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Abstract

Magnetic skyrmions are non-collinear spin textures that are promise candidates
as information carriers in future spintronic devices due to their topological protection
and high mobility under small electric currents via spin-transfer torque. However,
incorporating them as possible bits of information hinges on their interaction with
defects since the static and dynamical properties are strongly affected. In this the-
sis, we investigate single magnetic skyrmion interacting with 3d metal clusters and
explore their magnetic and electronic properties using first-principles calculation.
The latter is used in conjunction with atomistic spin dynamics to study the impact
of the geometry, dimensionality and the chemical nature of the defects on the energy
landscape. Depending on the location of the atoms with respect to each other as
well as the type of stacking site, such defects can repel or attract single magnetic
skyrmions in a PdFe bilayer deposited on Ir(111) surface. Among the studied sys-
tems, interestingly for the Cr dimer composing by nearest neighbors atoms shows
an attractive behaviour, however, by separating them to a next nearest neighbors
location the potential becomes repulsive, such effect can be relate to the competition
of the exchange interaction among the atoms in the system. Thus, this study may
give guidance of how such defects can be used to engineer tracks and nucleations
areas, which are of importance for spintronic devices.
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Chapter 1

Introduction

Over many years information technology has increasingly become an indispensable
part of human lives. The advances in this area have made the process of transfer-
ring and storing data much more efficient than was previously possible. However,
this rapid advancement requires better and more efficient technologies. In order to
develop more efficient devices, a large effort has been made to find new alternatives
beyond conventional electronic appliances. One of the most investigated approaches
is the area of spintronics, namely methods which use both the spin and charge of
the electron to encode information.

The research on spintronics was spearheaded by the discovery of the Giant
Magneto-Resistance (GMR) effect by Albert Fert [4], and Peter Grünberg [8] in
the late 1980’s, who were awarded the Nobel Prize in 2007. As previously men-
tioned, in comparison with electronics, spintronics has one key advantage, namely
the capacity to use both the spin and charge of the electron to manipulate infor-
mation. This is due to the fact that using the spin allows for devices with lower
energy requirements [52]. Apart from having the reduced energy consumption, the
capacity to use the spin of the electron also allows the improvement of both the
speed of information transfer and storage capacity [98].

A device that encapsulates some of the efforts in the field of spintronics for higher
energy efficiency and storage capacity is the hard disk drive (HDD). To overcome
limitations present in previous incarnations such as low speed and durability in
writing and storing data information, a new scheme has been proposed to replace the
current HDD’s [80], and these are the so-called racetrack memory (RM) devices. The
basic working concept of such device is to move the magnetic configuration encoding
the data instead of moving the device itself which could greatly help to reduce the
energy consumption of HDD devices, as no movable parts would be needed. The
first proof of concept of a racetrack memory device was proposed by Parkin [80],
where he suggested that one could store information in magnetic domains (e.g., a
domain “up/down” translates to a 1/0) which were then moved via spin polarized
currents interacting with the magnetic domain walls (DWs) separating them. The
phenomenon of spin-momentum transfer creates a torque over the moments in the
domain wall, which can result in its motion [7]. However, despite its simplicity until
now no functional racetrack device based on domain walls is commercially available.
This is because the currents needed to operate these devices are large due to pinning,
i.e., interaction of the domain wall with defects present in the material [37].

In reality, impurities can be found in nanowires or any other magnetic materials
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and significantly affect the DW motion. As shown in several studies, the pinning
interaction between domain walls and impurities [34, 1, 64] results in the need of
large current densities to drive and dislodge these magnetic textures. Thus, to solve
this problem, it has been proposed to use other non-trivial magnetic textures such
as magnetic skyrmions in racetrack applications.

Skyrmions as particle-like topologically protected magnetic configurations [91]
are very robust against fluctuations [77]. They can be stabilized due to the compe-
tition between the Heisenberg exchange and Dzyaloshinskii-Moriya interactions [75,
26]. This characteristic of magnetic skyrmions, make them promising candidates
as information carriers in racetrack memory. In skyrmions based racetracks, the
information is encoded in the magnetic textures themselves. In other words, the
presence or absence of the skyrmion represents the bit 1 or 0, respectively [37]. It
is in contrast with domain wall based racetracks, where the information is stored in
the magnetic domains.

Compared to domain walls, skyrmions possess quite a few benefits. First, to ma-
nipulate skyrmions with spin polarized currents one requires lower current thresh-
olds [101]. Additionally, it has been proposed that skyrmions are less affected by
defects [48] due to their particle-like nature. The significant advantages of skyrmions
over domain walls in racetrack memory applications, especially concerning the abil-
ity to avoid defects, make them propitious for possible applications. However, the
skyrmion-defect interaction in real materials must still be addressed in a detailed
manner before the skyrmion racetrack memory can be translated into a real com-
petitive technology.

The skyrmion-defect interaction has already been the subject of some investi-
gations from the theoretical standpoint [20, 22, 67]. From the experimental stand-
point, a study by Hanneken et al. [32] investigated the interaction of skyrmions in
Pd/Fe/Ir(111) with atomic-scale defects. In this work, it was found that skyrmions
nucleated in Pd/Fe/Ir(111) interact with a Co trimer deposited on the surface but
surprisingly not with a single Co adatom (see Figure 1.1). These different interac-
tions showcase how the skyrmion-defect interaction depends not only on the chemical
type of the impurities but also on their shapes and geometries. Atomic defects in
Pd/Fe/Ir(111) have also been studied from first principles by Fernandes et al. [67]
where the effect of single atomic 3d and 4d transition metal defects located either
on top of (adatoms) or embedded in (inatoms) the Pd surface layer was investi-
gated. The result of this study showed that depending on the chemical nature of
the impurity, the energy profile of the skyrmion-defect interaction could change con-
siderably. The attractive or repulsive behaviour was found to be dependent on the
chemical nature of the defect and it is related to the degree of filling of bonding and
anti-bonding electronic states.

Generally defects are seen as inhibitors for applications, however, by manipulat-
ing defects with either attractive or repulsive behaviour, it is possible to propose
a new racetrack architecture incorporating them into its design. In this thesis, the
interaction between a magnetic skyrmion and a variety of defects will be studied,
via a combination of first principles methods and atomistic spin dynamics. The
considered defects consist of 3d transition metal elements with varied shapes and
dimensionality. The investigation will discuss how the different types and configura-
tions of impurities such as a dimer, trimer, and line, can affect both the stability and
dynamics of skyrmions. The system of interest that will be investigated is a PdFe
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Figure 1.1: Interaction between magnetic skyrmions in Pd/Fe on Ir(111) and mag-
netic clusters adsorbed on the surface. The black shadow is the skyrmion whereas
the black circle denotes the Co-trimer. The skyrmion interacting with cluster (Co-
trimer) is shown by the red circle. (A)-(D) show a series of subsequent dI/dU maps
in which the cluster is manipulated over the surface with an STM tip with the
skyrmion being moved by it. (Figure adapted from Ref.[32])

bilayer deposited on Ir(111) substrate (Pd/Fe/Ir (111)). First principles methods
will be used to obtain the electronic and magnetic properties of the system, such
as the pairwise Heisenberg exchange interaction, the Dzyaloshinskii-Moriya (DM)
interaction, and the magnetocrystalline anisotropy. These parameters will be then
employed in atomistic spin dynamics simulations to investigate the skyrmions dy-
namics under the influence of defects.

This thesis is organized as follows: in Chapter 2 a brief introduction about mag-
netic skyrmions will be given. The discussion will cover some fundamental aspects
of magnetic skyrmions, namely what they are and their key properties. In Chap-
ter 3 the Green function based on first principles Korringa-Kohn-Rostocker (KKR)
method will be introduced. In particular, the fundamentals of Green functions,
multiple scattering formalism and the treatment of impurities via the Dyson equa-
tion will be discussed in details. The parametrization of the magnetic Hamiltonian
from first principles will be presented in Chapter 4, focusing on the determination
of Heisenberg exchange interactions and the Dzyaloshinskii-Moriya vectors, key pa-
rameters for the description of magnetic skyrmions. The discussion of atomistic spin
dynamics will be given in Chapter 5. This part will explain in details the Landau-
Lifshitz-Gilbert (LLG) equation as well as its extension to include the spin-transfer
torque, the mechanism behind the skyrmions motion. Results and discussion of
the investigated system for this thesis will be presented in Chapter 6. Lastly, in
Chapter 7 some conclusions and outlook for this thesis will be presented.
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Chapter 2

A brief introduction to Skyrmions

Magnetic skyrmions have been the subject of intense experimental and theoreti-
cal researches over the last decade as their topological properties make them ideal
candidates for several spintronic devices [19, 80]. In this chapter a small introduc-
tion to the field of skyrmionic will be made, going from the basic description of
the skyrmionic textures to the depiction of the properties that make them such
scrutinized objects.

2.1 Introduction to magnetic skyrmions

The concept of a skyrmion was originally introduced by Tony Skyrme (1961) as a
theoretical model to explain the stability of quasi-particles in field theory [91]. This
model has been used in several fields of physics with many different applications such
as in nuclear physics [91, 56], quantum Hall systems [94], and liquid crystals [12].
In magnetism, the skyrmions are described as topologically protected, particle-like
spin textures. In most cases, their existences are induced by chiral interactions
between atomic spins [39]. The magnetic configuration of skyrmions can be seen in
Fig. 2.1a which presents the Néels-type skyrmion with the magnetization rotating
in a radial plane from the down direction at its centre to the up direction at the
boundary. There is also another type shown in Fig. 2.1b which is called as Bloch-type
skyrmion where the spins rotate in the tangential plane, i.e., perpendicular to the
radial direction when moving from the core to the periphery of the skyrmions [61].

As one can see from Fig.2.1, the skyrmion configuration is topologically unique.
If one projects its spin texture in an unit sphere, the magnetization will wrap the
whole surface and pointing in all possible directions. This topological nature of
skyrmions is characterized by the topological charge (skyrmion number) [18]

m =
1

4π

∫
(n̂ · [∂xn̂× ∂yn̂]) dxdy, (2.1.1)

which describes how many times that a spin vector with direction, n̂, wraps the
entire sphere. Based on the topological point of view, two structures are consid-
ered equivalent if a continuous map exists from one to another without passing an
infinitely large energy barrier [33, 18]. For a single magnetic skyrmion, it has an in-
teger topological charge. A physical manifestation of such topological quantization
is that the skyrmion configurations are topologically protected from a continuous
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deformation into the ferromagnetic state or other spin configurations with different
topological nature. This protection is associated with an energy barrier considered
as infinite from the point of view of topological classification [18].

The topological charge can also be used to classify the different types of mag-
netic excitations. The number of +1 is used to describe skyrmions and -1 is for
anti-skyrmions which have an opposite chirality [77]. Apart from these two cat-
egories, there are some other classifications where the structure also depends on
the helicity, γ, namely the direction of the Dzyaloshinskii-Moriya (DM) interaction
which is determined by the symmetries of the crystal structure. In Fig. 2.2 several
configurations of skyrmions with different topological charge and helicity are pre-
sented. The black colour in the figure means the spins are pointing either up or
down with a zero in-plane component, whilst the arrows indicate the direction of
the spins, and their colours represent the normal component to the plane. The top
and below panels in Fig. 2.2 are separated based on the topological charge, ±1, with
some subcategories according to several values of helicity.

(a) Nèels-type skyrmion (b) Bloch-type skyrmion

Figure 2.1: Illustrations of two different skyrmion configurations (a) Nèels-type
skyrmion (b) Bloch-type skyrmion. This picture is taken from [53]

Figure 2.2: Several different configuration of skyrmion structures according to their
topological charge m and helicity γ. The arrows indicate the direction of the spins,
and their colours represent the normal component to the plane, that is, from up
direction (red) to the down direction (blue). This picture is taken from Ref.[77]

The existence of magnetic skyrmions was studied theoretically by Bogdanov et
al. [13] in ferromagnetic materials lacking inversion symmetry. This was then verified
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by the first experimental study which observed the skyrmion lattice as a new type of
magnetic order in the manganese silicide (MnSi) in 2009 [76]. This material is very
well-known as chiral magnetic where below the critical Curie temperature at small
(or zero) magnetic field, the magnetization in this material is in a helical state. By
increasing the magnetic field, it then changes into the canonical state. Beside these
two states, there was also an interesting feature in the phase diagram, namely the so-
called A-phase which later was identified as skyrmion phase. After the first discovery
of skyrmion in MnSi, skyrmion lattices were also found in many other crystals
without inversion symmetry and with the strong spin-orbit coupling [100, 88].

The broken inversion symmetry in magnetic systems with spin orbit coupling
generate the Dzyaloshinskii-Moriya (DM) interactions which are responsible for the
chiral structure of skyrmions [26, 75]. In most cases, these chiral DM interactions
competing with exchange interactions play an important role in determining the
existence of skyrmions in a magnetic material. However, there are also several
mechanisms with different interactions which can allow the creation of skyrmion. In
the following section, a discussion about these mechanisms will be presented.

2.2 Formation and stability of skyrmions

The formation of a skyrmion in a magnetic system can take place due to several
mechanisms in different systems [77]. Some of them that have been studied both
experimentally and theoretically are the following: a) competition between magnetic
dipole interaction and easy-axis anisotropy, b) competition between Dzyaloshinskii-
Moriya (DM) interactions and Heisenberg exchange interactions, and c) four-spin
exchange interactions. The type and strength of interactions in each procedure
generate skyrmions with different size and characteristics. In this thesis, the forma-
tion of skyrmions in chiral magnets due to the DM interaction will be the focus of
interest.

The first mechanism of the skyrmions creation is due to a competition between a
long-ranged magnetic dipole interaction and a perpendicular easy-axis anisotropy in
thin-layer magnetic systems [68, 41]. In the system, the anisotropy favours an out-
of-plane magnetisation, whereas the long-range magnetic dipole interaction favours
an in-plane direction. Their competitions result in a periodic stripe with spins
rotating in the plane perpendicular to the thin film. An application of a magnetic
field normal to the film turns the stripe into a periodic arrangement of magnetic
bubbles or skyrmions which are of typically 100 nm to 1 µm sizes [87].

The second procedure of the skyrmion formation is taking place due to the
Dzyaloshinski-Moriya interaction emerging from the systems with broken inversion
symmetry and strong spin–orbit (SOC). The broken inversion symmetry usually can
be found in helical magnets materials such as B20 compounds including MnSi, FeGe,
and FexCo1-xSi [84]. The presence of the DM interactions (Dij) competing with the
Heisenberg exchange interactions (Jij) is responsible for the formation and stabiliza-
tion of skyrmions[14, 47]. The exchange interactions favor a collinear ferromagnetic
spin alignment, and on the other hand, the DM interactions favor a rotation of
magnetization alignment with the turn angle of 90o. In the absence of an external
magnetic field, this competition results in a helical spin-spiral state as the ground
state of the system. However, when a suitable strength of magnetic field is applied
into the spin-spiral state, it will turn into a skyrmion phase where the magnetic
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moments of the skyrmion perimeter have direction parallel to the applied external
magnetic field and the ones at the center are antiparallel to the field direction. The
size of this skyrmion is determined by the ratio of the Dzyaloshinskii–Moriya inter-
action Dij, to the exchange interaction Jij, and in chiral-lattice ferromagnets, it is
around 3–100 nm.

In the other mechanisms, a two dimensional square lattice of skyrmions on a
hexagonal monolayer Fe on Ir(111) was also found due to a square symmetry of the
system in combination with the Heisenberg exchange and DM interaction [44]. The
short-range four-spin-interaction imposes a square symmetry on the configuration,
whilst the DM interaction cut down the energy further by the formation of skyrmions
with a unique rotational sense.

A stabilization of skyrmions in magnetic materials is great of importance for
their application in future technology. Apart from this aspect, another elementary
functionality which is needed to consider is their dynamics. To utilize skyrmions in
practical electronics applications, for instance in racetrack memory devices as the
information carriers [80], their motion will be a significant point in the process of
transferring data information.

2.3 Skyrmions dynamics

One of the main reasons that make skyrmions very prospective in the applications
of spintronics devices is due to the possibility to move and control them via an
electrical current. It was found that the skyrmions can be driven by applying a spin
polarized current via the spin transfer torque (STT) effect [92]. However, during
their motions, the skyrmions do not move collinear to the current flow direction
but acquire a transverse motion due to the appearance of a topological Magnus
force [49]. This phenomenon is referred to skyrmion Hall effect [36, 95].

The deflection in the skyrmions motion can be a serious problem for the imple-
mentation of skyrmion-based nanotrack devices because it will lead to the annihila-
tion of skyrmions at the edge of the track [104]. To overcome this issue Zhang, et al.
[106] propose a sandwich structure composed of two skyrmions materials coupled
antiferromagnetically and separated by a non-magnetic one, which can cancel out
the Magnus forces in the magnetic layer and leads the skyrmions to move parallel
to the applied currents.

Despite the skyrmion Hall effect phenomenon, skyrmions dynamics has some in-
teresting properties that make them advantageous over the other magnetic textures.
First, concerning the threshold current density to have the skyrmions mobile in the
magnetic material. It has been shown that it needs a current density of 106A/m2

to move them in helimagnets, which is much lower than the required magnitude
for magnetic domain walls [51]. This low current density is predicted to be able
to reduce the Joule heating effect that happens due to the excessive use of electric
currents.

Another interesting aspect of skyrmions motion is the way they interact with im-
purities presented in the medium. In several studies based on the phenomenological
models, it has been shown that skyrmions have the flexibility to move around defects
due to their particle-like behaviours [83, 37, 48]. According to work done by Fert
et al. [37], a single skyrmion change its trajectory to go around an impurity which
is presented by a magnetic region with a large anisotropy. The same behaviour was
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also found in skyrmions lattice motion where there are point-like defects with large
magnetrocrystalline anisotropy, distributed randomly in lattice [48]. Due to their
particle-like nature, each individual skyrmion can change its own path flexibly in
such a manner as to avoid pinning centres and thus result in the deformation of the
skyrmion lattice.

The defect avoidance ability owned by the skyrmions become an essential part
to their implementations in the spintronics applications such as in a racetrack mem-
ory [80]. This peculiar behaviour might be the solution to the problem caused by
impurities that was found in the domain wall based racetrack. Therefore, a deeper
understanding of skyrmion-defects interaction is extremely needed.

A further discussion of skyrmions interacting with defects will be presented in
this thesis. Unlike the previously mentioned studies where the analysis was done in
a micromagnetic regime, i.e., use a large size of skyrmion and describe the defects as
regions with large magnetic anisotropy, this thesis will discuss the interaction of a
small skyrmion with realistic defects in atomic scale. The investigated defects are 3d
metal transitions elements with varied type of geometries and dimensionalities such
as single adatom, dimer, trimer, and line defects. Using these variations, the stability
and dynamics of skyrmions will be studied through atomistic spin dynamics (ASD)
with the parameters obtained from the first principles calculations. The following
chapter starts the discussion by describing the concept of Korringa-Kohn-Rostoker
(KKR) Green function method to calculate the parameters that will be employed
in spin dynamics simulation. A detail explanation of physical concepts behind this
method will be presented and along with the discussion of mathematical approaches
that are used to perform the parameters calculation.
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Chapter 3

The first principles based method

3.1 Introduction

In order to study the properties of materials, such as conductivity, or the interac-
tion between magnetic textures and defects present on them, one inevitably must
understand the electronic structure of such materials. The understanding of the
electronic structure of a system can be achieved by looking at the time independent
many body Schrödinger equation:

H |Ψ (r1, r2, · · · , rN ; R1,R2, · · · ,RM)〉 = E |Ψ (r1, r2, · · · , rN ; R1,R2, · · · ,RM)〉 ,
(3.1.1)

where |Ψ (r1, r2, · · · , rN ; R1,R2, · · · ,RM)〉 is the many body electronic and ionic
wavefunctions with an energy E, the ri’s indicate the electronic coordinates, while
the Rj’s indicate the ionic positions. The interaction between them is encoded in
the Hamiltonian:

Htot = −
M∑
i

∇2
Ri

Mi

−
N∑
i

∇ri +
∑
i 6=j

ZiZj
|Ri −Rj|

+
∑
i 6=j

1

|ri − rj|
−
∑
i,j

2Zi
|ri −Rj|

, (3.1.2)

with Mi being the mass of the ions, Zi being their atomic charge, ∇Ri
and ∇ri repre-

sent the real space momentum operator for the ions and the electrons, respectively.
As can be seen, to obtain a direct solution of this many-body Schrödinger equation
in real solids is impossible, as the number of the interacting particles is extremely
large. Thus, some approximations are required to simplify the problem. One of the
most used is the Born-Oppenheimer approximation, in which the ionic degrees of
freedom are considered to be frozen with respect to the electronic system. This is
possible because of the large mass difference between the ions and the electrons,
with the ions being much more massive, and therefore slower than the electrons,
thus they can be considered to be always at rest with respect to them later.

