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"The task is not so much to see what nobody has seen yet, but to
think what nobody has thought yet about that everybody sees"

A. Schopenhauer
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Abstract
The question how magnetism behaves when the dimension of materials is reduced to
increasingly smaller sizes has attracted much research and led to the development of the
field of magnetic nanostructures. This research has been fueled by the technological po-
tential of these systems for the field of high-density magnetic storage media and has been
accelerated by the many novel experimental methods and techniques developed exhibit-
ing atomic resolution. This thesis is motivated by the quest for the understanding and
the exploration of complex magnetism provided by atomic scale magnetic clusters de-
posited on surfaces or embedded in the bulk. The nature of magnetism in these systems
can be very rich, in that the properties depend on the atomic species, the cluster size,
shape and symmetry or choice of the substrate. Small variations of the cluster parameter
may change the properties dramatically. Particularly rich and particularly challenging
for experiment and theory is the behavior of clusters with competing magnetic inter-
actions either between the cluster atoms or between the cluster and the substrate. In
both cases magnetic frustration can lead to non-collinear magnetic structures for which
the magnetic quantization axis changes from atom to atom.

This thesis sheds light onto these systems from a theoretical perspective. Use is
made of the density functional theory (DFT), the most successful material specific the-
ory for describing electronic and derived properties from first-principles. Acting within
this framework, we have developed and implemented the treatment of non-collinear
magnetism into the Jülich version of the full-potential Korringa-Kohn-Rostoker Green
Function (KKR-GF) method. The KKR-GF method provides several advantages com-
pared to other first-principles methods. Based on solving the Dyson equation it allows
an elegant treatment of non-periodic systems such as impurities and clusters in bulk
or on surfaces. Electronic, magnetic properties and the observables provided by exper-
imental techniques such as x-ray, scanning tunneling microscopy and spectroscopy can
be accessed with the KKR-GF method.

Firstly, the method was applied to 3d transition-metal clusters on different ferro-
magnetic surfaces. Different types of magnetic clusters where selected. Clusters of Fe,
Co, Ni atoms are ferromagnetic and thus magnetically collinear. In order to investigate
magnetic frustration due to competing interactions within the ad-cluster we consid-
ered a (001) oriented surface of fcc metals, a topology which usually does not lead
to non-collinear magnetism. We tuned the strength of the magnetic coupling between
the ad-clusters and the ferromagnetic surface by varying the substrate from the case of
Ni(001) with a rather weak hybridization of the Ni d-states with the adatom d-states
to the case of Fe3ML/Cu(001) with a much stronger hybridization due to the larger
extend of the Fe wavefunctions. On Ni(001), the interaction between the Cr- as well as
the Mn-dimer adatoms is of antiferromagnetic nature, which is in competition with the
interaction with the substrate atoms. If we allow the magnetism to be non-collinear,
the moments rotate such the Cr-(Mn) adatom moments are aligned antiparallel to each
other and are basically perpendicular to the substrate moments. However, the weak
AF(FM) interaction with the substrate causes a slight tilting towards the substrate,
leading to an angle of 94.2◦(72.6◦) instead of 90◦. After performing total energy calcu-
lations we find that for Cr-dimer the ground state is collinear whereas the Mn-dimer
prefers the non-collinear configuration as ground state. The Heisenberg model is shown
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to be good for the prediction of local energy minima but not for describing the magnetic
ground state. Bigger clusters are found to be magnetically collinear. These calculations
were extended to 3d multimers on Fe3ML/Cu(001). Here the strong hybridization with
the substrate leads to a collinear AF coupling of both Cr adatoms to the substrate
Fe atoms while the Mn-dimer is non-collinear. The ground states for both trimers are
non-collinear. All neighboring Cr (Mn) moments in the compact tetramer are antifer-
romagnetically aligned in-plane, with the directions slightly tilted towards (outwards
from) the substrate to gain some exchange interaction energy. Note that among differ-
ent shapes of tetramers the non-collinear compact Cr-tetramer appeared to be the most
stable one. The second type of frustration was investigated employing a Ni(111) sur-
face, a surface with a triangular lattice of atoms, were both kind of competing magnetic
interactions occur: intra-cluster magnetic frustration and cluster-substrate magnetic in-
teraction. The magnetic configurations for compact Cr or Mn ad-trimers are very similar
to the expected topological non-collinear configuration of a free frustrated trimer (an-
gle of 120◦ between successive adatoms). Additional trimers shapes considered have
collinear ground states with very small energy differences, in particular for Mn, with
respect to the non-collinear local minimum. Among the investigated tetramers only the
compact ones are Ferrimagnetic. Parity of number of adatoms in finite antiferromag-
netic nanowires is shown to be crucial in predicting whether the magnetic ground state
is non-collinear or collinear. We show that nanochains with an even number of adatoms
are always magnetically non-collinear while an odd number of adatoms leads under
given conditions to a collinear ferrimagnetic ground state.

In the second part of the thesis we applied the KKR-GF method to reveal experi-
mental issues related to scanning tunneling microscopy (STM). Hence, we investigated
the scattering of a two-dimensional surface state at adatoms. Here it is shown theo-
retically for some special cases as well as experimentally (STM) that any attractive
potential should lead to a localized state. With a systematic study, including sp as well
as d adatoms on or in the surface, we demonstrate that the cited statement, that any
attractive potential should lead to a localized state, is not correct. Indeed, we derive a
better criteria based on the scattering length of the adatom.

At last, we show that Fermi surfaces can be imaged through STM. The Fermi surface
is one of the most important properties in metals as they determine many transport
properties as well as long-ranged interactions. The new effect is explained by means of
scattering of electrons at subsurface impurities. Since the electrons propagate away from
the impurities with velocity vectors perpendicular to the Fermi surface, flat regions on
this surface focus the electrons in special space-angle directions, leading in real space
to highly symmetric STM spots around the impurity.
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Non-collinear magnetic structure of a Mn-trimer deposited on the surface of
Ni(001).

Real space imaging of the Fermi surface of Cu(111) by STM, simulated with the
KKR-GF method, considering a buried Co impurity as local probe.
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Chapter 1

Introduction

“Plenty of room at the bottom” was the title of the by now classic talk of
Richard P. Feynman [1], given on December 29th 1959 at the annual meeting
of the American Physical Society at the California Institute of Technology (Cal-
tech), in which he envisaged exciting new phenomena that may revolutionize
science and technology and affect our everyday lives – if only we were able to ma-
nipulate and control things on a small scale, on the atomic scale. Some of these
visions became reality. With the invention of new experimental techniques, such
as the scanning tunneling microscope (STM), invented by Binnig and Rohrer in
1982 [2] who were awarded the Nobel prize in 1986, or the atomic force micro-
scope (AFM), a powerful tool which measures the force acting on conducting and
non-conducting probes in the vicinity of their surfaces, manipulating and posi-
tioning of individual atoms and probing their physical properties has developed
into a big scientific activity. Another example is the development of the x-ray
magnetic circular dichroism (XMCD) which measures the dependence of x-ray
absorption on the helicity of the light by a magnetic material, with a sensitivity
down to extremely low coverages of magnetic materials deposited on substrates
including chains [3] and adatoms [3, 4, 5]. So-called sum rules [6] have been de-
rived allowing to determine from those data the atom- and orbital-specific spin
and orbital magnetic moments.

These unprecedented capabilities inspire the exploration of new physics and
sparked this thesis. The focus of the thesis is on the properties and behavior of
atomic scale magnetism, the magnetism of ad-atoms and atomic scale clusters on
surfaces, in particular ferromagnetic surfaces, as well as the simulation of STM
images for adatoms or clusters buried below the surface. The results in this thesis
are of theoretical and simulational nature in that we used the density functional
theory (DFT) [7, 8], at present the most powerful and most widely applied theory,
to describe the physical properties on the level of quantum theory of interacting
electrons without adjustable parameters.
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Small atomic clusters deposited on surfaces constitute extremely interesting
systems, as their electronic structure lies between the structure of the bulk and
that of free molecules or atoms. In particular, the electronic structure is charac-
teristic of the cluster, in the sense that it depends on the chemical nature of the
adatoms, the shape, and size of the cluster and orientation of the moments as well
as on the substrate material and the surface orientation on which the cluster is de-
posited. Each cluster constitutes a new system as the electronic structure changes
discretely from cluster to cluster. Thus, it is a terra incognita for the electronic
properties. Small clusters of magnetic atoms on surfaces are expected to expe-
rience an enhancement of the magnetic properties. As the cluster size decreases
and the average coordination of the atoms becomes smaller, the decreased hy-
bridization of the atomic wavefunctions should lead to more pronounced magnetic
effects. The motivation to study magnetic clusters has also a profound practical
background as they have the potential of increasing the bit-density in magnetic
information storage. One may envision that future magnetic hard discs with in-
formation carried by magnetic clusters will have a storage density two orders of
magnitude larger than those used today.

Recent remarkable experiments on small magnetic clusters on metal surfaces
have opened up unprecedented opportunities for atomic engineering of new mag-
netic materials [3, 9, 10, 11, 12, 13]. By increasing the cluster size in atom-by-atom
fashion, Gambardella et al. [3] have studied how the magnetization and the mag-
netic anisotropy energy (MAE) develop in cobalt nanoparticles on Pt(111). They
have reported the MAE of 9 meV for single cobalt adatoms, which is about 200
times larger than that of Co atoms in a bulk crystal while Rusponi et al. [9]
have revealed that the MAE in supported clusters is nearly exclusively caused
by the edge atoms alone. These results suggested that only a few hundred atoms
would be needed to make a stable magnetic bit. Experiments of the group of
Crommie [10, 11] have raised the possibility to study the Kondo effect in small
clusters and interactions between magnetic adatoms. Theoretically, Stepanyuk et
al. [14] confirmed the experimental measurements obtained by Silly et al. [12]
concerning the stabilization of nanostructures at very low temperatures being
weakly bounded by the long-range adsorbated exchange interactions mediated
by surface-state electrons. Following the procedure used by Edmonds et al. [15]
to study by XMCD graphite-supported Fe nanoclusters with an average size of
a few hundred atoms, Lau et al. [4, 5] have used the same technique to study
size dependence of the magnetic properties of Fen clusters (n=2–9) that were de-
posited on ultrathin Ni films grown on a Cu(001) surface. The Achiles heel of such
an XMCD experiment is the absence of any information on the geometric struc-
tures of these clusters which complicates the understanding of the measurements.

So far there are no combined XMCD and STM experiments where information
on the geometry and magnetism can be extracted which explains the focus of the-
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ory and experiment on rather simple cases like deposited ferromagnetic clusters.
Less work is done towards antiferromagnetic clusters because of the complications
induced by the competition of magnetic interactions which would generate mag-
netic structures of unprecedented complexity, e.g. non-collinear magnetic struc-
tures, with magnetic moments much more difficult to measure. For monolayers,
spin-polarized STM experiments on such system exist[16] and are able to unravel
complex magnetic superstructures with atomic resolution. However, the resolu-
tion needed to apply it on small clusters has not been realized yet. Very recently,
a breakthrough in STM has been achieved [17] in investigating the magnetism of
small chains of 1 to 10 Mn atoms on a thin insulating layer. The spin excitation
spectra of these structures has even been measured using the inelastic electron
tunneling spectroscopy [18]. From the theory side, as we will explain later on, the
availability of methods which would allow a theoretical description of clusters
and in particular of non-collinear magnetic clusters is very limited.

In this thesis we address magnetic clusters with antiferromagnetic coupling
between the constituting cluster atoms. The treatment of clusters on surfaces is a
highly non-trivial problem as the clean surface provides an environment with bro-
ken translational and inversion symmetry while the deposited clusters break the
two-dimensional translation symmetry in the plane. Different parameters such as
strength of the magnetic interactions, symmetry and shape influence dramatically
the magnetic ground state and makes the investigation of small nanostructures a
challenging task for theory and experiment.

Understanding the electronic structure and the magnetic properties of clus-
ters on surfaces is an unsurmountable quantum-mechanical many-body problem.
Hohenberg and Kohn [7] and Kohn and Sham [8] stated that the ground state
properties of a many electron system are completely determined by the electronic
charge density and that the quantum mechanical many particle problem, which
cannot be solved for large systems, can be replaced by a much simpler effective
single particle problem. This is the birth of the density functional theory. With
its realization in terms of the Kohn-Sham model, DFT developed over the past
15 years to the most important materials specific theory to describe materials
properties on the basis of quantum theory of electronic properties. A wide spec-
trum of DFT methods have been developed to solve the Kohn-Sham equations
for different structural and chemical circumstances. The majority of the methods
take advantage of the reciprocal space to simulate periodic systems. Hence, the
treatment of clusters on surfaces requires huge supercells and limits therefore the
cluster shapes and sizes to be investigated. Moreover, a full-potential treatment
is necessary as the coordination number of atoms is lowered. In this thesis, the
Korringa-Kohn-Rostoker Green Function (KKR-GF) method is used, which is
one of the most accurate and flexible all-electron ab-initio methods. Besides the
natural treatment of periodic systems taking advantage of the Bloch theorem
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as any other method does, a real space treatment can be considered for local-
ized perturbations. The KKR method is based on multiple scattering theory and
was originally proposed independently by Korringa [19] and by Kohn and Ros-
toker [20]. Within a Green function approach, Dupree, Beeby and Morgan [21]
developed a first version of the KKR method being able to treat localized pertur-
bations, and successively Zeller and Dederichs [22] integrated it in the frame of
the DFT for realistic self-consistent calculations of point defects in metals. Since
then, the Jülich group is leader in many of the developments and improvements of
the KKR-GF method inventing as an example its tight-binding treatment, devel-
oping its full-potential formulation needed for lattice relaxation and participating
actively in the coherent potential approximation (CPA) as well as the relativistic
version of the method [23].

In order to investigate general cases of non-collinear magnetic coupling, we
undertook the task of developing and implementing the treatment of complex
magnetic structures in the Jülich version of the full potential Korringa-Kohn-
Rostoker Green function method. The phase space of the magnetic solutions of
such nanosystems is such complicated that it bares numerous local minima in-
creasing in number dramatically with the degrees of freedom. Using a mapping of
the DFT calculations to a Heisenberg model allows the access to a detailed mag-
netic map of the ground as well as the excited states. Hence, investigating these
low dimensional systems with state of the art all-electron ab-initio methods have
the advantage of providing the electronic, magnetic properties of the individual
atoms and can therefore resolve and allow the interpretation of the measured ob-
servables by experimental techniques such as XMCD, STM, scanning tunneling
spectroscopy (STS) etc.

The thesis is organized as following. After an introduction to the basics of
density functional theory in Chapter 2 and a description of the Korringa-Kohn-
Rostoker method in Chapter 3, we will detail in Chapter 4 the theory of non-
collinear magnetism as we implemented it in our KKR-GF code. We also give a
derivation of the frozen potential approximation and of the so-called Lichtenstein
formula [24], which is used to determine magnetic exchange interactions.

The Chapters 5 to 8 contain four different applications of our new code. Com-
plex magnetism of ad-cluster on surfaces including non-collinear structures is
presented in Chapter 5 for the case of Ni(001) substrate, in Chapter 6 for the
case of Fe3ML/Cu(001), in Chapter 7 for the case of Ni(111) surface and in Chap-
ter 8 concerning the strong even-odd effect of number of adatoms in nanochains
on the stabilisation of non-collinear magnetism. Thus we will oversee the inter-
play of two different kinds of magnetic frustration: (i) frustration in the ad-cluster
and (ii) frustration between the ad-clusters and the substrate.
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STM is a powerful experimental tool to investigate local electronic properties
of adatoms. Formation of surface states can be monitored from the initial adatom
localized state which can merge into the well known two-dimensional Shockley
surface state by bringing together several adatoms [25]. Very recently, Limot et
al. [26] investigated in detail a state which is split off the bottom of Cu(111)
surface band due to a Co or Cu adatom. Their results were confirmed by Olsson
et al. [27]. These results obtained by STM confirmed, in fact, an old theoretical
prediction by Simon [28], stating that any attractive potential should lead to a
bound state. It is, however, less known if this condition holds for any adatom
deposited on Cu(111). Thus, we discuss in Chapter 9 the recently published re-
sults on noble metal surface state localization due to the presence of adatoms.
We will give a simple explanation of its origin. Moreover we will present a sys-
tematic study including sp and 3d impurities sitting in the Cu(111) surface or
as adatoms. Contrary to the general statement that such a localization appears
always for an attractive impurity, we will see that is not always true and give a
more consistent criteria for its realization.

Crampin [29] showed already in 1994 that buried impurities below surfaces
scatter the surface state electrons and give rise to characteristic standing wave
patterns in the local density of states at the surface, similar to those detected
with STM due to scattering by adatoms. In 1999, it was shown for the first time
through STM experiments and by first-principles calculations [30] that defect
structures below a metal surface, in particular for Ir buried below Cu(001) sur-
face, can be detected by STM. A further investigation [31] shows that when Ar
bubbles are buried below Cu(111) and Cu(100), interference patterns are also de-
tectable by STM, proposing the focusing of electrons in certain crystallographic
directions as explanation without convincing proof. Fascinating measurements
were performed recently by Weismann et al. [32] who had shared their results
with us prior to publication. They found anisotropic charge oscillations due to
the presence of Co impurities buried below the Cu(111) surface.

Hence, Chapter 10 deals with another exciting subject of anisotropic charge
oscillations on noble metal surfaces due to the presence of buried impurities at
several monolayers under the surface. These anisotropies are very often observed
experimentally but left without any explanation. Weismann et al. [32] proposed
a relation to the anisotropy of the bulk Fermi surfaces and verified it by a simple
model. From our side, heavy calculations were done (up to 3000 atomic cells were
included in our simulations) considering different orientations of a Cu surface.
We will present a concise formulation on the relation between the Fermi surface
and the charge at long distances which bares similarity to the well- known theory
of interlayer exchange coupling (IEC) (see e.g. the paper of Bruno [33]). After
analyzing our results we will propose a new experimental technique allowing to
determine the position as well as the magnetism of any two dimensional imperfec-
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tion, such as an interface, in the range of a local probe atom which is nothing else
than the buried impurity. Finally we give the perspective of imaging the Fermi
surface in real space with the STM.
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Chapter 2

Density Functional Theory

The fundamental statement of density functional theory is that any property
of a system of interacting electrons can be viewed as a functional of the ground
state density n0(�r); that is, a single scalar function n0(�r) of the position vector �r
determines all the information inherent in the many-electron wavefunction for the
ground state. The existence proofs for such functionals, given in the original works
of Hohenberg and Kohn and of Mermin [7, 34], are disarmly simple. However,
they provide no guidance whatsoever for constructing the functionals, and no
exact functionals are known for any system with more than one electron. Density
functional theory (DFT) would remain a minor curiosity today if it were not for
the ansatz made by Kohn and Sham [8] which has provided a way to find useful,
approximate ground state functionals for real systems with many electrons.

Density functional theory has become the primary tool for calculating the
electronic structure in condensed matter, and is increasingly important for quan-
titative studies of molecules and other finite systems. The remarkable successes
of the approximate local density (LDA) and generalized-gradient approximation
(GGA) functionals within the Kohn-Sham approach have led to widespread in-
terest in density functional theory as the most promising approach for accurate,
practical methods in the theory of materials.

The modern formulation of density functional theory originated in a famous
paper written by P. Hohenberg and W. Kohn in 1964 [7]. These authors showed
that a special role can be assigned to the particle density in the ground state of a
quantum many-body system: the density can be considered as a “basic variable”,
i.e. all properties of the system can be considered to be unique functionals of
the ground state density. Shortly following in 1965, Mermin [34] extended the
Hohenberg-Kohn arguments to finite temperature canonical and grand canonical
ensembles. Although the finite temperature extension has not been widely used,
it illuminates both the generality of density functional theory and the difficulty of
realizing the promise of exact density functional theory. Also in 1965 appeared the
other classic work of this field by W. Kohn and L. J. Sham [8], whose formulation
of density functional theory has become the basis of most of present-day methods
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for treating electrons in atoms, molecules, and condensed matter.

2.1 Born-Oppenheimer Approximation

One of the most important approximations used in solid state physics is the
Born-Oppenheimer Approximation which deals with motion of nuclei of atoms
with respect to electrons. Since the many-body problem of electrons is already
not easy, adding the nuclei of atoms into the equation is too complicated to be
solved numerically or analytically. A way to avoid these additional complications
is to use the fact that the mass of the electrons is much smaller than the mass
of the nuclei, meaning that the electrons move much faster than the nuclei and
adjust adiabatically to the position of the nuclei, which change on a much longer
time scale. Therefore one may consider for the electronic problems the positions
of ions as fixed and determine the ground state energy E0( �R0, ... �Rn) for these
given positions �R0, ... �Rn of the nuclei. The motion of the nuclei then requires the
solution of the Hamiltonian

∑
n′ − 1

2Mn′ ∇2
n′ +E0( �R0, ... �Rn) where the ground state

energy of the electronic problem acts as an interaction potential for the nuclei.
Here and in the following atomic units are used (h̄ = 1; me = 1

2
; e2 = 2;

energies in Rydberg, 1 Ry = 13.6058 eV; lengths in units of Bohr radius).

2.2 Hohenberg-Kohn Theorems

The approach of Hohenberg and Kohn is to formulate a density functional
theory as an exact theory of many-body systems. The formulation applies to any
system of interacting particles in an external potential Vext(�r), including the prob-
lem of electrons in the field of the fixed nuclei, for which the Hamiltonian can be
written as

H =
N∑

i=1

−∇2
i +

∑
i,j

1

|�ri − �rj | −
∑

i

Vext(�ri). (2.1)

Density functional theory is based upon the two following theorems first
proved by Hohenberg and Kohn [7]:

Theorem I

For any system of interacting particles in an external potential Vext(�r), the
potential Vext(�r) is determined uniquely, up to a constant, by the ground state
particle n0(�r), provided the ground state is not degenerate.
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Corollary I
Since the Hamiltonian is thus fully determined, except for a constant shift of

the energy, it follows that the many-body wavefunctions for all states (ground
state and excited) are determined if the ground state is not degenerate. Therefore
all properties of the system are completely determined by the ground state density
n0(�r).

Theorem II
A universal functional for the energy E[n] in terms of the density n(�r) can

be defined, valid for any external potential Vext(�r). For any particular Vext(�r),
the exact ground state energy of the system is the global minimum value of this
functional, and the density n(�r) that minimizes the functional is the exact ground
state density n0(�r).

Corollary II
The functional E[n] alone is sufficient to determine the exact ground state en-

ergy and density. In general, excited states of the electrons must be determined
by other means. Nevertheless, the work of Mermin shows that thermal equilib-
rium properties such as specific heat are determined directly by the free-energy
functional of the density.

2.3 The Kohn-Sham Ansatz
Although the basic facts of density-functional theory have now been stated,

we still need a key to its application. This was given by Kohn and Sham [8], who
used the variational principle implied by the minimal properties of the energy
functional to derive single-particle Schrödinger equations. For this the energy
functional is first splitted into four parts:

E[n] = T [n] +

∫ ∫
n(�r)n(�r′)

|�r − �r′| d�rd�r′ + Exc[n] +

∫
n(�r)Vext(�r)d�r (2.2)

which describes the kinetic, the Hartree, the exchange-correlation and the ex-
ternal energy. In contrast to the Hartree integral, an explicit form of the other
functionals, T and Exc, is not known in general. Ignoring this problem for the
moment, the variational principle is used and we obtain

δE[n]

δn(�r)
= −μ

δ(N − ∫
n(�r)d�r)

δn(�r)
= μ, (2.3)
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where μ is a Lagrange multiplier taking care of particle conservation following
Kohn and Sham. The kinetic energy is now splitted up into a term T0 implying
the kinetic energy functional T0[n(�r)] of noninteracting particles and Txc which
stands for the rest, i.e. we write

T = T0 + Txc. (2.4)

This is an important step because it is known how to calculate the kinetic
energy T0 for noninteracting particles and hence one can determine the functional
derivative δT0[n]/δn(�r) by using

n(�r) =

N∑
i=1

|Φi(�r)|2 (2.5)

where the summation is over N states with lowest eigenvalues and

T0[n] =

N∑
i=1

∫
∇Φ∗

i (�r)∇Φi(�r), (2.6)

Φ being a single particle wave function.
By varying the latter equation and after adding a potential-energy term

the Euler-Lagrange equation is obtained which is also, in fact, a single-particle
Schrödinger equation:

(−∇2 + v′(�r))Φi(�r) = εiΦi(�r) (2.7)

We try to determine the potential energy v′(�r) such that the density n(�r) obtained
from eq. (2.5) minimizes the total energy. Thus, multiplying eq. (2.7) with Φ∗

i (�r),
requiring the functions Φi(�r) to be normalized, integrating and summing up, we
obtain

T0[n] =
N∑

i=1

εi −
∫

v′(�r)n(�r)d�r. (2.8)

The variation (eq. (2.3)) is now easily carried out. We note that terms con-
taining δεi cancel δv′ (because of eq. (2.7)) and obtain v′(�r) which is called the
effective single particle potential veff(�r):

veff(�r) = vext(�r) + 2

∫
n(�r′)

|�r − �r′|d
�r′ + vxc(�r) (2.9)

with
vxc(�r) =

δ(Exc + Txc)

δn(�r)
(2.10)

By varying E[n(�r)] with respect to Φi(�r) instead of n(�r) and adding the
Lagrange constraint

∑
i εi(

∫
d�rΦ ∗ (�r))Φ(�r) − 1) for the normalisation of the
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Φ, the following socalled Kohn-Sham equation is obtained for the single partial
wave function Φi [ −∇2 + veff(�r) − εi

]
Φi(�r) = 0. (2.11)

It is a Schrödinger equation with the external potential replaced by the effective
potential which depends on the density. The density itself depends on the single-
particle states Φi via eq. (2.5). The Kohn-Sham equation thus constitutes a self-
consistent field problem.

The Kohn-Sham equation furthermore allows us to derive an alternative ex-
pression for the total energy. As we do not know the ground state density n0(�r),
let us generate n(�r) by a trial potential vtrial

eff (�r) which might be calculated in fact
by a trial density ntrial(�r) using eq. (2.9) i.e.

vtrial
eff (�r) = Vext(�r) + 2

∫
ntrial(�r′)

|�r − �r′| d�r′ + vxc[n
trial(�r)] (2.12)

but we note that also more general vtrial
eff potentials are allowed. Then this can be

plugged in eq. (2.8) to give

T0[n] =

N∑
i=1

εi −
∫

vtrial
eff (�r)n(�r)d�r. (2.13)

and

E[n] =
N∑

i=1

εi −
∫

vtrial
eff (�r)n(�r)d�r +

∫
vext(�r)n(�r) +

∫ ∫
n(�r)n(�r′)
|r − r′| d�rd�r′ + Exc[n].

(2.14)
The total energy thus consists of the sum over the eigenvalue, εi, minus the so-
called double counting terms. Note that eq. (2.14) gives the exact ground state
energy only if ntrial(�r) = n(�r), i.e. input and output density must be the same
requiring full self-consistency.

Although density-functional theory as outlined above provides a scheme to re-
duce the entire many-body problem to a Schrödinger-like effective single-particle
equation, the eigenvalues εi have no direct physical meaning since they have been
introduced only as Lagrange parameters. Nevertheless, they are often and quite
successfully taken as approximate excitation energies.

2.4 The Local Spin Density Approximation
Already in their paper, Kohn and Sham pointed out that solids can often be

considered as close to the limit of the homogeneous electron gas. In that limit, it
is known that the effects of exchange and correlation are local in character, and
they proposed making the local density approximation (LDA) or more generally
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the local spin density approximation (LSDA), in which the exchange-correlation
energy is simply an integral over all space with the exchange-correlation energy
density at each point assumed to be the same as in a homogeneous electron gas
with the corresponding local density,

ELSDA
xc =

∫
d�rn(�r)εhom

xc (n↑(�r), n↓(�r)) (2.15)

=

∫
d�rn(�r)[εhom

x (n↑(�r), n↓(�r)) + εhom
c (n↑(�r), n↓(�r)). (2.16)

The part of the Kohn-Sham potential due to exchange and correlation vs
xc(�r)

is defined by the functional derivative of the exchange and correlation energies
Exc(�r) for each spin channel. In the LDA the form is very simple,

δExc[n] =
∑

s

∫
d�r

[
εhom
xc + n

∂εhom
xc

∂ns

]
�r,s

δn(�r, s), (2.17)

so that the potential,

vs
xc(�r) =

[
εhom
xc + n

∂εhom
xc

∂ns

]
�r,s

, (2.18)

involves only ordinary derivatives of εhom
xc (n↑, n↓). Here the subscripts �r, s mean

that quantities in square brackets are evaluated for ns = n(�r, s). It is common to
split εxc(n) into exchange and correlation parts εxc(ρ) = εx(n) + εc(n). The LDA
exchange terms are particularly simple: since εhom

x (ns) scales (ns)
1
3 it follows that

vs
x(�r) = −2(

3n(�r, s)

π
)

1
3 (2.19)

On the other hand, accurate values for εc(n) have been determined from Quantum
Monte Carlo (QMC) calculations. These have then been interpolated to provide
an analytic form for εc(n). In this thesis we use the functional proposed by Vosko
et al. [35].

2.5 Non-collinear Spin Density
In the usual collinear case of a spin polarized system, there are two different

densities [n↑(�r), n↓(�r)] and potentials [v↑
xc(�r), v

↓
xc(�r)] for spin up and spin down.

This is not, however, the most general form since the spin axis can vary in space.
In this “non-collinear spin” case [36], the density at every point is represented by
a vector giving the spin direction, or equivalently, by a local spin density matrix:

n(�r) =
n(�r)

2
1 +

�m(�r)

2
· �σ (2.20)
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Here 1 is the 2× 2 unit matrix, n(�r) the charge density, �m(�r) the magnetization
density and �σ = (σx, σy, σz) are the Pauli spin matrices.

In this general magnetic case, each one-electron state is represented by a
spinor function:

ψi(�r) =

(
αi(�r)
βi(�r)

)
, (2.21)

where αi and βi are the two spin projections. Moreover, all operators need to be
represented as 2× 2 matrices. The explicit form of the charge and magnetization
density is then

n(�r) =

N∑
i=1

|ψi(�r)|2, (2.22)

and

�m(�r) =

N∑
i=1

ψ†
i (�r)�σψi(�r), (2.23)

and the density matrix has the form

ρ(�r) =
∑N

i=1

( |αi(�r)|2 αi(�r)β
∗
i (�r)

α∗
i (�r)βi(�r) |βi(�r)|2

)
. (2.24)

The sum of the diagonal elements give the charge density while the off-diagonal
elements can give rise to non-collinear magnetism since the two spin projections
are allowed to hybridize. The Kohn-Sham Hamiltonian becomes a 2 × 2 matrix

Hss′
KS(�r) = −∇2δss′ + V ss′

KS(�r) s, s′ = 1, 2, (2.25)

where the only part of V ss′
KS that is non-diagonal in spin space is the exchange

correlation potential V ss′
xc which has to be rotated to a local frame of reference

in which the the density matrix becomes diagonal. Although this looks like a
major complication, the only real difficulty is in the nature of the functional εss′

xc .
In the local approximation it is calculated simply by finding the local axis of
spin quantization and using the same functional form εhom

xc (n↑(�r), n↓(�r)) as given
previously, but n↑(�r) and n↓(�r) are corresponding to diagonal components for the
local axis.

In the case of collinear magnetism, a unique global magnetization axis can be
defined in, for instance, the z-direction. Then the density matrix and operators all
reduce to a diagonal form. The two spin projections have different potentials and
can be solved independently of each other so that the density matrix is completely
described by the scalar quantities n = n↑ + n↓ and mz = n↑ − n↓.
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Chapter 3

The KKR Green Function Method

3.1 Introduction

The multiple-scattering method of Korringa, Kohn and Rostoker (KKR) for
the calculation of the electronic structure of materials was introduced in 1947
by Korringa [19] and in 1954 by Kohn and Rostoker [20]. In order to solve the
Schrödinger equation, the scattering properties of each scattering center (atom)
are determined in a first step and described by a scattering matrix, while the
multiple-scattering by all atoms in the lattice is determined in a second step
by demanding that the incident wave at each center is the sum of the outgoing
waves from all other centers. In this way, a separation between the potential and
geometric properties is achieved.

A further significant development of the KKR scheme came when it was re-
formulated as a Green function method [21, 37]. By separating the single-site
scattering problem from the multiple-scattering effects, the method is able to
produce the crystal Green function efficiently by relating it to the Green function
of free space via the Dyson equation. In a second step the crystal Green function
can be used as a reference in order to calculate the Green function of an impurity
in the crystal [22], again via a Dyson equation. This way of solving the impu-
rity problem is extremely efficient, avoiding the construction of huge supercells
of finite clusters which are usually used in wavefunction methods.

The development of screened, or tight-binding, KKR was a further break-
through for the numerical efficiency of the method [38]. Via a transformation of
the reference system remote lattice sites are decoupled, and the principal layer
technique allows the calculation time to scale linearly with the number of atoms.
This is especially useful for layered systems (surfaces, interfaces, multilayers)
and allows the study of, e.g., interlayer exchange coupling or ballistic transport
through junctions.

A short list of successful applications of the KKR method for electronic struc-
ture of solids, combined with density-functional theory, includes bulk materi-
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als [39], surfaces [40], interfaces and tunnel junctions [41], and impurities in
bulk and on surfaces [42]. Spectroscopic properties [43] and transport proper-
ties [44, 45, 46] have also been studied within this method. The KKR scheme
can incorporate the Dirac equation, whenever relativistic effects become impor-
tant [47].

3.2 Green Function Method
In density functional calculations the solution of the Kohn-Sham equations

for the single particle wave functions ϕα(�r) and the corresponding eigenvalues εα,
the single particle energies, represents the central problem. Thus most of elec-
tronic structure calculations follow this route, i.e. calculating eigenfunctions ϕα

and eigenvalues εα. However, the calculation of ϕα and εα can be avoided, if in-
stead the single particle Green function G(�r, �r′; E) of the Kohn-Sham equation
is determined, since this quantity contains all the information about the ground
state. In particular the charge density and the local density of states can be di-
rectly calculated from the Green function, which is the solution of the Schrödinger
equation for an energy E with a source at position �r′:

(−∂2
r + V (�r) − E) G(�r, �r′; E) = −δ(�r − �r′) , (3.1)

with atomic units h̄2/2m = 1 used. Using the spectral representation for the
(retarded) Green function

G(�r, �r′; E + iε) =
∑

α

ψα(�r)ψ∗
α(�r′)

E + iε − Eα

(3.2)

it is easy to show that the charge density n(�r) can be directly expressed by an
energy integral over the imaginary part of the Green function:

n(�r) = 2
∑

α
Eα<EF

|ψα(�r)|2 = − 2

π

∫ EF

dE Im G(�r, �r; E) (3.3)

This relation directly allows to calculate the charge density from the imaginary
part of the diagonal components of the Green function, which can be interpreted
as the local density of states at the position �r. The local density of states of a
particular atom in a volume V is obtained by integrating over this volume

nV (E) = −2

π

∫
V

d�r Im G(�r, �r; E) (3.4)

In this way the evaluation of the wave-functions ψα(r) can be avoided. Due to
the strong energy-dependent structure of the density of states, the evaluation of
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the energy integral is usually very cumbersome and typically about 103 energy
points are needed in an accurate evaluation of this integral.

The numerical effort can be strongly decreased, if the analytical properties
of the Green function G(z) for complex energies z = E + iΓ are used. Since
G(z) is analytical in the whole complex energy plane, the energy integral can be
transformed into a contour integral in the complex energy plane

n(r) = − 2

π
Im

∫ EF

EB

dz G(r, r; z) (3.5)

where the contour starts at an energy EB below the bottom of the valence bands,
goes into the complex plane and comes back to the real axis at the Fermi level.
Since for complex energies all structures of the Green function are broadened
by the imaginary part Γ, the contour integral can be accurately evaluated us-
ing rather few energy points, typically 20-30, leading to a large saving of com-
puter time. In this way Green function methods are competitive competitive
to diagonalization methods. Additional advantages occur for systems with two-
or three-dimensional symmetry, since as a result of the energy broadening the
k–integration over the Brillouin zone requires for complex energies much less k–
points. In the evaluation of the contour integral, special care is necessary for the
piece of the path close to EF , since here the full structure of G(E) on the real axis
reappears. Therefore the energy mesh should become increasingly denser when
approaching EF .

The integration over a complex energy contour can also be extended to finite
temperatures by using the analytical properties of the Fermi-Dirac distribution.
Here the essential point is that the contour close to EF is replaced by a sum over
Matsubara energies zj = EF + iπ(2j − 1)kT , j = 1, 2, . . . . Then only complex
energies are needed, since the energy point closest to EF has still an imaginary
part of πkT . This is of particular advantage, when a discrete k-mesh is used, like
e.g. in the special points method.

The real problem is the evaluation of the Green function for the system of
interest. Since we want to avoid evaluation of all eigenvalues εα and wave functions
ϕα we try to calculate the Green function G

G(E) =
1

E + iε − H
=

1

E + iε − Ho − V
(3.6)

of a system with Hamiltonian H = Ho + V to the Green function Go = {E +
iε−Ho}−1 of a reference system, which is analytically known or easy to calculate.
Then G(E) can be obtained from the Dyson equation

G(E) = Go(E) + Go(E) V G(E) = Go
1

1 − V Go

(3.7)

For instance, for a bulk crystal one starts with the free space Green function
Go(Ho = −∂2

�r ), such that V is the sum of the potentials of all atoms. For the
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surface Green function, Go is identified with the bulk Green function, such that V
is the difference between the potentials at the surface and in the bulk. Analogously
for an impurity in a crystal one starts again with the bulk Green function Go,
such that V represents the change of the impurity potential with respect to the
bulk potential as well as the perturbation of the potentials of the neighboring host
atoms. Most important is, that the perturbed potential V is well localized near
the impurity, while the perturbed wavefunctions are not localized and accurately
described by the Dyson equation.

