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Chapter 2

Density Functional Theory

2.1 The Many-Particle Problem

The complete properties of solids can in principle be calculated ab initio i.e. free
of any parameters, only using the setup of the system and its interactions — on a
quantum mechanical level. The whole information of a system is contained in the
system’s wave-function, which has to be obtained as solution of the Schrodinger
equation

H|U) = E|¥), (2.1)

with 7 the Hamiltonian of a system of interacting nuclei and electrons (assuming
47'['5[) = 1)

. ZJP Z[ZJP
%__Z Z\rﬁm 2l P 2

T£J

r denote the electronical coordinates and 7 those of the nuclei, Z; denotes the
charge of the nuclei. Spin-dependence and external fields are omitted. In the
relativistic case, the Dirac equation has to be solved. The energy of a state ¥ is
given by

— (U[H|D). (2.3)

The effort to solve this many-body problem scales exponentially with the number
of particles described and is unaccomplishable for everything except wvery small
systems, and certainly for a macroscopic system with a number of particles of an
order of magnitude of 10%.

A first and very general approximation is the Born-Oppenheimer method (also
called adiabatic approximation). Since the mass of the electrons is at least three
orders of magnitude smaller than those of the nuclei, the electrons are expected
to follow the motions of the nuclei instantaneously, while the nuclei will react
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slowly to a change in electronic configuration. Therefore, the ion’s position can
be set fixed, reducing the number of degrees of freedom. (From a strict point
of view this approximation needs more precise justification, see [Mad78].) This
approximation is used in the majority of electronic calculations.

When calculating the ground state of a system, the energy has to take its
minimum. Depending on your ansatz, the solution can usually be obtained by
minimizing the total energy.

2.2 The Hartree-Fock Ansatz

A variety of different approaches have been developed to tackle this many-particle
problem. One frequently used method (in many areas of physics) is to transfer
the many-body problem to a one-particle-like problem, for instance by imposing
some certain form on the wavefunction.

The most basic choice is the Hartree Ansatz, which replaces the wavefunction
U(ry,...,ry) with a product of N one-particle wavefunctions ¢ (r):

U(ry,...,rn) = i(ry) - a(ry) - ... - Yn(ry), (2.4)

depending only on the spatial coordinate of one particle. If one introduces
this ansatz into the Schrodinger equation, one obtains N Schodinger-like single-
particle equations with a integral called Coulomb term or Hartree term, con-
taining the electron-electron interaction. This simple ansatz treats the particles
independent in the sense that every particle moves in a static potential created
by the other electrons, which is the only interaction considered.

It is possible to take care about the expelling properties of fermions result-
ing from the Fermi principle called ezchange interaction by using a slater
determinant of wavefunctions instead of a simple product:

Pi(ry) ... Yn(ry)
U(ry,...,rty) = — : : . (2.5)

z/)1(I‘N) wN(I'N)

This Hartree-Fock Ansatz results in a significantly more complex numerical treat-
ment as well as in much better results. Including a wavefunction of this form into
the Schrodinger equation gives N single particle equations now containing an ad-
ditional term — the exchange or Fock term — containing contributions from all
the other single-particle wavefunctions.

The description is still incomplete due to the fact that the single particles are
not independent as assumed in this approximation. These correlation effects can
not be expressed analytically in the general case.



2.3. DENSITY FUNCTIONAL THEORY 3

2.3 Density Functional Theory

A new idea how to describe the ground state of a many-particle system has
been acquired by Hohenberg and Kohn in the 1960s. It turns the focus from the
abstract many-particle state as descriptive quantity of the system to the ostensive
charge density in real space. Not only that not the whole information content of
the wave-function is needed, it is not desirable to obtain the complete solution ¥
for a large system since storage of it is as hardly possible as calculation of it.

One different approach, the Thomas-Fermi theory, was known since the late
twenties [Fer27, Tho27|. It assumes the interacting electrons to be independent,
moving in an external potential. (In this context the term ezternal means every-
thing except of this one particle itself, so it includes also the effects of the nuclei
in the system, not only those of fields external to the system.) Then the formulae
for the uniform electron gas are applied. The obtained results give only a few
quantitative trends, chemicals bonds for instance can not be predicted. However,
the system is described by the density only.

