account because there the conductivity is a property
of the material.
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3.2.2 Linear transformation

In the previous subsection it has been shown that the transverse MEA conductivity is
very low, particularly in comparison to the aluminum plates, which are parallel to it.
Thus the local normal currents do not change while passing through the MEA. Therefore
it is meaningful to use the MEA current density as a direct representation of the MEA
state. Reconstructing the MEA current density on the basis of the bridge currents is the
purport of the diagnostic method. Since no structures smaller than one segment can be
resolved, the inverse problem is the reconstruction of the integrated current across each
segment in the MEA.

Prior to the reconstruction is the forward problem, which is the assembling of the
linear transformation matrix A, described by

A ·~iseg =~iS (3.15)

with the Nseg dimensional vector~iseg, which contains the integrated currents across each

segment. ~iS is the Ncur dimensional vector containing the bridge currents in the confining
metal plates. Now the linear transformation is separated into a matrix Ã depending only
on the slit number and a matrix B containing all transformation parameters:

A = Ã(NS) · B (3.16)

Ã(NS) can be derived from the data given in Tab. (3.1) and Tab. (3.2). For NS = 1, it
has the following form:

Ã(1) =
1

2

(
−1 1 −1 1
−1 −1 1 1

)
(3.17)

For arbitrary slit numbers, the linear transformation matrix can be constructed in the
following way:

ÃT (NS) :=
1

NS + 1

(
~uh|1 . . . ~uh|NS

~uv|1 . . . ~uv|NS

)
(3.18)

The column vectors ~uh|n represents the horizontal slitted metal plate given by

~uh|n =

k-times

n-times
{
−(k − n)

(k − n)-times
{
n

 (3.19)

with the number of stripes k = NS + 1. Analogously the column vectors ~uv|n represent
the vertical slitted metal plate:

~uv|n =

 (n · k)-times
{
k − n

k(k − n)-times
{
−n

 (3.20)
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Figure 3.2: Cross section of the slitted metal plate showing the parasitic currents
through the bypass in the graphite layers. The compensation current in this metal
plate flows from the right side to the left side, whereas the intended current path
would be via a bridge in the metal plate (not shown).

B is a diagonal matrix

B =


β1 0 0 0
0 β2 0 0

0 0
. . . 0

0 0 0 βNseg

 (3.21)

with the diagonal elements β, which are functions of the total electric current I0, the
damage area a and the total fuel cell area A:

β = β(I0, a, A) (3.22)

Each diagonal element is the proportionality factor for one segment current. These can
be equal for all segment currents.

3.3 Approximation of current losses

As mentioned before, the ideal model can give only the idea of the diagnostic method.
Even though numerical calculations are required to determine if the currents at the
bridges si are large enough to be measured, some statements concerning parasitic cur-
rents can be done.

Before that some details about the calculated fuel cell are needed. A PEMFC with
graphite flowfield plates with a cross section of about 200mm × 180mm is the fuel cell
of choice. All layers (i.e. MEA, graphite flowfield and metal plate) have a thickness
of 1mm. The slitted metal plates are fabricated of aluminum, which has an electric
conductivity of σAl = 4 · 107 S ·m−1.

There are two effects, which could lead to parasitic currents and therefore decrease
the measurable current at the bridges.

� The first effect is the circulation of the current through the graphite flowfields
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(c.f. Fig. (3.2)). The magnitude of current taking this bypass is given by the slit
dimensions and graphite conductivity. To estimate the order of current lost due
to this effect, the resistance of the bypass Rbp is approximated by:

Rbp =
l

2 · dgr · Lstripe · σgr

(3.23)

Here dgr denotes the thickness of the graphite layer and Lstripe the length of the
stripe, therefore the product dgr ·Lstripe is the cross section of the bypass. Further-
more σgr = 4200S ·m−1 is the conductivity of the graphite and l the length of the
bypass, which is further approximated by l = 3 · dS, with the slit width dS. Since
the metal plate is embedded in two graphite layers, there are two equal bypasses.
The parallel circuit of two equal resistances leads to a total resistance, which is the
half of a single resistance. If dS = dgr = 10−3 m and Lstripe = 0.18 m, the bypass
resistance is:

Rbp =
3 · 10−3 m

2 · 10−3 m · 0.18 m · 4200 S ·m−1
≈ 2 · 10−3 Ω (3.24)

A more sophisticated approximation, which also include the normal resistance of
the graphite layer is given in the appendix A.4.

� The second effect appears due to finite metal conductivity and a not vanishing
MEA conductivity. In the ideal model the MEA acts like a perfect electric dam,
so the current density leaving the metal plate is totally homogeneous. Though in
a real fuel cell the dam effect is not perfect and the current density may not be
completely homogeneous. Thus a fraction of the current may drain away before
it passes the bridges. The resistance Rd the draining current needs to overcome
is also approximated for one stripe. This resistance represents the severity of this
effect:

Rd =
dMEA

Astripe · σMEA

(3.25)

As mentioned before, the conductivity of the MEA σMEA is an opaque quantity,
which depends on many parameters. However, for calculations in which the exact
value is of no concern, an approximated conductivity at an operating point can
be used (c.f. subsection 2.3.4). At a given current density, there is an internal
voltage drop due to the various effects of overpotentials described in the second
chapter. Altogether, the current density and the voltage drop define the approx-
imated conductivity for a given MEA thickness. Here, the MEA thickness is set
to dMEA = 1 · 10−3 m, for which a current density of j = 166.6 mA · cm−1 and an
internal voltage drop of η = 0.3 V lead to a MEA conductivity of:

σMEA =
dMEA · j

η
=

1 · 10−3m · 1666 A ·m−2

0.3 V
= 5.5

S

m
(3.26)

With this MEA conductivity and a stripe area of Astripe = 0.0666 m · 0.18m =
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1.2 · 10−2 m2, the resistance of the drain effect is about:

Rd ≈ 1.5 · 10−2Ω (3.27)

The comparison between these two effects shows that the bypass through the flowfield
plate is the more severe one, as the resistance is by an order of magnitude smaller than
the drain effect. These approximations still do not reveal whether the diagnostic method
is applicable or not. Nevertheless, it is possible to give a statement concerning the bridge
resistances: Since the resistance of the metal plate can still be neglected in comparison
to these effects, the bridge resistance may be as large as Rbp to measure half of the ideal
current.

Now it is obvious, that parallel current paths are present in the fuel cell, which lead to
parasitic currents. To calculate the remaining bridge currents accurately, detailed com-
putations including the fuel cell geometry and material parameters are needed. This
problem is solved by the application of the finite-volume method to the diagnostic
scheme. This three dimensional grid method is introduced in the following chapter
and applied in the fifth one. Since the number of segment currents increases quadrat-
ically with the slit number, but the number of measurable bridge currents increases
only linearly, the null space of the inverse calculation rises quadratically, too. Therefore
many segment current configurations lead to the same bridge currents, though many of
these are connected with unphysical defect structures. To find probable segment current
configurations amongst all possible ones, a variant of the simulated annealing method
is employed, by which solutions may be distinguished by their defect structure. This
method is also introduced in the following chapter and applied in the sixth one.
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4 Numerical methods

In this chapter the numerical methods used in this work are described. First the finite-
volume method is discussed. It permits to solve boundary value problems of arbitrary
system designs on a grid. In engineering it is usually employed to solve the Navier-Stokes-
Equation simulating aerodynamic or hydrodynamic problems. It is also applicable to
electrostatic and magnetostatic problems, as well as to electrodynamic and magnetody-
namic problems. In contrast to other grid methods, like finite element or finite difference
methods, it is possible to show the observance of all Maxwell equations in its discretiza-
tion.

Secondly the simulated annealing method is described, which is a generic statistical
optimization algorithm for the determination of a global minimum between local ones.
This method has an analogy in nature, since it has been copied from the crystallization
of liquids.

4.1 Finite-Volume method for electrostatic boundary
value problems

4.1.1 Basics

Current conservation In an enclosed electrical system the continuum equation

div~j +
∂ρ

∂t
= 0 (4.1)

has to hold. For the stationary case this reduces to the current conservation:

div~j = 0 (4.2)

Following the local Ohm’s law
~j = σ · ~E (4.3)

the current density ~j can be replaced by the product of the conductivity tensor σ and
the electric field ~E:

div (σ · ~E) = 0 (4.4)

37
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As the electric field is given by the negative gradient of the electric potential φ, the latter
equation is transferred to the following differential equation:

−div (σ · grad φ) = 0 (4.5)

This is a second-order elliptic partial differential equation for the potential. To obtain
the potential distribution across a body Ω for given boundary conditions, Eq. (4.5) has to
be solved at every location of Ω. Thus, if Ω is a macroscopic object, a three dimensional
boundary value problem has to be solved. In the static case the potential φ(~x) is fully
determined by the boundary conditions. Since the current density distribution ~j(~x) can
be derived from the potential and the conductivity, it is as well fully defined by the
boundary conditions.

Boundary conditions There are various possibilities to define the boundary conditions
of a system. The most important and most used boundary conditions are the Neumann
boundary condition and the Dirichlet boundary condition.

Neumann boundary condition: The potential derivative at the Neumann bound-
ary Γn is fixed, in an electrostatic system this is the normal current density ~jn.

σ
∂φ

∂~n
(~r) = −~jn(~r), ~rεΓn (4.6)

Dirichlet boundary condition: The potential at the Dirichlet boundary Γd is
fixed.

φ(~r) = φd(~r), ~rεΓd (4.7)

Gauss integral theorem The basic tool of the finite-volume method is the Gauss inte-
gral theorem. It connects the n-dimensional integration of the divergence of a vector field
over a volume with the (n− 1)-dimensional integration of the vector field itself. In the
three dimensional case the Gauss integral theorem transforms a volume integration into
a surface integration. If the magnetic field is calculated by the finite-volume method,
the Stokes integral theorem is required, too (c.f. appendix A.2).



CHAPTER 4. NUMERICAL METHODS 39

Gauss integral theorem: The integral of the divergence of the vectorial cur-
rent density ~j over an enclosed volume V with a partial continuously differentiable
boundary ∂V is equal to the integration of the normal current density components
~j · ~n over the surface, with the normal vector of the surface ~n.

ˆ
Ω

div~jdV =

ˆ
∂Ω

~j · ~ndA (4.8)

4.1.2 Discretization of the potential

To obtain the current distribution in a body Ω for a given boundary condition, the
differential equation Eq. (4.5) has to be solved at each point of Ω. Therefore Ω is
segmented into small cells ωµν , which cover Ω completely. In the simplest way this grid
is constructed of cuboids. In this case it is easy to calculate the surface currents and cover
Ω consistently. Thus adjacent cells always share entire surfaces, so it can not happen
that one side of a cell is in contact with two different cells. It is possible to change the
size of the cuboids layer by layer1, but it is mandatory, that all cells of one layer have the
same width, to prevent the described overlap of multiple faces. The potential is defined
in the center of the cells, while the currents are defined on the surfaces. Fig. (4.1) shows
a simple example of a grid, which fulfills all requirements. For the sake of simplicity the
following derivation of the finite-volume algorithm is done in two dimensions, but it can
effortlessly be extended to three dimensions.

For the cell ωµν (c.f. Fig. (4.1)) the differential equation Eq. (4.5) is discretized. First
of all the Gauss integral theorem is applied to transform the surface integral to a line
integral (in 3D respectively the volume integral to a surface integral):

ˆ
ωµν

div (σ · grad φ)dA =

ˆ
∂ωµν

σ · grad φ · ~nds (4.9)

This reduces the computing time vastly2. The closed line integral is separated into four
individual line integrals (3D: into six individual surface integrals):

ˆ
∂ωµν

σ · grad φ · ~nds =

ˆ
∂ωL

σ
∂φ

∂x
dy −

ˆ
∂ωR

σ
∂φ

∂x
dy +

ˆ
∂ωB

σ
∂φ

∂y
dx−

ˆ
∂ωT

σ
∂φ

∂y
dx (4.10)

Here the index of ∂ω denotes the individual sides of the cell (Top, Bottom, Left and
Right). The signs are chosen with respect to the direction of the surface normal vectors.

1For example a z-layer consists of all cells with the same z-coordinate. The cuboid size in z-direction
hz can change from one z-layer to the next. Since the same holds for x- and y-layers, the contact
surface of adjacent cells cannot differ.

2The computing time for a volume integration has a cubic dependency on the system size ∝ N3 (N
is the number of cells). The reduction to a surface integral leads to a quadratic dependency. In two
dimensions the application leads to a linear dependency.
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Figure 4.1: This picture shows an exemplary discretization of the two dimensional body
Ω. The black dots represents the location of the potential. For the central cell the
current density locations are indicated by the red arrows.

In this way all positive currents enter the cell through the bottom and left side. Eq. (4.10)
is an exact representation of the differential equation Eq. (4.5) for the cell ωµ,ν .