Such impurity problems are often described by an ’Ersatzgeometry’, e.g. an
impurity in a relatively small cluster of bulk atoms or by a supercell geometry
with a periodic array of impurities. In these cases the boundary conditions for the
wave functions are changed violently, since e.g. for a cluster all wave functions are
restricted to the size of the cluster. Therefore the introduction of the host Green
function Go solves the socalled ”embedding problem”, since it correctly describes
the embedding of the impurity in the infinite bulk system. Needless to say, that
the Green function method cannot only be applied to a single impurity, but also
to a small cluster of impurity atoms in the bulk, provided that the perturbation of
the potential is localized in a restricted area. Moreover, once the Green function
of the surface is known, one can calculate with an analogous Dyson equation the
electronic structure of an impurity or of small clusters at surfaces.

3.3 Single-Site Scattering

We turn now to the scattering problem of a spherical atomic potential embed-
ded in free space (actually in an environment of constant potential). The reference
system is thus a free-electron system (where the Hamiltonian contains only the
kinetic energy term, and the eigenfunctions are plane waves). The Green function
of a free-electron system has the form [48, 49]

g(�r, �r′; E) = − 1

4π

eik|�r−�r′|

|�r − �r′| . (3.8)

with k =
√

E. In the case of scattering by a central potential, it is useful to work
in angular-momentum representation. We therefore represent an incoming plain
wave as

ψinc
�k

(�r) = ei�k�r =
∑

L

4πil jl(
√

Er) YL(�r) YL(�k) (3.9)

where jl is the spherical Bessel function, while YL are the real spherical harmonics.
We use the combined index L := (l, m), where l and m are angular momentum
indexes. On the other hand, the free space Green function (3.8) can be expanded
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as:

g(�r, �r′; E) =
∑

L

YL(�r) gl(r, r
′; E) YL(�r′) (3.10)

with gl given by

gl(r, r
′; E) = −i

√
E jl(

√
Er<) hl(

√
Er>), (3.11)

where hl = jl + inl are spherical Hankel functions, nl are spherical Neumann
functions [50], while r< (r>) is the smaller (bigger) of the radii r and r′. The
Bessel functions jl(x) are finite as x → 0, while hl(x) and nl(x) are diverging as
x → 0.

Suppose now that there is a scattering potential of finite range, of the form

V (�r) =

{
V (r) r ≤ S

0 r > S.
(3.12)

Then the radial wavefunctions Rl(r; E) satisfy the radial Schrödinger equation[
−1

r

∂2

∂r2
r +

l(l + 1)

r2
+ V (r) − E

]
Rl(r; E) = 0. (3.13)

The asymptotic form of Rl(r; E) for r → ∞ is

Rl(r; E) → Al√
Er

sin

(√
Er − lπ

2
+ δl(E)

)
(3.14)

where Al is a constant and δl(E) is the phase shift with respect to the wavefunc-
tion for vanishing potential.

Since for r > S the potential V (r) vanishes and the general solution of the
radial equation is in this region a sum of two linearly independent special solu-
tions:

Rl(r; E) = Bl jl(
√

Er) + Cl nl(
√

Er) (3.15)

where Bl and Cl are constants. Using the asymptotic form of Bessel functions,

lim
x→∞

jl(x) =
1

x
sin(x − lπ/2) (3.16)

lim
x→∞

nl(x) = −1

x
cos(x − lπ/2) (3.17)

together with eqs. (3.14) and (3.15), we obtain

Rl(r; E) = Al

(
jl(

√
Er) cos δl − nl(

√
Er) sin δl

)
for r > S. (3.18)
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On the other hand, the Lippmann-Schwinger equation gives

Rl(r; E) = jl(
√

Er) +

∫ S

0

gl(r, r
′; E) V (r′) Rl(r

′; E) r′2 dr′ (3.19)

which, using (3.11), yields for r > S:

Rl(r; E) = jl(
√

Er) − ihl(
√

Er)
√

E

∫ S

0

jl(
√

Er′) V (r′) Rl(r
′; E) r′2 dr′. (3.20)

The integral is just the t-matrix element in angular-momentum representation,

tl(E) =

∫ S

0

jl(
√

Er) V (r) Rl(r; E) r2dr, (3.21)

so that we obtain

Rl(r; E) = jl(
√

Er) − i
√

E tl(E) hl(
√

Er) (r > S) (3.22)

with the t-matrix related to the phase shift by (cf. (3.18))

tl(E) = − 1√
E

sin δl(E) eiδl(E). (3.23)

Finally, we give without proof the Green function for the scattering problem
by a central potential. It can be written as the product of two linearly independent
solutions, Rl (regular, i.e., converging as r → rl at the origin) and Hl (irregular,
i.e., diverging as r → 1

rl+1 ), of the radial equation:

G(�r, �r′; E) = −i
√

E
∑

L

Rl(r<; E)Hl(r>; E) YL(�r) YL(�r′) (3.24)

≡
∑

L

Gl(r, r
′; E) YL(�r) YL(�r′).

The boundary conditions of Rl are given by (3.22). In order to find the boundary
conditions of Hl we use the identity Gl = gl + gl tl gl with gl given by (3.11) and
obtain

Hl(r; E) = hl(
√

Er) (r > S). (3.25)

In practice, we integrate (3.13) numerically outwards from the origin to r = S
in order to obtain Rl. At r = S the requirement for continuity of the logarith-
mic derivative yields the t-matrix elements. Analogously, a numerical integration
inwards yields the diverging radial wavefunction Hl, uniquely determined by the
boundary condition (3.25) at r = S.
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3.4 Multiple-Scattering Theory

In the previous section we discussed the solution of the scattering problem
for an isolated scattering potential. In this section we will extend the study to
a set of scatterers. Let us consider in this section the multiple scattering of an
incoming wave

◦
ψE(�r) of energy E at N spherical potentials vn(�r) located at the

positions �Rn with n = 1, ..., N . In each cell n around the different potentials
vn(�r − �Rn), the wave function

◦
ψE(�r) can be expanded in spherical harmonics

YL(r̂). The general expansion can be written as a sum of jl(r; E)YL(r̂), since the

incoming wave
◦
ψE(�r) has an energy E and is regular, such that in the expansion

the Hankel function do not enter. Thus

◦
ψE(�r) =

∑
n

Cn
Ljl(r; E)YL(r̂) for �r in cell n (3.26)

As derived in the last section, the single scattering process at potential vn(�r)
means, that the incoming wave jl(r; E)YL(r̂) goes over into the radial function
Rn

L(�r; E) = Rn
l (r; E)YL(r̂), where Rn

l varies as

Rn
l (r; E) = jl(r; E) − i

√
Etnl (E)hl(r; E) for r > S. (3.27)

The multiple scattering at all potentials can be described, if we consider in each
cell n an effective incident wave with the amplitude Φn

L, as the superposition of
the unperturbed incident wave with the amplitude Cn

L and the scattered waves
originating from all other cells n′ 	= n.

The scattered wave with angular momentum L′ from such a cell n′, given
by −i

√
Etn

′
l′ (E)hL′(�r; E) has then also to be multiplied by the effective, but un-

known, wave coefficients Φn′
L′ on this site.

We know from the addition theorem [51] that the expansion the Hankel func-
tion in the cell n is given by

hL(�r + �Rn − �Rn′
; E) =

i√
E

∑
L′

gnn′
LL′(E)jL′(�r; E). (3.28)

However we are interested in the expansion of the Hankel function in the cell n′

with the orbital momentum L′:

hL′(�r + �Rn′ − �Rn; E) =
i√
E

∑
L

gn′n
L′L(E)jL(�r; E), (3.29)

or
hL′(�r + �Rn′ − �Rn; E) =

i√
E

∑
L

jL(�r; E)gnn′
LL′(E), (3.30)
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using that gn′n
L′L(E) = gnn′

LL′(E). Hence we obtain for the scattered waves of all
angular momenta L′ from all sites n′ (	= n) in an expansion in the cell n′

∑
L

jL(�r; E)
∑

L′,n′ 	=n

gnn′
LL′(E)tn

′
l′ (E)Φn′

L′. (3.31)

The total effective incident wave on the cell n is then given by the sum of (3.31)
and (3.26)

∑
L

Φn
L jl(r; E)YL(r̂) =

∑
L

[
Cn

L +
∑

L′,n′ 	=n

gnn′
LL′(E) tn

′
l′ (E) Φn′

L′

]
jl(r; E)YL(r̂)

(3.32)
Therefore the fields Φn

L have to satisfy the multiple scattering equation

Φn
L = Cn

L +
∑

L′,n′ 	=n

gnn′
LL′(E) tn

′
l′ (E) Φn′

L′ (3.33)

The full solution of our multiple scattering problem can then be written in the
cell n as

ψ(�r) =
∑

L

Φn
LRn

l (r; E)YL(r̂) (3.34)

with the coefficients Φn
L from eq. (3.33).

If there is no external incident wave, the coefficients Cn
L are null. If moreover

we are interested in an infinite ideal crystal with equal potentials (tnl (E) = tl(E))
then the eigensolutions can be chosen as Bloch waves (Φn

L = ei�k �Rn
Φ0

L).
Thus, one obtains from eq. (3.33)

Φ0
L =

∑
L′

gLL′(�k, E) tL′ Φ0
L′ , (3.35)

with
gLL′(�k, E) =

∑
n′ 	=n

gnn′
LL′(E)ei �Rn−�Rn′

(3.36)

are the free space structure constants.
One can rewrite eq. (3.35) as∑

L′

(
δLL′ − gLL′(�k, E) tL′

)
Φ0

L′ = 0 (3.37)

In the perfect crystal, the electronic eigenvalues are given by the solutions of
(3.37), i.e., in the absence of an external wave. In order to have non-trivial so-
lutions of the system (3.37), the necessary and sufficient condition is that the
determinant vanishes:

Det
[(

δLL′ − gLL′(�k, E) tL′
)]

= 0 (3.38)
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3.5 Multiple-Scattering: The Green Function Ap-
proach

As mentioned earlier, in the method of Korringa, Kohn and Rostoker (KKR) [21]
the Schrödinger equation is solved by multiple scattering theory, describing the
propagation of a wave in the solid as a repetition of single scattering events at
the different atoms. Thus first the single scattering event of the wave at the po-
tential of the different single atoms n is calculated, described by the single site
”t-matrix” tn, and then the multiple scattering at the given arrangement of the
atoms in the crystal. The resulting equations show a beautiful separation between
potential and structural properties, which are typical for the KKR method. In
the following we summarize the most important results.

In the KKR-Green function method one divides the whole space into non–
overlapping and space–filling cells centered at positions �Rn. In each cell the elec-
trons are scattered by potentials vn, which in this section are assumed to be
spherically symmetric and centered at �Rn. By introducing cell-centered coordi-
nates the Green function G(�r + �Rn, �r′ + �Rn′

; E) can then be expanded in each
cell as a function of �r and �r′ into spherical harmonics:

G(�Rn + �r, �Rn′ + �r′; E) = −i
√

E
∑

L

Rn
L(�r<; E)Hn

L(�r>; E)δnn′ (3.39)

+
∑
LL′

Rn
L(�r; E)Gnn′

LL′(E)Rn′
L′(�r′; E)

Here �r and �r′ are restricted to the cells n and n′ and �r< and �r> denote the
one of the two vectors �r and �r′ which has the smaller or larger absolute value.
The Rn

L(�r; E) and Hn
L(�r; E) are the product of spherical harmonics and radial

eigenfunctions to the central potential vn(r):

Rn
L(�r; E) = Rn

l (r; E) YL(r̂), (3.40)
Hn

L(�r; E) = Hn
l (r; E) YL(r̂). (3.41)

Rn
L(�r, E) is the regular solution which varies at the origin as rl and which

represents the solution for an incoming spherical Bessel function jl(
√

Er)YL(r̂),
while Hn

l is the corresponding irregular solution varying as 1/rl+1 at the origin
and being identical with the spherical Hankel function hl(

√
Er) outside the range

of the potential. Both radial functions are connected by the Wronskian relation,
which guarantees that the first term in eq. (3.40) represents the exact Green
function for the single potential vn(r) in free space. Since this term satisfies
already the source condition −δ(�r − �r′) for the Green function, the second term
is source free and contains in the double angular momentum expansion only the
regular solutions Rn

L and Rn′
L′ .

By construction, the expression (3.40) for the Green function satisfies in each
cell n the general solution of the Schrödinger equation for the Green function,
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while the matrix Gnn′
LL′(E), the so-called structural Green function, describes the

connection of the solutions in the different cells and thus contains all the infor-
mation about the multiple scattering problem, which is in this way reduced to
the solution of an algebraic problem. The clear separation between the single–site
properties, described by the radial solutions Rn

L(�r) and Hn
L(�r) and the multiple

scattering properties as described by the matrix Gnn′
LL′, is the main advantage of

the KKR method.
In principle, the structural Green function matrix Gnn′

LL′(E) can be determined
by matching the solutions of the neighboring cells at the cell boundaries. However
at the cell boundaries the angular momentum expansion converges rather slowly,
so that presumably a large lmax cut-off would be needed. The more elegant and at
the same time more efficient way consists in using the power of multiple scattering
theory, where the Green function is basically only needed in the inner region of
the cell, where the potential is strong, so that the l–convergence represents no
problem. As shown by Beeby and others [21], the structural Green function matrix
can be determined from the corresponding matrix g in free space by the Dyson
equation

Gnn′
LL′(E) = gnn′

LL′(E) +
∑
n′′L′′

gnn′′
LL′′(E) tn

′′
l′′ (E) Gn′′n′

L′′L′(E) (3.42)

where the t-matrix tnl for the potential vn(r) is given by eq. (3.21)

tnl (E) =

∫ R

0

r2 dr jl(
√

Er) vn(r) Rn
l (r; E) (3.43)

The derivation of this equation is lengthy and straightforward, so that we refer
for this to the literature cited above. An elementary derivation, valid also for the
full–potential case, has been given by Zeller [51].

Once the structural Green function
◦
Gnn′

LL′(E) of the ideal crystal is known,
the Green function Gnn′

LL′(E) for the crystal with impurity can be evaluated by a
modified Dyson equation

Gnn′
LL′ =

◦
Gnn′

LL′ +
∑
n′′L′′

◦
Gnn′′

LL′′ Δtn
′′

l′′ Gn′′n′
L′′L′ , Δtnl = tnl − ◦

tnl (3.44)

where Δtnl is the difference tnl − ◦
tnl between the t-matrices in the perturbed and

in the ideal lattice. Since this difference, determined by the perturbation of the
potential, is restricted to the vicinity of the impurity, the Green function in this
subspace can be easily determined in real space by matrix inversion. The rank
of the matrices to be inverted is given by (lmax + 1)2 · nd, i.e. the number nd of
perturbed potentials times the number (lmax+1)2 of angular momenta used. Here
lmax is the maximum angular momentum used in the calculations, e.g. lmax = 3.

For a single impurity it is often sufficient to neglect the perturbation of the
neighboring host atoms and to take into account in eq. (3.42) only the per-
turbation due to the impurity potential into account. This socalled single site
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approximation gives a quite reasonable description of the electronic structure of
the impurity and is the essential ingredient of the coherent potential approxima-
tion for random alloys. For a more accurate description the perturbations of the
neighbors have to be included. The size of the perturbation naturally increases,
if impurity pairs, trimers or larger clusters of impurities are included. As a rule
one should not only take the strong scattering centers into account, but also the
perturbations of all first neighbor atoms.

If we consider an impurity or an adatom on a surface, the structure of the
Dyson equation 3.42 is the same. One has only to replace the host Green function
◦
Gnn′

LL′ by the Green function of the ideal (unperturbed) surface and has to identify
Δtnl by the change of the t-matrix on site n with respect to the value of the un-

perturbed surface. Thus it is the structural Green function
◦
Gnn′

LL′, which describes

the correct embedding in the local environment. Therefore the calculation of
◦
Gnn′

LL′

represents the high entrance fee one has to pay in Green function calculations.

3.6 Description of the Full Potential
All-electron methods based on a spherical potential of muffin-tin type or on

the atomic sphere approximation (ASA) have in general proven to be very success-
ful and efficient for the description of the electronic structure of solids. However
systems with lower symmetry and/or open structures require a more accurate
treatment going beyond the spherical approximation. In particular this is neces-
sary, if forces and lattice relaxations are calculated, since for these problems the
spherical approximation fails completely.

The multiple scattering expansion (3.40) of KKR-Green function (seen ear-
lier) is still valid in the full potential case, so that the important separation
between the single-potential problem and the multiple-scattering problem fully
survives. However the single-site eigenfunctions Rn

L(�r; E) and Hn
L(�r; E) are now

the solutions for the general potential vn(�r) being no longer spherical [51]. For
instance, RL′(�r; E) is the solution of the Schrödinger equation for a spherical
wave jl′(

√
Er)YL′(r̂) incident on the potential v(�r)

RL′(�r; E) = jl′(
√

Er)YL′(r̂) +

∫
d�r′g(�r, �r′; E)v(�r′)RL(�r′; E) (3.45)

where g(�r, �r′; E) is the Green function for free space. Clearly the index L′ refers
to the angular momentum of the incoming partial wave. Solving the previous
equation in this form would require a three dimensional integration. By expanding
both the potential as well as the wave function RL′(�r; E) into spherical harmonics:

v(�r) =
∑

L

vL(r)YL(r̂) (3.46)
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RL′(�r; E) =
∑

L

RLL′(r)YL(r̂) (3.47)

We obtain coupled radial equations for the double indexed radial functions RLL′

RLL′(r, E) = δLL′jl′(
√

Er) +

∫ S

0

dr′r′2g(r, r′; E)
∑
L′′

vLL′(r)RL′′L′(r′; E),(3.48)

Here the first index L refers to the �r-coordinate of the outgoing partial wave and
the second one L′ to the angular momentum of the incoming wave. The radial
integral extends up to the range S of the potential. Moreover

vLL′(r) =
∑
L′′

CLL′L′′vL′′(r) (3.49)

where CLL′L′′ =
∫

dΩYLYL′YL′′ are the Gaunt coefficients.
The solution of the integral equation (3.48) or of the equivalent differential

equation is rather complicated. In order to avoid numerical problems one trans-
forms eq. (3.48) into a modified integral equation [52], where the effect of the
spherical part where the effect of the spherical part of the potential is already
included in the incident radial wave function

◦
Rl (r; E) [52] (an analog expression

is obtained for the irregular function HLL′)

RLL′(r, E) = δLL′
◦
Rl (r, E)

+

∫ S

0

dr′r′2Gl(r, r
′; E)

∑
L′′

ΔvLL′′(r)RL′′L′(r′; E) (3.50)

and where Gl(r, r
′; E) is the l-dependent radial Green function for the spherical

component of the potential

Gl(r, r
′; E) =

√
E

◦
H l (r>; E)

◦
Rl (r<; E) (3.51)

and ΔvLL′ the non-spherical component of the potential

ΔvLL′(r) =
∑
L′′ 	=0

CLL′L′′vL′′(r) (3.52)

which provides the coupling between the different angular momenta. Since the
non-spherical potential Δv is always rather small, we rewrite eq. (3.50) in order
to solve it by iteration:

RLL′(r; E) = ALL′(r; E)
◦
Rl (r; E) + BLL′(r; E)

◦
H l (r; E), (3.53)

HLL′(r; E) = CLL′(r; E)
◦
Rl (r; E) + DLL′(r; E)

◦
H l (r; E), (3.54)
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where the coefficients A, B, C and D are defined as following

ALL′(r; E) = δLL′ +
√

E

∫ s

r

dr′r′2
◦
H l (r′; E)

∑
L′′

ΔVLL′′(r′)RL′′L′(r′; E),(3.55)

BLL′(r; E) =
√

E

∫ r

0

dr′r′2
◦
Rl (r′; E)

∑
L′′

ΔVLL′′(r′)RL′′L′(r′; E), (3.56)

CLL′(r; E) =
√

E

∫ s

r

dr′r′2
◦
H l (r′; E)

∑
L′′

ΔVLL′′(r′)HL′′L′(r′; E), (3.57)

DLL′(r; E) = δLL′ −
√

E

∫ s

r

dr′r′2
◦
Rl (r′; E)

∑
L′′

ΔVLL′′(r′)HL′′L′(r′; E),(3.58)

The solution of eq. (3.53) and eq. (3.54) by iteration is equivalent to a Born
series expansion in powers of Δv. Usually 2-4 iterations are sufficient for conver-
gence.

For a small distance r < rcut in the core region the potential is in a very good
approximation spherical, so that ΔVLL′′(r) can be neglected. Thus the functions
A, B, C and D are constants for r < rcut:

RLL′(r; E) = ALL′(rcut; E)
◦
Rl (r; E), (3.59)

HLL′(r; E) = CLL′(rcut; E)
◦
Rl (r; E) + DLL′(rcut; E)

◦
H l (r; E). (3.60)

While for non-spherical potentials the general eq. (3.40) for the Green func-
tion remains valid and only RL�r and HL�r have to be replaced by the single-site
solutions for the anisotropic potential, the same is also true for the Dyson equa-
tions (3.42) and (3.44) describing the multiple scattering. Only the spherical
t-matrix tnl (E) has to be replaced by the t-matrix tnLL′(E) for a general potential
vn(�r) being given by

ΔtnLL′(E) =

∫ S

0

dr′r′2jl(
√

Er′)
∑
L′′

vn
LL′′(r′)Rn

L′′L′(r′; E). (3.61)

The difference ΔtnLL′(E) = tnLL′(E) − δLL′tnl (E) is then simply

ΔtnLL′(E) =

∫ S

0

dr′r′2Rl(
√

Er′)
∑
L′′

Δvn
LL′′(r′)Rn

L′′L′(r′; E) (3.62)

more details on lattice relaxation and forces calculations are given in Appendix.11.

3.7 Self-Consistency Algorithm
We proceed with a short description of the self-consistency algorithm (see

Fig. 3.1) for the calculation of the electronic structure by the KKR method. As
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    Host R0 and H0R and H

t-matrix

Host Potential V0 (known)

Host t0-matrix

t=t-t0

solve Dyson eq: G = G0 + G0 t G
str str str str

G = R H + R G R
Charge:  = - Im(G)/

By Poisson eq. calculate Vout

Stop if Vout = Vin

Host G0-matrixstrInput Potential Vin

Fig. 3.1 – Diagram showing the self-consistent scheme used to in the KKR method
in order to calculate the electronic structures of impurity and impurity clusters.

in all first-principles schemes, the central quantity is the charge density which is
found by solving the Kohn-Sham equations. The steps followed are:

1. Start with an input potential V in
s (�r) (s is a spin index used in magnetic

systems).
2. Calculate the wavefunctions RL(�r) and HL(�r) and, from these, the t-matrix

tLL′ .
3. Calculate the t-matrix of the reference system, trefLL′(E), and the difference

ΔtLL′(E) = tLL′(E) − trefLL′(E).
4. Calculate the structural Green function matrix of the reference system

◦
Gstr nn′

LL′ (E).
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5. Solve the algebraic Dyson equation by matrix inversion for the structural
Green function Gnn′

LL′(E) of the real system.
6. Calculate the Green function using the structural Green function and RL

and HL. Integrate the Green function over complex energies Z from the
bottom of the valence band Eb up to EF by using a complex-energy contour
(see below) and take the imaginary part to find the valence electron spin
density: ρv

s(�r) = − 1
π
Im

∫ EF

Eb
Gs(�r, �r; Z) dZ.

7. Calculate the core-electron wave functions and core-electron spin density
ρc

s(�r); here the multiple-scattering formalism is not needed, because the
core wavefunctions are assumed to be highly localized at the atomic sites.
Obtain the total spin density ρs = ρc

s + ρv
s .

8. Find the output potential V out
s (�r) by solving the Poisson equation and

adding the exchange-correlation potential Vxc(�r). If V out
s = V in

s to a rea-
sonable accuracy, exit the cycle, otherwise:

9. Properly mix V out
s with V in

s to obtain a new input potential, and return to
step 1.

In Fig. 3.1 we present a diagram showing the self consistent scheme used for
impurity calculations which is basically similar to the case of bulk calculations.
The essential quantity to know is the Host green functions.
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Chapter 4

KKR for Non-collinear Magnetism

4.1 Introduction

Theoretically, extensive work is carried out in the area of complex non-collinear
magnetism, particularly for surface and bulk systems. A lot of interesting physics
would be missed if only collinear magnetic structures were considered. In fact,
magnetic nanostructures on magnetic or non-magnetic substrates are attractive
to the scientific community due to their novel and unusual properties [4, 53, 54, 55]
being of relevance both for theory as well as for the applications in the magneto-
electronics devices.

One of these properties is the non-collinear magnetic order occurring for geo-
metrically frustrated antiferromagnets, e.g. on a triangular lattice, in disordered
systems, exchange bias systems, and molecular magnets, or for systems which ex-
hibit either competing exchange interactions, or competition between exchange
and spin-orbit interactions. A simple model for frustration is the following (see
Fig. 4.1): Starting with an antiferromagnetic (AF) Cr dimer, the addition of a
third Cr atom to form an equilateral triangle leads to a frustrated geometry.
Each atom would like to couple AF to both other atoms. Since this is impossible,
the moments of the three atoms rotate until a compromise is found. The ground
state is then non-collinear, characterized by an angle of 120◦ between each two
atoms. The number of non-collinear solutions in such a free Cr-trimer is infinite.
Indeed, each magnetic moment can be in a plane which is rotated by an angle
of 120◦ from the plane containing the neighboring magnetic moment. Thus for
each set of three planes there is an infinite number of moments which satisfy the
rotation angle criterion. The same situation will also occur for an AF Cr dimer
on a ferromagnetic substrate, since the interaction of both Cr atoms with the
ferromagnetic substrate atoms is either ferromagnetic of antiferromagnetic. As
we will show in the next chapters, also in this case a non-collinear structure can
result.

The majority of the ab-initio methods available for the treatment of non-
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A B C
Fig. 4.1 – Example of frustration seen with an antiferromagnetic Cr dimer (A)
for which we add a third equidistant atom. A magnetic frustration is obtained
because all three atoms wants to couple antiferromagnetically (B) leading then to
a non-collinear magnetic coupling (C) as a ground state.

collinear magnetism make explicit use of Bloch’s theorem and are thus restricted
to periodic systems (bulk or films). Then, even for collinear magnetism, one needs
large supercells to simulate impurities in a given host (bulk or film) in order to
avoid spurious interactions of the impurities from adjacent supercells. In contrast,
as described in the previous chapter, KKR does not require a supercell. Motivated
by this, we developed a KKR code for non-collinear magnetic clusters on surfaces
and in the bulk.

First non-collinear calculations by the KKR Green function method, though
not self–consistent, were already performed in 1985. Oswald et al. [56] could show
by using the method of constraints that the exchange interaction between the
moments of Mn and Fe impurity pairs in Cu is in good approximation described
by the cos θ–dependence of the Heisenberg model.

Sandratskii et al. [57] and Kübler et al. [58, 59] pioneered the investigation of
non-collinear magnetic structures using self–consistent density functional theory.
One of the first systems studied by Sandratskii et al. [57] was the spin spiral of bcc
Fe with the KKR method. Later on, Δ-Fe was a hot topic, and the appearance
of the experimental work of Tsunoda et al. [60, 61] led to the development of
other first–principles methods able to deal with non-collinear magnetism such as
LMTO [62], ASW [63] and FLAPW. [64, 65, 66]

Several papers [67, 68] describe how symmetry simplifies the calculational
effort for the spiral magnetic structures in the case of perfect periodic systems—
this involves the generalized Bloch theorem. In ab-initio methods, this principle
is used together with the constrained density functional theory [69, 70] giving the
opportunity of studying arbitrary magnetic configurations where the orientations
of the local moments are constrained to nonequilibrium directions.
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Concerning free clusters, few methods are developed. For example, Oda et
al. [71] developed a plane-wave pseudopotential scheme for non-collinear mag-
netic structures. They applied it to small Fe clusters for which they found non-
collinear magnetic structures for Fe5 and linear-shape Fe3. This last result was
in contradiction with the work of Hobbs et al. [72] who found only a collinear
ferromagnetic configuration using a projector augmented-wave method. Small
Cr clusters were found magnetically non-collinear, [71] as shown also by Kohl
and Bertsch [73] using a relativistic nonlocal pseudopotential method after opti-
mization of the ionic structure by a Monte Carlo technique. However, within the
generalized gradient approximation (GGA) of density-functional theory, Hobbs et
al. [72] find that in many cases the non-collinear states can be metastable, while
the ground-state solutions are collinear and arise after geometrical optimization
of the free-standing clusters.

One main result of Oda et al. [71] and Hobbs et al. [72] concerns the variation
of the magnetization density with the position. The spin direction changes in the
interstitial region between the atoms where the charge and magnetization densi-
ties are small, while the magnetization is practically collinear within the atomic
spheres. This supports the use of a single spin direction for each atomic sphere
as an approximation in order to accelerate the computation; this approximation
is followed also here.

The aim of this chapter is to present a method based on the full-potential
KKR scheme [37] which can deal with non-collinear magnetism in systems of
reduced symmetry. This method is ideal for treating impurities or small clusters
on surfaces or in bulk.

4.2 Non-collinear KKR Formalism

We have seen in the previous chapter that the KKR method uses multiple-
scattering theory in order to determine the one-electron Green function in a
mixed site and angular–momentum representation. For convenience we rewrite
the expansion of the retarded Green function:

G(�Rn + �r, �Rn′ + �r′; E) = −i
√

E
∑

L

Rn
L(�r<; E)Hn

L(�r>; E)δnn′ (4.1)

+
∑
LL′

Rn
L(�r; E)Gnn′

LL′(E)Rn′
L′(�r′; E)

Details about this equation are described in eq. (3.40). The structural Green
functions Gnn′

LL′(E) which are obtained by solving the algebraic Dyson equation:

Gnn′
LL′(E) =

◦
Gnn′

LL′(E) +
∑

n′′,L′′L′′′

◦
Gnn′′

LL′′(E)Δtn
′′

L′′L′′′(E)Gn′′n′
L′′′L′(E) (4.2)
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In case of spin-dependent electronic structure, spin indexes enter in the t-
matrix, the Green functions and in eq. (4.2). Especially in the case of non-collinear
magnetism, these quantities become 2 × 2 matrices in spin space, denoted by t
and G.

Once the spin-dependent Green function is known, all physical properties can
be derived from it. In particular, the charge density n(�r) and spin density �m(�r)
are given by an integration of the imaginary part of G up to the Fermi level EF

and a trace over spin indexes s (putting the Green function in a matrix form in
spin space):

n(�r) = −1

π
ImTrs

∫ EF

G(�r, �r; E) dE (4.3)

�m(�r) = −1

π
ImTrs

∫ EF

�σ G(�r, �r; E) dE. (4.4)

Here, Trs means the trace operation in spin space and �σ = (σx, σy, σz) are the
Pauli matrices given explicitly by

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (4.5)

The basic difference between non-collinear and collinear magnetism is the
absence of a natural spin quantization axis common to the whole crystal. The
density matrix is not anymore diagonal in spin space as in the case of collinear
magnetism. Instead, in any fixed frame of reference it has the form

ρ(�r) =

[
ρ↑↑(�r) ρ↑↓(�r)
ρ↓↑(�r) ρ↓↓(�r)

]
=

1

2
[n(�r) + �σ · �m(�r)] (4.6)

At any particular point in space, of course, a local frame of reference can be found
in which ρ is diagonal using rotation matrices defined in section 4.3, but this local
frame can change from point to point.

4.3 Rotation Matrices
Working with non-collinear magnetism leads inevitably to work with different

spin coordinate frames and consequently with rotation matrices. A common way
to specify a general three-dimensional rotation is the use of the Euler angles.
Here the rotation is separated into three rotations about the axes of a coordinate
frame. These rotations in 3-dimensional space are represented by 3× 3 matrices,
e.g. a rotation around the x-axis by an angle φ is performed by applying the
matrix

Rx(φ) =

⎡
⎣1 0 0

0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

⎤
⎦ . (4.7)
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There are different ways to choose the axes of the three rotations. We use
the convention of rotations around the z- and y- axis, where the axes of the
coordinate system we rotate around are kept fixed during the whole rotation.
The three rotations are as follows. First, we rotate around the z-axis by an angle
γ. Second we rotate around the y-axis by an angle β and the last rotation is again
around the z-axis by an angle α. Thus a general rotation matrix takes the form

R(α, β, γ) = Rz(α) · Ry(β) · Rz(γ) = (4.8)⎡
⎣cos(α) cos(β) cos(γ) − sin(α) sin(γ) − cos(α) cos(β) sin(γ) − sin(α) cos(γ) cos(α) sin(β)

sin(α) cos(β) cos(γ) + cos(α) sin(γ) − sin(α) cos(β) sin(γ) + cos(α) cos(γ) sin(α) sin(β)
− sin(β) cos(γ) sin(β) sin(γ) cos(β)

⎤
⎦

As we mentioned earlier, the usage of different spin coordinate frames leads
to a necessary transformation of quantities like the local magnetic moment of a
given atom n, �Mn, from one spin axis frame 1 to another 2. If the first frame 1 is
the local frame where the density matrix is diagonal, e.g., where the z-direction
is along the local magnetic moment, then we have the freedom of rotating the
local frame around its z-axis. We make a choice for the Euler angle γ = 0 for the
rotation that rotates the global frame 2 to the local frame 1. The corresponding
rotation matrix is

R21
n = Rn(α, β, 0) =

⎡
⎣cos(α) cos(β) − sin(α) cos(α) sin(β)

sin(α) cos(β) cos(α) sin(α) sin(β)
− sin(β) 0 cos(β)

⎤
⎦ . (4.9)

With this choice, the Euler angles α and β are equal to the standard polar
angles of the local z-axis in the global frame, α = φ and β = θ (Fig. 4.2).
The relation between the representations of a vector quantity like the magnetic
moment is given by:

�M (1) = R12 · �M (2) (4.10)

Let us now write the fundamental relation between the angular momentum
of a system �J and its rotation operator R�u about an arbitrary axis �u [74]:

R�u(φ + δφ) = R�u(δφ)R�u(φ). (4.11)

For an infinitesimal rotations it is known that

R�u(δφ) = 1 − i �J · �u δφ, (4.12)

which means that

R�u(φ + δφ) = (1 − i �J · �u δφ)R�u(φ), (4.13)

or
δR�u(φ)

δφ
=

δR�u(φ + δφ)

δφ
= −i �J · �u δφR�u(φ) (4.14)
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z

Z

Y

X

M

M
xy

Global spin frame 
of reference

z-axis of local spin frame 
of reference

Fig. 4.2 – Rotation of a magnetic moment �M from the local spin frame of refer-
ence defined by the z-direction parallel to �M into the global spin frame of reference
(OXYZ) using the polar angles (θ, φ). �Mxy is the projection of �M into the plane
(OXY).

This differential equation is easily integrated to give

R�u(φ) = e−iφ �J ·�u. (4.15)

Thus equation (4.8) becomes

R(α, β, γ) = e−iαJx · e−iβJy · e−iγJz (4.16)

The particles we are interested to study are electrons and characterized by a
total angular momentum �J = �L + �S. Since �L and �S commute (in the absence of
spin-orbit coupling), the rotation operator R(α, β, γ) takes the form of a product
of two commuting operators:

R(α, β, γ) = RS(α, β, γ) · RL(α, β, γ) (4.17)

RS rotates the spin whereas RL rotates the orbital variables. The first operator
is defined as:

RS(α, β, γ) = e−iασz/2 · e−iβσy/2 · e−iγσz/2, (4.18)
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�σ = (σx, σy, σz) being the Pauli operator. Finally in the two-dimensional space
of Pauli spinors the rotation matrices that we note U are given by (see [74]).

RS(α, β, γ) = U(α, β, γ) =

[
cos(β

2
)e

−i(α+γ)
2 − sin(β

2
)e

−i(α−γ)
2

sin(β
2
)e

i(α−γ)
2 cos(β

2
)e

i(α+γ)
2

]
(4.19)

which in the case of γ = 0 and standard polar angles notation (θ, φ) simplifies to

U =

[
cos( θ

2
)e−

i
2
φ − sin( θ

2
)e−

i
2
φ

sin( θ
2
)e

i
2
φ cos( θ

2
)e

i
2
φ

]
. (4.20)

In the the local spin frame of reference 1 the spinor eigenstates are uniquely
defined as

χ1
↑ =

[
1
0

]
, χ1

↓ =

[
0
1

]
. (4.21)

In the non-collinear case (global spin frame of reference 2), the spin-up and spin-
down means up and down in terms of the local quantization axis. The spinors in
spin frame of reference 2 are defined by

|χ2 >= U |χ1 >, (4.22)

which leads to

χ2
↑ =

[
cos( θ

2
e−

i
2
φ)

sin( θ
2
e

i
2
φ)

]
, χ2

↓ =

[
− sin( θ

2
e−

i
2
φ)

cos( θ
2
e

i
2
φ)

]
. (4.23)

In order to rotate the expectation value of the operator A1 from reference
system 1 to reference system 2 we proceed as following

< χ2|A2|χ2 >=< χ1|A1|χ1 > with A1 = U †A2U , (4.24)

4.4 Host Green Functions and t-matrices
In order to deal with non-collinear magnetism, we have to solve the appropri-

ate Dyson equation. First we define the reference system which is a bulk system
or a perfect surface characterized by collinear magnetism for which a schematic
view is shown in Fig. 4.3. Although the collinearity of the reference system is not
a necessary requirement, it serves our purpose of calculating the electronic struc-
ture of the ferromagnetic or non-magnetic surfaces which are used as reference
systems. Thus the host Green functions

◦
G and t-matrices

◦
t are assumed diagonal

in spin space. In this way, in the case of a magnetic host, a global spin frame of
reference is defined. The host

◦
G and

◦
t are thus of the form:

◦
G(E) =

[ ◦
G↑↑(E) 0

0
◦
G↓↓(E)

]
;
◦
t(E) =

[◦
t↑↑(E) 0

0
◦
t↓↓(E)

]
(4.25)
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BULK

SURFACE

Fig. 4.3 – A schematic view of a host system prototype. The figure shows a perfect
surface characterized by collinear magnetism.