The Lemma of Hohenberg and Kohn: The charge density relates to the
many-particle wavefunction like

n(r) = <xp|§15(r - ri)\Il>. (2.6)

The amount of charge

N = / dr n(r) (2.7)

takes the role of a subsidiary parameter.

Hohenberg and Kohn derived that the expectation value of any observable
is uniquely defined by the charge density. Furthermore, the functional of total
energy

E = En(r)] (2.8)

is minimized by the true ground state density ng(r). As a third point, the

The important conclusion of the Lemma of Hohenberg and Kohn [HK64] is
that the density n(r) of the ground state of a system of interacting electrons in
some external potential v(r) determines this potential uniquely (of course up to
some unimportant constant). The proof is shown in contradiction for the energy
functional

Eg = <\Ijg|rH‘\I’g> (2-9)

of a non-degenerate ground state, which is shown to be expressable in terms of
the density,

E, = En(r)). (2.10)
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It is shown that It can easily be extended to the degenerate case [Koh85].

This means that n(r), determining the potential v(r) and the number of
particles IV, describes the Hamiltonian and therewith the complete system and all
its derivable properties (including many-body wavefunctions, two-particle Green’s
functions). A more mathematical insight is that there are functions n(r) not
yielding a valid potential v(r), so-called non V-representable functions. These
are non-physical densities.

The Hohenberg-Kohn lemma does not imply any knowledge about the phys-
ical interactions and is universal thereby. On the other hand, nothing has been
stated about the form of the functional E[n] up to now.

Kohn-Sham equations: Kohn and Sham formulated a form for the energy
functional that proved to be very successful. They proposed to split it up into
three contributions

Eln] = Ty[n] + Uln] + Ege[n). (2.11)

T, is the kinetic energy of non-interacting particles, U is the Coulomb energy,
and FE,. contains the remaining contributions to the energy due to exchange
and correlation. The Coulomb energy of the electrons is constructed out of the
electron-electron energy together with the external energy, resulting additively
from the Coulomb field of the nuclei and from fields external to the system:

Uln] = E.u[n|+ Eg[n] (2.12)
Eeu[n] = /d3r Vewt (r)n(r) (2.13)
Eyln] = 8;—60/6137“d3r' 771(:)713,) (2.14)

An advantage of this representation is that for the kinetic energy, which is a
significant proportion to the total energy, an analytic expression can be given
(see section 2.7). The density is related to the single particle wavefunctions via

n(r) = 22 i(r) 2, (2.15)

with the factor 2 accounting the spin degeneracy'. For this choice the kinetic
energy reads

T,[n] = 22/d3r ¢;(r)%v2¢i(r). (2.16)

'Tn this case, you calculate with half the number of electrons
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Equivalent to minimizing the energy with respect to the density, one can do so as
well with respect to the single wavefunctions or to their complex conjugates. The
subsidiary condition of particle conservation (2.7) is replaced by the normalization
of the wavefunctions

/d%« i (r)]? = 1. (2.17)

Taking this requirement into account by Lagrange parameters ¢;, the variation of
the energy yields the Kohn-Sham equations

Ht(e) = { =0+ Vigg 1) o) = o) 2.15)

which are Schrodinger-like equations of a one-particle Hamiltonian 4, containing
an effective potential

Verp(r) = Ve (r) + Vi (r) + Vi (r) (2.19)

consisting of the external, the Hartree and the exchange-correlation potential

o

= =k 2.2

‘/;wt(r) 6’”(1‘) ea:t(r) ( 0)
/
Vi(r) = 47T€2/d37“ n(r) (2.21)
v — 1|

V) = = BLl(r) (2.22)

xc r - 6’[’},(1‘) xc r). .

These potentials are simple functions, while the corresponding energies are con-
sidered as functionals of the density.

This choice (2.11) of kinetic energy and subsequent derivations converts the
problem to a problem of fictitious single particles moving in an effective potential
all other particles contribute to.

The parameter ¢; are introduced as Lagrangian parameters only. According to
Janak’s theorem, only the highest occupied value has a physical meaning, i.e. it
is equal to the chemical potential, the ionisation energy of the system. Beyond
this, there is no justification to take these parameters as the one-particle energies.
However, it is known from experience that this assumption works surprisingly
good, and this identity is commonly assumed in bandstructure calculations.