Canonical approximations To calculate Eq. (4.10) numerically some approximations
have to be introduced. As the potential is discretized in the center of the cells, it is
obvious to approximate the derivative by the difference quotient. Assuming a constant
potential on each individual side of the cell, it is possible to calculate the integrals in
Eq. (4.10) easily: ˆ

∂ωL

σ
∂φ

∂x
dy ≈ σµ−1/2,ν

φµ,ν − φµ−1,ν

hx|µ−1/2,ν

hy

ˆ
∂ωR

σ
∂φ

∂x
dy ≈ σµ+1/2,ν

φµ+1,ν − φµ,ν
hx|µ+1/2,ν

hy (4.11)

ˆ
∂ωB

σ
∂φ

∂y
dx ≈ σµ,ν−1/2

φµ,ν − φµ,ν−1

hy|µ,ν−1/2

hx

ˆ
∂ωT

σ
∂φ

∂y
dx ≈ σµ,ν+1/2

φµ,ν+1 − φµ,ν
hy|µ,ν+1/2

hx

Here hx|µ−1/2,ν is the distance between the center of ωµ,ν and ωµ−1,ν . These approxima-
tions are called canonical approximation. Since the current density is defined at the face
center of the cells, the conductivities has to be defined at this point as well.

4.1.3 Conductivity

As can be seen from Eq. (4.11) the conductivity σ depends on the location. At each
cell side the derivative in only one direction is calculated. Therefore the conductivity
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Figure 4.2: The colors of the arrows denote the conductivities at the boundaries of ωµ,ν .
The bi-colored arrow expresses different conductivities of two adjacent cells in the same
direction.

also depends on the direction and can thus be given by a diagonal tensor. As the
material properties of Ω should not change within a cell, it is convenient to define the
conductivity for whole cells. Although the material parameters do not change within
a cell, they can be anisotropic. The conductivity of a single central cell is shown in
Fig. (4.2). A problem occurs if two adjacent cells are of different material, and by that
have different conductivities in the same direction. On first sight it is not decided which
conductivity has to be used for the calculation of the current density between these two
cells. Nevertheless it is possible to define the conductivity of a material interface at the
boundary between two cells, by using the harmonic mean value of both conductivities.
For two cells of the same size this is given by:

σh = 2

(
1

σ1

+
1

σ2

)−1

(4.12)

A derivation and a discussion of the conductivity at material boundaries is given in the
appendix A.1.

4.1.4 Discretized boundary conditions

Neumann boundary conditions The gradient is calculated between every two adjacent
potential locations, which are inside of Ω. These current densities are identified as ~jG

(c.f. Fig. (4.3)). The current densities at the boundary of Ω are predefined as ~j0. Most
of the boundary current vector ~j0 components are typically zero. Only the source and
the drain locations have non zero components. Using Neumann boundary conditions the
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Figure 4.3: In the case of Neumann boundary conditions, the current density at the
boundary of Ω is predefined. The blue arrows indicate the gradient current densities
~jG between the potentials of each adjacent cell. The red arrows indicate the predefined
boundary current densities ~j0.

current conservations has the following form:

div(~jG +~j0) = 0 (4.13)

For all cells, which are not connected to a source or drain, this transfers to Eq. (4.2). In
cells connected to a source or a drain, the sum over the gradient currents must be equal
to the negative boundary value predefined for this cell. Using only Neumann boundary
conditions does not lead to a unique solution, since the current density distribution is
invariant to a global homogeneous change in the potential. Therefore the potential needs
to be fixed at least at one location to obtain a unique solution. Furthermore it is possible
to use both boundary conditions in the same body (at different boundaries) to avoid this
issue.

Dirichlet boundary conditions In the case of Dirichlet boundary conditions the po-
tential on the boundary of Ω is predefined and the gradient is calculated on each surface
of each cell (c.f. Fig. (4.4)). To calculate the gradient on the boundary, potentials on
virtual points on the outside of Ω, the so called ghost points, are needed. To determine
the ghost point potential, it is assumed, that the virtual cell is of the same size and
has the the same conductivity as the adjacent inner cell. In addition a linear poten-
tial progression across the boundary is assumed. Due to the linearity of the potential
(c.f. appendix A.1) it is possible to use

φ(x2) = φ(x0)− (x0 − x2) · E2 (4.14)

for the external cell. As the conductivity in both cells is consistent, the electric field is
equal as well. Thus, the electric field E2 can be substituted by the canonical approxi-
mation of E1:

φ(x2) = φ(x0)− x0 − x2

x0 − x1

(φ(x0)− φ(x1)) (4.15)
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Figure 4.4: In the case of Dirichlet boundary conditions the potential at the boundary
of Ω is predefined. The blue arrows indicate the gradient current densities ~jG. The blue
dots x2 indicate the ghost points, the black ones x1 the potential in the surface cells of
Ω and the red ones x0 the predefined potential at the boundary.

Both cells are of the same size, so x2 − x0 is equal to x0 − x1, which leads to the linear
approximation of the ghost point potential φ(x2):

φ(x2) = 2 · φ(x0)− φ(x1) (4.16)

4.1.5 Discretized differential equation

To solve the electrostatic boundary problem for Ω, the differential equation has to be
solved for each cell ωµν . Let nj be the total number of current density points, and nφ be
the total number of potential points in Ω for a given grid, then we define:

� the nj×nφ dimensional matrix G, which contains the canonical approximations of
the gradient.

� the diagonal nj × nj matrix S, which contains the conductivities of all current
density locations.

� the nφ×nj dimensional matrix D, which contains the sum over all surface currents
for each cell.

Thus, for Neumann boundary conditions the discretized differential equation becomes:

D · S · G · ~φ = D ·~j0 (4.17)

This matrix differential equation can be written as

B~φ = ~b (4.18)
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Figure 4.5: Schematic plot of an energy function E in dependency of one variable x.
Beginning from the same initial position the direct method (red arrow) gets stuck in
the first local minimum, whereas the simulated annealing algorithm finds the global
minimum following a random walk (blue arrows).

where B = D · S · G is a non singular nφ × nφ dimensional matrix and ~b = D~j0 is a
nφ dimensional vector, which contains the inhomogeneity (boundary conditions) of the
problem. Eq. (4.18) is a usual algebraic equation, which can be solved with standard
numerical techniques.

It is also possible to assemble a differential equation for the magnetic field in the finite-
volume discretization, which is presented in the appendix A.2. As mentioned before all
Maxwell equations are fulfilled in the finite-volume method. This is shown in appendix
A.3

4.2 Simulated annealing method

The method of simulated annealing is a generic statistical optimization algorithm. It
surpasses direct methods (e.g. steepest descent and conjugate gradient) for problems, in
which the global minimum is hidden amongst many local minima. The direct methods
find the closest local minimum to the initial point, whereas the simulated annealing
method can overcome local minima to find the global one (c.f. Fig. (4.5)). This algorithm
has been developed to find optimal layouts of complex integrated circuits in micro chips.
Furthermore it is possible to solve the famous traveling salesman problem, which is a
NP-complete3 problem. These two examples are both discrete combinatorial problems,
but it is also possible to solve continuous problem.

It should be mentioned, that the simulated annealing technique is not completely
artificial, in fact it is copied from nature. If a liquid is cooled down and eventually

3non polynomial : The complexity of the problem increases exponential with its size.
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condensate, the final structure in the solid body depends on the cooling speed. If the
liquid is cooled down rapidly, polycrystalline or amorphous structures are formed. On
the contrary, if the liquid is slowly annealed, monocrystalline structures form. In a
rapid temperature drop there is not enough time for the atoms or molecules to form the
optimal structure, as their mobility decreases too fast. In a slow, adiabatic, temperature
drop, the gradual decrease of the particle mobility leads to a continuous reconfiguration
of the structure. Therefore a more stable fabric is obtained. The total energy of an
amorphous structure is higher than that of a monocrystalline one. Therefore the rapidly
cooled system is stuck in a local energy minimum, whereas the gradual annealed system
reached the global one. This principle is transferred to a numerical algorithm, which
can be applied to any optimization problem. Although it is often possible to find a
representative minimum, in most of the problems it is not possible to check if it is the
global one.

In addition to the mentioned benefits of this technique, it is possible to use it as a
black box if no deeper knowledge about the problem is present. As long as an energy
function4 is known, a representative minimum can be found (at least in principle; the
computer power is always a limiting factor). If additional information is known, it
can be implemented either directly into the energy function or as a constraint into the
algorithm. In spite of the wide applicability, the algorithm is quite easy to implement.

The heart of the simulated annealing method is the evaluation of transition rates
between configurations πn→n+1. In the majority of cases this is done by the metropolis
algorithm. In nature the Boltzmann distribution ∝ exp(−β ·∆E) 5 determines whether a
change to an unfavorable configuration is done or not. This is adapted to the metropolis
algorithm. Since downhill steps should always be accepted, the transition rate for the
metropolis step is given in the following form:

πn→n+1 =

{
e−β·∆E , for ∆E < 0

1 , otherwise
(4.19)

Using the metropolis algorithm, it is possible to overcome local minima of a depth
∆Emin < 1/β.

The simulated annealing algorithm for continuous variables

1. Initialization of the variables {x}: This can be done randomly. This represents
high temperatures, as in this case all configurations have the same probability. If
there is an initial guess for the optimum, it can be used as the starting configura-
tion. However, initial guesses has to be treated with care, as intuition can fail and
may lead to a deep local minimum only. The random initialization could lead to

4It does not need to be a real energy function, it can be a cost function or a general Lagrangian as
well.

5∆E is the energy difference, β = (kBT )−1 is the inverse temperature with the Boltzmann constant
kB and the systems temperature T .
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a better result. Furthermore the initial temperature has to be defined. For ther-
modynamical systems this can be done straightforward with the real temperature.
For other systems the temperature parameter β has to be defined in such a way,
that a specific fraction of the uphill steps is accepted.

2. Variable shift: One variable xν|n is shifted by a random value xν|n+1 = xν|n +
∆xi. The choice of the random walk evoke discussions in the literature, as in
certain situations (like the walk through a narrow valley) a simple random number
generator proposes to many uphill steps. The use of the downhill simplex method
could be advantageous in such a situation.

3. Metropolis step: The total energy of the new configuration En+1 is calculated and
the transition rate πn→n+1 is determined by Eq. (4.19) with ∆E = En+1 −En. At
this point it is possible to implement constraints. This is done by overriding the
transition rate manually to zero, if the new configuration violates a constraint.

4. Monte Carlo step: Repeat 2. and 3. for each variable {x}. In reference to the
Monte Carlo simulation, the variable shift proposal in addition to the evaluation
of this proposal for all variables is called Monte Carlo step (MCS).

5. Temperature change: After repeating point 4 NMCS times, the temperature is
lowered T → T − dT or β → β + dβ respectively. As the lowering of temperature
comes along with a lower uphill step acceptance rate, it is meaningful to lower the
maximal variable shift ∆xmax by a factor ξ, with ∆xT−dT = ξ ·∆xT and ξ ≤ 1, to
prevent an algorithm deadlock.

6. Break condition: Various break conditions can be chosen. One possible condition
is the convergence of energy.

As can be seen a number of numerical parameters has to be set prior to the executing
of the algorithm:

� The initial variable shift ∆xinit

� Change of variable shift ξ

� Initial temperature parameter β

� Temperature change rate dT or dβ (reciprocal)

� Number of Monte Carlo steps per temperature step NMCS

� A generic break condition



5 The forward problem

In this chapter, the forward problem is discussed. First, detailed numerical calculations
regarding the slit currents and their results are presented. These show if the simple idea,
presented in chapter 3, is applicable to a real fuel cell. Furthermore the results show how
much current is lost by circulating the slits via flowfield plates and in which magnitude
the slit current can be expected for different types of flowfield plates. Thereafter follows
an assessment of the operation stabilizing effect of the metal plates. Therefore further
detailed numerical calculations are done on the basis of the finite-volume method. The
third part of this chapter deals with the numerical assembly of the linear transformation
matrix A. Since the computation of A becomes very expensive for larger numers of slits
per aluminum plate, the calculation arrangement is reduced to the most necessary parts,
which are discussed in this part of the chapter.

5.1 Numerical investigation of the bridge currents

To investigate the currents at the bridges only one slitted metal plate is needed. Although
a second metal plate is needed to distinguish the defect location, it yields no further
information about the magnitude of the bridge currents. Therefore only one double
slitted metal plate is used in the calculation (c.f. Fig. (5.1)). In front of the first metal
plate and behind the last one, homogeneous Neumann boundary conditions are defined in
such a way, that the total electric current is 60 A. This is obtained by boundary current
densities of about jN = 1666 A · m−2. Since inhomogeneities in the MEAs could affect
further fuel cells in the stack, the current density in the MEAs is decoupled from the
boundary conditions by the addition of unslitted metal plates in front of the arrangement
and behind it. Without the additional metal plates, the boundary conditions would
enforce an unphysical homogeneous current density in the MEA causing an unwanted
change in the bridge currents. To obtain the currents at the locations s1 and s2, in
dependency of the flowfield material and the damage in the MEA M1, the potential
distribution is calculated in the finite-volume method. Therefore Fig. (5.1) is separated
in conformity to the finite-volume prerequisites.

