
Ab initio 
al
ulationsof the opti
al propertiesof phase-
hange materials
Manfred NiesertVersion: August 11, 2003



ii



Contents
1 Introdu
tion 12 Density Fun
tional Theory 32.1 The Many-Parti
le Problem . . . . . . . . . . . . . . . . . . . . . 32.2 The Hartree-Fo
k Ansatz . . . . . . . . . . . . . . . . . . . . . . . 42.3 Density Fun
tional Theory . . . . . . . . . . . . . . . . . . . . . . 52.4 Ex
hange and Correlation . . . . . . . . . . . . . . . . . . . . . . 82.5 Notes on Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 92.6 Spin-Density Fun
tional Theory . . . . . . . . . . . . . . . . . . . 112.7 Determination of the Total Energy . . . . . . . . . . . . . . . . . 112.8 Improvements to Density Fun
tional Theory . . . . . . . . . . . . 123 Diele
tri
 Properties of Solids 153.1 Physi
al Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.2 Ma
ros
opi
 Opti
s . . . . . . . . . . . . . . . . . . . . . . . . . . 163.3 Relation between real and imaginary part . . . . . . . . . . . . . 203.4 Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.5 Transmission spe
tra . . . . . . . . . . . . . . . . . . . . . . . . . 213.6 Classi
al Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.7 Diele
tri
 fun
tion . . . . . . . . . . . . . . . . . . . . . . . . . . 223.7.1 Mi
ros
opi
 de�nition, diele
tri
ity . . . . . . . . . . . . . 223.7.2 Fourier transforms . . . . . . . . . . . . . . . . . . . . . . 233.7.3 diele
tri
ity $ internal 
harge density . . . . . . . . . . . 243.8 Quantum me
hani
al model . . . . . . . . . . . . . . . . . . . . . 243.9 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.10 Missing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.11 Krasovskii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Basis sets 274.1 The Plane-Wave Basis . . . . . . . . . . . . . . . . . . . . . . . . 274.2 The APW method . . . . . . . . . . . . . . . . . . . . . . . . . . 294.3 The LAPW method . . . . . . . . . . . . . . . . . . . . . . . . . . 324.4 The Lo
al Orbital extension . . . . . . . . . . . . . . . . . . . . . 33iii



iv CONTENTS4.5 Notes on symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 344.6 Notes on the kineti
 energy operator . . . . . . . . . . . . . . . . 345 Implementation 355.1 Momentum matrix elements in the LAPW basis . . . . . . . . . . 355.1.1 Interstitial 
ontribution . . . . . . . . . . . . . . . . . . . . 365.1.2 MuÆn-tin 
ontributions . . . . . . . . . . . . . . . . . . . 375.1.3 Properties of the matrix elements . . . . . . . . . . . . . . 385.1.4 Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . 395.2 k-spa
e integration . . . . . . . . . . . . . . . . . . . . . . . . . . 405.3 The Real part of the Diele
tri
 Fun
tion . . . . . . . . . . . . . . 465.4 Ba
kfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475.4.1 Algebrai
 
onsiderations . . . . . . . . . . . . . . . . . . . 475.4.2 Representation in a basis . . . . . . . . . . . . . . . . . . 505.4.3 Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . 545.4.4 Consequen
es for 
omputation . . . . . . . . . . . . . . . . 565.5 Resulting problems in the integration . . . . . . . . . . . . . . . . 585.5.1 The In
uen
e of Degenera
y . . . . . . . . . . . . . . . . . 585.5.2 The In
uen
e of Band 
rossing . . . . . . . . . . . . . . . 605.6 A Note on Computational Demands . . . . . . . . . . . . . . . . . 625.7 Test 
al
ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645.7.1 Aluminum . . . . . . . . . . . . . . . . . . . . . . . . . . . 645.7.2 Copper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666 Results 696.1 GeTe 
ompounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 696.2 Cal
opyrites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707 Con
lusion 71A Momentum matrix elements 73B Tetrahedron method 79B.1 Integration weights . . . . . . . . . . . . . . . . . . . . . . . . . . 79B.2 Number and density of states . . . . . . . . . . . . . . . . . . . . 81C Units 83D Parameters of 
al
ulations 85Bibliography 90Danksagung 91



Chapter 1Introdu
tion

1



2 CHAPTER 1. INTRODUCTION



Chapter 2Density Fun
tional Theory
2.1 The Many-Parti
le ProblemThe 
omplete properties of solids 
an in prin
iple be 
al
ulated ab initio { i.e. freeof any parameters, only using the setup of the system and its intera
tions { on aquantum me
hani
al level. The whole information of a system is 
ontained in thesystem's wave-fun
tion, whi
h has to be obtained as solution of the S
hr�odingerequationHj	i = Ej	i; (2.1)with H the Hamiltonian of a system of intera
ting nu
lei and ele
trons (assuming4�"0 = 1)H = � NXi=1 ~22mr2i + 12Xi6=j e2jri � rjj �Xi;J ZJe2jri � �J j + 12XI 6=J ZIZJe2j�I � �J j : (2.2)r denote the ele
troni
al 
oordinates and � those of the nu
lei, ZI denotes the
harge of the nu
lei. Spin-dependen
e and external �elds are omitted. In therelativisti
 
ase, the Dira
 equation has to be solved. The energy of a state 	 isgiven byE = h	jHj	i: (2.3)The e�ort to solve this many-body problem s
ales exponentially with the numberof parti
les des
ribed and is una

omplishable for everything ex
ept very smallsystems, and 
ertainly for a ma
ros
opi
 system with a number of parti
les of anorder of magnitude of 1023.A �rst and very general approximation is the Born-Oppenheimer method (also
alled adiabati
 approximation). Sin
e the mass of the ele
trons is at least threeorders of magnitude smaller than those of the nu
lei, the ele
trons are expe
tedto follow the motions of the nu
lei instantaneously, while the nu
lei will rea
t3



4 CHAPTER 2. DENSITY FUNCTIONAL THEORYslowly to a 
hange in ele
troni
 
on�guration. Therefore, the ion's position 
anbe set �xed, redu
ing the number of degrees of freedom. (From a stri
t pointof view this approximation needs more pre
ise justi�
ation, see [Mad78℄.) Thisapproximation is used in the majority of ele
troni
 
al
ulations.When 
al
ulating the ground state of a system, the energy has to take itsminimum. Depending on your ansatz, the solution 
an usually be obtained byminimizing the total energy.2.2 The Hartree-Fo
k AnsatzA variety of di�erent approa
hes have been developed to ta
kle this many-parti
leproblem. One frequently used method (in many areas of physi
s) is to transferthe many-body problem to a one-parti
le-like problem, for instan
e by imposingsome 
ertain form on the wavefun
tion.The most basi
 
hoi
e is the Hartree Ansatz, whi
h repla
es the wavefun
tion	(r1; : : : ; rN) with a produ
t of N one-parti
le wavefun
tions  (r):	(r1; : : : ; rN) =  1(r1) �  2(r2) � : : : �  N(rN); (2.4)depending only on the spatial 
oordinate of one parti
le. If one introdu
esthis ansatz into the S
hr�odinger equation, one obtains N S
h�odinger-like single-parti
le equations with a integral 
alled Coulomb term or Hartree term, 
on-taining the ele
tron-ele
tron intera
tion. This simple ansatz treats the parti
lesindependent in the sense that every parti
le moves in a stati
 potential 
reatedby the other ele
trons, whi
h is the only intera
tion 
onsidered.It is possible to take 
are about the expelling properties of fermions result-ing from the Fermi prin
iple { 
alled ex
hange intera
tion { by using a slaterdeterminant of wavefun
tions instead of a simple produ
t:	(r1; : : : ; rN) = 1pN �������  1(r1) : : :  N(r1)... . . . ... 1(rN) : : :  N(rN) ������� : (2.5)This Hartree-Fo
k Ansatz results in a signi�
antly more 
omplex numeri
al treat-ment as well as in mu
h better results. In
luding a wavefun
tion of this form intothe S
hr�odinger equation gives N single parti
le equations now 
ontaining an ad-ditional term { the ex
hange or Fo
k term { 
ontaining 
ontributions from allthe other single-parti
le wavefun
tions.The des
ription is still in
omplete due to the fa
t that the single parti
les arenot independent as assumed in this approximation. These 
orrelation e�e
ts 
annot be expressed analyti
ally in the general 
ase.



2.3. DENSITY FUNCTIONAL THEORY 52.3 Density Fun
tional TheoryA new idea how to des
ribe the ground state of a many-parti
le system hasbeen a
quired by Hohenberg and Kohn in the 1960s. It turns the fo
us from theabstra
t many-parti
le state as des
riptive quantity of the system to the ostensive
harge density in real spa
e. Not only that not the whole information 
ontent ofthe wave-fun
tion is needed, it is not desirable to obtain the 
omplete solution 	for a large system sin
e storage of it is as hardly possible as 
al
ulation of it.One di�erent approa
h, the Thomas-Fermi theory, was known sin
e the latetwenties [Fer27, Tho27℄. It assumes the intera
ting ele
trons to be independent,moving in an external potential. (In this 
ontext the term external means every-thing ex
ept of this one parti
le itself, so it in
ludes also the e�e
ts of the nu
leiin the system, not only those of �elds external to the system.) Then the formulaefor the uniform ele
tron gas are applied. The obtained results give only a fewquantitative trends, 
hemi
als bonds for instan
e 
an not be predi
ted. However,the system is des
ribed by the density only.The Lemma of Hohenberg and Kohn: The 
harge density relates to themany-parti
le wavefun
tion liken(r) = �	j NPi=1 Æ(r� ri)j	�: (2.6)The amount of 
hargeN = Z d3r n(r) (2.7)takes the role of a subsidiary parameter.Hohenberg and Kohn derived that the expe
tation value of any observableis uniquely de�ned by the 
harge density. Furthermore, the fun
tional of totalenergyE = E[n(r)℄ (2.8)is minimized by the true ground state density n0(r). As a third point, theThe important 
on
lusion of the Lemma of Hohenberg and Kohn [HK64℄ isthat the density n(r) of the ground state of a system of intera
ting ele
trons insome external potential v(r) determines this potential uniquely (of 
ourse up tosome unimportant 
onstant). The proof is shown in 
ontradi
tion for the energyfun
tionalEg = h	gjHj	gi (2.9)of a non-degenerate ground state, whi
h is shown to be expressable in terms ofthe density,Eg = E[n(r)℄: (2.10)



6 CHAPTER 2. DENSITY FUNCTIONAL THEORYIt is shown that It 
an easily be extended to the degenerate 
ase [Koh85℄.This means that n(r), determining the potential v(r) and the number ofparti
les N , des
ribes the Hamiltonian and therewith the 
omplete system and allits derivable properties (in
luding many-body wavefun
tions, two-parti
le Green'sfun
tions). A more mathemati
al insight is that there are fun
tions n(r) notyielding a valid potential v(r), so-
alled non V-representable fun
tions. Theseare non-physi
al densities.The Hohenberg-Kohn lemma does not imply any knowledge about the phys-i
al intera
tions and is universal thereby. On the other hand, nothing has beenstated about the form of the fun
tional E[n℄ up to now.Kohn-Sham equations: Kohn and Sham formulated a form for the energyfun
tional that proved to be very su

essful. They proposed to split it up intothree 
ontributionsE[n℄ = Ts[n℄ + U [n℄ + Ex
[n℄: (2.11)Ts is the kineti
 energy of non-intera
ting parti
les, U is the Coulomb energy,and Ex
 
ontains the remaining 
ontributions to the energy due to ex
hangeand 
orrelation. The Coulomb energy of the ele
trons is 
onstru
ted out of theele
tron-ele
tron energy together with the external energy, resulting additivelyfrom the Coulomb �eld of the nu
lei and from �elds external to the system:U [n℄ = Eext[n℄ + EH [n℄ (2.12)Eext[n℄ = Z d3r Vext(r)n(r) (2.13)EH [n℄ = e28�"0 Z d3rd3r0 n(r)n(r0)jr� r0j (2.14)An advantage of this representation is that for the kineti
 energy, whi
h is asigni�
ant proportion to the total energy, an analyti
 expression 
an be given(see se
tion 2.7). The density is related to the single parti
le wavefun
tions vian(r) = 2 NXi=1 j i(r)j2; (2.15)with the fa
tor 2 a

ounting the spin degenera
y1. For this 
hoi
e the kineti
energy readsTs[n℄ = �2 NXi=1 Z d3r  �i (r) ~2mr2 i(r): (2.16)1In this 
ase, you 
al
ulate with half the number of ele
trons



2.3. DENSITY FUNCTIONAL THEORY 7Equivalent to minimizing the energy with respe
t to the density, one 
an do so aswell with respe
t to the single wavefun
tions or to their 
omplex 
onjugates. Thesubsidiary 
ondition of parti
le 
onservation (2.7) is repla
ed by the normalizationof the wavefun
tionsZ d3r j i(r)j2 = 1: (2.17)Taking this requirement into a

ount by Lagrange parameters �i, the variation ofthe energy yields the Kohn-Sham equationsH1 i(r) = �� ~2mr2 + Veff(r)� i(r) = �i i(r); (2.18)whi
h are S
hr�odinger-like equations of a one-parti
le HamiltonianH1 
ontainingan e�e
tive potentialVeff(r) = Vext(r) + VH(r) + Vx
(r) (2.19)
onsisting of the external, the Hartree and the ex
hange-
orrelation potentialVext(r) = ÆÆn(r)Eext(r) (2.20)VH(r) = 4�e2 Z d3r n(r0)jr� r0j (2.21)Vx
(r) = ÆÆn(r)Ex
(r): (2.22)These potentials are simple fun
tions, while the 
orresponding energies are 
on-sidered as fun
tionals of the density.This 
hoi
e (2.11) of kineti
 energy and subsequent derivations 
onverts theproblem to a problem of �
titious single parti
les moving in an e�e
tive potentialall other parti
les 
ontribute to.The parameter �i are introdu
ed as Lagrangian parameters only. A

ording toJanak's theorem, only the highest o

upied value has a physi
al meaning, i.e. itis equal to the 
hemi
al potential, the ionisation energy of the system. Beyondthis, there is no justi�
ation to take these parameters as the one-parti
le energies.However, it is known from experien
e that this assumption works surprisinglygood, and this identity is 
ommonly assumed in bandstru
ture 
al
ulations.Eigenvalue problem: Usually the Kohn-Sham equations (2.18) are not solveddire
tly, but the solutions are represented in a basis. Then the operator H1 hasto be 
onstru
ted and diagonalized. Sin
e the basis fun
tions are not ne
essarilyorthogonal, one has to solve the generalized eigenvalue problem(H1 � �iS)
 = 0 (2.23)(also 
alled se
ular equation) with S the overlap matrix and 
 the expansion
oeÆ
ients.



8 CHAPTER 2. DENSITY FUNCTIONAL THEORYSelf-
onsisten
y: Sin
e the ele
tron density goes into the Hartree potential VHand the ex
hange-
orrelation potential Vx
, and the e�e
tive potential determinesthe solutions  i through (2.18), whi
h again make the 
harge density (2.15), thisformalism 
omprises a self-
onsisten
y, as shown in �gure (2.1).