Such approximation allows to eliminate the ionic degrees of freedom from the
many-body wavefunctions, |Ψ (r1, r2, · · · , rN ; R1,R2, · · · ,RN)〉 → |Ψ (r1, r2, · · · , rN)〉,
as well as resulting in a simplification of the Hamiltonian, as one can now write the
effect of the ions as an external potential, Vext, resulting in a Hamiltonian describing
the electrons:

H =
∑
i

[
−∇2

~ri
+ Vext (~ri)

]
+
∑
i 6=j

1

|~ri − ~rj|
. (3.1.3)
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This approximation has significantly reduced the complexity of the problem, how-
ever, for a real material the problem is still impossible to be solved analytically, thus
another approach is needed to determine the electronic properties of the system.

In 1964 Hohenberg and Kohn [45] proposed a different approach known as Den-
sity Functional Theory (DFT) to deal with this many-body problem. The basic
principle behind this approach is to obtain all the ground state properties of a sys-
tem by using the electronic density, n (r), instead of the many-body wavefunctions.
According to the Hohenberg-Kohn theorems, for a system of interacting particles in
an external potential, Vext (r), the density is uniquely defined, and that the energy
of the system can be written as a functional of the density, E [n (r)], that when
minimized is equal to the ground state energy of the system.

These theorems pave a way to solve the many-body interacting problem, as now
it is not necessary to know the full many-body wavefunctions, all that one needs
to determine is the electronic density to fully characterize the ground properties of
the system. However, the determination of the interacting density is still, in many
cases, and intractable problem.

An approach to circumvent such difficulties was proposed by Kohn and Sham [57].
In this method, instead of trying to solve the full-interacting many-body problem,
an auxiliary non-interacting single particle system with the same density than
the real one is proposed. Thanks to the Hohenberg-Kohn theorems, it is known
that if the density of these two systems are identical, then they will have the same
groundstate energy. The properties of the auxiliary system are determined by the
Kohn-Sham equations:

[
−∇2 + Veff (~r)

]
ϕi (~r) = εiϕi (~r) , (3.1.4)

where εi and ϕi are the Kohn-Sham eigenvalues and eigenfunctions, respectively.
The effective potential Veff (~r) is expressed as:

Veff (~r) = Vext (~r) + 2

∫
d3~r′

n (~r′)

|~r − ~r′|
+ Vxc(~r), (3.1.5)

with Vext (~r) being the potential generated by the nuclei, the second term is the
Coulomb electron-electron interaction, and Vxc (~r) represents the exchange-correla-
tion potential which includes all the many-body effects. The electronic density
n (~r) is then calculated by:

n (~r) =
∑
i

|ϕi (~r)|2. (3.1.6)

.
It is important to note that in principle DFT is an exact theory, however, there

is a problem when going to a practical implementation, namely the exchange cor-
relation potential. Until now the Vxc (~r) in Eq. 3.1.5 is still an unknown quantity,
therefore approximations are needed to describe this term. One of the most com-
mon approximations used for the exchange-correlation potential is the local density
approximation (LDA) [59]. It assumes that the exchange correlation energy per
electron, Exc(~r), of a homogeneous electron gas depends only on the charge density
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n (~r) at each point in space. Surprisingly, this approximation does not only work
for systems with a uniform density but also for cases where the electron density is
inhomogeneous [43, 50]. An extension of LDA was introduced by von Barth and
Hedin [97] in which they include spin polarized densities to be able to describe
magnetic systems. This approach is known as the local spin density approxima-
tion (LSDA), since the exchange correlation potential is not only dependent on the
electronic density, if not also on the magnetization density. Thus, a spin depen-
dent exchange-correlation potential is introduced in the Kohn-Sham equation by
replacing the electron density n (~r) with the generalized density matrix ρ (~r):

n (~r)→ ρ (~r) =
n (~r)

2
1 +

m (~r)

2
~σ, (3.1.7)

where 1 is the 2 x 2 unit matrix, m(~r) is the magnetization density and ~σ are the
Pauli matrices. Hence, one must now recast the Kohn-Sham equations as functio-
nals of the electronic and the magnetization density, which implies that the energy
functional must now be minimized with respect to these two quantities. One can
then express the spin-dependent Kohn-Sham Hamiltonian as follows:

H =
[
−∇2δαβ + V αβ

0 (~r) + ~Beff (~r) · ~σ
]
, (3.1.8)

with α and β being the spin projections, V αβ
0 (~r) being the non-magnetic part of the

potential, and the ~Beff(~r) · ~σ is the magnetic potential.
In practice the Kohn-Sham equations are solved in an iterative fashion, where

an initial guess of the potential is given, and then the single particle Schrödinger
equation is solved in each iteration cycle, until a certain convergence criteria, usually
the change in the charge and spin density, is achieved [107]. As long as the usual
band structure calculation algorithms are used, the numerical costs are proportional
to the third power of the system size. Hence, for systems with a large number of
atoms, an extensive amount of computational resources is needed [23]. To overcome
these difficulties new schemes and methods should be developed in order to achieve
more efficient calculations.

Over the past decades, several different approaches to solve the Kohn-Sham
equations have been proposed, many of them are based on plane waves, which are
used as a basis for the Kohn-Sham eigenfunctions [99, 85]. These methods are quite
powerful and have allowed researchers to determine the electronic and magnetic
properties of many materials, some of which are of key interest for the study of
magnetic skyrmions, such as in the case of Pd/Fe/Ir(111) by Dupé et al. [24]. Ho-
wever, for the present investigations, these methods have key weaknesses, such as
the need of large supercells to treat impurities, making them not the best option to
treat the desired systems. Instead one needs to look at another class of numerical
methods, based not on the wavefunction if not instead on a different mathematical
object, the Green function. The Green function is a powerful object, as it contains
all the information that the wavefunctions have, whilst having several advantages,
such as its capacity to be easily modified to include perturbations [10].

The concept of Green functions is used in several DFT approaches, in this thesis
the method of choice is the so-called Korringa-Kohn-Rostoker (KKR) method. Ori-
ginally this scheme was proposed by Korringa [60] as a wavefunction based method,
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where the single-particle problem is recasted making use of scattering theory. Later,
this approach was reformulated by Korringa and Rostoker [58] as a Green function
based method. As previously mentioned, Green functions based schemes are very
attractive for the study of the interaction between magnetic skyrmions and defects.
Thanks to their properties one can completely avoid the use of large super-cells to
calculate systems with impurities, greatly reducing the computational effort needed
to tackle this kind of problems. Thus, to be able to understand the basics behind
the Green function based KKR method, it is of interest to first understand the basic
properties of these mathematical objects.

3.2 Green functions

3.2.1 Green functions in physics

A Green function is a powerful mathematical tool to determine the solutions of a
differential equation. This method was originally invented in mathematics to solve
non-homogeneous boundary value problems. In physics, especially in solid state,
the Green function is usually used as an alternative way to solve the single particle
Kohn-Sham equation. It is defined as resolvent of the single-particle Hamiltonian
used in the inhomogeneous Schrödinger equation:

(ε−H)G (r, r′, E) = δ (r − r′) , (3.2.1)

where ε = E + iη, with E being the energy and η, an infinitesimal positive real
number associated with the energy dependent Green function, G (r, r′, E). It is im-
portant to notice that the Green function shown in Eq. 3.2.1 is completely abstract
object, however, for practical purposes one can express it making use of a certain
basis, |ϕi〉, via the spectral representation or Lehmann representation:

G±(~r, ~r′, E) =
∑
i

ϕi(~r)ϕi
∗(~r′)

E − εi ± iη
, (3.2.2)

where +(−) sign refers to the retarded(advanced) Green function.
The relation between Green functions and wavefunctions shown in Eq.3.2.2 leads

to the capacity to extract the information encoded in the wavefunctions via Green
functions. For instance, one can calculate the electronic density, n (~r;E), by con-
necting it directly to the imaginary part of of retarded Green functions G+(~r, ~r′, E).
By applying the Dirac identity

lim
η→0+

1

x+ iη
= P

(
1

x

)
− iπδx, (3.2.3)

where P is the Cauchy principal part of integral, one can write the expression for
electronic density as:

n (~r) = − 1

π
ImG(r, r;E). (3.2.4)

Thus, one can determine the charge density, ρ(r), by integrating the electronic
density over the energy:
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ρ(r) = − 1

π
Im

∫ EF

−∞
G(r, r;E)dE. (3.2.5)

It is important to notice that the Green function is an object in the complex
plane, hence, it is possible to integrate over the complex energy ε using the contour
integration technique. This approach has the advantage of reducing the numerical
difficulties present in the integration along the real axis [10].

Here, one can also express the density of states within a volume V in terms of
Green functions as [73]:

nV(E) =
∑
i

δ(E − εi)
∫
V
d~r|ϕi(~r)|2

= − 1

π
Im

∫
G(~r, ~r′, E)d~r

nV(E) = − 1

π
Im Tr G̃(E). (3.2.6)

One can notice that in Eq. 3.2.6 the density of states can be obtained by taking the
trace of the imaginary part of the Green function, irrespective of the chosen basis.
The Green functions provide more information than just the density of states and
the charge density. One can obtain the expectation value for any operator Ã by
calculating: 〈

Ã
〉

= − 1

π

∫
Tr
[
ÃG(~r, ~r′;E)

]
fT (E)dE, (3.2.7)

The derivations of the observable quantities presented in this section show the
effectiveness of the Green functions in calculating the ground state properties of
a system. Even more, Green functions are uniquely suited to treat the effect of
impurities in solids, as it will be made apparent in the upcoming sections.

3.2.2 Dyson equation

The Green functions method do not only enable us to determine the ground state
properties of electronic systems without knowledge of the wavefunctions, but also
have a key advantage of dealing with perturbations by making use of the Dyson
equation [30]. The latter allows one to relate the Green function of a reference
system G̃0, whose Hamiltonian operator is given by H̃0, and the Green function G̃1

of a system with a perturbation ∆Ṽ and Hamiltonian H̃ = H̃0 + ∆Ṽ , which can be
defined as:

G̃−1
0 = E1̃− H̃0, G̃−1

1 = E1̃− H̃0 −∆Ṽ . (3.2.8)

Thus, the Green function G̃1 can be expressed as function of G̃0,

G̃−1
1 = G̃−1

0 −∆Ṽ . (3.2.9)

13



By multiplying each term of Eq. 3.2.9 on the left-hand side by G̃0 and on the right-
hand side by G̃1 leads to

G̃0G̃
−1
1 G̃1 = G̃0[G̃−1

0 −∆Ṽ ]G̃1

G̃1 = G̃0 + G̃0∆Ṽ G̃1. (3.2.10)

The previous expression is known as Dyson Equation and it is of great importance
for the systems studied in this thesis as it allows one to relate the Green function of
a pristine system with the one with an impurity present. One can expand Eq. 3.2.10
by substituting the left-hand side G̃1 into its counterpart at the right-hand side:

G̃1 = G̃0 + G̃0∆Ṽ G̃0 + G̃0∆Ṽ G̃0∆Ṽ G̃0 + ....

= G̃0 + G̃0

(
∆Ṽ + ∆Ṽ G̃0∆Ṽ + ...

)
G̃0. (3.2.11)

3.2.3 Lippmann-Schwinger equation

Apart from the Dyson equation, there is also another feature of Green function which
is widely used to calculate the electronic structure, namely the Lippmann-Schwinger
equation. If one can use the Dyson equation to connects the Green functions of
the unperturbed and perturbed systems, here the Lippmann-Schwinger equation
can be used to connects the wavefunctions of those two systems. Considering the
wavefunctions of an unperturbed system |ψ〉 and a perturbed system |φ〉, which are
the solutions of the Hamiltonian H0 and H, respectively, the Schrödinger equations
for both Hamiltonians can be written as:

[E − H̃0] |φ〉 = 0 (3.2.12)

[E − H̃0] |ψ〉 = ∆Ṽ |ψ〉 . (3.2.13)

Then, the eigenfunction of the unperturbed system, |ψ〉, can be expanded in terms
of the solution of homogeneous equation, |φ〉:

|ψ〉 = |φ〉+ |ψα〉 , (3.2.14)

where |ψα〉 is a particular inhomogeneous solution of the inhomogeneous differential
equation. By employing the Eq. 3.2.12 -Eq. 3.2.14 and the definition of G̃0(E) (see
Eq. 3.2.8), the so-called Lippmann-Schwinger equation can be written as:

|ψ〉 = |φ〉+ G̃0∆Ṽ |ψ〉 . (3.2.15)

For numerical purposes, one can generalize the Dyson equation and the Lippmann-
Schwinger equation in real space representation as [102]:

G1(~r, ~r′, E) = G0(~r, ~r′, E) +

∫
d~r′′G0(~r, ~r′′, E)V (~r′′)G1(~r′′, ~r′, E) (3.2.16)

ψ(~r, E) = ψ0(~r, E) +

∫
d~r′′G0(~r, ~r′′, E)V (~r′′)ψ0(~r′′, E), (3.2.17)
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where ~r, ~r′ and ~r′′ define the vector positions in real space.
The features of Green function formalism described in this section are very use-

ful once implemented in the KKR method to study of the electronic structure of
materials locally perturbed by defects. By means of a Dyson equation, one can
directly connect the Green function of an impurity to the crystal Green function of
the host system which makes KKR calculations much more efficient and attractive.
In order to see the implementation of these Green function features in the electronic
structure calculations with the KKR-GF method, both single-site and multiple-site
scattering with Green function formalism are discussed in the following section.

3.3 KKR-Green function formalism

The KKR-Green function method is an alternative way to solve the Kohn-Sham
equation, which uses multiple scattering theory [60, 58]. In its implementations, each
atom in solids is treated as a scatterer. There are two steps involved in this method:
first, solving the single scattering problem to obtain the scattering properties of each
atom. The second step is to solve the multiple scattering of all atoms by applying
the condition that the sum of outgoing and incident waves of each atom (scattering
center) are equal [73]. In the multiple scattering method, the scattering events from
any of the atoms in the system are represented by scattering matrix elements t, and
the propagation of scattered particle from one scattering event to another is shown
by a Green function G [31]. For an ensemble of N scatterers, the total scattering
matrix is given by T matrix [72].

Unlike other band structure methods that are based on the electronic wave func-
tions and energy eigenvalues calculations for a crystal, the KKR-Green function
method is calculating a single particle Green’s function. As previously discussed in
the Green function section, the charge density and other observable quantities of
the system can be extracted from it. Another advantage of Green function methods
is the ability to treat systems with impurity elegantly without the need to construct
supercells. For these reasons, the KKR is the method of choice in this thesis to study
the interaction between skyrmions with the defect atoms. In the following section,
the description of the single-site scattering process will be discussed. Then, some
formulations of Green function will be presented for free space and for the case with
a finite range of potential, which will be useful in the further discussion on multiple
sites scattering.

3.3.1 Single-site scattering

In the following, a scattering by a single central potential will be discussed assuming
a spherically symmetric scattering center at the origin [5]:

V (~r) =

{
V (r), for r < rmax
0, otherwise.

(3.3.1)

First, the free electron problem, i.e., V (~r) = 0 will be analyzed to obtain the expan-
sion of the Green function for an electron in free space. This result will be then used
to obtain the Green function for single-site scattering with a finite-range potential.
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Potential-free

The Hamiltonian for a free-electron is given by H0 = −∇2 and the eigenfunctions

are the plane waves ψ~k(r) = ei
~k·~r. The corresponding Green function is given by:

G0(~r, ~r′) = − 1

4π

eik|~r−~r′|∣∣∣~r − ~r′∣∣∣ , (3.3.2)

where k =
√
E. In spherical harmonics expansion, these wavefunctions and Green

functions are given by the following expressions:

ψk(r) = ei
~k·~r =

∑
L

4πi``(kr)Y
∗
L (~k)YL(~r), (3.3.3)

G0(~r, ~r′) =
∑
L

YL(r̂)g`(r, r
′)YL(r̂′), (3.3.4)

where r̂ = ~r/|~r|, L represents the combined index for both the angular (`) and
magnetic (m) quantum number, `(kr) is the spherical Bessel function, and YL(~r)
denotes the real spherical harmonics. The term g`(r, r

′) is the expansion coefficient
given by [5]:

g`(r, r
′) = −ik`(kr<)h`(kr>). (3.3.5)

Here r < (>) denote the smaller (bigger) of the radius of r and r′. h` = ` − in`
is the spherical Hankel function with n` as the spherical Neumann function that is
also known as spherical Bessel functions of second kind. The Bessel functions are
finite in the limit r → 0 , while h`(r) and n`(r) diverge for r → 0.

Spherical finite range potential

In the following, the scattering process due to a single-site central potential with a
finite range is discussed. The Schrödinger equation for a single-site scattering with
a potential V (~r) is given in following form:

[E −H0 − V (r)]ψ(r) = 0. (3.3.6)

When the potential is spherical, one can use a separation of coordinates to describe
the wave function ψ(r) =

∑
L YL(r̂)R`(r, E), with radial scattering wavefunctions

R`(~r, E), to satisfy the radial Schrödinger equation:

[
−1

r

∂

∂r2
r +

`(`+ 1)

r2
+ V (r)− E

]
R`(~r, E) = 0. (3.3.7)

At the region where Vr = 0 (r > rmax), the radial wave function is given by two
linearly independent solutions in terms of Bessel and Neumann functions:
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R`(r;E) = P``(kr) +Q`n`(kr), (3.3.8)

where P` and Q` are constants. By using the asymptotic behaviors of these two
functions and redefining the constants P` and Q` in terms of a new variable δ`, one
can get:

R`(r;E) =
1

kr

[
sin

(
kr − `π

2
+ δ`(E)

)]
. (3.3.9)

Here, δ` is the phase shift of the wave function due to the scattering by a single
potential. At the region where V (r) is finite, the regular solution of the radial
Schrödinger equation, R`(r;E), is given by two parts i.e., the potential-free solution
which is the incoming scattering-free wave, `(kr), and the resulting wave function
which is scattered at the potential. By employing the Lippmann-Schwinger equation
(Eq. 3.2.15) and the Green function of the free-electron (see Eq. 3.3.5), the regular
solution can be expressed as [5]:

R`(r;E) = `(kr)− ih(1)
` (kr)

∫ rmax

0

r′
2
dr′`(kr

′)V (r′)R`(r
′;E). (3.3.10)

The integral on Eq. 3.3.10 is the single site scattering t-matrix in angular-momentum
representation which gives the scattering strength of an incoming wave due to in-
fluence of the potential. In terms of the phase-shift the t-matrix can be expressed
as:

t`(E) = −1

k
eiδ`(E) sin δ`(E). (3.3.11)

Apart from the regular solution given in Eq. 3.3.10, there is also the irregular
solution, H`(r, E), of the radial Schrödinger equation corresponds to Hankel function
h`(
√
Er) which diverges at the origin. Making use of the Lippmann-Schwinger

equation (Eq. 3.2.15), one can express the irregular solution in terms of free electron
Green functions as follows:

H`(r;E) = h`(
√
Er) +

∫ rmax

0

r′
2
dr′g`(r, r

′;E)V (r′)H`(r
′;E). (3.3.12)

Substituting Eq. 3.3.5 into Eq. 3.3.12, for the limit r > rmax, the Hankel function
can be simplified as [5]:

H`(r;E) = h`(
√
Er). (3.3.13)

The angular-dependent solutions of the Schrödinger equation are spherical har-
monics, which allows to construct the full solutions of the single potential scattering
problem as [46]:
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RL(~r;E) =
∑
L

R`(r;E)YL(r̂)

HL(~r;E) =
∑
L

H`(r;E)YL(r̂), (3.3.14)

where RL(~r;E) and HL(~r;E) are the regular and irregular full solutions of the
Schrödinger equation. Thus, the Green function of the single scattering problem
can now be expressed as the product of these two solutions [86]:

GP (r, r′;E) = −i
√
E
∑
L

RL(~r;E)HL(~r;E)

= −i
√
E
∑
L

R`(
√
Er<)H`(

√
Er>)YL(~r)YL(~r′). (3.3.15)

3.3.2 Multiple scattering theory

In the previous section, the scattering process due to the single site potential was
discussed. In this section, the discussion will be extended to the study of the scat-
tering process in solids, where the scattering events are taking place due to a set of
scatters. For the sake of simplicity, in the following discussion the muffin-tin (MT)
approximation is used to describe each scattering potential, in which the potential
is assumed to be spherically symmetric inside the muffin-tin radius RMT and con-
stant outside it. Within this thesis, however, the calculations are done using the
full potential treatment to takes into account the non-spherical symmetry of atoms
due to their neighbouring scatterers. The calculation method also take into account
the treatment of non-collinear magnetism, of the spin-orbit interaction. The details
explanation about the full potential treatment can be seen in Ref. [5].