In practice, the host structural Green functions are first calculated in �k-space
using matrix inversion; a subsequent Fourier transform gives us the real-space
quantities. We write, then,

◦
GLL′(�k; E) =

∑
n′

◦
Gnn′

LL′(E) e−i�k·(�Rn−�Rn′
) (4.26)

(which, due to translational symmetry, is independent of n). The algebraic Dyson
equation (3.42) becomes

◦
GLL′(�k; E) = gLL′(�k; E) +

∑
L′′

gLL′′(�k; E) tl′′(E)
◦
GL′′L′(�k; E) (4.27)

(the t-matrix is independent of n, again due to translational symmetry). Here
gLL′ are the reference structural green function of the original system before
perturbing it by the surface. This original system can be for example free space.
The structural Green functions GLL′ and gLL′, and the t-matrix tl, are considered
as matrices in L and L′, and (4.27) is solved by matrix inversion after a cutoff
at some l = lmax for which the t-matrix becomes negligible (usually lmax = 3 or 4
suffices). The result is

◦
Gnn′

LL′(E) =
1

VBZ

∫
BZ

d3k ei�k·(�Rn−�Rn′
)

[(
1 − g(�k; E)

◦
t(E)

)−1

g(�k; E)

]
LL′

(4.28)



4.4. Host Green Functions and t-matrices 39

where the integral is over the Brillouin zone volume VBZ. For the calculation of the
charge density or of the density of states, only the on-site term n = n′, Gnn

LL′(E),
is needed.

Here, for non-primitive lattices the t-matrix t(E) depends on the atom-type
μ and on angular-momentum indexes (it is site-diagonal, (t)μμ′

l = tnl δμμ′). The
structure constants g(�k; E) are considered as matrices in both (L, L′) and (μ, μ′),
and thus the computational effort for the matrix inversion increases as O(N3

at).
A considerable speed-up can be achieved for large systems by using the concept
of the screening transformation (see section 4.4.1).

4.4.1 Screened (tight-binding) KKR Method

V(r)

0

4Ry

Fig. 4.4 – Schematic representation in two dimensions of repulsive 4Ry-high
muffin-tin potentials.

An improvement of the KKR method has been achieved by the so-called
screened or tight-binding KKR formalism [38], which allows a considerable re-
duction of the calculation time for large systems. In particular, while the tradi-
tional KKR formalism requires a matrix inversion for the solution of the algebraic
Dyson equation with computational effort of O(N3) (for N different atoms in the
unit cell), in the screened KKR method the same results can be obtained with
an effort of, ideally, O(N); this is optimally achieved for layered systems. This
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is made possible by choosing a new reference system of repulsive potentials (see
Fig. 4.4) after which the reference Green function falls off exponentially with dis-
tance, thus allowing the inversion of sparse, or even tridiagonal, matrices, which
is much faster than a full matrix inversion. Due to the decoupling between distant
atomic sites which follows, the corresponding transformation is called screening
transformation and the method screened KKR; due to its formal resemblance to
tight-binding theory, the method is also called tight-binding KKR [38].

4.4.2 Two-Dimensional Systems: Finite-Thickness Slabs and
Half-Infinite Crystals

The extension of the KKR method to the treatment of layered systems, such as
surfaces and interfaces, is straightforward, and most efficient within the screened
KKR formalism, where O(N) scaling can be achieved (where N is the number of
layers) as discussed in section 4.4.1.

When treating a layered system, a surface-adapted geometry is used, in the
sense that the two-dimensional periodicity of the atomic layers parallel to the
surface (or interface) is exploited while the direction perpendicular to these layers
is treated as if these were different atoms in a unit cell. The Fourier transforms
are done now within the two-dimensional surface Brillouin zone (SBZ), and the
corresponding integration is over all �k‖ in the SBZ. Thus, we have

◦
Gnμ,n′μ′

LL′ (E) =
1

ASBZ

∫
SBZ

d2k‖ ei�k‖·(�Rn−�Rn′
) ei�k‖·(�χμ−�χμ′

)

×
[(

1 − Gr(�k‖; E) Δt(E)
)−1

Gr(�k‖; E)

]μμ′

LL′
. (4.29)

where now �Rn are in-plane position vectors of the two-dimensional Bravais lattice,
while �χμ are vectors connecting atomic positions in different layers; ASBZ is the
area of the SBZ.

In the case of surfaces, the vacuum is described by empty sites, meaning that
the lattice structure is continued into the vacuum but no nuclei are positioned
there. In this way, the vacuum potential and charge density are calculated within
the multiple-scattering formalism on the same footing as the bulk. In practice,
three or four monolayers of vacuum sites are enough for the calculation of the
electronic structure; equation (4.29) can be cut-off after that.

Depending on the problem, one can choose to use a slab of finite thickness in
order to represent a surface or interface, or one can choose to take half-infinite
boundary conditions. In the latter case, and starting from a “boundary” layer,
the crystal is continued by periodically repeating the potential of this boundary
layer to all subsequent layers up to infinity. One is then faced with a problem
of inverting an infinite matrix, which due to the screening transformation has a
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tridiagonal form, in order to find the Green function in the region of interest. This
is done efficiently by the decimation technique [75]. which is based on a iterative
inversion of matrices of doubled size at each step. In this way the number of layers
which are included in the Green function grows exponentially with the number
of steps, and the limit of the half-infinite crystal is rapidly achieved.

4.5 t-matrix for Perturbed Atoms

The next step is the construction of the perturbed system. The impurity atoms
which might couple magnetically in a non-collinear way reside at the surface (see
Fig. 4.5), perturbing the potential at a few neighboring sites (atoms or empty cells
representing the potential in the vacuum). Within this finite cluster of perturbed
sites the magnetization can be non-collinear leading to the appearance of non-
diagonal elements of the t-matrix:

t(E) =

[
t↑↑(E) t↑↓(E)
t↓↑(E) t↓↓(E)

]
(4.30)

The non-diagonal t-matrix contains the information on spin-flip scattering by the
atomic potential.

Fig. 4.5 – A schematic view of a system characterized by two perturbations: first
by the presence of an impurity sitting in the surface layer and second by taking into
account non-collinear magnetism. The extension of the perturbations is delimited
by a pink color.
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At this stage an approximation enters our method. It is assumed that, sepa-
rately for each atom, there exists an intra-atomic spin quantization axis common
to the whole atomic cell. This axis is identified with the spatial average of the
magnetization density �mn(�r) in each cell n. This defines the local spin frame of
reference. In this way we neglect the variation of the spin quantization axis within
the cell, avoiding the time-consuming numerical solution of the potential of cou-
pled Schrödinger equations of the two spin channels. Within the local density
approximation of density-functional theory, the exchange correlation potential
has the same reference frame as the local magnetization �mn(�r). Then for each
atom we have a potential which is collinear in the local frame, and we obtain the
solutions of the Schrödinger equation, Rloc

nLs(�r; E) and H loc
nLs(�r; E), depending on

the spin index s of the local frame.
The solution of the Schrödinger equation separately for each spin channel

provides also the diagonal t-matrix of each atomic cell n in the local frame of
reference:

tloc
n (E) =

[
tloc
↑↑ (E) 0

0 tloc
↓↓ (E)

]
(4.31)

Then the t-matrix is rotated from the local to the global spin frame of reference
using the spin rotation matrix Un defined in the section4.3:

tglob
n (E) = Untloc

n (E)U †
n, (4.32)

The polar angles θn and φn entering in the expression of Un define the di-
rection of the local magnetic moment �Mn with respect to the global spin frame
of reference. Normally, θn and φn vary within the atomic cell, but in the ap-
proximation used here, average angles are defined for each cell via an averaging
of the magnetization density within the cell. Of course, when self-consistency is
achieved, both the averaged and the point-by-point varying magnetization direc-
tion can be extracted from the output density matrix. Thus the assumption of a
unique spin direction in each cell is only made for the spin-dependent potential.

The t-matrix in the global spin frame of reference can be rewritten in the
following way:

tglob
n (E) = Un

[
tloc
↑↑ (E) 0

0 tloc
↓↓ (E)

]
U †

n. (4.33)

To continue let us define new useful quantities tloc
sum and tloc

diff as following:

tloc
sum(E) = tloc

↑↑ (E) + tloc
↓↓ (E) and tloc

diff (E) = tloc
↑↑ (E) − tloc

↓↓ (E) (4.34)
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Equation 4.33 is equivalent to

tglob
n (E) =

1

2
Un

[
tloc
sum(E) + tloc

diff (E) 0
0 tloc

sum(E) − tloc
diff (E)

]
U †

n (4.35)

=
1

2
Un

{
tloc
sum(E)

[
1 0
0 1

]
+ tloc

diff (E)

[
1 0
0 −1

]}
U †

n (4.36)

=
1

2
Un

[
tloc
sum(E)1 + tloc

diff (E)σz

]
U †

n, (4.37)

or

tglob
n (E) =

1

2

[
tloc
sum(E)1 + tloc

diff (E)UnσzU
†
n

]
, (4.38)

In order to write eq. (4.38) in a more elegant way it is convenient to define the
projection matrices σns for the local spin–up (↑) and spin–down (↓) directions
as:

σns =
1

2
Un(1 ± σz)U

†
n = (σns)

2 (+ for s =↑, − for s =↓) (4.39)

Then tglob
n (E) is written as:

tglob
n (E) = tloc

n↑↑(E)σn↑ + tloc
n↓↓(E)σn↓. (4.40)

The projection matrices σns are more explicitly given by

σns =
1

2

[
1 ± cos(θn) ± sin(θn)e−iφn

± sin(θn)eiφn 1 ∓ cos(θn)

]
(+ for s =↑, − for s =↓). (4.41)

In the collinear case the local and global frames are identical and the projection
operators reduce to:

σ↑ =

[
1 0
0 0

]
, σ↓ =

[
0 0
0 1

]
(collinear case). (4.42)

4.6 Structural Green Function

At this stage, the difference between the t-matrices Δtglob
n = tglob

n − ◦
tn is

calculated in order to get all the ingredients to solve the Dyson equation for the
structural Green function (

◦
tn has been defined in the global frame in eq. (4.25)).

This is the analogue of eq. (4.2) in matrix form in spin space:

Gstr(E) =
◦
Gstr(E) +

◦
Gstr(E)Δtglob(E)Gstr(E). (4.43)

Here, in analogy to eq. (4.2) and eq. (4.2), Gstr(E) are matrices of size 2 × 2 in
spin space, size (lmax + 1)2 × (lmax + 1)2 in angular momentum space, and size
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N ×N (with N the number of sites) in real space; all these indices are combined
to form 2×(lmax+1)2×N -dimensional matrices. The t-matrix itself is diagonal in
real space site indexes. The solution of eq. (4.43) for the structural Green function
requires matrix inversion, yielding Gstr(E) in the global frame:

Gstr(E) =
◦
Gstr(E)(1 − Δtglob(E)

◦
Gstr(E))−1. (4.44)

4.7 Green Function for Perturbed Atoms

Equation (4.2) can be now rewritten in the non-collinear case in order to
obtain the Green function in the local frame. Using the matrices σloc

ns (eq. (4.42))
to project the wavefunctions to the local frame, the Green function is written as:

Gloc(�Rn + �r, �Rn′ + �r′; E) = −i
√

E
∑
Ls

Rloc
nLs(�r<; E)σloc

ns H loc
nLs(�r>; E)σloc

ns

+
∑

LL′ss′
Rloc

nLs(�r; E)σloc
ns Gloc

LL′nn′(E)σloc
n′s′R

loc
n′L′s′(�r

′; E). (4.45)

As Rloc and H loc are scalar quantities, the product operators within the single
particle term σloc

ns σloc
ns reduces to σloc

ns . This simplification cannot occur in the
second term because of the structural Green function. In order to derive the
Green function in the global frame we rotate both sides of eq. (4.45) by using
rotation matrices U :

UGloc(�Rn + �r, �Rn′ + �r′; E)U † = −i
√

E
∑
Ls

Rloc
nLs(�r<; E)H loc

nLs(�r>; E)Uσloc
ns U †

+
∑

LL′ss′
Rloc

nLs(�r; E)Uσloc
ns Gloc

LL′nn′(E)σloc
n′s′U

†Rloc
n′L′s′(�r

′; E).(4.46)

Introducing the terms UU † = 1 at the right and left of the structural Green
function Gloc

LL′nn′(E) in (4.46) gives

UGloc(�Rn + �r, �Rn′ + �r′; E)U † = −i
√

E
∑
Ls

Rloc
nLs(�r<; E)H loc

nLs(�r>; E)Uσloc
ns U †

+
∑

LL′ss′
Rloc

nLs(�r; E)Uσloc
ns U †UGloc

LL′nn′(E)U †Uσloc
n′s′U

†Rloc
n′L′s′(�r

′; E).(4.47)

The term Uσloc
ns U † is nothing else than the projector operator to the global

spin frame of reference σglob
ns that we note for simplification as just σns. We

arrive finally at an expression giving the Green function in the global frame
of reference depending explicitly on the structural Green function in the global
frame (Gglob

LL′nn′(E) = UGloc
LL′nn′(E)U †) and on the solutions of the Schrödinger
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equation in the local frame:

Gglob(�Rn + �r, �Rn′ + �r′; E) = −i
√

E
∑
Ls

Rloc
nLs(�r<; E)H loc

nLs(�r>; E)σns

+
∑

LL′ss′
Rloc

nLs(�r; E)σnsG
glob
LL′nn′(E)σn′s′R

loc
n′L′s′(�r

′; E). (4.48)

If needed, the Green function can be rotated to the local frame of any atom by
the use of the transformation matrices Un (eq. (4.20)). We point out that, even
in the local frame of reference, the Green function is not in general diagonal in
spin space. Finally we calculate the charge density and spin density from Equa-
tions (4.3, 4.4). The spin dependent local density of states within the Wigner-Seitz
cell WS of each site n is:

nns(E) = −1

π

∫
WS

ImGss(�Rn + �r, �Rn + �r; E)d3r (4.49)

The spin density �m = (mx, my, mz) (eq. (4.4)) is non-collinear with the following
expressions for its components

mx(�r) = −1

π

∫ EF

Im

[
G↑↓(�r, �r; E) + G↓↑(�r, �r; E)

]
, (4.50)

my(�r) = −1

π

∫ EF

Im

[
i G↑↓(�r, �r; E) − i G↓↑(�r, �r; E)

]
, (4.51)

mz(�r) = −1

π

∫ EF

Im

[
G↑↑(�r, �r; E) − G↓↓(�r, �r; E)

]
. (4.52)

Thus, knowing the components of the spin-density vector we are able to cal-
culate the new polar angles at each site n for each point by

tanθn(�r) =
mz

n(�r)

mn(�r)
, tanφn(�r) =

my
n(�r)

mx
n(�r)

(4.53)

or as an average over the local Wigner–Seitz cell

tanθn =

∫
WS

mz
n(�r)d�r∫

WS
mn(�r)d�r

, tanφn =

∫
WS

my
n(�r)d�r∫

WS
mx

n(�r)d�r
(4.54)

At this step, we know the average angle of each Wigner-Seitz cell which we
use to rotate back the charge densities to the local spin frame of references using
the rotation matrices. These charge densities are later on used to calculate the
exchange correlation potential and the Hartree potential.
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4.8 Total Energy
Within density-functional theory, the total energy of a many-electron system

is written as a sum of three terms: the single-particle kinetic energy T0[ρ], the
Hartree energy EH [ρ] (including the interaction with the nuclear charge), and the
exchange and correlation energy Exc[ρs] (s = (+,−) is the spin index defined in
the local spin frame of reference related to each Wigner-Seitz cell). The kinetic
and the exchange-correlation energy, as well as the total energy, are functionals of
the spin density ρs(�r) := (ρ+(�r), ρ−(�r)), while the Hartree energy is a functional
of the charge density ρ = ρ+ + ρ−. We have:

Etot[ρ+, ρ−] = T [ρ+, ρ−] + EH [ρ] + Exc[ρ+, ρ−] (4.55)

Given the single-particle energies εis (eigenenergies of the Kohn-Sham equations),
the kinetic energy can be written in terms of these and of the effective Kohn-Sham
potential V eff

s (�r) as:

T [ρ+, ρ−] =
∑

s

(∑
i

εis −
∫

ρs(�r) V eff
s (�r) d3r

)
(4.56)

In this way, the sum of the single-particle energies

Esp =
∑
is

εis (4.57)

is singled out and can be thought of a “band energy”, which would be relevant if we
had non-interacting electrons in an external potential, while the remaining terms
are packed up together in what is called the “double-counting energy terms”, as
corrections to the single-particle picture:

Edc[ρ+, ρ−] = −
∑

s

∫
ρs(�r) V eff

s (�r) d3r + EH [ρ] + Exc[ρ+, ρ−]. (4.58)

The total energy is the sum of the two:

Etot[ρ+, ρ−] = Esp[ρ+, ρ−] + Edc[ρ+, ρ−]. (4.59)

We proceed to analyze each term separately. The sum of single-particle energies
can be written in terms of the spin-dependent density of states ns(E) as

Esp =
∑
is

εis

=
∑

s

∫ EF

E ns(E) dE (4.60)

= EF N −
∑

s

∫ EF

Ns(E) dE. (4.61)
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In the last step we introduced Ns(E) as the integrated density of states up to
energy E and used the fact that the total number of electrons per spin is just
Ns =

∫
EF

n(E) dE, and N = N+ + N−. In practice, expression (4.60) can be
used for periodic systems. Expression (4.61) is useful for systems with broken
periodicity, such as impurities in crystals, where the perturbed charge density
converges very slowly with distance from the impurity due to Friedel oscillations.
Then, Ns(E) is calculated not by integration of ns(E), but by using the Friedel
sum rule (or its multiple-scattering analogue, Lloyd’s formula), which takes into
account the Friedel oscillations up to infinity.

The double-counting term includes the electrostatic energy and the exchange-
correlation energy. The electrostatic (Hartree) energy depends on the charge den-
sities at each cell n, ρn(�r) := ρ(�r + �Rn), and on the nuclear charges Zn. We have:

EH [ρ] =
∑
nn′

∫
Ωn

d3r

∫
Ωn′

d3r′
ρn(�r) ρn′

(�r′)

|�r + �Rn − �r′ − �Rn′|

−2
∑
nn′

Zn′
∫

Ωn

d3r
ρn(�r)

|�r + �Rn − �Rn′| +
∑

n

∑
n′ 	=n

ZnZn′

|�Rn − �Rn′| (4.62)

where Ωn is the volume of the atomic cell n. It proves convenient to define the
Coulomb potential

V n
C (�r) = 2

∑
n′

∫
Ωn′

d3r′
ρn′

(�r′)

|�r + �Rn − �r′ − �Rn′| − 2
∑
n′

Zn′

|�Rn − �Rn′ | (4.63)

The Madelung potential VM(�Rn) is the Coulomb potential at position Rn if we
exclude the term n′ = n from the second sum of (4.63):

VM(�Rn) = 2
∑
n′

∫
Ωn′

d3r′
ρn′

(�r′)
�Rn − �r′ − �Rn′| − 2

∑
n′(	=n)

Zn′

|�Rn − �Rn′| (4.64)

Using the above definitions we re-write the electrostatic energy as

EH [ρ] =
1

2

[∑
n

∫
Ωn

d3r ρn(�r)V n
C (�r) −

∑
n

ZnVM(�Rn)

]
(4.65)

The Coulomb potential and the charge density at site n are expanded in spherical
harmonics around �Rn:

V n
C (�r) =

∑
L

V n
C,L(r)YL(�r); (4.66)

ρn(�r) =
∑

L

ρn
L(r)YL(�r). (4.67)
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In this way the calculation of the Coulomb potential is reduced to summing
up terms containing the moments ρn

L(r) of the charge density over all lattice
sites. For the higher l terms the corresponding summations converge rapidly,
but for low l an Ewald summation is required. The details of this procedure are
omitted here. Once the expansion (4.66) of the Coulomb potential is known, the
Madelung potential can be calculated using the value of V n

C at a sphere of radius
R around �Rn and by knowledge of the charge distribution within this sphere. The
result can be obtained by solving the corresponding boundary-value problem in
electrostatics (the proof is omitted here):

VM(�Rn) = 2
√

4π

∫ R

0

ρn
l=0(r) dr +

2

R
(Zn − Nn(R)) +

1√
4π

V n
C,l=0(R), (4.68)

where Nn(r) is the number of electrons within the sphere of radius R.
After self-consistency the effective Kohn-Sham potential at cell n can be writ-

ten in terms of the Coulomb potential and the exchange-correlation energy:

V n
eff s(�r) = V n

C (�r) +
δExc[ρ+, ρ−]

δρs(�r)
. (4.69)

Otherwise V n
eff s has to be considered as a trial potential. For instance during

iterations V n
eff s(�r) is determined by the input densities, but EH [ρ] and Exc[ρ]

are determined by the output densities. Finally, the exchange-correlation energy
within the local density approximation is given by

ELDA
xc [ρ] =

∫
ρ(�r) εxc(ρ+(�r), ρ−(�r)) d3r (4.70)

where εxc(ρ+, ρ−) is the exchange-correlation energy density for a homogeneous
electron gas of spin density ρs. This is again expanded in spherical harmonics as

εxc(ρ
n
+(�r), ρn

−(�r)) =
∑

L

εn
xc,L(r)YL(�r), (4.71)

and the exchange-correlation energy is given by

ELDA
xc [ρ] =

∑
n

∑
LL′L′′

CLL′L′′

∫ Rn
c

0

Θn
L(r) ρn

L′(r) εn
xc,L′′(r) r2 dr. (4.72)

4.9 Lloyd’s Formula
Contrary to the usual band-structure methods where EF is adjusted to yield

charge neutrality, this cannot be achieved in point-defect calculations since the
Fermi energy is fixed by the host. In metals perfect screening can only occur if an
infinitely long-ranged perturbation potential is allowed meaning that the Friedel
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sum rule cannot be satisfied exactly in the calculations. In addition, however,
perfect screening also requires the inclusion of infinitely many angular momenta,
i.e. lmax = ∞. In the special case of a point defect in an otherwise ideal crystal
one needs for an accurate total energy calculation, i.e. the calculation of the single
particle energy term, the exact change Δn(E) of the density of states due to the
defect or the change ΔN(E) of the integrated density of states. This change is
calculated elegantly by the Lloyd’s formula [76, 77] which was adapted later into
the case of the KKR method by Drittler et al. [78] in the following form 1:

ΔN(E) =
1

π

∑
n

ln det |Δαn
LL′(E)| − 1

π
ln det |δnn′

LL′ −
◦
Gnn′

LL′(E)Δtn
′

LL′(E)|, (4.73)

The sum is over the cells and the Δt and Δα matrices are changes with respect
to the reference system. Note that in this expression all angular momenta in the
expansion of the wave function as well as the infinite extension of the scattered
waves in real space are implicitly summed up and included. For real calculations
we proceed to a cut-off in angular momenta as well as in real space is only made
for the potentials and not for the host Green function. The KKR determinant
det |1 −

◦
GΔt| is over combined angular-momentum and cell indices, whereas

the determinant det |Δα| is over angular-momentum indices alone. The size of
the KKR-matrix is determined by the matrix Δα which describes the different
behavior of the single-scattering solutions of the perturbed system (Rn

L) and host

system (
◦
Rn

L′) at the origin

Rn
L(�r, E) =

∑
L′

◦
Rn

L′(�r, E)Δαn
L′L(E) for r → 0 (4.74)

and can be calculated by

Δαn
L′L(E) = δLL′ +

∫
n

d�r
◦
Hn

L′(�r, E)ΔV n(�r)Rn
L(�r, E). (4.75)

The extension of the Lloyd’s formula into the non-collinear case is simple.
Since one works in the global spin-frame of reference it is only needed to take
all the quantities of eq. (4.73) in the global spin frame of reference. However,
we would like to show here that as far as we are concerned with the change of
the integrated density of states, we may do the calculation either in the global
spin frame of reference or in the local spin frame of reference. We will prove this
statement for the first part of eq. (4.73) i.e. the Δα-matrix while the same can

be used for the KKR determinant det |1 −
◦
GΔt| for which we use instead the

result obtained immediately when solving the Dyson equation (eq. (3.42)) in the
global spin frame of reference by inverting the denominator.

1. see also the generalization to finite electronic temperatures done by Zeller [79]
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The determinant of the matrix Δα in eq. (4.73) is already obtained in the local
spin frame of reference and can be rotated to the global spin frame of reference
using rotation matrices

ln det |Δαglob| = ln det |UΔαlocU †|. (4.76)

Using the properties of matrix-algebra

ln det |Δαglob| = ln det |ΔαlocU †U |, (4.77)

and as U †U is the identity matrix one gets

ln det |Δαglob| = ln det |Δαloc|. (4.78)

4.10 Frozen Potential Approximation for Magnetic
Interactions

An important approximation used in electronic structure calculations was
introduced twenty years ago by Oswald et al. [80] in Jülich concerning magnetic
interactions. They have shown that the magnetic interaction energy, i.e. the total
energy differences EFM −EAF between the ferromagnetic and antiferromagnetic
configurations of two magnetic layers or impurities, can be calculated in first
order from the single-particle energies alone.

Here we present briefly the validity of this approximation. We have seen earlier
that in density functional theory, the total energy E{n+(�r), n−(�r)} is a unique
functional of the spin densities n+(�r) and n−(�r) and obeys a variational principle,
such that E{n+(�r), n−(�r)} is extremal against small variations δn+(�r), δn−(�r)
around the exact solutions. Furthermore, we have also seen earlier that the total
energy E = Esp + Edc can be split up into single particle contributions Esp and
double counting terms Edc.

Esp =

∫ EF

dE(E − EF )(n+(E) + n−(E)) (4.79)

Edc = −
∫

d�r(n+(�r)v+
eff(�r) + n−(�r)v−

eff(�r)) + W{n+(�r), n−(�r)} (4.80)

W =

∫
d�rn(�r)Vext(�r) +

∫
d�rd�r′

n(�r)n(�r′)

|�r − �r′| + Exc{n+(�r), n−(�r)} (4.81)

Here v±
eff(�r) are the spin dependent Kohn-Sham potentials, which in a vari-

ational sense can be replaced by trial potentials. W is the sum of the Coulomb
energies and exchange correlation energies Exc. Vext(�r) is the nuclear potential
and n(�r) = n+(�r) + n−(�r) the charge density.
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In the following we use an additional extremal property of the double counting
energy Edc. For fixed trial potentials v±

eff the double counting energy Edc{n+(�r), n−(�r)}
is insensitive to variations in n±(�r). In first order one obtains

∂Edc|v±eff
=

∫
d�r

[
(

∂W

∂n+(�r)
− v+

eff

)
∂n+(�r) +

(
∂W

∂n−(�r)
− v−

eff

)
∂n−(�r)

]
(4.82)

Since the exact solution requires v±
eff = ∂W/∂n±(�r), the error in eq. (4.82)

is in fact of second order. Therefore, Edc{n+, n−} can be calculated with some
approximate spin densities n±(�r) which do not need to be identical with those
generated from the trial potentials v±

eff(�r), which strongly enhances the varia-
tional freedom.

We picture a system of two magnetic impurities, i and j, in a host crystal.
We want to calculate the energy difference between the FM and AF configura-
tions. We take advantage of the extremal properties of both E and Edc. First, we
superimpose the changes Δvi

eff and Δvj
eff due to isolated defects to obtain the

trial potential veff = v0
eff +Δvi

eff +Δvj
eff when v0

eff refers to the potential of the
host crystal. Since for larger distances the interaction is weak, the superposition
is a very good first order approximation. Furthermore Δ vi,j

eff are assumed for
simplicity of the discussion to be localized on the impurities although this is not
a necessary assumption. Second for the spin densities n±(�r) in Edc we assume
that the charge density n(�r) = n+(�r) + n−(�r) is the same for both configurations
FM and AF. For instance, the average density of both configurations may be
taken or we may use the superposition of the changes Δni(�r) and Δnj(�r) of the
individual impurities, which is identical for both configurations. For this reason,
all troublesome Coulomb terms in the double counting energy Edc are the same
for both configurations and cancel each other for the magnetic interaction energy
EFM − EAF . Finally, the genuine magnetic part Em

dc of the double counting en-
ergy depends at least quadratically on the magnetization |m(�r)|. Also here we
assume that |m(�r)| is the same for both configurations. This is e.g., the case, if
the moments are well localized on the impurity and if the interaction effects are
small. Then also Em

dc cancels in the total energy difference EFM −EAF . Note that
small deviations from these approximations for n(�r) and |m(�r)| in Edc affect due
to eq. (4.82) the total energy only in second order.

Thus we have shown, that the magnetic interaction energy is in first order
determined by the single particle energies only. Note that this proof applies only
to the magnetic part of the interaction energies, but not to the “full” interaction,
for which Coulomb terms are usually very important.
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4.11 Formula for Exchange Interactions Jij

The Heisenberg model described by

H = − 1

2

∑
i	=j

Jij�ei · �ej (4.83)

is very useful for a simple description of non-collinear magnetism. Here Jij is
the exchange integral between the atoms i and j and �ei defines the direction of
the local moment �Mi. The parameters Jij can be found by fitting total energies
obtained by ab-initio DFT calculations for different magnetic configurations (e.g.
ferromagnetic and antiferromagnetic) to the model described above. However, we
may face a problem of not being able to converge a given magnetic configuration
creating then problems to determine J which we overcome by using a method
introduced by Lichtenstein et al. [24]. This method rests on the force theorem
described in the previous section and has the advantage of allowing the exchange
integral calculations directly from one magnetic state. Here we give a slightly
different proof of the method then the one published [24].

Let us determine the rotation energy of two spin moment at sites i and j ,
which are initially ferromagnetically aligned, by a rotation of both moments op-
posite to each other by angles of ±θ/2. It is also necessary to subtract interaction
energies of the atoms i and j with the environment obtained when only one of
the two atoms is rotated by +θ/2 or with −θ/2 with respect to all other atoms:

ΔEij = Eij(θ) − Ei(θ/2) − Ej(θ/2) = Jij(1 − cos(θ)), (4.84)

which for small rotation angle θ is equivalent to

ΔEij =
1

2
Jijθ

2. (4.85)

We know that the total energy Etot is related to the density of states (DOS)
n(E) by

Etot =

∫ EF

dE(E − EF )n(E) = −
∫ EF

dEN(E) with N(E) =

∫ E

dE′n(E ′).

(4.86)
Here Etot refers to the energy of the grand canonical system, for which the Fermi
energy EF as the chemical potential EF is the basic variable. The second equality
follows by partial integration. N(E) is the integrated density of states (IDOS),
counting number of states with energy E ′ below E.

Therefore corresponding to eq. (4.84), the changes of IDOS are given by

ΔNij(E) = ΔNi+j(E) − ΔNi(E) − ΔNj(E), (4.87)

with ΔNi+j(E) is the change of the IDOS when both atoms i and j have their
moments rotated by ±θ/2. ΔNi(E) and ΔNj(E) are changes of the IDOS when
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only one moment is rotated i.e. either the moment of atom i with θ/2 or atom j
with −θ/2. ΔNij(E) is the change of the IDOS corresponding to the interaction
energy between the moments i and j.

The host Hamiltonian H0 describing the ferromagnetic solution is perturbed
by a potential difference ΔV when one moment is rotated. The new Hamiltonian
H is then simply given by the sum H0 + ΔV . In other words the green functions

of the perturbed and of the host system, respectively G = 1/(E −H) and
◦
G =

1/(E −H0) are related by a Dyson equation:

G(E) =
1

1 −
◦
GV

◦
G or G(E) =

◦
G +

◦
GV

1

1 −
◦
GV

◦
G (4.88)

The change of the DOS Δn(E) due to the change of the potential ΔV is related
to the imaginary part of the Green function

Δn(E) = −1

π
Im TrnLs

◦
GV

1

1 −
◦
GV

◦
G (4.89)

TrnLs means the trace operation in spin space, as well as with respect to angular
momentum and cell indices. Since for the trace the identity TrAB = TrBA is
valid, we can combine the right

◦
G in the previous equation with the left one.

Then by using the equation

d
◦
G(E)

dE
=

d

dE

1

E −H0
= − 1

E −H0

1

E −H0
= −

◦
G(E)

◦
G(E) (4.90)

we obtain for Δn(E):

Δn(E) =
1

π
Im TrnLs

d
◦
G(E)

dE
V

1

1 −
◦
GV

=
1

π

d

dE
Im TrnLs ln(1 −

◦
G(E)ΔV ),

(4.91)
from which we get the change of the IDOS after integrating over the energy

ΔN(E) = −1

π
Im TrnLs ln (1 −

◦
G(E)ΔV ). (4.92)

In the case of two potentials V = ΔVi+ΔVj the interactive part of the integrated
density of states according to eq. (4.87) is given by

ΔNij(E) = −1

π
Im TrnLs ln

(
1 −

◦
G(E)(ΔV i + ΔV j)

(1 −
◦
G(E)ΔV i)(1 −

◦
G(E)ΔV j)

)
(4.93)
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Here the arguments of the logarithm can be simplified by using the identity

1 −
◦
G(E)(ΔV i + ΔV j) = (1 −

◦
G(E)ΔV i) ×

×
⎡
⎣1 − 1

1 −
◦
G(E)ΔV i

◦
G(E)ΔV i

◦
G(E)ΔV j

1

1 −
◦
G(E)ΔV j

⎤
⎦ ×

× (1 −
◦
G(E)ΔV j)

= (1 −
◦
G(E)ΔV i) ×

×
[
1 −

◦
G(E)Δti(E)

◦
G(E)Δtj(E)

]
×

× (1 −
◦
G(E)ΔV j) (4.94)

where the t-matrices Δti and Δtj describe all scattering processes at the isolated
atoms i and j, e.g.

Δti = ΔV i
1

1 −
◦
GΔV i

. (4.95)

The formulation giving the IDOS is now very much simplified:

ΔNij(E) = −1

π
Im TrnLs ln

(
1 −

◦
G(E)Δti(E)

◦
G(E)Δtj(E)

)
, (4.96)

For small rotation angles we can apply a first order perturbation theory on
eq. (4.96)

ΔNij(E) =
1

π
Im Tr

◦
G(E)Δti(E)

◦
G(E)Δtj(E) (4.97)

The previous equation is expressed in the global spin frame of reference mean-
ing that the t-matrices have non-diagonal elements which is not the case of the

magnetically collinear host Green function
◦
G. It would be interesting to express

eq. (4.97) in terms of t-matrices in local spin frame of reference related to each
Wigner-Seitz cell. We have already seen previously (eq. (4.38)) that

tglob
n (E) =

1

2

[
tloc
sum(E)1 + tloc

diff (E)UnσzU
†
n

]
, (4.98)

with U being a rotation matrix, tloc
sum and tloc

diff are equal to respectively tloc
↑↑ + tloc

↓↓
and tloc

↑↑ − tloc
↓↓ . Let us consider that the magnetic moment value does not change

with the rotation 2 meaning that the values of the t-matrices are constant in

2. This is the case for a well localized magnetic moment in the Wigner-Seitz cell
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the local spin frame of reference. We obtain then for the difference between the
t-matrices of the perturbed and host system to linear terms in θ

Δtglob
n (E) = −Δtdiff (E)

[
0 θ

2
e−i φ

2

θ
2
ei φ

2 0

]
, (4.99)

which we insert in eq. (4.97) giving the following expression 3

ΔNij = − 1

16π
Im TrnLs

⎡
⎣ ◦
G↑↑Δtidiff

◦
G↓↓Δtjdiffθ

2 0

0
◦
G↓↓Δtidiff

◦
G↑↑Δtjdiffθ

2

⎤
⎦ .(4.100)

The trace in spin space and site indices gives

ΔNij(E) = − 1

8π
Im TrL

◦
G

ij

↑↑(E)Δtjdiff (E)
◦
G

ji

↓↓(E)Δtidiff (E)θ2 (4.101)

Finally the rotation energy (see eq. (4.84)) of two spin moments at sites i and
j is given by

ΔEij = −
∫ EF

dE(E − EF )nij(E) = −
∫ EF

dEΔNij(E) (4.102)

=
1

8π
Im TrL

∫ EF

dE
◦
G

ij

↑↑(E)Δtjdiff (E)
◦
G

ji

↓↓(E)Δtidiff (E)θ2(4.103)

≈ 1

2
Jijθ

2 (4.104)

We conclude thus our proof by giving the expression we use and we imple-
mented in our code in order to calculate the exchange interactions Jij between
two spin moments:

Jij =
1

4π
Im TrL

∫ EF

dE
◦
G

ij

↑↑(E)Δtjdiff (E)
◦
G

ji

↓↓(E)Δtidiff (E) (4.105)

4.12 Test of the Implementation
As no ab-initio calculations on complex magnetism of clusters on surfaces or

in bulk are provided in the literature, we tried few simple tests, where the good
sens leads to expected results. One simple case is to take for example two Cr
atoms in Cu bulk and consider the two possible collinear magnetic configurations
ferromagnetic (θ = 0o) and antiferromagnetic (θ = 180o). The latter one is in
fact the ground state. What we did, for example, is to start a simulation from an
intermediate non-collinear configuration e.g. θ = 90o and let the system relax. The

3. We drop out the argument E for reason of clarity
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Fig. 4.6 – Variation of the single particle energies versus the rotation angle be-
tween the magnetic moments of a Cr-dimer in Cu-bulk. The energies are obtained
with the frozen potential approximation and corrected with the Lloyd’s Formula.
The curve is a cosine-like function in accordance with the expected result from
the Heisenberg model, with J fit to the F-AF total energy difference.

resulting final configuration is the expected one which is the antiferromagnetic
ground state.

Another test possibility is to check the angle dependence of the energy which
should be a cosine function following the Heisenberg model. To do so, we apply the
frozen potential approximation described earlier: we do a one iteration calculation
starting from a converged potential e.g. the antiferromagnetic one which we rotate
by successive angles from 0o up to 180o with 10o steps. The resulting curve is
drawn in Fig. 4.6 and has a cosine-like behavior.