�������
�������

����������������Figure 2.1: The self-
onsisten
y 
y
le of a density-fun
tional 
al
ulation.To enter the loop one has to provide an appropriate starting density. Withthis the potentials are generated and the one-parti
le solutions are 
al
ulated. Inmatrix pi
ture this is the setup of the H and S matri
es and the solution of thegeneralized eigenvalue problem (2.23). With the results the temporary densitynnew(r) is 
al
ulated.One now 
he
ks if the di�eren
e between the previous density n(i)(r) andthe new one is suÆ
iently small. If not, the temporary density is in
orporatedinto the previous one. Sin
e taking the 
al
ulated density as next input densityn(i+1)(r) for the 
y
le would introdu
e too big steps whi
h destroy 
onvergen
e,some mixing has to be performed. The simplest way is a linear mixingn(i+1)(r) = (1� �)n(i)(r) + � nnew(r) (2.24)with mixing parameter �. More sophisti
ated methods like those of Broydenand Anderson have been developed, whi
h in
orporate the knowledge of earlieriterations and yield a faster 
onvergen
e. After �nishing the loop, one 
an pro
essthe obtained density, e.g. 
al
ulate the total energy.2.4 Ex
hange and CorrelationSin
e no approximations have been made so far, density fun
tional theory isexa
t in prin
iple. However, 
al
ulations are only possible with the knowledge ofthe ex
hange-
orrelation energy fun
tional Ex
[n℄ de�ned by (2.11). The exa
t



2.5. NOTES ON SYMMETRY 9fun
tional is unknown and not soluble analyti
ally. Solving it would be equivalentto solving the many-body problem. Therefore, approximations have to be made.Basi
ally, the Kohn-Sham equations are a Hartree-like ansatz. All ex
hangeand 
orrelation e�e
ts (i.e. all many-body e�e
ts) are in
luded in the fun
tionalEx
[n℄. It 
ontains the fermioni
 e�e
ts, modi�
ations to the e�e
tive potentialand 
orre
tions to the kineti
 energy, all due to the ele
tron-ele
tron intera
tion.This means that the ex
hange-
orrelation potential des
ribes the e�e
ts of thePauli prin
iple and the Coulomb potential beyond a pure ele
trostati
 intera
tionof the ele
trons.The most widely used approa
h is the Lo
al Density Approximation (LDA).The idea is to assume Ex
 to be that of a homogenous ele
tron gas with densityn(r): Ex
[n(r)℄ = Z d3r n(r)�x
(n(r)): (2.25)The important simpli�
ation is that �x
 is not a fun
tional of the density, but afun
tion of the value of the density at some spatial 
oordinate. With this, alsothe ex
hange-
orrelation potential Vx
 in (2.20) takes the form of a fun
tion. Onepossible approximation is to view ex
hange and 
orrelation to be independent:�x
(n(r)) = �x(n(r)) + �
(n(r)) (2.26)More 
omplex parametrisations in
orporate the results of Hartree-Fo
k or many-body 
al
ulations. One would expe
t the LDA to fail systems with rapidly varyingdensities. But it shows to give good results in an unexpe
ted variety of systems.A 
lass of more sophisti
ated approximations is the Generalized GradientApproximation (GGA). It makes the same lo
alization ansatz as in (2.25), but
onne
ts �x
 not only with the value of the density but also with the absolutevalue of its gradient:Ex
[n(r)℄ = Z d3r n(r)�x
(n(r); jrn(r)j): (2.27)2.5 Notes on SymmetrySymmetries are operations that transfer a system into itself, so that both systemsare indistinguishable. In this 
ontext we are interested in symmetry operationsin real spa
e. Symmetry operators 
ommute with the Hamiltonian,[(�; T );H℄ = 0: (2.28)(�; T ) denotes an operation 
onsisting of a rotation � and a subsequent transla-tion T . Taking symmetries into a

ount 
an massively simplify the 
al
ulations,or makes it only possible.



10 CHAPTER 2. DENSITY FUNCTIONAL THEORYClassi�
ations: Perfe
t 
rystals, that are systems possessing translationalsymmetry, are 
lassi�ed into latti
e types. Considering translations only (no
omplex o

upations of the unit 
ell with atoms), this gives the minimal set ofessentially di�erent latti
e types, the Bravais latti
es. In three dimensions thereare 14 Bravais latti
es: the seven latti
es 
ubi
, trigonal, rhombi
, hexagonal,mono
lini
, tri
lini
 and tetragonal, de�ned by the length of and angles betweenthe basis ve
tors, and variations of these latti
es by o

upying unit 
ell fa
es orthe unit 
ell 
enter with atoms. The a

ording translational operators of a latti
eform the Translation group.The rotations of a system (i.e. the a

ording operators) that bring the 
rystalinto itself build the Rotation group. There are also non-symmorphi
 symmetrieswhi
h bring the 
rystal into itself only with an additional translation (whi
h isnot part of the translational group). The a

ording symmetry operations ares
rew axis and glide planes. In this 
ase these rotations extend the rotationgroup to the Point group. (For symmorphi
 latti
es both are identi
al.) Thereare thirty-two di�erent point groups.The Spa
e group 
onsists of the totality of transformations that bring the
rystal into itself, 
ontaining the translational and the point group as subgroups.There are 230 possible spa
e groups; 157 of them are non-symmorphi
, 73 aresimple.Translational symmetry: The translational operatorTR : r! r+R (2.29)for a latti
e ve
tor R 
ommutes with the Hamiltonian. So both operators sharea set of eigenvalues. The 
onsequen
e is the so-
alled Blo
h theorem, that statesthat the wavefun
tions 
an take the form n(k; r) = 'n(k; r)eikr; (2.30)de�ning k (often 
alled the 
rystal momentum) as a new good quantum number.This ve
tor k is taken from the re
ipro
al spa
e, but one 
an redu
e 
onsiderationsto the �rst Brillouin zone. The spe
trum of energy eigenvalues is periodi
 inre
ipro
al spa
e,E(k) = E(k+G); (2.31)G being a re
ipro
al latti
e ve
tor.Rotational symmetry: To a rotation in real spa
e, the a

ording symmetryoperation in the re
ipro
al spa
e is the inverse rotation. Analogously to the trans-lations, this redu
es the e�e
tive re
ipro
al spa
e you have to 
onsider, leavingas unique part the irredu
ible wedge of the �rst Brillouin zone (IBZ).Consequen
es for the a
tual 
omputation are remarked in 
hapter 4.



2.6. SPIN-DENSITY FUNCTIONAL THEORY 112.6 Spin-Density Fun
tional TheoryThe spin property of ele
trons, so far only a

ounted by a degenera
y fa
tor oftwo, 
an be easily in
orporated into the theory. It has been shown that thebasi
 Hohenberg-Kohn theorem stands for spin-polarized densities as well. Yourede�ne (in the non-relativisti
 
ase) the wavefun
tions as spinors i(r) =   i"(r) i#(r) ! : (2.32)With this slightly di�erent notation, apart from the 
harge density there arisesa se
ond 
entral quantity out of these wavefun
tions, the magnetization densitym(r): n(r) = NXi=1  i(r)� i(r) (2.33)m(r) = NXi=1  i(r)�� i(r): (2.34)� is the ve
tor (�x; �y; �z) of Pauli matri
es. The energy is now a fun
tional ofthese two densities:E = E[n(r);m(r)℄ (2.35)The two spins 
ouple through an e�e
tive magneti
 �eld appearing in the modi�edKohn-Sham equations. To in
orporate the intera
tion of an external magneti
�eld Bext with this spin-polarized system, we in
lude the energy 
ontributionm(r) �Bext(r) into the Kohn-Sham equations and yieldH1 i(r) = �� ~2mr2 + Veff (r) + �Beff(r)� i(r) = �i i(r); (2.36)Beff(r) = Bx
(r) +Bext(r); (2.37)Bx
(r) = ÆE[n(r);m(r)℄Æm(r) : (2.38)The approximations in se
tion 2.4 
an be easily extended for the 
ase of spin-polarized systems.2.7 Determination of the Total EnergyWhen the total energy needs to be 
al
ulated, the ion-ion intera
tion Eii of thenu
leiEii = e2XI 6=J ZIZJj�I � �J j (2.39)



12 CHAPTER 2. DENSITY FUNCTIONAL THEORYhas to be in
luded into the fun
tional (2.11),Etot[n℄ = Ts[n℄ + EH [n℄ + Ex
[n℄ + Eext + Eii: (2.40)Be
ause of numeri
al reasons, it is not desirable to 
al
ulate the kineti
 energyin the form (2.16), applying the double spatial derivative. Instead, one utilizesthe Kohn-Sham equations (2.18). Rearranging, multiplying the Bra from the leftand summing over all o

upied states gives� ~2mr2 i(r) = (�i � Veff(r)) i(r); (2.41)Ts[n℄ = �2 NXi=1 Z d3r  �i (r) ~2mr2 i(r) (2.42)= NXi=1 �i � Z d3r n(r)Veff(r) (2.43)Putting all the 
ontributions together we obtainE[n;m℄ = NXi=1 �i � Z d3r n(r)Veff(r) (2.44)� Z d3r m(r) �Beff(r) (2.45)� 4�e2 MXI=1 Z d3r n(r)ZIjr� �I j (2.46)� Z d3r n(r) ~Vext(r) (2.47)+ 4�e2 � 12 Z d3rd3r0 n(r)n(r0)jr� r0j (2.48)+ Z d3r n(r)�x
(n(r); jm(r)j) (2.49)+ 4�e2 MXI 6=J ZIZJj�I � �J j ; (2.50)with the potential ~Vext(r) due to an ele
tri
 �eld external to the system.2.8 Improvements to Density Fun
tional The-oryMany extensions has been made to the density fun
tional theory, and it is still asubje
t of 
ontinuous development. As we have seen, the observan
e of spin and



2.8. IMPROVEMENTS TO DENSITY FUNCTIONAL THEORY 13the in
lusion of external ele
tri
 and magneti
 �elds are a natural extension ofthe theory.New ex
hange-
orrelation fun
tionals are being developed. Methods like thesimple s
issors operator or the more sophisti
ated LDA+U theory fo
us on oneof the 
entral drawba
ks of the lo
al density (LDA) or generalized gradient ap-proximation (GGA), the mismat
hing band-gap. The time-dependent densityfun
tional theory re�nes the knowledge about the development of the system intime, and results in a better des
ription of ex
ited states.The density fun
tion theory has proven to be a very powerful tool to treat amany-body problem eÆ
iently and pre
isely in the framework of a one-parti
lepi
ture. It has been applied also in a diversity of other dis
iplines, like super-
ondu
tivity or astrophysi
s.
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Chapter 3Diele
tri
 Properties of SolidsBefore going into the details of the diele
tri
 fun
tion, let us �rst dis
uss generalproperties of physi
al tensors (of rank two).3.1 Physi
al TensorsLet us 
onne
t 
onne
t two physi
al ve
tor quantities linearly viaB = Ta: (3.1)If B is simply proportional to a (i.e. pointing in the same dire
tion) T is a s
alarfa
tor. But in the general 
ase, T is a tensor of se
ond rank. By its de�nition, atensor transforms under a basis 
hange A toT 0 = ATAT ; or T 0ij = AikAjlTkl: (3.2)Any se
ond-rank tensor 
an be split up into a symmetri
 and an antisymmetri
part, Tij = 12(Tij + Tji) + 12(Tij � Tji); (3.3)but most physi
al se
ond-rank tensors are purely symmetri
al (i.e. Tij = Tji),for example the diele
tri
 tensor being subje
t of this thesis. (One of the fewex
eptions is the thermoele
tri
 tensor.) Nye [Nye57℄ remarks that this symmetryproperty of tensors is not an obvious one, and that the proof ne
essararily involvesthermodynami
al 
onsiderations.The behaviour of a symmetri
 se
ond-rank tensor Tij under 
oordinate trans-formation is the same as for the equationTijxixj = 1; (3.4)whi
h de�nes a sphere that is either an ellipsoid, a hyperboloid of one or ahyperboloid of two sheets. This equation is 
alled the representation quadri
 for15



16 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDSthe tensor Tij. An important property of a quadri
 is the possession of prin
ipalaxes. These are three dire
tions at right angles su
h that the general quadri
(3.4) takes the formT11x21 + T22x22 + T33x23 = 1; (3.5)when referred to these axes.In a symmetri
al tensor referred to arbitrary axes the number of independent
omponents is six. How many independent 
oeÆ
ients remain when referring toits prin
ipal axes depends on the symmetry of the 
rystal in 
onsideration. TheNeumann prin
iple states that the symmetry elements of any physi
al propertyof a 
rystal must in
lude the symmetry elements of the point group of the 
rys-tal. As a result of these 
onsiderations, one groups the tensors (or the 
rystals,a

ordingly) in the following three so-
alled opti
al 
lassi�
ations:Isotropi
 (Anaxial) 
rystals: Crystals in whi
h you 
an 
hoose arbitrarilythree 
rystallographi
ally equivalent orthogonal axes. These three axes are theprin
ipal axes of the tensor. All diagonal elements are equal (see table below),and the 
rystall a
ts like an amorphous medium.Uniaxial tensors: Crystals without three orthogonal equivalent axes, but withtwo or more these axes in one plane. This is the 
ase for the tri
line, trigonal andhexagonal latti
es. The plane with the equivalent axes is perpendi
ular to thethree-fold, four-fold or six-fold symmetry axis, respe
tively. One of the opti
alaxes 
oin
ides with this symmetry axes, the others form a pair of orthogonal axesin the plane.Biaxial tensors: Crystals with lower symmetry. For orthorombi
 
rystals,the tensor possesses diagonal form with ea
h di�erent elements. The opti
al axes
oin
ide with the 
rystal axes. In mono
line and tri
line systems, the opti
al axesare not alleged. (In this 
ase, it would be possible to rotate the axes of the tensorsu
h that only the three prin
ipal 
oeÆ
ients are ne
essary, but one would haveno information regarding the orientation of the representation's sphere relativeto the 
rystallographi
 axes [Lov89℄.)The 
orresponding shape of the tensors is taken from a table of ([Nye57℄).In most 
ases of 
al
ulations the used basis ve
tors 
oin
ide with the opti
alaxes of the 
rystal in study.3.2 Ma
ros
opi
 Opti
sWe make a ma
ros
opi
 approa
h to the ele
tromagneti
 des
ription of a matter.Its properties a des
ribed by the
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Classi�
ation Crystal System Indep. Coe�. Tensor shapeAnaxial Cubi
 1 0B� T 0 00 T 00 0 T 1CAUniaxial TetragonalHexagonalTrigonal 2 0B� T1 0 00 T1 00 0 T3 1CAOrthorhombi
 3 0B� T1 0 00 T2 00 0 T3 1CABiaxial Mono
lini
 4 0B� T11 0 T310 T2 0T31 0 T33 1CATri
lini
 6 0B� T11 T12 T31T12 T22 T23T31 T23 T33 1CATable 3.1: Shapes of se
ond-rank tensors for di�erent 
rystal stru
tures.