Eigenvalue problem: Usually the Kohn-Sham equations (2.18) are not solved
directly, but the solutions are represented in a basis. Then the operator H; has
to be constructed and diagonalized. Since the basis functions are not necessarily
orthogonal, one has to solve the generalized eigenvalue problem

(11 — €S)c =0 (2.23)

(also called secular equation) with S the overlap matrix and ¢ the expansion
coefficients.
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Self-consistency: Since the electron density goes into the Hartree potential Vg
and the exchange-correlation potential V.., and the effective potential determines
the solutions ¢; through (2.18), which again make the charge density (2.15), this
formalism comprises a self-consistency, as shown in figure (2.1).

Figure 2.1: The self-consistency cycle of a density-functional calculation.

To enter the loop one has to provide an appropriate starting density. With
this the potentials are generated and the one-particle solutions are calculated. In
matrix picture this is the setup of the H and S matrices and the solution of the
generalized eigenvalue problem (2.23). With the results the temporary density
Nnew(r) i calculated.

One now checks if the difference between the previous density n()(r) and
the new one is sufficiently small. If not, the temporary density is incorporated
into the previous one. Since taking the calculated density as next input density
n(*1(r) for the cycle would introduce too big steps which destroy convergence,
some mixing has to be performed. The simplest way is a linear mixing

" (r) = (1 — a)n®(r) + & npew(r) (2.24)

with mixing parameter a. More sophisticated methods like those of Broyden
and Anderson have been developed, which incorporate the knowledge of earlier
iterations and yield a faster convergence. After finishing the loop, one can process
the obtained density, e.g. calculate the total energy.

2.4 Exchange and Correlation

Since no approximations have been made so far, density functional theory is
exact in principle. However, calculations are only possible with the knowledge of
the exchange-correlation energy functional F,.[n| defined by (2.11). The exact
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functional is unknown and not soluble analytically. Solving it would be equivalent
to solving the many-body problem. Therefore, approximations have to be made.

Basically, the Kohn-Sham equations are a Hartree-like ansatz. All exchange
and correlation effects (i.e. all many-body effects) are included in the functional
E.c[n]. It contains the fermionic effects, modifications to the effective potential
and corrections to the kinetic energy, all due to the electron-electron interaction.
This means that the exchange-correlation potential describes the effects of the
Pauli principle and the Coulomb potential beyond a pure electrostatic interaction
of the electrons.

The most widely used approach is the Local Density Approzimation (LDA).
The idea is to assume E,. to be that of a homogenous electron gas with density

n(r):
Eon(r)] = / 1 n(r)es(n(r)). (2.25)

The important simplification is that €,. is not a functional of the density, but a
function of the value of the density at some spatial coordinate. With this, also
the exchange-correlation potential V. in (2.20) takes the form of a function. One
possible approximation is to view exchange and correlation to be independent:

2e(n(r)) = ex(n(r)) + eo(n(x)) (2.26)

More complex parametrisations incorporate the results of Hartree-Fock or many-
body calculations. One would expect the LDA to fail systems with rapidly varying
densities. But it shows to give good results in an unexpected variety of systems.

A class of more sophisticated approximations is the Generalized Gradient
Approzimation (GGA). It makes the same localization ansatz as in (2.25), but
connects €, not only with the value of the density but also with the absolute
value of its gradient:

E.cn(r)] = /d?’r n(r)ez(n(r), [Vn(r)]). (2.27)

2.5 Notes on Symmetry

Symmetries are operations that transfer a system into itself, so that both systems
are indistinguishable. In this context we are interested in symmetry operations
in real space. Symmetry operators commute with the Hamiltonian,

(e, T),H] = 0. (2.28)

(cr, T) denotes an operation consisting of a rotation o and a subsequent transla-
tion 7. Taking symmetries into account can massively simplify the calculations,
or makes it only possible.



10 CHAPTER 2. DENSITY FUNCTIONAL THEORY

Classifications: Perfect crystals, that are systems possessing translational
symmetry, are classified into lattice types. Considering translations only (no
complex occupations of the unit cell with atoms), this gives the minimal set of
essentially different lattice types, the Bravais lattices. In three dimensions there
are 14 Bravais lattices: the seven lattices cubic, trigonal, rhombic, hexagonal,
monoclinic, triclinic and tetragonal, defined by the length of and angles between
the basis vectors, and variations of these lattices by occupying unit cell faces or
the unit cell center with atoms. The according translational operators of a lattice
form the Translation group.