Another test consisted on taking the simplest non-collinear example described
by the Heisenberg model namely the case of a trimer of atoms characterized by
equal antiferromagnetic exchange integrals between first neighboring atoms. The
Heisenberg model predicts that for such case the magnetic ground state is a con-
figuration with an angle of 120o between first neighboring atoms (see Fig. 4.1).
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Fig. 4.7 – Variation of the moment magnetic angle of one Cr-atom versus the
number of self-consistent iterations. We shifted the moment angle by angle of 20o

from its initial ground state (120o) and let it rotate back.

We did this test for a Cr trimer in Cu-bulk. When constraining the magnetism
to be collinear we found a solution with no magnetic moments. A striking effect
appears when we allow the moments to rotate: a non-collinear magnetic configu-
ration was obtained as expected from the Heisenberg model. This example shows
how the magnetic frustration can kill magnetic moments when constraining the
calculations within collinear magnetic configurations. Furthermore we rotated
one magnetic moment from the ground state angle 120o to 100o and start a new
self-consistent calculation. Fig. 4.7 shows the variation of the magnetic moment
angle versus the self-consistent iteration. The converged solution is of-course the
120o configuration.
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Chapter 5

Complex Magnetism of 3d Clusters
on Ni(001)

5.1 Introduction
As a first application of our method, we study the magnetic state of 3d–atom

clusters in and on the Ni(001) surface. As a first step, we reexamine the adatom
properties, which are already known from previous work. In the second step, we
perform calculations for 3d dimers and trimers and use the understanding gained
from the single adatoms in order to explain the results.

5.2 Calculational Details
Our calculations henceforth are based on the LSDA of density functional the-

ory with the parametrization of Vosko et al. [35]. The full nonspherical potentials
and charge densities are calculated, taking into account the correct description
of the Wigner–Seitz atomic cells. [81] Angular momenta up to lmax = 3 were in-
cluded in the expansion of the Green functions and up to 2lmax = 6 in the charge
density expansion. Relativistic effects were described in the scalar relativistic
approximation.

First, the surface Green functions are determined by the screened KKR method
for the (001) surface of Ni which serves as the reference system. The LSDA equi-
librium lattice parameter of Ni was used (6.46 a.u. ≈ 3.42

◦
A ). To describe the

impurities on the surface (later we refer to these as adatoms and to the impurities
sitting in the first surface layer as inatoms), we consider a cluster of perturbed
potentials which includes the potentials of the impurities and the perturbed po-
tentials of several neighboring shells, with typical size ranging from 19 perturbed
sites for the single impurity to 32 for the dimers and trimers; in all cases, at least
the first neighboring sites around the impurity atoms were taken into account in
the calculation to ensure the correct screening of the impurity potentials. Test
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calculations have shown that this is a very good approximation. We consider
the adatoms at the unrelaxed hollow position in the first vacuum layer, and the
inatoms at the unrelaxed position in the first surface layer.

The orientations assigned to the spin moments of the impurities are always
relative to the orientation of the substrate moment, which we take as the global
frame. This, in turn, depends on delicate physical quantities such as the mag-
netic anisotropy energy, which cannot be easily related to the local properties
of the small clusters that we study. In the present approach such effects arising
from spin-orbit interaction are not included. The direction of the host moments
must therefore be considered as an input parameter from experiments or from
independent ab-initio calculations.

5.3 Magnetic Properties of Ni(001) Surface

We simulate the Ni(001) surface using a slab of finite thickness, consisting of
10 layers of ferromagnetic Ni. We give in Tab. 5.3 a comparison with previously
published ab-initio results on the same surface. Ernst et al. [82] have investigated
the case of six Ni monolayers on Cu(001) using the KKR Green function method.
Even though in those calculations the Cu lattice parameter was considered which
is much larger than the Ni one, the surface layer (S) magnetic moments are
identical to our results. This is explained by the high values of the Ni magnetic
moment at the surface compared to the moment in bulk. Going in the slab, we
notice a discrepancy of the magnetic moment value for the (S-1) layer which is due
to the difference between lattice parameters considered in both calculations. The
comparison with the results of Hjortstam et al. [83] is better as they considered
a Ni(001) surface with Ni lattice parameter. Their calculated magnetic moments
based on the full potential linear muffin tin orbital method are in agreement with
our results.

Layer Ernst et al. [82] Hjortstam et al. [83] Present work
S 0.71 0.73 0.70

S-1 0.67 0.61 0.61
S-2 0.67 0.61 0.60
S-3 0.66 / 0.58
C / 0.58 0.59

Tab. 5.1 –. Calculated spin moments (in μB) for the Ni(001) surface layers and
comparison with theoretical results of Ernst et al. [82] and Hjortstam et al. [83].
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5.4 3d Single Adatoms

3d adatoms on Fe(001) and on Ni(001) have been already studied previously,
using the KKR method [84, 42, 85, 86] in the atomic sphere approximation. Here
we repeat the calculations of 3d adatoms on Ni(001) using the full potential
method (detailed results for Fe and Co on Ni(001) are presented in a recent
article [87]). We give a brief analysis of the results, which are basically unchanged,
in order to use them as the basis for understanding the behavior of dimers and
trimers later on.

A collinear calculation of the magnetic state of a single adatom on a ferro-
magnetic substrate can give in some cases two solutions: one with ferromagnetic
coupling (FM) to the substrate moments and one with antiferromagnetic coupling
(AF). One of these states will correspond to the real ground state, and the other
to a local minimum; this is actually a local minimum with respect to collinear
variations of the magnetic moment, since the angle θ between the local moment
and the substrate moment cannot be varied in a collinear calculation. From total
energy calculations of the two states, the ground state can be then determined.
In some cases, when the intra-atomic exchange field is not strong (beginning or
end of the 3d series), only one of the two minima exists. On the other hand, if
non-collinear effects are included in the calculations, the higher one of the two
minima usually becomes unstable against an angular rotation of the moment into
the lower energy minimum, i.e., it is then actually a saddle point.

The full diamonds in the Fig. 5.1(a) show the energy difference between the
AF and the FM solution for 3d adatoms on Ni(001). The first elements of the 3d
series (Sc, Ti, V, Cr) are AF coupled to the substrate whereas the coupling of Mn,
Fe, Co and Ni is FM. Sc (AF), Ti (AF), and Ni (FM) are characterized by a single
solution. Clearly, the AF-FM transition occurs when the adatom atomic number
changes from Cr (Z = 24) to Mn (Z = 25). This transition can be interpreted as
in the case of the interatomic interaction of magnetic dimers [88, 80], in terms of
the energy gain due to the formation of hybrid states with the Ni substrate as the
3d virtual bound state comes lower in energy with increasing Z. An explanation
(see Fig. 5.2) can be given in terms of the d–d hybridization between the adatom
3d states and the Ni substrate 3d states. Energy is gained when a half–occupied
d virtual bound state (VBS) at EF is broadened by hybridization with the Ni
minority 3d states, which lie at EF (the Ni majority d states are fully occupied and
positioned below EF ). For the early 3d adatoms (Fig. 5.2a), it is the majority d
VBS which is at EF , thus the majority–spin direction of the adatom is favourably
aligned with the minority–spin direction of Ni, and an AF coupling arises. For
the late 3d adatoms (Fig. 5.2b), on the contrary, the minority d VBS is at EF ,
and this aligns with the Ni minority d states; then a FM coupling arises. For our
purposes we keep in mind that, since Cr and Mn are in the intermediate region,
i.e., near the AF-FM transition point, their magnetic coupling to the Ni substrate
is weak; this has consequences to be seen in the behavior of dimers, trimers, etc.,
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in the next subsections.
The magnetic moments of the adatoms and Ni first neighbors in the surface

layer are shown in Fig. 5.1(b) and (c). Evidently the moment of the Ni first
neighbors is strongly affected by the adatoms. Especially in the AF state for Mn,
Fe, and Co adatoms, the Ni moment is strongly reduced and the FM configuration
is stable. As regards the adatom moments, due to its half filled d band the Mn
adatom carries the highest magnetic moment (4.09 μB) followed by Cr (3.48 μB)
and Fe (3.24μB).

5.5 3d Single Inatoms

To understand the effect of coordination and stronger hybridization on the
magnetic behavior of the adatoms, we take the case of impurities sitting in the
first surface layer (inatoms). We carried out the calculations for V, Cr, Mn, Fe
and Co impurities. The corresponding spin moments are shown in Fig. 5.1b (green
circles), and the FM-AF energy differences are shown in Fig. 5.1a (open diamonds
and dashed line).

Compared to the adatom case, the spin moments are reduced, especially for
V and Cr. This effect is expected due to the increase of the coordination number
from 4 to 8 and the subsequent stronger hybridization of the 3d levels with the
host wavefunctions. Moreover, the energy difference ΔE between the AF and FM
solutions is affected. The trend can be understood as follows. In the case of Cr,
the reduction of the local magnetic moment M is accompanied by a reduction of
the exchange splitting ΔEX as ΔEX ≈ I ·M , where I ≈ 1eV is the intra-atomic
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exchange integral. This means for the inatom that the occupied 3d states are closer
to EF than for the adatom. In turn, this intensifies the hybridization of these
states with the Ni 3d states (which are close to EF ). At the same time, also the
higher coordination number intensifies the d-d hybridization. The hybridization-
induced level shift in the AF configuration increases, and the energy of the AF
state is thus lowered. The same mechanism is responsible for the weakening of
the FM coupling of Mn inatom compared to the adatom. Similarly, the stronger
hybridization of the Co–inatom d–states stabilizes even more its FM configuration
due to the energy gain from the broadening of the d virtual bound state.

5.6 Adatom Dimers

Having established the single adatom behavior, we turn to adatom dimers. We
considered three geometries of increasing distance: dimers as first, second, and
fourth neighbors in the first vacuum layer. We will discuss the magnetic inter-
action between the dimer atoms and the resulting magnetic order, first looking
only at collinear states and then allowing for non-collinear order. We will see
how, in certain cases, the collinear state reduces the symmetry, while the non-
collinear state restores the full symmetry of the system. Non-collinear order is
finally established for certain first-neighbor dimers.

Fig. 5.3 represents schematically the different considered geometrical config-
urations of impurity dimers residing on the surface. We have investigated the
dimer-1–type of geometry (the adatoms are first neighboring atoms), dimer-2–
type (the adatoms are second neighbors) and dimer-3–type (the adatoms are
fourth neighbors). This allows us to monitor the strength of the magnetic cou-
pling as a function of the distance. Three collinear magnetic configurations were
treated: (i) antiferromagnetic coupling within the dimer leading to a ferrimag-
netic solution (Ferri), (ii) ferromagnetic coupling within the dimer with both
atoms ferromagnetically coupled to the substrate (FM), or (iii) ferromagnetic
coupling within the dimer with both atoms antiferromagnetically coupled to the
substrate (AF).

Our calculations include V, Cr, Mn and Fe dimers. We found that all V and
Fe dimer types behave like the adatoms: in all geometries, both V atoms are
AF and both Fe atoms are FM to each other. On the other hand, Cr and Mn
dimers show magnetic frustration. As shown in Fig. 5.3, both the Cr–dimer-1 and
Mn–dimer-1 show (in a collinear calculation) a Ferri ground state (see Tab. 5.2).
With increasing distance between the adatoms, a transition occurs to the single
adatom magnetic behavior which is AF for Cr–dimers and FM for Mn–dimers. It
is clear that, in the dimer-1 case, there is a competition of exchange interactions.

When we allow for a rotation of the magnetic moments, non-collinear solu-
tions are obtained for the Cr– and Mn–dimer-1 systems. On the other hand the
magnetic coupling of the V– and Fe–dimer-1 remains collinear. Let us start with
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Cr dimers
on Ni (001)

Mn dimers
on Ni (001)

Fe dimers
on Ni (001)

Dimer 3

Dimer 2Dimer 1

V dimers
on Ni (001)

Fig. 5.3 –. Different geometrical configurations considered for dimers at the
surface of Ni(001). Dimer-1–type corresponds to the case where the atoms are first
neighboring atoms, dimer-2–type where the atoms are 2’NN and finally dimer-3–
type to 4’NN. The collinear magnetic ground state are also shown for V, Cr, Mn
and Fe dimers.
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(a)

(b)
Fig. 5.4 –. Most stable configurations of Cr dimer-1–type obtained with (a) the
collinear KKR method and (b) the non-collinear KKR method. The rotation angle
with respect to the z axis is equal to 94.2◦. The collinear state is the ground state,
with the non-collinear state being a local minimum (see text).

Cr–dimer-1: Fig. 5.4(a) represents the collinear magnetic ground state. As one
expects from the adatom picture, both adatoms forming the dimer tend to couple
AF to the substrate but due to their half filled d band they also tend to couple
AF to each other. This can be understood in terms of the Alexander–Anderson
model. [88, 80] To give a short explanation (see Fig. 5.2c), both Cr and Mn have
their majority–spin VBS occupied, below EF , and the minority–spin VBS unoc-
cupied, above EF . An antiparallel configuration between the moments in a Mn or
Cr dimer lowers the energy, because the occupied d VBS of each atom hybridizes
with the unoccupied d VBS of the other atom and is shifted to lower eigenvalues.
Contrary to this, a parallel coupling does not lower the energy, since there is no
level shifting, but only level broadening of the majority d–VBS. Since these are
fully occupied, the broadening brings no energy gain.

Thus there is a competition between the interatomic coupling within the
dimer, which drives it to a Ferri state, and the exchange interaction with the
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Cr Mn
Dimer 1 Dimer 2 Dimer 3 Dimer 1 Dimer 2 Dimer 3

EFM − EFerri(eV) 0.451 0.130 0.120 0.065 −0.242 −0.239
EAF − EFerri(eV) 0.433 −0.093 −0.112 0.496 0.187 0.233

Tab. 5.2 – Energy differences between the Ferri solution and the FM (AF) con-
figuration for the three types of dimers investigated.

substrate, which drives the moments of both atoms in the same direction: AF
for Cr and FM for Mn. As discussed in the previous subsection, the magnetic
exchange interaction (MEI) to the substrate is relatively weak for Cr and Mn.
Thus, the intra–dimer MEI is stronger than the MEI with the substrate, and in
the collinear approximation the ground state is found as ferrimagnetic (Ferri).
Removing the collinear constraint, a compromise can be found such that both
atoms are AF coupled to each other and at the same time (for Cr) slightly AF
coupled to the substrate. This is shown in Fig. 5.4(b): the Cr adatom moments
are aligned antiparallel to each other and basically perpendicular to the substrate
moments. However, the weak AF interaction with the substrate causes a slight
tilting towards the substrate, leading to an angle of 94.2◦ instead of 90◦. We also
observe a very small tilting (≈ 0.3◦) of the magnetic moments of the four outer Ni
atoms neighboring the Cr dimer (the two inner Ni atoms do not tilt for symmetry
reasons).

Despite the above considerations, the collinear Ferri state (Fig. 5.4(a)) is also
a self-consistent solution of the Kohn-Sham equations, even if the collinear con-
straint is removed. Total energy calculations are needed in order to determine if
the non-collinear state is the true ground state, or if it represents a local minimum
of energy with the collinear result representing the true ground state. After per-
forming such calculations we find that the ground state is collinear with an energy
difference of ΔENcol−Ferri = 19.9 meV/adatom (increasing the angular-momentum
cutoff to lmax = 4 brought no significant change to this result).

The case is different for Mn dimers. Fig. 5.5 shows the collinear and the non-
collinear solutions. The dimer atoms couple strongly antiferromagnetically to each
other but the single Mn adatoms tend to couple (weakly) ferromagnetically to the
substrate. Both adatom moments, while aligned AF with respect to each other,
are tilted in the direction of the substrate magnetization, as opposed to the Cr–
dimer. With a rotation angle of ≈ 72.6◦, the tilting from the 90◦ configuration is
rather large. Also the Ni moments are tilted by 7.4◦. The main difference with
the case of Cr–dimer-1 is that for Mn–dimer-1 the non-collinear solution is the
ground state (total energy calculations yield ΔENcol−Ferri = −6.7 meV/adatom).
The spin moments of the V, Cr, Mn, and Fe dimers are given in Tab. 5.4.

In both cases (Cr and Mn dimers) the frustrated collinear solution is asym-
metric, while the non-collinear ground state restores the twofold symmetry of the
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(a)

(b)
Fig. 5.5 –. Most stable configurations of Mn dimer-1–type obtained with the
collinear KKR method (a) and non-collinear KKR method (b). The rotation angle
with respect to the z-axis is equal to 72.6◦. The non-collinear state is the ground
state.

system. The differences in energy between the Ferri and the non-collinear solu-
tions are small and can be altered either by using a different type of exchange and
correlation functional such as GGA or LSDA+U , or after relaxing the atoms. We
note, however, that in a test calculation we found the Cr single-adatom relaxation
to be small (3.23 % inward with respect to the interlayer distance), and thus we
believe that the relaxation cannot affect the exchange interaction considerably.

As a cross-check, it is interesting to compare these non-collinear ab-initio re-
sults to model calculations based on the Heisenberg model with the exchange
parameters fitted to the total energy results. We assume a classical spin Hamil-
tonian of the form

H = −1

2

∑
i	=j

Jij�ei�ej . (5.1)

Here, �e is a unit vector defining the direction of the magnetic moment and i



5.6. Adatom Dimers 69

(a) (b)
Jij (meV) Dimer 1 Dimer 1 Dimer 2 Dimer 3

JCr−Ni −1.3 −11.6 −13.9 −14.5
JCr−Cr −189.1 −221.3 −9.2 −2.0
JMn−Ni 13.0 27.0 26.8 29.5
JMn−Mn −138.2 −140.2 13.7 1.5

Tab. 5.3 –. Values of magnetic exchange parameters Jij for Cr and Mn dimers
on Ni(001), fitted from collinear first–principles total energy calculations (b) and
obtained by the Lichtenstein formula [24] (a) (JCr−Ni and JMn−Ni are averaged
over the different Ni first neighbours of the dimer atoms). Positive Jij values
correspond to ferromagnetic interactions, negative Jij to antiferromagnetic ones.

and j indicate the dimer atoms and their first Ni neighbors. We can evaluate
the interatomic exchange constants JCr−Ni, JMn−Ni, JMn−Mn and JCr−Cr via a fit
to the total energy obtained from collinear LSDA calculations of the FM, AF,
and Ferri configurations. Taking into account only first-neighbor interactions and
neglecting the small rotation of Ni moments, we rewrite the Hamiltonian for the
dimer in terms of the tilting angles θ1 and θ2 of the two Cr (or Mn) atoms (the
azimuthal angles φ do not enter the expression because of symmetry reasons):

H = −JCr−Cr cos(θ1 − θ2) − 4JCr−Ni(cos θ1 + cos θ2) + const. (5.2)

We note the two extreme cases arising from this Heisenberg Hamiltonian: (i)
|JCr−Ni| � |JCr−Cr| leads to the stabilization of the collinear FM or AF config-
uration (adatom-like behavior) and (ii) |JCr−Ni| � |JCr−Cr| leads to antiferro-
magnetic coupling within the dimer if JCr−Cr < 0. Within the Heisenberg model
the Ferri solution and the non-collinear solution with θ = 90◦ have the same
energy. However there is an important difference between both configurations.
In the Ferri configurations the angles the angles θ1, θ2, and θ1 − θ2 are either
0◦ or 180◦, and for small deviations Δθ around these values the cos-functions
in eq. (5.2) vary quadratically in Δθ, showing that this configuration is always
an extremum. However, for small deviations of θ1 and θ2 from the 90◦ values
both cos(θ1) and cos(θ2) vary linear in Δθ, showing that this configuration is not
stable. In fact, any small value of JCr−Ni leads to a small tilting of the adatom
moments either towards the substrate the substrate (as for Cr in fig. 5.4) or away
from the substrate (as for Mn in fig. 5.5).

Table 5.3 summarizes the estimated exchange parameters. Two effects are
striking: (i) The strong antiferromagnetic Cr–Cr and Mn–Mn interaction for the
dimer-1 (nearest neighbors), being an order of magnitude larger than the exchange
interactions with the substrate and being responsible for the stabilization of the
non-collinear state structures shown in Fig. 5.4 and Fig. 5.5. (ii) The very weak
Cr–Cr and Mn–Mn interactions in the dimer-2 and -3 configurations. Whereas
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for the nearest-neighbors configuration (dimer-1) the direct overlap of the d–
wavefunctions of the Cr and Mn atoms leads to the strong coupling, this overlap
is missing for larger distances and the interaction can only proceed through the
substrate. However, this interaction is weak, in fact considerably smaller than the
interaction of both adatoms with the four neighboring Ni atoms of the substrate.
Therefore these dimers are effectively decoupled, and behave like the isolated
adatoms, being antiferromagnetically coupled to the substrate in the case of Cr
and ferromagnetically for Mn. The exchange constants Jij fitted to total energy re-
sults can be compared to the ones obtained by using the Lichtenstein formula [24]
(starting from the Ferri ground state). This rests on the force theorem, and yields
the exchange constants relevant to an infinitesimal rotation of the moments. The
results of the two methods agree best for the Mn-Mn interaction, and reasonably
well for the Cr-Cr interaction, but not for Mn-Ni and Cr-Ni.

With the parameters from Tab. 5.3 one can also recalculate the non-collinear
structure of the ground state. The agreement with the ab-initio results is quite
reasonable. For the Cr dimer, one finds a slightly smaller tilting, i.e. 96◦ instead
of 94.2◦, while for the Mn dimer the angle is 67.3◦ instead of 70.6◦.

The differences in energy calculated within this simple model, show that
in this model the Cr-dimer-1 has a non-collinear ground state (ΔENcol−Ferri =
−4.8 meV/adatom) as well as the Mn-dimer-1 (ΔENcol−Ferri = −20.8 meV/adatom).
The discrepancy obtained for the case of Cr-dimer-1 (the LSDA calculation gives
the collinear Ferri ground state) can be attributed to the restrictions of the Heisen-
berg model. For instance, for the Ferri and non-collinear configurations, the Cr
moments are slightly different, and also the reduction of the Ni moments as a
function of the rotation angle (e.g. for the single adatom) cannot be described by
the Heisenberg model, where the absolute values of the moments are assumed to
be constant.

In order to illuminate the magnetic stability found in our calculations we
did a one-iteration calculations starting from Ferri Cr-potentials and applying
the frozen potential approximation. We did two kind of calculations: first, we
froze one magnetic moment in the parallel direction (θ=0o) and rotated the other
moment by an angle-sequence of 15o up to an antiparallel coupling (θ=180o);
second, we froze one magnetic moment at 94o angle and rotate the other moment
by again an angle-sequence of 15o into the opposite direction from a parallel up
to an antiparallel coupling with respect to the host. The single particle energies
calculated using the Lloyd’s formula are plotted in Fig. 5.6: we notice that in
the first case the Ferri solution is the ground state (black circles) while a local
minimum appears in the second case (red circles). However, the energy difference
between the 94◦ state and the ground state is unrealistically large, since the
relaxation of the moments are not correctly described.
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Fig. 5.6 –. Variations of single particle energies, obtained by the frozen potential
approximation using the Lloyd’s formula, versus the rotation angle of the second
magnetic moment of a Cr-dimer/Ni(001). The black circles show the energy vari-
ation when the first magnetic moment is frozen at zero angle (parallel), while the
red circles describe the energy variation for the first magnetic moment frozen at
≈94o.

5.7 Inatom Dimers

To evaluate the effect of change in coordination and hybridization, we have
undertaken a study of inatom first-neighbor dimers for V, Cr, Mn and Fe. The V
and Fe inatom-dimers were found to behave like the adatom dimers. The V dimer
prefers an AF state, the Fe dimer the FM state, while the Cr and Mn dimers are
in a Ferri state (in case of collinear constraint). The spin moments in the collinear
and non-collinear states are given in Tab. 5.4 Within the Ferri-dimers, the dif-
ference between the moments of the two atoms arizes from the different coupling
of each inatom with the the substrate (AF or FM). One notices also that the
magnetic moments in the ground state decrease compared to the values obtained
for the single inatoms and single adatoms. When the rotation of the moments is
allowed, Cr–dimer can be stabilized at an angle of 107◦ (instead of 94.2◦ found for
the adatom–dimer case), and Mn–dimer at an angle of 80.9◦ (instead of 72.6◦).
Thus the non-collinear solutions obtained for inatom–dimers are rather similar to
what was obtained for adatom–dimers. Energetically, however, both the Cr and
the Mn inatom dimers show a lower total energy in the collinear Ferri state (for
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Dimer On In
V(AF) (−1.28,−1.28) (−0.32,−0.32)
Cr(Ferri) (−3.04, 3.05) (−2.00, 1.96)
Cr(Ncol) (3.03, 3.03) (1.97, 1.97)
Mn(Ferri) (−3.84, 3.69) (−3.32, 3.20)
Mn(Ncol) (3.75, 3.75) (3.26, 3.26)
Fe(FM) (3.10, 3.10) (2.88, 2.88)

Tab. 5.4 – Atomic spin moments (in μB) of the adatom and inatom dimers (of
type 1, i.e., nearest-neighbors) in the collinear and non-collinear configurations. A
minus sign of the collinear moments indicates an antiparallel orientation with re-
spect to the substrate magnetization. Embedding the dimer into the surface causes,
as expected, a decrease of the spin moments due to stronger hybridization of the
d wavefunctions.

Cr, ΔENcol−Ferri = 12.1 meV/adatom; for Mn, ΔENcol−Ferri = 11.2 meV/adatom).

5.8 Trimers
Following the same procedure as for dimers we first investigated several collinear

magnetic configurations for the most compact trimer on the Ni(001) surface,
which has the shape of an isosceles rectangular triangle (see Fig. 5.7) of side√

2a/2 and hypotenuse a (a is the Ni fcc lattice constant). It is expected, and
verified by total-energy calculations, to find the ↓↑↓ configuration as the collinear
magnetic ground state for Cr and the ↑↓↑ for the Mn trimer (↑ means an atomic
moment parallel to the substrate, ↓ an antiparallel one; the middle arrow repre-
sents the direction of the atomic moment at the right-angle corner of the triangle).
In Tab. 5.5, the energy differences among the possible collinear configurations are
given; for the ↑↑↑ and ↓↓↓ Cr trimers, no self-consistent solution could be found.

Magn. Config. ↑↑↓ ↓↑↓ ↓↓↑ ↑↓↑ ↑↑↑ ↓↓↓
Cr: E − E↓↑↓(eV) 0.420 0 0.390 0.193 — —
Mn: E − E↓↑↓(eV) 0.116 0 0.318 −0.184 0.239 0.817

Tab. 5.5 –. Energy differences between the different calculated collinear magnetic
configurations with the ↓↑↓ configuration. The direction of the arrows represents
the direction of the atomic moments relative to the substrate magnetization (↑
parallel, ↓ antiparallel). The middle arrow represents the atom at the right-angle
corner of the trimer.

Allowing free rotation of the magnetic moments leads to no change for the
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(a)

(b)
Fig. 5.7 –. Non-collinear state of the Mn trimer on Ni(001) surface. Side view
(a) and top view (b) are shown. This represents a local minimum in energy, with
the collinear state being the ground state (see text).

Cr trimer ↓↑↓—the state remains collinear (within numerical accuracy). On the
other hand, for the Mn trimer a non-collinear solution is found (Fig. 5.7) with
the nearest neighbours almost antiferromagnetic to each other, but with a collec-
tive tilting angle with respect to the substrate. This tilting angle is induced by
the ferromagnetic MEI between the central Mn atom with the substrate, com-
peting with the antiferromagnetic MEI with its two companions. The top view
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of the surface shows that the in-plane components of the magnetic moments are
collinear.

The tilting is somewhat smaller (21.7◦) for the two Mn atoms with moments
up than for the Mn atom with moment down (28.5◦). Also the neighboring Ni–
surface atoms experience small tilting, with varying angles around 4◦−10◦. From
the energy point of view, the ground state is the collinear one, ↑↓↑, with an energy
difference of ΔENcol−↑↓↑ = 7.6 meV/adatom with respect to the non-collinear
solution.

As done for the dimers, we proceed here also to frozen potential approximation
to show that the non-collinear solution is a local minimum. In the present case:
first, we froze the two outer magnetic moments in the parallel direction (θ=0o)
and rotated the central moment by an angle-sequence of 15o up to an antiparallel
coupling (θ=180o); second, we froze the two outer magnetic moments at 22◦ angle
and rotate the other moment by again an angle-sequence of 15o into the opposite
direction up to an antiparallel coupling. The single particle energies are shown in
Fig. 5.8. It is clear that a local minimum appears in the second case at an angle
of ≈ 150◦ which has a very small energy difference compared to the ↑↓↑ case.

We have also investigated the cases where the trimers are sitting in the surface
layer. No non-collinear solution was found, while there is no change in the collinear
ground state which is ↓↑↓ for the Cr trimer and ↑↓↑ for the Mn trimer.

One should note that the moments of the two first neighboring impurities are
almost compensated in the Ferri solution. Therefore the third moment determines
the total interaction between the substrate and the trimer which has then a net
moment arizing mainly from the uncompensated moment of the third impurity.

5.9 Tetramers and Pentamers

Finally we present results for compact, symmetric tetramers and pentamers of
Cr and Mn adatoms. In these cases, the collinear solutions are stabilized for Cr as
well as Mn clusters (shown in Fig. 5.9(a) and Fig. 5.9(b)). The inter-atomic MEI
leads to a C(2×2) collinear antiferromagnetic order, which is the expected result
in the case of full coverage. In Tab. 5.3 we saw that the intra-dimer antiferro-
magnetic interaction between first neighbors is much stronger than the adatom-
substrate interaction; however, in that case, the greater number of Ni neighbors
had a significant influence in creating a non-collinear state. For tetramers and
pentamers, on the other hand, each adatom has two or more companion adatoms
as first neighbors, so that this interaction dominates.

Concerning tetramers, three magnetic configurations were converged: the AF
where all adatoms are AF coupled to the substrate Ni atoms, the FM where all
adatoms are FM coupled to the surface and finally the magnetic ground state
i.e. Ferri or C(2 × 2) in which the first neighboring adatoms are AF coupled
to each other (see Tab. 5.6). We point out that this configuration is double de-
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Fig. 5.8 –. Variations of single particle energies, obtained by the frozen potential
approximation using the Lloyd’s formula, versus the rotation angle of the second
magnetic moment of a Mn-trimer/Ni(001). The black circles show the energy
variation when the two outer magnetic moments are frozen at zero angle (par-
allel), while the green circles describe the energy variation for the third central
magnetic moment frozen at ≈22o.
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generate because all the moments can be rotated by an angle of 180o (total
flipping) without changing the magnetic coupling picture. For the Cr-tetramer
the Ferri configuration is characterized by considerably higher magnetic moments
(2.62μB,−2.56μB) compared to the AF (1.01μB,1.01μB) and FM (0.70μB,0.70μB)
ones. The moments values are almost doubled in the Ferri solution leading to a
doubling of the exchange splitting ΔEX which depends on the magnetic moment
as ΔEX ≈ I ·M . This explains the stability of the Ferri solution compared to the
other collinear solutions.

The degeneracy mentioned earlier for the tetramer is removed by adding a
fifth adatom in order to form a compact pentamer (see Fig. 5.9b). The adatoms
sitting at the square corners have all their moments coupled to the substrate as
the single adatoms do i.e. AF for the case of Cr and FM for Mn while the central
adatom is forced to couple antiparallel to the surrounding adatoms.

In order to check the proximity of the two magnetic configurations: collinear
and non-collinear, calculations using the Full potential Linear Augmented Plane
Waves (FLAPW) were carried out by Paolo Ferriani [89] for one monolayer of
Mn and Cr on Ni(001). If we consider the monolayer as the upper limit size of a
two dimensional adcluster, the comparison is then propitious. Ferriani found that
the two magnetic configurations: perpendicular and parallel to the surface mag-
netization are almost degenerate for both transition elements (Cr and Mn). This
is explained by the simple Heisenberg model discussed previously for the dimer
case. Within this model, the magnetic behavior is determined by the cosine-
like coupling: For an even number of adatoms the two magnetic configurations
are degenerate, because the terms cos(0) and cos(180) cancel each other in the
Ferri solution while they are zero for cos(90) (≈ non-collinear solution). For an
odd number of adatoms the magnetic behavior is mainly driven by the additional
adatom. This explains why , for example, we get for the Mn-trimer a non-collinear
solution tilted a bit from the the collinear one. When we increase the number of
adatoms, the oddness effects disappear and the adcluster behave like an even
adcluster. At the monolayer limit, as verified by Ferriani, the magnetic behav-
ior should be similar to adclusters with even number of adatoms, and no real
difference was found between the magnetic configurations.

5.10 Summary

We have investigated the magnetism of 3d adclusters on the Ni(001) surface
emphasizing on Cr and Mn clusters, for which we found that magnetic frustration
can lead to non-collinear magnetic order. The origin of the frustration is the com-
petition of the antiferromagnetic exchange coupling among the Cr or Mn adatoms
with the antiferromagnetic (for Cr) or ferromagnetic (for Mn) exchange coupling
between the adatoms and the substrate. In this respect, the result is different
than the prototype non-collinear configurations arising from antiferromagnetic
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(a)

(b)
Fig. 5.9 –. Top views of (a) Mn–, Cr–tetramer and (b) Mn–pentamer on Ni(001)
(the magnetic moments are rotated to the opposite direction in the case of Cr–
pentamer). Both clusters are found to be magnetically collinear. The magnetic
coupling is AF between first neighboring atoms within the cluster.

interactions among atoms in triangular geometry.
We found that Cr and Mn first-neighbouring adatom dimers can show a non-
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Adcluster Magn. Config. Magn. Mom. EConf - EFerri

Ferri (2.62μB,−2.56 μB) 0
Cr-tetramer AF (−1.01 μB, −1.01 μB) 303.7 meV/adatom

FM (0.70μB,0.70μB) 280.9 meV/adatom
Ferri (3.38μB,3.50μB) 0

Mn-tetramer AF (−3.49 μB,−3.49 μB) 390.4 meV/adatom
FM (3.66μB,3.66μB) 232.6 meV/adatom

Cr-pentamer Ferri (2.08μB,−3.22 μB) /
Mn-pentamer Ferri (−3.22 μB,3.34μB) /

Tab. 5.6 –. Magnetic moments and energy differences per adatom of the collinear
magnetic configurations obtained for Cr-, Mn-tetramer and pentamers. The first
moment given for the pentamers is related to the central adatom while the second
moment is carried by the four square corner adatoms. The minus sign means an
AF coupling between the adatom and the surface atoms.

collinear behavior, while increasing the distance between the adatoms of the dimer
leads to the same state as for single adatoms. The energy differences between
the collinear ferrimagnetic state and the non-collinear one are ΔECr

Ncol−Ferri =
39.84 meV (the ground state is collinear), ΔEMn

Ncol−Ferri = −13.45 meV (the ground
state is non-collinear). Embedding the dimers in the first surface layer restores the
Ferri collinear solution as the ground state also for Mn adatom dimers (ΔECr

Ncol−Ferri =
24.11 meV, ΔEMn

Ncol−Ferri = 22.5 meV).
Our ab-initio results for dimers are compared to the solution of a classical

Heisenberg model with exchange parameters fitted to total energy results. The
agreement for the tilting angles in the non-collinear state is good, but the Heisen-
berg model does not capture the collinear ground state for the Cr dimer. This
discrepancy occurs because the Heisenberg model cannot describe the changes of
the absolute values of localized moments.

The trimers studied so far are characterized by a collinear ground state: ↓↑↓ for
the Cr trimer and ↑↓↑ for the Mn trimer. The Mn trimer has also a non-collinear
metastable solution with an energy difference ΔENcol−↑↓↑ = 7.6 meV/adatom.

Compact tetramers and pentamers are Ferri for Cr and Mn adatoms mean-
ing that the first neighboring atoms are AF coupled to each other, in particular,
the central adatom of the pentamer is forced to couple antiparallel to its neigh-
boring adatoms. This additional adatom in the pentamer removes the magnetic
degeneracy observed for the Ferri solution of the pentamer.

We predicted that the upper-size limit of a two dimensional adcluster, i.e.
a monolayer of Cr and Mn on Ni(001) should behave like the adclusters with
an even number of adatoms. This prediction was verified, at least, theoretically
by Paolo Ferriani [89] who shows by using the FLAPW method that the two
configurations Ferri or C(2×2) perpendicular (non-collinear: ≈ 90o) and parallel
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(collinear) are almost degenerate. This can be understood by the simple Heisen-
berg model used in this chapter which through the cosine coupling gives the same
energy for the two configurations when the number of adatoms is even. The close
magnetic proximity of both configurations suggests, that during island growth
both magnetic configurations might occur on the same surface.

We believe that the energetic proximity of the collinear to the non-collinear
states is directly related to the weakness of the exchange interaction with the Ni
substrate. Replacing it by an fcc Fe substrate will possibly change the ground
state drastically, as we see in the next chapter (see chapter 6).
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Chapter 6

Complex Magnetism of Small
Clusters on Fe3ML/Cu(001)

6.1 Introduction

In the previous chapter, we have already shown the possibility of non-collinear
magnetic coupling for Cr and Mn impurities on Ni(001) and discussed the ener-
getic proximity of the collinear and non-collinear states. We believe that this is
directly related to the weakness of the exchange interaction with the Ni substrate.
Replacing it by a stronger ferromagnetic (FM) substrate will possibly change the
ground state drastically. The choice of this new substrate was mainly motivated
by an experiment carried by the group of W. Wurth [5]. They deposited Cr clus-
ters by a soft-landing technique, the principle of which we will explain briefly
later, on three monolayers (ML) of Fe deposited on Cu(001) and measured the
magnetic moments by x-ray Magnetic Circular Dichroism (XMCD). Indeed this
substrate is ideal for our purpose, considering that the Fe layers for such a low
thickness are ferromagnetic and stabilized in an fcc structure due to the depo-
sition on fcc Cu. This gives a perfect opportunity for a comparison with the
ferromagnetic Ni substrate we already investigated. The aim of this work is thus
to present the complex magnetic behavior of 3d impurities on fcc Fe.