18 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDSMaxwell equations:r� E(r; t) = � ��tB(r; t) (3.6)r �D(r; t) = �(r; t) (3.7)r�H(r; t) = j(r; t) + ��tD(r; t) (3.8)r �B(r; t) = 0; (3.9)with E, D the ele
tri
 �eld and the ele
tri
 displa
ement, B the magneti
 in-du
tion and H the magneti
 �eld. � and j des
ribe the external 
harges and
urrents. The indu
es ones vanish by the averaging done for this ma
ros
opi
approa
h. This des
ription is 
omplete only if the 
oupling between the D andE, and between B and H, respe
tively, is given.Material 
oeÆ
ients: To des
ribe the response linearly, one introdu
es two
oupling fun
tions (also 
alled 
onstants frequently), the diele
tri
 fun
tion "(also known as permittivity) and the magneti
 permeability �:D = ""0E; B = ��0H; (3.10)or alternatively de�ning the ele
tri
 polarizability P and the magnetization Mby D = "0E+P; P = �pE = �"0E; (3.11)H = 1�0B�M; M = 1�m�0H; (3.12)de�ning the ele
tri
 and magneti
 sus
eptibilities � and �m and the polarizability�p as " = 1 + �; �p = "0�; (3.13)� = 1� �m; � (3.14)The magneti
 sus
eptibility is not given attention anymore. When 
oupling the
urrent j linearly to the ele
tri
 �eld a

ording to Ohm's law, you introdu
e theele
tri
al 
ondu
tivity �:j = ~�E: (3.15)Absorption of waves: In va
uum, the ele
tri
 �eld of a free ele
tro-magneti
wave follows the wave equation4E(r; t) = �0"0" �2�t2E(r; t); (3.16)



3.2. MACROSCOPIC OPTICS 19whi
h has solutionsE(r; t) = E0ei(kr�!t): (3.17)When penetrating matter, the amplitude lowers exponentially,E = E0e�; (3.18)with the absorption 
oeÆ
ient � de�ned asdIdz = ��I (3.19)for penetration in z-dire
tion, and I = jEj2 the amplitude.The rest...Elementary 
lassi
s (see Madelung [Mad78℄): We assume a 
lassi
al ele
tro-magneti
 wave of form~A(~r; t) = ~A0ei( ~K~r�!t) = A0~eei( ~n
 ~!~r�!t)with 
omplex refra
tive index ~n(!) = n(!)+ i�(!). If refra
tion and diele
tri
ityare 
oupled by �(!) = ~n2(!) with �(!) = �1(!) + i�2(!) 
omplex, we get the
onne
tionn2 � �2 = �1 (3.20)2n� = �2: (3.21)Another well mesurable quantity is the relexion of a perpendi
ular in
omingwave R(!) whi
h is related to n(!) and k(!) byR = �1� ~n1 + ~n� = (n� 1)2 + k2(n+ 1)2 + k2 :Tensor properties: In the general 
ase, the 
oupling (3.10) is not simples
alar, but tensor-like, as well as depending on the frequen
y and the lo
ation.Sin
e the 
oupling is homogeneous in time, and for the ma
ros
opi
 approa
h alsoin spa
e, the arguments of the sus
eptibilities read (with the array boundariesmaking the statements 
ausal, or an appropiate de�ned sus
eptiblilty)P(r; t) = Z d3r0 Z dt0 ~�(r� r0; t� t0)E(r0; t0) (3.22)M(r; t) = Z d3r0 Z dt0 ~�m(r� r0; t� t0)H(r0; t0) (3.23)In Fourier spa
e this 
onvolution givesP(k; !) = ~�(k; !)E(k; !) (3.24)M(k; !) = ~�m(k; !)H(k; !): (3.25)



20 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDSHeadwords:� rele
tivity, transmitivity, extin
tion� Beer's law, s
attering 
ross se
tion� refra
tive index, (
omplex) diele
tri
 fun
tion� eps1 - refra
tion, eps2 - absorption� Re
e
tion R=r(n,kappa)� Kramers-KronigFor �nite temperatures, system is not des
ribable by a wave fun
tion. statis-ti
al averaging needed. (springer,S250)XXX RPA?� kramers-kronig relations� Transformations.3.3 Relation between real and imaginary partBa
kground: Due to the Dira
 relation1! + i� = P 1! + i�Æ(�) (3.26)a spe
tral distribution fun
tion with an energylike parameter !G(!) = lim"!0 1N Z d3k F (k)E � E(k)� i" (3.27)has its real and imaginary parts<G(!) = P 1N Z d3k F (k)! � !(k) (3.28)and =G(!) = �N Z d3k F (k)Æ(! � !(k)); (3.29)whi
h are the Hilbert transforms of ea
h other.



3.4. IDEAS 21Consequen
e: Kramers-Kronig Relation These relations 
onne
t the realand imaginary part of any parameter that relates two �elds in a linear and 
ausalway. The relations read�1(!) = 1+ 1�P +1R�1 d� �2(�)��!�2(!) = � 1�P +1R�1 d� �1(�)�1��! : (3.30)P denotes the prin
ipal value of the integral. Sin
e ! > 0 it is desirable totransform (3.32) to integrals over the domain (01). We use the relation"(�!) = "1(�!) + i�(�!)�! = "�(!) (3.31)By multiplying both the numerator and demoninator of (3.30) with (� + !), oneyields �1(!) = 1+ 2�P 1R0 d� !0�2(�)�2�!2�2(!) = � 2�P 1R0 d� �1(�)�1�2�!2 : (3.32)The 
onsequen
e of the Kramers-Kronig relations is that on
e the imaginary partis known for the whole spe
trum, you know the real part as well, and vi
e versa.It is also worth to noti
e that these relations are of universal validity sin
e theydo not imply any knowledge of the intera
tions inside the solid.One 
an also 
onstru
t Kramers-Kronig relations for other quantities, like themagnitude and the phase of the 
omplex re
e
tion 
oeÆ
ient.3.4 IdeasE�e
tive massoszillator strength
ondu
tivity...3.5 Transmission spe
tra� bandgap - absorption edge� photoni
 range� ele
troni
/interband absorption� anisotropy� 
ubi
 same in all dire
tions



22 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDS3.6 Classi
al Models� 
lassi
al, semi-
lassi
al, fully quantum me
hani
al model� oszillator model� Lorentz (Tau
-Lorentz?)� gas: !C , plasma frequen
y3.7 Diele
tri
 fun
tionMi
ros
opi
 means lo
al, ma
ros
opi
 means averaged.Here relation to one-parti
le image. Missing many-parti
le e�e
ts, ex
ita-tions)3.7.1 Mi
ros
opi
 de�nition, diele
tri
ityMi
ros
opi
 Maxwell equations arer � e = �mi
"0 ; r� b = �0jmi
 + �0"0 ��ter � b = 0; r� e = � ��tbwith e = e(r; t) the mi
ros
opi
 ele
tri
 �eld and b = b(r; t) the mi
ros
opi
magneti
 indu
tion. You a
quire the ma
ros
opi
 quantities by averaging:� = h�mi
i; j = hjmi
i; E = hei; B = hbi: (3.33)Now additionally ....D = "0E+P; H = 1�0B�M (3.34)De�nition of diele
tri
 fun
tion and inverse:E(r; t) = "�10 Z d3r0 Z dt0"�1ma
(r� r0; t� t0)D(r0; t0)e(r; t) = "�10 Z d3r0 Z dt0"�1mi
(r; r0; t� t0)D(r0; t0)where " is a tensor. Medium is homogenous from ma
ros
opi
 point of view, butnot mi
ros
opi
; there only latti
e periodi
ity. DF and inverse obey the relation"�1mi
(r; r0; t� t0)"mi
(r0; r00; t0� t00) = Æ(r� r0)Æ(r0� r00)Æ(t� t0)Æ(t0� t00) (3.35)



3.7. DIELECTRIC FUNCTION 233.7.2 Fourier transformsNow fourier transforms 1 of the ma
ros
opi
 ele
tri
 �eld:E(q; !) = "�10 "�1ma
(q; !)D(q; t) (3.36)The mi
ros
opi
 one:"mi
(r+R; r0 +R; t� t0) = "mi
(r; r0; t� t0)) "mi
(q;q0; !) = ei(qiqR�q0)R"mi
(q;q0; !)with R a re
ipro
al latti
e ve
tor. Sin
e this means " is only non-zero for adi�eren
e q�q0 equal to a re
ipro
al latti
e ve
tor, we make the following 
hangein notation:"mi
(q;q0; !)! "mi
(k+G;k+G0; !); (3.37)whi
h means R d3q ! RBZ d3kPG;R d3q R d3q0 ! RBZ d3kPG;G0;"�1(k+G;k+G0)"(k+G0;k+G00) = ÆGG0ÆG0G00Together with the de�nition (3.33) this results in the following fourier transformfor the mi
ros
opi
 diele
tri
 fun
tion:XG Z d3k Z d! ei((k+G)r�!t)e(k +G; !)= Z d3r0 XG;G0 Z d3k Z d! ei((k+G)r+(k+G0)r0�!t)"mi
(q;q0; !)! � XG00 Z d3k00 Z !00ei((k00+G00)r�!00t)D(q00; !00)!) e(k+G; !)= XG0 "(k+G;k+G0)XG00 Z d3k00D(k00 +G00) Z d3r0ei(k+G0+k00+G00)= XG0 "(k+G;k+G0)XG00 Z d3k00D(k00 +G00)Æ(k +G0 + k00 +G00)= XG0 "(k+G;k+G0)D(k+G0)1In the following the Fourier transforms are written in the form f(r; t) =12� R d3q R d! exp(i(qr � !t))f(q; !) and f(q; !) = R d3r R dt exp(�i(qr � !t))f(r; t), so thekind of fun
tion is identi�able by its parameters. Also only partly fourier transformed fun
tionsmay appear.



24 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDS3.7.3 diele
tri
ity $ internal 
harge densityNext: Averaging...(244-246) With the fourier transforms of two maxwell equa-tions iqe(q) = 1"0�mi
(q); iqD(q) = �ext(q); (3.38)we 
on
lude to�ext(k +G) = XG0 (k +G)"(k+G;k+G0)�mi
(k+G0)(k+G0)(k +G0)2XG0 jk+Gj jk+G0j "(k+G;k+G0)�ext(k+G) + �indmi
(k+G0)(k+G0)2with "(k +G;k +G0) = uk+G"(k +G;k +G0)uk+G0 the longitudinal diele
tri
fun
tion (uk = kjkj unit ve
tor).Using the fourier transform �ext(q) = "0 � q2U ext(q), we transform toXG "�1(k+G00;k+G)"0 � (k +G)2U ext(k+G) =XG;G0 jk+Gj jk+G0j "�1(k+G00;k+G)"(k+G;k +G0)�"0U ext(k+G0) + �indmi
(k+G)(k+G0)2 � ;whi
h results in�indmi
(k +G) = "0XG0 �"�1(k+G;k+G0)� ÆGG0� jk+Gj jk+G0jU ext(k+G0)and "�1(k+G;k+G0) = ÆGG0 + "�1jk+Gj jk+G0j ��indmi
(k+G)�Uext(k+G)3.8 Quantum me
hani
al model� Indire
t transitions:� Dire
t Transitions...3.9 ComparisonPossible reasons� DFT doesn't des
ribe ex
ited states� just quasi-parti
les� other 
ontributions: xxx



3.10. MISSING 253.10 MissingMissing:� lo
al �eld 
orre
tions (Fox, 2.2.3)� RPA"��2 = 4�2e2m2!2 Xi;j Z~!=Ej(~k)�Ei(~k) dk2(2�)3 hi~kjp�jj~kihi~kjp�jj~ki���r~k �Ej(~k)� Ei(~k)����f0(Ei(~k))(1�f0(Ej(~k)))(3.39)"2 =X�;� "��2 e�e�; (3.40)For the 
ubi
 
ase:"2 = 4�2e2m2!2 Xi;j Z~!=Ej(~k)�Ei(~k) dk2(2�)3 jhi~kjpjj~kij2���r~k �Ej(~k)� Ei(~k)����f0(Ei(~k))(1�f0(Ej(~k)))(3.41)What about prefa
tor? Atomi
 units, ! �4�"0 .De�nition of JDOS:J(E) =Xi;j ZE=Ej(~k)�Ei(~k) dk2(2�)3 1���r~k �Ej(~k)� Ei(~k)���� (3.42)3.11 Krasovskii" = "intra + "inter"1intra = 1� !2p!2"2intra � !2p ��!Æ(!)h{kjrj{ki = 1~ �E{(k)�k (3.43)Types of 
riti
al points? (e.g. Dragoman p.9)
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Chapter 4Basis setsAs already mentioned in se
tion 2.3, the eigenfun
tions are usually expanded ina basis,hrjiki =  i(k; r) = 1p
XG Cik+G�k+G(r); (4.1)where 
 is the unit 
ell volume. The Hamilton and overlap matri
es H and Sare 
onstru
ted for a set of k-points, and the generalized eigenvalue problem[H(k)� �iS(k)℄ 
i(k) = 0 (4.2)is solved, with 
i(k) = (Cik+G) the ve
tor of the C-
oeÆ
ients (of eigenvalue iand ve
tor k) for all G's. Many questions of detail, as well as general propertiesof your 
al
ulation like a

ura
y and 
omputational e�ort depend on the 
hoi
eof your basis set.The better the basis fun
tions mat
h the shape of the a
tual wavefun
tions,the better the 
onvergen
e is. Some basis sets may have drawba
ks that 
an notalways be lifted by a bigger 
ut-o�.4.1 The Plane-Wave BasisA very simple basis set is build out of plane waves (PWs), the eigenfun
tions fora 
onstant potential, that are free ele
trons�k+G(r) = ei(k+G)r;The use of this basis 
omplies to a simple fourier transform. Typi
ally this isa good 
hoi
e for nearly free ele
trons and delo
alized ele
trons.The simple analyti
 form usually leads to well-performing 
al
ulations thatare straight-forward to implement. The hamilton and overlap matri
es 
an easily27



28 CHAPTER 4. BASIS SETSbe 
al
ulated asHG;G0(k) = ~22m jk+Gj2ÆGG0 + V(G�G0); (4.3)V(G�G0) = Zu
 d3r e�i(G�G0)r Veff(r)SG;G0 = ÆGG0The matrix elements of the momentum operator for instan
e in this basis (interms of the eigenfun
tions) give

Figure 4.1: Used G-ve
tors in expansion. Small x-like 
rosses indi
ate the basisve
tors of re
ipro
al spa
e. The plus-like 
rosses indi
ate the (k +G)-ve
tors 
orre-sponding to the k-ve
tor drawn in the origin. The large 
ir
le en
loses all ve
tors ofjGj < Gmax, the smaller one those of jk+Gj < Gmax.
fkjri jik�PW = 1
XG (k+G)Cf�k+GCik+G: (4.4)The 
hoi
e of G-ve
tors is illustrated in �gure 4.1. After 
hoosing a 
ut-o� valueGmax, all (k + G)-ve
tors are used that obey jk + Gj � Gmax. This 
hoi
e isne
essary be
ause of numeri
al reasons. The number of basis fun
tions obviouslydepends on the k-point in 
onsideration.



4.2. THE APW METHOD 29Potentials: XX , and less eÆ
ient for systems in
luding lo
alized valen
e ele
-trons, like transition metals.The pri
e for this simpli
ity is the inability of this basis set to des
ribe thestrong intera
tions in
luding the nu
lear potential � 1r . As a solution, the ideaof pseudopotentials has been developed. The potentials are identi
al to the all-ele
tron potential outside a given 
ore-radius, but of di�erent, smoother shapeinside. They are 
onstru
ted just that the resulting pseudo-wavefun
tion mimi
sthe all-eletron wavefun
tion outside this radius as 
lose as possible. For manyelements, this method works reliable, yielding smooth potentials.4.2 The APW method

Figure 4.2: Spatial partitioning in augmented basis sets. The 
ir
les are the muÆntins, leaving the interstitial region, plotted grayed.A basis set of better shape has been proposed by Slater already in 1937[Sla37℄. In this Augmented PlaneWave (APW) basis, spa
e is divided into spheresthat are 
entered around ea
h atom, so-
alled muÆn-tins (MTs), and into theremaining interstitial region (IS)1. While plane waves are used as basis fun
tions1For non-bulk systems, di�erent 
hoi
es 
an be made. For slabs, an additional va
uum region



30 CHAPTER 4. BASIS SETSin the interstitial, they are augmented in the spheres by spheri
al harmoni
s timeradial basis fun
tions that are solutions to of the radial S
hr�odinger equation toan l-dependent energy�� ~22m �2�r2 + ~22m l(l + 1)r2 + V (r)� El� rul(r) = 0: (4.5)Expanding the fun
tion in a series of these fun
tions up to an l-
uto� lmax, thisgives the basis fun
tions (the augmented plane waves)�k+G(r) = 8><>: ei(k+G)r r 2 ISlmaxXl=0 lXm=�l a�lm(k +G)ul(r; El)Ylm(r̂) r 2 MT�: (4.6)The 
al
ulation of matrix elements be
omes more 
ompli
ated due to the radialfun
tions being non-orthogonal when restri
ted to the muÆn-tins, and due to the
omplex shape of the interstitial region.It is useful to normalize the radial fun
tions likehuljuli = R�Z0 dr julj2 = 1 (4.7)To ensure that these basis fun
tions are 
ontinuous, one has to mat
h the muÆn-tin fun
tions to the planewaves on the boundaries. To arrange this, one expandsthe spheri
al harmoni
s into planewaves using the Rayleigh relationeiKr = 4�Xlm iljl(rK)Y �lm(K̂)Ylm(r̂): (4.8)K = jKj is the length of the ve
tor K = k + G, and jl is the Bessel fun
tionof the �rst kind. An atom � at position S� owns a 
oordinate frame (U�;S�)(in the style of symmetry operations ??, U� being the rotation matrix). In thisframe, a plane-wave takes the formeiKr ! ei(U�K)(r+U�S�) (4.9)Mat
hing the planewaves on the sphere boundaries with the muÆn-tin fun
tionsfor every augmented wave gives the a-
oeÆ
ients asa�lm(K) = eiKS� 4�ilul(R�; El)jl(KR�)Y �lm(U�K̂): (4.10)This leaves the C-
oeÆ
ients (and the energies El) as the variational parametersof the method, the a's being determined by them. In fa
t this mat
hing worksis introdu
ed as a two half-spa
es, expanding the fun
tion in de
aying exponentials [Kur00℄.