5.1.1 Finite-volume grid

The FV-cell1 size in Y-direction (the stack direction) is constant. Due to the harmonic
averaging of the conductivities, no errors are introduced at material interfaces. Therefore

1The elemental separation of the finite-volume discretization (FV-cell) should not be mistaken for the
fuel cell.

47
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Figure 5.1: Sketch of the arrangement used for numerical calculations. The slitted
aluminum plate is sandwiched between two fuel cells. Each of the MEAs is surrounded
by two flowfield plates. The system is confined at both sides by aluminum plates, on
whose outer surface constant Neumann boundary conditions of about 1666 A ·m−2 are
defined. Everywhere else the Neumann boundary condition is zero. The size of the fuel
cells and that of each plate is 200 mm × 180 mm × 1 mm. The thickness of the slits is
set to 1 mm. The connection of the upper slit s2 is placed on the opposite side of the
aluminum plate (indicated by the dotted line).

it suffices to choose the separation equal to the layer thickness ∆y = 10−3m. The X-
Z-plane is separated in dependency of the slit number. As each slit should be modeled
correctly but a separation equal to the slit size is too expensive, the FV-grid is refined
in the vicinity of a slit. Actually two FV-cells form the width of a slit for a more precise
calculation of the parasitic currents via the graphite plate. In Fig. (5.2) the grid in the
vicinity of slits is shown. The FV-cell size increases stepwise with the distance from the
slit in the following manner: 0.5 mm → 1 mm → 2 mm → 3 mm →≈ 5 mm, where the
smallest value is the FV-cell width inside of the slit. The largest one is the maximal
FV-cell width, which is not exactly 5 mm, since it is adjusted in such a manner, that the
grid covers the fuel cell surface completely. Based on these regulations, the previously
discussed fuel cell arrangement (c.f. Fig. (5.1)) is discretized as shown in Fig. (5.3).

5.1.2 The slit bridge resistance

As seen before, the resistance of the bridge is the crucial quantity, which decides the
applicability of the diagnostic method. Though it does not suffice to model the bridge in
the metal plate and calculate the currents through it. In reality a measurement device is
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Figure 5.2: The finite-volume grid in the vicinity of slits. The borders of one slit is
indicated by the vertical blue lines, the borders of the slit in the following metal plate
is indicated by the horizontal dashed line. The FV-cell size increases stepwise to the
maximal FV-cell size in the X-Z-area.

connected to both stripes to measure the bridge current. Therefore the inner resistance
of such a measurement device and its contact to the metal plate needs to be considered.
To implement this into the finite-volume method, Neumann boundary conditions iS,a
and iS,b are imposed by a narrow margin above (iS,a) and below (iS,b) the slits. These
have to obey the rule iS = iS,a = −iS,b. The boundary value problem is solved for an
initial guess. This yields the potentials φS,a and φS,b at the contact points. Based on the
voltage drop and the current iS, the bridge resistance RS = ∆φS/iS can be calculated.
In this way the bridge resistance as a function of the bridge current RS(iS) is obtained.
However, the bridge currents are unknown and the bridge resistance is given, therefor
the inverse function iS(RS) is wanted. More precisely the bridge currents for a given
resistance R0 is sought. This problem can be described as a zero-point search for the
quantity ∆R = RS − R0, which is solved by the Pegasus algorithm[37, 38]. Thus the
exact bridge currents for a given bridge resistance R0 is obtained.

A representative bridge resistance, which determines whether the diagnostic scheme
is applicable to a particular fuel cell, has to be found. The resistance connected to the
maximal ohmic powerloss at the bridge is influenced by the parasitic currents across the
graphite plates. If the bridge resistance is larger than the one leading to the maximal
powerloss, the parasitic currents surpass the ones at the bridges. Hence, this resistance
represents the magnitude of parasitic losses in a given fuel cell and is furthermore an
upper limit which should not be exceeded by measuring devices. It is determined by
manually varying the bridge resistance. For isotropic graphite and a variety of typically
used graphite flowfield materials (c.f. Tab. (5.1)) this resistance is determined. If it is
larger than the inner resistance of a commercial measurement device, it is possible to
measure the emerging bridge currents. This is applied to the arrangement shown in
Fig. (5.1) and respectively Fig. (5.3), whereas only one slit is needed to determine the
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Figure 5.3: Finite-volume grid of the simulated fuel cell arrangement. The color code
defines the conductivity of a layer. The aluminum plates are the red layers, the graphite
flowfield plates (at this fabricated of isotropic graphite) are indicated by the green layers
and the blue layers are the MEAs. Even though there is only one slitted metal plate
(the central one), the grid is refined in the vicinity of both possible slits direction (in the
X- and Z-direction).

resistance connected with the maximal powerloss. The slit is oriented in the Z-direction.
A defect is placed in the MEA M1. Its area is one ninth of the total fuel cell surface and
its conductivity is set to σd = 10−5 S·m−1. In the rest of the MEA the previous discussed
(c.f. section 3.2) conductivity of σMEA = 5.5 S · m−1 is used, since the exact value is of
no concern at this point. Applying this gemometry to Eq. (3.5)2, the corresponding
characteristic current is given by iQ = 3.75 A. The resulting bridge resistances are listed
in Tab. (5.2). These results are compared with a low cost commercial current sensor.

2In the analytical formula, the defect conductivity has no contribution. But as the conductivity of
the defect in the numerical arrangement is five orders of magnitude smaller than the one in the
remaining MEA, it is valid to assume an isolating damage for the calculation of the characteristic
current iQ.
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flowfield material σ⊥ [S ·m−1] σ‖[S ·m−1]

isotropic graphite 4.2 · 103 4.2 · 103

Eisenhuth Sigracet PPG 86 5.6 · 103 1.8 · 103

Eisenhuth Sigracet BMA 5 1.0 · 104 2.0 · 103

Eisenhuth Sigracet BBP 4 2.0 · 104 4.2 · 103

SGL Sigraflex 1.3 · 105 1.7 · 103

Table 5.1: List of transverse and normal conductivities (σ⊥ and σ‖) representing typical
materials being used for flowfield plates of low and medium temperature fuel cells and
in addition isotropic graphite.

flowfield material RS [10−3 Ω] is [A] Ps [mW]

isotropic graphite 1.64 1.81 5.35
Sigracet PPG 86 1.67 1.81 5.46
Sigracet BMA 5 1.18 1.77 3.69
Sigracet BBP 4 0.66 1.66 1.80

Sigraflex 0.38 1.48 0.85

Table 5.2: Resistances leading to maximum powerloss at the bridges for flowfield plates
of typical materials (c.f. Tab. (5.1)). The bridge current is and the corresponding power
loss Ps is presented as well, whereas these values are bound to the specific damage.

As a reference the Allegro Current Sensor: ACS750 3 is used4. The inner resistance of
this IC-sensor is only 120µΩ, and is therefore smaller than any resistance presented in
Tab. (5.2).

5.1.3 Bridge currents for various graphite plates

The bridge currents emerging at the locations s1 and s2 of the arrangement shown in
Fig. (5.1) are calculated for the graphite plates of Tab. (5.1). For a comparison to the
simple model, there are also three different locations of the same damage included in the
calculation. The locations are in the center of each stripe. Due to the parasitic currents,
the ideal values presented in Tab. (3.1) can not be reproduced completely. To quantify
the loss of signal intensity, the fraction of the remaining bridge current

α =
i∗Q
iQ

(5.1)

is introduced, where i∗Q
5 denotes the remaining characteristic current. The characteristic

current for the double slitted aluminum plate in reference to Eq. (3.5) is iQ = 2.5 A.

3Build by Allegro MicroSystems, Inc., Worcester, Massachusetts, U.S.A.
4Many thanks to Heinz Pfeifer for calling our attention to this current sensor.
5Average of the individual bridge currents, where the 2iQ values contribute with the weight 1/2 each.
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damage position is1 [A] is2 [A] is1/is2
isotropic graphite top -1.128 -2.308 0.488
i∗Q = 1.161 A middle -1.201 1.201 -1

α = 0.46 bottom 2.308 1.128 2.046

Sigracet PPG 86 top -1.129 -2.296 0.492
i∗Q = 1.155 A middle -1.188 1.188 -1

α = 0.46 bottom -2.296 1.129 2.034

Sigracet BMA 5 top -1.1 -2.225 0.494
i∗Q = 1.118 A middle -1.132 1.132 -1

α = 0.45 bottom 2.225 1.1 2.023

Sigracet BBP 4 top -1.021 -2.056 0.497
i∗Q = 1.054 A middle -1.032 1.032 -1

α = 0.42 bottom 2.056 1.021 2.014

Sigraflex top -0.903 -1.708 0.529
i∗Q = 0.854 A middle -0.805 0.805 -1

α = 0.34 bottom 1.708 0.903 1.891

Table 5.3: The bridge currents at the locations s1 and s2 (c.f. Fig. (5.1)) compared
for various graphite plates (c.f. Tab. (5.1)). Furthermore the remaining characteristic
currents i∗Q and the reduction factor α is given for each graphite plate.

Tab. (5.3) shows the results for the different materials, computed with the resistance
for maximum powerloss given in Tab. (5.2). Already at a first glance, the similarity be-
tween the current ratios iS1/iS2 obtained from the realistic computations (c.f. Tab. (5.3))
and those of the simple model (c.f. Tab. (3.1)) is obvious. The reason for that is the high
conductivity of aluminum and the small (effective) conductivity of the MEAs. Therefore
a damage in a MEA leads to transverse currents between the aluminum stripes that can
be rather well estimated by the simple model. Of course the simple model is unable
to predict how much of these currents will pass the locations si where the stripes are
connected. Indeed currents can bypass a slit between two stripes by diving into the
graphite and returning into the aluminum. However, because of the high conductivity
of aluminum this happens along the total length of the slit and gives rise to a resistance
being both rather independent of the damage location in a stripe and nearly the same
for all stripes. An averaged reduction factor α > 0.3 should be acceptable. The actual
α values are shown in Tab. (5.3).

5.1.4 Thickness of metal plates

If the diagnostic scheme is applied to a 100 cell stack, the total length increases by about
10cm. Stack size is no major problem for stationary applications like block-unit power
stations or in quasi-stationary applications on vessels. Though in mobile applications the
stack size and the weight of the total fuel cell system are crucial parameters. Therefore
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it is meaningful to investigate the reduction factor dependency on the aluminum plate
thickness. Based on the internal resistance of the Allegro current sensor and on the
resistance for the maximal powerloss, this dependency is computed. In all finite-volume
computations presented in this chapter, the grid layer thickness in y-direction is fixed.
Therefore the resistance of the slitted metal plate is modified to simulate a change in the
metal plate thickness. The transverse σ⊥ and the normal σ‖ conductivities are modified
to such an extent, that the conductance L∗⊥,‖ in both directions of the dy = 1 mm thick
metal plate corresponds to the conductance L⊥,‖ of the plate with reduced thickness
γ · dy. The normal conductance of the metal plate of reduced thickness is given by:

L‖ =
dx · dz
γ · dy

· σ‖ (5.2)

The conductance with the modified conductivity by:

L∗‖ =
dx · dz
dy

· σ∗‖ (5.3)

From L‖ = L∗‖ follows

σ∗‖ =
σ‖
γ

(5.4)

and respectively for the transverse conductivity:

σ∗⊥ = γ · σ⊥ (5.5)

Using the arrangement as shown in Fig. (5.1) with only one slit again, the reduction
factor dependency of the metal layer thickness is calculated. In fact the function α(γ)
is calculated for three different bridge resistances per material.

1. The resistance connected with the maximal powerloss at the bridge.

2. An estimated total resistance of the measurement device and the harnessing. An
optimistic estimate is the double internal resistance of the Allegro current sensor:
RS = 0.24 · 10−3Ω.

3. An more pessimistic estimate of the total resistance: RS = 0.5 · 10−3Ω

Although Eq. (5.4) and Eq. (5.5) are correct for real conductor plates of different thick-
ness and the harmonic mean value for material interfaces is used in the finite-volume
discretization, the conductivity modification simulates only changes in layer thickness.
Therefore the results presented in Fig. (5.4) should be seen qualitatively. On first glance
the graphs show large similarities. The curves can be separated into three parts. At low
γ values, the reduction factor is independent of the bridge resistance and is only given
by the resistance of the metal plate itself. The higher the γ value, the more important
are the bridge resistances. Thus in this intermediate part of the curve the reduction
factors increases with a slope inverse proportional to RS. At high γ values the reduction
factor converges to a constant value given by the bridge and the flowfield material.
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Figure 5.4: Qualitative results for the reduction α dependency on the metal layer thick-
ness represented by the γ factor.
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closing pressure [KN · cm−2] σdl,‖ [103S ·m−1]

0.049 0.442
0.099 0.761
0.148 1.142
0.198 1.370
0.247 1.713
0.296 1.958
0.346 2.284
0.395 3.426
0.444 4.568

Table 5.4: The closing pressure dependent normal conductivity of the diffusion layer
fabricated by “Freudenberg”. The measurements have been done by A. Glüsen in the
“Forschungszentum Jülich”.