6.2 Magnetic Properties of Fe/Cu(001) Surface

The Fe/Cu(001) surface has challenged experimentalists and theoreticians for
several years through its complex magnetic behavior. In such a system, the atomic
structure, the growth mode, the film morphology, and the magnetic properties
are intimately interwoven. The experimental work on the structure, magnetism,
electronic structure, growth and morphology has led to the following picture: for
experimental deposition at room temperature three different regimes are distin-
guished as a function of the Fe coverage C. In the first regime i.e. C < 4 ∼ 5 ML
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the spin configurations are FM [90, 91] throughout the tetragonal distorted film.
In the second regime i.e. 5 < C <∼ 11 ML, the film is antiferromagnetic (AF)
fct [92]. The third regime is obtained for thicker Fe films (C >∼ 11 ML) where
fcc Fe becomes instable and transforms into FM bcc [90, 93].

Theoretically, a detailed study was done by Asada and Blügel [94] on this
system using the full-potential linearized augmented plane-wave method. They
found ferromagnetism for 1 up to 3 ML fcc Fe, bilayer antiferromagnetism for even
numbers of layers (4 and 6 ML), and the coexistence of several spin states for an
odd number of layers (5 ML) which is consistent with the experimental picture.
Stepanyuk et al. [95] considered also the surface of one FM Fe ML on Cu(001)
in order to investigate magnetism of 3d and 4d adatoms. We note, however, that
only collinear magnetism was considered.

As we are interested in the FM regime, we considered in the present work
3 ML of Fe on Cu(001) which corresponds to the approximate number of layers
analyzed experimentally by the group of Wurth. We calculated the electronic and
magnetic properties of this system considering the theoretical lattice parameter of
Cu (6.64 a.u. ≈ 3.51

◦
A ) obtained by LSDA [35]. The full nonspherical potential

was used, taking into account the correct description of the Wigner-Seitz atomic
cells [81]. Angular momenta up to lmax = 3 were included in the expansion of the
Green functions and up to 2lmax = 6 in the charge density expansion. Relativistic
effects were described in the scalar relativistic approximation.

Three magnetic configurations were obtained: (i) The FM configuration with
all Fe layers FM coupled to each other ((S) ↑, (S − 1) ↑, (S − 2) ↑, where S
labels the surface layer), (ii) the antiferromagnetic AF-type 1 ((S) ↑, (S − 1) ↓
, (S − 2) ↑) and (iii) the AF-type 2 ((S) ↓, (S − 1) ↓, (S − 2) ↑). After comparing
the total energies of the different magnetic solutions, we found the FM solution
as the most stable state with the following magnetic moments : mFe

S = 2.66μB,
mFe

S−1 = 2.09μB and mFe
S−2 = 2.18μB which are in good agreement with the

previous theoretical results obtained by Stepanyuk et al. [95] (2.76 μB) for one
monolayer Fe/Cu(001).

6.3 Calculations Setup for Clusters

First, the surface Green functions are determined by the screened KKR–
method [38] for Fe3ML/Cu(001) which serves as the reference system. To describe
the adatoms on the surface, we consider a cluster of perturbed potentials which
includes the potentials of the impurities and the perturbed potentials of several
neighboring shells, with typical size ranging from 19 perturbed sites for the single
impurity to 32 for the dimers and trimers, and to 36 atoms for tetramers and
pentamers; in all cases, at least the first neighboring sites of the impurity atoms
were included in the calculation to ensure the correct screening of the impurity
charge. Tests have shown that this is adequate for our calculations. We consider
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Fig. 6.1 –. 3d adatoms on Fe3ML/Cu(001): (a) energy difference between the
AF and FM coupling; (b) magnetic moments of the adatoms within the 2 possible
magnetic configurations FM and AF.

all our impurities at the unrelaxed hollow position in the first vacuum layer. We
allow for the relaxation of the magnetic moment directions using our full potential
KKR Green function method for non-collinear magnetism.

6.4 Single Adatoms

Let us start with the adatoms: the full diamonds in Fig. 6.1.(a) show the
energy difference between the AF and the FM configuration for the four transi-
tion adatoms investigated on Fe3ML/Cu(001). The basic difference with Ni(001)
surface lies on the stronger magnetic coupling of the adatoms with respect to the
surface. An additional difference is the (weak) AF coupling of Mn adatom with
the substrate contrary to the FM coupling on Ni surface. For Mn, the difference
in energy (ΔEAF − EFM = −49.25meV ) is in the same order of magnitude with
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previously published results [95] (ΔEAF − EFM = −34meV ) .
The magnetic moments of the adatoms are shown in Fig. 6.1.(b). As regards

the adatom moments, due to its half filled d band the Mn adatom carries the
highest magnetic moment (3.81 μB) followed by Cr (3.30 μB) and Fe (2.95μB).

Cr adatoms are antiferromagnetically (AF) coupled to the substrate as for the
case of Cr adatoms on the Ni(001) surface. The energy difference ΔEFM−AF =
564.9 meV is four times stronger than the energy difference obtained on Ni(001)
surface. As was expected, this shows the strength of the interaction on Fe and
yields an exchange coupling constant JCr−Fe = 141meV (see eq. (5.1)). The
preference of the antiferromagnetic configuration shows up also in a consider-
ably larger AF Cr-moment of 3.30μB compared to the metastable ferromagnetic
configuration (2.80μB).

6.5 Adatom Dimers

Having established the single adatom behavior, we turn now to the adatom
dimers. We considered the two atoms sitting on first neighbor sites. The results
are summarized in the Tab. 6.5. Three collinear magnetic configurations were
treated: (i) Antiferromagnetic coupling within the dimer leading to a ferrimag-
netic solution (Ferri), (ii) ferromagnetic coupling within the dimer with both
atoms ferromagnetically coupled to the substrate (FM), or (iii) ferromagnetic
coupling within the dimer with both atoms antiferromagnetically coupled to the
substrate (AF). Concerning the geometrical configurations, we have considered
only the adatoms as first neighbors since we have shown previously (Sec. 5.6)
that the exchange interaction between the adatoms decreases drastically when
increasing the distance between the impurities. This means that the magnetic
dimer behavior for a bigger distance is expected to be identical to the one of the
adatom.

We notice that the only dimer which is characterized by a non-collinear mag-
netic solution is the Mn-dimer. In the collinear ground state, the two atoms are
antiferromagnetically coupled to each other. One Mn atom is thus forced to couple
ferromagnetically to the substrate despite the fact that the Mn-adatom prefers an
AF coupling to the surface atoms. The two moments are highly saturated which
explains their near equality (3.55μB,-3.58μB). Once the collinear constraint is
released a non-collinear magnetic solution is obtained. The two atoms are still
AF coupled to each other, however, they couple slightly AF to the substrate
(θ = 115o) contrary to the non-collinear solution obtained on Ni(001) (θ = 76o).
The inward moment direction found in the present case is due to the AF coupling
preference of the single Mn adatom to the substrate.

The other kinds of dimers studied are all magnetically collinear: For the V-
dimer only the AF solution was obtained with a magnetic moment of 1.80μB;
the Fe-dimer is characterized by a FM solution (MFe = 3.01μB). For Cr the FM
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FM AF Ferri Non-collinear

(mV, mV)(μB) / (-1.80,-1.80) / /
ΔEV

Conf − EV
Ferri / 0 / /

(mCr, mCr)(μB) / (-3.20,-3.20) (2.64,-2.93) /
ΔECr

Conf − ECr
Ferri / -688.3 0 /

(mMn, mMn)(μB) (3.59,3.59) (-3.53,-3.53) (3.55,-3.58) (3.55,3.55)
ΔEMn

Conf − EMn
Ferri 583.34 -236.20 0 -458.17

(mFe, mFe)(μB) (3.01,3.01) / (2.79,-2.92) /
ΔEFe

Conf − EFe
Ferri -430.90 / 0 /

Tab. 6.1 –. Differences between energies of the studied magnetic configurations
(in meV) and magnetic moments for each adatom μB. the negative sign of the
magnetic moments means an AF coupling to the substrate.

configuration is not stable and could not be found within the self-consistency.
Among the two remaining collinear configurations, the AF one is the most sta-
ble state with an energy difference ΔEFerri−AF = 344.2 meV/adatom which is
again much higher than the value obtained on Ni(001) surface (ΔEFerri−AF =
216.5 meV/adatom). The moments obtained in the Ferri solution (2.64μB, -
2.93μB) are lower than the value obtained in the AF ground state (3.20μB,
3.20μB). Surprisingly, we did not find a non-collinear solution which would be
expected by the following argument: Both Cr atoms tend to couple AF to the
substrate as we have seen for single adatoms, but they also tend to couple AF to
each other as expected for elements having a half filled d-band and as explained
by the Alexander–Anderson model[88, 80] (see section 5.4). These competing in-
teractions should lead to magnetic frustration and to a non-collinear solution.
However, when we introduce rotated moments as starting point in our ab-initio
calculations, both impurity moments relax back to the AF coupling to the sub-
strate even though there is an AF interaction between the adatoms. In order
to explain this we introduce a Heisenberg model with the exchange parameters
calculated from eq. (5.1).

The angle defining the non-collinear solution is obtained after a minimization
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of the Heisenberg Hamiltonian as:

cos(θ) = −2
JCr−Fe

JCr−Cr
for 2JCr−Fe < JCr−Cr (6.1)

If 2|JCr−Fe| > |JCr−Cr|, the angle is not defined and the non-collinear solution
does not exist. This is clearly realized in the present case: 2|JCr−Fe| = 2× 80.8 >
|JCr−Cr| = 77.6 meV. Note that the Cr-Fe coupling constants are considerably
smaller than for the single adatom.

6.6 Trimers

Following the same procedure as for the dimer we first investigated several
collinear magnetic configurations for the most compact trimer on the surface,
which has the shape of an isosceles rectangular triangle (see Fig. 6.2(a)) of side√

2a/2 and hypotenuse a (a is the Cu fcc lattice constant).
For V-trimer only the ↑↓↑ configuration ↑↓↑ 1 was obtained after self-consistency.

The three atoms are FM coupled to each other and AF coupled to the substrate.
This was expected from the single adatom behavior. We notice also a strong de-
crease of the magnetic moments carried by each adatom: the adatom sitting at the
right-angle corner of the trimer has a very low moment of 0.66 μB which is 66%
smaller than the single adatom moment (1.96 μB). This decrease is principally
due to a hybridization with the two first neighboring V adatoms which experi-
ence a smaller reduction of the magnetic moments (1.31 μB). This reduction is
not as strong as for the central adatom because contrary to the latter one these
two adatoms have only one first neighboring adatom. On the other hand, the
Fe-trimer prefers the FM configuration with high magnetic moments as obtained
for the single adatom, i.e. the central magnetic moment is equal to 2.82 μB while
the other magnetic moments are equal to 2.93 μB.

For the Cr-trimer, after self-consistency all different collinear configurations
converged to the FM solution with drastically reduced moments, i.e 0.19 μB for
the atom sitting at the right-angle corner of the triangle and 0.42μB for both
remaining impurities. If we allow the directions of the moments to rotate, the
moments strongly increase to “normal” values (2.57 μB for the right-angle atom
and 2.92 μB for the two remaining atoms). As seen earlier, the AF interaction
within the dimer was not high enough to compete with the adatom-substrate
interaction. The third adatom of the system induces a rotation of the moments.
The two second neighboring impurities have a moment tilted down by an angle of
156◦ and the central adatom moment is tilted up with an angle of 77◦. The total
energy difference between the non-collinear and collinear solution is ΔENcol−FM =
−360 meV/adatom, i.e. the non-collinear state is the ground state.

1. For the nomenclature see section 5.8
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(a)

(b)
Fig. 6.2 –. Non-collinear ground state of the Cr trimer on Fe3ML/Cu(001) sur-
face. Side view (a) and top view (b) are shown.

The Mn-trimer is also interesting considering the magnetic behavior found for
the dimer. Contrary to the Cr-trimer, here we found an antiferromagnetic config-
uration where the central Mn-adatom couples FM to the substrate whereas the
two remaining outer adatoms are AF coupled to the substrate (we call this con-
figuration Ferri). In this configuration, however, the magnetic moments of these
outer adatoms are rather small (0.12 μB) and much smaller than the moment of
the central adatom (-3.10 μB). Furthermore we found another collinear magnetic
configuration which is the collinear magnetic ground state such that the three
adatoms are AF coupled to the substrate (EFerri − EAF = 40.28meV/adatom).
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(a)

(b)
Fig. 6.3 –. Non-collinear ground state of the Mn trimer on Fe3ML/Cu(001)
surface. Side view (a) and top view (b) are shown.

The outer adatoms still have low magnetic moments (-0.30 μB) while the central
adatom has a saturated moment of -3.08 μB. It seems that we have here a com-
petition between the AF coupling of the first neighboring adatoms and the FM
coupling with the substrate. Indeed in a constrained collinear magnetic calcula-
tions, the moments can not rotate in order to release the magnetic frustration;
instead, their value can only decrease or increase to reduce the magnetic frustra-
tion. In the present case, the moments are trapped in some local minimum with
low magnetic moments. Therefore, it is tempting to predict that unconstrain-
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ing the magnetic coupling leads to a non-collinear solution with higher magnetic
moments. In fact, after self-consistent calculations, the converged non-collinear
solution is characterized by a restored high value of the outer magnetic moments
(3.62 μB). The orientation of the magnetic moments is similar to the Ferri one
(see Fig. 6.3): the central magnetic moment rotates by an angle of 20◦ and the
outer magnetic moments rotate by half the value of the previous angle (10◦) from
the AF coupling (170◦). This is explained by the fact that the central magnetic
moment experiences twice the AF exchange coupling from its two first neigh-
boring atoms (2×10◦). Contrary to the Ni(001) surface on which we found that
the non-collinear solution of Mn-trimer is just a local minimum, here, the total
energy calculations show that the ground state is non-collinear with an energy
difference EAF − ENcol = 544.93meV/adatom compared to the AF solution.

6.7 Tetramers

As experimental data on Cr clusters deposited on fcc Fe are available, we
considered in our investigation two different tetramer structures for Cr. The two
tetramers are: tetramer 1 is the most compact and forms a square (Fig. 6.4),
while tetramer 2 has a T-like shape (Fig. 6.6). For Mn we considered only the
tetramer 1 which is very probable the most stable tetramer as indicated by the
Cr results.

Two collinear configurations were obtained for Cr-tetramer 1: the AF solution
were all impurities are coupled antiferromagnetically to the substrate and a Ferri
solution were in each dimer of the tetramer the first neighboring impurities are
coupled AF to each other. The Ferri state is less stable than the AF as can be
seen from the energy difference ΔEFerri−AF = 543.8 meV/adatom. The Ferri con-
figuration is characterized by magnetic moments of -2.45 μB and 2.29 μB whereas
in the AF configuration the atoms carry lower moments (1.94 μB). However, the
ground state configuration is non-collinear (Fig. 6.4) with an energy difference
ΔEAF−Ncol = 80 meV/adatom. This solution is characterized by a large magnetic
moment of 2.5 μB carried by each impurity. One notices that the first neighbor-
ing adatoms are almost AF coupled to each other(the azimuthal angle φ is either
equal to 00 or to 1800) with all moments rotated by the angle θ = 111◦.

Contrary to Cr, Mn-tetramer 1 has a collinear Ferri magnetic ground state.
In fact the total energy of the converged non-collinear magnetic solution is 2.3
meV/adatom higher than the Ferri configuration. This value is, as we notice, very
small and can be altered by temperature or relaxation. However the proximity
of these two solutions show that in reality one can find coexistence of both non-
collinear and Ferri solutions for bigger cluster. The Ferri solution is characterized
by magnetic moments of 3.51 μB and 3.39 μB while in the non-collinear configu-
ration the atoms carry equal moments (3.44 μB). As for Cr-tetramer 1, the first
neighboring adatoms are almost AF coupled to each other with moments rotated
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(a)

(b)
Fig. 6.4 –. Non-collinear state of the Cr tetramer on Fe3ML/Cu(001) surface.
Side view (a) and top view (b) are shown.

by an angle θ = 84◦ (Fig. 6.5).
For Cr-tetramer 2 (see Fig. 6.6) we obtained several collinear magnetic con-

figurations. The most favorable is characterized by an AF coupling of the three
corner atoms to the substrate. The fourth Cr adatom surrounded by the re-
maining Cr impurities is then forced to couple FM to the substrate. When
we allow for the direction of the magnetic moment to relax, we get a non-
collinear solution having a similar picture, energetically close to the collinear one
(ΔENcol−col = 2.3 meV/adatom). The Cr adatom which was previously coupled
FM to the substrate has now a moment a bit tilted by 13◦ (μ = 2.31 μB) whereas
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(a)

(b)
Fig. 6.5 –. Non-collinear ground state of the Mn tetramer on Fe3ML/Cu(001)
surface. Side view (a) and top view (b) are shown.

the adatom sitting at the right angle corner of the tetramer has a moment tilted
in the opposite direction by 172◦ (μ = 2.85 μB). The remaining adatoms have a
moment with an angle of 176◦ (μ = 2.87 μB).

We note that tetramer 1 having the highest number of first neighboring
adatom bonds (four instead of three for tetramer 2) is the most stable one
(ΔEtet2−tet1 = 14.5 meV/adatom) with the non-collinear solution shown in fig. 6.4.
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Fig. 6.6 –. Top view of non-collinear state of the T-shape Cr tetramer (tetramer
2) on Fe3ML/Cu(001) surface.

6.8 Cr-pentamer

To study Cr-pentamer, we have chosen a structural configuration (Fig. 6.7)
with the highest number of first neighboring adatom bonds (five). This pen-
tamer consists on a tetramer of type 1 plus an adatom and is characterized by a
non-collinear solution. We could not find any collinear magnetic solution within
self-consistency due to the high degree of frustration in this system. Let us un-
derstand the solution obtained in this case: The tetramer 1 is characterized by a
non-collinear almost in-plane magnetic configuration (see Fig. 6.4). As we have
seen previously a single adatom is strongly AF coupled to the substrate. How-
ever when one moves it closer to the tetramer it affects in first order the first
neighboring impurity by tilting the magnetic moment from 111◦ to 46◦ (with a
moment of 2.17 μB). The additional adatom is also affected by this perturbation
and experiences a tilting of its moment from 180◦ to 164◦ (μ = 2.89 μB). As a
second order effect, the second neighboring Cr impurity is also affected and has
a moment which rotates from 111◦ to 138◦ (μ = 2.44 μB). As we have noticed
the AF coupling between first neighboring adatoms is always stable, thus the
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(a)

(b)
Fig. 6.7 –. Non-collinear state of the Cr pentamer on Fe3ML/Cu(001) surface.
Side view (a) and top view (b) are shown.

third neighboring adatom also has a moment rotated in direction opposite to the
magnetization direction of the substrate with an angle of 155◦ (μ = 2.48 μB).
As the last adatom of the pentamer wants to couple AF to its neighboring Cr
adatoms, its magnetic moment tilts into the positive direction with an angle of
85◦ (μ = 2.47 μB).

6.9 Comparison with Experiment: Case of Cr

6.9.1 Experimental Setup

The magnetic properties of the deposited clusters have been determined ex-
perimentally by Reif et al.[5] using XMCD. The experiments were performed at
the beamline UE56/1- PGM at the BESSY II storage ring in Berlin. The mass
selected chromium clusters were generated using a UHV-cluster source [96] and
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deposited in-situ onto ultrathin Fe layers epitaxially grown on a Cu(100) surface.
Sample preparation included the following steps. The iron multilayers were pre-
pared by evaporating iron from a high purity iron sheet onto the clean copper
crystal. Subsequently the iron films were magnetized perpendicular to the sur-
face plane using a small coil. To achieve an easy magnetization axis normal to
the surface plane, the iron layer thickness was chosen to be in the range of ∼3-5
monolayers (ML). The magnetization of the iron films was monitored by record-
ing Fe 2p XMCD spectra. Before cluster deposition Argon multilayers were frozen
onto the iron surface at temperatures below 30K. A layer thickness of 10ML of
argon was used to ensure soft landing conditions [97]. After depositing the mass-
selected clusters into the argon buffer layers, the remaining argon was desorbed
by flash heating the crystal to ∼80K. Low temperatures in the range of 30K
and low Cr coverages of 3% of a monolayer (ML) were used to prevent cluster-
cluster interaction. The measurements have been carried out at a base pressure p
< 3 · 10−10mbar. Spectra have been measured from the cluster samples prepared
as described above, in a size range of 1 to 13 atoms per cluster. Every step of
the preparation has been checked using x-ray Photoelectron Spectroscopy (XPS)
and/or x-ray Absorption Spectroscopy (XAS). The absorption signal has been
measured using the Total Electron Yield TEY, i.e. the sample current.

The experimental results for the magnetic moments per d-hole shown in
Fig. 6.8 have been determined applying XMCD sum rules [6]. After a standard
background treatment, difference and sum spectra are generated by subtraction
and addition of the x-ray absorption spectra measured with different photon he-
licity. For the application of the sum rules, the areas of the 2p3/2 and 2p1/2 peaks
of the difference spectra have been determined. The 2p3/2 peak shows positive
and negative contributions in the difference spectra. For determining the values
of the areas of the 2p3/2 absorption in the difference spectra, the integration has
been performed over both contributions. Spin (and orbital magnetic moments
(not shown)) per d-hole have been calculated for all cluster samples from the
areas determined from the spectra. The values for the spin and orbital magnetic
moments have been corrected for a degree of circular polarization of 90%. The
contribution of the spin magnetic dipole operator 〈Tz〉 2 in the values of the spin
moments is presently ignored. In other words, the spin values calculated from the
values of the spectra are 〈Seff〉 = 〈Sz〉 + 7/2〈Tz〉, containing the contribution of
the spin dipole operator.

6.9.2 Comparison

We note that the XMCD sum rules was applied by the experimentalists with-
out empirical corrections which have been proposed for chromium. This may lead
to absolute values for the spin magnetic moments too small by a factor of two

2. which can be seen as a measure of the asphericity of the spin magnetization.
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Fig. 6.8 –. Ratio between the moment and number of holes per atom versus
cluster size. Fig. (a) shows the experimental results for cluster-sizes up to 13
adatoms while Fig.b gives the comparison with ab initio results for cluster-sizes
up to 5 adatoms. In Fig. (b) blue squares describe the experimental values, black
diamonds show results obtained with collinear configurations, red circles corre-
spond to results obtained with non-collinear configurations and finally a black line
connect the ratios obtained in the magnetic ground states.

due to the problems in the application of the simple XMCD sum rules for the
early transition metals with smaller spin-orbit splitting. However, this should
not affect the relative trends seen in the experimental data (Fig. 6.8.(a)). One
notices the strong decrease of Seff with increasing the cluster size which is prob-
ably due to the appearance of antiferromagnetic or non-collinear structures as
mentioned earlier in the theory part. In order to understand the peak formed
for the tetramer we plot in Fig. 6.8.(b) the ratio between the moment along the
z-direction (defined by the magnetization of the substrate) and number of d holes
per atom (which is shown in Fig. 6.9) obtained by theory. Black circles show
the ratio calculated by taking into account the collinear solutions and the red
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Fig. 6.9 –. The calculated number of unoccupied d states (ndh) of Cr in Cr-
adclusters on Fe3ML/Cu(001) surface. the squares represent the bunch of values
obtained for each atom of the adcluster while the diamonds connected by a line
are the average of number of d holes per adcluster. One notices that the values
of ndh are almost constant for the adatom, dimer and trimer while it experiences
a jump for the tetramer 1 and tetramer 2 before going back to the adatom value
in the case of the pentamer. We add also that these values are really different for
the inequivalent atoms of tetramer 2.

ones show the ratio calculated from the non-collinear solutions. The black line
connects the ratio obtained in the magnetic ground states. The general trend is
in good agreement to the experimental one that there is a decrease of the ra-
tio with increasing the number of Cr atoms in the cluster. The theoretical value
clearly lies outside the experimental error but the agreement can still be judged
to be fair in view of the remaining uncertainties which can be in our case related
to the Tz moment which was neglected experimentally. Indeed it was already
shown by ab-initio DFT calculations for Co-adcluster/Pt(111) that taking into
account the spin dipole moment Tz reduces the effective spin moment measured
by XMCD by a factor of 62% [98]. Moreover it was noticed that this contribution
almost vanishes for bigger clusters. The non-collinear tetramer 1 has a much lower
value than what was seen experimentally whereas the collinear tetramer 1 and
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tetramer 2 give a better description of the kink seen experimentally. As regards
to the small energy difference (ΔE = 14.5V meV) between the two tetramers we
considered, we believe that in reality one can easily find an average of solutions
with non-collinear tetramers 1, collinear and non-collinear tetramer 2. We believe
that this mechanism contributes highly in increasing the tetramer’s ratio value
higher than the one obtained for a trimer. The pentamer is clearly well described
by the theory and fits to the experimental measurements.

6.10 Comparison with Experiment: Case of Mn

Unfortunately, in our knowledge, there were no experiments on non-collinear
magnetism of Mn-cluster deposited on magnetic or non-magnetic surfaces. Con-
sidering, however, that the monolayer of Mn is the upper size limit of a two-
dimensional cluster, we can thus compare our results to the experiments done by
the group of Carbone using XMCD on one monolayer of Mn deposited on bcc Fe
surface. Nevertheless, we point out that in bcc (001) surface the first neighbor-
ing distance in the surface layer is larger than the second neighboring distance
for an fcc (001) surface layer. Their results which are compared to DFT calcula-
tions using a Pseudo-potential method were published [99]. Theoretically it was
found that the magnetic ground state is non-collinear consisting in a chessboard
arrangement where these moments form angles of ≈ 80◦ with respect to those
of the underlying Fe atoms. It is surprising to find these results coinciding with
our results for non-collinear Mn-adcluster with an even number of adatoms e.g.
non-collinear Mn-dimer and non-collinear Mn-tetramer. We remind the reader
that odd number of adatoms (1:adatom, 3:trimer, 5:pentamer) tend to have mag-
netic moments parallel to the surface magnetization whereas for even number
of adatoms (2:dimer, 4:tetramer) the moments are almost perpendicular to the
surface magnetization. It seems that when going to bigger two-dimensional Mn-
adclusters up to monolayer limit, the effects which are driven by the parity of
number of adatoms (even or odd) is averaged out and lead to a perpendicular
magnetization. Experimentally the moments were evaluated to be larger than
3.5 μB, and the orientation is suggested to be perpendicular to the magnetiza-
tion of Fe. This behavior is attested by recent ab-initio results of Hafner and
Spisak [100] using the projected augmented-wave method. For one monolayer
of bcc Mn/Fe(001), the non-collinear solution energy is found to be lower by 75
meV/Mn atom compared to the most stable collinear in-plane AF. The calculated
angles 82◦ are similar to our results.
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6.11 Summary

As for Ni(001) surface, we carried out an investigation on complex magnetism
of 3d-adclusters deposited on a ferromagnetic Fe3ML/Cu(001). The latter sub-
strate was chosen since its structure (fcc) is similar to Ni(001) with, however,
stronger surface magnetic moments and since this substrate was chosen by the
experimental group of Wurth for the deposition of Cr-adclusters.

The single adatoms are behaving similar as on Ni(001) surface, i.e. V is AF,
Cr is also AF and Fe is FM while Mn is AF with a magnetic coupling strength
much higher than on Ni(001). The dimers are behaving like the single adatoms
when constraining the magnetic coupling to be collinear. Releasing this constraint
leads to non-collinear magnetism occurs only for the Mn-dimer for which the two
moments are AF coupled to each other and are almost in-plane (perpendicular to
the surface magnetization) (θ=115o). While collinear magnetism was expected for
V and Fe, it was, however, surprising to find a collinear magnetic configuration
as a ground state for Cr. We explain this last result by a Heisenberg model in
which the strong Fe-Cr coupling constant does not allow a non-collinear solution.

V-trimer is characterized by the ↑↓↑ configuration and Fe-trimer prefers to
be FM. Cr- and Mn-trimer have a non-collinear ground state in which the mag-
netic moments reach “normal” values in contrast to the strongly reduced values
obtained in constrained collinear magnetic calculations.

Two kind of Cr-tetramers were considered in our work, a square (tetramer
1) and a T-shape tetramer (tetramer2). The first one is the most stable one
with a rather small energy difference (14.5 meV/adatom) and is characterized
by a non-collinear (almost in-plane) magnetic ground state. On the other hand
the Mn-tetramer 1 shows a Ferri collinear magnetic ground state with a tiny
energy difference with the non-collinear solution (2.3 meV/adatom) while the
non-collinear solution is defined by a rotation angle of 84o i.e. in the opposite
direction to what we found for the dimer. This means that by increasing the
number of Mn-adatoms FM coupling with the substrate is preferred.

As explained in the text, the availability of experimental data from the group
of Wurth for comparison motivated us to increase the size of Cr-adclusters. Thus
Cr-pentamer has been found highly frustrated. Considering possible problems
in the experimental analysis, the complexity of the different clusters and their
non-collinear spin structures the agreement between theory and experiment is
gratifying. For an improved comparison, detailed STM observations with spin-
polarization analysis would be highly desirable. We can, however, add that in
the light of our findings, the kink observed in the experimental curve concerning
the tetramer is due to the presence of different structural and magnetic config-
urations. The average of the magnetic moments is then higher compared to the
non-collinear magnetic ground state we found for Cr-tetramer 1. Concerning Mn,
we could show that our results for even number of adatoms in the cluster are in
total agreement with the results published by Grazioli et al. [99] i.e. the mag-
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netic moments are AF to each other and are almost perpendicular to the surface
magnetization (θ = 80o). It seems that for bigger even number of adatoms in the
clusters, Mn tend to couple FM to the substrate as found for Ni(001) surface.
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Chapter 7

Cr and Mn Clusters on Ni(111)

7.1 Introduction

As a continuation of the work presented in the previous chapters, we con-
centrate here on another orientation of the fcc surface. Namely the (111) di-
rection in which the surface geometry is triangular which means in terms of
magnetic coupling, that having a compact trimer with antiferromagnetic inter-
actions sitting on the surface leads necessarily to magnetic frustration. In fact,
similar investigations have been carried out for a full monolayer of Cr and Mn
on Cu(111) [101, 102]. Kurz et al. [101] applied the full-potential augmented
plane waves method (FLAPW) to determine the ground state for Mn and Cr on
Cu(111). It was found by the same authors that, in the case of Mn, the magnetic
ground state consists of a multiple spin-density wave of three row-wise antiferro-
magnetic spin-states which leads to a three-dimensional non-collinear spin struc-
ture on a two dimensional triangular lattice. This structure comes about due to
higher order spin-interactions i.e. to magnetic interactions beyond the nearest
neighbors. On the other hand Cr is found to be stabilized in a coplanar non-
collinear periodic 120o Neel structure. Using the tight-binding linear muffin tin
method (TB-LMTO), Spisak and Hafner [102] found a different result concerning
Mn/Cu(111) which prefers than a similar magnetic structure than Cr/Cu(111).

Experimentally, Cr-trimers have been deposited on Au(111) [10]. It was stated
that changing the shape of the trimer from equilateral to isosceles by moving two
adatoms leads to a loss of the 120o noncollinearity. This has been confirmed using
the Anderson model [103]. In other words, the group of Crommie [10] showed
that moving a Cr adatom of a compact trimer leads to a switching from the
Kondo state to a magnetic one. This may lead to reach an important goal for a
magnet’s storage capability: the bit 0 can be considered when no (or very small)
magnetic moment is measured while a high magnetic moment of the cluster can
be considered as 1. Very recently, calculations [104] on compact (equilateral)
Cr-trimer were carried out using a pseudo-potential method and confirmed the



102 Chapter 7. Cr and Mn Clusters on Ni(111)

non-collinear solution with an angle of 120o.
Magnetic excitations may degrade the performance of high-density memories.

Indeed, using scanning tunneling microscopy (STM) Heinrich et al. [17] could
elucidate the spin-flip of individual magnetic atoms that are dispersed on a non-
magnetic matrix. Therefore, we will also discuss the energetic stability of the
high-moment collinear and low-moment, non-collinear states.

Larger clusters on Cu(111) were considered by Bergman et al. [105] using a
real-space TB-LMTO recently developed to treat non-collinear magnetism. They
also found, the same expected result for the compact trimers.

In summary, for such noble metal (111) substrates, the frustration is present in
the plane containing the Cr (or Mn) contrary to what is observed on Ni(001). The
already studied Cu(111)-substrate is of-course non-magnetic, but replacing it by
a magnetic surface like Ni would provide an additional magnetic coupling which
affects the magnetic state of the adclusters. Hence, in such a system we face an
interplay between a non-collinear coupling tendencies arising from the interaction
among the adatoms in the cluster and the substrate atoms. This is very different
to the Ni(001) surface where the frustration and non-collinear state arises from
the competition between the coupling in the cluster and with the substrate. In the
following, we present calculations on Cr and Mn small clusters (up to tetramers)
with different shapes (see Fig. 7.1) deposited on Ni(111) surface.

7.2 Calculational Details

Adatom Dimer

Compact trimer Corner trimer Linear trimer

Compact tetramer Tetramer-b

A

B

C A

B C A B C

A

B

C

C

D

A

B

C

D

Fig. 7.1 –. Different geomet-
rical configurations considered
for adclusters at the surface
of Ni(111). For the dimer
we considered the first neigh-
boring adatoms while for the
trimer we considered three
geometrical configurations:
compact, corner, and linear.
Two tetramers were consid-
ered : the compact and the
one we name tetramer-b.

Our calculations are based as usually on the Local Spin Density Approxima-
tion (LSDA) of density functional theory with the parametrization of Vosko et
al. [35]. The full nonspherical potential was used, taking into account the correct
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description of the Wigner–Seitz atomic cells. [81] Angular momenta up to lmax = 3
were included in the expansion of the Green functions and up to 2lmax = 6 in
the charge density expansion. Relativistic effects were described in the scalar
relativistic approximation.

First, the surface Green functions are determined by the screened KKR method
for the (111) surface of Ni which serves as the reference system. The LSDA equi-
librium lattice parameter of Ni was used (6.46 a.u. ≈ 3.42

◦
A ). To describe the

adatoms on the surface we consider a cluster of perturbed potentials which in-
cludes the potentials of the impurities and the perturbed potentials of several
neighboring shells, with a size of 48 perturbed sites for all kind of adclusters con-
sidered (see Fig. 7.1). We consider the adatoms at the unrelaxed hollow position
in the first vacuum layer.

7.3 Surface of Ni(111)

Layer of the slab Magnetic moments (in μB)
(S) Surface layer 0.64
(S-1) 0.64
(S-2) 0.61
(S-3) 0.60
(S-4) 0.59
C 0.60

Tab. 7.1 –. Magnetic moments in μB for a slab of 12 Ni layers in the (111)
direction. (S-i) labels the position of the layer with respect to the top-layer of the
slab (S) while with C we note the center of the slab.

The moments (0.63 μB) at the surface of Ni(111) are lower than on the surface
of Ni(001) because the atoms of the (111) surface have more neighbors than the
atoms of the (001) surface. This means more hybridization of the d wavefunctions
and thus a decrease of the magnetic moments. The magnetic moments are shown
in Tab. 7.1.

7.4 Single Adatoms
Our calculations show that the single Cr adatom is AF coupled to the surface

with an increase of the magnetic moments (MAF = 3.77 μB and MFM = 3.70 μB)
compared to the results obtained for Ni(001) (MAF = 3.48 μB and MFM = 3.35
μB). This increase arizes from the weaker hybridization of the 3d wavefunctions
with the substrate—the adatom has three neighbours on the (111) surface and
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(a) (b)

(c) (d)

Fig. 7.2 –. Different magnetic configurations of Mn Dimer on Ni(111). The
Mn atoms are labeled by A nd B; unlabeled atoms correspond to the Ni substrate.
The configurations correspond to FM in (a), AF in (b), Ferri in (c) which is the
ground state, and the non-collinear additional local minimum in (d). See text for
the discussion.

four on the (001). The calculated energy difference between the FM and AF con-
figurations is high so that the AF configuration is stable at room temperature
(ΔEAF−FM = −93.54 meV, corresponding to 1085 K). Also our results for the
Mn adatom on Ni(111) are similar to what we found on Ni(001). The single Mn
adatom prefers to couple ferromagnetically to the substrate. The energy differ-
ence between the two possible magnetic configurations is ΔEAF−FM = 208 meV.
For the (001) surfaces the energy differences are both for Cr and Mn larger,
since they roughly scale with the coordination number (ΔECr

AF−FM = −134 meV,
ΔEMn

AF−FM = 252 meV). The magnetic moments of Mn are high and reach a value
of 4.17 μB for the FM configuration and 4.25 μB for the AF configuration. The
moments are higher than for the Mn adatoms on Ni(001) (MAF = 4.09 μB and
MFM = 3.92 μB), again due to the lower coordination and hybridization of the 3d
levels. This type of coupling to the substrate (AF for Cr and FM for Mn) can be
understood in terms of the d-d hybridization of the adatom wavefunctions with
the ones of the substrate.

7.5 Adatom dimers

For the compact dimers, three collinear configurations are possible: ferromag-
netic (FM) (see Fig. 7.2(a)), with the moments of both atoms parallel to the
substrate moments, antiferromagnetic (AF) (Fig. 7.2(b)), with the moments of
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both atoms antiparallel to the substrate moments, and ferrimagnetic (Ferri) (see
Fig. 7.2(c)), where the magnetic moment of one of the dimer atoms is paral-
lel to the moments of the substrate, while the other one is antiparallel. Since
the direct exchange in a Cr pair (or a Mn pair) is antiferromagnetic (for an ex-
planation in terms of the Alexander-Anderson model [88] see Chapter 5), and
stronger than the adatom-substrate interaction, the Ferri solution is expected
to prevail. Indeed, Cr dimers on Ni(111) as on Ni(001) are characterized by a
collinear Ferri coupling as a ground state. The difference is, however, that no
non-collinear solution was found on Ni(111), as opposed to Ni(001) (Chapter 5).
This is understandable, because the non-collinear state in the dimer on Ni(001)
arises from the competition between the intra-dimer Cr-Cr antiferromagnetic in-
teraction and the Cr-Ni antiferromagnetic interaction. On the Ni(111) surface,
the coordination to the Ni substrate is lower, therefore the interaction with the
substrate is insufficient to overcome the Cr-Cr interaction. In fact the Ferri total
energy is 317.32 meV/adatom lower than the AF one and 352.54 meV/adatom
lower than the FM one.