The potential at each scattering site, m, is considered as a perturbation, ∆Vm,
to the unperturbed Hamiltonian, with the total of perturbation is given as ∆Vtot =∑

m ∆Vm. For the case in which these multiple perturbing potentials act simul-
taneously, one then can define the total scattering matrix T that contains all the
scattering events in the lattices as:

T =
∑
m

tm +
∑
m

∑
n 6=m

tmG0t
n + · · · , (3.3.16)

where tm and tn are the scattering matrix elements (t) of atoms at site m and n, G0

is the free-particle Green function. The first term in Eq. 3.3.16 can be interpreted
as a single scattering process taking place in one particular site m. The second
term deals with the scattering events between two lattice sites with a propagation
between them and following terms describe multiple scattering events [103]. The
T matrix can also be presented in terms of the scattering path operator τ which
describes all possible scattering events that can occur for an electron travelling from
one site m to a site n:

T =
∑
mn

τmn. (3.3.17)
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In terms of single site scattering matrix t and free space Green function G0, the
scattering path operator is given by

τmn = tmδmn + tm
∑
k 6=n

Gmk
0 τ kn. (3.3.18)

As in the single scattering case one can also derive the free space Green function,
G′0, and the crystal Green function, G′P , for the case of multiple scatterers. Due to
the periodicity inherent of a crystal, the space now is divided into cells around each
atom (see figure 3.1). The lattice cell is centered at the position ~Rn. A point within
the cell is denoted by the relative vector ~rn and its vector position from the origin
denoted by vector ~x, as shown in Fig. 3.1. Then, the free space Green can be written
in the cell-centred representation as:

Figure 3.1: Illustration of two scatters sites m and n. The globally defined vectors
~x and ~x′ are given by ~Rm + ~rm and ~Rn + ~rn respectively. RMT indicates the Muffin-
Tin radius. Rm and Rn are a global vector pointing to the center of cell m and n
respectively, whereas the vectors rm and rn are locally defined inside the cell.

G′0(~Rm + ~rm, ~Rn + ~rn, E) = −i
√
E
∑
L

jL(~rm)hL(~rn + ~Rn − ~Rm, E). (3.3.19)

Using the expansion of the Hankel Function [105]:

hL(~rn + ~Rn − ~Rm, E) =
i√
E

∑
L′

gmnLL′jL′(~rn, E), (3.3.20)

one can rewrite the free space Green function as:

G′0(~Rm + ~rm, ~Rn + ~rn, E) =
∑
LL′

jL(~rm, E)gmnLL′jL′(~rn, E), (3.3.21)
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where gLL′ is called “structure constant” which depends only on the lattice structure
and it is given by:

gmnLL′ = −(1− δmn)4πi
√
E
∑
L′′

il−l
′−l′′CLL′L′′hL′′(~Rm − ~Rn;E), (3.3.22)

with CLL′L′′ =
∫
dΩYL(r̂)Y ′L(r̂)Y ′′L (r̂) being the Gaunt coefficients. As m and n refer

to two different scattering sites, it implies that gmnLL′ = 0, for m = n. Henceforth,
the general expression for the free space Green function can be written as:

G′0(~Rm + ~rm, ~Rn + ~rn, E) = δmnG0(~rm, ~rn;E) +
∑
LL′

jL(~rm;E)gmnLL′jL′(~rn;E),

(3.3.23)

where the potential-free Green function within one site (i.e. m = n), G0(~rm, ~rn;E),
was also included. As one can see from Eq. 3.3.23, there is a clear separation
between the single-site properties described by G0(~rm, ~rn;E) and the multiple scat-
tering properties as described by the structure constant matrix gmnLL′ . This separation
is one of the main features of the KRR Green function method [79].

Using a similar procedure (Eq. 3.3.23), the Green function G′P of a host crystal
with at a finite potential V (~r) can be derived as:

G′P (~Rm + ~rm, ~Rn + ~rn, E) = δmnGP (~rm, ~rn;E) +
∑
LL′

Rm
L (~rm;E)Gmn

LL′R̄n
L′(~rn;E).

(3.3.24)

Here, the first term is the single-site crystal Green function at site m with a finite
central potential (see Eq. 3.3.15). The second term is the multiple scattering term
which includes the structural Green functions Gmn

LL′ that can be determined by the
following structural (algebraic) Dyson equation [25, 6]:

Gmn
LL′(E) = gmnLL′(E) +

∑
p

∑
L′′L′′′

gmpLL′′(E)tpL′′L′′′G
pn
L′′′L′(E). (3.3.25)

Expanding the sum on the right-hand side of Eq.3.3.25, one can obtain:

Gmn
LL′(E) = gmnLL′(E) +

∑
p

∑
L′′L′′′

gmpLL′′(E)tpL′′L′′′G
pn
L′′′L′(E)

+
∑
pq

∑
L′′L′′′L(4)L(5)

gmpLL′′(E)tpL′′L′′′g
pq

L′′′L(4)(E)tq
L(4)L(5)g

qn

L(5)L′(E) + ..... (3.3.26)

where gmnLL′ is the structural Green function for the free-electron case given by
Eq. 3.3.22. The t-matrix terms are identified as a scattering matrix transform-
ing an incoming spherical wave into a scattered wave at a finite potential Vm around
a cell m.

In practice, the calculation of Green functions is first performed in ~k-space for
a periodic system. The structural Green functions Gmn

LL′(E) is solved by matrix
inversion after a cutoff at ` = `max for which the t-matrix becomes negligible [73, 93].
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By introducing the Fourier transform of the structure constants in reciprocal space,
Gmn
LL′(~k,E)

Gµµ′

LL′(~k,E) =
∑
n

Gmµ,nµ′

LL′ e−i
~k(~Rm−~Rn), (3.3.27)

the Dyson equation for the structural Green function in ~k-space can be set up as:

Gµµ′

LL′(~k, E) = gµµ
′

LL′(~k,E) +
∑
µ

∑
L′′L′′′

gµµ
′′

LL′′(~k,E)tµL′′L′′′G
µ′′µ′

L′′′L′(~k,E). (3.3.28)

From Eq. 3.3.28, the k-dependent structural Green functions can be obtained by
matrix inversion. Afterwards, the resulting structural Green function in ~k-space can
be back-transformed by an inverse Fourier transformation [5, 46]:

Gmn
LL′(E) =

1

ΩBZ

∫
BZ

d~kei
~k(~Rm−~Rn)Gµµ′

LL′(~k, E), (3.3.29)

where ΩBZ denotes the volume of the first Brillouin zone where the integral is
performed. In reciprocal space representation, one can also find the bandstructure
E(~k) of the crystal by the KKR secular equation which is given by:

∑
L′µ′

(
δLL′δµµ′ −

∑
L′′

Gµµ′

LL′(~k,E)∆tµ
′

L′′L′

)
cµ

′

~kL′ = 0, (3.3.30)

where µ is one of a finite number of basis atoms at Xµ′ and ∆tµ
′

L′′L′ is the difference
of the t-matrix between the reference system and the free space. The coefficients
cµ

′

~kL′ are the eigenvectors of the total incoming wave at the scatterer atom at Xµ′ .
The structural Dyson equation is an essential concept in the KKR-Green function

impurity method since it allows one to calculate the electronic structure of a crystal
in the presence of an impurity. It makes this method more efficient than the other
wavefunctions-based DFT approaches, for instance the plane wave methods, as the
calculation of the electronic structure does not require the construction of supercells.
The method uses a Green function approach in real space to embed an impurity
region into a solid [5]. In the following discussion, the impurity calculation using
the KKR-Green function impurity method will be explained in more detail.

3.3.3 Impurity calculations

The fact that real materials are not perfect crystals is critical to their future appli-
cation in materials engineering and technology. The presence of impurities impact
the physical properties of materials. Therefore, it is necessary to study how such
defects affects the electronic structure and properties of solids. Usually, the meth-
ods used to describe the electronic structure of solids with impurities are based
on band-structures methods which rely on the translational invariance of potential.
This condition leads to a requirement of extremely large cells which can cost a high
numerical effort.
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Another alternative that can be used without requiring the construction of su-
percells is by using the KKR impurity method. This approach employs the Green
function formulation in real space to embed an impurity region into a solid and does
not rely on a supercell [5]. The procedure is given in two steps, the Green function of

the host is calculated firstly via the KKR band structure method in ~k-space. Then,
impurity atoms are embedded into the crystal structure in real space using the Dyson
equation (see Figure 3.2). In k-space representation (Eq.3.3.27), the structural host

Figure 3.2: Illustration of an impurity embedded in the clean host system. The blue
spheres represent the host atoms whilst the red one is the impurity atom. The green
square represents the impurity region

Green function Gmn
host,LL′(E) is calculated by using of the translational invariance

to convert the complexity of two discrete lattice indices to a continuous variable ~k
which is defined inside the Brillouin zone (see Eq. 3.3.28). This allows one to write
the Dyson equation for the structural Green function for the host system as:

Gµµ′

host,LL′(~k,E) = gµµ
′

LL′(~k,E) +
∑
µ′′

∑
L′′L′′′

gµµ
′′

LL′′(~k,E)tpL′′L′′′G
µ′′µ′

L′′′L′(~k,E). (3.3.31)

By employing a matrix inversion and use the inverse Fourier transformation as
given in Eq. 3.3.29, one can determine the Gmn

host,LL′(E) in real space representation.
Once the structural Green function of the host system is known, one can use the
obtained result to calculate the impurity Green function Gmn

imp,LL′(E). This can be
done by embedding an impurity subsystem into a host reference system via the
Dyson equation [5]. As the perturbation caused by the substitutional impurity is
typically restricted to few neighbouring atomic shells, there is only a finite region of
space which is practically influenced [28]. Outside, the induced perturbation in the
potential is small and can be neglected, meaning that the potential equals the host
potential [5]. Therefore, this embedding technique allows one to substitute the host
potentials in the impurity region by potentials Vimp, in order to obtain the structural
Green function [93] as shown below:
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Gmn
imp,LL′ = Gmn

host,LL′ +
∑
p

∑
L′′L′′′

Gmp
LL′′∆t

p
L′′L′′′G

pn
imp,LL′ , ∆tp` = tpimp,` − t

p
host,`,

(3.3.32)

where ∆tp` denotes the t-matrix difference between the t-matrix of the impurity
potential Vimp(~r) and the host potential Ṽhost(~r).

Thus, in matrix equation with a combined index (L, m), one can rewrite Eq. 3.3.32
as:

Gimp = Ghost +Ghost ∆tGimp (3.3.33)

Therefore, the Green function Gimp can be determined numerically via a matrix
inversion

Gimp = (1−Ghost∆t)
−1Ghost. (3.3.34)

3.4 Self-consistency algorithm

In the following, the algorithm to calculate the potential self-consistently using the
KKR Green function method is briefly presented. The basic and central quantity
to be calculated in this procedure is the electronic density. One should notice that
the procedure presented here does not include the spin orbit coupling. The steps
followed are ([93])

1. Taking an initial guess of an input potential Vinp(~r) (see the top green line box
in Figure 3.3).

2. Calculate the wavefunctions RL(~r), HL(~r) and also the t-matrix elements,
tLL′(E).

3. Calculate the t-matrix elements of the reference system t0LL′(E), and calculate
∆tLL′(E) = tLL′(E)− t0LL′(E) (look at the first red line box in Figure 3.3).

4. Calculate the structural Green function G0,mn
LL′ (E) of the reference system.

5. Evaluate the structural Green function of the real system Gmn
LL′(E) by solving

the structural Dyson Equation (Eq.3.3.25).

6. Calculate the Green function using the structural Green function Gmn
LL′(E),

RL(~r), andHL(~r). After that, integrate the Green function by using a complex-
energy contour and take the imaginary part to find the valence electron density.
ρν(r) = − 1

π
Im
∫ EF
Ebot

dZG(r, r′;Z).

7. Calculate the core-electron wavefunctions and core-electron density ρc; here,
the multiple-scattering formalism is not needed, because the core wavefunc-
tions are assumed to be highly localized at the atomic sites. Obtain the total
density ρ(r) = ρc(r) + ρν(r).
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Figure 3.3: The diagram of self-consistency cycle used in the KKR method for
impurity calculations

8. Calculate the output potential Vout(~r) by solving the Poisson equation which
is given by ∇2V = − ρ

ε0
and adding the exchange-correlation potential. If

Vinp(~r) = Vout(~r) to a reasonable accuracy, exit the cycle. Otherwise:

9. Properly mix Vout(~r) with V(~r) to obtain a new input potential, and return to
the initial step.

24



Chapter 4

Parametrization of the magnetic
Hamiltonian

The description of many properties of magnetic materials, such as their behavior at
finite temperatures and large-scale magnetic textures, are in many cases impossible
to treat directly via first-principles methods. To overcome such difficulties, effective
models are often used to depict the interactions between magnetic moments in real
materials. One of the most successful methods is to make use of the Heisenberg
Hamiltonian with parameters obtained from first-principles calculations [96, 27].

The original Heisenberg Hamiltonian describes the interaction between a mag-
netic moment, ~m, of an atom with its nearest neighbors. In this model the magnetic
moments, m̂i, are three-dimensional unit vectors with a fixed length. The interac-
tions among them are described by the following expression:

HHeis = −
∑
〈ij〉

Jijm̂i · m̂j, (4.0.1)

where m̂i is the direction of the magnetic moment at i-th site and the Jij’s are the
Heisenberg exchange couplings which describe the interaction between the i-th and
j-th magnetic moments. When Jij > 0, the magnetic moments prefer a parallel
orientation, that is a ferromagnetic alignment, whilst if Jij < 0 an anti-parallel
alignment minimizes the energy, i.e an anti-ferromagnetic state.

Such Heisenberg Hamiltonian, including only the pairwise exchange interaction
between nearest neighbor magnetic moments, is sometimes used to describe the
properties of certain magnetic systems. However, it is limited, as it cannot be used
to describe more complex magnetic configurations, for instance, a non-trivial mag-
netic structure such as skyrmions. As they are often present in materials with large
spin orbit coupling, the effects that can also be included in the Heisenberg Hamil-
tonian by adding extra terms such as the Dzyaloshinskii-Moriya interaction [26, 75]
and the magnetocrystalline anisotropy energy (MAE). This extended Heisenberg
Hamiltonian is given by:

HHeis = −
∑
i 6=j

Jijm̂i · m̂j −
∑
i 6=j

~Dij · (m̂i × m̂j) +
∑
i

Ki

(
êk · ~mi

)2 −
∑
i

~mi · ~Bext.

(4.0.2)
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The first term in Eq. 4.0.2 is the previously discussed isotropic Heisenberg exchange
interactions. Notice that it is now a long-range interaction taking into account
several coordination shells. The second term is the anti-symmetric Dzyaloshinykii-
Moriya (DM) interaction with ~Dij being the Dzyaloshinskii-Moriya vector between
the i-th and the j-th atoms. As can be seen, this term favors non-collinear magnetic
structures with its contribution being minimal when the spins are perpendicular to
one another. This term is also chiral, since as one can see its energy depends on the
cross product between the magnetic moments [11], thus a certain rotational sense
of the magnetic moments is preferred.

The term
∑

iKi(ê
k · ~mi)

2 is the uniaxial magnetocrystalline anisotropy energy
with Ki being the uniaxial anisotropy constant [16] for the i-th atom. This describes
the tendency that magnetic moments have in certain materials to prefer a given
orientation with respect to the lattice, which is a direct result from the spin orbit
coupling.

The last term in Eq. 4.0.2 is the Zeeman term which is the interaction with an
external magnetic field ~Bext.

Until now, a description of how one can use the Heisenberg Hamiltonian to
describe different magnetic configurations has been presented. However, the link
between this model and real materials is still missing. Thus, in this chapter, a
description of the method used to parametrize the Heisenberg Hamiltonian from
first principles methods will be presented, with special emphasis on the parameters
needed to describe materials where magnetic skyrmions are present.

4.1 Calculation of the exchange interaction pa-

rameters

The Heisenberg exchange interactions are usually the dominant terms in a mag-
netic material [55]. Hence, being one of the main responsible for the ground state
of the system. As previously mentioned, depending on its sign the magnetic mo-
ments prefers different alignments, ferromagnetic (anti-ferromagnetic), i.e. paral-
lel(antiparallel) for positive(negative) sign of the exchange coupling. One of the
methods used to calculate the pairwise Heisenberg exchange interaction is the so-
called Liechtenstein-Katsnelson-Antropov-Gubanov formalism (LKAG) [66, 65]. This
method is based on Andersen’s Force theorem which allows the calculation of the
exchange parameter by considering a small deviation of the magnetization from a
reference state [3].

One can start by looking at the isotropic exchange interaction term [66, 55]:

Hxc = −
∑
i 6=j

Jijm̂i · m̂j. (4.1.1)

Considering the ferromagnetic configuration as the ground state, one can evaluate
the variation of the exchange energy shown in Eq. 4.1.1 due to the infinitesimal
rotation of the local moment at site i by the angle θ as following:
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δE = −2
∑
n

Jin [cos θ − 1]

≈
∑
n

Jinθ
2. (4.1.2)

It is also useful to consider the rotation of two atoms (i and j) by an angle (±θ/2)
with the variation of exchange energy δEij given by:

δEij = −2
∑

n6=i,n6=j

Jin

[
cos

(
θ

2

)
− 1

]
− 2

∑
m 6=i,m 6=j

Jjm

[
cos

(
θ

2

)
− 1

]
− 2Jij [cos θ − 1] ,

(4.1.3)

with n and m refer to background atoms, namely all the atoms around atoms i and
j. To obtain the pairwise exchange interaction constant, Jij, between two magnetic
moments at site i and j, one also needs to subtract the variation of the interaction
energy of each atom (i and j) with the environment. This can be obtained by
rotating only one of the two atoms with the same angle as assumed when calculating
δEij(see Eq. 4.1.3). By doing this procedure one get the change of energy related to
the Jij parameters as follows (detail derivation can be seen in Appendix A.3):

δE ′ij ≈
1

2
Jijθ

2.

Thus, it has been shown that up to second order perturbation one can relate the
change of magnetic energy due to a two-site rotation to the magnitude of the ex-
change couplings. Hence, if one assumes that the Heisenberg Hamiltonian represents
the magnetic energy of a real magnetic material, then by calculating such kind of
energy differences in the context of density functional theory, it is in principle pos-
sible to calculate these parameters, which is precisely the approach proposed by
Liechtenstein et al. [66, 65].

In the LKAG formalism, a small perturbation from the ground state is considered
and therefore, Andersen’s “local force theorem” [3] can be used. It states that the
total change in the energy due to small perturbations can also be related to the sum
of the variations of single-particle energy while keeping the ground state potential
fixed. Thus one can write:

δE = −
∫ εF

−∞
δN(ε)dε. (4.1.4)

In Eq. 4.1.4 δN (ε) is the variation of the integrated density of states. In multiple
scattering theory, the variation of N can be expressed as a function of the scattering
path operator as [69]:

∆N(ε) =
1

π
Im Tr ln τ̃(ε), (4.1.5)
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where τ̃ denotes the scattering path operator in the ground state, then in the pres-
ence of a local perturbation it becomes:

τ̃ ′ = τ̃[1 + δt−1τ̃ ]−1, (4.1.6)

with δt−1 being the change of the inverse single site scattering matrix, t. By sub-
stituting Eq. 4.1.5 and Eq. 4.1.6 into Eq. 4.1.4, one can rewrite the expression for
the energy variation as follows:

δE =
1

π

∫ εF

−∞
dε Im Tr ln

(
1 + δt−1τ̃

)
. (4.1.7)

The variation of the inverse t−1 matrix in Eq.4.1.7 can be expressed as:

δt−1
i =

1

2
(ti↑ − ti↓) (δ~ei · ~σ) , (4.1.8)

where ti↑(↓) is the single site scattering matrix for spin up(down) at site i, ~σ is the
vector of Pauli matrices and with δ~ei being the variation of the orientation of the
magnetic moment. For simplicity, one can choose the reference configuration to be
the ferromagnetic state, with the magnetic moments along the z-direction (0,0,1).
Thus, in the single-site rotation the orientation of a single spin, deviated by an angle
θ, can be written as êi = (sin θ, 0, cos θ). By comparing Eq. 4.1.2 and Eq. 4.1.7, one
can then write the effective exchange interaction parameter, related to the single
site rotation by keeping the terms up to order δθ2 as:

J0 = − 1

4π

∫ εF

−∞
dεTrL [∆(τ̃↑ − τ̃↓) + ∆τ̃↑∆τ̃↓] . (4.1.9)

In Eq. 4.1.9 J0 represents the exchange parameter of the single site rotation with
∆ = t−1

↑ − t
−1
↓ , and τ̃↑(↓) is defined as scattering path operator (see Eq. 3.3.18)

for spin up(down). The TrL is the trace over the orbital variables of scattering
matrices [65].