The rotations of a system (i.e. the according operators) that bring the crystal
into itself build the Rotation group. There are also non-symmorphic symmetries
which bring the crystal into itself only with an additional translation (which is
not part of the translational group). The according symmetry operations are
screw axis and glide planes. In this case these rotations extend the rotation
group to the Point group. (For symmorphic lattices both are identical.) There
are thirty-two different point groups.

The Space group consists of the totality of transformations that bring the
crystal into itself, containing the translational and the point group as subgroups.
There are 230 possible space groups; 157 of them are non-symmorphic, 73 are
simple.

Translational symmetry: The translational operator
Te: r—r+R (2.29)

for a lattice vector R commutes with the Hamiltonian. So both operators share
a set of eigenvalues. The consequence is the so-called Bloch theorem, that states
that the wavefunctions can take the form

Un(k, 1) = @, (k, 1)e’™, (2.30)

defining k (often called the crystal momentum) as a new good quantum number.
This vector k is taken from the reciprocal space, but one can reduce considerations
to the first Brillouin zone. The spectrum of energy eigenvalues is periodic in
reciprocal space,

E(k) = E(k + G), (2.31)

G being a reciprocal lattice vector.

Rotational symmetry: To a rotation in real space, the according symmetry
operation in the reciprocal space is the inverse rotation. Analogously to the trans-
lations, this reduces the effective reciprocal space you have to consider, leaving
as unique part the irreducible wedge of the first Brillouin zone (IBZ).

Consequences for the actual computation are remarked in chapter 4.
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2.6 Spin-Density Functional Theory

The spin property of electrons, so far only accounted by a degeneracy factor of
two, can be easily incorporated into the theory. It has been shown that the
basic Hohenberg-Kohn theorem stands for spin-polarized densities as well. You
redefine (in the non-relativistic case) the wavefunctions as spinors

= [ Yn(T)
i(r) ( ba(r) ) : (2.32)

With this slightly different notation, apart from the charge density there arises
a second central quantity out of these wavefunctions, the magnetization density
m(r):

n(r) = sz Ui (2.33)

m(r) = sz “oi(r (2.34)

o is the vector (0,,0,,0,) of Pauli matrices. The energy is now a functional of
these two densities:

E = E[n(r), m(r)] (2.35)

The two spins couple through an effective magnetic field appearing in the modified
Kohn-Sham equations. To incorporate the interaction of an external magnetic
field B,,;; with this spin-polarized system, we include the energy contribution
m(r) - B.;;(r) into the Kohn-Sham equations and yield

M) = {50 i)+ By ) [ ) = (), (230
Beff (I‘) = Bxc(r) + Bemt(r); (237)
B,.(r) 5E[7;(2 (’:(r)] . (2.38)

The approximations in section 2.4 can be easily extended for the case of spin-
polarized systems.

2.7 Determination of the Total Energy

When the total energy needs to be calculated, the ion-ion interaction F;; of the
nuclei

77
Eji=¢ Z‘ = (2.39)

12 TI*TJ|
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has to be included into the functional (2.11),
Eipi[n] = Ts[n]| + Ey[n] + Eye[n] + Eep + Fii. (2.40)

Because of numerical reasons, it is not desirable to calculate the kinetic energy
in the form (2.16), applying the double spatial derivative. Instead, one utilizes
the Kohn-Sham equations (2.18). Rearranging, multiplying the Bra from the left
and summing over all occupied states gives

h

SR = (e = Vs (1) (), (2.41)

T,n] = 22/(137" V¥ (r v s (r) (2.42)

= Zel /d r n(r)Vess(r) (2.43)

=1

Putting all the contributions together we obtain

Z /d r n(r)Veps(r) (2.44)

— /d?’r m(r) - B.ss(r) (2.45)
2 . 5 n(r)Z;

— 4re [z_;/d T r— (2.46)

[ ) Vet (2.47)

+ 4me? - %/d‘grd:;?“' nir)n(r’) (2.48)

L

+ /d3r n(r)ez(n(r), jm(r)|) (2.49)

717
+dme? Y S (2.50)
\TI — 7|
I#J

with the potential \N/ezt(r) due to an electric field external to the system.