If only a reduction factor of α = 0.3 should be maintained, the aluminum thickness
can be reduced in most cases. For the pessimistic estimate of the total measuring device
resistance, the aluminum plate thickness could be reduced to 30µm for isotropic graphite
and PPG 86, to 50µm for BMA 5 and to 100µm for BBP 4. Whereas when Sigraflex is
used, the aluminum plate thickness should not be reduced at all.

5.1.5 Diffusion layer

In a PEM fuel cell, there is a further layer, which is not included in the calculations. The
gas diffusion layer typically consists of graphite paper, felt or fabric with a thin coating
of Teflon for increased hydrophobia. This layer is inserted between MEA and flowfield
plate to increase the homogeneity of the gas distribution on the electrode surface. The
normal electric conductivity depends strongly on the closing pressure of the fuel cell stack
(c.f. Tab. (5.4)). The transverse conductivity is closing pressure independent σdl,⊥ = 6 ·
103S ·m−1. At high pressures the conductivity of this material is in both directions larger
than the one of isotropic graphite. An approximation clarifying this behavior is given in
the appendix A.5. Since the diffusion layer is only 0.2 mm thick, its contribution to the
total parasitic current is small. Furthermore it is problematic to include it into the finite-
volume grid, since the layer thickness is fixed. Therefore it has been omitted. Using the
same method as in the determination of the α(γ) dependency, it is possible to estimate
the impact of the diffusion layer on the reduction factor. As closing pressures of about
0.3 KN · cm−2 are typical in fuel cell stacks, a normal conductivity of σdl,‖ = 2000 S ·m−1

is used in the computation. Based on Eq. (5.4) and Eq. (5.5), the modified conductivities
used in the finite-volume calculations are

σ∗dl,‖ = 1.0 · 104S ·m−1 (5.6)
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Figure 5.5: Modification of the finite-volume grid of the arrangement shown in Fig. (5.1).
The only change is the addition of diffusion layers (pale blue).

σ∗dl,⊥ = 1.2 · 103S ·m−1 (5.7)

The calculations are done on the grid shown in Fig. (5.5) with the same bridge resistances
as in the previous calculations (c.f. Tab. (5.3)). Thus the impact can be seen directly. The
results in Tab. (5.5) show that the impact of the diffusion layer is smaller than 10% and
larger for materials with low transverse conductivity. As there are actually no flowfield
plates fabricated of isotropic graphite, the material with the largest deterioration due
to the diffusion layer is PPG 86. The loss for this material is even less than 7%. The
impact on systems with BBP 4 and Sigraflex can be completely neglected. Since in an
equivalent circuit the diffusion layer and flowfield plate are parallel resistors (Rdl and
Rff), the fraction of the current flowing through the diffusion layer resistor is determined
by quotient Rff/Rdl. For BBP 4 this fraction is about 0.1 and for Sigraflex even one
order of magnitude smaller. Thus the entire current flows through the Sigraflex layer no
matter if there is a parallel diffusion layer or not.
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material i∗Q,dl [A] αdl αdl/α

isotropic 1.005 0.42 90.5%
PPG 86 1.077 0.43 93.3%
BMA 5 1.068 0.43 95.5%
BBP 4 1.005 0.42 99.5%

Sigraflex 0.850 0.34 100%

Table 5.5: Characteristic currents i∗Q,dl and the reduction factor αdl with the addition of
the diffusion layer in the arrangement.

5.2 Stabilization of fuel cell stack operation

It is quite normal that even a well functioning fuel cell has a locally varying current
density. These variations may be either static or dynamic. As unproblematic as this
variation may be for a single cell the situation in the stack can be quite different since
these variations can accumulate. The situation may become worse if one or more fuel
cells are damaged in certain areas of their MEA but still doing their jobs. For avoiding
accumulations in all these cases it is mandatory not to allow any irregularity of one
cell to influence the next or the previous one. This problem has been investigated by
computing a large arrangement consisting of a damaged fuel cell embedded in seven
intact ones on both sides. By that it is possible to investigate the damage propagation
in arrangements with different flowfield materials. In the arrangement with additional
aluminum plates, the number of intact cells is reduced.

5.2.1 Stack without metal plates

The stack, whose finite-volume grid is shown in Fig. (5.6), is taken into account by
assuming that a homogeneous current enters the aluminum plate before the first fuel
cell and a homogeneous current is leaving the aluminum plate after having passed the
last fuel cell. A worst case scenario, namely a massive failure in the MEA of the central
fuel cell with the result that the lower third of the MEA does not produce current at
all, is simulated. This is again done by setting the conductivity in the damaged part
of the MEA to σd = 10−5S · m−1. The intact conductivity of the MEAs is set to the
previous discussed (c.f. section 3.2) conductivity of σMEA = 5.5 S · m−1. For flowfield
plates fabricated of isotropic graphite the resulting current densities in the defect MEA
and in the following ones are shown in Fig. (5.7). Obvious is the strong current density
peak in the direct neighborhood of the damage in the MEA of the central fuel cell. Such
a peak will probably lead to a fast expansion of the damage. Furthermore a steep dip
at the same location appears in the MEA of the following fuel cells, which attenuates
slowly with the fuel cell index6. Although the second cell is undamaged, this dip will

6The fuel cell index describes the location of a fuel cell in reference to the damaged one, which has
the index i = 0. As the damage propagation is identical in both directions, if there is no difference
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Figure 5.6: One half of the finite-volume grid of the arrangement used to investigate the
defect propagation is presented here. The MEA shown in the front is the defect one.
The large damage is indicated by the dark blue color. For better visibility only one half
of the arrangement is shown here. The shown stack is additionally folded back on the
front side of the defect MEA. The entire arrangement is again confined by aluminum
plates.

probably lead to a damage in the second MEA. A resulting damage will then lead to an
increased dip in the third one. In fact one has to be afraid of a chain reaction leading
to more and more ill-working cells in the stack.

5.2.2 Stack with additional metal plates

The stack, whose finite-volume grid is shown in Fig. (5.8), is taken into account by
assuming that a homogeneous current enters the aluminum plate before the first flowfield
plate and a homogeneous current is leaving after having passed the last fuel cell, its
flowfield plates and the aluminum plate. For the same damage in the central MEA as
before the results are shown in Fig (5.9). Only small peaks of the electric current due
to the slits can be detected. In the defect cell a step like behavior of the current density

in structure, the fuel cell index defines the ith fuel cell both in forward and in backward direction.
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Figure 5.7: The current density distribution in MEAs of a stack with flowfield plates
fabricated of isotropic graphite. No aluminum plates are added in this calculation. The
fuel cell index i = 0...5 defines the MEA in the stack, where the i = 0 MEA is the central
one. As the current distribution is the same on both sides of the defect MEA, it suffices
to investigate one direction. The color code defines the current density given in A ·m−2.
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Figure 5.8: Finite-volume grid of the arrangement used to investigate the defect prop-
agation under the usage of slitted aluminum plates. Since more than one slitted metal
plate is present in this arrangement, neighboring plates are actually slitted perpendicu-
lar. For the bridge resistance the value corresponding to the maximal powerloss is used.
Since a very short damage propagation is expected, only two fuel cells on both sides
of the defect one is taken into account. The central cell is the defect MEA. The entire
arrangement is again confined by aluminum plates without slits.

can be seen, this is due to the bridge resistance, which prevents a total compensation
of the current density. For a damage limited in both X- and Z- direction, a checker is
expected. Since the graphite plates cannot compensate the current density disturbance
evoked by the slits, a small inhomogeneity in the MEA current occurs. This disturbance
is about 1 A · m−2 for isotropic graphite, and even less for each of the other materials,
therefore it can be neglected.

5.2.3 Comparison of defect propagation

The defect propagation without metal plates is calculated for all graphite materials,
whereas the propagation with metal plates is only calculated for the material with the
worst propagation, namely isotropic graphite. The peak height in the defect MEA is
presented in Tab. (5.6). The dip depth for the fuel cell i = 1...7 is compared in Fig. (5.10).
As expected, the higher the transverse conductivity of the combined layer between fuel
cells, the lower the defect propagation and the lower is the peak strength in the defect
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Figure 5.9: The current density distribution in MEAs of a stack with flowfield plates
fabricated of isotropic graphite. In this calculation aluminum plates are added. The fuel
cell index i = 0...2 defines the MEA in the stack, where the i = 0 MEA is the central
one. As the current distribution is the same on both sides of the defect MEA, it suffices
to investigate one direction. The color code defines the current density given in A ·m−2.

MEA itself. One could expect that the current density in the defect MEA is, except for
the damage itself, homogeneous if aluminum plates are present. But due to the finite
resistance of the measuring device, a step like structure is obtained. Even with the step,
the current density is more homogeneous than in each of the other calculated systems.
Furthermore the damage propagation is prevented completely by the aluminum plates7.
Thus it is shown that the MEAs are electrically independent of each other. Although
the defect propagation inhibition from Sigraflex seems rather impressive, these results

7Only a slight deviation can be seen in Fig. (5.9b), which has the magnitude of the slit disturbances.
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material ∆j [A ·m−2]

isotropic graphite 1976
PPG 86 1762
BMA 5 1345
BBP 4 922

Sigraflex 224
iso graphite + aluminum plates 86

Table 5.6: The peak height in the defect MEA is calculated by the maximal current
density difference outside of the defect.

has to be treated with caution, as massive graphite plates are calculated. However the
channels in the flowfield plates reduces the transverse conductance, which leads to a
worse inhibition.

5.3 Assembling the linear transformation

The linear transformation matrix A (c.f. Eq. (3.15)) is determined numerically. It is
convenient to do this by assembling an orthonormal basis {~vn} in such a way, that each
bridge current vector ~iS can be obtained by a linear combination of this basis:

~iS =
∑
n

an~vn, an : nth linear factor (5.8)

Since adjacent MEAs are electrically independent due to the high conductivity of the
aluminum plates, only a single MEA, the defect one, needs to be taken into account in
this calculation. Furthermore, as only the normal current is an issue, and by following
the thin MEA approximation (c.f. subsection 3.2.1), only the current density in the defect
MEA is taken into account. Thus also the defect MEA can be omitted in the calculation,
and the segment currents are given by Neumann boundary conditions. Fig. (5.11) shows
the minimalistic arrangement, which is needed to determine the orthonormal basis vec-
tors. This is still done with a high accuracy, as all needed components are included, the
defect MEA currents predefined by Neumann boundaries on the one side, the flowfield
plates reducing the signals and the homogeneous current density of the adjacent intact
MEA on the other side. The currents are injected peak like on the side of the defect
MEA. Thus the entire current can be uniquely allocated to one segment, as the current
is still peak like when entering the metal plate. Fig. (5.12) shows the current density
in the graphite plate between defect MEA and the slitted metal plate. For peak like
current densities in each segment the bridge currents are calculated. Each resulting cur-
rent vector is one basis vector ~v∗n, which is orthogonal to all other basis vectors obtained
in this way, but it is not yet normalized. To obtain the orthonormal basis, each basis
vector has to be normalized by the factor I−1

0 , since the entire stack current is injected
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Figure 5.10: The defect propagation, expressed as the maximal current density difference
∆j in dependency of the fuel cell index i.

as a peak in each segment.

To obtain the full basis {~vn}, the currents in both metal plates confining one MEA
need to be computed. Since there is only one slitted metal plate in the arrangement
(c.f. Fig. (5.11)), the computation needs to be done for both a metal plate with slits
in Z-direction and one with slits in X-direction. The homogeneous boundary and the
one representing the defect MEA must be exchanged for one slit direction, since they
are on different sides of the MEA. Together these basis vectors build the orthonormal
basis {~vn}. As this basis is chosen in such a way, that the linear factors are actually the
corresponding segment currents, the basis {~vn} is in fact the sought linear transformation
matrix A. As an example the transformation matrix for two slits in an arrangement with
PPG 86 flowfield plates is presented:

A =


−0.31 0.16 0.15 −0.31 0.16 0.15 −0.31 0.15 0.15
−0.15 −0.15 0.31 −0.15 −0.16 0.31 −0.15 −0.16 0.31
0.33 0.33 0.33 −0.17 −0.16 −0.16 −0.16 −0.16 −0.16
0.16 0.16 0.16 0.16 0.16 0.17 −0.33 −0.33 −0.33

 (5.9)

Comparing this numerically assembled matrix to the analytical rule (c.f. subsection
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Figure 5.11: Finite-volume grid of the arrangement used in the linear transformation
assembly. In the aluminum plate there are two parallel slits. On one side of the arrange-
ment the Neumann boundary conditions are homogeneous and on the other side variable
and peak like. The peak like boundary conditions represent the segment currents in the
defect MEA.