Similar trends are found for the Mn dimers on Ni(111): The Ferri solution is
the most stable collinear solution. However, in addition a non-collinear solution
is found, which is only slightly higher, i.e. by 4.44 meV/adatom than the Ferri
solution. Note that on the Ni(001) surface, this type of dimer state, shown in
Fig. 7.2(d), represents the ground state, which is, however, not the case for the
dimer on (111) preferring the Ferri configuration. In the non-collinear configu-

Cr2 Mn2

AF moments (−3.47,−3.47) (−4.02,−4.02)
Ferri moments (−3.30, 3.31) (−3.97, 3.85)
FM moments (3.38, 3.38) (3.98, 3.98)

Tab. 7.2 –. Atomic spin moments (in μB) of the adatom dimers on Ni(111) in
the collinear configurations. A minus sign of the collinear moments indicates an
antiparallel orientation with respect to the substrate magnetization.

ration (Fig. 7.2(d)), both adatom moments (3.90 μB), while aligned antiferro-
magnetically with respect to each other, are slightly tilted in the direction of the
substrate magnetization with a rotation angle of θ = 79◦ (instead of 90◦). The
energy differences between the Ferri and the other local minima AF and FM are
respectively 243.2 meV/adatom and 76.31 meV/adatom. The magnetic moments
and energy differences are given in Tables 7.2 and 7.3. Note that the local Cr and
Mn moments are considerably higher than the corresponding local moments in
dimers on Ni(001)5, again a result of the reduced coordination number.

As we have discussed in the previous chapter, the different magnetic config-
urations of the Ni substrate atoms cannot be described well by the Heisenberg
model, since the moments of the atoms adjacent to the adatoms are strongly re-
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Dimer type: Cr2 Cr2 Mn2 Mn2

Substrate: Ni(111) Ni(001) Ni(111) Ni(001)
EFM−Ferri 353 451 76 65
EAF−Ferri 317 433 243 496

Tab. 7.3 –. Dimer energies (in meV/adatom) in the FM, AF, and Ferri config-
urations of Cr and Mn dimers on Ni(111). Results of the same dimers on Ni(001)
are also shown for comparison.

duced. Such longitudinal moment relaxations cannot be described by this model.

7.6 Trimers

Trimers in equilateral triangle geometry are, in the presence of antiferromag-
netic interactions, prototypes for non-collinear magnetism, with the magnetic
moments of the three atoms having an angle of 120◦ to each other [106, 105].
This 120◦-configuration is a well-known consequence of the magnetic frustration
in such triangular systems. In our case, the 120◦ state is perturbed by the ex-
change interaction with the substrate, and therefore the magnetic configuration
is expected to be more complicated.

Let us start with a Cr dimer (Mn dimer) that we approach by a single Cr
adatom (Mn adatom). As shown in Fig. 7.1, three different types of trimers can
be formed: i) the compact trimer with an equilateral shape, ii) the corner trimer
with an isosceles shape and iii) the linear trimer. The adatoms are named A, B
and C.

When the distance between the ad-dimer and the single adatom is large
enough that their magnetic interaction is weak (second-neighboring positions),
the total moment is −3.78 μB for the Cr case and 4.05 μB for the Mn one.

Let us move the single adatom close to the dimer and form a compact trimer.
The distance between the three adatoms is the same, meaning that this is a pro-
totype geometry which leads for a trimer in free space to a 120◦ rotation angle
between the magnetic moments. This is attested for the Cr case for which we
had difficulties finding a collinear solution. Our striking result, as depicted in
Fig. 7.3a-b, is that the non-collinear 120◦ configuration is conserved with a slight
modification. Indeed, our self-consistent (θ, φ)-angles are (2◦, 0◦) for adatom B
and (126◦, 0◦) for adatom A and (122◦, 180◦) for adatom C. The angle between B
and A is equal to the angle between B and C (124◦) while the angle between A
and C is 112◦. The small variation from the prototypical 120◦ configuration is due
to the additional exchange interaction with Ni atoms of the surface. Let us sup-
pose that we start with a 120◦ configuration of a compact Cr trimer, neglecting
at first the exchange interaction with the substrate. This gives an infinite number
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of degenerate configurations being distinguished by an arbitrary rotation of all
moments in spin space. This degeneracy is (partly) removed by coupling to the
substrate atoms, the moments of which are fixed by anisotropy, e.g. in [111] direc-
tion. Since the adatom-substrate interaction is AF, the moments of two adatoms
rotate so that they are partly oriented opposite to the substrate magnetization,
while the moment of the third adatom rotates to the opposite direction, driven
by the AF interaction to its Cr neighbors. The coupling with the substrate leads
thus to a deviation from the prototype 120◦ state, with an additional rotation
of 2◦ for the FM adatom and of 4◦ for the two other adatoms. The Cr B-atom
carries a moment of 2.94 μB, smaller than the neighboring moments (3.31 μB).
Hence, the total magnetic moment of all the adatoms is -0.76 μB. Note the huge
jump of the total magnetic moment (80%) from -3.78 μB, which is the initial
non-interacting dimer-adatom total moment.

For the compact Mn trimer, three non-collinear configurations were obtained:
As in the case of the compact Cr trimer, the free Mn trimer must be in a 120◦
configuration. Nevertheless, the magnetism of the substrate changes this coupling
taking into account the single adatom behavior: Mn adatoms prefer a FM coupling
to the substrate and an AF coupling with their neighboring Mn adatom.

The first non-collinear magnetic configuration (NCOL1) is similar to the Cr
one (Fig. 7.3a-b), i.e. adatom B couples FM (3.61 μB) with the substrate moments
while adatom A (3.67 μB) and C (3.67 μB) are rotated into the opposite direction
with an angle of 114◦ between B and A and between B and C (see Table 7.4).

The second non-collinear configuration (NCOL2) has the opposite magnetic
picture (Fig. 7.3c-d) as compared to compact Cr trimer. Atoms A and C tend to
couple FM to the substrate, with a tilting of θ = 49◦, φ = 0◦ for atom A and θ
= 51◦, φ = 180◦ for atom C; each of them carries a moment of 3.62 μB. The AF
interaction of atom B with A and C forces it to an AF orientation with respect
to the substrate, characterized by θ = 179◦, φ = 0◦, and a moment of 3.70 μB.
Thus the trimer deviates from the 120◦-configuration: the angles between A and
B moments and B and C moments are about 130◦, and the angle between A and
C is about 100◦.

In the third magnetic configuration (NCOL3) the three moments (3.65 μB) are
almost in-plane and perpendicular to the substrate magnetization (see Fig. 7.3e-
f). They are also slightly tilted in the direction of the substrate magnetization
(θ = 86◦) due to the weak FM interaction with the Ni surface atoms. Within this
configuration, the 120◦ angle between the adatoms is kept. Total energy calcu-
lations show that the NCOL2 configuration is the ground state which is almost
degenerate with NCOL1 and NCOL3 (ΔENCOL1−NCOL2 = 1.27 meV/adatom and
ΔENCOL3−NCOL2 = 5.61 meV/adatom). Thus already at low temperatures trimers
might be found in all three configurations; in fact the spin arrangement might
fluctuate between these three 120◦ configurations or at even lower temperatures
between the three degenerate configurations of the NCOL1 or the NCOL2 state.
Compared to the collinear state energy of the compact trimer, the NCOL2 en-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7.3 –. Side view (a) and top view (b) are shown for the most stable con-
figuration of Cr compact trimer on Ni(111) (in blue). (c) and (d) represent the
side view and top view of the ground state (NCOL2) of Mn compact trimer on
Ni(111) while (e) and (f) depict an almost degenerate state (NCOL3) of the same
Mn trimer. Finally, the side view (g) and top view (h) are shown for the most
stable configuration of Mn (in red) corner trimer on Ni(111). See text for more
details.
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Tab. 7.4 –. Size and rotation angles of the magnetic moments of Mn adatoms
forming a compact trimer on Ni(111) surface. For the adatom notation see
Fig. 7.1. All three states are calculated to be local energy minima. The energy
difference per adatom with respect to NCOL2 is also shown. The collinear state
is energetically 138.23 meV/adatom higher than NCOL2.
Noncol. config. Adatom Moment (μB) θ φ Energy/adatom (meV)

A 3.67 115◦ 0
NCOL1 B 3.61 1◦ 0 1.27

C 3.67 113◦ 180◦

A 3.62 49◦ 0
NCOL2 B 3.70 179◦ 0 0

C 3.62 51◦ 180◦

A 3.65 86◦ 240◦
NCOL3 B 3.65 86◦ 0 5.61

C 3.65 86◦ 120◦

ergy is lower by 138.23 meV/adatom. This very high energy difference is due to
frustration, even higher than breaking a bond as shown in the next paragraphs.
Contrary to this, the corner trimer shows a collinear ground state because it is not
frustrated. For instance, the total moment of the non-collinear compact trimer
(0.95μB) experiences a decrease of 76% compared to the obtained value for the
non-interacting dimer-adatom configuration.

The next step is to move the additional adatom C and increase its distance
with respect to A in order to reshape the trimer into an isosceles triangle (what we
call “corner trimer” in Fig. 7.1, with one angle of 120◦ and two of 30◦). By doing
this, the trimer loses the frustration and is characterized, thus, by a collinear
ferrimagnetic ground state: the moments of adatoms A and C are AF oriented to
the substrate (following the AF Ni-Cr exchange), while the moment of the central
adatom B is FM oriented to the substrate, following the AF Cr-Cr coupling to
its two neighbors. The magnetic moments do not change much compared to the
compact trimer. The central adatom B carries a moment of 2.94 μB while the
two others have a slightly more sizable moment of −3.32 μB. Thus, the total
magnetic moment (−3.70 μB) increases to a value close to the one obtained for
non-interacting dimer-adatom system.

While the non-collinear state is lost for the corner Cr trimer, it is present for
the corner Mn trimer as a local minimum with a tiny energy difference of 4.82
meV/adatom higher than the Ferri ground state. This value is equivalent to a
temperature of ∼ 56 K, meaning that at room temperature both configurations
co-exist. Here Ferri means that the central adatom B is AF oriented to the sub-
strate with a magnetic moment of 3.71 μB, forced by its two FM companions A
and C (moment of 3.83 μB) which have only one first neighboring adatom and
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are less constrained. The total moment of the adcluster is also high (3.95μB)
compared to the compact trimer value, reaching the value of the non-interacting
system (with the third atom of the trimer far away from the other two).

The Ferri solution is just an extrapolation of the non-collinear solution shown
in Fig. 7.3g-h (with magnetic moments similar to the collinear ones) in which the
central adatom B (3.70 μB) tends to orient its moment also AF to the substrate
(θ = 152◦, φ = 0◦) and the two other adatoms with moments of 3.83 μB tend
to couple FM to the surface magnetization with the same angles (θ = 23◦, φ
= 180◦). It is important to point out that the AF coupling between these two
latter adatoms is lost by increasing the distance between them. Indeed, one sees
in Fig. 7.3g-h that the two moments are parallel. The total magnetic moment is
also high and is equal to 3.78 μB.

Let us move furthermore adatom C in order to form a linear trimer. For the
Cr case, there is no non-collinear magnetism. The already stable Ferri solution
for the corner trimer is comforted. The moments of the adatoms A and C are a
bit higher than what obtained so far for the other structural configuration, i.e.,
adatoms A and C have a moment of −3.40 μB while the central moment is equal
to 2.97 μB: the coupling between A and C is now indirect (through the central
adatom). The total magnetic moment is also high (-3.83 μB).

Concerning the Mn case for a linear trimer, a non-collinear configuration was
obtained as a local minimum with a small energy difference compared to the
ground state which is the collinear Ferri solution (8.50 meV/adatom ∼ 99 K).
The magnetic moments do not change a lot compared to the values obtained for
the corner trimer. The central adatom B carries a moment of −3.78 μB while
the A and C have a higher moment of 3.84 μB. In the non-collinear solution, the
central Mn adatom with a moment of 3.76 μB , as seen previously, tends to couple
AF with (θ = 142◦, φ = 0◦) and the A and C with a similar moment of 3.85 μB

tend to couple FM to the substrate (θ = 28◦, φ = 180◦). The total moment is
high for both magnetic configurations. For the Ferri solution, it reaches 3.90 μB,
while for the non-collinear solution the total moment value is smaller (3.84 μB).

It is interesting to compare the total energies of the three trimers we investi-
gated. The compact trimer has more first neighboring bonds and is expected to
be the most stable trimer. The energy differences confirm this statement. Indeed
the total energy of the Cr compact trimer is 119 meV/adatom lower than the
total energy of the corner trimer and 198.16 meV/adatom lower than the total
energy of the linear trimer. Similarly, the Mn compact trimer has a lower energy
of 53 meV/adatom compared to the corner trimer and a lower energy of 100
meV/adatom than the linear trimer.

Summarizing the results for the total moments of the adatoms, we see that
the non-interacting cluster consisting of a single adatom and an adatom dimer
has a high moment. This large total moment also survives for linear and corner
trimers. However the most stable compact trimer has a low moment, 0.95 μB in
the case of Mn and -0.76 μB for Cr.
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7.7 Tetramers

We consider two types of tetramers, formed by adding a Cr or Mn adatom
(atom D in Fig. 7.1) to the compact trimer. We begin with the compact tetramer
(see Fig. 7.1 and Fig. 7.4a-b). For both elements Cr and Mn, the Ferri solution
is the ground state (Fig. 7.4a). For Cr (Mn) compact tetramer, the A and D
adatoms are FM oriented to the surface atoms with a moment of 2.31 μB (3.60
μB) while B and C are AF oriented to the substrate with a moment of 2.87
μB (3.43 μB). This gives a magnetic configuration with a low total magnetic
moments of −1.12 μB for the Cr tetramer and 0.34 μB for Mn tetramer. The Cr
tetramer, in particular, shows also a non-collinear configuration (Fig. 7.4b) as a
local minimum which has, however, a slightly higher energy of ΔENCOL−Ferri = 1
meV/adatom. Within this configuration the AF coupling between the adatoms
is observed. However, the four moments are almost in-plane perpendicular to
the substrate magnetization. The tilting is small (θ = 93◦) due to the weak AF
coupling with the substrate.

An additional manipulation consists in moving the adatom D and forming
a tetramer-b (Fig. 7.4c). For such a structure, the collinear solution for the Cr
tetramer is only a local minimum. In this structure, atom D has less neighboring
adatoms compared to A, B, and C. In the non-collinear solution which is the
magnetic ground state, the moment of adatom D (3.34 μB) is almost AF oriented
to the substrate (θ = 178◦, φ = 0◦). The remaining adatoms form a compact
trimer in which the closest adatom to D, i.e. B, tends to orient its moment FM
(2.45 μB) to the substrate (θ = 19◦, φ = 0◦) while the moments of A (2.90
μB) and C (2.80 μB) tend to be oriented AF (θA = 124◦, φA = 0◦) and (θC =
107◦, φC = 180◦). In the (metastable) collinear solution for this tetramer, the
moment of adatom B is oriented FM to the substrate while the moments of all
remaining adatoms are oriented AF to the surface atoms. Here, the total magnetic
moment has a high value of −3.46 μB. The total energy difference between the two
configurations is equal to 49.32 meV/adatom. Compared to the total energy of
the compact tetramer, our calculations indicate that the tetramer-b has a higher
energy (108.72 meV/adatom).

Let us now turn to the case of the Mn tetramer-b. Also here, the non-collinear
solution is the ground state while the collinear one is a local minimum. The
energy difference between the two solutions is very small (2.82 meV/adatom).
The moments are now rotated to the opposite direction compared to the Cr case,
in order to fulfill the magnetic tendency of the single Mn adatom which is FM to
the substrate. The Mn atom with less neighboring adatoms, i.e. D, has a moment
of 3.84 μB rotated by (θ = 27◦, φ = 0◦), while its closest neighbor, the atom B
with a moment of 3.44 μB, is forced by the neighboring companions to couple
AF (θ = 140◦, φ = 180◦). The adatoms A and C with similar magnetic moments
(3.63 μB) tend to couple FM with the following angles: (θ = 81◦, φ = 0◦) and (θ
= 34◦, φ = 0◦). As in the case of Cr tetramer-b, the converged collinear solution
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(a)

(b)

(c)

Fig. 7.4 –. Top view of the collinear most stable solution (a) and the non-
collinear metastable configuration (b) of compact Cr tetramer on Ni(111). In (c)
is depicted the Cr tetramer-b magnetic ground state on Ni(111), which basically
consists of the non-collinear trimer state of Fig. 7.3a coupled antiferromagneti-
cally to the fourth adatom.
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is just the extreme extension of the non-collinear one: The “central” adatom of
the tetramer is forced by its FM Mn neighboring atoms to coupled AF to the
substrate. The magnetic regime is similar to the one of Cr tetramer-b, i.e. high,
with a total magnetic moment of 4.37 μB.

As expected, the most stable tetramer is the compact one, with an energy of
52.26 meV/adatom lower than tetramer b.

7.8 Discussion of Technical Assumptions within
our Simulations

We now discuss the limitations of our calculations due to the following approx-
imations: (i) neglect of structural optimization, (ii) neglect of spin-orbit coupling,
and (iii) use of the local spin density approximation to density functional theory.

(i) Structural optimization can affect the results on the interatomic exchange
interactions and magnetic ground state. In the case of Cr and Mn adatoms on
Ni, the structural relaxations and the changes in the magnetic state are expected
be small. In order to test this, we compare the forces and exchange constants
for two geometries of a magnetically collinear Mn dimer: the “unshifted”, ideal
crystal geometry (with the dimer atoms at the lattice positions, as was done in
the rest of this work) and a “shifted” geometry, with the dimer atoms appreciably
shifted towards the surface by 10.4% of the Ni(111) interplanar distance (6% of
the lattice constant). In both cases, the ferrimagnetic configuration corresponds
to the collinear ground state. The forces are found to be different on the two mag-
netically inequivalent dimer atoms. In the unshifted geometry, the forces have a
perpendicular component toward the surface, Fz = −16.5 and -25 mRyd/aB (aB

is the Bohr radius), respectively corresponding to the adatom with moment par-
allel and antiparallel to the surface moment, and a lateral component pushing
the dimer atoms apart, Fx = 24.4 mRyd/aB . In the shifted geometry, the per-
pendicular forces are about a factor four stronger, Fz = 84.9 and 82.4 mRyd/aB,
pointing away from the surface, while the lateral forces are Fx = 30 mRyd/aB,
again pushing the dimer atoms apart. We conclude that the dimer must relax
toward the surface by about 2% of the interplanar distance, while the atoms
will also move slightly away from each other. This is confirmed in calculations
for a 2% perpendicular relaxation, giving rise to only very small perpendicular
forces (Fz = 0.3 and −4.5 mRyd/aB toward the surface). The energy difference,
ΔE = EFerri−EFerro, changes from ΔE = −147 meV in the unshifted geometry
to ΔE = −150 meV in the 2%-shifted geometry and ΔE = −182 meV in the
10.4%-shifted geometry; i.e., a 2% vertical shift induces only a 2% change in the
interatomic exchange energies, while a 10% vertical shift induces a 25% change.
The effect of the expected 2% relaxation (including the lateral relaxation) to the
equilibrium position should therefore be small. Calculations on the Cr ferrimag-
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netic dimer in the unshifted geometry show forces less than 5 mRyd/aB , meaning
that the structural relaxation of the dimer will be very small.

As a conclusion, our central result, namely that compact structures are in
a noncollinear magnetic ground state, while open structures are in a collinear
state, does not change by structural relaxations. What can change, however, are
the exact angles of the moments in the noncollinear state, as well as the small
energy differences between the various non-collinear energy minimum (which were
of the order of a few meV).

(ii) Spin-orbit coupling is weak in these nanoclusters, because Cr and Mn
atoms have a half-filled d-shell, i.e., filled spin-up shell and unfilled spin-down
shell. In the past, calculations [23, 107] on the magnetocrystalline anisotropy
energy (MAE) of transition metal adatoms on Ag and Au surfaces (where the
spin-orbit coupling is strong) have shown that Cr and Mn adatoms have a MAE
of less than 5 meV. On Ni, the effect should be weaker, as on Cu, where the MAE
of a single Co adatom was calculated [108] to be less than 1 meV. Much stronger
MAE was found, [3] e.g., for Co adatoms on Pt (MAE of the order of 10 meV) or
for 5d adatoms on Ag and Au (MAE of the order of 30 meV), caused by the fact
that the Fermi level is in the middle of the spin-down 3d shell of Co and by the
strong spin-orbit coupling of the 5d adatoms and the Pt, Au, and Ag substrate.
Moreover, as shown in Ref. [13], even the relatively strong MAE of 10 meV of
the Co adatom on Pt drops rapidly with cluster size. Considering these effects,
we believe that spin-orbit coupling cannot significantly affect the magnetic state
of Cr and Mn ad-clusters on Ni.

(iii) Local approximations to density functional theory, i.e., the LSDA (which
was used here) and the generalized gradient approximation (GGA), are known
to fail when electron correlations are strong. In the case of 3d adatoms and
ad-clusters, however, hybridization with the substrate reduces the electron cor-
relations so that local density functional theory becomes satisfactory (except in
Kondo systems). Concerning the use of LSDA instead of GGA, in the case of the
small deposited clusters considered here, the magnetic moments are pronounced
and the exchange interactions clear: the interaction to the substrate is weakly
ferromagnetic for Mn and antiferromagnetic for Cr, and the first-neighbor, intra-
cluster interaction is strongly antiferromagnetic. Therefore, this is not a sensitive
case, where the LSDA and GGA would give considerably different results. Small
energy differences, of the order of 1 or 2 meV per atom (which are found comparing
several non-collinear configurations) can depend on the type of functional used;
however, such accuracy is beyond the predictive power of local density-functional
theory (LSDA or GGA) for these systems.



7.9. Summary 115

7.9 Summary
We have investigated the complex magnetism of small Cr and Mn ad-clusters

on Ni(111). This is a prototype system where two types of magnetic frustra-
tion occur: (i) frustration within the ad-cluster and (ii) frustration arising from
antiferromagnetic coupling between the adatoms in the cluster and competing
magnetic interaction between the adclusters and the surface atoms.

The triangular geometry of the Ni(111) substrate is a necessary condition for
the first type of frustration. In this respect, the situation is fundamentally differ-
ent from the one of Cr or Mn ad-clusters on Ni(001), where no compact trimers
can be formed, and where thus only mechanism (ii) appears (see Chapter 5).
The fundamental difference is also evident from the energy gain of the emerging
non-collinear state (compared to the collinear state), which is much larger in the
case of the Ni(111) substrate.

While the resulting collinear and non-collinear structures are very complex,
a unifying feature is that all compact structures (dimers, trimers and tetramers)
have very small total moments, as a result of the strong antiferromagnetic cou-
pling between the cluster atoms leading to a non-collinear state with nearly com-
plete compensation of the local moments. In most of these cases, the present
local density functional calculations give more than one energy minima, corre-
sponding to different non-collinear states, which are energetically very close (with
differences of a few meV/atom). Thus the system can easily fluctuate between
these states. However, all of them are characterized by a low total magnetic mo-
ment. On the other hand, the more open structures, like the corner and linear
trimers and the tetramer b, have rather large total moments of about 4 μB. Since
the transition between a compact and an open structure requires to move one
adatom by just one atomic step, we might consider this motion as a magnetic
switch, which via the local magnetic exchange field of the single adatom allows to
switch the total moment on and off, and which therefore might be of interest for
magnetic storage. Thus magnetic frustration might be useful for future nanosize
information storage.
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Chapter 8

Strong Even-Odd Effects in
Magnetism of Nanochains

8.1 Introduction

Nanochains is a particular example of nanostructures which, excluding the
ferromagnetic ones [110, 111, 112], were rarely studied. The aim of the present
chapter is to investigate the ground state spin structure of nanowires with up to
10 adatoms using the screened KKR method based on density functional theory
(DFT) and assess our findings with a Heisenberg model in order to show and pre-
dict the relation between parity and non-collinear ground states. We know from
our previous work that the Mn-adclusters are well described by the Heisenberg
model with first neighboring magnetic interactions. As previously we assume a
classical spin Hamiltonian of the form

H = −1

2

∑
i	=j

Jij�ei�ej . (8.1)

We point out that the exchange interaction between the adatoms J1 is considered
to be negative (antiferromagnetic nanochains) while the exchange interaction
between the adatoms and the neighboring surface atoms J2 can be either positive
or negative.

8.2 Ab-initio Results

We have already studied the simplest AF chain case consisting on a dimer
(Cr of Mn) deposited for example on a ferromagnetic surface such as Ni(001).
We recall here briefly the requisite results: Both the Cr- as well as the Mn-dimer
adatoms couple strongly AF to each other, which is in competition with the in-
teraction with the substrate atoms, favoring a parallel alignment of the dimer
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moments and being, as we have mentioned, either of AF nature, for the Cr-
dimer, or of FM one for the Mn-dimer. Thus frustration occurs and non-collinear
structures can be expected. Total energy calculations showed that the collinear
magnetic ground state which is ferrimagnetic (Ferri) is a local minimum. Within
this solution the, no longer equivalent, dimer moments couple antiferromagneti-
cally to each other and are collinear to the substrate moments. The non-collinear
configuration which is the most stable state (see Fig. 8.1(a)) is characterized by
the Mn adatom moments which are aligned antiparallel to each other and basi-
cally perpendicular to the substrate moments. However, the weak FM interaction
with the substrate causes a slight tilting leading to an angle of 73◦ instead of 90◦.
An angle of 94◦ has been obtained for a Cr-dimer due to the preference of the Cr-
adatom to couple AF with the substrate atoms. A small tilting of 0.3◦ up to 7.4◦

of the magnetic moments of the four outer Ni atoms neighboring the Cr-(Mn-)
dimer is observed (the two inner Ni atoms do not tilt for symmetry reasons).

Let us consider a chain of three Mn adatoms (Fig. 8.1(b)). Here, we find the
Ferri solution ↑↓↑ being the ground state (↑ means an atomic moment parallel
to the substrate magnetization direction, ↓ an antiparallel atomic moment). The
magnetic moments do not change a lot compared to what observed for the dimer.
One sees already the beginning of an odd-even dependence of the magnetic ground
state. Investigating the longer nanochains with an even number of adatoms shows
that their ground state is always non-collinear. Examples are shown in Fig. 8.1(c)-
(e)-(g)-(i). The magnetic moments are always in the plane perpendicular to the
substrate magnetization keeping the magnetic picture seen for the dimer almost
unchanged. In every first neighboring pair of adatoms, the magnetic moments are
almost coupled AF to each other. The adatoms at both extremities of the chains
have the most rotated moments towards a FM coupling with the substrate mo-
ments (see Table 8.1). The central adatoms A-B (see Fig. 8.1 for the notation)
are the ones which keep their rotation angle obtained for the dimer almost unal-
tered. The angle θ oscillates between 70o obtained for the chain with 6 adatoms
up to 87o obtained for the chain with 4 adatoms. Note that the angle between
two successive moments is around 150o similar to the dimer result. This explains
the moments which rotate towards the substrate magnetization with an angle ∼
100o(atoms C-D, E-F and G-H for the nanochains with 6, 8 and 10 adatoms re-
spectively) since their first neighbors, which are at the extremities of the chains,
have their moments rotated by an angle of ∼ 50o giving thus an angle difference
of 150o. The energy differences between the non-collinear and the Ferri solutions
are presented in Table 8.2.

The considered nanochains with an odd number of adatoms are characterized
by a Ferrimagnetic ground state. In fact, here we have two possible Ferri configu-
rations. In particular, when the number of adatoms is even, the two possible Ferri
configurations are degenerate (e.g. for the dimer, ↑↓ and ↓↑ are equivalent). If the
number of adatoms is odd, the two possible Ferri configurations are not anymore
degenerate (e.g. for the trimer, ↑↓↑ and ↓↑↓). In that case, the most stable Ferri



8.3. Heisenberg Model Results 119

Tab. 8.1 –. Size and angles of the magnetic moments in the calculated
nanochains with an even number of adatoms. The adatoms connected by - sign
have the same magnetic moment and rotation angle θ but not necessary the same
azimuthal angle φ.

Length Adatom θ(o) φ(o) M (μB)
2 adatoms A-B 73 0-180 3.71
4 adatoms A-B,C-D 87, 54 0-180, 0-180 3.55, 3.72
6 adatoms A-B, C-D, 70, 104, 0-180, 0-180, 3.46, 3.52,

E-F 45 0-180 3.67
8 adatoms A-B, C-D, 84, 65, 0-180, 0-180, 3.47, 3.46,

E-F, G-H 106, 44, 0-180, 0-180, 3.52, 3.66
10 adatoms A-B, C-D, 78, 85, 0-180, 0-180 3.47, 3.47

E-F, G-H, 67, 102, 0-180, 0-180 3.46, 3.52
I-J 48 0-180 3.67

configuration will be provided by the magnetic coupling preference of the single
adatom. A Mn adatom prefers a FM coupling with Ni surface atoms leading to a
configuration which maximizes the number of adatoms with a FM coupling with
the substrate as a Ferri ground state (e.g. ↑↓↑ for the Mn-trimer). For the sake
of brevity, we do not present the converged NCOL local minimums solutions. We
provide, however, the total energy differences in Table 8.2. Moreover, we note
that the obtained NCOL configurations are similar to the calculated ones for
the nanowires with an even number of adatoms in the sense that the adatom’s
moments are almost perpendicular to the surface magnetization.

8.3 Heisenberg Model Results

The Heisenberg model is valuable to determine the effects of parity of the num-
ber of adatoms on the nanowire’s magnetic solutions. We rewrite the Hamiltonian
of eq. 8.1 in terms of the tilting angles θ of the adatoms neglecting the rotation
angle of Ni moments and taking into account only first-neighbor interactions:

H = −J1

N−1∑
i=1

cos(θi − θi+1) − J2

N∑
i=1

cos(θi) (8.2)

We note that the azimuthal angles Φ do not enter the previous expression of the
Hamiltonian for symmetry reasons. J1 is the magnetic exchange interaction be-
tween two first neighboring adatoms i.e. J1 = Jadatom−adatom, while J2 is the total
magnetic exchange interaction between a given adatom and its first neighboring
surface atoms i.e. J2 = MJadatom−surface atom with M being the number of first
neighboring surface atoms. In the case of a fcc (001) surface M = 4, while for
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Fig. 8.1 –. Different magnetic ground configurations of the Mn nanowires on
Ni(001). The nanochains with an even number of Mn adatoms (2, 4, 6, 8, 10) pre-
fer a non-collinear ground state, while for an odd number of adatoms a collinear
Ferrimagnetic state is energetically more stable.

a fcc (111) surface M = 3. N is the number of adatoms in the chain (N>1).
The magnetic exchange interactions can be extracted from our ab-initio DFT
calculations and plugged in the present model.

As we have seen from the adatom and dimer magnetic picture, the two mag-
netic configurations which are relevant for our present investigations are the Ferri
and the NCOL magnetic configurations which are solutions of the Heisenberg
Hamiltonian.

We will try to solve the Heisenberg Hamiltonian by considering, at first stage,
the rotation angle of the magnetic moments in the NCOL solution to have a
constant value. In the second stage, we will consider the general case, i.e. the
rotation angles can vary from adatom-site to adatom-site, by solving this Hamil-
tonian with an iterative scheme.

8.3.1 Case of Constant Rotation Angles

In this case, the NCOL configuration is described by the following Hamiltonian
in which for simplicity we consider, as precised earlier, the rotation angle of the
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Tab. 8.2 –. Size of the magnetic moments in the calculated Ferri nanochains
with even and odd number of adatoms. The energy difference between the NCOL
and Ferri are also shown. As described earlier the adatoms separated by - sign
have the same magnetic moment.

Length Adatom M (μB) EFerri - ENCOL

for Ferri (meV/adatom)
2 adatoms A,B -3.78, 3.65 11.16
3 adatoms A, B-C -3.78, 3.65 -8.85
4 adatoms A, B, 3.48, -3.62 8.48

C, D, -3.82, 3.68
5 adatoms A,B-C, 3.43, -3.56 -9.52

D-E 3.64
6 adatoms A, B, -3.54, 3.43, 7.82

C, D, 3.45, -3.57,
E, F -3.77, 3.64

7 adatoms A, B-C, -3.54, 3.43, -10.48
D-E, F-G -3.56, 3.64

8 adatoms A, B, 3.43, -3.54, 5.46
C, D, -3.54, 3.43
E, F, 3.45, -3.56
G, H -3.77, 3.64

9 adatoms A, B-C, 3.43, -3.54 -9.29
D-E, F-G, 3.43, -3.56
H-I 3.64

10 adatoms A, B, -3.54, 3.42 3.53
C, D, 3.43, -3.54,
E, F, -3.54, 3.43,
G, H, 3.45, -3.57
I, J -3.77, 3.64

adatoms to be the same:

HNCOL = −(N − 1)J1cos(2θ) − NJ2cos(θ), (8.3)

This Hamiltonian is minimized by the angle θ satisfying the following criteria:

cos(θmin) = − NJ2

4(N − 1)J1

. (8.4)

The Hamiltonian of the most stable Ferri solution is given by

HFerri = (N − 1)J1 − P (N)|J2|. (8.5)

P (N) is a parity function of the number N of adatoms which equals 0 when N is
even or 1 if N is odd.
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Let us calculate the difference ΔH between the two Hamiltonians HNCOL(θmin)−
HFerri:

ΔH =
N2J2

2

8(N − 1)J1
+ P (N)|J2| (8.6)

=
N2J2

2

8(N − 1)J1

[
1 +

8(N − 1)J1P (N)

N2|J2|
]

If the difference is negative, the NCOL configuration is the ground state while
the opposite leads to the Ferri ground state.

The first term of the left side of eq. 8.6: N2J2
2/8(N − 1)J1 is negative because

the adatoms couple AF between each other (i.e. J1 < 0). Two cases have to be
considered for the second term. First, the number of adatoms N is even. This
leads to P (N) = 0 and gives a negative energy difference. In other words if N is
even, the NCOL configuration is the ground state. Note that in the considered
Heisenberg model, the two solutions Ferri and non-collinear with an angle θ = 90◦

are completely degenerate. For the latter configuration, a small variation of the
angles θ leads to a linear change of the energy ∼ Δθ, such that the exchange in-
teraction energy with the substrate atoms can be gained by tilting either towards
the substrate or away from the substrate depending on the sign of J2. The energy
gain by this tilting goes almost linearly with the number of adatoms (see eq. 8.6)
meaning that the energy gain by the adatom is almost a constant.

Second, the number of adatoms is odd and P (N) = 1. The second term of
eq. 8.6 is positive contrary to the first term and provides an energy counterbalance
allowing the Ferri solution to be stable under some conditions. However, this
additional term will vanish for a big number of adatoms as it decreases as 1/N .
Hence, we can already state that for a sufficiently high number of adatom the
non-collinear solution will be the ground state. In general the NCOL ground state
is provided for J1 > − N2

8(N−1)
|J2| or equivalently if |J1| < N2

8(N−1)
|J2|. Otherwise

the Ferri solution is the ground state. One can express the last condition in terms
of a second degree polynomial

N2|J2| − 8(N − 1)|J1|, (8.7)

with the unknown variable N and a discriminant Δ = (8|J1|)2(1 − |J2|
2|J1|). The

sign of this polynomial depends on the sign of the discriminant. If the total
exchange interaction |J2| is high enough compared to the exchange interaction
between the adatoms or more precisely if |J2| > 2|J1| then Δ < 0. In other words
the polynomial would have the positive sign of N2 meaning that the nanochain
would be non-collinear. If Δ > 0 (|J2| < 2|J1|) then the two solutions can be found
depending on the length of the nanochain. The transition from a magnetic state
to another one is provided by the roots N1 and N2 of the previous polynomial.
The nanowires are non-collinear unless their length is delimited between N1 and
N2.
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Tab. 8.3 –. Values of the magnetic exchange parameters Jij using the Licht-
enstein formula [24] for the Mn dimers on different surfaces: Ni(001), Ni(111)
and Fefcc(001). The calculated θ angles from ab-initio and Heisenberg model are
shown. The sign of the discriminant and roots of the polynomial, described in the
text, are also given.

Jij (meV) Mn2/Ni(001) Mn2/Ni(111) Mn2/Fefcc(001)
J1 -138.2 -145.0 -43.0
J2 4×13.0 3×9.0 4×(-10.7)
θdimer
FP−KKR 73◦ 79◦ 115◦

θdimer
Heisenberg 79◦ 85◦ 120◦

Sign of Δ + + +
N1, N2 1.0, 20.2 1.0, 42.0 1.2, 6.9

In Table 8.3 are shown examples of the exchange interactions for Mn-dimers on
different ferromagnetic substrates: on Ni(001), on Ni(111) and on fcc Fe(001).
In case of an odd number of adatoms, the discriminant of the polynomial is
positive meaning that the ground state is Ferri for a given range of number of
adatoms. Following our model, we see that above 19 adatoms, the Mn nanochain
on Ni(001) surface should experience a magnetic transition to a NCOL solution.
Whereas this transition is expected to occur for a higher number, almost the
double, of adatoms on Ni(111). The range of presence of the Ferri state as a
ground state is much more limited (N=3, 5) on Fefcc(001). In general, within the
assumption of constant rotation angle of the adatoms magnetic moments, the
Heisenberg model predicts a NCOL ground state for the infinite chains deposited
on ferromagnetic surfaces.