2.8 Improvements to Density Functional The-
ory

Many extensions has been made to the density functional theory, and it is still a
subject of continuous development. As we have seen, the observance of spin and
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the inclusion of external electric and magnetic fields are a natural extension of
the theory.

New exchange-correlation functionals are being developed. Methods like the
simple scissors operator or the more sophisticated LDA+U theory focus on one
of the central drawbacks of the local density (LDA) or generalized gradient ap-
proximation (GGA), the mismatching band-gap. The time-dependent density
functional theory refines the knowledge about the development of the system in
time, and results in a better description of excited states.

The density function theory has proven to be a very powerful tool to treat a
many-body problem efficiently and precisely in the framework of a one-particle
picture. It has been applied also in a diversity of other disciplines, like super-
conductivity or astrophysics.
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Chapter 3

Dielectric Properties of Solids

Before going into the details of the dielectric function, let us first discuss general
properties of physical tensors (of rank two).

3.1 Physical Tensors

Let us connect connect two physical vector quantities linearly via
B =Ta. (3.1)

If B is simply proportional to a (i.e. pointing in the same direction) 7" is a scalar
factor. But in the general case, T is a tensor of second rank. By its definition, a
tensor transforms under a basis change A to

T'= ATA", or Tj = ApAjTy. (3.2)

Any second-rank tensor can be split up into a symmetric and an antisymmetric
part,

Tij = %(TM + Tji) + %(TM — Tji), (3.3)
but most physical second-rank tensors are purely symmetrical (i.e. T;; = Tj;),
for example the dielectric tensor being subject of this thesis. (One of the few
exceptions is the thermoelectric tensor.) Nye [Nye57| remarks that this symmetry
property of tensors is not an obvious one, and that the proof necessararily involves
thermodynamical considerations.

The behaviour of a symmetric second-rank tensor 7;; under coordinate trans-
formation is the same as for the equation

which defines a sphere that is either an ellipsoid, a hyperboloid of one or a
hyperboloid of two sheets. This equation is called the representation quadric for

15
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the tensor 7j;. An important property of a quadric is the possession of principal
azes. These are three directions at right angles such that the general quadric
(3.4) takes the form

Tia; + Togxsy + Tazay = 1, (3.5)

when referred to these axes.

In a symmetrical tensor referred to arbitrary axes the number of independent
components is six. How many independent coefficients remain when referring to
its principal axes depends on the symmetry of the crystal in consideration. The
Neumann principle states that the symmetry elements of any physical property
of a crystal must include the symmetry elements of the point group of the crys-
tal. As a result of these considerations, one groups the tensors (or the crystals,
accordingly) in the following three so-called optical classifications:

Isotropic (Anaxial) crystals: Crystals in which you can choose arbitrarily
three crystallographically equivalent orthogonal axes. These three axes are the
principal axes of the tensor. All diagonal elements are equal (see table below),
and the crystall acts like an amorphous medium.

Uniaxial tensors: Crystals without three orthogonal equivalent axes, but with
two or more these axes in one plane. This is the case for the tricline, trigonal and
hexagonal lattices. The plane with the equivalent axes is perpendicular to the
three-fold, four-fold or six-fold symmetry axis, respectively. One of the optical
axes coincides with this symmetry axes, the others form a pair of orthogonal axes
in the plane.

Biaxial tensors: Crystals with lower symmetry. For orthorombic crystals,
the tensor possesses diagonal form with each different elements. The optical axes
coincide with the crystal axes. In monocline and tricline systems, the optical axes
are not alleged. (In this case, it would be possible to rotate the axes of the tensor
such that only the three principal coefficients are necessary, but one would have
no information regarding the orientation of the representation’s sphere relative
to the crystallographic axes [Lov89].)

The corresponding shape of the tensors is taken from a table of ([Nye57]).

In most cases of calculations the used basis vectors coincide with the optical
axes of the crystal in study.