3.2.2), it is obvious, that this matrix can be analytically reconstructed with
βi = αPPG86 · iQ. There are minor variations in the matrix components in virtue of

Figure 5.12: Current density distribution in the graphite plate between defect MEA and
slitted metal plate. The current is injected peak like to build up a basis for the slit
currents.
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the damage location in a stripe. Furthermore, the matrix values corresponding to the
slit in X-direction are slightly lower (the first two row vectors in Eq. (5.9)), since the
same bridge resistance is used as the one for the slits in the Z-direction. As this resis-
tance is determined by the maximal powerloss for the slits in Z-direction, an error is
introduced at this point, but as the measurement device will be the same for all slits,
the usage of a single resistance is close to reality.
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6 The inverse problem

The connection between the current density in the MEA and the bridge currents is given
by a linear transformation A. The bridge currents~iS are invariant to two different kinds
of current density variations in the MEA. First, local variations being smaller than a
segment, which by that do not affect the total current across it. Therefore only the
integrated current density over a segment

iseg,n =

ˆ
seg,n

~jMEA · ~nMEA dx dz (6.1)

influences the bridge currents. Based on this fact, the linear transformation connects
the segment currents ~iseg with the bridge currents ~iS

A ·~iseg =~iS (6.2)

The transformationA connecting the segment currents with the bridge currents is strictly
linear. Since the segment size is given by the number of slits NS in the adjacent metal
plates, NS also determines down to which lower boundary of spatial extent a variation
can be detected.

Secondly, as the dimension of ~iseg is

Nseg = (NS + 1)2 (6.3)

and the dimension of ~iS is only
Ncur = 2 ·NS (6.4)

there is a null space1, which leads to an ambiguous mapping ~iS → ~iseg. Thus there are

variations in ~iseg, which do not change the value of ~iS. Segment current configurations
leading to equal bridge currents do not need to be local. E.g. a homogeneous change in
all segment currents induces no change in ~iS.

Besides increasing the number of slits, there is no possibility, neither physical nor
mathematical, to encounter the first problem. For the second problem, it is possible to
reduce the null space or rather pick a small number of solutions from the null space, which
seems to meet the structure of a typical damage. Admittedly, the detailed structures of
damages occurring in fuel cells are not well known. Nevertheless it is possible to discuss
the inverse problem for some assumptive damage structures. Furthermore, the reduction

1The null space or kernel of a matrix A is the set of all vectors ~x, which are mapped to the zero
element (the zero or the zero vector). Null(A) = {~xεRn : A~x = ~0} Therefore, the null space is the
set of elements, the transformation cannot distinguish from the neutral element.

67
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of the undetected local variations by increasing the number of slits has to be adjusted
carefully, as the null space of the global problem increases quadratic with NS.

6.1 The Lagrangian

In order to find solutions with specific attributes in a variety of solutions connected by
the null space, it is meaningful to weight wanted and unwanted properties of solutions
unequally. These properties could be spatial extent, minimal/maximal powerloss, spe-
cific structures and so forth. Furthermore there are properties, which have to be fulfilled,
as the observance of the matrix equation

A ·~iseg −~iS = ~0 (6.5)

and the necessity of a constant total electric current

Nseg∑
n=1

iseg,n = I0 (6.6)

The preferences and constraints are defined analytically2 and are unified in a single
equation, namely the Lagrangian L.

L(iseg, λν) = f(iseg) +
∑
ν

λν · gν(iseg) (6.7)

The function f(iseg) contains an analytical form of the preferences. Since unwanted
configurations get unfavorable function values, f is also called penal term. The functions
gν(iseg) contain the constraints. Each constraint is multiplied by a Lagrange parameter
λν . If the preferences are defined in such a way, that unwanted properties have higher
weights, the function f(iseg), and by that the total Lagrangian, needs to be minimized
with respect to the segment currents. If a constraint is not fulfilled, λ ·g(iseg) has a large
positive contribution to the Lagrangian, if the constraint is fulfilled, it should not have
any contribution at all. Therefore gν(iseg) has to fulfill the condition

g(iseg)

{
> 0 ,if constraint is not fulfilled

≤ 0 , if constraint is fulfilled
(6.8)

while the Lagrangian parameter has to obey:

λ ≥ 0 (6.9)

2Depending on the numerical algorithm used to solve this problem, it might be possible to treat some
simple constraints logically, not analytically. More details about logical constraints can be found in
the subsequent section.
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If the Lagrangian is maximized with respect to the Lagrange parameters λ, the previ-
ous described behavior of the product λ · g(iseg) is obtained. In the case of a fulfilled
constraint, the corresponding g is negative, and thus λ should be negative to maximize
L. Since this is not possible, the maximal value for L is obtained with λ = 0, therefore
λ · g(iseg) has no contribution to the Lagrangian. Whereas, if the constraint is violated,
g is positive and due to the Lagrange parameter the contribution becomes dominant.
As the minimal value of L with respect to iseg is sought, the currents are changed until
the constraint is fulfilled again and the contribution of λ · g(iseg) vanishes. Using this
method, it is possible to change the segment currents freely without any notice of the
constraints.

6.1.1 Constraints

In the computations there are three kinds of constraints, while only one of them is no
sum of analogous constraints.

Constancy of the total current The constancy of the total current is not directly
included as a constraint. Rather another one is used, which eventually leads to the
constancy of the total current.

If Eq. (6.6) is directly used in the form

g(iseg) =

(
Nseg∑
n=1

iseg,n − I0

)
(6.10)

the total current constraint is observed, but it can lead to unphysical solutions. Following
it, a solution may appear in which the current across a single segment is much larger
than any other current occurring in this configuration. Due to the null space, this may
be a valid solution. Also, if other segment currents decreased, the total current may be
maintained. But physically this solution can only appear if the conductivity of the MEA
has increased in this segment. Since it can be expected, that the augment of the MEA
conductivity is very unlikely3 in fuel cell operation, these solutions should be excluded.

To maintain Eq. (6.10) with decreasing local conductivities, the voltage across the
MEA must increase. If the voltage is constant, the overall current is not. The pinning
of the cell voltage is actually used to ensure that no solution corresponding to a local
conductivity rise is obtained. Therefore the segment currents are only allowed to drop,
which is the actually used constraint:

gn(iseg) = iseg,n − i0 (6.11)

with the unperturbed segment current i0 = I0/Nseg. This has to be applied to each
segment.

3But not impossible. For example, the local closing pressure may change and lead to a lower local
contact resistance.
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The reduced currents~iseg do not fit to the bridge currents, which are determined under

the conservation of the total current. But due to the linearity between ~iseg and ~iS, it is
possible to adapt the bridge currents to the new total current:

~iS,new =~iS,old ·
1

I0

Nseg∑
n=1

iseg,n (6.12)

Afterwards, the segment currents are again adapted to the constant total current, which
also yields the relative cell voltage change ζ due to the conductivity loss:

ζ =
Unew

Uold

= I0 ·

(
Nseg∑
n=1

iseg,n

)−1

(6.13)

With this quantity the adaption of the segment currents can be expressed as:

~iseg,I0 =~iseg · ζ (6.14)

This procedure is only valid, if the potential across the fuel cell surface is constant. As
the fuel cell is confined by aluminum plates, this requirement is very well satisfied.

Observance of the matrix equation The most important constraint is the observance
of the matrix equation Eq. (6.5). At this point the measured bridge currents are included
in the inverse calculation. If this equation is not fulfilled, the results are worthless, since
they wont lead to the measured bridge currents.

As the bridge currents need to be adapted to the changing total current, Eq. (6.5)
transforms to

A ·~iseg −~iS ·
1

I0

Nseg∑
n=1

iseg,n = ~0 (6.15)

which can also be written as: (
A− 1

I0

~iS

)
~iseg = ~0 (6.16)

Here, the notation A−~iS denotes, that each row vector of A is subtracted by ~iS.

To observe the definition rule Eq. (6.8), the matrix equation Eq. (6.16) is slightly
modified:

g(iseg) =

[(
A− 1

I0

~iS

)
~iseg

]2

(6.17)

In this way the deviation from the exact solution is the new constraint. Since this can
not be negative, it always has a contribution to the Lagrangian4.

4Except, if the matrix equation is fulfilled exactly, which is numerical very unlikely.
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Maximal defect constraint Another (optional) constraint is added, if the damage
inside of a particular segment is defined to be the maximal one. In this case, the current
across this segment imin is the minimal one of this configuration. Since the choice of
the maximal defect segment is done arbitrarily, the obtained solution can lead to very
unprobable segment currnet configurations. However if this procedure is applied to each
segment, comparative conclusuions can be drawn. This is again a constraint, which
needs to be applied to each segment:

gn(iseg) = imin − iseg,n ,with n 6= min (6.18)

6.1.2 The function f(iseg)

In the choice of the function f there is even more freedom than in the choice of the
constraints. To define it appropriately a deep insight about possible defect structures
is required. Since this is only given terminally, a somewhat artificial function is chosen,
which only includes the spatial extent of the damage. A function, which penalizes the
deviation of segment currents from the homogeneous current i0, favors local damages if
it is applied to each segment current individually. Such a function is given by:

f(iseg) =

Nseg∑
n=1

ln((iseg,n − i0)2 + ε) (6.19)

This cup-shaped function has a local minimum at i0. As the singularity at i0 has been
circumvented by the ε > 0 parameter, the function is analytical for all currents. The
depth of the minimum is given by ε; the smaller ε the deeper the minimum. The function
f(iseg) is plotted for several values of ε in Fig. (6.1).

6.1.3 The total Lagrangian

The Unification of all constraints and the function f leads to the total Lagrangian:

L(iseg,n, λν) =
∑Nseg

n=1 ln((iseg,n − i0)2 + ε)

+λ1 ·
[(
A− 1

I0
~iS

)
~iseg

]2

+
∑Nseg

n=1 λn+1 · (iseg,n − i0)

+
{∑Nseg

n=1 λn+Nseg+1 · (imax − iseg,n)
}

(6.20)

As mentioned before, the function f is minimal if all segment currents are equal to the
homogeneous current i0. However, the matrix equation constraint Eq. (6.17) does not
allow this solution (if ~is 6= ~0). Thus the segment currents have to deviate from i0. As
f(iseg) is applied to each segment current individually, the Lagrangian is minimal for the
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Figure 6.1: The function f(iseg) plotted for i0 = 3 A and various values of the ε param-
eter. By constraints only the domain between iseg = 0 A and iseg = i0 is accessible.

smallest number of segment currents deviating from i0 (as long as Eq. (6.17) is fulfilled).
Since the matrix equation is included in the form of a constraint, it is guaranteed, that
only valid solutions are obtained. Even though the minimization5 of Eq. (6.20) can only
lead to a solution in which barely a few segment current diverges from the homogeneous
current i0, it is possible to fine tune the localization by the factor ε. If the ε factor is
changed over some orders of magnitude, the function f varies in such an extent, that
solutions with different degrees of localization are obtained.

6.2 Minimization of the Lagrangian

Since Eq. (6.1) is no convex function, there are obviously local minima, whose number
is not known but increases with the slit number. Therefore it is not possible to find
the saddle point of the Lagrangian Eq. (6.20) by direct means. Hence the simulated
annealing method (c.f. section 4.2) is used to find the global saddle point. In this section
the basic program used to compute the minimum-maximum problem is described. Since
there are different kinds of computations, the details of these are presented together with
the results in the next section.

5It is not only a minimization with respect to the segment currents, but in addition a maximization
with respect to the Lagrange parameters λ. Thus it is in fact a saddle point search.
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1. At first the values are initialized, the segment currents are set to i0 and the La-
grange parameters to zero. Since this is not a thermodynamic system, an artificial
temperature parameter should be defined. An initial value of β0 = 105 is chosen.
Furthermore the temperature change rate is set to ∆β = +104. By the choice
of the reciprocal temperature change, the annealing speed decreases during the
process. The initial variable shifts are set consistently to ∆i = ∆λ = 0.05 and the
change in the variable shift to ξ = 0.9. At last the Lagrangian value for the initial
configuration is calculated.

2. For the variable shift a simple random number generator is used. Due to the uni-
form distribution of this generator, the variables are shifted with equal probability
by a value between −0.5∆i and +0.5∆i.

3. At this point some minor, but nevertheless important, constraints are included.
These constraints only contribute by rejecting the corresponding step if they are
violated, but they do not change the value of the Lagrangian in any kind. Thus
they are referred to as logical constraints (in comparison to the previous discussed
analytical constraints). As neither the Lagrange parameters nor the segment cur-
rents are allowed to be negative, each step involving a transition to a negative
value is rejected. Furthermore it is possible to abandon the analytical constraint
Eq. (6.11) and replace it by a simple logical one6; all steps involving a transgres-
sion of the homogeneous current are rejected. If no logical constraint is violated,
the new Lagrangian value is calculated and the Lagrangian shift is determined.
Following the metropolis algorithm Eq. (4.19) steps are accepted or rejected.