4.2. THE APW METHOD 31only on a few points exa
tly, but the so-
hosen A-
oeÆ
ients yield the smallestmismat
h.With these basis fun
tions the wavefun
tion take the form i(k; r) = 8>><>>: 1p
XG Cik+Gei(k+G)r r 2 ISXG Xlm Cik+Ga�lm(k+G)ul(r; El)Ylm(r̂) r 2 MT� (4.11)Sin
e the a-
oeÆ
ients are { together with the expansion 
oeÆ
ients C { the onlyterms inside the spheres depending on G, one 
an write the whole wavefun
tionshorter as i(k; r) = 8><>: 1p
Cik+Gei(k+G)r r 2 ISXlm Ai;�lm(k)ul(r; El)Ylm(r̂) r 2 MT� (4.12)with the shorthandAi;�lm(k) =XG Cik+Ga�lm(k+G): (4.13)Potentials: Sin
e these basis fun
tions are the solutions of a 
onstant potentialin the interstitial and a spheri
al potential in the muÆn tins, this muÆn-tinapproximation for the shape of the potentials has initially been used. In thewarped muÆn-tin approximation, the interstitial potential is extended to generalshape, that means extended in planewaves.Problems of the method: A

ording to (4.10) the A's are determined 
om-pletely by the planewave 
oeÆ
ients. So these C 
oeÆ
ients together with theenergy parameters El are the variational parameters of this method. If the en-ergy parameters were taken as �xed rather than as a variational parameter, themethod would simply 
onsist of the use of the APW basis set with solving these
ular equation (4.1). The solutions would give the band energies.Unfortunately, this is not a workable s
heme. The basis fun
tions la
k varia-tional freedom, this means they do not yield 
orre
t results if the energy parame-ters El mismat
h the a
tual band energies. This means that these energies for onek-point 
an not be obtained from a single diagonalization, but it has to be solvediteratively. This makes this method mu
h more 
omputationally demanding.Furthermore it is diÆ
ult to use a general potential beyond the warped muÆn-tin approximation [Sin94℄. Another obsta
le is the so-
alled asymptote problem.There might be energy parameters for whi
h ul vanishes or be
omes very small onthe sphere boundary. As a 
onsequen
e the planewaves and the radial fun
tionsbe
ome de
oupled.



32 CHAPTER 4. BASIS SETS4.3 The LAPW methodMu
h work has been devoted to lifts the des
ribed problems. In 1975, Andersenintrodu
ed the Linearized Augmented Plane Wave (LAPW) method. The 
entralidea is to des
ribe the basis fun
tions inside the muÆn-tins not only by solutionsof the radial S
hr�odinger equation ul(r; El), but as well by its energy derivates_ul(r; El) � ��Eul(r; El). If El di�ers slightly from the true band energy �, a

ordingto an expansion with respe
t to the energy,ul(r; �) = ul(r; El) + (�� El) _ul(r; El) +O((�� El)2); (4.14)the true radial fun
tion 
an be approximated suÆ
iently. The error in the bandenergies will be of the order O((� � El)4). The energy derivatives 
an a
quiredfrom (4.5), taking the energy derivative:�� ~22m �2�r2 + ~22m l(l + 1)r2 + V (r)� El� r _ul(r) = rul(r): (4.15)The basis fun
tions are now�k+G(r) = 8>>>>><>>>>>:
1p
ei(k+G)r r 2 ISlmaxXl=0 lXm=�l [a�lm(k +G)ul(r; El)+b�lm(k+G) _ul(r; El)℄Ylm(r̂) r 2 MT�: (4.16)Analogous to the APW method, the muÆn-tin 
oeÆ
ients are determined asa�lm(K) = eiKS� 4�ilW Y �lm(U�K̂)[ _ul(R�)Kj 0l(KR�)� _u0l(R�)jl(KR�)℄ (4.17)b�lm(K) = eiKS� 4�ilW Y �lm(U�K̂)[ul(R�)Kj 0l(KR�)� u0l(R�)jl(KR�)℄ (4.18)with the WroskianW = [ _ul(R�)u0l(R�)� ul(R�) _u0l(R�)℄: (4.19)Colle
ting terms equivalent to the APW basis set, with the de�nitionsAi;�lm(k) = XG Cik+G � a�lm(k+G);Bi;�lm (k) = XG Cik+G � b�lm(k+G) (4.20)



4.4. THE LOCAL ORBITAL EXTENSION 33the wavefun
tions take the form i(k; r) = 8>><>>: 1p
XG Cik+Gei(k+G)r r 2 ISXlm �Ai;�lm(k)ul(r; El) +Bi;�lm (k) _ul(r; El)�Ylm(r̂) r 2 MT� (4.21)The detailed 
onstru
tion of the H and S matri
es is des
ribed in [Kur00℄.With this additional 
exibility, the LAPWs form a good basis for most setups.In 
ontrast to the APW method only one diagonalisation is needed to obtain theband energies. And sin
e it is very unlikely that both radial fun
tion and itsderivative vanish the asymptote problem does not o

ur.Basis 
onversion: A method to link the simpli
ity of the planewave basis withthe a

ura
y of the more sophisti
ated LAPW basis set has been proposed byKrasovskii [KSS99℄. In this Augmented Fourier 
omponents method (AFC), thevi
inity of the 
ore 
ontaining rapid alterations of the wavefun
tions is 
onsideredto be of low in
uen
e on the 
hemi
al behaviour. The results of 
al
ulationin LAPW basis are therefore gauged by an appropiate fun
tion, generating asmoother wavefun
tion in this region and leaving a slowly varying valen
e 
harge,whi
h 
an be represented adequately in a planewave basis. From this results,quantities 
an be 
al
ulated in the simple planewave formalism.4.4 The Lo
al Orbital extensionThere might be situations where the variational freedom of the LAPW basis setis not suÆ
ient. One example are semi-
ore states, whi
h are states of low energythatdo not de
ay 
ompletely within the muÆn-tins, but have an overlap into theinterstitial. Singh [Sin91℄ introdu
ed the Lo
al Orbital extension to the LAPWset to deal with su
h problems.The idea is to expand the basis set by additional fun
tions that are zero inthe interstitial, to extend 
exibility inside the muÆn-tins. By 
onstru
ing theseadditional basis fun
tions su
h that the derivative vanishes on the sphere bound-aries as well, the A- and B- 
oeÆ
ients 
onstru
ted in (4.17) remain un
hanged.The new basis fun
tion should have the 
hara
teristi
 of a 
ertain angular mo-mentum llo and energy Elo. This is ensured by a 
ombination of three radialwavefun
tions,�lo � [a�lou�l (r; El) + b�lo _u�l (r; El) + 
�lou�l (r; Elo)℄: (4.22)Here the index lo = 1; : : : ; nlo runs over the number of lo
al orbitals introdu
ed,the alo; blo; 
lo are the 
orresponding 
oeÆ
ients for ea
h atom. The l = llo in-di
ates the angular momentum quantum number asso
iated with this lo
al or-bital. This 
onstru
tion 
ontains the essential 
hara
teristi
s in the third part



34 CHAPTER 4. BASIS SETS(l(lo); Elo), enri
hed with the LAPW-like �rst two parts ensuring the 
onditionsof the boundary.These two 
onditions together with the normalization 
ondition determinethe a; b; 
 
oeÆ
ients of ea
h lo
al orbital (for details on this, as well as on the
onstru
tion of the matrix elements, see [Kur00℄). The basis fun
tions have tositisfy Blo
h's theorem. They are therefore mat
hed to �
titious planewaves toobtain the proper XXX4.5 Notes on symmetrysymmetries 
an be used to simplify the 
al
ulations.... (as well as the other quantities like 
harge density and potentials)� point group symmetry and spa
e group symmetry.� inversion symmetry: real and 
omplexCreal! (4.23)equivalent atoms4.6 Notes on the kineti
 energy operator



Chapter 5ImplementationThe implementation of the diele
tri
 fun
tion for this thesis has been done withthe FLEUR 
ode [FLE℄ in bulk mode. FLEUR is a full-potential linear aug-mented plane-wave (FLAPW) 
ode. In the following se
tions some details of thisimplementation shall be dis
ussed.Sin
e the linearized augmented plane-waves are the basis of 
hoi
e, the for-mulae of the momentum matrix elements in this basis are presented in se
tion5.1. Details on performing the k-spa
e integration to obtain the real part of thediele
tri
 fun
tion are shown in 5.2. The real part is obtained in 5.3. Due toa restri
tion of FLEUR, the e�e
t of ba
kfolding has to be dis
ussed in se
tion5.4. The problemati
 in
uen
e of this ba
kfolding on the numeri
al integrationis des
ribed in se
tion 5.5. Some remarks in 5.6 are followed by a two test 
al
u-lations.When referring in the following to the diele
tri
 fun
tion, often it's imaginarypart is meant. This should be 
lear from the 
ontext.5.1 Momentum matrix elements in the LAPWbasisThe momentum matrix elements (MMEs)1~i hfkjrj{ki = ~i Zu
 d3r  �f (k; r)r {(k; r) �Mfi(k) (5.1)are to be 
al
ulated in the LAPW basis. Due to the partitioning of the unit 
ellinto muÆn-tins and the interstitial region by the 
hoi
e of the augmented basis,1To avoid 
onfusion with the imaginary unit i, the initial ele
troni
 transition level is labeled{. 35



36 CHAPTER 5. IMPLEMENTATIONthe matrix elements have to be 
al
ulated in these regions separately:hri = hriIS +X� hriMT�: (5.2)The formulae are presented in atomi
 units (see appendix C), so the fa
tor ~ = 1disappears.5.1.1 Interstitial 
ontributionIn the interstitial, the wavefun
tions are2j{kiIS = 1
XG C {k+Gei(k+G)r; r 2 IS; (5.3)and the nabla operator a
ts likerj{ki = 1
XG i(k +G)C {k+Gei(k+G)r; r 2 IS; (5.4)so that the interstitial part of the matrix element reads
fkjri j{k�IS = 1
XGG0(k+G)Cf�k+G0C {k+G ZIS d3r ei(G�G0)r: (5.5)The non-trivial interstitial volume the integral a
ts on is handled by subtra
tingthe muÆn-tins from the whole unit 
ell 
:ZIS d3r ei(G�G0)r = Z
 d3r ei(G�G0)r �X� ZMT� d3r ei(G�G0)r: (5.6)While the �rst integral gives the simple value 
ÆGG0, the integral over a muÆn-tin
entered at S� gives the split solutionZMT� d3r ei(G�G0)r = ( V G = G03V� sinx�x 
os xx3 � ei(G�G0)S� G 6= G0 (5.7)with x = jG � G0jR� and R�; V� the radius and the volume, respe
tively, ofsphere �. Altogether this gives
fkjri j{k�IS = 1
XG (k+G)"C {k+G 
�X� V�!�XG0 6=GCf�k+G0X� 3V� sinx� x 
os xx3 � ei(G�G0)S�# (5.8)= XGG0(k+G)C {k+GCf�k+G0 � s(G�G0): (5.9)2For 
onvenien
e, the general Ket symbol is used in pla
e of its spatial representation.



5.1. MOMENTUM MATRIX ELEMENTS IN THE LAPW BASIS 37In the last line, the expressions of the pre
eeding integral were merged into thefun
tion s, that iss(G�G0) = 8<: 1
(
�P� V�) G = G0� 3
P� V� sinx�x 
osxx3 ei(G�G0)S� G 6= G0 (5.10)with the above x = jG �G0jR�. This is the Fourier representation of the step-fun
tionS(r) = ( 1; r 2 IS0; r 2MT; (5.11)whi
h is usually 
onstru
ted already for the 
onstru
tion of the Hamilton andoverlap matri
es H and S in the self-
onsisten
y part.5.1.2 MuÆn-tin 
ontributionsThe further pro
edure depends on what form of wavefun
tions you start from.If you use the LAPW fun
tions written expli
itly in the basis fun
tions (4.16),without the summation (4.20) in the 
al
ulation of your MMEs (5.1), you obtainthe summations over G,l,m ea
h twi
e. In the further derivation, not only onepair of the (l; m)-summation vanishes, but also, by 
lever 
onversion, the se
ondm-summation [Kra℄. This leaves summations G;G0; l. If you do this, you 
ansimply 
he
k the hermiti
ity of your matrix for every G-ve
tor.In the derivation used in this thesis, LAPWs of the a

umulated form (4.21)are used. To derive the matrix elements in the spheres, the momentum operatoris expressed in spheri
al 
oordinates, and its impa
t on the spheri
al harmoni
sis 
al
ulated. Sin
e this part is a bit lengthy, it is moved to appendix A.In allusion to the ladder operators L+ and L� of the angular momentum oper-ator, one expresses the momentum matrix elements not in terms of (�x; �y; �z)T ,but in the rotated form0B� �x + i�y�x� i�y�z 1CA =M0B� �x�y�z 1CA � 0B� �1�2�3 1CA ; (5.12)with the base 
hange matrix and its inverseM = 0B� 1 i 01 �i 00 0 1 1CA ; M�1 = 0B� 12 12 0�12 i 12 i 00 0 1 1CA : (5.13)



38 CHAPTER 5. IMPLEMENTATIONThe result 
ontains only one (l; m)-summation 
an be expressed ashfkj�nj{ki = lmax�1Xl=0 lXm=�l (5.14)[ ( R ul+1u0l r2dr � l R ul+1ul rdr) Af�l+1;m0A{l;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) Af�l+1;m0B{l;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) Bf�l+1;m0A{l;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) Bf�l+1;m0B{l;m ℄ F (2n�1)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) Af�l;mA{l+1;m00+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) Af�l;mB{l+1;m00+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) Bf�l;mA{l+1;m00+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) Bf�l;mB{l+1;m00 ℄ F (2n)l+1;m00for n = 1; 2; 3 indi
ating the 
omponents, and m0,m00 given bym0 = 0B� m + 1m� 1m 1CA ; m00 = 0B� m� 1m + 1m 1CA for n = 0B� 123 1CA : (5.15)The fa
tors F (n)lm are de�ned in appendix A. In the 
ombinations of 
oeÆ
ientsowning angular quantum numbers l and l+1 in the produ
ts, one re
ognizes thedipole sele
tion rules, i.e. the 
onservation of angular momentum.The notation already indi
ates that only the large 
omponent of the wavefun
-tion inside the muÆn-tins is taken into a

ount. For the valen
e states 
onsideredthis is a good approximation. The 
ontributions resulting from the lo
al orbitalextension to the LAPW basis set (??) are similar in shape to those of the simpleLAPW basis (5.14), but more lengthy, and are hen
e given in appendix A as well.5.1.3 Properties of the matrix elementsHermiti
ity: Sin
e the momentum operator is an observable and therewithhermitian, so must be its matrix elements. This 
an be shown easily by applyingpartial integration to the de�ning formula of the matrix elements (5.1). It is alsoobvious for the MMEs written in the plane-wave basis (4.4).However it 
an be hardly seen from the formulae written in LAPW basis,sin
e the interstitial plane-waves are expanded on the muÆn-tin boundaries interms of spheri
al harmoni
s utilizing the Rayleigh relation (4.8). If one appliespartial integration to the LAPW formulae, one 
an see that e.g. for the (x +iy)-
omponent of the muÆn-tin 
ontribution to the MME, parts of the fa
tors
ontaining F (1)l;m 
ompensate with the 
omplex 
onjugate of the fa
tors 
ontainingF (2)l+1;m�1, leaving the boundary values of the integration un-
ompensated.