8.3.2 General Case

Another possibility to investigate the problem of the nanochains within the
Heisenberg model is to solve eq. 8.1 by allowing the rotations angles of the mo-
ments to be different within the chains.

Here, instead of using the angles θ between the magnetization of the surface
and the individual magnetic moment of the adatoms we prefer to use the angles
δ between the individual moment and the direction perpendicular to the surface
magnetization (δi = (−1)i+1(π

2
−θi)). Since our DFT results show that the angles

δ are expected to be small, the advantage of using Taylor’s development will be
easily taken and used when needed.

After the variable change, the Heisenberg Hamiltonian is:

H = −J1

N−1∑
i=1

cos(δi − δi+1) − J2

N∑
i=1

sin(δi) (8.8)
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The minima of this Hamiltonian are determined by the three following equations:

i = 1 :
∂H

∂δ1
= −J1sin(δ1 − δ2) − J2cos(δ1) = 0

1 < i < N :
∂H

∂δi
= −J1(sin(δi − δi−1) − sin(δi+1 − δi)) − J2cos(δi) = 0

i = N :
∂H

∂δN

= −J1sin(δN − δN − 1) − J2cos(δN) = 0 (8.9)
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Fig. 8.2 –. Energy differences obtained with the Heisenberg model between
the NCOL configuration and the Ferri configuration for different lengths of the
nanowires. Black circles represent the results obtained for chains with the odd
parity while the red circles correspond to the chains with the even parity. The odd
chains starts to prefer the non-collinear solution to be the ground state for lengths
bigger than 9 adatoms, value which we call transition’s length (NTrans).

One can solve these equations self-consistently and many physical quantities
of our interest can be deduced. The energy differences between the NCOL and
Ferri can be, for example, calculated. Fig. 8.2 shows the variation of the en-
ergy differences (ENCOL − EFerri) versus the length of the nanowires given by the
number of adatoms. Negative values of the plotted energy differences mean that
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the ground state is non-collinear. The red circles confirm our DFT results and
show that the even chains have a non-collinear ground state. Within this model,
the non-collinear solutions is not even a metastable state for odd chains with a
length smaller than 9 adatoms. This value corresponds to a quantity we name
“transition’s length”. However, for a length bigger or equal 11 adatoms, the odd
chains prefer the non-collinear solution to be the ground state. Another impor-
tant remark is that when increasing the lengths of the nanowires both curves are
converging to the same energy difference. This is expectable because if the chains
are infinite then the concept of parity will vanish. In fact, the magnetic ground
state in that case will be the one predicted when we assumed a constant rotation
angle (θNCOL = 69o).

The next point we are aiming to discuss is the transition’s length (NTrans) for
the odd chains which has been found for the actual investigated case (Mn/Ni(001))
to be equal to 9 adatoms. We show in Fig. 8.3 the variation of NTrans versus the
ratios J2

J1
. The obtained curve seems to have an exponentially decaying shape.

On one hand, small exchange interactions ratios lead to very high transitions
lengths. This means that odd-even effects are expected to last for very high
length values. On the other hand big values of J2 compared to J1 lead to very
small transition lengths. One should mention that for even higher values of J2, the
ground state is ferromagnetic and not anymore non-collinear. The obtained curve
is interesting and can be used to predict the behavior as well as the transition
lengths for other kinds of antiferromagnetic chains deposited on ferromagnetic
substrates. This model predicts for example a transition’s length of 5 adatoms
for Mn/Fe(001) while Mn/Ni(111) is characterized by a value of 17 adatoms.
Certainly, this transition’s length is subject to modifications depending on the
accuracy of the exchange interactions, spin-orbit coupling and geometrical relax-
ations which depend on the investigated system.

It is interesting to look at the rotation angles obtained within this Heisenberg
model and to compare them with the DFT values. Fig. 8.4 shows that the dis-
crepancy between the two theories get smaller as soon as the length of the chains
increases. The reason is indeed the assumption we included in our model con-
cerning the equality of the exchange interactions (J1) between all the adatoms.
The increase of the chain’s lengths smoothen in fact the discrepancies between
the exchange interactions which improves the results obtained with the model.
In other words, the angles obtained with the Heisenberg model can be trusted
for very long chains which makes it very useful.

An additional interesting point is the linearity of the variation of the angles
δ for sites sharing the same index parity. This will be clearly explained in the
following. Let us first assume that the angles δ are very small which leads to a
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addition to the particular case investigated in the actual chapter, results within
the Heisenberg model for other systems such as Mn/Ni(111) and Mn/Fe(001) are
shown.

first order Taylor expansion in equations 8.9:

δ1 + δ2 = −J2

J1

(8.10)

1 < i < N : 2δi + δi+1 + δi−1 = −J2

J1

(8.11)

δN + δN−1 = −J2

J1

(8.12)

A small manipulation of the above equations leads to

If i odd : δi − δi+2 = −J2

J1
(8.13)

If i even : δi − δi+2 =
J2

J1
(8.14)

One sees clearly the linearity of the angle deviations for the atoms of the same
index parity. In fact in order to solve these equations practically symmetry ar-
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and 8 adatoms.

guments have to be used. The linear variation of δ explains the ability of the
Heisenberg model to reproduce the magnetic behavior of the neighbor of the edge
adatom. This adatoms as explained earlier couples slightly antiferromagnetically
to the surface atoms moments. Moreover, the Heisenberg model predicts that
for relatively long chains more adatoms close to the edge of the nanowires have
tendencies for a slight antiferromagnetic coupling with the surface magnetization.

8.4 Summary
Parity of number of adatoms in finite antiferromagnetic nanowires is shown

to be crucial in predicting whether the magnetic ground state is non-collinear
or collinear. Our analysis shows that a non-collinear state is always the ground
state for a nanochain with an even number of adatoms. The Ferri solution is
the ground state for limited lengths of odd-chains. We predict the infinite chains
to be of non-collinear magnetic nature. We believe that the magnetic state of
these nanostructures can be measured by spin-polarized Scanning Tunneling Mi-
croscopy SP-STM and should show the parity dependence of the magnetic ground
state predicted by our calculations.
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Chapter 9

Surface State Scattering by Small
Clusters

9.1 Introduction

At crystal surfaces the symmetry is lowered: The three dimensional periodicity
in the bulk is lowered to the two dimensional periodicity at the surface. This leads
to the occurrence of two-dimensional surface states [113, 114], which are spatially
confined to the surface, since their wave functions decay rapidly into the crystal
and are strongly damped in the vacuum. Surface states can exist only in regions of
the two-dimensional Brillouin zone, where bulk Bloch states are not allowed. They
are characterized by a two-dimensional Bloch vector �k|| in this surface Brillouin
zone, which describes the propagation in the surface plane. A projection of the
bulk band structure to the surface plane can result in k||-regions, where bulk
states are forbidden. In these gaps of the projected bulk band structure surface
states can occur provided that their energy is lower than the work function. These
two conditions guarantee that the wave functions of the surface states decay
exponentially both into the crystal and into the vacuum region. An example of a
Cu(111) band structure projected on the Γ̄ − M̄ line of the 2D-Brillouin zone is
shown in Fig. 9.1. The shaded regions give the regions in E −k‖ space, for which
bulk eigenstates (Blochwaves) exist. As mentioned earlier surface states can only
exist in the white ”gap”-regions. Two such states are indicated. Of special interest
is the parabolic band with the minimum just below EF , since this state is only
partially occupied and gives rise to a two-dimensional metallic behaviour, which
is of great interest for the following.

Recently a strong interest arose concerning an important physical effect asso-
ciated with the interaction of a two dimensional surface state with the states of
an adatom. It was shown that for Cu adatoms on Cu(111) a bound state splits
off from the bottom of the Cu(111) surface state [26, 27]. This effect was basi-
cally predicted by Simon [28] who stated that in two-dimensional free space any
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Fig. 9.1 –. Surface states (dashed
curves) and bulk projected bands at a
Cu(111) surface according to a six-
layer surface band structure calcula-
tion [115]. We note in addition to the
usual Γ̄ surface state a second sur-
face state positioned at M̄ (see sec-
tion 9.6).

attractive potential has a bound state. Gauyacq et al. [116] suggested that an
adatom–induced localization of the surface state may be observed in STS as a
peak appearing just below the surface band edge when a Cs adatom is deposited
on Cu(111).

Using low–temperature scanning tunneling spectroscopy (STS), Limot et al. [26]
investigated silver and cobalt adatoms on Ag(111) as well as copper and cobalt
adatoms on Cu(111). The bound state appears both for magnetic and non-
magnetic adatoms as shown in Fig. 9.2. Moreover, using a Newns–Anderson model
the authors explained the results as arising from the coupling of the adatom’s or-
bital (which was supposed to be the s–orbital) with the surface-state electrons,
and being broadened by the interaction with bulk electrons of the same energy.
On the other hand, Olsson et al. [27] used the same type of experiment and
performed pseudopotential calculations for single Cu adatoms on Cu(111). The
calculated local density of states (LDOS) exhibits several adatom–induced peaks.
Two of them are assigned to resonances deriving from the dz2 atomic orbital and
spz hybrid orbitals. The third one corresponds to a localization of the surface state
at the adatom without a specified orbital origin. In fact, these adatom-induced
peaks appearing at the bottom of the surface state were already observed by an
other experiment [117], again without a clear assignment of their origin. Davis et
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Fig. 9.2 –. Data obtained experi-
mentally by Limot et al. [26]: dI/dV
spectrum over: (a) Center of a 20×20
nm2 defect- and impurity-free area of
Cu(111), (b) Center of a copper atom
and of a cobalt atom on Cu(111). In
the inset is shown a Kondo-Fano res-
onance of Co/Cu(111) near the Fermi
level.

al. [118] have observed similar localized states in STS measurements for Cr atoms
in the surface layer of Fe(001) surface. Ab-initio calculations of Papanikolaou et
al. [119] confirmed this and showed that similar localized states occur for many
other impurities in the Fe(001) surface.

In this work we study the origin and the condition of existence for such an
impurity–induced split-off state on the Cu(111) surface. For this purpose we have
performed ab–initio calculations using the Korringa-Kohn-Rostoker (KKR) Green
function method for impurities on the Cu(111) surface. We consider single im-
purities of the 3d and 4sp elements as adatoms on the Cu(111) surface and as
impurities in the first layer. We find that split-off states can appear both for
adatoms on the surface as well as for substitutional impurities in the surface. In
the case of magnetic impurities these states always appear in both spin channels
and show a very small spin splitting.

9.2 Computational Aspects
We considered a cluster of perturbed atomic potentials which includes the po-

tentials of the impurities and the perturbed potentials of several neighbor shells.
Also in the vacuum region the space is filled by cellular potentials, of which the
ones close to the impurity are perturbed. The impurity potential and the per-
turbed potentials of the neighboring cells are embedded in an otherwise ideal
unperturbed surface which is in the present case the ideal Cu(111) surface.

We have carried out our calculations in the local spin density approximation
(LSDA) with the parameters of Vosko et al. [35]. Angular momenta up to lmax = 3
are included in the expansion of the wave functions and up to 2lmax = 6 in the
charge density expansion. We have checked these cut-offs to be adequate for our
purpose.

First, the surface Green function was determined for the surface of Cu(111).
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Fig. 9.3 –. Schematic view of the two impurity configurations studied: the
adatom is assumed to sit at the hollow position in the first vacuum layer, and the
inatom is sitting in the first surface layer. Note that as the surface is a fcc(111)
the layers stacking order is of ABCABC.. kind.
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Surface

Adatom Inatom
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The LSDA equilibrium lattice parameter was used (6.63 a.u. ≈ 3.51
◦
A ). To

describe the impurities on (adatom) or in (inatom) the surface (Fig. 9.3), we
consider a cluster of perturbed potentials which includes the potentials of the
impurities and the perturbed potentials of several neighbors shell, with typical
size of 29 perturbed sites for the adatoms. All adatoms are assumed to sit at the
hollow position in the first vacuum layer. In the following, we take as reference
energy the Fermi level EF .

From a practical point of view it is frequently desirable to gain an under-
standing of the STS without highly demanding and thus very time consuming
model calculations. In principle, the Tersoff-Hamman model [120], which is based
on the electronic structure of the analyzed surface, provides just such an easy
method. According to this model [120] scanning tunneling spectra can be related
to the s-DOS induced by the surface or by the adatom at the position of the
STS tip. Adopting this model, we calculate the s-LDOS at a position z = 2.86
◦
A directly above the adatom. This corresponds to a regular lattice position in
the third vacuum layer above the surface.

9.3 Tersoff-Hamann Model

The scanning tunneling microscopy and spectroscopy, introduced by Binning
and Rohrer in 1982 [2] (physics Nobel prize 1986), have opened the road to
atomic resolution images of materials. The method is based on the tunnel effect,
i.e. approaching the surface of a substrate material with a tip under voltage,
tunneling current can flow between the surface and the material through the



9.3. Tersoff-Hamann Model 133

Fig. 9.4 –. The under-
lying idea of STS. The
dark shaded region in the
surface density of states
between EF and EF +
e · ΔV corresponds to the
states which contribute
to the measured current
I at voltage ΔV . Thus
the current is, in first
approach, proportional to
the number of states N in
this interval, and the dif-
ferential conductance dI

dV

proportional to the den-
sity of states at EF +
ΔV , dN

dV
= n(EF +

ΔV ). Reverting the volt-
age, one has electron tun-
neling from the tip into
the surface, thus probing
the DOS below EF .

vacuum without the tip actually touching the surface. The current measured gives
the characteristic of the current voltage I(V ) and the rather more used differential
conductance dI

dV
(V ). This gives the opportunity for STS and is useful because the

signal shape contains more information than the current at a particular constant
voltage. To understand this let us consider a prototype STS experiment: When
applying a voltage ΔV the surface states are raised by e ·ΔV (see Fig. 9.4). Thus
in the energy range between the tip Fermi level, EF and the substrate Fermi level
EF + e ·ΔV , the states of the tip are empty while those of the surface are filled.
These states contribute to the electron current I from the substrate to the tip.
If we assume that the density of states of the tip is approximately constant in
this energy range, as in the example shown in Fig. 9.4, and that the tunneling
amplitude M(E) between the surface and the tip does also not change much,
then the current I should be proportional to the total number of states between
EF and EF + e · ΔV

I(V ) ≈
∫ EF +e·ΔV

EF

nsurf(E)dE, (9.1)

with nsurf(E) the surface density of states. This leads the differential conduc-
tance:

dI

dV
(V ) ≈ nsurf(EF + e · ΔV ). (9.2)
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These equations can be derived from a more general theory of Bardeen [121]
under the assumption of an energy-independent transmission probability and tip
density of states. This is reasonable in some cases (e.g. for tips with s-like DOS
around EF ) and constitutes the Tersoff-Hamann model, giving quite acceptable
results mainly when the following criteria are satisfied [122]: (i) No substantial
chemical interactions exist between surface and tip, meaning that the distance
has to be larger than for example 5-6

◦
A in the case of metal surfaces. (ii) The

typical size of the surface structures to be studied is well above the typical length
scale of the electronic states of the STM tip: Since the typical length scale of
the tip is about 1

◦
A to 2

◦
A , for features of sizes well above this value the exact

geometry of tip states will not enter the shape of the current contour in a decisive
way.

9.4 Origin of the Localization
Let us go back to the effect we are interested in. It is very useful to give a

simple explanation on how the localization appears contrary to the more involved
Anderson-model used by Limot et al. [26]. This effect did not appear acciden-
tally on the Cu(111) or Ag(111) surfaces. As shown in Fig. 9.1 these surfaces are
characterized by surface states where the electrons behave like a two-dimensional
gas. In such a two-dimensional model case the DOS ρ0 exhibits a van Hove sin-
gularity, resulting in a step-like jump of the DOS from zero to a constant value
at the minimum of the surface state (Fig. 9.5).

Let us consider a simple 2D tight-binding model with s-orbitals |i > and |j >
centered at the sites i and j. By denoting the atomic level by ε0 and the hopping
matrix elements between nearest neighbors (NN) t, the unperturbed hamiltonian
is given by

H0 =
∑

i

ε0|i >< i| +
NN∑
i,j

t|i >< j|, (9.3)

characterized by the Green function denoted by
◦
G. An introduction of a perturbed

potential ΔV on the “impurity” site 0 leads to a shift of the atomic level of the
orbital |0>

V = ΔV |0 >< 0|. (9.4)
The Dyson equation for the Green function, which is in operator form given by

G(E) =
◦
G +

◦
GV G =

◦
G +

◦
GV

1

1 −
◦
GV

◦
G, (9.5)

can be solved exactly, leading to

Gij(E) =
◦
Gij(E) +

◦
Gi0(E)ΔV

1

1 −
◦
G00(E)ΔV

◦
G0j(E) (9.6)
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A new bound state centered at the impurity site occurs, if the denominator has
a pole at a certain energy E, meaning that

1 −
◦
G00(E)ΔV = 0 (9.7)

which is equivalent to

1 − Re
◦
G00(E)ΔV = 0 and Im

◦
G00(E) = 0 (9.8)

If both can be satisfied for an energy E = E0, a bound state with energy E0 exists
at the impurity site. When Im

◦
G00(E) is not zero, there is a broadening of the

bound state. We see in Fig. 9.5 that this condition is obtained when the vertical
line defining 1

ΔV
crosses the real part of the Green function. The important point

is the following: as the real part of the Green function experiences a logarithmic
singularity because of the jump in the imaginary part of the Green function,
the line 1

ΔV
always crosses the real part of the Green function if the potential is

negative, in other words when the potential is attractive.
Such an effect should be observed in all systems having a DOS characterized

by a discontinuity which leads to a logarithmic singularity of the real part of the
Green function. The impurity plays then the role of “bringing” or “connecting”
this resonance to the imaginary part of the new Green function of perturbed
system.

9.5 Surface State of Cu(111)
The first step of our work consists in calculating the energy of the bottom

of the surface state. As depicted with the dashed line in Fig. 9.6, the s-LDOS is
characterized by a surface state which appears at 0.68 eV below the Fermi energy.
We note that experimentally, this threshold energy is higher and is situated at
−0.45 eV [123]. This inconsistency is mainly due to the LDA equilibrium lattice
parameter (3.51

◦
A ) we used in our calculations since a test calculation with

the experimental lattice parameter (3.62
◦
A ) gives a value of −0.49 eV for the

threshold energy (see the full line in Fig. 9.6) which is in much better agreement
with the experiment. Note that for two dimensional bands the LDOS shows a
jump at the energy of a band minimum or maximum, which is slightly broadened
in Fig. 9.6 due to the use of a small imaginary part for the energies.

9.6 3d-impurities as Adatoms
The calculated LDOS for 3d adatoms presented in Fig. 9.7 exhibit several

adatom–induced peaks. The LDOS refer to an unoccupied lattice position in the
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Fig. 9.5 –. In red is
shown the density of
states (ρ = − 1

π
Im

◦
G),

or the imaginary part
of the Green function
if multiplied by − 1

π
,

of a two-dimensional
electron gas which ex-
periences a jump to a
constant a value at an
energy 0. The dashed
line represents the in-
verse of the poten-
tial V which if neg-
ative crosses always
the real part (in blue)
of the Green func-
tion giving rise to a
bound state shown in
red (see text).

third vacuum layer above the surface, i.e. 2.86
◦
A above the single adatoms in

the first vacuum layer. We focused on the region where the split-off state appears
experimentally, i.e., around the bottom of the surface state, which, as stated
above, is in our calculations located at −0.68 eV.

Let us start with a Cu adatom. Below EF , Fig. 9.7 shows that two states
appear in the LDOS. The first one (see arrow (a) in Fig. 9.7) is a split-off state
situated at the bottom of the surface state (≈ −0.68 eV) as was already found by
Limot et al. [26] and by Olsson et al. [27]. To understand the origin of the second
protrusion (see arrow (b)) we plot in Fig. 9.8 the d-partial LDOS of the adatoms
which shows that it comes from a resonance of the dz2 state at ≈ −1.7 eV.

For all the 3d-adatoms examined, we find for both spin directions a peak in the
LDOS in the region below the threshold value of the surface state. However, we
also find peaks at other energies, e.g. for Cu at −1.7 eV as mentioned earlier and
for Co at −1.5 eV for spin-up and at around 0 eV for spin-down states. In order
to understand this behavior, we have in first place to understand the electronic
and magnetic properties of the impurities and then which of the impurity states
penetrate well into the vacuum, such that they show up in the LDOS of the
second layer and can be detected by the STM.

Let us first address the second question. In the vacuum region, states with
small in-plane �k-components �k|| decay most slowly as a function of the perpen-
dicular distance z from the surface. In fact, for a given energy E = −χ2 be-
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Fig. 9.6 –. s-Local density of states (LDOS) at the second vacuum layer above
the Cu(111) surface. The full line represents the s-LDOS with the experimental
lattice parameter and the dashed line refers to the s-LDOS with the LDA lattice
constant.

low the vacuum barrier, a wave function with in-plane component k|| decays as

e−(χ2+k2
||)

1
2 z. Therefore states with small k||-values decay slowest; for higher k||

part of the kinetic energy is used for in-plane oscillations. Since the states with
k|| = 0 show no in-plane oscillations and exhibit the full symmetry of the surface,
we find that for the (111) surface states with s, pz and dz2 show a slow decay
in the vacuum region and can be well seen in STM, while other p- and d-states
are strongly attenuated. An analogous argument holds for single adatoms on the
(111) surface, since only these states exhibit the full point group symmetry of the
adatom-on-surface configuration [119], and have thus no oscillations to use part
of the kinetic energy.

To understand the magnetic properties of the adatoms, we have plotted in
Fig. 9.8 the d-contribution to the local density of states (LDOS) at the adatom
site. For the Cu-adatom, we find a sharp d-peak at −1.7 eV, i.e. at the edge of
the bulk d-band of Cu. This is a consequence of the repulsive potential, which the
Cu adatom experiences in the first layer, shifting the d states to higher energies
than in the bulk. All other impurities are magnetic and exhibit sizable moments,
leading to a spin splitting of the so-called virtual bound states. For the different
adatoms, the calculated local moments Ms are: Cr (4.06 μB), Mn (4.28 μB), Fe
(3.21 μB), Co (1.96 μB) and Ni (0.34 μB). Note that the spin splitting is roughly
given by I · Ms, where I is the exchange integral of the order of 1 eV [124]. In
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Fig. 9.7 –. Local density of states (LDOS) at the second vacuum layer above the
3d adatoms (2.86

◦
A ) on the Cu(111) surface. The full lines refer to majority-

spin states, the dashed lines to minority-spin ones. The two arrows show the
protrusions discussed in the text: (a) corresponds to a split-off state, (b) is a dz2

resonance.

the case of the Cr adatom, the minority peak is at higher energies and cannot be
seen in Fig. 9.8, while for Fe and Mn the majority peaks are at lower energies.

Let us now come back to the interpretation of Fig. 9.7, showing the LDOS
in the second vacuum layer, at the position above the adatom, for majority and
minority electrons. Independently of the peak structure, we observe a general
increase of the DOS at higher energies, which arises from the increase of the
spatial extent of the wave functions for larger energies. For Cu, the peak at
−1.7 eV coincides with the dz2-peak in the local DOS of the adatom, shown in
Fig. 9.8. For clarification we show in Fig. 9.9 the local s-DOS and the dz2-DOS
of the adatoms (the latter reduced by a factor of 10). For Cu, as well as for the
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Fig. 9.8 –. d-contributions to the Local density of states (LDOS) of 3d adatoms
on Cu(111) surface. The full lines describe the majority-spin states and the dashed
lines describe the minority-spin states. Since the Cu adatom is non-magnetic, the
majority and minority virtual bond states coincide.

majority states of Co, we see a maximum and minimum in the s-LDOS at the
dz2-peak position, arising from the Fano-like resonant scattering of the s-states
at the dz2-resonance. This effect cannot occur for a single adatom in free space
or in jellium, since the s- and d-orbitals are orthogonal. Therefore it is brought
about by the reduced symmetry, i.e. the scattering at the substrate atoms. The
LDOS-peak below −0.68 eV (arrow (a)) is the split-off state of the Cu adatom,
induced by the attractive nature of the adatom potential in the first vacuum
layer. The same states are also seen for the Co-adatom, more or less identical for
both spin directions. In addition we see for the minority s-state of Co a Fano-
like resonance behavior at the Fermi level, arising from the interaction with the
minority dz2-virtual bound states.
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Fig. 9.9 –. Focus on the s-partial LDOS (black curves) of the impurity atoms
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In the case of the Ni adatoms the virtual bound states for the two spin direc-
tions are only weakly split and more or less coincide with the energy level of the
split-off surface state. Therefore in the local s-DOS the two effects, the formation
of the split-off state and the resonant scattering at the dz2 resonances, cannot be
distinguished. However, in the vacuum region (Fig. 9.7) the spin splitting of the
majority and minority dz2-states can be clearly seen.

For Fe-, Mn- and Cr-adatoms another effect can be seen in the vacuum LDOS
(Fig. 9.7) and the local s-DOS in Fig. 9.9. The intensity in the majority split-off
surface state is considerably higher than for the minority state. This can have
several reasons. For instance, due to the exchange splitting the majority potential
is somewhat stronger than the minority one, leading to a smaller lateral extension
of the split-off states and to a larger intensity on the adatom site. In particular
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in the case of Cr, also the resonant interaction with the impurity dz2 virtual
bound state becomes important, strongly increasing the majority intensity on
the impurity site as well as in vacuum.

Moreover, we have noticed a small peak appearing in the Mn- and Fe-adatom
majority d-LDOS (see arrow (c) in Fig. 9.8) at the same position where the virtual
bound states of Cu-adatom is situated (≈ −1.7 eV). However, these protrusions
have a different origin since there is no peak at −1.7 eV in the dz2-LDOS for Mn-
and Fe-adatom contrary to Cu- or Co-adatoms (see Fig. 9.9). They appear at the
remaining d-partial LDOS (dxy, dyz, dxz and dx2−y2) which are strongly damped
in the vacuum. For symmetry reasons they do not hybridize with the s-LDOS
explaining thus why we do not see a peak at the s-LDOS of Mn and Fe-adatoms
contrary to Cu and Co-adatoms. We believe, however, that these peaks can be
interpreted as split-off states from a surface state at the M̄ point [115] shown
in Fig. 9.1, which shows a negative dispersion, such that a repulsive impurity
potential leads for these d-states to a split-off state at higher energies, i.e. above
the corresponding surface band.

9.7 sp-impurities as Adatoms

We consider now some sp-impurities as adatoms, for which the behavior is not
complicated by the spin polarized d-states. As a first candidate we consider Ca at
the beginning of the 3d-series. The calculations give a well defined split-off state
at the same position as for Cu and the 3d impurities, i.e. below the minimum
of the surface band. In addition we performed calculations for Zn, Ga and Ge
adatoms. The split-off state is still seen for Zn but not anymore for Ga and Ge
atoms. The reason for this is that in the LDOS of Ga and Ge adatoms the s-states
have moved to lower energies below the surface state minimum. In this case the
s-scattering at the adatoms becomes effectively repulsive, so that no split-off state
occurs. To explain this we note that the scattering behavior of a scattering center
is directly related to the t-matrix, and only indirectly to the potential. Our results
are in contradiction with the usual statement that any attractive potential leads
to a split-off state of a two-dimensional surface state. This is not correct in our
case, since the t-matrix of the adatom is basically a three-dimensional quantity.
For s-scattering at low energies E ∼ 0, the t-matrix is related to the so-called
scattering length a, being discussed in many books on quantum mechanics. The
quantity a is the length where the extrapolation of the asymptotic form of the
wave function for E = 0 vanishes. For the simple model of spherical potential
well of depth V and radius r0 the scattering length a is plotted in Fig. 9.10. For
a repulsive potential the scattering length is positive and approaches the well
radius r0 for large V . For a weakly attractive potential a is negative. However,
when the potential V becomes stronger attractive, the scattering length assumes
even stronger negative values, until it jumps at a critical strength V = V0 from
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−∞ to +∞, and is positive for further increased V -values. At the critical strength
V0 a bound state appears at E = 0, moving to lower energies for further increased
negative V values, and making the scattering length positive as for a repulsive
potential. To compare with the real situation of the adatoms, the potential of
the transition metal atoms is sufficiently weak so that a split-off state exists,
since the atomic 4s-level is far above the Fermi level and the scattering length is
negative. However, for the Ge adatom the 4s-level has moved below the minimum
of the surface state, so that the scattering length is positive and no split-off state
appears. When progressing further in the atomic table a split-off state can only
appear again, when in the next series of the elements, say from Rb to Ag, the
5s-level has moved down towards the Fermi level.
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a protrusion appears at ≈ −1.3 eV on the majority spin channel which are due
to the d state of the Co adatom.

9.8 Impurities in the Surface Layer

The scattering of the surface states at impurities in the first surface layer is
basically different from the scattering at adatoms, since the effective potential for
scattering is the difference between the potential of the impurity and the potential
of the substituted Cu atom. Therefore all 3d-impurities in the first layer do not
show any split-off surface state, since the potential difference is very small (and
moreover slightly repulsive). On the other hand for Ge impurities in the first
layer, the calculations yield a split-off state, as is shown by the small peak in
Fig. 9.11. Apparently the difference in potential is sufficiently attractive, such
that a weakly localized state is formed. Therefore we obtain the opposite trend
than for the adatoms. Transition metal impurities exhibit a split-off surface state
as adatoms, but not as substitutional impurities in the first layer, whereas for Ga
and Ge just the opposite is true.
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9.9 Limitations of the LSDA
We now discuss the limitations of our calculations, in particular concerning

the Kondo effect which cannot be captured by the LSDA. It is well-known that,
at low temperatures, the spin moment of the magnetic impurities fluctuates, so
that these appear non-magnetic. The temperatures at which the experiments are
conducted are in many cases below the Kondo temperature; e.g., a characteristic
Kondo feature in the spectra was observed for Co on Cu [26].

The Kondo effect is characterized by a narrow Abrikosov-Suhl resonance of
the DOS at EF which is absent in our calculations. However, the split-off states
are well below EF . Furthermore, the split-off states appear by the interaction
of impurity s-states with the surface band while the Abrikosov-Suhl resonance
is due to the interaction of the localized impurity d states with the conduction
electrons. Therefore our results on the split-off state are physically relevant.

On the other hand, the spin-dependent spectra of the magnetic impurities
should be corrected towards an averaging of the two spin channels, if the tem-
perature is below the Kondo temperature. Although the Kondo fluctuations kill
the magnetic moment, the splitting of the d virtual bound states remains, corre-
sponding to single- and double- occupancy of the impurity local state.

9.10 Summary
We have performed self-consistent calculations on single impurities deposited

on Cu(111) surface in order to investigate the split-off state recently seen in
experiment [26, 27]. We see two kinds of split-off states: One is due to an attractive
potential below the Γ̄ surface state and the other one is due to a repulsive potential
above the M̄ surface state. We found that Ca, all 3d and Zn adatoms produce the
first resonance which is not the case for the sp adatoms Ga and Ge. The presence
of the split-off state for Ca means that s states have a stronger contribution to
its realization then d states. The behavior is totally different if the impurities are
embedded in the surface layer. In particular, Ga and Ge lead to a protrusion at
the bottom of the surface band. One question addressed in this work is to explain
the absence of a split-off state for sp-adatoms and 3d-impurities embedded in
the first surface layer. The former case is interpreted in terms of sign change
of the scattering length for attractive potentials, which then may act effectively
as repulsive potentials. In the latter case, the reference potential is the one of
Cu surface, which is not too different from the potentials of all 3d impurities.
Therefore, in the latter case, we do not see any localization.
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Chapter 10

Focusing Effect due to Subsurface
Impurities

10.1 Introduction
Over the last decades a great deal of experimental and theoretical efforts has

been devoted to study electrons in two-dimensional (2D) surface states. Here the
(111) surface of the noble metals has served as a model system, exhibiting, as
mentioned in the previous chapter, a surface state in the gap around the Γ-point
of the bulk Brillouin zone. As is well known in metallic systems point defects
cause long ranged oscillations of the charge density (Friedel oscillations), which
are governed by the Fermi surface properties. For defects in the bulk, these Friedel
oscillations of the charge perturbation vary for large distances r as 1/r3 times an
oscillatory function and are in the jellium model proportional to:

δn(r) ∼ cos(2kF r + δ)

r3
(10.1)

with kF being a Fermi wave number and δ is a phase shift.
However in the case of adatoms on surfaces, the charge response decays for

long in-plane distances r|| slower than in the bulk and is determined by the surface
states. In a free electron model, being well suited for the above surface state for
Cu(111), the charge density is for large distances r|| proportional to

δn(r||) ∼ sin(2kFρ + δ)

r2
||

(10.2)

However, since also bulk states exist, which span most of the phase space (see
Fig. 9.1), the short range screening of the defect is dominated by these states,
while only the long ranged behavior is determined by the surface state, which has
a small wave vector kF leading to long wave length oscillations.

Many authors have observed such long ranged oscillations around adatoms,
small clusters and steps on the Cu(111) surface in STM experiments. One of
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Fig. 10.1 –. LDOS at the Fermi en-
ergy in and around a 142.8 Angström di-
ameter circular corral of 48 Fe atoms on
Cu(111) [54].

the most prominent among these is the work of Eigler et al [54]. By atomic
manipulations they were able to construct a corral of Fe atoms on the (111) Cu
surface, and have shown that the surface states in the corral are more or less
localized and form a discrete spectrum of resonant states. As an illustration of
these we show in Fig. 10.1 the result of KKR-calculations of Crampin et al. [125]
for a circular corral of 48 Fe atoms on the Cu(111) surface. Shown are the local
density of states at the Fermi energy and 5 Angström above the surface. Within
the corral one sees a quantum well state with five maxima, corresponding to a
localized state being more or less completely confined to the corral. Outside one
sees oscillations arising from scattered surface state electrons at the corral, which
decay with distance.

In contrast to the large amount of Scanning Tunneling Microscopy (STM)
studies concerning electron scattering of the surface state electrons, only little
experimental work has been reported on the scattering of bulk states. Concern-
ing the scattering of bulk states, Schmid et al. [126] observed bulk state inter-
ference patterns of Argon bubbles in Al. Sprunger et al. [127] extracted short
wavelength oscillations from constant current topographies and interpreted them
as contributions of bulk states to the screening of surface defects. A fascinating
result was obtained recently by Weismann et al. [32]. They investigated by STM
at 8K Co atoms embedded in noble metals beneath the Cu(111) surface. The
constant current topographies taken above the impurity atoms (Fig. 10.2) show
two different charge density oscillations: (i) isotropic, long-wavelength standing
wave of the surface state electrons and (ii) anisotropic short wavelength patterns
with triangular shapes.

Basically the small rings are often observed in STM experiments but, to our
knowledge, only Weismann and coworkers [32] proposed an explanation for the
strange triangular shape of the charge oscillations (see also Fig. 10.3). They pro-
ceeded also to simulations of bulk electron scattering at a single point defect
based on the bulk band structure of the host metal which are in good agreement
with the observed STM topographies. The electron density at the surface is found
to be shaped decisively by an electron focusing effect, which leads to anisotropic
electron propagation due to the non-spherical geometry of the host metal’s Fermi
surface. As explained by these authors the scattering intensity is focused in spe-
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cial directions being determined by regions of low curvature on the Fermi surface.

(b)

<121>
<121>

(a)

Fig. 10.2 –. STM-Topographies measured by Weismann et al. [32] of Co atoms
buried below the (111) surface of a) Cu (9×9 nm; VB = -80 mV; IT =1 nA)
and b) Ag (8×8 nm; VB = 100 mV; IT =1 nA). Inset: Fourier-filtered image (b)
with the surface state and the atomic lattice removed (courtesy of Weismann et
al. [32]).

Motivated by this, we carried out a systematic theoretical investigation on
the scattering effect of a Co impurity buried at different positions below the
(001) and (111) surfaces of Cu. The wavelength patterns which are related to
the curvature of the Fermi surface of the host have different shapes depending
on the orientation of the surface. In addition we discuss typical anomalies arising
from the reflection of the scattered waves at buried interfaces. We will show that
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the rings observed by STM inform us about the position of the buried impurity,
considered usually as dirt or imperfection of the surface sample, and can be used
as a local probe atom in order to determine the position of buried imperfections
such as interfaces and even to determine their magnetic properties.

The calculations were performed using the full-potential scalar–relativistic
Korringa-Kohn-Rostoker Green–function method within Density Functional The-
ory.

Fig. 10.3 –. Com-
parison between ex-
perimental data and
calculated LDOS-
pattern [32]. Experi-
mental data has been
Fourier filtered to
eliminate the surface
state LDOS. a) and
b): 3×3 nm, with
an impurity at the
7th layer below the
surface (courtesy
of Weismann et
al. [32]).

10.2 Origin of the Effect
The shape of the “rings” observed by STM is related to the topological prop-

erties of the host Fermi surface as will be explained later. Furthermore, one has
to say that this effect has the same origin as the Interlayer Exchange Coupling
(IEC) [128, 129] which was one of the subjects of intense research in the last few
years. The IEC consists on an oscillatory magnetic coupling between two mag-
netic interfaces (Fig. 10.4) separated by a non-magnetic spacer (usually a noble
metal). The thickness of the latter affects strongly the magnetic coupling between
the two magnetic interfaces and thus leads also to the Giant Magnetoresistance
(GMR).

A great number of theoretical studies have been performed to investigate why
the magnetic layers are coupled even with a large number of spacer ML in be-
tween. Firstly, in context of a Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling
mechanism, Bruno and Chappert [33] have given a general criterion how to obtain
oscillation periods for the case of an arbitrary Fermi surface. But the existence of
these oscillation periods does not rely on some of the strong restrictions entering
the original RKKY model, like e.g. the point-like s− d exchange potential of the
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Fig. 10.4 –.
Schematic view of the
Interlayer exchange
coupling (IEC) with
Co magnetic layers
in green separated
by a Cu-spacer. The
left curve shows the
oscillatory behavior
of the magnetic cou-
pling between the two
magnetic interfaces
versus the thickness
D of the spacer.

magnetic layer. The essential approximation to obtain the oscillation periods is
the so-called stationary phase approximation, being valid only for large spacer
thickness.