4. The total Monte Carlo step is executed for each segment current and Lagrange
parameter.

5. A number of MCSs, which leads to a fast convergence is found: NMCS = 2000.
After that, the temperature parameter βt+1 = βt + ∆β, as well as the maximal
step range ∆it+1 = ∆λt+1 = ξ ·∆it is adjusted.

6. In all temperature steps βt the mean value of each segment current〈
~iseg

〉
βt

(6.21)

and the deviation to the corresponding mean value of the previous temperature
step

∆~iseg =~iseg −
〈
~iseg

〉
βt−1

(6.22)

6As a Monte Carlo step includes the shift of each variable, the computing time increases linear with the
number of Lagrange parameters. Whereas logical constraints lead to a lower step acceptance rate,
and thus to a slower convergence. Nevertheless most of the time logical constraints are preferable,
due to lower overall computation time.
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is calculated. To ensure the statistical independence of each contribution, the
values are only updated at each fiftieth MCS. If the mean quadratic deviation to
the previous temperature step

〈
(∆~iseg)2

〉
βt

=

〈(
~iseg −

〈
~iseg

〉
βt−1

)2
〉

(6.23)

is smaller than a limit ∆ilim = 10−15, the iteration is terminated and the latest
segment-current mean values form the converted configuration ~iseg|conv.

7. As mentioned in the previous section the voltage change ∆U is calculated (c.f. Eq. (6.13))
and based on this the segment currents are adapted to the total current I0 (c.f. Eq. (6.14)).

6.3 Inverse computations I : Damage extent

In the first part of the computations the Lagrangian has the following form:

L(iseg,n, λν) =
∑Nseg

n=1 ln((iseg,n − i0)2 + ε)

+λ1 ·
[(
A− 1

I0
~iS

)
~iseg

]2
(6.24)

No maximal damage segment is predefined here, therefore Eq. (6.18) is not included in
the Lagrangian. Furthermore the iseg ≤ i0 constraint is implemented logically. Thus only
one Lagrange parameter is needed, which limits the number of variables to Nseg + 1. To
investigate the solutions in dependency of the allowed damage extent, the saddle point
for various ε values is determined. Therefore, the annealing program is executed for ε
values between 10−2 and 10 (100), while for each order of magnitude nine computations
are performed ε = {0.01 0.02 . . . 0.09 0.1 0.2 . . . 10}. For the sake of compatibility the
input vector~iS,input is calculated by the multiplication of a given segment current vector
~i∗seg with the corresponding transformation matrix:

~iS,input = ANS
·~i∗seg (6.25)

The transformation matrices for the corresponding number of slits NS has been computed
only for PPG 86 graphite plates by the method discussed in section 5.3. It has been
shown, that the diagnostic method is applicable for all discussed materials, thus the
matrices could be calculated on the basis of other graphite plates as well. The actual
values of the matrix elements are of no concern for the selection of inverse problem
solutions, as long as the relation between the elements is correct and the bridge currents
correspond. Because of this it suffices to investigate the reconstruction for one flowfield
material7.

7Even the ideal matrix could be used for the investigation of the inverse problem and still the same
results would be obtained.
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Figure 6.2: The segment index for Ns = 2 (left) and Ns = 3 (right).

For various defect structures these computations are done and the results are dis-
cussed. These are done either in an arrangement with two slits or with three slits. Some
calculations are done in both arrangement. These are compared to emphasize, that there
is no principle difference of an arrangement with NS = 2 and NS = 3 for the inverse
problem. Mathematically there is even no difference to arbitrary slit numbers. In the
following figures, there is always a sketch of the segment current configuration used in
the forward calculation and the solutions of the inverse calculation in dependency of ε.
The segment index is given in reference to Fig. (6.2) It should be clarified, that each
point in this plot is a converged inverse calculation for a given ε and a given bridge
current vector ~iS.
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Figure 6.3: The left sub-figure shows the predefined slit current configuration, which is
used in the forward calculation. The right sub-figure shows the results of the correspond-
ing inverse calculation in dependency of the ε parameter. The blue curve represents the
current across the defect segment n = 1. The black curve represents n = 5, 6, 8, 9 and
the green one respectively n = 2, 3, 4, 7.
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Figure 6.4: The result of the inverse calculation only of the defect segment corresponding
to Fig. (6.3).
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Figure 6.5: The left sub-figure shows the predefined slit current configuration, which
is used in the forward calculation. The right sub-figure shows the results of the corre-
sponding inverse calculation in dependency of the ε parameter. The lower curve rep-
resents the current across the defect segment n = 6. The descending curve represents
n = 2, 5, 7, 8, 10, 14. The other segment currents are represented by the green one.

Figure 6.6: The left sub-figure shows the predefined slit current configuration, which
is used in the forward calculation. The right sub-figure shows the results of the corre-
sponding inverse calculation in dependency of the ε parameter. In this plot only the
currents across the two defect segments are shown (blue: n = 1, green: n = 2).
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Figure 6.7: The left sub-figure shows the predefined slit current configuration, which
is used in the forward calculation. The right sub-figure shows the results of the cor-
responding inverse calculation in dependency of the ε parameter. The lower curve is
in fact two curves representing both defect segments. The topmost curve represents
n = 1, 4, 9, 12, 13, 16, the second curve n = 2, 3, 10, 11, 14, 15 and the blue one n = 5, 8.

Figure 6.8: The left sub-figure shows the predefined slit current configuration, which
is used in the forward calculation. The right sub-figure shows the results of the corre-
sponding inverse calculation in dependency of the ε parameter. In this plot only the
currents across the two defect segments are shown. The blue curve represents n = 1 and
the green one n = 3.
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Figure 6.9: The left sub-figure shows the predefined slit current configuration, which is
used in the forward calculation. The right sub-figure shows the results of the correspond-
ing inverse calculation in dependency of the ε parameter. The lower curve represents the
defect segments and the upper one the undamaged segments.

Figure 6.10: The left sub-figure shows the predefined slit current configuration, which
is used in the forward calculation. The right sub-figure shows the results of the corre-
sponding inverse calculation in dependency of the ε parameter. The lower green curve
includes both n = 1 and n = 9, the black curve decreasing to iseg ≈ 4A includes both
n = 3 and n = 7. All other segment currents are represented by the constant curve.
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Figure 6.11: The left sub-figure shows the predefined slit current configuration, which
is used in the forward calculation. The right sub-figure shows the results of the corre-
sponding inverse calculation in dependency of the ε parameter. The two lower curves
are n = 1 and n = 7, whereas the decreasing curves represent n = 3 and n = 5. All
other segment currents are represented by the nearly constant curve.

Figure 6.12: The left sub-figure shows the predefined slit current configuration, which
is used in the forward calculation. The right sub-figure shows the results of the corre-
sponding inverse calculation in dependency of the ε parameter. The two lower curves
stepping up are n = 1 and n = 11, the curves stepping down are n = 3 and n = 9.
The not stepping lower curve is n = 6. Also the curves n = 2, 5, 7, 10 are converging to
iseg = 3.7A. All other segment currents are represented by the constant curve.

The simplest defect is a single completely damaged segment. The results for this
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Figure 6.13: Comparison between a block like defect and a diagonal defect. The left
sub-figures show the predefined slit current configuration, which is used in the forward
calculation. The right sub-figures show the results of the corresponding inverse calcu-
lation in dependency of the ε parameter. In both plots the curve pairs interchanging
their positions are on the one hand n = 1, 5 and on the other hand n = 2, 4. All other
segment currents are represented by the constant curve.
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configuration are shown in Fig. (6.3) and the defect segment current individually in
Fig. (6.4). First of all the conformity between the given configuration and the recal-
culated one is considerable. The segment currents are in fact completely reconstructed
of the bridge currents. Furthermore it is obvious, that the result improves for small ε
values. This can be explained by the extent of the given defect. As it is concentrated
in only one segment, there can be no stronger defect localization for a given NS. Thus,
the larger the penalty for unlocalized solutions, which is conformal with a small ε, the
better the localized solution reconstructed. At large ε values, the solution diverges from
the predefined one, as less localized solutions are accepted as well. In fact the defect
current increases whilst the segment currents in the same stripe as the defect decreases.
In Fig. (6.5) a more general variant of the same damage is shown. Here a finite damage
occurs at an arbitrary position. Nevertheless, the iseg(ε) plot shows the same qualita-
tive result and the predefined configuration is reconstructed perfectly. These two results
show, that each damage being smaller than one segment can be reconstructed loss-less.

In Fig. (6.6) and Fig. (6.7) there are two examples for a defect, which extends over two
adjacent segments. As this kind of damage is also a localized one, it shows an equivalent
behavior and therefore it is possible to reconstruct it either. In Fig. (6.6) the values
of the two damaged segments increase distinct, whereas in Fig. (6.7) both curves are
exactly equal. This might occur due to symmetry reasons, as the second configuration
is more symmetric than the first one. Thus the null space leads to different less localized
solutions for increasing ε.

In Fig. (6.8) a non local defect is predefined. But this configuration is still restricted,
as there are only two damaged segments, which are in addition located on the same stripe
in one direction. Although there is again a divergence in the high ε domain, the solution
converges to the predefined one for small ε values. Even though this is not a local defect,
it is also loss-less reconstructed. In the following figure, Fig. (6.9) an entire stripe is
defect, which is perfectly reconstructed for all ε values. In the previous configurations
the currents across the segments in the defect slits decreases (except for the defect
segments itself), whereas the other segments increases. Since in this configuration there
are only segments in defect slits and by following the current conservation, there can be
no change in segment currents at high ε values.

In the following figures, two different solutions appear, a local one for low ε values and
a less localized one above these. Although in most of the cases the local solution has
been predefined, in one figure (Fig. (6.13)) both configurations are predefined once. In
Fig. (6.10) and Fig. (6.11) the configuration consists of two damaged segments in totally
different stripes. In both cases the slow transition from the local solution to the less
localized one can be seen well. In the minimal localized solution, two other segments
have a contribution. These segments are defined by the intersection of the damaged
stripes (c.f. Fig. (6.14)). In fact the predefined solution and the solution given by the
intersection are degenerated for low ε values. This can be seen better in the subsequent
figures, since there are obvious jumps between the degenerated solutions.

In Fig. (6.12) the predefined configuration is a diagonal. Here it can be seen very
well, that the solution containing the diagonal and the one containing the anti-diagonal
are degenerated. As the central segment of the damage structure n = 6 is part of
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Figure 6.14: Schematically view of degenerated solutions. The defect configuration is
indicated by the dark gray segments. The light gray segments are part of stripes, in which
an actual defect can be found.. The intersection of these stripes form the degenerated
solution (denominated by the wave texture).

both solutions, it does not change in the step. These different solutions appear due to
the statistically nature of the simulated annealing method. As the minimum of both
solutions are equally deep, the method finds either the one solution or the other one.
Thus even more steps could appear in a iseg(ε) plot. The minimal localized solution
does not contain only the diagonal and the anti-diagonal, but all intersections of the
predefined segments. Thus at high ε a block is reconstructed. The integrated current
across this block in both solutions is equal. Therefore one could expect equal curves for
a diagonal and a corresponding block with the same integrated current flowing across all
participating segments. This is done for a simple two segment diagonal and respectively
four segment block. The results are shown in Fig. (6.13). In both configurations the
total current across the block is 20 A. The resemblance between both plots is obvious.
They only differ in the location and number of steps between the diagonal and the anti-
diagonal solution. However, arbitrary numbers of steps can appear for small ε values
(local damages), these are totally random and the difference can be neglected.

6.4 Inverse computations II : Voltage difference

If one is only interested which segments are definitely undamaged, another presentation
of the inverse problem is appropriate. The calculation is done only for one ε value, but
one segment is defined as the one with the largest damage. In fact this is done for
each segment. Due to the large null space, there is always a solution, but the change of
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the overall MEA resistance may vary largely. Therefore at the end the relative voltage
differences are compared, as they represent the increase in this resistance.

For this calculation the following Lagrangian is used:

L(iseg,n, λν) =
∑Nseg

n=1 ln((iseg,n − i0)2 + ε)

+λ1 ·
[(
A− 1

I0
~iS

)
~iseg

]2

+
∑Nseg

n=1 λn+Nseg+1 · (imax − iseg,n)

(6.26)

Again the constant total current constraint is included logically. Though it is more mean-
ingful to include the maximal defect constraint in an analytical way, since a violation
of it could also be reversed by lowering the current across the maximal defect segment.
If applied logical, this constraint would increase the convergence time immensely, as
no transgression across the variable lower limit is permitted. For some of the previous
discussed configurations this presentation scheme is applied.

The information obtained from these figures contains which segments are definitely
undamaged, and which segment might be damaged. In Fig. (6.15) and Fig. (6.16) con-
figurations are used, which can be reconstructed uniquely. The relative voltage change
for the damaged segments is clearly lower than for the other segments. This means, that
a damage, which is maximal at these locations, can be very local and still reproduce the
measured bridge currents. In Fig. (6.17) and Fig. (6.18) there are configurations chosen,
which lead to degenerated solutions in the inverse calculation. Again it can be clearly
seen in which segments the damage may have been occurred.