In a similar way, one can also find the exchange interaction parameter for the
pair interactions by rotating two magnetic moments on the sites i and j with a small
deviation ± θ

2
, allowing one to write:

Jij =
1

4π

∫ εF

−∞
dεTrL

[
(t−1
i↑ − t

−1
i↓ )τ̃ ij↑

(
t−1
j↑ − t

−1
j↓
)
τ̃ ji↓
]
. (4.1.10)

In 4.1.9 J0 gives the expression for the effective exchange interaction parameter of
the spin moment at site 0 with the spin polarized background and is determined
by the pairwise exchange interactions. On the other hand, Eq. 4.1.10 showcases the
pair exchange interactions parameter between spin moments at sites i and j [65].
The first term defines the scattering of the incoming electronic state at the i-th site
due to the effective potential, as described by the single-site scattering matrix. The
resulting wave function propagates from the i-th site to the j-th site as represented
by τ̃ ij. The scattering process is then taking place at site j and is shown by the
scattering matrix with indices j. The last term, τ̃ ji, shows the propagation of the
scattered wave function from site j back to site i. Thus, the exchange interaction
between these two sites can be determined irrespective of the distance between them.
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4.2 Calculation of Dzyaloshinskii-Moriya vectors

As mentioned in the previous section, the exchange interaction parameter can be
used to describe the magnetic configuration of a system exhibiting collinear or in
some cases, due to exchange frustration, a non-collinear order. However, to describe
a system with chiral magnetic ordering, one needs to consider another interaction
in the Hamiltonian. A term that can be used to explain this kind of magnetic
configurations was first proposed by Dzyaloshinskii [26], and later expanded by
Moriya [75]:

HDMI = −
∑
i 6=j

~Dij · (m̂i × m̂j) , (4.2.1)

where the ~Dij’s are the Dzyaloshinskii-Moriya vector and m̂ is the unit vector of the
magnetic moment.

The DM interaction is relativistic in origin, that is it requires the presence of spin
orbit coupling (SOC), but it also needs a system with broken inversion symmetry [75]
to be present. One type of systems that is known to exhibit strong DMI are magnetic
layers deposited on heavy metal substrates [74]. The breaking of inversion symmetry
at the magnet/heavy metal interface in combination with the large SOC due to the
underlayer gives rise to DMI [21]. It was shown by Fert and Levy [38], that the DMI
on this type of system lays in a plane perpendicular to the bonding vector between
the magnetic atoms, as shown in figure 4.1.

Figure 4.1: Schematic representation of the Dzyaloshinskii–Moriya interaction in
multilayer stacks with broken inversion symmetry. The chiral coupling between two
spins ~m1 and ~m2 is mediated by a heavy atom with large spin orbit coupling (grey

atoms) in the non-magnetic layer. The resulting DMI (~D12) vector is perpendicular
to the bond between two spins.

The direction of the DM vectors strongly depends on the symmetry of the un-
derlying lattice. Moriya [75] proposed a set of rules that allow one to determine (for

some cases) the orientation of the ~Dij vector between the i-th and j-th atoms. To
illustrate them it is useful to consider that the i-th spin is located at the point A,
and the j-th spin is at a point B, with the middle point, C, between these spins
(see Figure 4.2).

a) If a center of inversion is located at C: D = 0.
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b) When a mirror plane perpendicular through C, D is ‖ to the mirror plane or
D ⊥ AB.

c) Where there is mirror plane including point A and B, then D is ⊥ to the
mirror plane.

d) When a two-fold rotation axis perpendicular to AB passes through C, D is ⊥
to the two-fold axis.

e) When there is an n-fold axis (n ≥ 2) along AB, D is ‖ to AB.

Figure 4.2: Schematic representation of the Dzyaloshinskii- Moriya vector for two
spins located at site A and B. Different directions of the vector Dij shown in a)
with the center of inversion at middle point, b) with a mirror plane perpendicular
through the point C, c) with a mirror parallel with the connecting line of two spins,
and d) with rotation axis through the middle point C.

The calculation of the DM interaction parameters from first principles is of great
importance to describe the magnetic properties of certain materials [96, 27]. Hence,
it is imperative to develop a method to calculate such contributions. One approach
which is of special interest for the study of skymrion-defect interactions is the gen-
eralized LKAG formalism, which was first proposed by Udvardi et al. [96], and with
an alternative approach proposed by Ebert and Mankovski [27]. Here, the effective
spin Hamiltonian can be written in the most general form as:

HHeis =
∑
i

Ki(m̂
k · ~mi)

2 +
∑
ij

~miJij ~mj, (4.2.2)

where ~mi and ~mj define the direction of the atomic magnetic moment at site i and j,
respectively. The term

∑
iKi(m̂

k · ~mi)
2 is the magnetocrytalline anisotropy energy

with K as the uniaxial anisotropy constant. The J̃ij in Eq. 4.2.2 represents the
exchange tensor in the form of 3 × 3 matrix and it can be decomposed into three
parts:

Jij = Jij1 + J S
ij + J A

ij . (4.2.3)
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The first and second terms are the isotropic and the symmetric anisotropic exchange
interaction, respectively which are defined in the following manner:

Jij =
1

3
Tr{Jij}, (4.2.4)

J S
ij =

1

2

(
Jij + J T

ij

)
− Jij1, (4.2.5)

where T in J̃ T
ij refers to the transposed matrix. The third part of exchange tensor

represents the anti-symmetric part of the exchange tensor which is related to the
Dzyaloshinskii-Moriya interaction. The components of the vector Dij are defined
as:

Dx
ij =

1

2

(
Jyzij − J

zy
ij

)
Dy
ij =

1

2

(
Jxzij − Jzxij

)
Dz
ij =

1

2

(
Jxyij − J

yx
ij

)
. (4.2.6)

In order to calculate the elements of the exchange coupling tensor, Jij, we can
start to find the change in the energy with respect to an infinitesimal rotation of
two magnetic moments. In terms of the change in the t-matrix and Green function,
it is given by (see details in Ref. [5]):

δEij = − 1

π
Im

∫
dE Tr δtiGij δtjGji. (4.2.7)

The difference between t-matrices resulting from a potential V and a potential
V + δV can be in first order calculated by:

δti =

∫
drR̄(~r) δV iR(~r), (4.2.8)

where R(~r) represents the wave functions resulting from a potential V that can be
decomposed into a scalar potential field V (~r) and a term acting like magnetic field
B(~r):

V i(r) = 1 · V (r) + ~σ · ê(0)
i Bi(r), (4.2.9)

where ~σ is a vector containing the Pauli matrices. If the vector is rotated such that
the resulting magnetic field is pointing along the unit vector êi, then the change in
the potential can be calculated as follows:

δV i(r) = (~ei · ~σ)Bi(r). (4.2.10)

By substituting Eq. 4.2.10 into Eq. 4.2.8, one can obtain:

δt i =

∫
drR̄(~r) (~ei · ~σ)Bi(r)R(~r)

= ~ei ·
∫
drR̄(~r) ~σBi(r)R(~r)

= ~ei ·

δtxiδtyi
δtzi

 , (4.2.11)
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with:

tαi =

∫
drR̄(~r) ~σαBi(r)R(~r), (4.2.12)

where α = (x, y, z) is the spin direction. By plug in the expression of δt in Eq. 4.2.11
for index i and its transpose for index j to the Eq. 4.1.3, leads to:

δEij = (δexi, δe
y
i, δe

z
i)

Jxxij Jxyij Jxzij
Jyxij Jyyij Jyzij
Jzxij Jzyij Jzzij

δexiδeyi
δezi


= (δexi, δe

y
i, δe

z
i)Jij

δexiδeyi
δezi

 (4.2.13)

where the 3 × 3 matrix Jij is defined as:

{Jij}α,β = − 1

π
Im

∫
dE Tr δtα

i
G
ij
δtβ

j
G
ji
, (4.2.14)

Using equation 4.2.13 one can describe the energy change due to a small variation
of the initial magnetization directions ê

(0)
i and ê

(0)
j . For instance, if one assumes that

ê
(0)
i = ê

(0)
j = ẑ, then one can only determine the xy-subblock of the matrix element

of Jij as follow:

J x,y
ij =

Jxxij Jxyij
Jyxij Jyyij
Jzxij Jzyij

 . (4.2.15)

Thus, only the z-component of the Dzyaloshinskii-Moriya vector can be determined
as given by the expression in Eq. 4.2.6.

4.3 Parametrization with induced magnetic atoms

On previous sections, the exchange coupling constants and DM vectors among mag-
netic atoms have been calculated. However, as the system of interest for this work,
Pd/Fe/Ir(111), contains nonmagnetic Pd atoms which exhibit induced magnetic
moments when in proximity to magnetic materials, one also needs to take into ac-
count their effect in the magnetic interactions. Therefore, this section will deliver a
discussion about how the interactions of magnetic Fe atoms with nonmagnetic Pd
atoms can be included in the Hamiltonian (see Eq. 4.0.2). A further discussion over
the interaction with magnetized Pd atoms will also be given when the presence of
impurity atoms on top of the Pd layer is taken into consideration.

Renormalization of interactions in the clean limit

For simplicity we will start by studying a clean system in which no impurities are
present. By following Ref. [81], the full Heisenberg Hamiltonian including the Fe
atoms and the Pd layer can be written as follows:
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H =
Fe+Pd∑
ij

~MiJ̃ij ~Mj. (4.3.1)

Here the tensorial exchange coupling, J̃ij, includes the Heisenberg exchange and DM
terms, where the indices i and j run over the Fe and Pd atoms. One can decompose
the sums in the Hamiltonian of Eq. 4.3.1 to include the interaction of the induced
moment Pd atoms as follows:

H =
∑
ij

~MiJ̃M−M
ij

~Mj +
∑
iα

~MiJ̃M−m
iα ~mα

+
∑
jβ

~mβJ̃m−M
βj

~Mj +
∑
αβ

~mαJ̃m−m
αβ ~mβ, (4.3.2)

where the summations over the indices i and j run over the Fe atoms whose magne-
tization are denoted by Mi and Mj, whilst the indices α, β run over the Pd atoms
where the corresponding magnetization vectors are given by ~mα and ~mβ. Here, one
can assume that the induced magnetic moments on Pd atoms are governed only
by the magnetic moments of the Fe atoms which are nearest neighbours of the Pd
atoms. As expressed by:

~mα = Xα
∑

Mi∈〈M,α〉

~Mi, (4.3.3)

with Xα being the susceptibility. The sum in Eq. 4.3.3 includes only the nearest
neighbour Fe atoms. The susceptibility can be then extracted by the following
equation when assuming a collinear state

Xα =
|~mα|∑

Mi∈〈M,α〉

∣∣∣ ~Mi

∣∣∣ . (4.3.4)

For a detailed derivation of Eq.4.3.4 one can see the Appendix in Ref. [81].
By substituting the expression for ~mα of Eq. 4.3.3 into Eq. 4.3.2, and neglecting

the small contribution from the last terms one gets:

H =
∑
ij

~MiJ̃M−M
ij

~Mj +
∑
iα

∑
Mj∈〈M,α〉

~MiJ̃M−m
iα Xα ~Mj +

∑
βj

∑
Mi∈〈M,β〉

J̃M−m
βj Xβ ~Mj.

(4.3.5)

If there are N nearest neighbour Fe atoms that surround the Pd atom and one
assumes that they have the same magnetic moment M , then the susceptibility in
Eq. 4.3.4 can be rewritten as follows:

Xα =
|~mα|
NM

. (4.3.6)
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As a final step one can also rearrange the Eq. 4.3.5 in terms of unit vectors of
magnetization M̂ , by redefining the expression of J̃ij as follows:

J̃ij =
Jij∣∣∣ ~Mi

∣∣∣ ∣∣∣ ~Mj

∣∣∣ (4.3.7)

with Jij is the usual exchange tensor given by:

Jij =

 J Dz
ij −Dy

ij

−Dz
ij J Dx

ij

Dy
ij −Dx

ij J

 .
By plugging the expression of J̃ij in Eq.4.3.7 and the Eq. 4.3.6 into Eq.4.3.5, the final
expression for Hamiltonian that includes the interaction with magnetized atoms in
a defect-free system is given by:

H =
∑
ij

M̂iJM−M
ij M̂j +

∑
iα

∑
Mj∈〈M,α〉

M̂i
JM−m
iα

N
M̂j

+
∑
βj

∑
Mi∈〈M,β〉

M̂i

JM−m
βj

N
M̂j. (4.3.8)

Renormalization in the precesence of impurities

Now that one possesses a generalized Heisenberg Hamiltonian (Eq. 4.3.8) which
includes the interaction between magnetic and nonmagnetic atoms in or systems
such as Pd/Fe/Ir(111) in the clean limit, the influence of defects must now be
explored. The decomposition of the full Heisenberg Hamiltonian including Fe, Pd,
and the impurity atoms can be written as:

H =

Fe+Pd+Imp∑
ij

~MiJ̃ij ~Mj

=
∑
ij

~MiJ̃M−M
ij

~Mj +
∑
iα

~MiJ̃M−m
iα ~mα +

∑
jβ

~mβJ̃m−M
βj

~Mj (4.3.9)

+
∑
αβ

~mαJ̃m−m
αβ ~mβ +

∑
Mi∈〈M,imp〉

~MiJ̃M−imp
i imp

~Mimp +
∑

Mj∈〈M,imp〉

~MimpJ̃ imp−M
i imp

~Mj

+
∑

Mα∈〈M,imp〉

~mαJ̃M−imp
α imp

~Mimp +
∑

Mβ∈〈M,imp〉

~MimpJ̃ imp−m
impβ ~mβ,

where the summation with indices i and j runs over the Fe atoms, the indices α, β run
over the Pd atoms and the summations with the impurity are performed only for the
nearest neighbours. As in the case of defect-free system, the Pd magnetic moments
are governed by their nearest neighbour Fe atoms. However, in the presence of
defects, the magnetic moment of the Pd atoms which are close to the impurities are
also affected by it. Therefore, the magnetization of the Pd atoms, ~mα, is coupled
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with the magnetization of the Fe atoms, ~Mi, via the susceptibility presented in the
following way:

~mα = Xα
∑
i

~Mi = XFe
∑

Mi∈〈M,α〉

~MFe
i + Ximp ~Mimpδimp, α, (4.3.10)

where ~Mimp and Ximp are the magnetization and susceptibility of the impurity atoms,
and the summation is performed over the nearest neighbors. Using the collinear
magnetic state the susceptibility of the Fe atoms can be written as follows:

XFe =
|~m0

α|∑
Mi∈〈M,α〉

∣∣∣ ~M0
i

∣∣∣ =
|~m0

α|

N
∣∣∣ ~M0

∣∣∣ =
m0
α

NM0
, (4.3.11)

where N is the number of nearest neighbour Fe atoms to the Pd atom, m0
α and M0

are the magnetic moments for the Pd and Fe atoms in the clean system, respectively.
On the other hand, from Eq. 4.3.10 the susceptibility of the impurity atoms can be
written as:

Ximp =

∣∣∣~mα −XFe
∑

i∈NNα

~Mi

∣∣∣∣∣∣ ~Mimp

∣∣∣ =
|~m′|∣∣∣ ~M ∣∣∣

imp

=
m′

Mimp

(4.3.12)

By substituting the expression for XFe, Ximp into Eq. 4.3.9 and using Eq. 4.3.7,
one can get the expression for a Hamiltonian which includes the interaction between
magnetic and nonmagnetic atoms in the system in the presence of an impurity as:

H =
∑
ij

M̂Fe
i JM−M

ij M̂Fe
j +

∑
i

M̂Fe
i J

M−imp
i imp M̂imp +

∑
j

M̂impJ
imp−M
imp j M̂Fe

J

+
∑
i

∑
Mα∈〈M,i〉
Mj∈〈M,α〉

M̂Fe
i

m0
α

mα

JM−m
iα

N

MFe
j

M0
M̂Fe

j +
∑
j

∑
Mβ∈〈M,j〉
Mi∈〈M,β〉

M̂Fe
i

m0
β

mβ

Jm−M
iβ

N

MFe
j

M0
M̂Fe

j

+
∑
i

∑
Mα∈〈M,i〉

M̂Fe
i

m′

mα

Jm−M
iα M̂impδimp,NNα +

∑
j

∑
Mβ∈〈M,j〉

M̂imp
m′

mβ

JM−m
iβ M̂jδimp,NNβ

+
∑

Mα∈〈M,imp〉
Mi∈〈M,α〉

M̂Fe
i

m0
β

mα

MFe
i

M0

Jm−imp
α imp

N
M̂imp +

∑
Mβ∈〈M,imp〉
Mj∈〈M,β〉

M̂imp

m0
β

mβ

MFe
j

M0

J imp−m
impβ

N
M̂Fe

j .

(4.3.13)
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Chapter 5

Magnetization Dynamics

In the previous chapter, the methodology to extract from first principles the in-
teractions used to model magnetic skyrmions was introduced. By making use of
the obtained parameters, one can determine the static and dynamical properties of
these magnetic textures and their interactions with defects. The description of the
dynamics and stability will be explored via the Landau-Lifshitz-Gilbert (LLG) equa-
tion [42]. In this chapter, the phenomenological LLG equation will be introduced.
Afterwards, its expansion into the atomistic regime will be discussed.

5.1 Landau-Lifshitz-Gilbert equation

To be able to describe the dynamics of the magnetization in a magnetic material, it
is necessary to find the equation of motion of the magnetic moments that compose
it. To derive this expression, one can start by considering the classical picture, that
is a magnetic material with magnetization, ~M , under the influence of an external
magnetic field, ~Bext.

If one places the magnetization out of equilibrium and rotates it away from the
direction of the field, it will experience a torque, ~τ = ~M × ~Bext, which forces it to
precess around the direction of ~Bext. Thus, one can write the time evolution of the
angular momentum, ~L, of the system:

∂~L

∂t
= ~M × ~Bext. (5.1.1)

It is possible to relate the angular momentum with the magnetization via the
relation, ~M = −γ~L:

∂ ~M

∂t
= −γ ~M × ~Bext, (5.1.2)

where γ is the gyromagnetic ratio. One can also write the expression in Eq. 5.1.2
in the terms of an effective field, ~Beff, that takes into account not only the external
field but also the effect of interactions in the material which can affect the dynamics
of the system. In terms of ~Beff the equation of motion can be rewritten as follows:

∂ ~M

∂t
= −γ ~M × ~Beff. (5.1.3)
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Eq. 5.1.3 shows the precession of the magnetization at constant energy. The
magnetic moment precess indefinitely around the direction of the magnetic field
without ever aligning itself with it, as schematically shown in figure 5.1a. This is
an incomplete picture as one can not neglect the dissipative factors present in real
materials. These dissipation processes affect the magnetization dynamics, such that
the system will relax and reach the equilibrium point with the minimum energy,
that is the magnetization aligns with the magnetic field, as shown in figure 5.1b.
Thus, to describe such effects, Landau and Lifshitz [63] proposed a phenomenological
damping term, which is added to the precession term:

∂ ~M

∂t
= −γ ~M × ~Beff −

λ

Ms

~M ×
[
~M × ~Beff

]
, (5.1.4)

where Ms is the saturation magnetization of the system and λ is a phenomenological
damping parameter which is defined positive. In Eq. 5.1.4 one sees an additional

term, which is dubbed the damping term, ~M ×
[
~M × ~Beff

]
, that is perpendicu-

lar to the direction of the precession of the magnetization. It tends to align the
magnetization towards the direction of the effective field.

In the low damping limit, the Landau-Lifshitz equation can be used to describe
the time evolution of the magnetization in an accurate manner. However, it fails
to describe materials with large damping values. In the limit of infinite damping,

i.e. λ → ∞, the Landau-Lifshitz equation predicts ∂ ~M
∂t
→ ∞ [54, 71]. This is

un-physical, as it would imply an infinitely fast motion of the magnetization. Such
concerns led Gilbert [42] to propose an alternative damping term, obtained by con-
sidering a dissipative term in the magnetic Lagrangian which results in the equation
of motion of the magnetization given by:

∂ ~M

∂t
= −γ ~M × ~Beff +

α

Ms

~M × ∂ ~M

∂t
, (5.1.5)

with α being the damping parameter, named after Gilbert. This expression is called
the Landau-Lifshitz-Gilbert (LLG) equation.

It can be shown that in case of isotropic damping both Eq. 5.1.4 and Eq. 5.1.5 are
equivalent if one renormalizes the gyromagnetic ratio, γ, and the phenomenological
damping, λ (see A.1). Thus, one can rewrite the expression of LLG equation in the
representation of Landau-Lifshitz equation as:

∂ ~M

∂t
= −γL ~M × ~Beff − γL

α

Ms

~M ×
(
~M × ~Beff

)
, (5.1.6)

with γL = γ
(1+α2)

. If one considers the high damping limit, i.e. α → ∞, it can

be seen that ∂ ~M
∂t

= 0. One can see here that the Gilbert damping has the same
properties as the damping terms in classical mechanics, in which the magnetization
motion slows down by increasing damping parameter.