5.1. MOMENTUM MATRIX ELEMENTS IN THE LAPW BASIS 39The rest has to be taken by the di�eren
e in 
onjugating the interstitial 
on-tribution, whi
h is sensitive to 
onjugation due to the fa
tor (k+G) in the �rstsum in (5.9).Reality: The diagonal matrix elements are real sin
e the momentum operatoris an observable. Furthermore this 
an also be seen from and 
ompared with thederivatives of the energy bands (3.43). The non-diagonal parts are in general 
om-plex, as 
an be assumed be
ause of the 
omplex A,B muÆn-tin 
oeÆ
ients. Forthe 
ase of inversion symmetry, however, the matrix elements be
ome real. Thisis obvious for the plane-wave basis (4.4) due to the now real C 
oeÆ
ients (4.23),but not for LAPW basis (due to the re-expansion on the muÆn-tin boundaries).Equivalent atoms: XXXXShould be real for diagonalIn general 
omplex, but "2 is real again!'magi
 of numbers'5.1.4 Illustration
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Figure 5.1: The absolute value of matrix elements for �ve sele
ted transitions evolvingon paths on the border of the irredu
ible Brillouin zone. The initial and �nal level {and f are given in the legend.To give an impression of the amplitude and k-dependen
e, a band stru
ture-like plot of matrix elements is shown in �gure 5.1. These are sele
ted MMEs for



40 CHAPTER 5. IMPLEMENTATIONa simple-
ubi
 Aluminum setup with one atom per unit 
ell, that is investigatedin se
tion 5.4. The path is (0; 0; 0)! (12 ; 0; 0)! (12 ; 12 ; 0)! (12 ; 12 ; 12)! (0; 0; 0),and due to big variations in amplitude, the plot uses a logarithmi
 y-axis.The progression of the 
urve is monotonous in most areas. On the 
orners ofthe path, the matrix elements are not unique due to degenera
y (
ompare to theband stru
tures in se
tion 5.4). However, some transitions have a rapid 
hangein amplitude when approa
hing the 
orners. In this 
ase, only the sum overthe transitions has a physi
al meaning and gives deterministi
 results. Anotherirregularity are jumps that o

ur within a path, whi
h 
an usually be 
onne
tedto band 
rossings.5.2 k-spa
e integrationThe task to perform an integration in k-spa
e1VG Xi ZBZ d3k U(k)f(�i(k)) (5.16)(VG being the volume of the Brillouin zone, f the Fermi fa
tor at temperaturezero, i.e. a step fun
tion) frequently appears in band stru
ture 
al
ulations,for instan
e in the determination of the Fermi energy in the self-
onsisten
y ofthe density fun
tional theory des
ribed in se
tion 2.3. The integrand U(k) is
al
ulated only for a very �nite set of sample k-points.There are di�erent kinds of methods, e.g. the spe
ial points method [CC73,Cun74℄. It provides a set of spe
ial k-points in the irredu
ible Brillouin zonewith alleged weights to 
al
ulate the integrand on. This transfers the integration(5.16) into a summation1VG Xi ZBZ d3k U(k)f(�i(k))!Xi Xk U(k)wik: (5.17)For smoothly varying fun
tions this yields reliable results. However, for in
om-plete o

upied bands the integrand in (5.16) is not smooth due to the sharpFermi fa
tor. Consider for instan
e a band 
lose to the Fermi energy. In theself-
onsisten
y, this band 
ould be shifted above or below the Fermi energy, re-sulting in big 
hanges in the 
harge density. This 
an degrade or even destroythe 
onvergen
e. One 
an implement a more elaborate Fermi fa
tor like the trueFermi fun
tionf(�) = e e�EFkT � 1; (5.18)that is making the integrand smoothly by a temperature broadening.



5.2. K-SPACE INTEGRATION 41Another method of integration is to divide the volume into subvolumes of a
ertain shape and perform the integration in the volume analyti
ally over theinterpolated fun
tion. Among the method of Gilat and Raubenheimer [GR66,Bro93℄, the Tetrahedron Method is the most prominent integration method ofthis kind.Tetrahedra: This method was introdu
ed independently by Lehmann and Taut[LT72℄ in 1972 and by Andersen and Jepsen [JA71℄ in 1971. It's idea is to di-vide the integration volume into tetrahedra. This is always possible, though notuniquely. The tetrahedra 
an in prin
iple have arbitrary shape, but ought to beas regular in shape as possible (e.g. not 
attened). The integration thus 
hangesto 1VG ZBZ d3k ! XfTetg VTVG ZVT d3k : (5.19)VT is the tetrahedron's volume. In ea
h tetrahedron, the energy interpolatedlinearly is given uniquely by the four 
orner energies.Interpolation in one tetrahedron: The 
orners are labeled from 0 to 3 within
reasing energy, i.e.
1

2

3

0

b

k1
~

k3
~

k2
~Figure 5.2: A tetrahedron with 
orner labels sorted by energy, and interpolationve
tor b. The small 
ir
le marks the penetration point of the ve
tor.�0 < �1 < �2 < �3: (5.20)For equally indi
ated k-ve
tors, the energy in linear interpolation is�(k) = �0 + b � (k� k0): (5.21)



42 CHAPTER 5. IMPLEMENTATIONHere, the ve
tor b is de�ned just that the energy 
oin
ides for k equal k0;k1;k2;k3with the given 
orner energies. This is provided with the de�nitionb = 3Xi=1 (�i � �0)ri; (5.22)in
luding the auxiliary ve
tors~ki = ki � k0; i 2 f1; 2; 3g (5.23)ri = 1VT ~kj � ~kk; fi; j; kg 
y
li
: (5.24)This interpolation yields a 
ontinuous energy in the whole integration volume BZmade out of the set of tetrahedra. The integrand 
an be interpolated analogouslylike U(k) = U0 + b0 � (k� k0) (5.25)with the a

ording de�nitionb0 = 3Xi=1 (Ui � U0)ri: (5.26)With this the whole integrand is 
ontinuous in the integration volume. A possiblesimpli�
ation is to take the integrand set to a 
onstant value �U averaged over thetetrahedron. With this, the quantity is of 
ourse not 
ontinuous anymore.Given this linear form of the integrand, the integration in ea
h tetrahedron
an be performed analyti
ally.Spe
tral 
al
ulations: This method works �ne for spe
tral integrals (for in-stan
e those kinds of integrals mentioned in se
tion 3.3. Take integrals of thetype of the density-of-statesD(E) = 1VG Xi ZBZ d3k Æ(E � Ei(k))= 1VG Xi ZE=Ei(k) dS 1jrkEi(k)j : (5.27)If this integrand is interpolated linearly like in (5.25), it gives1jrkE(k)j = 1jbj : (5.28)The 
onstant-energy plane E = Ei(k) in one tetrahedron is the 
ross-se
tion ofa plane perpendi
ular to b. There are three possible 
ase of this plane to 
ut



5.2. K-SPACE INTEGRATION 43the tetrahedron, yielding a 
utting area A and leading to a 
ontribution of theintegral equal Ajbj . The expli
it results are [LT72℄DT (�) = 8>>>><>>>>: 0 � < �1 or �4 < �VTVG 3(���1)2�21�31�41 �1 < � < �2VTVG 1�31�41 h3�21 + 6(�� �2)� 3 (�31+�42)(���2)2�32�42 i �2 < � < �3VTVG 3(�4��)2�41�42�43 �3 < � < �4 (5.29)with the energy di�eren
es �ij = �i � �j.In
lusion of Fermi fa
tors: If unlike (5.27) the integral 
ontains a Fermifa
tor like (5.16) whi
h is simply in
luded into the integrand, the des
ribed pro-
eeding will not give good results sin
e the values are possibly interpolated to zerobe
ause of this fa
tor. But due to the linear interpolation, energy 
ross-se
tionsare easy to determine, as done for the density of states. Nothing else is a Fermifa
tor that separates the o

upied and uno

upied part by a 
onstant-energyplane.For in integral (5.16), depending on the energy � and the Fermi energy �Freferring to, the valid 
ontribution 
an 
onsist out zero volume (�F < �1), onesubtetrahedron (�1 < �F < �2), three subtetrahdra (�2 < �F < �3 or �3 < �F < �4),or the 
omplete tetrahedron (�4 < �F ) [RF75℄.

3,1

1,2

4,3

2,4

i

f

Figure 5.3: A tetrahedron that is divided due to two Fermi fa
tors. The numbersat the 
orners are the sorted energy indi
es for the initial and �nal bands { and f , thetwo ve
tors are the 
orresponding b ve
tors (5.22). In this diagram the energy 
utsboth bands within the tetrahedron and results in two 
rossing 
onstant-energy planes.Cutting of ve
tors with these planes or the tetrahedra boundary are marked with small
ir
les. The valid subvolume is marked with the red arrow, as well as shown on theleft, with its division into three subtetrahedra.



44 CHAPTER 5. IMPLEMENTATIONFor an integral 
ontaining two Fermi fa
tors like (3.39), one performs onea
h subtetradron obtained for the �rst Fermi fa
tor the (inverse) o

upationpro
edure for the se
ond Fermi fa
tor, resulting in at most nine subtetrahedrafor the initial tetrahedron. Note that for the se
ond step a renumbering has tobe made due to the possibly di�erent order of the energies Ef .For the integration (3.39), this means that for every transition { ! f , thevalid volume is determined, and the remaining integrand, i.e.U(k) = h{kjp�jfkihfkjp�j{kijrk(Ef(k)� E{(k))j ; (5.30)is evaluated for ea
h of the valid volume's tetrahedra.Weighted formulation: Bl�o
hl has shown that the tetrahedron method 
analso be written to result in the form of a weighted summation (5.17). Theseweights are given in appendix B. With this formalism, arbitrary fun
tions 
anbe integrated without doing the geometri
 derivation done for instan
e in theformulae of the density-of-states above.It should be noted that the obtained weights do not 
oin
ide with those of thespe
ial point method whi
h are based on symmetry, i.e. the tetrahedron methoddoes not take into a

ount the high symmetry 
hara
ter of the irredu
ible zone'sboundaries. This leads to a worse 
onvergen
e than using the spe
ial pointsmethod, and is the reason why the tetrahedron method is usually not used forthe self-
onsisten
y, but for spe
tral 
al
ulations.Attempts have been made to raise the level of interpolation to a quadrati
one. When marking out su
h a formalism to the linear one introdu
ed above, thelatter one is referred to expli
itly as linear tetrahedron (LT) method.Redu
tion to the Irredu
ible Brillouin Zone (IBZ): Usually the eigen-ve
tors and eigenvalues are 
al
ulated only in the irredu
ible part of the Brillouinzone. Let's 
onsider the e�e
t on integral (3.39). Let R be an appropriate rota-tion matrix. The energies are the same at the rotated k-pointE{(k) = E{(Rk); (5.31)but the eigenve
tors are rotated:hrj{;Rki = hR�1rj{;ki (5.32)For the 
al
ulation of the momentum matrix elements, instead of rotating theeigenve
tors one 
an also rotate the 
oordinate system and therewith the nablaoperator, in symbols rRr = Rrr. With this the matrix element for a k-point Rr



5.2. K-SPACE INTEGRATION 45in the �rst Brillouin zone, but outside the irredu
ible wedge, 
an be 
omputedlike hf;Rkjrj{;Rki = Z d3r  �f (Rk; r) rr  {(Rk; r)= Z d3r  �f (k;R�1r) rr  {(k;R�1r)= Z d3r  �f (k; r) rRr  {(k; r)= Rhfkjrj{ki (5.33)When 
al
ulating the integral"��2 (!) �X{f BZZ~!=�E dS h{kjr�jfkiyhfkjr�j{kijrk(Ef(k)� E{(k))j f(E{(k))[1� f(Ef(k))℄ (5.34)with only use of the irredu
ible part, one uses the identity of the energies at the
orresponding k-points (5.31). Furthermore Ry = R�1, so that the numerator ofthe fra
tion in the pre
eding integral givesh{;Rkjr�jf;Rkiyhf;Rkjr�j{;Rki = h{kjr�jfkiyhfkjr�j{ki (5.35)and the integral itself"��2 (!) � NRX{f IBZZ~!=�E dS h{kjr�jfki�hfkjr�j{kijrk(Ef (k)� E{(k))j f(E{(k))[1�f(Ef(k))℄ (5.36)with NR the number of symmetry operations.A note on 
ubi
 systems: Sin
e we know from se
tion three that the di-ele
tri
 tensor has unit form for 
ubi
 
rystals, one 
an immediately redu
e the
al
ulation (5.36) to the s
alar 
ase, using the square of the absolute value in thenumerator.This is not to be mixed up with the momentummatrix elements itself, whi
h of
ourse still have independent 
omponents. For instan
e remember the diagonalMMEs being proportional to the band derivatives, whi
h have a well-de�neddire
tion.Reality: The imaginary part of the diele
tri
 fun
tion "2(!) is a real fun
tion.So must be the results of (5.36). For the 
ubi
 
ase this is obvious sin
e thedenominator redu
es to a real expression.In the 
ase of non-
ubi
 systems (3.39), the integral 
ontains produ
ts ofmomentum matrix elements M��{f M�f{ whi
h are in general 
omplex. This means
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omponents of the tensor obtained from (5.36) 
an be 
omplex, obeyingthe relation "��2 = "���2 . But a

ording to (3.40), the resulting diele
tri
 fun
tionalong a unit ve
tor u is 
omposed of a summation"2 =X�;� "��2 u�u�; (5.37)
ontaining for every 
ontribution of "��2 the transposed part "��2 as well. Thereforethe diele
tri
 fun
tion "2 be
omes real, and one 
an redu
e the diele
tri
 tensorto its real part ~"2 = <"2 (i.e. symmetrizing it by (~"��2 = 12("��2 + "��2 )). This alsorestores 
onsisten
y with the statement in 
hapter 3 that the diele
tri
 tensor issymmetri
al.5.3 The Real part of the Diele
tri
 Fun
tionDue to the tight relation between real (3.28) and imaginary part (3.29) of spe
tralfun
tions, one 
an set up a formula for the real part similar to (3.39) 
ontaininga k-spa
e integration. This has been done e.g. for the magneti
 sus
eptibility byGilat and Bharatiya [GB75℄. They used the tetrahedron integration s
heme toderive analyti
al expressions for the integral 
ontributions that are quite lengthy.In this thesis, the alternative path is followed, i.e. the Kramers-Kronig inte-gration transformation (3.32) is employed.Numeri
al a

ura
y of the Kramers-Kronig relations: The a

ura
y ofthe applied integration should be tested on a prominent analyti
al example, thisis the harmoni
 os
illator. The real and imaginary part are given by"1(!) = 1 + N0e2m (!20 � !2)(!2o � !2)2 + !2Æ2 (5.38)"2(!) = N0e2m !Æ(!2o � !2)2 + !2Æ2 : (5.39)The fun
tions are plotted in �gures 5.4 and 5.5 for two di�erent attenuationsÆ = 0:2 and Æ = 1:0, furthermore: N0e2=m = 1, !max = 101s , !0 = 4:51s . Theanalyti
al solutions are plotted in thi
k bla
k, while the numeri
al solutions ofthe real part are plotted dashed blue. Numeri
al solutions are given for threedi�erent number of sampling points, 100, 400, 1000, and 25000 (in the se
ondplot only).One 
an see that there is a need for an appropriate set of mesh points (inthe order of thousand or more) to a
hieve a numeri
al 
urve 
lose to the analyti
one. The �rst region of problem of these 
urves is at the extrema 
lose to !0,where the numeri
al solution slowly 
onverges to the analyti
 one. The se
ondproblemati
 energy range is for energies 
lose to zero. There is a dis
repan
yraising with the attenuation Æ that is not removed by a larger mesh point set.
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Figure 5.4: Analyti
 real and imaginary part for Æ = 0:2 (thi
k bla
k lines) andnumeri
al real part for di�erent numbers of mesh points (blue lines).5.4 Ba
kfoldingAt this point it should be mentioned that there are degrees of freedom in the
hoi
e of the unit 
ell. There might be unit 
ells of di�erent shapes for the samenumber of atoms, resulting in a di�erent re
ipro
al latti
e. In doing so the bandstru
ture stays un
hanged in the re
ipro
al spa
e, but appears di�erent due tothe di�erently 
hosen basis. There is also the possibility and (possibly the need)to 
hoose a bigger unit 
ell to model the system, giving a smaller Brillouin zonewith modi�ed bands.The e�e
t on the band stru
ture, 
alled ba
kfolding, shall be dis
ussed here.Sin
e the diele
tri
 properties are understood to be transitions between bands,understanding of the impa
t of ba
kfolding is essential if dealing with bigger unit
ells.5.4.1 Algebrai
 
onsiderationsTo understand the e�e
t of periodi
ity, the Blo
h theorem should be re
apitu-lated, to simplify matters in one dimension for a non-degenerate system in
ludingtime-reversal symmetry. The S
hr�odinger equationH n(r) = E n(r) (5.40)
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Figure 5.5: Analyti
 real and imaginary part for Æ = 1:0 (thi
k bla
k lines) andnumeri
al real part for di�erent numbers of mesh points (blue lines).yields eigenvalues E and eigenve
tors  . When the system 
onsists of unit 
ellsof length R, the 
orresponding translation operator is de�ned asTR : r ! r +R; (5.41)with the properties[TR;H℄ = 0; (5.42)TR n(r) =  n(r +R): (5.43)This translation operator shares a 
ommon set of eigenve
tors with the Hamilto-nian. Sin
e the absolute square of the wavefun
tions is independent under propertranslations,TRj j2 = TR( � ) = (T �R �)(TR ) = j�j2j j2; (5.44)the eigenvalues of the translational operator take the form � = eikr, whi
h atthe same time 
lassi�es the wavefun
tions:  n(r)!  n(k; r). Furthermore, as a
onsequen
e of (5.42) these wavefun
tions 
an be 
hosen to take Blo
h form n(k; r) = eikR'n(k; r); 'n(k; r) = 'n(k; r +R); (5.45)
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onsisting of an exponential and a latti
e-periodi
 fun
tion. The essential 
lounow is how Blo
h waves shifted in k-spa
e rea
t on translations in real spa
e:TR n(k +G; r) = ei(k+G)R n(k +G; r) = eikR n(k +G; r): (5.46)This means that all shifted k-ve
tors k + G are asso
iated to the same eigen-value � = eikR of the translation operator. Therefore the set of eigenvalues andeigenve
tors at k +G are equivalent to those at k. Therefore one 
an redu
e all
onsiderations to the �rst Brillouin zone �K2 � k � K2 ; K = 2�L . One might be