Since the number of unknown segment currents in the MEA Nseg is much larger than
the number of signals Ncur, a lot of information about the MEA condition is lost, if only
the bridge currents are measured. Though it is much less complicated to measure only
the currents emerging at the bridges. If a local damage occur, the MEA condition can
be reconstructed with a good accuracy. Therefore is seems, that only minor information
is lost and the MEA condition is adequately represented by the bridge currents.
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Figure 6.15: The left sub-figure shows the predefined slit current configuration, which
is used in the forward calculation. The right sub-figure shows the results of the corre-
sponding inverse calculation for ε = 0.1. The percental values represents the voltage
change, if the corresponding segment is assumed to have the maximal damage.

Figure 6.16: The left sub-figure shows the predefined slit current configuration, which
is used in the forward calculation. The right sub-figure shows the results of the corre-
sponding inverse calculation for ε = 0.1. The percental values represents the voltage
change, if the corresponding segment is assumed to have the maximal damage.
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Figure 6.17: The left sub-figure shows the predefined slit current configuration, which
is used in the forward calculation. The right sub-figure shows the results of the corre-
sponding inverse calculation for ε = 0.1. The percental values represents the voltage
change, if the corresponding segment is assumed to have the maximal damage.

Figure 6.18: The left sub-figure shows the predefined slit current configuration, which
is used in the forward calculation. The right sub-figure shows the results of the corre-
sponding inverse calculation for ε = 0.1. The percental values represents the voltage
change, if the corresponding segment is assumed to have the maximal damage.



7 Conclusion

For graphite flowfield plates it has been shown, that by placing slitted 1mm aluminum
plates between the flowfield plates of adjacent fuel cells in a stack - which elongates a
100 cell stack by about 10 cm - it is possible to localize damaged areas in the MEAs
of the fuel cells and to determine how serious the damage is. This is made possible by
enforcing inner compensation currents to appear at the surface of the stack where they
can be measured. All computations testing the measurability of the bridge currents
including various graphite flowfield materials have been positive. For most of these
materials it is even possible to reduce the aluminum plate thickness. For PPG 86 it
is even possible to reduce it to less than 100µm. In a fuel cell with BBP 4 graphite
flowfields the insertion of slitted 0.5 mm thick aluminum plate suffices to measure the
bridge currents satisfactorily.

Furthermore it is possible to smoothen inhomogeneities of currents in the MEAs and
prevent irregularities in one MEA to induce irregularities in the MEAs of the next and
previous fuel cell which otherwise could lead to a destructive chain reaction. The defect
expansion in the damaged MEA due to current density peaks at the defect-boundary is
also prevented completely.1 A further, not investigated, secondary effect of the aluminum
plate is the equalization of temperature peaks, which also could damage the fuel cells.
Since the thermal conductivity of aluminum is also very high (2.37W · (cm · K)−1 at
300K), thermal irregularities are smoothed out, too.

For the reconstruction of the MEA condition it has been shown, that it is possible to
define a Lagrangian in such a way, that solutions concerning specific defect structures
can be found. In fact, using a simple Lagrangian preferring local solutions a large variety
of defects can be reconstructed. Investigating typical damages occurring in fuel cells it
seems that most of them are local and by that reconstructible.

� Flooding of cathode flowfields: If water is deposited in the cathode flowfield, it
blocks complete channels. Usually the channels are parallel to one slit direction,
therefore the defect is limited to one stripe and can be reconstructed.

� Flooding of the diffusion layer: This flooding effect is not bound to a flowfield chan-
nel, but as long as it is connected, its location can be determined (c.f. Fig. (7.1)).

1This is actually not investigated for thinner aluminum plates. Though an approximation for a 100µm
aluminum plate in between two 1mm PPG 86 plates leads to a conductance one order of magnitude
larger than that of a 2mm Sigraflex plate of the same width and length. Thus the inhibition of the
damage expansion is expected to be still almost perfect.
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Figure 7.1: For large numbers of slits (here Ns = 7) it is also possible to reconstruct
MEA failures. Complex defects (black structure) would be reconstructed as a damage
spread over the red segments.

� Oxidizing of the catalyst and destruction of the membrane: Both effects may
appear at different locations of the MEA and are thus not necessarily connected.
But as long as they do not emerge exactly at the same time, it is possible to detect
them independently.

Of course more than one defect may occur in the same MEA, but as long as they emerge
at different times it is possible to detect one by one measuring the current difference at
the bridges. Fig. (7.1) shows an exemplary defect and its reconstruction by the presented
diagnostic scheme. In order to verify the theoretical and numerical results experiments
will be done in the near future.



A Appendix

A.1 Finite-volume conductivity in material interfaces

In reference to Fig. (A.1) the current density j between x1 and x2 is calculated to quantify
the conductivity at the location x0. This can be done by the Ohm’s law

j =
φ2 − φ1

ρ
(A.1)

where ρ is the area related resistivity. If objects with identical cross sections are con-
nected in series, it is possible to add up the individual resistivities to obtain the total
one. According to the prerequisites of the finite-volume method, the connecting surfaces
of adjacent cells are of the same size. Hence it is possible to calculate the total resistivity
by the sum of the individual ones:

ρ = ρ1 + ρ2 =
x0 − x1

σ1

+
x2 − x0

σ2

(A.2)

If the two cells are of the same size, the distances are equal and can be written as
x0 − x1 = x2 − x0 = l, which leads to:

ρ = 2 · l
(

1

2

(
1

σ1

+
1

σ2

))
(A.3)

Figure A.1: The two adjacent cells with the potentials φ1 and φ2 have different con-
ductivities, which are unambiguously defined at the locations x1 and x2. The unknown
conductivity, which is needed for the calculation of the current density j between φ1 and
φ2, is located at x0.
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Combining Eq. (A.3) with Eq. (A.1) leads, under the consideration that 2 · l is the
distance from x1 to x2, to:

j = 2

(
1

σ1

+
1

σ2

)−1

· φ2 − φ1

x2 − x1

(A.4)

The second term on the right hand side of the equation is the difference quotient of the
potential derivative, and the prefactor is the harmonic mean value σh of the conductivities
in the two cells1. The resemblance between Eq. (A.4) and the canonical approximation
Eq. (4.11) is obvious, whereas the harmonic mean value is used for the conductivity at
the material interface. In this manner the current density between these two cells is
calculated correctly.

A.1.1 The electric field at material interfaces

Due to Ohm’s law j = σ · E, the conductivity step at x0 and the uniformity of the
current density, follows a step in the electric field at x0. With a known current density
j it is possible to determine the electric field in the two adjacent cells:

E1 =
j

σ1

E2 =
j

σ2

(A.5)

As the conductivity within a cell is constant, the electric field is constant, too. Thus,
the potential increases linear with a slope of −E, and has a step at x0. The progression
of the potential, indicated in Fig. (A.2), suggests a linear characterization:

φ(x) = φ(x1) + (x− x1) · E1, x ≤ x0 (A.6)

φ(x) = φ(x2) + (x− x2) · E2, x ≥ x0

If these two equations are consistent, the potential can by quantified completely without
any further approximations. The consistency is shown if both equations yield the same
value for x = x0:

φ(x0)x≤x0 = φ(x0)x≥x0

φ(x1) + (x0 − x1) · E1 = φ(x2) + (x0 − x2) · E2

φ(x2)− φ(x1) = (x0 − x1) · E1 + (x2 − x0) · E2

(A.7)

With x0 − x1 = x2 − x0 = l and E = j/σ follows:

φ(x2)− φ(x1) = 2 · l · j
(

1

2σ1

+
1

2σ2

)
(A.8)

1If the two cells are of different size, the harmonic mean value of the conductivities is given by σh =
1

x2−x1

(
x0−x1
σ1

+ x2−x0
σ2

)−1
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Figure A.2: Qualitative sketch of the conductivity σ, the electric field E and the electric
potential φ in the vicinity of a material interface at x0. The conductivity, as well as the
electric field are constant in both cells, but have a step at the interface. Their values
at x0 due to the harmonic mean value, σh and Eh, are shown as dots. The potential
φ increases constantly with a discontinuity at the interface x0. The dashed blue line
indicates the potential progression, if the conductivity of the first cell had been used
instead of the harmonic mean value.

(
1

2σ1

+
1

2σ2

)−1
φ(x2)− φ(x1)

2 · l
= j (A.9)

This shows, that the linear description of the potential is only valid if the harmonic
mean value for the conductivity is used. Thus, the finite-volume method can include
conductivity steps even of high magnitude if the harmonic mean value for the boundary
conductivity is used.

A.2 Finite-volume method for the magnetic field

Using the finite-volume method, it is possible to calculate the magnetic field in a body
Ω consistently. To do that a differential equation for the magnetic vector potential ~A is
assembled. This is done on the basis of the following two equations:

rot ~A = ~H (A.10)

rot ~H = ~j (A.11)

Eq. (A.10) is the calibration of the magnetic vector potential, and Eq. (A.11) is the
time independent Ampere’s law. Both equations are treated analogously by applying
a surface integral. This calculation can not be done in two dimensions since the curl
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Figure A.3: The electric potential φ is defined at the black dots in the center of the cell.
The current density ~j and the magnetic vector potential ~A are defined at the location
of the red arrows at the face center of each cell. The magnetic field ~H is defined at the
location of the green arrows in the middle of each lateral edge.

operator (rot) is only defined in three dimension. For Eq. (A.11) this leads to:

ˆ
F

rot ~H · ~ndF =

ˆ
F

~j · ~ndF (A.12)

Here ~n denotes the normal vector of the surface F . The Stokes integral theorem[39] is

used to substitute the surface integral of rot ~H by a line integral of ~H over the boundary
of the surface ∂F : ˆ

∂F

~Hdl =

ˆ
F

~jndF (A.13)

The line of integration ∂F is indicated by the green line in Fig. (A.3), while the magnetic
field is defined at each lateral edge. On the right hand side of the equation only the
current density components normal to the green area have a contribution to the integral.
These can be calculated by the canonical approximations Eq. (4.11). By identifying the
electric potential of the bottom left cell by φijk

2, this leads to the discretized form of
Eq. (A.13):

jµ,ν,κ+1/2 · hx · hy =
(
Hx|µ,ν−1/2,κ+1/2 −Hx|µ,ν+1/2,κ+1/2

)
hx

+
(
Hy|µ+1/2,ν,κ+1/2 −Hy|µ−1/2,ν,κ+1/2

)
hy

(A.14)

2Since this calculation is done in three dimensions, the potential φ has three indices.
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Figure A.4: The charge inside of a cell is defined at the center, likewise to the electric
potential. The current density is defined at the face centers.

The application of the Stokes integral theorem to Eq. (A.10) leads to:

ˆ
∂F2

~Adl2 =

ˆ
F2

~HndF2 (A.15)

∂F2 is the red line in Fig. (A.3) and respectively F2 the red area. Thus follows the
canonical approximation of the magnetic field:

Hy|µ+1/2,ν,κ+1/2 · hx · hy =
(
Ax|µ+1/2,ν,κ+3/2 − Ax|µ+1/2,ν,κ

)
hx

+
(
Az|µ,ν,κ+1/2 − Az|µ+1,ν,κ+1/2

)
hy

(A.16)

Each component of H in Eq. (A.14) is replaced by the corresponding vector potential
term Eq. (A.16). Thus, a differential equation for the magnetic vector potential A
with the current densities jµνκ as an inhomogeneity is obtained. From a known vector

potential ~A the magnetic field ~H can be calculated using Eq. (A.10).

A.3 Maxwell equations in the finite-volume method

The major advantage of the finite-volume method is, that it fulfills all Maxwell equations.
The static Ampere’s law rot ~H = ~j is fulfilled by default, as it is directly used in the
assembling of the differential equations Eq. (A.14) and Eq. (A.16).

Gauss law The finite-volume method does not fulfill the Gauss law by default, as no
charges are defined. To add the Gauss law

˛
~Ed~S = Q (A.17)
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with the included charge Q and the enclosing surface ~S, to the finite-volume method,
the charge density has to be discretized. Since the electric field is defined at the face
centers of the cells (like the current density) it is appropriate to define the total charge
at the center of the cells. After the electric field is substituted by the negative potential
gradient, the charge Qij can be calculated analogously to Eq. (4.10). If Eq. (4.5) is solved
and the potential as well as the current density distribution is known, it is possible to
calculate the charge as a function of the current density and of the conductivity. In two
dimensions (c.f. Fig. (A.4)) the charge is given by:

Qij =
jl

σl

hy −
jr

σr

hy +
jb

σb

hx −
jt

σt

hx (A.18)

In an isotropic material all conductivities are equal, thus this equation is reduced to the
sum over all surface currents, which must vanish. In an anisotropic material this equation
does not vanish even though the sum over the surface currents does. Therefore inside
of isotropic materials no charges occur, whereas inside of anisotropic materials charges
may occur. At material interfaces charges can definitely be found. This is due to the
harmonic mean value of the conductivity, which leads to an anisotropic conductivity
in surface cells, even in isotropic materials. Although there may be no contribution
to Eq. (A.18) in the direction parallel to the interface, the perpendicular components
differ. If the interface is at the right side of cell Qij, σb may be equal to σt, but σr is
given by the harmonic mean value and is thus different to σl. In the time independent
case, the charge density does not change. Therefore current conservation in the form
div~j = 0 is still fulfilled, and the emergence of charges can be ignored if electrostatic or
magnetostatic boundary problems are solved. Nevertheless, after the boundary problem
is solved, the charge can be calculated consistently by the Gauss law Eq. (A.17).