Usually, the dynamics of magnetic systems is described in the micromagnetic
limit where the magnetization is considered to be a continuous vector field. This
approach is very successful to describe the dynamics of large magnetic textures.
However, to explain the magnetization dynamics in the atomic limit, another ap-
proach is needed to properly describe the time evolution of these systems [2].
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(a) Larmor Precession (b) A damping factor is included in the mo-
tion

Figure 5.1: The motion of magnetic moment in a presence of magnetic field (a)
show the precession of a magnetic moment (red) around an effective magnetic field
(grey) (b) show precession (green) with damping vector (blue) of the magnetization
motion

5.2 Atomistic spin dynamics

As mentioned in the previous section, if one wishes to describe the dynamics of
ultra-narrow magnetic textures one must go towards an atomistic treatment of the
magnetic material. Thus, it is of great importance to ascertain if the LLG equation
is valid at these length scales. The seminal work in this aspect was performed
by Antopov et al. [2], in which starting from the local spin density approximation
(LSDA) Hamiltonian, an atomistic formulation of the LLG equation was found.
Following this work, one can obtain the LLG equation by starting from the time
dependent Kohn-Sham equations:

(
−∇2 + V0 (~r, t) +

(
~σ · ~Beff (~r, t)

))
ϕi (~r, t) = εiϕi (~r, t) , (5.2.1)

where the term ∇2 describes the single-particle kinetic energy associated with the
Kohn-Sham eigenstates, ϕi, which correspond to the energy εi. With V0 (~r, t) be-
ing the scalar potential which describes the effective single particle system and
~σ · ~Beff (~r, t) is the magnetic contribution to the potential.

The equation of motion of a single atomic magnetic moment was then derived
from the time evolution of the spin density, ~S (~r, t) = ϕ† (~r, t) Ŝϕ(~r, t), where Ŝ is
the spin operator (for a detailed derivation see Ref. [33, 2]) and it is given by:

∂~S (~r, t)

∂t
= −∇ · ~QKS (~r, t)− γ~S (~r, t) × ~Beff, (5.2.2)
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where ~QKS represents the spin current density and it is defined as:

~QKS =
1

2i

[(
Ŝ∇ϕ† (~r, t)

)
ϕ (~r, t)− ϕ† (~r, t) Ŝϕ (~r, t)

]
. (5.2.3)

Solving the time-dependent KS equation is a very complex and expensive en-
deavor. Hence, to overcome these difficulties, certain approximations must be em-
ployed, chief among them being the adiabatic approximation. Under it, one can
separate the fast variables (electronic degrees of freedom) from the slow variables
(motion of the local magnetic moments). This is akin to the Born-Oppenheimer
approximation, which is a type of adiabatic approximation, used to separate the
electronic and ionic degrees of freedom in electronic structure calculations. Such
considerations are possible, due to the different energy range of these two variables,
whilst the transverse excitations of the magnetic moments are in the order of meV,
the characteristic energies of the electronic processes are in the order of eV. This
approximation then allows us to transform the time-dependent Kohn-Sham equa-
tion into its time-independent counterpart for a fixed direction of the magnetization.
The charge density, n(~r), is then represented as a potential for the effective magnetic
field that will perform a torque on the magnetization [2]. One can then subdivide
the sample into spheres and by integrating the spin density of the magnetic atom
on site i over this sphere, one can obtain the atomic magnetic moment. Based on
this approximation one can replace ~S (~r, t)→ mi (t) [33]. Employing these approxi-

mations and neglecting the spin current term, ~QKS, one can rewrite the expression
in Eq. 5.2.2 as follows:

d~mi

dt
= −γ ~mi × ~Bi

eff (t) . (5.2.4)

This equation of motion (Eq. 5.2.4) has the same form as the precession term in
the LLG but now relating the time evolution of an atomic magnetic moment, to the
effective field stemming from the electronic interactions on a given atom.

The inclusion of the damping term from first principles is also possible when
starting from a single electron picture. Therefore, the dissipative processes inherent
to the dynamics of magnetic systems can be taken into account in the atomistic
equation of motion by including the Gilbert damping parameter. Thus, the equation
of motion can be written in the following way [90, 33]:

d~mi

dt
= − γ

(1 + α2
i )

(
~mi × ~Bi

eff +
αi
mi

~mi ×
[
~mi × ~Bi

eff

])
, (5.2.5)

where αi is the Gilbert damping, ~mi is the atomic magnetic moment on site i and
~Bi

eff is the effective field acting on the magnetic moment.
As seen in Eq. 5.2.5, knowing the effective field is determinant to describe the

magnetization dynamics. In principle, the determination of this field would require
the calculation of the exchange-correlation field from the electronic structure for
a given direction of the magnetic moment, that is for every time t of the dynam-
ics. However, this is prohibitively expensive, thus another approach is required. One
approach to obtain this magnetic field, is by mapping this field to an effective Heisen-
berg Hamiltonian parametrized from first principles calculations, by making use of
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the relation ~Bi
eff = ∂HHeis

∂ ~mi
, with HHeis being the extended Heisenberg Hamiltonian as

defined in chapter 4 (Eq. 4.0.2).
The use of the equation of motion in an atomistic level also allows the proper in-

troduction of thermal effects in the magnetization dynamics [40]. The consideration
to include this temperature effects in the equation of motion is really important as at
a finite value it can cause thermodynamic fluctuations of the spin moments [33, 35].
By taking into account this thermal fluctuations effect one can have a better observa-
tions to describe the magnetization dynamics of the spin moments. In the Langevin
dynamics approach, the temperature effects on the magnetization are modelled by
introducing a fluctuation terms in the LLG equation [17, 62]. The effective field is

then redefined such that ~Bi
eff = ~Bi

Heis +~b(T ), where ~Bi
Heis is the effective field arising

from Heisenberg Hamiltonian and ~b(T ) is the stochastic field. Thus allowing one to
write:

d~mi

dt
= − γ

(1 + α2)

(
~mi ×

(
~Bi

eff +~b(T )
)

+
αi
mi

~mi ×
[
~mi ×

(
~Bi

eff +~b(T )
)])

.

(5.2.6)

The equation of motion in Eq. 5.2.6 shows the magnetization dynamics due to the
interaction between the magnetic moment with the stochastic field is both included
in the precession and the damping term. The stochastic fields are modelled using
Gaussian white noise and satisfy the following criteria:〈

b(t)
〉

= 0, (5.2.7)〈
bi(t)bj(t

′)
〉

= 2Dδijδ(t− t′), (5.2.8)

D =
α

1 + α2

kBT

µBm
, (5.2.9)

where
〈
...
〉

denotes the time average. The first consideration (Eq. 5.2.7) shows that
the time average of the stochastic field is zero, whilst Eq. 5.2.8 shows that the field
at site i is uncorrelated in time (denoted by δ(t − t′)) and in space (denoted by
δij). Lastly, it can be found that the strength of the stochastic field, D, is related
to the temperature, T , and can be obtained from the Fokker-Planck equation in
conjunction with the fluctuation-dissipation theorem [90, 33].

In this thesis, atomistic spin dynamics will be used to analyze the skyrmion-
defects interaction. As this method simulates every atom as a single magnetic mo-
ment, the atomic scale variations of the magnetization due to the local interactions
can be described more accurately [35, 90]. Therefore, small non-trivial magnetic
structures like skyrmions interacting with some impurities can be treated efficiently
using this approach. The parameters that will be used in the atomistic spin dy-
namics simulations such as spin moments, exchange interactions, DM vectors and
magnetic anisotropy constant are calculated from DFT calculations.
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Chapter 6

Results

6.1 Overview of the System

The main focus of this thesis is to study the skyrmion-defect interaction for realistic
systems. Attempts to study the effect of impurities over the dynamics and the stabi-
lity of skyrmions are usually done via effective models, where several approximations
to the type of interactions and the skyrmion profile must be performed. It is only
recently that material specific studied have been performed [67]. As in the work
by Lima Fernandes et al., the system chosen to study these interactions is the
FCC Pd/Fe/Ir(111). Due to the strong spin-orbit coupling of the heavy metal
substrate, Ir(111), and the broken inversion symmetry at the interface, this system
exhibits a large interfacial Dzyaloshinskii-Moriya interaction (DMI) [75, 38]. This
large DMI in combination with the exchange frustration, results in a material which
can host nanosized magnetic Néel skyrmions [24, 82, 67, 89]. Even more, some
pioneering work on the interaction between defects and skyrmions has been done
both experimentally [32] and theoretically [67] in this material. Hence, making it
an ideal playground to study more complex types of impurities and their effect on
skyrmions.

Here a further discussion concerning the interaction between a magnetic skyrmion
and defects will be addressed from first principles calculations combined with ato-
mistic spin dynamics simulations. Due to the small size of the studied skyrmions,
an atomistic study is necessary to determine the impact of various defects on their
stability and dynamical behaviors. The investigated defects consist of 3d transition
metal elements (Cr, Fe, and Co). The effect of the dimensionality and geometry of
the defects will also be studied, by considering several cluster configurations such
as adatom, dimer, trimer, and line defects. Also, the effect of the position of the
defects will be studied by placing the defects on top of the Pd layer in FCC and HCP
stacking sites. These configurations can be schematically seen in Fig. 6.1, where in
the HCP stacking the impurities will be directly underneath the Fe atom, whereas
in the FCC stacking they are aligned with the Ir atoms.

The skyrmion-defect interaction was investigated via atomistic spin dynamics
(see Chapter 5) making use of the parameters obtained from the first-principles
calculations. In this approach an impurity cluster is embedded in a host system,
where the parameters of the impurity area are given by the parameters of a first-
principles impurity calculation (Chapter 3), whilst the parameters of the host system
correspond to those of the clean system. The total energy of the system is first cal-
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Figure 6.1: Schematic representation of the (a) FCC and (b) HCP stacking configu-
ration for system fcc Pd/Fe/Ir(111) with an impurity adatom (red sphere) deposited
on the top on Pd layer. The green, grey, and blue spheres represent the Pd, Fe, and
Ir layer, respectively.

culated for a reference point located faraway from the impurity region. At this point
a magnetic skyrmion is stated at the clean system with a ferromagnetic background.
Another set of calculations are performed where the skyrmion core is imposed at
each of the Fe atoms present in the impurity region, thus allowing us to track the
energy of the system when a skyrmions is considered at each of those positions. By
taking the difference between the energies inside the cluster and the reference point,
one is then able to find the energy profile of the skyrmion-defect interaction. A
negative and positive energy difference on the energy profile indicate an attractive
and repulsive skyrmion-defect interaction, respectively.

In the following section, we begin the discussion by analyzing the impact of
the present defects on the magnetic properties of the system. It is then followed by
investigating the effects these changes have on the interaction between the impurities
with a single magnetic skyrmion. For simplicity we begin by looking at the adatom
case that has been already studied [67].

6.2 Results and discussion

To better understand the effect of defects in the magnetic properties of Pd/Fe/Ir(111),
it is convenient to encapsulate some of its key properties. One of the most relevant
parameters is the isotropic exchange interaction, which has a magnitude of 19.8 meV
among the nearest neighbor Fe atoms, which is in good agreement with previously
obtained results in Ref. [24, 67, 89]. The given exchange coupling here is the ef-
fective renormalization value which was calculated by taking into consideration the
interaction with the induced magnetic moment of the non-magnetic Pd atoms in
the system as discussed in chapter 4. This renormalization scheme is also used to
calculate the effective DMI vector, however, its value change only a little from the
initial values. We also use the same renormalization procedure to calculate the ef-
fective value of the exchange coupling for the case with the presence of defect atoms
in all the studied system configurations.
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Figure 6.2: Schematic representation of the two studied configurations in the adatom
system namely a) FCC and b) HCP. Fe atoms are represented by the grey spheres,
and the red one indicates the impurity adatom.

6.2.1 Adatom

The real space clusters used in the calculations for the FCC and HCP stacking
configurations are presented in figure 6.2. The top view only showcases the impurity
and the layer of Fe atoms which are denoted by the red and grey spheres, respectively.
Due to its different position in each configuration, the adatom has different nearest
neighbor atoms in the Fe substrate. Both configurations have different coordination
numbers with 3 Fe atoms as the first nearest neighbor atoms of the impurity for the
FCC stacking, while in the HCP stacking there is one Fe atom sitting directly below
the impurity adatom and surrounded by 6 Fe atoms as the next nearest neighbor
atoms.

Firstly, one can look at the magnitude of the magnetic moments of the studied
impurities. In the FCC stacking, among the studied elements the Cr adatom has
the largest magnetic moment, 3.73 µB, followed by Fe, 3.38 µB, and lastly by Co,
2.15 µB. These results are in good agreement with the obtained results in Ref. [67].
On the other hand, in the HCP stacking all the elements have smaller magnetic
moments than in the FCC stacking, with Cr having a moment of 3.68 µB, 3.36 µB

for Fe, and 2.13 µB for Co. The obtained spin moments of each elements impurity
in both satckings also have a good agreement with their atomic spin moment values
namely 5.0 µB, 4.0 µB, and 3.0 µB for the Cr, Fe, and Co adatom, respectively [9].

For the present impurities, we found for both stackings a ferromagnetic ground
state for the Co and Fe adatoms with respect to the Fe layer while Cr adatom
couples anti-ferromagnetically to the Fe-substrate. These results agree with previous
findings that have studied the energetics of 3d adatoms with different systems such
as Fe(001) [78] and Ni(001) [70]. The magnetic coupling between the defects and
the Fe-layer can be analyzed by looking at the local density of state (LDOS) for each
impurity (see Fig. 6.3). As all impurities are magnetic and exhibit sizable moments,
we can see a large splitting of their local density of state for up and down spins. In
the FCC stacking shown on the top panel of Fig. 6.3, we see that the majority-spin
LDOS of Fe and Co impurities are essentially filled. As expected from the ground
state behavior, both Co and Fe adatoms shows a similar spin state configuration
with the peak of the majority spin state lying below the Fermi energy while the
minority peak lies at the Fermi level. On the other hand, since the Cr adatom
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Figure 6.3: Comparison of the local density of states (LDOS) of 3d adatoms with the
one of the closest Fe atoms in (a-c) FCC and (d-f) HCP stacking. Positive and neg-
ative DOS-values correspond to up and down-states, respectively. The atomic-like
peak on the minority spin state for each impurity elements shows the low hybridiza-
tion occurring between them and the Fe atoms in the substrate due to a far location
of the impurities.

couples anti-ferromagnetically to the substrate a different trend is shown. As can be
seen in figure 6.3(c) the Cr minority-spin state is unoccupied (green line) and weakly
hybridizes with majority-spin band of Fe (orange line) while the Cr majority-spin
is almost fully occupied and lies below the Fermi level. As the Fe-substrate is far
away from the adatom position, their hybridization is weak leading to the adatoms
peaks being atomic like. In the HCP stacking, we can see the same trend as in the
FCC stacking. However, since the adatom is located on the top of the Fe atom,
the coordination number of impurity in the HCP stacking is lower than in the FCC
stacking. Thus, there is a broadening on their majority and minority spin states
which leads to a lower spin moment for the adatoms.

As the adatom is located far from the Fe layer, the impact on the magnetic prop-
erties of Fe-substrate atoms is also quite localized. In general for both FCC and HCP
stackings, the spin moment of the Fe atoms close to the defect are decreased up to
4% from the original value in the clean system. This local effect between the defect
and the Fe layer can also be seen on their exchange interactions displayed in Fig. 6.4.
As can be seen, in the HCP stacking the defect-substrate exchange coupling for all
impurity elements is smaller than in the FCC stacking. The impurity-substrate
interaction for the Co and Cr adatoms in the FCC stacking being considerably de-
creases when moving from the nearest neighbour to the next-nearest neighbour. For
the Co adatom in the FCC stacking, the same ferromagnetic coupling is shown for
its interaction with the first and second nearest-neighbor atoms on the Fe-substrate,
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Figure 6.4: The exchange interaction between the adatom (green square) with the
Fe atoms in the substrate. The positive (red) and negative (blue) indicate the
ferromagnetic (FM) and antiferromagnetic (AFM) coupling. The figures at the top
and bottom panel present the interaction in the FCC and HCP stacking, respectively.
Figure (a, d) showcases the interaction with Co, (b, e) with Fe, and (c, f) with Cr.
The exchange interaction in each figure is presented with different scale on the
colorbar.

whilst the Cr shows the same antiferromagnetic coupling with its first and second
nearest-neighbor Fe atoms. However, unlike the Co and Cr adatoms, the Fe impu-
rity shows an oscillatory interaction behaviour for its interaction with the nearest
neighboring atoms in the substrate. One can also see in table 6.1 the average of the
exchange interaction among one Fe atom close to the impurity and its first-nearest
neighbors,〈JFe-Fe〉1NN, average of the modulus of the DM vector, 〈|DFe-Fe|〉1NN, and
the magnetic anisotropy energy (Kimp) of the 3d adatoms. The obtained values of
the MAE for the impurities are in general in the same order of magnitude than
the one obtained for the clean system, Ksubs = -0.6 meV, where the negative sign
indicates a preferred out-of plane orientation of the magnetic moment.

In order to calculate the total energy difference, we first determined the most sta-
ble magnetic configuration for the impurity when interacting with the ferromagnetic
Fe substrate. For the ground state solution, we found a ferromagnetic alignment
with the Fe substrate for the Co and Fe adatoms and an antiferromagnetic coupling
for the Cr defect. By using this initial magnetic configuration, we calculated the
total energy with an applied external magnetic field H = 10 T at T = 0 K when
the skyrmion is imposed at the reference point and inside the impurity cluster. In
this case we choose the value of H = 10 T to stabilize a single skyrmion state in
our systems since it is in the previously predicted range where single skyrmions are
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Table 6.1: Eexchange interaction among the adatom and the first-nearest neigh-
bors Fe atoms (JImp-Fe), average value of exchange interaction for the Fe substrate
(〈JFe-Fe〉1NN), modulus of the DM vectors between the central Fe atom and its first-
nearest neighbor atoms (〈|DFe-Fe|〉1NN) and the magnetic anisotropy energy of the
adatom

(
K imp

)
. All the quantities presented are in unit of meV.

Stacking Element 〈JImp-Fe〉1NN 〈JFe-Fe〉1NN 〈|DFe-Fe|〉1NN K imp

FCC Cr -12.0 16.1 1.19 0.9
Fe 8.4 15.6 1.27 0.7
Co 8.3 16.6 1.27 -0.4

HCP Cr -11.6 15.3 1.20 -0.1
Fe 7.3 13.9 1.32 1.2
Co 7.9 15.3 1.33 0.9

Co adatom Fe adatom Cr adatom

a) b) c)

d) e) f)

Figure 6.5: The variation of exchange interaction, ∆Jij, between one Fe atom in the
substrate (cross sign) with its first nearest neighbor atoms induced by the present of
adatom (green square). ∆Jij is calculated by subtracting the exchange interaction
with the present of impurity with the one from clean system, ∆Jij = J imp

ij − Jclean
ij .

The figures at the top and bottom panel present the interaction in the FCC and
HCP stacking, respectively. Each figure showcases the interaction with different
element namely with (a, d) Co, (b, e) Fe, and (c, f) Cr.
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Figure 6.6: The energy profile of skyrmion interacting with adatom. The figures at
the top and bottom panel present the interaction in the FCC and HCP stacking,
respectively. Figure (a, d) showcases the interaction with Co, (b, e) with Fe, and
(c, f) with Cr. The white dot in the figure represents the position of defect and
the positive value on the total energy difference in the profile indicates a repulsive
skyrmion-defect interaction

found to be stable [24].
The obtained energy profiles are shown in Fig. 6.6. As one can see, regardless

of their stackings all studied adatoms show a repulsive behavior. The profiles for
the skyrion-defect interaction show a good agreement with the obtained results in
previous studies [67]. However, the strength of the repulsive behavior in our inves-
tigations are smaller due to a different method and profile of the studied skyrmion.
The repulsive profile shown by the skyrmion-defect interaction indicates that it costs
more energy to have a skyrmion inside the impurity cluster compared to the energy
required at the reference point (outside the cluster region/clean system). It is impor-
tant to notice that each element gives a different repulsion strength on the interaction
with a magnetic skyrmion. One can also see that there is a slightly different total
energy difference between the FCC and HCP stackings. This is due to a different
position of adatom in each stacking which leads to a different impurity-substrate
exchange interaction as well as a different reduction induced on the exchange in-
teraction among the Fe-substrate as presented in table 6.1. The position of the
adatom in both stacking configurations also impacts the magnetic configuration of
the impurity when interacting with the skyrmion (see Fig. 6.7). In both stacking the
adatom wants to align collinearly with the substrate so it follows the local direction
of the spin moment of Fe atoms. In the HCP stacking, due to its location on top
of the Fe atom, the adatom can easily align with the direction of the spin moment
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Figure 6.7: Spin structure of skyrmion interacting with (a,d) Co, (b,e) Fe and (c,f)
and Cr adatom. The top panel showcases the system in the FCC stacking, while
the bottom panel is for the configuration in in the HCP stacking. The green arrow
represents the direction of the impurity magnetic moment. The colorbar represent
the magnitude of the magnetization in z-direction for each Fe atom.

of the underneath Fe atom. However, in the FCC stacking since the Fe defect has 3
Fe atoms in the substrate as its first nearest neighbors, its magnetization will try to
align with the direction of the spin moments of these three Fe atoms. The variation
of the energy profiles of each element can be also studied further by looking on how
the present foreign adatom affects the interaction among the spin moments of Fe
atoms in the substrate. This will be explained in more detail for different elements
in the following paragraphs.