0 k K k+K-k0.5K 0.5KFigure 5.6: Sample band stru
ture similar to nearly-free ele
trons. The First Brillouinzone's boundary is at 12K. Two equivalent k-points to k are marked, �k and k +K.
onfused by this insight sin
e the Hamiltonian in matrix representation in a basisseems to 
hange with a substitution of k to k + G. For the 
ase of an in�nitebasis this substitution only 
on
erns permutations of rows and 
olumns. For a�nite basis, one gets numeri
al problems for high-lying states.The 
onsequen
e for the band stru
ture is shown for a system similar tonearly-free ele
trons in �gure 5.6. The solid verti
al lines at 12K;K; : : : are theboundaries of the Brillouin zones. The dashed lines indi
ate one k-point k andequivalents of it at �k and k +K.If one now imposes a lower periodi
ity like ~R = 2R, the re
ipro
al latti
eand therewith the Brillouin zone redu
es to half the size, jkj � ~K; ~K = �L . Adenser periodi
ity of ~K = K2 is demanded now instead of K in the �rst pla
e,
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0 k-k0.5K K k+K

0.5~K

~K~K-kFigure 5.7: Sample band stru
ture for a system for that a lower translational symmetrythan in �gure 5.6 has been used. The new Brillouin zone border is 12 ~K. Additionally,~K � k is marked as equivalent to k now.with . This makes the point �k (whi
h is equivalent to k due to time-reversal)equivalent to �k + ~K = K2 � k. Sin
e these two points have (possibly) distin
tsets of eigenvalues in the initial setup of high periodi
ity, these two sets sum upin this setup.The 
orresponding band stru
ture is shown in �gure 5.7. The periodi
ity ofbran
hes has been doubled, the �rst Brillouin zone shrinks to half the size ~K,and the number of bands in it doubled. This �gure gives an idea of the originof the term ba
kfolding. The bands look folded ba
k at the 
enter of the formerbigger Brillouin zone; but the superposition with an additional band stru
ture isa better way to visualize.5.4.2 Representation in a basisThe impa
t of ba
kfolding on the energy eigenvalues has been shown in the previ-ous paragraph. But the diele
tri
 fun
tion essentially depends on the momentummatrix elements and therewith on the wavefun
tions. Here, the e�e
t of ba
k-folding should be illustrated for a plane-wave 
al
ulation.For simpli
ity, I 
hoose a simple, hypotheti
al system of Aluminum (Al) in asimple 
ubi
 (s
) stru
ture3. This is 
al
ulated in two setups (A denotes sets of3So in this 
ontext, SC is not meant to be an abbreviation of self-
onsisten
y, as in the
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tors, D are atom positions in 
oordinates of these basis ve
tors)A1 = 8><>:L0B� 100 1CA ; L0B� 010 1CA ; L0B� 001 1CA9>=>; ; D1 = 8><>:0B� 000 1CA9>=>; (5.47)andA2 = 8><>:L0B� 100 1CA ; L0B� 010 1CA ; L0B� 002 1CA9>=>; ; D2 = 8><>:0B� 000 1CA ;0B� 0012 1CA9>=>; ; (5.48)that is the se
ond setup doubles the �rst one in z-dire
tion. The resulting re
ip-ro
al latti
es (written in form of Bravais matri
es, i.e. writing the (transposed)re
ipro
al basis ve
tors in matrix form) areB1 = 2�L 0B� 1 0 00 1 00 0 1 1CA ; B2 = 2�L 0B� 1 0 00 1 00 0 12 1CA ; (5.49)the se
ond setup having a Brillouin zone halved in z-dire
tion. The wavefun
tionsshould be expressed in plane-waves for both setups, (1)i (k; r) = 1p
 XG12G1C(1)ik+G �k+G1(r); (5.50) (2)i (k; r) = 1p2
 XG22G2C(2)ik+G2 �k+G2(r); (5.51)with 
 the volume of the small unit 
ell, G1, G2 the two sets of G-ve
tors. The 'are the 
ommon plane-wave basis fun
tions�k+G(r) = ei(k+G)r: (5.52)As a result of the smaller Brillouin zone the set of G ve
tors in the se
ond setupis double as dense as in the �rst one, see �gure 5.8. Sin
e we 
ut a sphere ofjGj � Gmax, the set G2 
ontains approximately double the number of ve
tors. Sofor every ve
tor G out of G1 we assign a ve
torG = G+ ~K; ~K = (0; 0; �L); (5.53)so that all the ve
tors fG;Gg form the se
ond set G2. This assignment worksonly approximately due to the shape of the sphere, but is valid for a suÆ
ienttheoreti
al part before.
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Figure 5.8: The kx � kz-plane of the re
ipro
al latti
es for the two setups. Basisve
tors are indi
ated by x-like 
rosses, (k+G)-ve
tors for one spe
ial k drawn in theorigin by plus-like 
rosses.expansion 
ut-o� Gmax: Sin
e the in
uen
e (i.e. the magnitude of the expansion
oeÆ
ient) of large G-ve
tors vanish in the 
ase of a valid 
onvergen
e, the dis-
repan
y 
an be negle
ted. So we 
an take G2 double as large as G1, and omitindi
es to the G-ve
tors sin
e it should be 
lear from the 
ontext whi
h ve
torsare referred to.Let's wat
h the generalized eigenvalue problem (2.23). Sin
e the plane-waveare orthogonal, the overlap has unit shape:[H(k)� �(k)I℄
(k) = 0: (5.54)For the two setups the elements of these matri
es read (see (4.3))H(1)G;G0(k) = ~22m jk+Gj2ÆGG0 + V (1)(G�G0); V (1)(G�G0) = 1
 Zu
1 d3r e�i(G�G0)r Veff(r)H(2)G;G0(k) = ~22m jk+Gj2ÆGG0 + V (2)(G�G0); V (2)(G�G0) = 12
 Zu
2 d3r e�i(G�G0)r Veff (r);(5.55)integrations performed over the real spa
e units 
ells one (u
1) and two (u
2).Now we want to relate the Hamilton matri
es of the two systems. Sin
e thefun
tion Veff is periodi
 in the �rst unit 
ell u
1 (thus twi
e periodi
 in u
2), andan exponential exp (i(G�G0)r) is simple periodi
 in u
2, 
ontributions of thepotential of mixed G-ve
tors vanish:V (2)(G�G0) = V (2)(G�G0 ) = 0: (5.56)



5.4. BACKFOLDING 53If we therefore rearrange the ve
tors of G2 when applying them on H to groupthe ve
tors of G1 �rst, we obtain for the Hamiltonian the blo
k formH(2) =  H(2a) 00 H(2b) ! ; (5.57)the submatrix (a) taking the 
ontributions of the undashed, (b) taking those ofthe dashed G-ve
tors.Contributions (G�G0) to the potential are identi
al to 
ontributions (G�G0)of the 
orresponding undashed G-ve
tors. In the formula for the potential, thedouble integration range 
an
els with the fa
tor 12 in front of the integral, andthe 
ontribution is the same as in the small setup:V (2)(G�G0) = V (2)(G�G0 ) = V (1)(G�G0 ): (5.58)Sin
e the kineti
 part of H(2a) is identi
al to H(1), so is the whole submatrix.Let's turn fo
us on H(2b). It readsH(2b)G;G0(k) = ~22m jk+Gj2ÆGG0 + V(G�G0): (5.59)We assume time reversal symmetry, i.e. H(k) yields the same set of eigenve
torsand eigenvalues for �k. We apply this on our submatrix H(2b). Be
ause ofG = G + ~K and (5.58), our matrix elements are equivalent toH(2b)G;G0(k) = ~22m j( ~K � k) +Gj2ÆGG0 + V(G�G0) (5.60)= H(1)G;G0( ~K � k): (5.61)With de�ning a ba
kfolding operator Tk : k! ~K � k, the Hamiltonian readsH(2)(k) =  H(1)(k) 00 H(1)(Tkk) ! : (5.62)The spe
trum of su
h a matrix is the sum of the spe
tra of the submatri
es. Theeigenve
tors are �lled up with zeros in its additional 
omponents. If the smallsetup has the eigenvalues and eigenve
torsf�(1)j (k)g; fjjkig = n�C(1)j(k+G)�o ; (5.63)those of the large setup aref�(2)i (k)g = f�(1)j (k)g [ f�(1)j (Tkk)g andfjikig = ( C(1)j(k+G)0 !) [( 0C(1)j(Tkk+G) !) (5.64)



54 CHAPTER 5. IMPLEMENTATION(with j (i) running over all bands of the small (large) system).It should be noted that the derivations given above only �t approximately,due to the �nite set of G-ve
tors. This is illustrated in �gure 5.8, where a sample
utting sphere is plotted. For su
h a small set of ve
tors, it is barely possible tomake a reasonable mapping (5.53). This e�e
t should diminish for an in
reasingnumber of basis fun
tions.The experien
e shows that the distin
tion (5.64) into two di�erent kinds ofeigenve
tors is also valid for the same system in an LAPW basis. This has beentested for the 
al
ulation presented in the next subse
tion.However, if the ba
kfolding involves a more 
omplex transformation of basisve
tors, these results { the form of the eigenve
tors (5.64) { do not stand stri
tlyanymore.
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Figure 5.9: Band stru
ture for s

 Aluminum, setup 1 (small).5.4.3 IllustrationThis e�e
t should be demonstrated now by some band stru
tures for this system.Figures 5.9 and 5.10 show the band stru
tures for the two systems along thepath (0; 0; 0) ! (12 ; 0; 0) ! (12 ; 12 ; 0) ! (12 ; 12 ; 12) ! (0; 0; 0), ea
h in internal
oordinates. Due to the symmetry mentioned above, every plot k1 ! k2 in thelarge system is the sum of the plots k1 ! k2 and ( ~K � k1) ! ( ~K � k2) of thesmall system (with ~K = (0; 0; 2�L )).Due to the simple kind of ba
kfolding in this setup, one sees the ba
kfoldingni
ely in a plot along z-dire
tion. In �gure 5.11 the path (12 ; 12 ; 0) ! (12 ; 12 ; 12) is
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Figure 5.10: Band stru
ture for s

 Aluminum, setup 2 (large).
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Figure 5.11: Ba
kfolded band stru
ture parallel to z-dire
tion. On the left two bandstru
tures of the small system are shown that overlap to the band stru
ture of the largesystem on the right.
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Figure 5.12: Ba
kfolded band stru
ture perpendi
ular to z-dire
tion. The right bandstru
ture (large setup) is the sum of the two on the left (small setup).shown, that is the third se
tion of �gure 5.10. The band stru
ture of the largesystem is given by that of the small system overlapped with the additional path(12 ; 12 ; 12)! (1; 12 ; 12).In �gure 5.12 the band stru
ture (0; 0; 0)! (12 ; 0; 0) is plotted. The bands ofthe large system on the right are those of the small system along the same lineon the very left, superposed by the bands (0; 0; 12)! (12 ; 0; 12). Here it is alreadydiÆ
ult to distinguish the two kinds of bands by a simple glimpse.5.4.4 Consequen
es for 
omputationThe 
al
ulation of a physi
al property (i.e. the expe
tation value of a hermitianoperator) must be the same whatever 
hoi
e of the unit 
ell has been made.Sin
e the band stru
tures 
hange, one might get the impression that this rule isviolated.One essential ingredient of the diele
tri
 fun
tion (3.39) are the transitionsfrom one band to another, that is a double sum over o

upied and uno

upiedstates. This summation will 
hange if the band stru
ture 
hanges. The jointdensity of states (JDOS) for example, given by (3.42), relies on these transitionsonly, meaning only on the gradient of the energy di�eren
es. It does not dependadditionally on matrix elements like the diele
tri
 fun
tion (3.39). This leads todi�erent results for a ba
kfolded setup.



5.4. BACKFOLDING 57

0 0.5 1 1.5 2 2.5
E [eV]

0

1000

2000

3000

4000

5000

6000
~ ε 2

small setup
large setup

0 0.5 1 1.5 2 2.5
E [eV]

0

20

40

60

80

ε 2

Figure 5.13: Diele
tri
 fun
tion of s

 Aluminum with (small graph, "2) and without(large graph, ~"2) in
lusion of matrix elements (288 k-points) for small and large unit
ell.To show this, the diele
tri
 fun
tion (3.39) is plotted in graph 5.13 with matrixelements negle
ted, i.e. the numerator equal to one. Though not the same quan-tity, this term su�ers the same e�e
t with respe
t to ba
kfolding as the JDOSdoes. It 
an diverge for small energies due to the fa
tor 1!2 . This di�eren
e forthe two setups does not 
ontradi
t physi
s sin
e the JDOS is not an observableand does not have a physi
al meaning by itselves.The diele
tri
 fun
tion on the other hand yields the same results for bothsetups due to the momentum matrix elements in
luded in its mathemati
al de-s
ription. These matrix elements have the property to vanish if being applied ona regular and a ba
kfolded eigenfun
tion:hfkjrj{ki = 0 for ba
kfolded transition; (5.65)that is one state of { or f being ba
kfolded, the other one regular. For the simplesetup of se
tion 5.4, this 
an be seen easily from the form of the eigenve
tors(5.64) and the form of the matrix elements in plane-wave basis (4.4).