Faraday’s law The observance of the static Faraday’s law
¸
~E d~s = 0 can be shown

easily. Fig. (A.5) shows a closed line along which the electric field is integrated. The
time independent Faraday’s law demands this integral to vanish. This is shown for a line
of integration across a material interface; if the line integral vanishes at the interface, it
vanishes all the more for closed lines inside of one material. As the electric field has a
step at material interfaces the integrations from φ1 to φ2 and from φ3 to φ4 are separated.
For the electric field at the interface Eq. (A.5) and Eq. (A.4) is used:

ˆ
~E1d~s = σh

φ2 − φ1

1
2
dxσ1

dx + σh
φ2 − φ1

1
2
dxσ2

dx (A.19)

ˆ
~E3d~s = σh

φ4 − φ3

1
2
dxσ1

dx + σh
φ4 − φ3

1
2
dxσ2

dx (A.20)

The electric field E2 and E1 are once again approximated in the canonical form:

˛
E ds = 2σh

(
1

σ1

+
1

σ2

)
φ2−φ1 + 2σh

(
1

σ1

+
1

σ2

)
φ4−φ3 +φ1−φ4 +φ3−φ2 (A.21)
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Figure A.5: The line integral of the electric field over a closed line vanishes, even at a
material interface. This also holds in the finite-volume discretization. The electric field
is integrated clockwise along the blue line. The different shaded cells indicate different
conductivity.

With the harmonic mean value σh = 0.5(1/σ1 + 1/σ2)−1 this leads to:

˛
E ds = φ2 − φ1 + φ4 − φ3 + φ1 − φ4 + φ3 − φ2 = 0 (A.22)

Thus it is proved, that the static Faraday’s law holds in the finite-volume discretization.

Gauss law for the magnetic field The magnetostatic Gauss law demands the solenoidal-
ity of the magnetic field

‚
~H d~S = 0. To show this, a different discretization is chosen,

in which the magnetic field is defined on the face centers. In this way each magnetic field
point represents one face of the cuboid and the closed surface integral can be divided
into the sum over six separate surface integrals. The resulting sum is shown for the first
two faces: ‹

~H dF =

ˆ
F1

H1dF +

ˆ
F2

H2dF + ... (A.23)

With Eq. (A.10), and by applying the Stokes integral theorem to each surface integral

of rot ~A, this leads to a sum over line integrals:

‹
~H dF =

ˆ
∂F1

A1dl +

ˆ
∂F2

A2dl + ...

= A1,1dx + A1,2dz + A1,3dx + A1,4dz

+ A2,1dy + A2,2dz + A2,3dy + A2,4dz + ...

(A.24)

As can be seen in Fig. (A.6) A1,2 is equal to −A2,4 and therefore these two quantities
cancel out mutually. Each component of the magnetic vector potential occurs in two
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Figure A.6: On the left hand side a cell, in which the magnetic field is discretized on the
face centers and the electric potential is discretized in the edges, is shown. On the right
hand side the faces corresponding to H1 and H2 are shown separately. The red arrows
indicates the magnetic vector potential, which are defined on the lateral edges in this
discretization.

line integrals, since each edge is boundary of two faces. All integrations are done clock-
wise, which concludes, that any vector potential component appears once negative and
once positive. Thus, the sum over all faces is zero, which shows the observance of the
magnetostatic Gauss law by the finite-volume method.

A.4 Circulation resistance approximation

Figure A.7: Schematic view of the graphite aluminum boundary layer at the slit. The
slit in the aluminum plate is indicated by the black area. On the top of the aluminum
layer there is another not shown graphite plate.

To approximate the circulation resistance RC via the graphite layer, the system shown
in Fig. (A.7) is used. RC is separated into two domains, the linear domain parallel to
the slit and the domain in which the current flows out of and into the aluminum. The
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resistance in the parallel domain can easily be calculated by:

R1 =
c

b · L · σ⊥
(A.25)

To determine the potential in the other domain, the Laplace equation

∂jx
∂x

= −∂jz
∂z

(A.26)

with jy = const. = 0 is used. The current density derivative in the z-direction is
approximated by the difference quotient:

−∂jz
∂z

= −jb − jz
b

(A.27)

If no current enters the system from the bottom, jb vanishes. Since the conductivity
in the graphite layer is constant, so is the electric field in the z-direction Ez. Thus the
current jz is can be approximated by:

jz = Ez · σ‖ = −∂φ
∂z
· σ‖ ≈ −

φ

b
σ‖ (A.28)

Consequently, the differential equation can be written as

−∂
2φ

∂x2
= − φ

b2

σ‖
σ⊥

(A.29)

which can also be expressed as
φ′′ − β2φ = 0 (A.30)

with:

β =

√
σ‖

b2 · σ⊥
(A.31)

If the potential vanishes for x→∞, the solution is given by

φ(x) = U0e
−βx (A.32)

with the voltage between the boundary to the aluminum and the boundary to the parallel
domain U0.

To calculate the resistance, the total current across the boundary layer to the inter-
mediate domain is determined. The current density at this point is

j = −σ⊥
∂φ

∂x

∣∣∣∣
x=0

= U0σ⊥β (A.33)

so the total current is
I = b · L · j = b · L · U0 · σ⊥ · β (A.34)
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and the resistance:

R =
U0

I
=

1

L

√
1

σ⊥σ‖
(A.35)

The total resistance according to this approximation is given by:

RC = R +
1

2
R1 =

1

L

√
1

σ⊥σ‖
+

c

2 · b · L · σ⊥
(A.36)

For b = c = 10−3m, L = 0.18m and isotropic graphite the circulation resistance in this
approximation is:

RC =
3

0.18 m · 4200 S ·m−1
≈ 4 · 10−3Ω (A.37)

Although this approximation does not give exact quantitative results, it gives the correct
qualitative dependencies.

A.5 Normal resistance of a diffusion layer consisting of
graphite fabric

Figure A.8: Cross section of a wire. The wire consists of n fiber layers, each consisting
of n fibers. Both wire and fiber have quadratic cross sections, with the edge length of a
fiber a. Thus the edge length of a wire is n · a.

The diffusion layer between MEA and flowfield plates consists of a graphite fabric, which
has a pressure-dependent normal resistance in the order of isotropic graphite, although
only a small fraction of the space is filled with material. Small graphite fibers are skewed
to wires, which are weaved to the diffusion layer. In order to approximate the normal
resistance of the diffusion layer analytically only one wire with a quadratic cross section
is investigated, which has the height of the total layer thickness. Since the individual
fibers are skewed, each fiber layer has contact to both the upper and the lower boundary.
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Figure A.9: Profile of a wire. The different colors indicate individual fiber layers. These
have overlays with the lower boundary and with the upper boundary, both have the
length l. In between these overlays, the way length is b. This is repeated periodically,
while the periodicity is given by l and the number of fiber layers in a wire n.

Following Fig. (A.8) and Fig. (A.9) the length of a period is n · l, therefore the length d
is given by:

d =
nl

2
− l (A.38)

The way b between the overlays is therefore:

b =
√
d2 + c2 =

√(
nl

2
− l
)2

+ c2 (A.39)

The total electric resistance of a single fiber layer is determined by the contact resistance
RC and the resistance of the fiber. The resistance of one contact is:

R1 =
2 ·RC

a · n · l · f(p)
(A.40)

Here, f(p) is a pressure dependent function describing how many fibers of a fiber layer
are actually in contact with the boundary at a given pressure (at f(p) = 1 all fibers of a
layer have contact to the boundary). Due to symmetry reasons the length of the overlay
contributes only half. Following this, the fiber resistance is given by:

R2 =
b+ l

σ‖ · n · a2 · f(p)
(A.41)
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A current between different fibers are neglected3, therefore current enters and leaves the
fiber only at the overlays. The resistance of an entire period is given by:

Rper =
1

2n
(2R1 +R2) =

1

2n

(
4 ·RC

a · n · l · f(p)
+

b+ l

σ‖ · n · a2 · f(p)

)
(A.42)

The contact resistance has a double contribution, since it occurs at the upper and lower
boundary. As the fiber layers are of identical resistance and connected parallel, the
resistance is divided by the number of current channels. In a period one fiber forms
two connections between the upper and the lower boundary, therefore the resistance is
divided by 2n. The total resistance of a wire is given by the number of periods N in it.
With Rtot = Rper/N and N = Lw · (nl)−1 (Lw is the length of the wire) follows:

Rtot =
l

2Lw

(
2 ·RC

a · n · l · f(p)
+

b+ l

σ‖ · n · a2 · f(p)

)
(A.43)

The collectivity of all wires in a diffusion layer should only fill a fraction α of its area:

Lw · n · a = Aw = α · ADL = αL2 (A.44)

=⇒ Lw =
L2α

na
(A.45)

Rtot =
n · a · l

2 · L2 · α

(
2RC

a · n · l · f(p)
+

b+ l

σ‖ · n · a2 · f(p)

)
(A.46)

Investigating the specific resistance of the diffusion layer ρ = RtotL
2/c, it follows:

ρ =
l

2 · α · f(p) · c

(
2RC

l
+
b+ l

σ‖ · a

)
(A.47)

The contact resistance is approximated by resistance of the half fiber:

RC =
a

2σ⊥
(A.48)

The length of the overlay l depends on a:

l = βa (A.49)

This leads to:

b =

√(
nl

2
− l
)2

+ c2 =

√
c2β2

4
− cβ2a+ β2a2 + c2 =

√
c2

(
β2

4
+ 1

)
+ aβ2(a− c)

(A.50)

3If the current between fibers is included, the normal resistance of the diffusion layer is less. Thus if
the approximation describes the low normal resistance well, there is no need to include this effect.
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Using the previous equation, the resistance becomes:

ρ =
β

2 · α · c · f(p)

 a

β · σ⊥
+

√
c2
(
β2

4
+ 1
)

+ aβ2(a− c) + βa

σ‖

 (A.51)

Now, if the fiber size goes to zero:

lima→0ρ =
β

2 · α · f(p)
·

√
β2

4
+ 1

σ‖
(A.52)

For large pressures f(p) is unity. With α = 0.2 and β = 2 follows

lima→0ρ =
2
√

22

4
+ 1

2 · 0.2 · σ‖
= 5
√

2ρ‖ (A.53)

and:

σDL = σ‖
1

5
√

2
(A.54)

For the transverse conductivity σ‖, the corresponding value of Sigraflex is used

σDL =
110 S ·mm−1

5
√

2
= 15.5 S ·mm−1 (A.55)

which is by a factor of four larger than the conductivity of isotropic graphite (σisotropic =
4 S ·mm−1). This shows, that even though the transverse conductivity of the diffusion
layer is very large, it is possible to have a higher normal conductivity than that of
isotropic graphite.



102 CHAPTER A. APPENDIX



Bibliography

[1] McLean, G.F., Niet, T., Prince-Richard, S., Djilali, N., 2002, “An assessment of
alkaline fuel cell technology”, Int. J. Hydrogen Energy 27, pp. 507–526

[2] Tu, H., Stimming, U., 2004, “Advances, aging mechanisms and lifetime in soli-oxide
fuel cells”, J. Power Sources 127, pp. 284–293

[3] Wind, J., Spah, R., Kaiser, W., and Bohm, G., 2002, ”Metallic bipolar plates for
PEM fuel cells”, J. Power Sources 105, pp. 256–260.

[4] Larminie, J., Dicks, A., 2003, ”Fuel Cell Systems Explained”, John Wiley & Sons
Ltd., West Sussex

[5] Dohle, H., Schmitz, H., Bewer, T.,Mergel, J., and Stolten, D., 2002, ”Development
of a compact 500 W class direct methanol fuel cell stack”, J. Power Sources 106, p.
313.

[6] Heinzel, A., Nolte, R., Ledjeff-Hey, K., and Zedda, M., 1998, ”Membrane fuel cells
– concepts and system design”, Electrochim. Acta 43, pp. 3817–3820.

[7] Mikkola, M., 2001, ”Experimental Studies on Polymer Electrolyte Membrane Fuel
Cell Stacks”, Master Thesis at the Helsinki University of Technology

[8] Wang, L., Husar, A., Zhou, T. and Liu, H., 2003, ”A parametric study of PEM fuel
cell performances”, Int. J. Hydrogen Energy 28, pp. 1263–1272.
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