In all cases we obtained that the impurity locally lowers the exchange interaction
among Fe atoms which make the presence of a skyrmion become more favorable (see
Fig. 6.5). On the other hand, the defects also provide an additional exchange inter-
action which favors a collinear order inside the cluster. However, the magnitude of
this interaction is smaller than the exchange coupling among the nearest neighboring
Fe atoms, since, as previously mentioned the adatoms are located faraway from the
Fe layer with their interaction being mediated via the Pd layer. The competition
between the variation on the exchange and the DM interaction which are responsible
for the collinear and non-collinear order among the spin moments will determine the
magnitude of the total energy difference between the inside and outside the cluster
region. The increase in the exchange energy has a tendency to give a positive total
energy difference resulting in a repulsive behavior.
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For the interaction of the Co and Cr adatoms with a single magnetic skyrmion
in both FCC and HCP stackings, we found that the DM interaction energy at the
region close to the impurity is lower than the one at the reference point while the
exchange interaction energy inside the cluster increases. However, we found that
the change in exchange energy is larger than the variation of the DM contribution.
Thus, the main energy contribution is provided from the exchange energy, resulting
in the observed repulsive profile. The main difference between the skyrmion-defect
interaction for the Co and Cr case can be seen from the repulsion strength of their
energy profiles which is related to the differences in the magnitude of the impurity-
substrate exchange interactions.

Among the studied impurities, the Fe defect induces the largest reduction on
the exchange interaction among the Fe-substrate, increasing the tendency towards
non-collinearity. On the other hand, the energy contribution from the exchange
interaction between the Fe impurity and the Fe-substrate tends to increase the total
energy inside the cluster region. Thus, for the Fe adatom, the energy contribution
from the impurity-substrate interaction compensates the reduction from the Fe-
substrate exchange interaction, resulting in a slightly higher total energy interaction
inside the cluster than the one at the reference point and yields a low repulsive
strength as can be observed on the energy profile (see Fig. 6.6(b)).

6.2.2 Dimer

This section discusses the interaction of a single magnetic skyrmion with a dimer
located on top of the Pd layer. We have analyzed the following configurations both
on the FCC and HCP staking shown in Fig. 6.8: (a, d) dimer-1 with the defects
in a nearest neighbor dimer configuration, (b, e) dimer-2 in which one impurity
is moved to the second nearest neighbor, and (c, f) dimer-3 with the defects in a
third neighbor dimer configuration. The dimer-1 was analyzed by considering the
following chemical configurations, Co-Co, Fe-Fe, Cr-Cr, and Co-Cr. Meanwhile, in
dimer-2 and dimer-3 configurations we only studied a pair of atoms with the same
elements.

In general, it is found that the magnetic moments are lower than the ones ob-
tained for the adatoms with the largest decrease is found for the Cr dimer around
2.5% from the value in adatom case. We found that Co has the lowest spin mo-
ment, 2.12 µB, followed by Fe, 3.31 µB, and lastly Cr, 3.64 µB. The decrease in
the spin moments is due to the increase in coordination number of the impurity by
the additional neighboring impurity atom [15, 29]. The larger coordination number
impact on the higher hybridization between to impurities that leads to a smaller
spin moment.

Since there are two impurities located on the top of the Pd layer it is also use-
ful to study the exchange interaction between them as well as the impact on the
exchange interaction among the Fe atoms. Among the investigated systems, the
dimer-1 configuration shows the largest impurity-impurity exchange interaction, as
can be seen in table 6.2. We have found that the Cr atoms tend to couple antifer-
romagnetically with each other while the Co and Fe dimer present a ferromagnetic
coupling. In the dimer-1 configuration, there is a strong hybridization between the
defects since they are nearest neighbors. However, by increasing the distance be-
tween them the hybridization is weakened, which drastically reduces the magnitude
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Figure 6.8: The variation of dimer system configuration based on the spatial distance
between the impurities. The red sphere indicates the impurity atoms and the grey
one shows the Fe atoms in the substrate. The top and below panel present the
configuration in FCC and HCP stacking, respectively. Figure (a,d) represents the
dimer-1, (b,e) for the dimer-2 and (c,f) for dimer-3 configurations.

of the direct exchange interaction between the impurities. The change of the dis-
tance between the impurities does not only affect the interaction among them, but
also impacts their interaction with the Fe substrate and the variation induced by
them on the Fe-Fe exchange interactions. In table 6.2, one can see that by increas-
ing the separation between the impurities from nearest neighbour to next nearest
neighbour, the impurity-substrate exchange interaction increases while the reduc-
tion on the Fe-Fe exchange interaction become smaller. We also can notice that in
dimer-3 configuration where two impurities are faraway from each other, the mag-
nitude of the impurity-substrate exchange interaction and the reduction induced on
the Fe-Fe exchange interaction are close with the ones obtained in the adatom case.
This means that the increase of the separation between the impurities makes the
direct interaction between them less pronounced and each of them tend to affect
their nearest neighboring Fe atoms independently.

After analyzing the magnetic properties and the exchange interaction between
the defects in the studied dimer configurations as well as their impact on the Fe
atoms exchange interaction, we proceed to investigate the interaction on these de-
fects with a single magnetic skyrmion.

Co dimer

As in the case of the Co-adatom, for an applied external magnetic field of H = 10
T, it is found that all the investigated Co-dimer configurations tend to repel the
single magnetic skyrmion (see Fig. 6.9). The interaction of the two Co impurities
with the Fe substrate raises the impurity-substrate exchange energy by increasing
the collinearity among the spin moments. This leads to a higher energy inside the
cluster than the one at the reference point and leads to repulsion. We also found that
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Table 6.2: The exchange interaction coupling between impurities of dimer Jimp-imp,
the average exchange interaction between impurity dimer with the Fe atoms
〈JImp-Fe〉1NN, and the average of exchange interaction coupling between the central
Fe atom and its first-nearest neighbors 〈JFe-Fe〉1NN are given in meV.

Cluster Stacking Element JImp-Imp 〈JImp-Fe〉1NN 〈JFe-Fe〉1NN

Dimer-1 FCC Cr -41.80 -14.20 14.70
Fe 36.80 7.40 15.02
Co 40.40 7.60 15.32

HCP Cr -43.30 -14.2 14.50
Fe 33.50 10.30 13.80
Co 35.00 9.00 14.80

Dimer-2 FCC Cr -0.36 -12.20 15.70
Fe 0.20 8.40 15.20
Co 0.14 8.50 16.20

HCP Cr -1.30 -12.02 15.13
Fe 1.12 7.50 14.00
Co 0.46 8.30 15.30

Dimer-3 FCC Cr 0.17 -12.02 16.68
Fe -0.25 8.30 16.01
Co 0.19 8.48 16.80

HCP Cr -0.05 -11.60 15.40
Fe -0.03 7.30 14.06
Co 0.21 8.00 15.30

Dimer-1 Dimer-2 Dimer-3

a) b) c)

d) e) f)

Figure 6.9: The energy profile of skyrmion interacting with Co dimer. The figures
at the top and bottom panel present the interaction in the FCC and HCP stacking,
respectively. In all dimer configurations for both stackings, the Co defects have a
tendency to repel a magnetic skyrmion. The strength of repulsion is changed once
the separtion between the impurities is increased.
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Figure 6.10: The variation of the exchange interaction between one Fe atom in the
substrate (cross sign) with its first nearest neighbor atoms induced by the present
of Co (green square) in (a) dimer-1, (b) dimer-2, and (c) dimer-3 configurations in
FCC stacking. The increase on the spatial distance between impurities generate a
change on the Fe-Fe exchange interaction. The larger separations of Co impurities in
dimer-2 and dimer-3 configurations tend to make the Fe-Fe exchange is less reduced
when compared to the dimer-1.

for both stackings in the dimer-1 configuration, Co atoms have the lowest strength
of repulsion as can be seen in Fig. 6.9. As previously discussed, the increase on
the separation between the impurities decreases the impact on the Fe-Fe exchange
interaction(see Fig. 6.10). On the other hand, the ferromagnetic coupling between
each Co atom and the substrate favors a collinear configuration inside the cluster
region. Therefore, once a skyrmion interacts with the Co impurities in dimer-2 and
dimer-3 configurations, the repulsion is stronger than in the dimer-1 case. We also
found that the increase of the distance between impurities lower the reduction of
the Fe-Fe exchange interaction in the region between the impurities. Although the
impurity-substrate exchange interaction in this region is small, the overall exchange
energy interaction arising in this region has the highest value leading to the most
repulsive area. A similar behavior is also found in the HCP stacking, where the Co
impurities in all dimer systems disfavors the presence of a magnetic skyrmion as
shown in Fig. 6.9(d)-(f).

Fe dimer

In the FCC stacking, among the investigated chemical elements, the Fe-dimers show
the lowest exchange interaction between the impurity and the Fe-substrate, as can
be seen in table 6.2. Despite of both Fe and Co couple ferromagneticaly with the
Fe substrate, for the dimer-1 configuration the Fe dimer shows a different behavior
when interacting with a single magnetic skyrmion with some attractive areas on the
energy profile (see Fig. 6.11(a)). One can also see that for the Fe atom which is
located at the center of the cluster between the Fe impurities, there is a slightly
repulsive behavior. The behavior observed on the energy landscape for the dimer-
1 configuration is related to the variation induced by the dimer on the exchange
interaction of the Fe substrate as well as the strength of the impurity-substrate
exchange interaction. In general, we found that the Fe dimer lowers the exchange
interaction among the nearest neighbor Fe atoms in the substrate which favors the
the non-collinearity among the spin moments. Among the impurity elements, the

52



Dimer-1 Dimer-2 Dimer-3

a) b) c)

d) e) f)

Figure 6.11: The energy profile of skyrmion interacting with Fe dimer. The figures
at the top and bottom panel present the interaction in the FCC and HCP stacking,
respectively. In dimer-1 configuration for the FCC stacking (a) the Fe impurities
have a tendency to attract a magnetic skyrmion, while they become repulsive for
the HCP stacking (d). By increasing the separation between two impurities, the
interaction behavior in dimer-2 (b,e) and dimer-3 (c,f) configurations turn to be
repulsive for both stackings.

Fe dimer also shows the lowest impurity-substrate exchange coupling which results
in a low exchange energy, leading to attraction behavior. However, for the Fe atom
at the center of cluster its impurity-substrate exchange interaction with the two Fe
impurities increases the overall exchange energy and yields a repulsive behavior at
this point. We found that the difference between the total energy at this point with
the one at the reference point is relatively small, thus, the strength of the repulsion
is very low. On the contrary, for the HCP stacking a repulsive behavior is found.
This is because the reduction induced by the Fe dimer on the exchange interaction
among the nearest neighboring Fe atoms close to the impurities is much lower than
in the FCC stacking case. Therefore, the total energy inside the cluster is higher
than outside region which then leads to a repulsive behavior.

By increasing the separation between the impurities, the interaction profile be-
comes repulsive in the FCC stacking. In the dimer-2 configuration, the change in
the nearest neighbor exchange coupling of the Fe atoms, that lie between the im-
purities, is found to be smaller than in the dimer-1 case, that is the system tends
more towards ferromagnetism. This makes the contribution of the exchange energy
from the ferromagnetic interaction of Fe atoms in the central cluster get enhanced.
As a result, a high repulsive behavior is concentrated there. As we increase the
distance between the Fe impurities up to the third nearest neighbor shell, the reduc-
tion induced by the Fe dimer is lower than in the dimer-2 case. In Fig. 6.12 one can
see in more detail the comparison of the variation induced by the Fe dimer when
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Figure 6.12: The variation of the exchange interaction between one Fe atom in the
substrate (cross sign) with its first nearest neighbor atoms induced by the present
of Fe impurities (green square) in (a) dimer-1, (b) dimer-2, and (c) dimer-3 config-
urations in FCC stacking. The change in the spatial distance between impurities
leads to a different variation induced by the Fe dimer on the exchange interaction
among the Fe atoms which are close to the impurities.

the spatial distance between impurities is increased. For the dimer-3 configuration
where the two impurity atoms are located quite far from each other, they behave
more as uncoupled impurities and give a more localized change in the Fe atoms close
to the impurities, which is reminiscent of the change produced by a single adatom.
As a result the energy profile, shows two energy maxima located at the impurity
sites. The same trend is also shown in the HCP stacking, i.e., when the distance of
impurities is increased the energy profile behaves more and more as a superposition
of the individual profiles produced by an adatom.

Cr dimer

For the dimer-1 configuration, in contrast with the previously studied cases where a
collinear configuration was preferred, the Cr impurities exhibit a tendency towards
a non-collinear order. This is a result of a competition between the exchange in-
teraction between the impurities which prefers them to tend be antiparallel to each
other and exchange interaction between the defects and the Fe-substrate, which
prefers them to couple antiferromagnetically to the Fe substrate. For the Cr dimer-
1 configuration, the magnitude of the impurity-substrate exchange interaction is
relatively weaker than the exchange interaction among the impurities. Thus, on
the ground state both Cr atoms couple antiferromagnetically to the substrate but
their magnetic moments are tilted ∼ 15◦ from the direction of the magnetization of
the Fe-substrate with both of the Cr spin moments is found pointing towards each
other. By using this non-collinear ordering as the initial magnetic configuration for
the Cr impurities, we calculated the total energy for the interaction with a single
magnetic skyrmion inside the impurity region and at the reference point. We found
that the total energy inside the cluster region is lower than the one obtained at the
reference point, yielding an attractive energy profile as shown in Fig. 6.13(a).

The Cr dimer also lowers the exchange interaction among the Fe substrate favor-
ing the skyrmion to be located inside the impurity cluster. On the other hand, the
Cr dimer provides a strong exchange interaction to the substrate which has a ten-
dency towards repulsion. However, due to the non-collinearity of the magnetization
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Figure 6.13: The energy profile of skyrmion interacting with Cr dimer. The figures
at the top and bottom panel present the interaction in the FCC and HCP stackings,
respectively. Figure (a, d) showcases the interaction for dimer-1, (b, e) dimer-2, and
dimer-3 configuration. In dimer-1 configuration the Cr impurities has a tendency to
attract a magnetic skyrmion. By increasing the separation between two impurities,
the interaction behavior turn to be repulsive.
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of the Cr dimer, the impurity-substrate exchange energy decreases. This condition
lowers exchange energy contribution leading to an attractive interaction behavior.
The same trend is also found in the HCP stacking resulting in the same attractive
behaviour as shown in Fig. 6.13(d).

Interestingly, the most attractive region is not located at the center of the clus-
ter but it is located at two symmetric points located at the sides of each of the
atoms (see Fig. 6.13(a)). We can analyze these two attractive areas by looking at
the magnetic structure of the Cr impurities when interacting with the skyrmion. As
shown in Fig. 6.14(a), the Cr impurities have the largest deviation angle with re-
spect to the ground state at these points. As previously discussed the non-collinear
magnetic structure is found for the Cr impurities configuration due to competition
between the Cr-Cr interaction and the substrate. Once the skyrmion is placed at
these points and interacts with Cr atoms the energy is minimized, resulting in the
most attractive potential. As the core of skyrmion moves towards the center of the
cluster, the magnetic configuration of the impurities changes the direction of their
magnetization. From Fig. 6.14(a-b), one can see that both moments of the impuri-
ties change their orientation until one of them is in-plane as shown in Fig. 6.14(c).
As the skyrmion core is located exactly at the center of cluster, the moment of Cr
impurities becomes more symmetric at which they are facing toward to each other
with the same deviation angle as shown in Fig. 6.14(d). With such configuration,
the interaction between the Cr impurities and a magnetic skyrmion then results in
the highest energy at the central point of the cluster compared to the other region.

Remarkably, by increasing the distance between the Cr impurities, the skyrmion-
defect interaction behavior changes to be repulsive for both stackings (see Fig. 6.13).
In the dimer-2 and dimer-3 configurations, we found that each Cr impurity at the
ground state are oriented antiferromagnetically to the substrate. The increase of
the separation between the Cr atoms reduces their impact on the exchange interac-
tion among the Fe-substrate with the reduction of the exchange interaction for the
nearest neighbour Fe atoms being smaller than in the dimer-1 system. This results
in a preference towards a collinear configuration which leads to a repulsion. The
larger distance between the impurities in the dimer-3 configuration also makes the
reduction on the exchange interaction among the Fe atoms that lie between them
become less pronounced compared to the dimer-2 case. As a result, the strength
of repulsion on the region between impurities in dimer-3 is higher than in dimer-2
as seen in Fig. 6.14(f). From the interaction between the Cr dimer with a single
magnetic skyrmion, one can see that the exchange frustration leads to an interesting
behaviour. The non-collinearity induced by the frustration of the Cr atoms in the
dimer-1 configuration leads to a transition from a repulsive behavior in adatom case
into the attractive one. Once the separation between the impurities is increased,
the exchange frustration between the Cr atoms is severely diminished, resulting in
a repulsive behavior.

Mixed dimer (Co-Cr)

In the dimer system with mixed elements, we use a combination of Co and Cr im-
purities to ascertain if these two atoms known to be repulsive can give rise to an
attractive interaction. We only investigated the dimer-1 configuration for this case
where both defects are considered as nearest neighbours. From the obtained results,
we found that Co and Cr atoms couple anti-ferromagnetically with an effective renor-
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Figure 6.14: The skyrmion profile for the interaction with Cr dimer-1. The green
arrow represents the direction of the impurity magnetic moment. Figures (a-d)
shows the change of Cr dimer magnetization when the core of skyrmion is moved
from the lowest energy point to the center of cluster. The colorbar represents the
magnitude of the magnetization in the z-direction for each Fe atom.
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Figure 6.15: The top and bottom panel show the figures in FCC and HCP stacking,
respectively. (a, c) The energy profile of skyrmion-defect interaction for the mixed-
dimer case where the left white point indicates the Cr impurity and the right one is
the Co impurity. A non-symmetric profile is produced on the energy landscape due
to a different interaction behavior of each element impurities. (b, d) The variation
of the nearest neighboring Fe-Fe exchange interaction induced by the Co-Cr dimer
in the FCC stacking is more pronounced than in the HCP stacking case.(c, f) The
skyrmion profile at the center of cluster interacting with the mixed Co-Cr dimer,
where both impurities prefer a collinear configuration with the local spin moments.

malized exchange interaction of J = −27 meV in the FCC stacking and J = −23
meV in the HCP stacking. As expected from their adatom behaviors, the Co atom is
ferromagnetically coupled to the substrate whilst Cr couples antiferromagnetically.
The average of the renormalized exchange interaction between the Co impurity with
their nearest neighboring Fe atoms in the substrate are J = 8.6 meV and J = 9.4
meV in FCC and HCP stacking respectively. Meanwhile, the Cr impurity has a
larger average of the exchange interaction with a magnitude of J = −10.14 meV for
the FCC and J = −10.15 meV for the HCP stacking.

Similar to the previous cases, there is a local reduction on the exchange interac-
tion on the Fe substrate as can be seen in Fig. 6.15(b) and (e) for the FCC and HCP
stacking, respectively. It can be seen that for the HCP stacking the reduction on
the exchange couplings is less pronounced than for the FCC case. In the obtained
energy profile for the skyrmion-defect interaction presented in Fig. 6.15 (a) and (d),
we can see that the Co-Cr dimer repels the skyrmion which is similar to the be-
havior observed for each element in the adatom case. However, due to the different
strength of exchange coupling exhibited by each impurity with the Fe-substrate as
well as the reduction induced on the exchange interaction on the Fe substrate, the
energy profile is not symmetric. We found that the exchange interaction among the
Fe atoms close to the Cr impurity is reduced by 5.0 meV, while for those which are
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Figure 6.16: The top view of impurity position atop the Fe substrate in each trimer
cluster configuration for FCC (a-d) and HCP stacking (d-f). The red spheres denote
the impurity and the gray ones indicate the Fe atoms.

close to the Co atom the reduction is 4.6 meV. On the other hand, we also found
that the Cr impurity has a larger spin moment and larger exchange interaction with
the Fe substrate compared to the Co impurity. This then leads to a higher and
wider area of repulsion shown on the left region of the energy landscape where the
Cr impurity is located. In the HCP the repulsion is found to be stronger than in
the FCC stacking, due to a lower reduction in the exchange interactions among the
Fe atoms induced by the dimer.

6.2.3 Trimer

We now focus on the effect that trimers have over the skyrmion energy landscape.
We considered three different geometrical structures as can be seen in Fig. 6.16, a
compact trimer with two types of configurations namely type-1 Fig. 6.16(a, e) and
type-2 Fig. 6.16(b, f), a corner trimer Fig. 6.16(c, g), and linear trimer Fig. 6.16(d,
h). Similarly to the adatom and dimer case, the trimers were composed of Cr, Co,
and Fe on two different stackings.