58 CHAPTER 5. IMPLEMENTATION5.5 Resulting problems in the integrationUp to now, the interesting insights of the previous se
tion do not pose any an-alyti
al problems. But in the numeri
al treatment, problems appear due to theinterpolation between k-points made in the integration s
heme des
ribed above.The two di�erent kinds of problems en
ountered in the implementation are de-s
ribed in this se
tion.Before des
ribing the details, one should remember the way a 
omputer han-dles bands. A human 
an 
onne
t k-points logi
ally to bands by wat
hing aband-stru
ture, or 
an give it a mathemati
al 
hara
ter. Initially, 
omputers 
anonly enumerate the eigenvalues, and uses the a

ording eigenve
tors. It needsadditional e�ort [YKS℄ to re
ognize band 
rossings.5.5.1 The In
uen
e of Degenera
yThe �rst problem with ba
kfolding arises at points with degenerated energy eigen-values. At these points the eigenve
tors are determined only up to linear 
om-binations of ea
h other. An example for degenerated eigenvalues is sket
hed in�gure 5.14. For instan
e, k3 
ould be the zone boundary. It is known that thematrix elements vanish for a degenerate energy eigenvalues,hfkgjrj{kgi = 0 for E{(kg) = Ef(kg); (5.66)as in our 
ase. (This is shown by Mavropoulos, Papanikolaou and Dederi
hs[MPD℄.) It should be valid in the limit k ! kg, too. Therefore, one should notexpe
t problems from this.The situation is di�erent if you 
onsider transitions to another band 
 in asystem possessing ba
kfolding. In our �gure, let bands a and 
 be regular, whileb is ba
kfolded. Transitions b ! 
 should not give any 
ontributions. This is
onsistent with the image that a

ording to (5.64), the eigenve
tors of bands band 
 have the formjaki �  �0 ! ; jbki �  0� ! ; j
ki �  �0 ! ; k 2 (k1; k3): (5.67)At k3, however, due to the intermixture of a and b, the eigenve
tors take the formjaki �  �� ! ; jbki �  �� ! ; (5.68)resulting in a matrix element M
b(k3) 6= 0. In the analyti
al solution this is noproblem due to the singularity of this point (or plane in three dimensions, respe
-tively). In a linear interpolation s
heme, though, this leads to �nite 
ontributions,as sket
hed in the small pi
ture in �gure 5.14.
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Figure 5.14: One-dimensional illustration of degenera
y. The straight red lines are thetrue bands, while the dotted bla
k ones are interpolated linearly from the energy values(plotted as stars) at the mesh points k1,k2,k3. The horizontal dotted line indi
ates theFermi energy. In the small pi
ture, a linear interpolation is sket
hed in dotted bla
k,the true dis
ontinuous path in solid red.A possible solution: It is neither 
ommon nor possible without additionalnumeri
al e�ort to determine the \natural form" j{kgin of the wavefun
tions at ak-point kg possessing degenera
y (that would be j{kgin = limk!kg j{ki). Further-more it is quite improbable (if possible at all with limited numeri
al pre
ision) fora sample k-point within the Brillouin zone (ex
luding the origin) to hit a point ofdegenera
y. On the other hand degenera
y on the Brillouin zone's boundary andat high symmetry points in it (whi
h are in turn boundaries of the irredu
iblepart of the Brillouin zone) is very 
ommon. Experien
e aÆrms that matrix ele-ments like M
b(k) qui
kly vanish when moving o� the high symmetry (see nextsubse
tion).Therefore a simple solution is just to shift all k-points marginally o� theboundary inside the irredu
ible wedge. If ba
kfolding is absent, this leads toonly a marginal but noti
eable error, due to the qui
k variations of the matrixelements 
lose to high-symmetry planes. In the presen
e of ba
kfolding, the e�e
tis similar to negle
ting the matrix elements (shown in �gure 5.13): The diele
tri
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tion will get additional 
ontributions due to wrong interpolation, espe
iallybig values for small frequen
ies.5.5.2 The In
uen
e of Band 
rossing
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Figure 5.15: One-dimensional example for band 
rossing. The straight red lines arethe true bands, while the dotted bla
k lines are interpolated from the energy values(plotted as stars) at the mesh points k1,k2,k3. Fermi energy is dotted in the upperthird.In the 
ase of band 
rossing, the interpolation errors have a signi�
ant in-
uen
e. This is illustrated for a one-dimensional example in �gure 5.15. Thetrue bands are approximated linearly from the energy values at three samplingk-points k1,k2,k3. As in the sket
h before the bands are labeled a,b,
. For ahuman observer this refers the true bands, while a 
omputer gives these labels tothe eigenvalues ordered from bottom to up.Let the bands a and 
 be regular, while band b is ba
kfolded, and fo
us onthe interval [k1; k2℄. A

ording to (5.64) the eigenvalues at k1 take the formjak1i �  �0 ! ; jbk1i �  0� ! ; j
k1i �  �0 ! ; (5.69)



5.5. RESULTING PROBLEMS IN THE INTEGRATION 61and the formjak2i �  0� ! ; jbk2i �  �0 ! ; j
k2i �  �0 ! (5.70)at point k2. This results in matrix elements for a transition b! 
 of the formM
b(k1) = 0; but M
b(k2) 6= 0: (5.71)Due to the non-vanishing matrix element at k2, the matrix element is interpolatedin [k1; k2℄ 
ontinuous in the range [0;M
b(k2)℄. In the given example, this resultsin transitions at low frequen
ies �num (see �gure 5.15), while analyti
ally (andfor an in�nitely dense mesh) only transitions down to �real are possible in thisinterval.The impa
t on the 
urrent 
al
ulations are strong sin
e though also o

urringin its absen
e, the e�e
t is stronger with ba
kfolding present due to the largernumber of bands. Further on, the di�eren
es resulting from matrix elementsequal zero being interpolated in
orre
tly are 
ru
ial, espe
ially for small energiesdue to the fa
tor 1!2 that goes into the diele
tri
 fun
tion (3.39).An approa
h to avoid the problem: A method to minimize the 
ontributionof ba
kfolding to this e�e
t is to renumber the bands. This is possible up to a
ertain point for 
rossings of regular bands with ba
kfolded ones, as mentionedearlier (5.64).In �gure 5.16, this method has been applied to aluminum for a mesh of 288k-points. Only with this method one restores the 
orre
t absorption edge of the
urve. Cal
ulations show that without reordering of bands, this e�e
t is stillpresent for a 
al
ulation involving 11000 k-points.The higher the eigenvalues are, and the 
loser the k-points to high symmetrypositions, the worse is 
lassi�
ation into regular and ba
kfolded ones. The �rstitem is not too serious be
ause transitions of higher energy 
ontribute less tothe diele
tri
 fun
tion, due to the prefa
tor 1!2 . Se
ond one 
an assume band
rossings of regular and ba
kfolded bands not to appear in the very 
lose vi
inityof high-symmetry planes. Starting from this one 
an hope to get good resultswith this method.In �gure 5.17 the a
tual de
ay of overlap and absolute value of matrix elementsis shown. The observed system is the se
ond test system in se
tion 5.7, f

Copper. The two lowest bands are examined along the k-ve
tors (z; z; z) forz 2 [0:499; 0:5℄. The plot is double logarithmi
. It gives an idea of how farto shift k-points o� the boundary so that the matrix elements vanish (as theyshould) and the bands 
an be 
lassi�ed 
orre
tly.
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Figure 5.16: Diele
tri
 fun
tion for f

 Aluminum, with and without sorted eigenval-ues to 
orre
t 
rossing with ba
kfolded bands (288 k-points).
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Figure 5.17: The overlap of wavefun
tions 1 and 2 of an f

 Copper system.5.6 A Note on Computational DemandsFor sophisti
ated spe
tral 
omputations you need an adequate set of k-points {possibly in the order of thousands. This meets the fa
t that for large systems with
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trons, the number of transitions roughly s
ales quadrati
allyto it. Together this 
an result in quite big demands of 
omputer memory, so thatone has to 
onsider the question how to provide these matrix elements to yourintegration routine.It turns out that the 
al
ulation of the matrix elements (and herein the inter-stitial 
ontribution) is the major 
omputational e�ort. So one 
an 
al
ulate theMMEs in advan
e, resulting in minimal 
omputational 
osts and biggest memorydemands. On the other hand the matrix elements 
an be 
omputed on-the-
y,abandon the use of the big array memory, but needing to 
al
ulate the same ma-trix elements several times. In between, you 
an try to 
a
he sele
ted elements inmemory to 
ombine the advantages of both approa
hes with minimal drawba
ks.At this point, the spe
ial way of 
onne
tions of your k-points to tetrahedraand the order of tetrahedra 
an be of big help. For instan
e, regard a typi
altetrahedra set 
onne
ting nearest neighbors in a set of nk k-points equidistant inthe three spatial 
oordinates. This tetrahedra should be arranged in layers, e.g.in z-dire
tion, with the same order in ea
h layer (a

ording to the layer shapewhi
h may di�er).If one pro
esses the tetrahedra sequentially, the data of the 
orrespondingk-points (in
luding the matrix elements) are not needed only for a short time.Conversely, even if one does not want to 
al
ulate the matrix elements multipletimes, you need to store only nsim matrix elements at the same time, where nsim
an be 
onsiderably smaller than nk.
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Figure 5.18: Computational amount depending on 
a
he size (1470 k-points, 6591tetrahedra).If you take a 
a
he smaller than these nsim entries, you will have to 
al
ulatematrix elements partly again sin
e you have to skip some whi
h you need later.



64 CHAPTER 5. IMPLEMENTATIONBut you 
an still take good advantage of that method, depending on whi
h matrixelements you skip. In �gure 5.18 this is illustrated for a k-point of 1470 points (it isa prism-shaped box with 14 equidistant points per edge), giving 6591 tetrahedra.Only matrix elements for nsim = 116 k-points are needed simultaneously not to
al
ulate them repeatedly.If you lower the size of your 
a
he below this value, your number of 
al
ulationsin
rease, depending on your strategy. The point (116; 1470) at the lower right isthe starting point of a 
omplete 
a
hing. If the 
a
he is full when a matrix elementshould be stored, the �rst strategy writes the new element in the beginning of the
a
he, while the se
ond one looks for the oldest element in 
a
he. Though thenumber of 
omputations qui
kly nearly doubles for a small de
rease of 
a
he size(� (106; 2650)), it stays below 3000 { roughly double the 
omputational amount{ for even a �fth of the starting size.5.7 Test 
al
ulationIn this se
tion I investigate the in
uen
e of� ba
kfolding� band 
rossing� Fermi energy (just remark).� number of k-pointsRemarks on 
omputational demand, s
alingRestri
tion of FLEUR, larger 
ells, ba
kfolding...Run-
ow diagram of my 
ode??MME plotsIn this se
tion two 
al
ulations are 
ompared to literature. The parametersare listed in appendix D.5.7.1 AluminumIn nature, Aluminum exists in the fa
e-
entered 
ubi
 
on�guration. This 
an bemodeled in the basisA1 = L0B� 12 12 012 0 120 12 12 1CA ; B1 = 2�L 0B� 1 1 �11 �1 1�1 1 1 1CA (5.72)
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ipro
al spa
e. In the 
urrent 
al
ulation it is modeled in the real-spa
e and re
ipro
al-spa
e basisA2 = L0B� 12 12 012 �12 00 0 1 1CA ; B2 = 2�L 0B� 1 1 01 �1 00 0 1 1CA ; (5.73)with two atoms per unit 
ell on internal 
oordinates (0; 0; 0) and 12(1; 1; 1). The

�������
�������

����������������Figure 5.19: The bandstru
ture (0; 0; 0) ! (12 ; 0; 0) ! (12 ; 12 ; 0)! (12 ; 12 ; 12)! (0; 0; 0)of Aluminum in f

 
oordination is shown on the left. The right plot 
ontains thea

ording Density of states.used latti
e parameter Lnum = XXXa0 was 
onverged to the minimum of thetotal energy. A bandstru
ture (along the same path as those in se
tion ??) isshown in �gure 5.19, together with the density of states. The 3s ele
trons of thissystem show a behaviour similar to free ele
trons, as 
an be seen in the parabola-like bands in the bandstru
ture, and in the DOS 
lose to pE. On 
an 
omparethese results to those of the simple-
ubi
 systems in se
tion 5.4.The (imaginary) diele
tri
 fun
tion has already been shown in �gure 5.16 fora small number of k-points to demonstrate the in
uen
e of the sorting of eigenval-ues. In �gure 5.20 it is shown for di�erent larger number of k-points. It shows theslow 
onvergen
e known from literature. Furthermore, two 
hara
teristi
 peaksare lo
ated at 0:5eV and 1:6eV.This aggrees with literature.Numeri
al 
onsiderations: The 
onvergen
e has been done for 6 k-pointsand alternatively for 100 k-points. The diele
tri
 fun
tion does not show a visibledi�eren
e.
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�������
�������

����������������Figure 5.20: Imaginary diele
tri
 fun
tion for f

 Aluminum for di�erent sets ofk-points.

�������
�������

����������������Figure 5.21: The imaginary part of the diele
tri
 fun
tion for f

 Aluminum for twodi�erent latti
e 
onstants Lexp, Lnum = XXXLexp.As a se
ond test, in �gure 5.21 the diele
tri
 fun
tion was 
al
ulated for theexperimental latti
e 
onstant Lexp = 4:04�A = 7:64a0, a0 being the Bohr radius(see appendix C), i.e. a di�eren
e of XXX per
ent. It 
an be seen that XXX.5.7.2 CopperThe se
ond test system is 
opper, whi
h 
ondensates in the fa
e-
entered 
ubi
stru
ture as well, therefore the same unit 
ell is used. In �gure 5.17 the overlapfor two bands of this system has been shown. Bandstru
ture and DOS are shownin �gure 5.22. The 
onverged latti
e parameter is Lnum = XXX�A.The diele
tri
 fun
tion is shown in 5.23. Literature XXX.
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�������
�������

����������������Figure 5.22: Bandstru
ture and Density of states of Copper.

�������
�������

����������������Figure 5.23: Imaginary part of the diele
tri
 fun
tion of Copper.
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Chapter 6ResultsBlabla

Figure 6.1: GeTe f

 stru
ture.
6.1 GeTe 
ompoundsCal
ulate GeTe in zin
blende stru
ture. Between zin
blende and amorphous, nobig di�eren
e in refra
tion is experien
ed, but between amorphous and ro
ksalt.� GeTe 
ubi
, trigonal� Ge1Sb2Te4? 69
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al properties� Experiments� Comparison to measurements6.2 Cal
opyrites� AgInTe2� AgSbTe2� AuInTe2� AuSbTe2� AuSnTe2
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Appendix AMomentum matrix elementsThe matrix elements of the momentum operator should be expressed in terms ofthe LAPW basis set in summed form (4.21), i.e.
 {(k; r) = 8>>>>>><>>>>>>:

1p
XG C {k+Gei(k+G)r r 2 ISlmaxXl=0 lXm=�l [A{;�lm(k)ul(r;El)+B{;�lm (k) _ul(r;El)℄Ylm(r̂) r 2 MT�: (A.1)
The interstitial part of this matrix element is derived in se
tion 5.1.1. The partinside the muÆn-tins is more lengthy to derive and therefore done here. Thematrix element is not 
al
ulated in the 
arthesian basis but in the natural basis(�x + i�y; �x � i�y; �z). In spheri
al 
oordinates these partial derivatives read�x � i�y = sin �e�i' ��r + 1re�i' �
os � ��� � isin � ��'��z = 
os � ��r � 1r sin � ��� : (A.2)The radial and spheri
al derivatives separate. Introdu
ting the abbreviationsF (1)lm = � q (l+m+1)(l+m+2)(2l+1)(2l+3)F (2)lm = q (l�m)(l�m�1)(2l�1)(2l+1)F (3)lm = q (l�m+1)(l�m+2)(2l+1)(2l+3)F (4)lm = � q (l+m)(l+m�1)(2l�1)(2l+1)F (5)lm = q (l�m+1)(l+m+1)(2l+1)(2l+3)F (6)lm = q (l�m)(l+m)(2l�1)(2l+1) ; (A.3)