We will derive in the following the asymptotic behavior of the Green function
at a vacuum point �r located at a site �Rm with the presence of a buried impurity
at a site imp.

We know that the Green functions of an ideal host perturbed by an impurity
can be written as following

Gmm(�r, �r; E) =
◦
Gmm(�r, �r; E) (10.3)

+

∫ ∫
d�r1d�r2

◦
Gm imp(�r, �r1; E)timp(�r1, �r2; E)

◦
Gimp m(�r2, �r; E),

t being the t-matrix corresponding to the potential change ΔVimp = Vimp − Vhost

due to an impurity sitting at the site imp

timp(�r1, �r2; E) = ΔV imp(r1)(δ(�r1 − �r2) (10.4)

+

∫
d�r

◦
Gimp imp(�r1, �r : E)timp(�r, �r2; E)).

Thus, the space and energy resolved charge variation at site m between the un-
perturbed and host systems is given by

Δnm(�r; E) = −1

π
ImΔGmm(�r, �r; E) (10.5)
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with

ΔGmm(�r, �r; E) =

∫ ∫
d�r1d�r2

◦
Gm imp(�r, �r1; E)timp(�r1, �r2; E)

◦
Gimp m(�r2, �r; E).

(10.6)
The spectral representation of the unperturbed Green functions of an ideal crystal

◦
Gmm′

(�r, �r′; E) =
∑

ν

1

VB

∫
d�k

Ψ�kν(�r + �Rm)Ψ∗
�kν

(�r′ + �Rm′)

E + iε − E�kν

, (10.7)

with VB being the volume of the Brillouin zone, allows us to rewrite eq. (10.6)

ΔGmm(�r, �r; E) =
∑
νν′

1

VB

∫ ∫
d�kd�k′ Ψ�kν(�r + �Rm)

E + iε − E�kν

× (10.8)

×
[∫ ∫

d�r1d�r2Ψ
∗
�kν

(�r1 + �Rimp)t
imp(�r1, �r2; E)Ψ�k′ν′(�r2 + �Rimp)

]
×

× Ψ∗
�k′ν′(�r + �Rm)

E + iε − E�k′ν′
.

Using
Ψ�kν(�r) = ei�k�rU�kν(�r) with U�kν(�r + �Rm) = U�kν(�r) (10.9)

as a Bloch wavefunction in cell-centered coordinates around the lattice site �Rm,
the term between square brackets can be simplified to∫ ∫

d�r1d�r2U
∗
�kν

(�r1)e
−i�k �Rimptimp(�r1, �r2; E)U�k′ν′(�r2)e

i�k′ �Rimp (10.10)

or simplified to a more compact form

e−i�k �Rimptνν′
�k�k′(E)ei�k′ �Rimp (10.11)

with

tνν′
�k�k′(E) =

∫ ∫
d�r1d�r2U

∗
�kν

(�r1)e
−i�k�r1timp(�r1, �r2; E)ei�k′�r2U�k′ν′(�r2) (10.12)

tνν′
�k�k′ is nothing else than the t matrix in a plane wave representation which is
defined for any combination of k vectors of incoming and outgoing Bloch waves.

Let us go back again to eq. (10.8) in which the denominators can be rewritten
in the following way

1

E + iε − E�kν

=

∫ ∞

0

dt

ih̄
ei(E+iε−E�kν

) t
h̄ , (10.13)



10.2. Origin of the Effect 151

and
1

E + iε − E�k′ν′
=

∫ ∞

0

dt′

ih̄
ei(E+iε−E�k′ν′ )

t′
h̄ , (10.14)

as Fourier integral over the time t and t′, so that

ΔGmm(�r, �r; E) =
∑
νν′

−1

h̄2V 2
BZ

∫ ∫
d�kd�k′

∫ ∞

0

∫ ∞

0

dtdt′U�kν(�r)t
νν′
�k�k′(E)U∗

�k′ν′(�r)e
iΦ(�k,�k′,t,t′),

(10.15)
with the phase

Φ(�k, �k′, t, t′) = (�k−�k′)(�Rm−�Rimp)+(E+iε−E�kν)t/h̄+(E+iε−E�k′ν′)t
′/h̄. (10.16)

In order to perform the integrals d�k and d�k′ over the Brillouin zones, we
divide the integrals in two-dimensional surface integrals over the constant energy
surfaces E�kν = const., E�k′ν′ = const. and one-dimensional integrals dkz, dk′

z,
perpendicular to these surfaces, the directions of which are given by the gradients
∂E�kν

∂k
and

∂E�k′ν′
∂k′ . For a large difference �R = �Rm − �Rimp, the variation of �k|| over

the constant energy surface leads to very rapid oscillations of eikzR and also to
cancellation of their contributions, so that only the neighborhood of the vectors
�k|| for which kz is “stable” or stationary contribute to the integral (kz being normal
to the surface). “Stable” means that the phase is stationary with respect to first
order-k|| variations on the constant energy surface around certain points. In the
following, the index j specifies such a stationary point. The integral can, thus, be
calculated by using the stationary phase approximation.

The stationary points are defined by

∂�kΦ(�k, �k′, t, t′) = 0 which means �R − 1

h̄

∂E�kν

∂�k
t = 0 (10.17)

∂�k′Φ(�k, �k′, t, t′) = 0 which means − �R − 1

h̄

∂E�k′ν′

∂�k′ t′ = 0 (10.18)

∂tΦ(�k, �k′, t, t′) = 0 which means E − E�kν = 0 (10.19)

∂t′Φ(�k, �k′, t, t′) = 0 which means E − E�k′ν′ = 0 (10.20)

The last two equalities describe the energy conservation from which we deduce
that E�kν = E�k′ν′. The first ones mean that: (i) �k and �k′ are antiparallel and if they
have the same length (�k=-�k′), they describe then an elastic scattering situation;
(ii) for a given direction of �R only contributions from identical �k values are
obtained, in such a way that the group velocities are parallel or antiparallel to
�R. The same is true for �k′. These equations determine, thus, the constant energy
surface E = E�kν = E�k′ν′ as well as the points �kj, �k′

j′ and the corresponding
positive time-points tj , t′j′.
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Now we expand the phase Φ(�k, �k′, t, t′) = Φj(�k, t) + Φj′(�k′, t′) around the
stationary points up to second order and evaluate the integrals over the regions
around the stationary points analytically for small variations Δ�kj, Δ�k′

j′, Δtj and
Δt′j′:

Φj(�k, t) ≈ �kj
�R − 1

2

tj
h̄

∑
αβ

d2E

dkαdkβ

∣∣∣∣
�kj

ΔkαjΔkβj − 1

h̄

∂E

∂�k

∣∣∣∣
�kj

Δ�kjΔtj (10.21)

Φj′(�k′, t′) ≈ −�k′
j′ �R− 1

2

t′j
h̄

∑
αβ

d2E

dk′
αdk′

β

∣∣∣∣
�k′

j′
Δk′

αj′Δk′
βj′ −

1

h̄

∂E

∂�k′

∣∣∣∣
�kj′

Δ�kj′Δt′j′ (10.22)

Since for large R also tj and t′j′ are large, the time integration can be extended
from −∞ to ∞ so that the integrals yield two δ-functions. In particular, the
integration over the time differences Δtj gives∫ +∞

−∞

dΔtj
ih̄

e−i�vjΔ�kjΔtj = −2πi

h̄vj
δ(Δkzj), (10.23)

for the component Δkzj of Δkj in the direction of �R which coincides with the
direction of the group velocity �vj = dE

h̄d�kj
. The same can be done to Φj′(�k′, t′).

Thus eq. (10.15) becomes

ΔGmm(�r, �r; E) ≈
∑
jj′

−4π2

h̄2V 2
BZh̄vjvj′

Uj(�r)tkzjk′
zj′ (E)U∗

j′(�r)e
i(kzj−k′

zj′ )R × (10.24)

×
∫

dSje
− iR

2h̄vj

P
αβ

d2E
dkαjdkβj

ΔkαjΔkβj

∫
dSj′e

−iR
2h̄|v

j′ |
P

αβ
d2E

dk′
αj′dk′

βj′
Δk′

αj′Δk′
βj′

,

with α and β coordinates of the plane perpendicular to kz which can be changed
into new coordinates x and y such the mass tensor d2E

dkαdkβ
is diagonal. Using the

identity
∫ +∞
−∞ dxe−iθx2

=
√

π
|θ|e

−i π
4
sign(θ), we arrive at the following form of the

Green function:

ΔGmm(�r, �r; E) ≈
∑
jj′

16π4

V 2
BZ

Uj(�r)tkzjk′
zj′ (E)U∗

j′(�r)
e

i[(kzj−k′
zj′)R+φj+φj′ ]

R2
×

× 1√
| d2E
dk2

xj
· d2E

dk2
yj
|
√
| d2E
dk′2

xj′
· d2E

dk′2
yj′
|
, (10.25)

with the phases φj = −π
4
{sign( d2E

dk2
xj

) + sign( d2E
dk2

yj
)} and φj′ = −π

4
{sign( d2E

dk′2
xj′

) +

sign( d2E
dk2

yj′
)}.

φj is, respectively, equal to −π
2

, 0 and π
2

when kzj is a maximum, a saddle
point and a minimum of the surface of constant energy.
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In the above derivation, we have implicitly assumed that the absolute contri-
bution from the second derivatives ∂2E

∂k2
x

and ∂2E
∂k2

y
do not vanish at the critical point

�kj which in general is realized. However, if vanishing derivatives occur, we speak
of a higher order critical point, for which the amplitude of the Green function
decreases with an even smaller exponent than in 1

R2 .
If we are interested in calculating the space resolved charge variation Δn(�r)

around e.g. the Fermi level we need to integrate Δn(�r; E) over the energies which
corresponds to calculating the imaginary part of ΔGmm(�r, �r) =

∫
dEΔGmm(�r, �r; E).

It is obvious from eq. (10.25) that the only terms depending on the energy are
e
i(kzj−k′

zj′ )R

R2 and tkzjk′
zj′ (E) which can be considered as constant over a small region

around the Fermi level. Using the fact that dE = h̄vdkz = h̄v′dk′
z, the former

term after an energy integration is

∫
dE

e
i(kzj−k′

zj′)R

R2
= h̄vj

∫
dkjz

e
i 1− vj

v′
j′

!
kzjR

R2
(10.26)

=
h̄vj

i(1 − vj

v′
j′

)

e
i(1− vj

v′
j′

)kzjR

R3
(10.27)

We note that if j = j′ and v′
j′ = −vj then 1− vj

v′
j′

= 2. This integration shows that

the space resolved charge variation is proportional to 1/R3 in agreement with the
RKKY theory.

An important remark, is that the t-matrix tkzjk′
zj′ also contributes a phase

shift to the oscillations. Indeed

tkzjk′
zj′ (E) = |tkzjk′

zj′ |e
iδkzjk′zj′ (E)

. (10.28)

Thus eq. (10.25) becomes

ΔGmm(�r, �r; E) ≈
∑
jj′

16π4

V 2
BZ

Uj(�r)|tkzjk′
zj′ (E)|U∗

j′(�r)
e

i[(kzj−k′
zj′)R+φj+φj′+δkzjk′zj′

(E)]

R2
×

× 1√
| d2E
dk2

xj
· d2E

dk2
yj
|
√

| d2E
dk′2

xj′
· d2E

dk′2
yj′
|
, (10.29)

Let us assume for simplification an elastic scattering process with one critical
point meaning that j = j′ and �kj = −�k′

j′ which leads then to

Δnmm(�r; E) ≈ Im
∑

j

−16π3

V 2
BZ

Uj(�r)|tkzjkzj
(E)|U∗

j (�r)
ei[2kzjR+2φj+δkzjkzj

(E)]

R2| d2E
dk2

xj
· d2E

dk2
yj
|

(10.30)
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Fig. 10.5 –. Appearance of high intensities (in red) in the vacuum charge due to
the flatness of the Fermi surface of Cu in the directions of the blue vectors [32].
The small green arrows indicate directions of the electron’s group velocity. We
note the angle β between two flat areas is equal to about 60o.

Let us go back to our problem, namely a Co impurity sitting below the surface
of Cu(111). Assume we have the two points r′ and r: one is at the center of a Co
impurity, the second is at the vacuum layer where the charge is calculated (see
Fig. 10.5). These two points define �R. We see from the last equation eq. (10.30)
that the most important factor is the denominator. If the denominator is very
small meaning that the Fermi surface has a flat region, big values are obtained
for the charge density from this �k-region, leading to a strong focusing of intensity
in space region as determined by the group velocity �v(kj) = �vj .

The Fermi surface of bulk Cu which defines the behavior of the charge in the
vacuum is rather simple compared to more complex Fermi surfaces of other ma-
terials. Indeed, the Cu Fermi surface is rather spherical apart from the eight band
gaps in the L-directions; flat areas with strongly reduced curvature are present
in the (110) directions enclosed by the two (111)-necks and two elevations in the
(100) directions. The two blue vectors in Fig. 10.5 show an example of two direc-
tions which will produce high intensities (in red) in the vacuum. This is leading
to the shape-anisotropy obtained experimentally. A totally spherical Fermi sur-
face would lead to isotropic spherical oscillations of the vacuum charge. Thus in
order to understand the anisotropic charge-shapes observed experimentally for
the direction (111) or for the two other directions (001) and (110) we calculated
also the denominator of eq. (10.30) or inverse mass tensor which is a measure of
the flatness of the Fermi surfaces.
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10.3 Computational details

First, we know that calculating the LDOS in a given vacuum layer above the
surface, according to the model of Tersoff-Hamann [120], is proportional to the
STS signal measured by the experimentalists. As shown with the experimental
pictures (Fig. 10.2 and Fig. 10.3) we have to calculate a space-resolved density
of state above a surface of a noble metal for a vacuum area of at least 16 nm2.
However we will calculate energy dependent charge density in the vacuum for
larger areas, in some cases up to 150×150 nm. To proceed to such calculations
we need an approximation to overcome memory problems. We know already that
the KKR method is ideal to treat perturbed systems. In fact, we proceeded to self-
consistent calculations for an impurity sitting below the surface of Cu including
the potential perturbations of first neighboring atoms. The converged potentials
are then used to calculate the perturbed charge for a vacuum region above the
surface of Cu(111). As in the experiment, the tunneling current at the Fermi level
is measured, we average our space-dependent DOS over a small energy region
around the Fermi energy EF , i.e. EF − 0.136 eV < E < EF . The number of K
points in the irreducible two-dimensional Brillouin zone used in the calculations is
sufficiently large to ensure correct charge calculations for such big systems (1250
K-points).

10.4 Co impurity below Cu(111)

We start by describing the results obtained for a Co impurity below the mea-
sured surface i.e. Cu(111). Figure 10.6 shows the impurity induced charge density
at EF in the vacuum region at 6.1

◦
A above the surface after removing the surface

state and the ideal surface background. In the present case the impurity is sitting
at the 6th layer below the surface ( 12.15

◦
A below the surface). One notices the

triangular shape of the charge difference with high values at the corners of the
triangle. In addition, one notices a one and a half period oscillation from the red
positive value to the blue negative values and finally to the almost null red values.
The same period of oscillations was also noticed in the experiment. In front of the
high intensities we get only small oscillations which can be understood from the
figure 10.5 where the high flatness of the right side of the Fermi surface leads to
higher intensities compared to the left side. This explains the triangle-shape with
a three fold symmetry instead of the six fold symmetry of the fcc-(111) surface.
On the right side of Fig. 10.6 is shown the Fermi surface of Cu in a (111)-direction
on which we represented the inverse mass tensor or the denominator

√
| d2E
dK2

x
· d2E

dK2
y
|

from eq. (10.30) (we thank Peter Zahn from the University of Halle for providing
us the results of this calculations). The low values are represented in red which
correspond to the low curvature or to the high flat regions of the Fermi surface
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Fig. 10.6 –. Left: Impurity induced charge density at EF after removing the
ideal surface background charge (which includes the surface state) at a height of
6.1

◦
A above the Cu(111) surface with an impurity sitting in the 6th layer below

the surface. The triangular shape of the charge variation is in total accordance
with the experiment of Weismann et al. [32] and is explained by the flat areas
of the Fermi surface of bulk Cu represented in the right figure. The inverse mass
tensor corresponding to the denominator of eq. (10.30) is represented on the Fermi
surface in the (111) direction. Small values are represented in red lead to high
intensities of the charge variation.

which are in total accordance with the high intensity points calculated for the
charge variation in the vacuum.

Let us go back another time to Fig. 10.5. Knowing the angle β = 60o and the
depth of the impurity Zimp allows us, using trigonometric relations, to evaluate
the diameter D of the “ring” or triangle we see at a given height above the surface
and vice-versa: i.e. if we know the diameter of the ring we are able to determine
the position of the impurity. This is a fascinating result which allows to determine
experimentally the position of impurities below surfaces. The relation between the
three mentioned quantities is simply given by D = 2Ztan(β/2). The circle having
the theoretical diameter (21

◦
A ) obtained from the previous formula is shown in

the left of Fig. 10.7. One can see that the result is very convincing.
The next step is to change the position of the impurity closer to the surface

e.g. at third layer below the surface. This leads as depicted in the right picture of
Fig. 10.7 to a smaller triangle with high intensities at the corners. The theoretical
diameter (14

◦
A ) fits well with the charge-shape. This confirms again our finding
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Fig. 10.7 –. Left: in black is the theoretical circle having a diameter calculated
from the following trigonometrical relation D = 2Ztan(β/2) using the exact posi-
tion of the impurity. The results fit well with the charge variation in the vacuum
above an impurity sitting at 12.15

◦
A below the surface. Right: the impurity is

moved closer to the surface and leads to a smaller triangle as well as smaller
circle calculated trigonometrically.

that the diameter of the ring leads to the position of any impurity below a noble
metal surface.

We proceed by showing a broader picture (size 100×100
◦
A 2) of the charge

variation in the vacuum above an impurity which is sitting for example in the
6th layer below the surface (see Fig. 10.8). One is astonished by the presence of a
second ring. The question is: where is it coming from? The answer is simply: from
an artifact in our calculations arizing from the slab geometry used to simulate
the surface (see Fig. 10.9). Indeed, the waves leaving the impurity toward the
upper surface hits the layer where the charge variation is calculated and leads
to the first “ring” or triangle. The waves leaving the impurity from the opposite
direction hits first the lower surface i.e. the vacuum layer from the lower side
of the slab and are totally reflected there. Knowing the position of the other
surface, we calculate easily the theoretical diameter of the second ring using
again a simple trigonometric relation and obtain a value of 77

◦
A which fits well

with the oscillations obtained by DFT. This confirms the origin of the second
ring. It is true that is only a simulation artifact but this opened us wide doors to
unexpected applications of such results with an amazing property: The focused
waves can travel through up to 23 monolayers. We will explain this in the next
section.

Moreover, we point out that the second ring has high intensities rotated by an
angle of π

3
(60◦) compared to the first ring. This is explained by the fact the necks
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Fig. 10.8 –. Charge variation due to the presence of a Co impurity at 12.14
◦
A below a Cu(111) surface. Size of the vacuum charge shown is 100×100

◦
A 2.

One notices a second ring appearing due to reflection of waves at the other side
of the slab. Trigonometrical calculations leads to the black circle which has a
diameter of 77

◦
A and fits well with our DFT calculations.

from the down side of the Fermi surface are rotated by an angle of π
3

compared
to the upper side of the Fermi surface.

10.5 Magnetic effect: Interface Cu/Co(111)

The amazing idea we were talking about is to replace few monolayers of Cu
from the other side of the slab by Co. We have chosen here six Co-monolayers. By
doing this we calculate again the charge variation in the vacuum and we get the
results in Fig. 10.10. The striking effect is the appearance of a third ring. This is
interesting and as a first try, one explains it by the presence of the Co interface.
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Fig. 10.9 –. Reflection of the waves from the other side of the slab leads to the
second ring while the waves going directly to the vacuum-side where the charge is
calculated gives rise to the first small ring.

Nice! but one needs to prove it. We do so by calculating as done classically
throughout the present chapter using simple trigonometric relation relating the
position of the impurity, the position of the interface and also the position of
the second slab-surface. The latter one leads as noticed in the same figure to the
second ring already observed previously without a Co interface in the precedent
section plus a middle black ring with a diameter of 49

◦
A . The waves leaving

the impurity toward the second surface of the slab hit first the Co-interface and
are reflected to form the third middle ring. For instance, there are also waves
going through the Co layers and hit the second slab-surface, after which they are
reflected to form the second outer ring.

This means that the Co impurity atom plays a role of a local probe which
determines the exact position of the interface of Co. This is, in our mind, a very
important result which may serve as a very convenient and simple tool for the
experimentalists using simple trigonometric relations.
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Fig. 10.10 –. Charge variation in the vacuum above a Cu(111) surface below
which is buried a Co impurity always at the same position (12.14

◦
A ). The dif-

ference from the previous pictures is the presence of a third middle ring due to
the presence of a Co interface at which the waves are reflected. The diameter of
the second ring is about 49

◦
A .

By realizing that the Co film is ferromagnetic, we should also observe effect
from the magnetism. Well, a good opportunity present in the actual case is the
magnetic Co-interface. We assume that the local moment of the Co impurity
is parallel to the moment of the Co film. The spin-resolved charge variation is
shown in Fig. 10.11. In the left the majority-spin is depicted while in the right
the minority-spin is shown. We have focused on the intensities of the outer region
from the first triangle that we hided by an orange disk. The main result here is
that the second ring of the majority-spin has lower intensities compared to the
second ring of the minority-spin. With other words, the Co-interface acts like
a spin-filter reflecting mainly the waves with a minority-spin character. This is
explained by the fact that Co majority Fermi surface is very similar to the Fermi
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Fig. 10.11 –. Spin-resolved charge variation in the vacuum above a Cu(111)
surface below which is buried a Co impurity plus a Co-interface. The first triangle
is hided by an orange disk in order to focus on the intensities of the second and
third ring. The majority-spin charge is characterized by lower intensities for the
middle ring compared to the minority-spin charge. The Co-interface plays here
the role of spin-filter (see text for more details).

surface of Cu (it has a filled majority band) whereas the minority-spin Fermi
surface is different. In addition, one notices a phase shift between the minority
and majority oscillations: when there is a positive intensity (in red) in the right
picture of Fig. 10.11 we see a negative intensity (in blue or blue green) in the left
picture.

This is also leading to an important result namely: we are able to determine
the magnetic state of an interface buried at several monolayers below the surface
by looking at the strength of charge-intensities of the third ring in the actual
case. On the other hand, the first ring informs us about the magnetic state of the
atom-probe.

10.6 Co impurity below Cu(001)

It is interesting to investigate the Co-impurity below Cu-surface oriented in
other directions e.g. (001). Figure 10.12 shows the charge variation in the vacuum
for a square of 40

◦
A ×40

◦
A at a height of 3.5

◦
A above the surface. The impurity

is sitting at the 8th layer below the surface (at 14
◦
A ). The result is a square

with high charge intensities at its corners. This fits well with the Fermi surface
shown on Fig. 10.12 on which again the red values represent low values of the
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Fig. 10.12 –. Left: Charge after removing the surface state for an area of 40
◦
A

×40
◦
A at a height of 3.5

◦
A above the Cu(001) surface with an impurity sitting

in the 8th layer below the surface. The shape of the charge variation is a square
and is explained by the flat areas of the Fermi surface of bulk Cu represented
in the right figure. The inverse mass tensor corresponding to the denominator
of eq. (10.30) is represented on the Fermi surface in the (001) direction. Small
values are represented in red lead to high intensities of the charge variation.

denominator of eq. (10.30). This means where the surface is flat.
Let us do an “experiment”: we can see from the Fermi surface in Fig. 10.12

that the angle β/2 is now approximately equal to 45o. In fact, it has to be a
bit smaller as the points with low curvature are not exactly situated between
the (111) directions defining the necks of the Fermi surface. For an angle of 45o,
we obtain, using the previous trigonometric relation, the dashed orange circle in
Fig. 10.13. One sees that the diameter (35

◦
A ) is too big and has to be reduced.

For a value of 38o we get the inner black circle (diameter of 27
◦
A ) which fits well

with the charge oscillations. In other words, knowing the shape of the oscillations
observed by STS allows an information of the Fermi surface of the host, i.e. the
direction of the group velocities at the critical points.

10.7 Summary

We investigated systems including up to 3000 vacuum Voronoi cells in order to
verify experimental results concerning shapes of charge oscillations at EF due to
buried impurities. Usually these, even if always observed, are not explained. Here
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Fig. 10.13 –. Representation of two rings calculated with different angles β/2: (i)
dashed orange circle for an angle of 45o which would correspond to low curvature
points sitting exactly between two neck of the Fermi surface, and (ii) a black circle
for an angle of 38o being in good agreement with the charge oscillations.

we gave an explanation as also proposed by our collaborators [32] of the origin
of these oscillations which fits very well with our DFT calculations and with
the STS experiment. To understand this, we derived a formula describing the
asymptotic behavior of the energy dependent charge density due to the presence
of an impurity. The shape of the observed rings is determined by the flatness
of the Fermi surface. This is basically the same effect which leads also to the
IEC between magnetic layers separated by non-magnetic spacers. For the (001)
surface, the anisotropy of the Cu Fermi surface leads to a square shape of the
oscillations found in the vacuum. While for the (111) surface the oscillations have
a triangular shape. The hexagonal symmetry of the Fermi surface close to the
neck is still seen but a stronger flatness of the Fermi surface in three directions
reduces the symmetry which leads to three high intensity directions dominating
the oscillations.

Our results can lead to important experimental applications. First the diam-
eter of the ring containing the triangle allows us to calculate the impurity-depth
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using simple trigonometric relations. Second, the impurity is in fact a local probe
atom which permits the determination of a hypothetical second imperfection
such as an interface through back-scattering processes. We verified this for a Co-
interface buried below the Cu-surface. Third, the local probe atom leads also
to magnetic information concerning the buried imperfection. Indeed, we showed
for the case of Co-interface that there are higher intensities of the minority-spin
charge compared to the majority-spin charge due to a higher scattering of the
electrons at the minority-spin charge of the Co-interface. We explain this by the
fact that the majority-spin band of Co is filled leading to a majority Fermi surface
being very similar to the one of Cu which is not the case for the minority-spin
states.
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Chapter 11

Conclusion

We aimed by the present thesis to reach three goals: first, to investigate the
complex magnetism of ad-clusters deposited on surfaces; second, to determine
eventual localizations of noble metal surface states caused by the presence of
different kind of adatoms; third, to image Fermi surface in real space through STM
or STS measurements using a local probe impurity buried below the surface. The
latter one allows the determination of not only the position of buried interfaces
but also of their magnetic state.

The most elegant ab-initio method for such a work is the KKR method which
does not require periodic supercells.

Complex Magnetism of Ad-Clusters: To reach the first goal, we faced the
problem of magnetic frustration between the ad-clusters and the substrate, plus
the possible magnetic frustration within the clusters which lead to non-collinear
magnetism. To solve the problem, we developed and implemented a new method
based on the KKR formalism which allows the investigation of non-collinear mag-
netic configurations.

A prototype surface for studying the magnetic frustration between the ad-
clusters and the substrate is the (001) fcc surface. We started with the Ni surface
which has rather small surface magnetic moments and shows relatively weak
hybridization with the adatoms. Then we continued with a surface characterized
by larger magnetic moments (Fe3ML/Cu(001)) and a much stronger hybridization.
The third step consisted on considering a substrate with a triangular geometry
leading, thus, to an additional frustration within the ad-cluster. A common fact
is that the origin of the frustration is the competition of the antiferromagnetic
exchange coupling among the Cr or Mn atoms with the antiferromagnetic (for
Cr) or ferromagnetic (for Mn) exchange coupling between the adatoms and the
substrate.

On Ni(001), we found that Cr and Mn first-neighboring adatom dimers can
show non-collinear behavior, while increasing the distance between the adatoms
of the dimer leads to the same collinear state as for single adatoms. The com-
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pact Cr and Mn dimers are characterized by a non-collinear solution where both
magnetic moments are antiparallel and are almost perpendicular to the mag-
netization direction of the surface atoms. The energy differences between the
collinear ground states and the non-collinear ones are very small. Concerning the
trimers, only Mn has a metastable non-collinear solution while for bigger clusters
we found only collinear configurations. A Heisenberg model indicates, however,
that the two configurations non-collinear and collinear are almost degenerate for
clusters with an even number of adatoms as well as for a full monolayer.

On Fe3ML/Cu(001), the magnetic interaction between the clusters and the
surface atoms is stronger and destroys the non-collinear solution found for Cr-
dimer, while it re-enforces the stability of the non-collinear ground state of Mn-
dimer. Furthermore, Cr- and Mn-trimers are both characterized by a non-collinear
ground state. We found that tetramers for different shapes have similar energies
in their magnetic ground state. A Cr-pentamer which is non-collinear was also
considered in order to compare our results with the XMCD measurements of the
group of Wurth. We interpreted the presence of a kink seen in the experimental
curve describing the effective magnetic moments versus the size of the clusters.
This kink is due to the presence of different structural and magnetic configura-
tions.

On the Ni-surface with a triangular geometry (fcc(111)), we found interesting
results, namely that the magnetic solutions for compact Cr or Mn ad-trimers are
not so different from the expected non-collinear configuration of a free frustrated
trimer (angle of 120o between neighboring adatoms). Indeed, the effect of the
substrate leads to the stabilization of one adatom’s moment as parallel (Cr) or
antiparallel (Mn) to the substrate magnetization. On the other hand the two
remaining adatoms tend to couple AF (Cr) or FM (Mn) to the substrate atoms
with a small variation of the rotation angle compared to the expected 120o. The
other shapes considered for the trimers lead to collinear solutions as ground states
with very small energy differences with respect to the non-collinear local minimum
for the case of Mn. Compact tetramers seem to be Ferri whereas tetramers-b are
more subject to non-collinear magnetism.

We predicted the antiferromagnetic nanochains on ferromagnetic surfaces with
an even number of adatoms to be non-collinear while an odd number of adatoms
leads for restricted wire lengths to a ferrimagnetic state as a ground state. In
the latter case, a transition from ferrimagnetic to non-collinear ground state is
expected to occur at a length determined by a Heisenberg model depending on
the strength of the magnetic interaction between the chains and the substrate
compared to the intra-chains antiferromagnetic interaction.

Surface State Scattering by Small Clusters: The second goal of this the-
sis is to understand an interesting effect seen very recently with STS experi-
ments [26, 27]. When surface state electrons scatter at perturbations, such as
magnetic or non-magnetic adatoms or clusters on surfaces, an electronic reso-
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nance, localized at the adatom site, can develop below the bottom of the surface
state band for both spin channels. We carried out a systematic theoretical in-
vestigation of the electronic structure of these surface states in the presence of
magnetic and non-magnetic atoms on Cu(111). We found that Ca and all 3d
adatoms lead to a split-off state at the bottom of the surface band which is,
however, not seen for the sp elements Ga and Ge. The situation is completely
reversed if the impurities are embedded in the surface: Ga and Ge are able to
produce a split-off state whereas the 3d impurities are not. The resonance arises
from the s-state of the impurities and is explained in terms of sign change of the
scattering length for attractive potentials, which then may act effectively as a
repulsive potential.

Focusing Effect due to Subsurface Impurities: The third goal we wanted to
achieve is the investigation of very anisotropic charge oscillations on noble metal
surfaces arizing from buried impurities. This effect was experimentally observed
by our collaborators [32]. This was a challenging task for an ab-initio method as
we had to calculate up to 3000 vacuum Voronoi cells in order to describe these
oscillations which are shaped by the low curvature of the Fermi surface. The
latter effect creates also the famous IEC between magnetic layers separated by
non-magnetic spacers. Due to its anisotropy, the Cu Fermi surface leads for the
(111) surface to respectively a triangular shape of the oscillations found in the
vacuum while for the (001) surface the shape is square. To understand it, we
derived a formula describing the asymptotic behavior of the charge due to the
presence of an impurity.

Most important, however, is that we predicted and proposed a new method
to determine the position as well as the magnetism of any other buried impurity
or buried interface through the presence of a single local probe impurity. Indeed
as we explained earlier, the scattering of Cu states by the impurity results in the
appearance of rings in STS. The diameter of the first ring or triangle allowed us
to calculate the impurity-depth using simple trigonometric relations. Additional
observed rings are the result of the scattering of electron waves at an additional
subsurface interface, and allowed to estimate their positions. Finally through the
intensity of the spin-resolved charges, we get information about the magnetism
of the impurity.
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Appendix A

Force Calculations

An accurate treatment of the full potential is crucial for the calculation of
forces, since in deriving an expression for the force, the extremal properties of the
total energy are used, so that the force formula is no longer variationally invariant.
By taking the derivative of the total energy with respect to the coordinate �Rm of
atom m, the force is given by

�F m = − ∂E

∂ �Rm
|n(�r;�Rm) −

∫
d�r

δE

δn(�r)

∂n(�r; �Rm)

∂ �Rm
= Zm∂V

∂�r
|�r=�Rm (A.1)

The first term, to be evaluated for density n(�r; �Rm) for the fixed position �Rm of
the nucleus, is the Hellmann-Feynman (HF) force, being given by the electric field
∂V
∂�r

of the electrons on the nuclear charge Zm of the nucleus. The second term
gives corrections due to approximations made in the solution of the Kohn-Sham
equations. It vanishes in an exact treatment, since then δE

δn(�r)
= EF is a constant.

Within the full potential KKR formalism, the Kohn-Sham equations for the va-
lence electrons are solved practically exactly, with the only approximation being
the lmax cut-off. However, the use of the HF-formula, i.e. the first term in (A.1),
requires also a full potential treatment of the core electrons. If an atom is shifted,
the charge density of the core electrons experiences in a solid a small anisotropic
distortion induced by the crystal field, which leads to an important contribution
to the force on the nucleus and which unfortunately cannot be described in a
spherical-core treatment. This problem can be overcome by making a spherical
ansatz for the core density entering in the total-energy expression. The force is
then calculated as the derivative of the total energy with respect to the nuclear
position assuming that the Kohn-Sham equations are solved exactly for the va-
lence electrons only. The resulting expression for the force �F m on the atom �Rm

is given by[130]

�F m = Zm∂VM (�r)

∂�r
|�r=�Rm −

∫
d�rnc(�r − �Rm)

∂V (�r)

∂�r
(A.2)
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where Zm is the nuclear charge and nc(�r − �Rm) the core charge density of atom
m. Furthermore VM(�r) is the Madelung potential and V (�r) the Kohn-Sham po-
tential. While the first term is the force on the nucleus as given by the Hellmann-
Feynman theorem (but without the contribution from the core electrons at atom
�Rm), the second term represents the force on these core electrons and also in-
cludes an exchange-correlation contribution, arising from the exchange between
valence and core electrons. Thus basically eq. (A.1) gives the force on the ion
consisting of the nuclear charge and the core charge of atom m. Due to the vector
character of the potential derivatives in eq. (A.1), only the l = 1 components
of the potentials VM(�r) and V (�r) are needed for the force. Since in the present
full-potential treatment the coefficients VL(r) are anyhow calculated during the
selfconsistency cycles, the calculation of the force does not require additional ef-
forts. Moreover the l = 1 components of the potentials are essentially determined
by the l = 1 components of the valence charge density n(�r). Therefore one obtains
only contributions from the interference of wave functions differing by Δl = ±1,
i.e. sp, pd, df, fg, ... interference terms.
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Appendix B

Lattice Relaxations

All-electron methods based on a spherical potential of muffin-tin type or on
the atomic sphere approximation (ASA) have in general proven to be very success-
ful and efficient for the description of the electronic structure of solids. However
systems with lower symmetry and/or open structures require a more accurate
treatment going beyond the spherical approximation. In particular this is neces-
sary, if forces and lattice relaxations are calculated, since for these problems the
spherical approximation fails completely.

In contrast to the simplicity of the force calculation, the description of lattice
relaxation effects is rather complicated within the KKR method. The main reason
is the site-centered angular momentum expansions used in the Green function. In
the case of lattice relaxations one needs an angular momentum expansion around
the shifted position, i. e. around a non-lattice site. While in principle the host
Green function can be calculated for any interstitial site by introducing a su-
percell with additional empty positions, this is a cumbersome procedure for the
small lattice relaxations occurring for substitutional defects. In this case a trans-
formation formalism, used e.g. in Ref. [130], is more convenient. The structural
host Green function is transformed from the unshifted coordinates to the new
ones being shifted by �sn

G̃nn′
LL′(E) =

∑
L′′L′′′

ULL′′(�sn; E)Gnn′
L′′L′′′(E)UL′L′′′(�sn′

; E) (B.1)

where
UL′L(�s; E) = 4π

∑
L′′

ıl
′+l′′−lCLL′L′′jl′′(

√
Es)Yl′′(�s) (B.2)

The G̃ is the host Green function but expanded in the shifted coordinate system.
An analogous U transformation has to be done for the t-matrix. Finally we must
solve the following Dyson equation for the structural Green function to obtain
the new Green function for potentials or t-matrices on the shifted sites.

Ḡ = G̃0 + G̃0[t − t̃0]Ḡ (B.3)



172 Appendix B. Lattice Relaxations

where G̃0 and t̃0 are the host Green function and host t-matrix in the angular
momentum expansion around the shifted sites (B.1). Thus, apart from the U -
transformation, the structure of the Dyson equation is unchanged. While the U -
transformation eq. (B.1) is exact, if the sums over L′′ and L′′′ are extended over
infinite angular momenta, in practical calculations an lmax-cut-off is used. As can
be seen from eq. (B.2), for small s the ULL′-matrix couples states with l−l′ = ±1.
Thus a relatively high lmax has to be chosen and the error increases with increasing
displacements. Typically calculations with lmax = 4 are for substitutional defects
sufficiently accurate up to displacements of 10 % of the nearest neighbor distance.
For larger displacements or interstitial defects the Green function G̃nn′

LL′ has to be
determined by Brillouinzone integration.
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