Compact trimer-1

The compact trimer-1 configuration is formed by moving an adatom close to the
dimer such that they form an equilateral triangle (see Fig. 6.16(a, e). Since there
are now three atoms, the coordination number of one impurity in the trimer con-
figuration increases due to the additional two neighboring atoms and gives rise to
a smaller magnitude of its spin moment compared to the adatom and dimer case.
Fig. 6.17 presents a comparison of the total DOS of the Co impurity in adatom,
dimer, and trimer configurations. As one can see, in the DOS of the Co trimer for
both stackings (see the green line) a lower peak (broader bandwidth) is shown on
their spin-up and down states. The decrease on the peak is due to the increase of
coordination number which give rise a more hybridization on the Co atom in trimer
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Figure 6.17: The comparison of total DOS of Co impurity in the adatom, dimer,
and trimer configuration in the (a) FCC and (b) HCP stacking. The increase of
coordination number in the trimer configuration leads to a broader bandwidth on
the spin states which give rise to a smaller integrated DOS and resulting in a smaller
spin moment.

configuration. As as results, the area of the integrated DOS for trimer case will has
s smaller value than the other configurations leading to the lowest spin moment.
The same trend is also shown in the DOS of the Fe and Cr trimer. It was found
that for both stackings the Co and Fe atoms have spin moments of 2.08 µB, and
3.21 µB, respectively. Meanwhile, for the Cr impurity we found that one atom at
the top-corner of the triangle has the magnitude 3.41 µB and the other two have a
lower value 3.38 µB. The different spin moment of the Cr trimer is due to a different
coupling orientation where one moment is coupled antiferromagnetic with the other
two moments.

The difference of the impurity-substrate interactions and the variation of the
Fe-Fe exchange interaction induced by each impurity elements leads to a different
energy profile as shown in Fig. 6.18. As one can see, the Co impurities in the
compact trimer-1 configuration show the same behavior as in the adatom and dimer
cases repeling the magnetic skyrmion. In the FCC stacking, with the three Co
atoms sitting on top of the substrate the reduction induced on the Fe-Fe exchange
interaction is larger than in the adatom and dimer cases (see table 6.3). However,
with a larger number of defects, the impurity-substrate exchange interaction in this
system is also increased, increasing the tendency to have a collinear order of the
spin moments which results in a repulsive behavior when interacting with a single
magnetic skyrmion. As expected, repulsive strength on the energy profile is different
for the FCC and HCP stacking due to a different exchange interaction energy induced
by the Co trimer in each of these cases. As presented in table 6.3, in both stackings
the reduction induced by the Co trimer is the same, however, in the HCP stacking
there is a contribution from the ferromagnetic interaction between each of the Co
impurities and the their second nearest neighboring atoms in the Fe substrate which
increase the overall exchange energy and gives rise a higher repulsion strength.

In both stackings, the Fe trimer locally reduces the ferromagnetic behavior of the
Fe substrate increasing the tendency towards non-collinearity. In contrast with the
Co system, the stacking type makes a large difference in the energy profile for the Fe
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Fe compact trimer-1 Cr compact trimer-1

Figure 6.18: The energy profile of skyrmion interacting with impurities in compact
trimer-1 configuration. The figures at the top and bottom panel present the inter-
action in the FCC and HCP stacking, respectively. The Co (a, d) trimer prefer
to have a repulsive interaction with a single magnetic skyrmion. Meanwhile, for
the Fe trimer the interaction behavior depends on the stacking site which can be
either attractive (b) for the FCC or repulsive (d) for the HCP stacking. The Cr
trimer show an anisotropic interaction profile in the FCC stacking (c), and become
attractive due to a larger deviation on its magnetization in the HCP satcking (f).

Table 6.3: The average of the exchange interaction between impurity with its
first nearest neighbor Fe atoms in the substrate 〈JImp-Fe〉1NN, the average value of
exchange interaction coupling between the central Fe atom and the first-nearest
neighbors 〈JFe-Fe〉1NN, and the modulus DM vectors, 〈|DFe-Fe|〉1NN, and the magnetic
anisotropy energy constant of the defect K imp.

Stacking Element 〈JImp-Fe〉1NN 〈JFe-Fe〉1NN 〈|DFe-Fe|〉1NN K imp

Compact Trimer-1 Cr 3.4 13.6 1.06 0.5
(FCC) Fe 6.2 14.4 1.20 -0.3

Co 7.0 14.5 1.13 0.6
Compact Trimer-1 Cr 0.3 13.5 1.00 -0.15

(HCP) Fe 8.0 13.5 1.23 0.12
Co 6.8 14.5 1.18 1.0
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Figure 6.19: The skyrmion profile for the interaction with defects in compact trimer-
1 configuration. The green arrow represents the direction of the impurity magnetic
moment. The figures on the left (a,d), middle (b,e), and right (c,f) columns represent
the Co, Fe, and Cr impurity, respectively. The top panel figure showcases the
system in FCC stacking, while the bottom panel figures are in the HCP stacking.
Notice that the Co and Fe trimer prefer a collinear configuration with the local
spin moment when interacting with a skyrmion. Meanwhile, the Cr trimer shows
a non-collinearity on its magnetization direction with a large deviation in the HCP
stacking case.

trimers, the FCC stacking shows an attractive potential, whilst the HCP stacking
showcases a repulsive behaviour. This behaviour can be tracked to the differences on
the change of the local exchange interactions, which are strongly reduced in the FCC
stacking. This condition results in a preference towards non-collinearity, and thus
attract a magnetic skyrmion. On the other hand, in the HCP case such reduction is
not enough to counteract the impurity-substrate interaction, thus a small repulsive
potential is found on the skyrmion-defect energy interaction.

For the Cr trimer, we can see an anisotropic shape on the energy profile in the
FCC stacking (see Fig. 6.18(c)) due to a variation of the exchange energy inside the
cluster. On the lower region of the cluster which shows a repulsive behavior, we found
that the exchange interaction between one Fe atom and the nearest neighboring is
lowered by ∼ 0.2 meV. Meanwhile, the reduction on the Fe-Fe exchange interactions
occurring at the Fe atoms on the upper region is ∼ 3 meV. This higher reduction
leads to a larger decrease on the exchange energy and thus the presence of skyrmion
is favored on the upper area. On the other hand, at the Fe atom that lies between the
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two side-corner Cr impurities on the lower region, the strongest repulsive behavior
can be seen (see Fig. 6.18(c)) due to its exchange interaction with the two Cr atoms
which increases the collinear order of the spin moments.

The difference on the energy profile for the FCC and HCP stackings can be un-
derstood if one looks at the magnetic configuration obtained when they interact with
a skyrmion. We found that when the core of the skyrmion is located at the reference
point, the magnetic configuration of the Cr trimer in the FCC stacking remains in
the collinear state. However, in the HCP stacking a non-collinear configuration is
found with the Cr spin moments deviating by a collective tilting angle with respect
to the substrate. This tilting angle is induced by the competition of the exchange
interaction between the Cr atom at the top-angle corner and the Fe substrate with
the antiferromagnetic coupling with its two companions [70]. This competition is
not well pronounced in the FCC stacking as the interaction of each Cr atom with its
three nearest neighboring Fe atoms in the substrate is large enough to make them
to stay in the collinear configuration. When the core of skyrmion is moved to the
center of the cluster, the magnetic configuration of the Cr trimer changes as shown
in Fig. 6.19(f). A larger deviation of the magnetization can be seen in the HCP
stacking which leads to a large decrease in the exchange interaction energy. Thus, it
is possible to see a pattern appearing, systems in which there is a strong exchange
frustration can lead to attractive potentials, even if the single atoms provide a re-
pulsive potential. Which means, that by engineering these defects one can create
complex energy landscapes, without the need of using distinct chemical species.

Compact trimer-2

The compact trimer-2 configuration has the same shape as the compact trimer-1 but
it is rotated by 180◦, due to the C3v symmetry of the lattice this rotation results in
these two configurations not being equivalent as can be seen in Fig. 6.16(b) and (f).
As done for the compact trimer-1, we also have investigated the magnetic configura-
tion at the ground state for different elements. In both stackings, we found that the
Co and Fe trimer prefer an FM configuration with respect to the Fe substrate. For
the Co trimer we obtained that the magnetic moment of the Co trimer is 2.1 µB for
the FCC and 2.07 µB for the HCP stacking. The Fe trimer has a larger spin moment
than the Co trimer with a magnitude of 3.22 µB and 3.20 µB for the FCC and HCP
stackings, respectively. For the Cr system, the ground state magnetic configuration
is similar to the one obtained for the trimer-1 configuration for both stackings where
one Cr atom is ferromagnetically aligned to the Fe substrate (the one at the bot-
tom corner of triangle) whereas the two remaining atoms are antiferromagnetically
coupled to the substrate. The spin moment of the Cr atom sitting at the bottom
corner is 3.4 µB and 3.35 µB for the FCC and HCP stackings respectively, while
its companions have the same spin moment of 3.15 µB for the FCC and 3.33 µB
for HCP stacking. The Heisenberg exchange parameters for the impurity-substrate
interaction, the averaged exchange coupling and modulus of DM vectors for the in-
teraction among the nearest neighboring Fe atoms in the substrate, as well as the
magnetic anisotropy constant for each defect are presented in table 6.4.

In general the compact trimer-2 atop the host system reduces locally the ex-
change interaction among the Fe substrate as shown in table. 6.4. Although all the
trimers have the same magnetic configuration as in the compact timer-1 system,
they do not show the same energy profile when interacting with a single magnetic
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Table 6.4: The average value of exchange interaction between trimer impurity
with the Fe atoms 〈JImp-Fe〉1NN, the average value of exchange interaction coupling,
〈JFe-Fe〉1NN, and the modulus DM vectors, 〈|DFe-Fe|〉1NN, between the one Fe atom
in the substrate with its first-nearest neighbor atoms , and the magnetic anisotropy
energy constant of the defect K imp. All the quantities presented in the table are in
unit of meV.

Stacking Element 〈JImp-Fe〉1NN 〈JFe-Fe〉1NN 〈|DFe-Fe|〉1NN K imp

Compact Cr 5.9 14.5 1.16 -0.02
Trimer-2 (FCC) Fe 3.0 13.4 1.15 0.97

Co 4.2 14.2 1.17 -0.41
Compact Cr 4.5 13.0 1.03 0.2

Trimer-2 (HCP) Fe 8.0 12.0 1.21 0.24
Co 5.2 13.0 1.21 0.1

skyrmion. The Co trimer for this case still shows a tendency to repel the skyrmion
in the both stackings, with the highest repulsive area concentrated at the Fe atom
in the middle of the cluster. At this Fe atom, the variation induced on the Fe-Fe
exchange interaction competes with the contribution from the impurity-substrate
interaction resulting in the highest exchange energy. Thus, a strong repulsive po-
tential is found at this point. One can also notice that the shape of the energy
profile in the FCC stacking is different than in the compact trimer-1 case. This is
due to a different local environment, where the impurity-substrate exchange cou-
pling and the variation on the exchange interaction among the Fe atoms close to the
central cluster is smaller than in the compact trimer-1 configuration, which leads
to a change on the energy landscape. On the other hand, in the HCP stacking the
Co compact trimer-2 gives a symmetric shape of the energy profile as what was
observed in compact trimer-1 with the most repulsive area found at the Fe atoms
in the central of cluster.

The Fe defects in the compact trimer-2 configuration for both stackings also
show the same interaction profile as in the compact trimer-1 case. In the FCC
stacking it shows an attractive behavior and a repulsive interaction on the HCP
case. Similar to the case of the compact trimer-1 system, the Fe trimer in the FCC
stacking produces a greater reduction of the exchange coupling among the Fe atoms
in the substrate compared to the HCP stacking. As a result, the interaction among
the Fe moments inside the cluster region become less ferromagnetic in the FCC
stacking which then leads the skyrmion to be the more favorable state close to the
Fe impurities. In comparison with the energy landscape in the compact trimer-1,
the most attractive region is not found at middle of the three impurities, instead
it is located slightly above and between the two Fe impurities (see Fig. 6.20)(b)).
The exchange interaction between the Fe atom, which lies between these two Fe
impurities, with its nearest neighbors is strongly reduced by the presence of the
trimer. On the other hand, the impurity-substrate interaction of this Fe atom with
the substrate is relatively small. Therefore, the exchange energy at this point is
highly reduced compared to the other regions resulting in the highest attractive
potential.

In the compact timer-2 configurations the Cr trimer shows an attractive behavior
in both the FCC and HCP stackings. With the presence of a single skyrmion at
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Figure 6.20: The energy profile of skyrmion interacting with impurities in compact
trimer-2 configuration. The figures at the top and bottom panel present the in-
teraction in the FCC and HCP stacking, respectively. Each figure showcases the
interaction with different impurity elements namely (a, d) Co, (b, e) Fe, and (c, f)
Cr atoms. The positive value on the total energy difference in the profile indicates a
repulsive skyrmion-defect interaction. A variation in the interaction profile can be
seen for the Fe trimer case which is changed from the attractive in the FCC into the
repulsive one in the HCP stacking. In the compact trimer-2 configurations, the Co
and Cr trimer prefer the repulsion and attraction for their interaction with magnetic
skyrmion, repectively.
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Figure 6.21: The skyrmion profile for the interaction with defects in compact trimer-
2 configuration. The green arrow represents the direction of the impurity magnetic
moment. The figures in the left (a,d), middle (b,e), and right (c,f) columns represent
the Co, Fe, and Cr impurity, respectively. The top panel figure showcases the system
in FCC stacking, while the bottom panel figures are in the HCP stacking. For the
interaction with skyrmion at the center of cluster, both the Co and Fe trimer prefer a
collinear configuration with the local spin moments. Meanwhile some deviation can
be seen in the magnetization of the Cr impurities which leads to the lower exchange
energy and result in an attractive behavior.
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the reference point, the magnetic configuration of the Cr trimer impurities in both
stackings are found to be no longer in a collinear state. The three Cr impurities
are deviated in respect to the direction of the magnetization of the Fe substrate,
similar to the case of compact trimer-1 for the HCP stacking (see 6.2.3). The two
spin moments of the Cr trimer which have the same magnetization also experience
a deviation where both of them are pointing towards each other. The deviation of
the magnetization of the Cr impurities then reduces the exchange energy between
the impurities and their nearest neighboring Fe atoms. When the core of skyrmion
is located at the Fe atom close to the impurity, the non-collinear order of the Cr
atoms is exacerbated, that is, they have a larger tilting angle (see Fig. 6.21(c, f))
which lowers the exchange energy contribution, hence favoring the presence of the
skyrmion in the impurity cluster.

Corner trimer

The“corner trimer” configuration is formed by moving one of the adatoms in the
compact trimer in such a way the three adatoms form an isosceles triangle with
one angle of 120◦ and two angles of 30◦ (see Fig. 6.16). In this trimer system, the
magnetic configuration of the Co and Fe atoms is oupled ferromagnetic with the
substrate for both stackings. For the Co trimer, the central adatom, i.e the one
sitting at the angle of 120◦, has a spin moment of 2.07 µB and the remaining two
have the same spin moment of 2.11 µB. Meanwhile, the Fe trimer has a spin moment
of 3.2 µB for the central adatom and 3.3 µB for the neighboring impurity atoms.
The values of the spin magnetic moments do not change much in the HCP stacking.
The different spin moment of the central Co or Fe atom compared to the other
two impurities is related to a different nearest neighbor coordination number. The
central adatom has a higher coordination number since it interacts with the two
nearest neighboring impurities while each of the other two impurities only see the
central adatom as its nearest neighbor. Therefore, the increased number of nearest
neighbor atoms results in a decrease of its local spin moment.

On the other hand, the Cr trimer in this system shows a different magnetic
ordering for each stacking configuration. In the FCC stacking, the central Cr adatom
is aligned ferromagnetically to the substrate with a spin moment of 3.4 µB. The
moment of the other two adatoms are antiferromagnetic oriented to the Fe substrate
and each of them carries the same spin moment of 3.5 µB. However, in the HCP
stacking we found that the three of Cr adatoms are found in a ferromagnetic aligment
with respect to each other and antifferomagnetically to the substrate. They have a
spin moment of 3.5 µB for the central adatom and 3.6 µB for its neighboring atoms.

The unequal distance between the two impurities in the corner trimer leads to a
different value of the exchange coupling constant among them. As expected, for all
impurity elements the exchange interaction between the central impurity atom with
its neighboring atoms is much larger than the interaction among its two companions,
due to the larger distance between them. In table 6.5, we present the Heisenberg
exchange parameters for the impurity-substrate interaction, the averaged exchange
coupling and the modulus of DM vectors between the Fe atom which is close to the
central impurity with its nearest neighbor atoms, as well as the magnetic anisotropy
constant for each defect.

With these obtained parameters, we follow the same procedure as done in the pre-
vious systems to establish the energy profile for the interaction between the skyrmion
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Table 6.5: The average value of exchange interaction between impurity with the Fe
atoms 〈JImp-Fe〉1NN, the average value of exchange interaction coupling, 〈JFe-Fe〉1NN,
and the modulus DM vectors, 〈|DFe-Fe|〉1NN, between the one Fe atom in the substrate
with its first-nearest neighbor atoms , and the magnetic anisotropy energy constant
of the defect K imp. All the quantities presented in the table are in unit of meV.

Stacking Element 〈JImp-Fe〉1NN 〈JFe-Fe〉1NN 〈|DFe-Fe|〉1NN K imp

Corner Cr 6.60 12.91 1.2 0.62
Trimer (FCC) Fe 2.85 12.06 1.2 0.004

Co 3.90 12.34 1.2 0.2
Corner Cr 7.4 13.35 1.1 0.002

Trimer (HCP) Fe 6.03 12.20 1.2 0.14
Co 3.7 12.86 1.2 0.9

and the defects. As shown in Fig. 6.22, the interaction profile for the Co trimer in
both stackings do not show any changes from the compact trimer configuration with
a repulsive behavior. As previously discussed, the strong magnetic nature of the Co
impurity atoms increasing the exchange interaction leads to a repulsive potential.

The interaction of the Fe trimer with the magnetic skyrmion in the HCP stacking
shows a similar repulsive behavior as in the compact trimer configuration, however
in the FCC stacking, the Fe trimer shows a different behavior on its profile. As can
be seen in Fig. 6.22, there are regions which have an attractive behavior with the
energy minima can be found faraway from the impurities. However, this reduction
is counterbalanced by the ferromagnetic exchange interaction between the Fe trimer
and its nearest neighboring atoms in the Fe substrate which tends to strengthen the
collinear ordering. As a result, the interaction of the impurity with the skymion
at the region close to the Fe impurities does not present the lowest energy which
means that the most attractive region is not found there. At the two points with
the energy minima, we found that the magnetization of the Fe trimer become close
to be in-plane oriented.

The energy profile for Cr impurities shows an anisotropic shape for the FCC and
HCP stackings. The magnetic configuration of the Cr trimer on the FCC stack-
ing shows the same ordering than the compact trimer-1 where the central impurity
atom couples ferromagnetically to the substrate while the other two atoms couple
antiferromagnetically to the substrate. The different orientation of the Cr moments
induces a variation on the exchange energy inside the cluster region. On the upper
area, we can see a small pinning area where the skyrmion can be trapped by the Cr
impurities. Meanwhile, on the lower region a repulsive behavior can be observed. On
the area with the attractive behavior, we found a higher reduction on the exchange
interaction among the Fe substrate induced by the Cr trimer. We also observed
that once the skyrmion is imposed in the attractive region, the orientation of the Cr
moments shifts to an in-plane orientation. The opposite situation is found on the
lower region in which the smaller reduction on the exchange interaction of the Fe
substrate in addition with the impurity-substrate exchange interaction of the two
outer Cr impurities, which are aligned in the same direction, favors the collinearity
leading to the repulsive behavior as observed in Fig. 6.22(c). A similar profile is also
be observed in the HCP case, however, the repulsive region is less pronounced than
in the FCC case. In the HCP stacking, the Cr spin moments are tilted due to a
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Figure 6.22: The energy profile of skyrmion interacting with impurities in corner
trimer configuration. The figures at the top and bottom panel present the interac-
tion in the FCC and HCP stacking, respectively. The Co defects in corner trimer
configuration prefer a repulsion for its interaction with magnetic skyrmion in both
stackings (a, d). Fe trimer in this case showcases some attractive and repulsive in-
teraction on the energy profile for the FCC (b) and become totally repulsive in the
HCP stacking case (e). Meanwhile, the Cr trimer shows an anisotropic profilefor
both stackings (d, f) due to the a different alignment of its spin moments.
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Figure 6.23: The skyrmion profile for the interaction with defects in corner trimer
configuration. The green arrow represents the direction of the impurity magnetic
moment. The figures in the left (a,d), middle (b,e), and right (c,f) columns represent
the Co, Fe, and Cr impurity, respectively. The top panel figure showcases the system
in FCC stacking, while the bottom panel figures are in the HCP stacking. One can
notice on the figures that both Co and Fe trimer still shows a preference to be
in collinear alignment in respect to the magnetization of the local spin moments.
Meanwhile, the anti-ferromagnetic alignment preferred by the Cr moment.
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competition between the exchange interaction from the impurity-impurity interac-
tion with the one from the impurity-substrate interaction. Thus, the non-collinearity
of the Cr moments leads to a lower exchange energy, resulting in a lower repulsive
strength as shown in Fig. 6.22(f).