73



74 APPENDIX A. MOMENTUM MATRIX ELEMENTSthe re
urren
e relations of the Legendre polynomials yield the equationse+i' sin �Yl;m = F (1)lm Yl+1;m+1 + F (2)l;mYl�1;m+1e+i' sin �Yl;m = F (3)lm Yl+1;m�1 + F (4)l;mYl�1;m�1
os �Yl;m = F (5)lm Yl+1;m + F (6)lm Yl�1;m : (A.4)Furthermore the relationse+i' �
os � ��� + isin � ��'�Ylm = �lF (1)lm Yl+1;m+1 + (l + 1)F (2)lm Yl�1;m+1e�i' �
os � ��� � isin � ��'�Ylm = �lF (3)lm Yl+1;m�1 + (l + 1)F (4)lm Yl�1;m�1� sin � ���Ylm = �lF (5)lm Yl+1;m + (l + 1)F (6)lm Yl�1;m (A.5)In order to apply the derivatives on the LAPW fun
tions, we de�ne the fun
tions(ommiting the muÆn-tin index � for 
onvenien
e)U ilm = Ai;�lm(k)ul(r;El) +Bi;�lm (k) _ul(r;El)V ilm = ��r U ilm= Ai;�lm(k)u0l(r;El) +Bi;�lm (k) _u0l(r;El)W ilm = 1r � U ilm= 1r � �Ai;�lm(k)ul(r;El) +Bi;�lm (k) _ul(r;El)� (A.6)
First 
omponent �x + i�y: If one expresses the LAPWs with these fun
tions(A.6) utilizing the relations (A.2) and (A.5), one yields for the operation of theoperator(�x + i�y) i(k; r) = Plm h(V ilm � l W ilm)F (1)lm Yl+1;m+1(V ilm � (l + 1)W ilm)F (2)lm Yl�1;m+1i ; (A.7)omitting spatial 
oordinates, and the summation indi
es running through l =0; : : : ; lmax; m = �l : : : l. Multiplying the 
orresponding bra givesRMT� d3r  �f (k; r)(�x + i�y) i(k; r)= Plm;l0m0 R�R0 r2dr H d
 Uf�l0m0Y �l0m0 h(V ilm � l W ilm)F (1)lm Yl+1;m+1 +(V ilm � (l + 1)W ilm)F (2)lm Yl�1;m+1i= Plm;l0m0 R�R0 r2dr (1)D1l0m0lm H d
 Y �l0m0Yl+1;m+1+Plm;l0m0 R�R0 r2dr (2)D2l0m0lm H d
 Y �l0m0Yl�1;m+1 (A.8)



75with the abbreviations for D1,D2 equal to(j)D1l0m0lm = F (2j�1)lm Uf�l0m0(V ilm � l W ilm)(j)D2l0m0lm = F (2j)lm Uf�l0m0(V ilm � (l + 1)W ilm): (A.9)With the spheri
al harmoni
s being orthogonal,H d
 Y �l0m0Yl+1;m+1 = Æl0;l+1Æm0;m+1;H d
 Y �l0m0Yl�1;m+1 = Æl0;l�1Æm0;m+1; (A.10)the quadruple summation in the two terms redu
es to ea
h a double one:Plm;l0m0 :(j)D1l0m0lm Æl0;l+1Æm0;m+1 = lmax�1Pl=0 +lPm=�l :(j)D1l+1;m+1lmPlm;l0m0 :(j)D2l0m0lm Æl0;l�1Æm0;m+1 = lmax�1Pl=0 +lPm=�l :(j)D2lml+1;m�1: (A.11)Please note the maximum l de
reased by one. Now applying the remaining radialintegration, and expanding the symbols D1 and D2 �nally gives:hfkj�x + i�yjiki = lmax�1Xl=0 lXm=�l[ ( R ul+1u0l r2dr � l R ul+1ul rdr) A�fl+1;m+1Ail;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) A�fl+1;m+1Bil;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) B�fl+1;m+1Ail;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) B�fl+1;m+1Bil;m ℄ F (1)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) A�fl;mAil+1;m�1+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) A�fl;mBil+1;m�1+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) B�fl;mAil+1;m�1+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) B�fl;mBil+1;m�1 ℄ F (2)l+1;m�1Se
ond 
omponent �x � i�y: The pro
edure is analogous for the next 
om-ponent. Again (A.2) and (A.5) help to express it as(�x � i�y) i(k; r) = Plm h(V ilm � l W ilm)F (3)lm Yl+1;m�1(V ilm � (l + 1)W ilm)F (4)lm Yl�1;m�1i : (A.12)Multiplying the bra,RMT� d3r  �f (k; r)(�x � i�y) i(k; r)= Plm;l0m0 R�R0 r2dr (3)D1l0m0lm H d
 Y �l0m0Yl+1;m�1+Plm;l0m0 R�R0 r2dr (4)D2l0m0lm H d
 Y �l0m0Yl�1;m�1; (A.13)



76 APPENDIX A. MOMENTUM MATRIX ELEMENTS
al
ulating the integral over the spheri
al harmoni
s and redu
ing the resultingfourfold summation analougous to the �rst 
omponent,Plm;l0m0 :(j)D1l0m0lm Æl0;l+1Æm0;m�1 = lmax�1Pl=0 +lPm=�l :(j)D1l+1;m�1lm= Plm;l0m0 :(j)D2l0m0lm Æl0;l�1Æm0;m�1 = lmax�1Pl=0 +lPm=�l :(j)D2lml+1;m+1; (A.14)yieldshfkj�x � i�yjiki = lmax�1Xl=0 lXm=�l[ ( R ul+1u0l r2dr � l R ul+1ul rdr) A�fl+1;m�1Ail;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) A�fl+1;m�1Bil;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) B�fl+1;m�1Ail;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) B�fl+1;m�1Bil;m ℄ F (3)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) A�fl;mAil+1;m+1+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) A�fl;mBil+1;m+1+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) B�fl;mAil+1;m+1+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) B�fl;mBil+1;m+1 ℄ F (4)l+1;m�1:Third 
omponent �z: The same goes for the third 
omponent:�z i(k; r) = Plm h(V ilm � l W ilm)F (5)lm Yl+1;m(V ilm � (l + 1)W ilm)F (6)lm Yl�1;mi : (A.15)Multipli
ation of the 
orresponding bra from the left:RMT� d3r  �f (k; r)�z i(k; r)= Plm;l0m0 R�R0 r2dr (5)D1l0m0lm H d
 Y �l0m0Yl+1;m+Plm;l0m0 R�R0 r2dr (6)D2l0m0lm H d
 Y �l0m0Yl�1;m (A.16)
Redu
tion of fourfold summation:Plm;l0m0 :(j)D1l0m0lm Æl0;l+1Æm0;m = lmax�1Pl=0 +lPm=�l :(j)D1l+1;mlm= Plm;l0m0 :(j)D2l0m0lm Æl0;l�1Æm0;m = lmax�1Pl=0 +lPm=�l :(j)D2lml+1;m (A.17)



77Result:hfkj�zjiki = lmax�1Xl=0 lXm=�l[ ( R ul+1u0l r2dr � l R ul+1ul rdr) A�fl+1;mAil;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) A�fl+1;mBil;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) B�fl+1;mAil;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) B�fl+1;mBil;m ℄ F (5)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) A�fl;mAil+1;m+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) A�fl;mBil+1;m+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) B�fl;mAil+1;m+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) B�fl;mBil+1;m ℄ F (6)l+1;m�1:More general notation: The results for the three 
omponents 
an be writtenin the formhfkj�njiki = lmax�1Xl=0 lXm=�l[ ( R ul+1u0l r2dr � l R ul+1ul rdr) A�fl+1;m0Ail;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) A�fl+1;m0Bil;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) B�fl+1;m0Ail;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) B�fl+1;m0Bil;m ℄ F (2n�1)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) A�fl;mAil+1;m00+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) A�fl;mBil+1;m00+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) B�fl;mAil+1;m00+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) B�fl;mBil+1;m00 ℄ F (2n)l+1;m00for n = 1; 2; 3, and �, m0,m00 given by� = 0B� �x + i�y�x � i�y�z 1CA ; m0 = 0B� m+ 1m� 1m 1CA ; m00 = 0B� m� 1m + 1m 1CA for n = 0B� 123 1CA :Lo
al orbital 
ontribution:
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Appendix BTetrahedron methodAs already mentioned in se
tion 5.2, Bl�o
hl, Jepsen and Andersen [BJA94℄ gave a
onvernient general notation for the tetrahedron method. They 
onsider integralsover the Brillouin zone (BZ) in k-spa
e like those of the expe
tation value of anoperator X,hXi = 1VG Xn ZBZ d3k Xn(k)f(�n(k)); (B.1)where f is the fermi fa
tor to an energy �n. VG is the volume of the Brillouinzone, and the used k-dependent expe
tation value readsXn(k) = hnkjXjnki: (B.2)They show that in tetrahedron method this integral 
an be written ashXi =Xj;n Xn(kj)wnj: (B.3)This sum runs over all bands n and k-points j.B.1 Integration weightsThe weight of one k-point wnj is the sum of weights it gets in ea
h tetrahedra itbelongs to. In ea
h tetrahedra, the indi
es are assigned so that the energies areordered, �1 < �2 < �3 < �4.1. �F < �1w1 = w2 = w3 = w4 = 0: (B.4)79



80 APPENDIX B. TETRAHEDRON METHOD2. �1 < �F < �2w1 = C �4� (�F � �1)� 1�21 + 1�31 + 1�41��w2 = C �F � �1�21w3 = C �F � �1�31w4 = C �F � �1�41 (B.5)with C = VT4VG (�F � �1)3�21�31�41 : (B.6)3. �2 < �F < �3w1 = C1 + (C1 + C2)�3 � �F�31 + (C1 + C2 + C3)�4 � �F�41w2 = C1 + C2 + C3 + (C2 + C3)�3 � �F�32 + C3 �4 � �F�42w3 = (C1 + C2)�F � �1�31 + (C2 + C3)�F � �2�32w4 = (C1 + C2 + C3)�F � �1�41 + C3 �F � �2�42 (B.7)with C1 = VT4VG �F � �1)2�41�31C2 = VT4VG (�F � �1)(�F � �2)(�3 � �F )�41�32�31C3 = VT4VG (�F � �2)2(�4 � �F )�42�32�41 : (B.8)4. �3 < �F < �4w1 = C �4 � �F�41w2 = C �4 � �F�42w3 = C �4 � �F�43w4 = VT4VG � C �4� (�F � �1)� 1�21 + 1�31 + 1�41�� (B.9)



B.2. NUMBER AND DENSITY OF STATES 81with C = VT4VG (�4 � �F )3�41�42�43 : (B.10)5. �4 < �Fw1 = w2 = w3 = w4 = VT4VG : (B.11)B.2 Number and density of statesWhen negle
ting the matrix elements, one yields the well-known terms for thenumber of states nT (E) and the density of states DT (E) of one tetrahedron,whi
h are equivalent to the formulae given for instan
e by Lehmann and Taut[LT72℄.Negle
ting the matrix elements means setting them to one, i.e. Xn(kj) = 1in (B.3). With this the number of states and density of states take the formnT (�) = 4Xi=1 wi; DT (�) = ���nT (�); (B.12)and take the following values in the �ve regions:1. �F < �1nT (�) = 0DT (�) = 0 (B.13)2. �1 < �F < �2nT (�) = VTVG (�� �1)3�21�31�41DT (�) = VTVG 3(�� �1)2�21�31�41 (B.14)3. �2 < �F < �3nT (�) = VTVG 1�31�41 ��221 + 3�21(�� �2) + 3(�� �2)2 � �31 + �42�32�42 (�� �2)3�DT (�) = VTVG 1�31�41 �3�21 + 6(�� �2)� 3�31 + �42�32�42 (�� �2)2� (B.15)



82 APPENDIX B. TETRAHEDRON METHOD4. �3 < �F < �4nT (�) = VTVG �1� (�4 � �)3�41�42�43 �DT (�) = VTVG 3(�4 � �)2�41�42�43 (B.16)5. �4 < �FnT (�) = VTVGDT (�) = 0 (B.17)



Appendix CUnitsAmong gaussian and SI and other unit systems, there are the so 
alled atomi
units (see also appendix 6 in [ZL83℄), whi
h are favored in atomi
 
al
ulations.This term a
tually refer to two slightly di�erent s
alings. As in all unit systems,the �ne-stru
ture 
onstant� = e24�"0~
(here given in SI units) has to be 
onserved. For 
al
ulations on the atomi
 s
ale,the 
hara
teristi
 length is the Bohr radiusa0 = 4�"0~2me2 = 5:29 � 10�11m;while the Rydberg energyRy = ~22ma20 = 13:61eVis the typi
al energy dimension.� For Hartree units you set~ = 1; m = 1; e = 1; "0 = 14� ; 
 = 1� � 137;with the result that lengths are given in Bohr radii, and energies are mul-tiples of 2Ry, whi
h is 
alled one Hartree. The kineti
 operator takes theusual formp22 or k22 : 83



84 APPENDIX C. UNITS� In the Rydberg set you pla
e~ = 1; m = 12 ; e2 = 2; "0 = 14� ; 
 = 2� � 2 � 137;resulting in lengths expressed in Bohr radii, and energies in multiple Ryd-bergs. But the kineti
 operator takes the unnormal formp2 or k2:Whi
hever of the two s
alings you 
hoose, you 
an just take a given gauss or SIformula and repla
e the quantities as mentioned above. The jun
tion to the SIquantities energy, frequen
y and temperature is given by1eV = 1:602 � 10�19 Ws (C.1)1meV~ = 1:519 THz (C.2)1meVkB = 11:604 K: (C.3)



Appendix DParameters of 
al
ulationsEle
troni
 shells: The elements used in the 
al
ulations have the atomi

on�gurationsElement number atomi
 levelsAl 13 [Ne℄.3s2:3p1Ge 32 [Ar℄.3d10:4s2:4p2Ag 47 [Kr℄.4d10:5s1In 49 [Kr℄.4d10:5s2:5p1Sn 50 [Kr℄.4d10:5s2:5p2Sb 51 [Kr℄.4d10:5s2:5p3Te 52 [Kr℄.4d10:5s2:5p4Au 79 [Xe℄.4f 14:5d10:6s1basing on the noble elements:Element number atomi
 levelsHe 2 1s2Ne 10 [He℄.2s2:2p6Ar 18 [Ne℄.3s2:3p6Kr 36 [Ar℄.3d10:4s2:4p6Xe 54 [Kr℄.4d10:5s2:5p6This se
tions lists the most important parameters for the self-
onsistent FLAPWbulk 
al
ulations, whi
h have been performed with the FLEUR 
ode [FLE℄. Thespa
e groups are given in XXX notation. The used ex
hange-
orrelation potentialis the GGA approximation of XXX.
85



86 APPENDIX D. PARAMETERS OF CALCULATIONSTest systems: These systems were 
al
ulated in 
hapter �ve for testing pur-poses. Aluminum was 
al
ulted in simple 
ubi
 
on�guration (s
) for two unit
ells to illustrate ba
kfolding. Al s
latti
e stru
ture s
 s
spa
e groupinversion symmetry yes yesatoms per unit 
ell 1 2latti
e parameters [a0℄ 5.16 5.16, 10.32Gmax[1=a0℄ 3.5 3.5# of basis fun
tions 110 206# of ele
trons 3 6# of k-points 6 6lo
al orbitals no noIt was 
al
ulated in the a
tual fa
e-
entered 
ubi
 (f

) 
on�guration as well to
ompare to literature. Al f

latti
e stru
ture f

spa
e groupinversion symmetry yesatoms per unit 
ell 2latti
e parameters [a0℄ 5.41, 7.67Gmax[1=a0℄ 3.5# of basis fun
tions 184# of ele
trons 6# of k-points 6lo
al orbitals noThe other test system was 
opper. Culatti
e stru
ture f

spa
e groupinversion symmetry yes



87atoms per unit 
ell 2latti
e parameters [a0℄ 5.41, 7.67Gmax[1=a0℄ 3.5# of basis fun
tions 184# of ele
trons 22# of k-points 6lo
al orbitals no
Germanium-Tellurium 
ompounds: The 
ubi
 and trigonal phases wereinvestigated: GeTe 
ubi
latti
e stru
ture ro
ksaltspa
e groupinversion symmetry yesatoms per unit 
ell 4latti
e parameters [a0℄ xxGmax[1=a0℄ xx# of basis fun
tions xx# of ele
trons 20# of k-points xxlo
al orbitals noGeTe trigonallatti
e stru
ture hexagonalspa
e groupinversion symmetry noatoms per unit 
ell 6latti
e parameters [a0℄ xxGmax[1=a0℄ xx# of basis fun
tions xx# of ele
trons 30# of k-points xx



88 APPENDIX D. PARAMETERS OF CALCULATIONSlo
al orbitals no
Cal
opyrites: The se
ond 
lass of systems investigated were Tellurium 
om-pounds in the 
al
opyrite stru
ture.AgInTe2latti
e stru
ture 
al
opyritespa
e groupinversion symmetry yesatoms per unit 
ell 8latti
e parameters [a0℄ xxGmax[1=a0℄ xx# of basis fun
tions xx# of ele
trons 6# of k-points 6lo
al orbitals no
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