Linear trimer

In the linear trimer configuration the three adatoms are placed in a straight line one
next to the other as shown in Fig. 6.16 (d) and (f). In this configuration, the Co and
Fe trimer have a ferromagnetic coupling with respect to the substrate. The central
impurity atom has also a smaller spin moment compared to the other two atoms
similarly with what was found on the corner trimer case. The central adatom has
a larger coordination number as it has two nearest neighboring impurity atoms and
the hybridization between the central atom with its neighbors results in a smaller
magnetic moment. In the FCC stacking, the central Co atom carries a spin moment
of 2.08 µB and the two remaining atoms have a spin moment of 2.10 µB while the
Fe trimer has a spin moment of 3.2 µB for the central one and 3.3 µB for its two
neighboring adatoms. In the HCP stacking, the spin moment of Co and Fe trimer
experience a small reduction of about 0.01 µB. For the Cr case, the central adatom
has a spin moment of 3.5 µB and the other two have a spin moment of 3.6 µb in both
stackings. It is important to notice, that in contrast with the previous cases, the Cr
atoms tend to prefer a ferromagnetic ordering among themselves, whilst orienting
antiferromagetically to the substrate.

As expected, for the Co trimer, the energy profile shows a repulsive behavior as
seen in Fig. 6.24. The strength of the repulsion is similar to the ones in the other
trimer configurations. Compared to the adatom and dimer case, the deeper and
wider shape of the repulsion region at the center is due to the larger number of
magnetic impurities which strengthen the collinear ordering of the Fe spin moments
in the substrate.

The energy profile for the Fe trimer showcases the same behavior as in the pre-
vious cases, where the FCC stacking displays an attractive potential while the HCP
stacking showcases a repulsive one. As one can see in table 6.6, in comparison to
the Co trimer for the FCC stacking case, the Fe trimer causes a larger reduction
on the exchange interaction among the substrate Fe atoms which are close to the
impurities. This reduction increases the tendency towards non-collinearity among
the spin moments. On the other hand, the contribution from impurity exchange
interaction for this case is considerably small, thus, it can not counterbalance the
reduction induced on the exchange interaction among the Fe-substate. As a results,
the exchange energy is decreases leads to a lower total energy inside the cluster,
producing the attractive behavior on the energy profile. Here, one can also notice
that the largest attractive interaction of the energy landscape is not concentrated at
the center of the cluster but its minima is located at symmetric positions perpendic-
ularly to the longitude of the line (see Fig. 6.24(b)). For the Fe atoms at the center
of cluster, there is a contribution of the ferromagnetic impurity-substrate exchange
interactions which can increase the exchange energy. Thus, the interaction with
the skyrmion at the center of cluster does not present the lowest exchange energy.
However, once the skyrmion is placed at one of the regions with the most attractive
behavior, the magnetic configuration of Fe defects tends to orient in-plane. The
interaction between Fe defect and a skyrmion giving rise to a lower contribution
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Figure 6.24: The energy profile of skyrmion interacting with impurities in linear
trimer configuration. The figures at the top and bottom panel present the interac-
tion in the FCC and HCP stacking, respectively. In their interaction with a single
magnetic skyrmion, the Co (a, d) and Cr (c, f) impurities in linear trimer configu-
ration show a preference to repel the skyrmion. Meanwhile the Fe impurities can be
either attractive (b) or repulsive (e) depends on the stacking configuration.
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Table 6.6: The average value of exchange interaction between impurity with the Fe
atoms 〈JImp-Fe〉1NN, the average value of exchange interaction coupling, 〈JFe-Fe〉1NN,
and the modulus DM vectors, 〈|DFe-Fe|〉1NN, between the one Fe atom in the substrate
with its first-nearest neighbor atoms , and the magnetic anisotropy energy constant
of the defect K imp. All the quantities presented in the table are in unit of meV.

Stacking Element 〈JImp-Fe〉1NN 〈JFe-Fe〉1NN 〈|DFe-Fe|〉1NN K imp

Linear Cr 19.3 13.6 1.28 0.55
Trimer (FCC) Fe 6.0 13.6 1.45 -0.01

Co 6.4 14.3 1.40 0.54
Linear Cr 20.1 13.7 1.11 -0.07

Trimer (HCP) Fe 11.8 13.2 1.25 0.27
Co 9.4 14.2 1.32 1.07

from the impurity-substrate exchange interaction and leads to the lowest total en-
ergy. The behavior of the skyrmion-defect interaction for the Fe line changes in
the HCP stacking because the larger impurity-substrate exchange coupling (see ta-
ble 6.6) increases its contribution to the exchange energy which can compensate
the reduction given by the variation of the Fe-Fe exchange interaction among the
substrate Fe atoms. As a result, in the HCP stacking the total energy inside the
cluster region is higher than in the reference point leading to a repulsive interaction
with the magnetic skyrmion.

The Cr trimer in the linear configuration shows a repulsive behaviour for both
stackings. In the FCC stacking, the Cr moments do not show a high frustration as
was found in Cr dimer. The impurity-substrate exchange interaction in this case is
strong enough to compete with the anti-ferromagnetic impurity-impurity exchange
interaction and keep the magnetization in a collinear configuration. In comparison
with the FCC stacking, the exchange coupling between the central Cr adatom with
its neghboring impurity atoms in the HCP stacking (J = −28.7 meV) is lower
by 17% than the value in the FCC stacking. In the HCP stacking we found that
once the skyrmion is placed at the reference point, the magnetization of the Cr
impurities are no longer is collinear alignment. There is a deviation on the central
Cr adatom due the competition between its impurity-impurity exchange coupling
with the exchange coupling from its interaction with the substrate that prevails to
keep a collinear alignment, and leads to a tilting on the spin moments. As shown in
the top view of Fig. 6.25(f) this deviation is more pronounced when the Cr interacts
with the skyrmion at the center of cluster compared to the one in the FCC stacking
(see Fig. 6.25(c)). The deviation from the collinear order of the central Cr adatom
results in a lowering of the exchange energy resulting in the HCP stacking showcasing
a lower repulsion than the FCC stacking.

6.2.4 Line cluster

Lastly, a line configuration with four atoms was also studied for both FCC and HCP
stackings, as shown in Fig. 6.26. Consistently with the previous results, both Fe and
Co defects are found to have a ferromagnetic ground state. In both stackings, the
two Co adatoms in the middle have the same spin moment of 2.06 µB while the
remaining two on the side positions have a slightly higher magnitude of 2.1 µB. For
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Mz (μB)

Figure 6.25: The skyrmion profile for the interaction with the linear trimer. The
green arrow represents the direction of the impurity magnetic moment. The top
panel figure showcases the system in FCC stacking, while the bottom panel figures
are in the HCP stacking. Once the skyrmion is imposed close to the impurities, the
magnetization of Co (a, d) and Fe (b, e) tend to align ferromagnetically with the
direction of the local spin moment of the Fe substrate. Meanwhile, the Cr impurities
(c, f) prefer the anti-ferromagnetic alignment. Due to a different impurity-impurity
exchange coupling, the Cr trimer shows a larger deviation on its magnetization for
the HCP satcking case (f).
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a) b)

Figure 6.26: The top view of impurity position atop the Fe substrate in the cluster
of line configuration for (a) FCC and (b) HCP stacking. The red spheres denote the
impurity and the gray ones indicate the Fe atoms.

the Fe adatoms, the two atoms in the middle carry a spin moment of 3.2 µB and
the remaining two atoms have a spin moment of 3.3 µB.

For the line configuration, each of the Cr atoms prefer an anti-ferromagnetic
coupling between each other. At the same time, they also tend to couple anti-
ferrogmanetically with respect to the Fe substrate which results in frustration of
the Cr spin moments leading to a non-collinear configuration. In the case of the
FCC stacking, we found that at the gound state, each Cr moments couple antifer-
romagnetically to the substrate with only a small deviation from the collinear case
being present on their spin moments. The impurity-substrate magnetic exchange
interaction in this case strongly competes with the exchange interaction from the
impurity-impurity interaction resulting in an stabilization close to the collinear align-
ment. However in the HCP stacking, the tilting angle is more pronounced than in
the FCC stacking. We found that the averaged of the magnitude of the impurity-
impurity exchange coupling in the HCP case is 16% higher than the magnitude
found in the FCC stacking (J = 19.7 meV). Therefore, the competition between
the anti-ferromagnetic impurity-impurity exchange interaction with the impurity-
substrate exchange interaction of the Cr impurities in the HCP stacking leading to
a deviation of their spin moments.

In comparison to the linear trimer, there is no significant change on the energy
profile behavior for the Co and Fe impurities in this line configuration as can be
seen comparing Fig. 6.27(a,d) and Fig. 6.27(b,e), respectively. For both stackings,
the Co line shows the same repulsive behavior as in the previous systems. A deeper
and broader repulsive region at the center of cluster can be seen on its energy profile
for both stacking due to the additional number of impurities interacting with the
skyrmion. Meanwhile, the Fe line shows an attractive behavior when interacting
with the skyrmion in the FCC stacking. In this configuration, there are two energy
minima located perpendicular to the line defect in a situation reminiscent of the
line trimer case, however, it is almost double than in the trimer case. With a larger
number of impurities present atop the substrate, the reduction induced on the Fe-Fe
exchange interaction is more pronounced. At the point with the minimum energy
in the trimer case, we found that the in-plane magnetization of the Fe impurities
gives rise to a lower impurity-substrate exchange energy which yields the lowest
energy. However, in the line case, we found a larger reduction on the Fe-Fe exchange
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Figure 6.27: The energy profile of skyrmion interacting with impurities in line con-
figuration. The figures at the top and bottom panel present the interaction in the
FCC and HCP stacking, respectively. In their interaction with a single magnetic
skyrmion, the Co (a, d) and Cr (c, f) impurities in line configuration show the same
preference as in the linear trimer case to repel the skyrmion. Meanwhile the Fe
impurities also gives a stronger attractive behaviour (b) for the FCC stacking and
tend to repel the skyrmion in the HCP satcking (e).

interaction of the Fe atoms around the local minima point. In this case, we found a
reduction of ∼ 1.6 meV induced by the Fe impurities which is much larger than in
the trimer case (∼ 0.1 meV).

Lastly for the Cr case, one can see that due to the small deviation angle on its
spin moments, the FCC stacking basically shows the same interaction behavior as
the linear trimer case. The presence of four Cr atoms with a large spin moment
tends to advance the exchange energy contribution by increasing the collinearity on
the Fe-Fe interaction of the atoms in the substrate. In the HCP stacking, the Cr
line is also found to repel the skyrmion. However due to a deviation on the spin
moments of the impurities, the exchange energy in the HCP stacking is smaller than
in the FCC stacking, which then impact on the lower strength of repulsion observed
on the energy profile. It shows the same behavior as in the linear trimer case, but
the magnitude of repulsion changes.

As can be seen both the nature and geometry of the different impurities is of
great importance to determine their interactions with magnetic skyrmions. It is of
special importance to pay attention to the sources of magnetic frustration as they
can make defects, which were previously repulsive, attractive. However, as seen in
the case of the Cr line, one needs to look beyond geometrical considerations, as the
changes in the details of the magnetic interactions can make a situation which, a
priori, seems primed for frustration, instead result in a collinear arrangement.
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Chapter 7

Conclusions

In this thesis, first principle calculations combined with atomistic spin dynam-
ics simulations have been used to study the sykrmion-defect interaction for FCC
Pd/Fe/Ir(111) a material well known for its capacity to host magnetic skyrmions.
The investigated defects consist of 3d transition metal atoms (Cr, Fe, and Co), which
are placed on top of the Pd layer, for each cluster two different configurations were
considered, where the atoms were placed in FCC and HCP sites. The impact of
the dimensionality and geometry of the defects was studied by considering several
cluster configurations such as an adatom, dimers, trimers, and line defects.

As in previous studies, when an adatom of the studied elements is deposited on
the Pd layer a tendency to repel skyrmions is observed. From our analysis, it is
found that the observed behavior on the skyrmion-defect interaction is related to
the variation of the exchange energy, stemming from the interaction of the impu-
rity with the Fe-substrate and the change on the exchange energy in the substrate
due to the influence of the impurity. In general, it is found that these two contribu-
tions can considerably change for different clusters and stackings leading to different
interactions between the skyrmions and the impurities.

This is most noticeable in the case of the Cr dimer when the composing atoms
are nearest neighbors. In this configuration we observed a transition from a repulsive
behavior in the adatom case into an attractive one. Such change is a result from the
frustration of the exchange interaction among the Cr atoms and the substrate leading
to a non-collinear alignment of their spin moments. This competition between the
Cr-Cr interaction and the substrate results in the overall exchange interaction being
lowered, thus resulting in an attractive interaction. This system also allows us to
study another geometrical aspect, namely how the distance between impurities can
change the overall interaction profile. It is found that as the distance between the
Cr atoms increases leading to a decoupling of the impurities which in turns returns
the system to the repulsive behavior obtained for the adatom case.

The influence of the geometry is evidenced once more when one studies the
trimer case. Where one can see that both the location of the atoms with respect
to each other as well as the type of stacking site can have profound effects on the
interaction profile. This is clearly evidenced in the Fe and Cr clusters, where one can
observe a remarkably different energy landscape for the FCC and HCP stackings.
In the case of Fe the interaction changes from attractive in FCC to repulsive in the
HCP configuration. The change is even more dramatic in the Cr case, which in
the HCP stacking shows a clear attractive potential, whilst in the FCC stacking a
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highly anisotropic profile is found, exhibiting both attractive and repulsive regions.
Once more this showcases the importance of the interaction between the impurity
electronic states and the ones of the substrate, as clearly evidence by the change in
the impurity substrate interaction for each stacking.

By changing the relative positions between the impurities one can also greatly
affect the profile. This is evident when one looks at more open trimer configurations,
such as the Cr line, where the exchange frustration disappears and the interaction
turns repulsive irrespective of the stacking, in contrast with what is observed in the
compact trimer cases.

These results showcase that the skyrmion-defect interaction is not merely deter-
mined by the chemical nature of the defect, thus paving a new way to generate energy
landscapes. Where one could, with a single chemical element, generate pinning and
repulsive regions by just changing the geometry of the impurity cluster. This is of
special importance, since strong attractive potentials are found for common tran-
sition metals such as Cr, thus eliminating the need of more uncommon elements
such as Tc to produce this kind of interaction. Another aspect worth highlighting
is the role of magnetic frustration in the energy landscape. By considering impu-
rity clusters that by themselves prefer a non-collinear arrangement the tendency
towards non-collinearity, and thus magnetic skyrmions, can be greatly enhanced.
Thus bringing a new dimension to the realm of systems that can be explored to
tailor the properties of magnetic skyrmions.
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Appendix A

Appendix

A.1 LLG Equation

In this derivation we will show the proof that one can express the Landau-Lifshitz-
Gilbert (LLG) equation in the form of Landau-Liftshitz equation by remorlaizing
the gyromagnetic ratio, γ, and the phenomenological damping λ. The expression of
LLG equation is given by:

∂ ~M

∂t
= −γ ~M × ~Beff +

α

Ms

~M × ∂ ~M

∂t
. (A.1.1)

By taking a cross product with ~M from the left on equation A.1.1, one can have:

~M × ∂ ~M

∂t
= −γ ~M × ( ~M × ~Beff ) +

α

Ms

~M × ( ~M × ∂ ~M

∂t
)

= −γ ~M × ( ~M × ~Beff ) +
α

Ms

[
~M ( ~M · ∂

~M

∂t
)︸ ︷︷ ︸

0

−∂
~M

∂t
( ~M · ~M)

]

= −γ ~M × ( ~M × ~Beff )− αMs
∂ ~M

∂t
(A.1.2)

Plug the expression in Eq. A.1.2 into equation Eq. A.1.1, one can have:
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∂t
= −γ ~M × ~Beff +

α

Ms

[
− γ ~M × ( ~M × ~Beff )− αMs
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]
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= −γ ~M × ~Beff − γ

α

Ms

~M × ( ~M × ~Beff )− α2∂
~M

∂t

(1 + α2)
∂ ~M

∂t
= −γ ~M × ~Beff − γ

α
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~M × ( ~M × ~Beff )
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= − γ

(1 + α2)
~M × ~Beff −

γα

M(1 + α2)
~M × ( ~M × ~Beff )

∂ ~M

∂t
= −γL ~M × ~Beff − γL

α

Ms

~M × ( ~M × ~Beff ) (A.1.3)

with γL = γ
(1+α2)

.
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A.2 t-matrix

In this section we would like to derive the expression of t-matrix in terms of the
phase-shift. From the discussion in the chapter 3, we have found that the regular
solution of the radial Schrödinger equation in given as follows:

R`(r;E) = `(
√
Er)− i

√
Eh`(

√
Er)t`(E) (A.2.1)

We can derive the expression of this t-matrix by looking at the characteristic of the
wave function at position r > rmax. The exact radial wave function outside the
range of potential (at r > rmax) (Vr = 0) can be written in terms of two linearly
independent solutions

R`(r;E) = P``(
√
Er) +Q`n`(

√
Er) (A.2.2)

For the large r, the asymptotic behavior of Bessel Functions follow these forms

`(x)
x→∞−−−→ 1

x
sin

(
x− `π

2

)
(A.2.3)

n`(x)
x→∞−−−→ −1

x
cos

(
x− `π

2

)
(A.2.4)

By introducing these two relations,

C` =
√

(P`)2 + (Q`)2 (A.2.5)

tan δ(
√
E) = −Q`

P`
(A.2.6)

The radial wave function
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2
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2
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2
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2
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(A.2.7)

where δ` is the phase shift of the wave function due to the scattering of the single
potential. We can also represent this radial wave function in terms of Bessel function:

R`(r;E) =
[
` cos δ − n` sin δ

]
(A.2.8)

Using the relation with Hankel function of the first kind, we can also have:

h
(1)
` = ` + in`,

R`(r;E) =
[
` + i exp(iδ)h

(1)
` sin δ

]
R`(r;E) =

[
` − ikt`h(1)

`

]
(A.2.9)
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with t-matrix defined as:

t`(E) = −1

k
eiδ`(E) sin δ`(E) (A.2.10)

A.3 Exchange interaction parameters

This section will briefly derive the expression of the change of energy related to the
pairwise exchange interaction constant. To get this change of energy we consider
the rotation of two atoms (i and j) by an angle ±θ/2.

δEi = −2
∑

n6=i,n 6=j

Jin

[
cos

(
θ

2

)
− 1

]
− 2Jij

[
cos

(
θ

2
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− 1

]
(A.3.1)
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∑
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[
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2
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]
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[
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2

)
− 1

]
. (A.3.2)

To obtain the pairwise exchange interaction constant, Jij, between two magnetic
moments at site i and j, one also needs to subtract the variation of the interaction
energy of each atom (i and j) with the environment. Hence, the change of energy
related to the Jij parameters is given by:

δE ′ij = δEij − δEi − δEj

= −2Jij [cos θ − 1]− 2Jij

[
cos

(
θ

2

)
− 1

]
− 2Jij

[
cos

(
θ

2

)
− 1

]
. (A.3.3)

As one is considering that the rotation angle θ is infinitesimally small, one can then
expand up to second order to obtain:

δE ′ij ≈ Jij

(
θ2 − 1

4
θ2 − 1

4
θ2

)
≈ 1

2
Jijθ

2. (A.3.4)
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[21] A. Crépieux and C. Lacroix. Dzyaloshinsky–moriya interactions induced by
symmetry breaking at a surface. Phys. Rev. Lett., 82(3):341 – 349, 1998.

[22] T. B. L. D. Stosic and M. V. Pinning of magnetic skyrmions in a monolayer
co film on pt(111): Theoretical characterization and exemplified utilization.
Phys. Rev. B, pages 96, 214403, 2017.

[23] S. Doi, M. Ogura, and H. Akai. Development of a first-principles code based
on the screened kkr method for large super-cells. In Journal of Physics: Con-
ference Series, volume 454, page 012019. IOP Publishing, 2013.
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[84] U. K. Rößler, A. A. Leonov, and A. N. Bogdanov. Chiral skyrmionic matter
in non-centrosymmetric magnets. In Journal of Physics: Conference Series,
volume 303, page 012105. IOP Publishing, 2011.

[85] K. Schwarz. Dft calculations of solids with lapw and wien2k. Journal of Solid
State Chemistry, 176(2):319–328, 2003.

[86] B. Schweflinghaus. First-principles investigation of inelastic magnetic exci-
tations in nanostructures deposited on surfaces. PhD thesis, RWTH Aachen
University, 2015.

[87] S. Seki and M. Mochizuki. Skyrmions in magnetic materials. Springer, 2016.

87



[88] S. Seki, X. Yu, S. Ishiwata, and Y. Tokura. Observation of skyrmions in a
multiferroic material. Science, 336(6078):198–201, 2012.
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