3.2 Macroscopic Optics

We make a macroscopic approach to the electromagnetic description of a matter.
Its properties a described by the
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Classification | Crystal System Indep. Coeff. Tensor shape
T 0 0
Anaxial Cubic 1 0 7 0
0 0 T
Tetragonal 7, 0 0
Uniaxial Hexagonal 2 0 77 O
Trigonal 0 0 13
T
Orthorhombic 3 0 7T, 0
0 T
Th T3
Biaxial Monoclinic 4 0 7o O
Ty 0 T3
Ty T T
Triclinic 6 Tio Thy Ths
Ty Toz T3

Table 3.1: Shapes of second-rank tensors for different crystal structures.
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Maxwell equations:

V x E(r,t) = %B(r,t) (3.6)
V- -D(r,t) = p(r,t) (3.7)
V xH(r,t) = j(r,t)+ %D(r,t) (3.8)
V-B(r{) = 0, (3.9)

with E, D the electric field and the electric displacement, B the magnetic in-
duction and H the magnetic field. p and j describe the external charges and
currents. The induces ones vanish by the averaging done for this macroscopic
approach. This description is complete only if the coupling between the D and
E, and between B and H, respectively, is given.

Material coefficients: To describe the response linearly, one introduces two
coupling functions (also called constants frequently), the dielectric function &
(also known as permittivity) and the magnetic permeability p:

D =¢e0E, B = uuoH, (3.10)

or alternatively defining the electric polarizability P and the magnetization M
by

D=¢E+P, P=oE=xgE, (3.11)
1 1
H=—-B-M M= H, (3.12)
Ho Xm o

defining the electric and magnetic susceptibilities x and y,, and the polarizability
o, as

e=14+x, a,=coX, (3.13)
The magnetic susceptibility is not given attention anymore. When coupling the

current j linearly to the electric field according to Ohm’s law, you introduce the
electrical conductivity o:

j=0E. (3.15)

Absorption of waves:  In vacuum, the electric field of a free electro-magnetic
wave follows the wave equation
82

AE(r,t) = uosgsﬁE(r,t), (3.16)
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which has solutions

E(r,t) = Ege!kr—+1, (3.17)
When penetrating matter, the amplitude lowers exponentially,

E = FEye (3.18)

with the absorption coefficient o defined as

dl
— = _—al 3.19
o=« (3.19)

for penetration in z-direction, and I = |E|? the amplitude.

The rest...

Elementary classics (see Madelung [Mad78]): We assume a classical electro-
magnetic wave of form

14)(7?, t) — gﬂei(f(‘rﬁfwt) _ AO jei(%d?f'fwt)

with complex refractive index n(w) = n(w) +ix(w). If refraction and dielectricity

are coupled by €(w) = n?(w) with €(w) = € (w) + iea(w) complex, we get the
connection

n®— Kk = g (3.20)

2nk = €. (3.21)

Another well mesurable quantity is the relexion of a perpendicular incoming
wave R(w) which is related to n(w) and k(w) by

R:<1ﬁ>:(nD2+W

1+n (n+1)2+ k%

Tensor properties: In the general case, the coupling (3.10) is not simple
scalar, but tensor-like, as well as depending on the frequency and the location.
Since the coupling is homogeneous in time, and for the macroscopic approach also
in space, the arguments of the susceptibilities read (with the array boundaries
making the statements causal, or an appropiate defined susceptiblilty)

P(r,t) = /d3r'/dt' X —r't—t"E('t) (3.22)
M(r,1) = / i / 4t o (r — vt — {YH(E, 1) (3.23)

In Fourier space this convolution gives

Pk,w) = x(k,w)E(k,w) (3.24)
M(k,w) = Xm(k,w)H(k,w). (3.25)
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Headwords:
e relectivity, transmitivity, extinction
e Beer’s law, scattering cross section
e refractive index, (complex) dielectric function
e epsl - refraction, eps2 - absorption
e Reflection R=r(n,kappa)
e Kramers-Kronig

For finite temperatures, system is not describable by a wave function. statis-
tical averaging needed. (springer,S250)
XXX RPA?

e kramers-kronig relations

e Transformations.

3.3 Relation between real and imaginary part

Background: Due to the Dirac relation

1

w + 1€

= 735 + i (e) (3.26)

a spectral distribution function with an energylike parameter w

o) =y [ i 527

has its real and imaginary parts

RG (w) = P%/df‘k w}—?(i:j()k) (3.28)
and
IG(w) = %/d% F(k)d(w — w(k)), (3.29)

which are the Hilbert transforms of each other.
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Consequence: Kramers-Kronig Relation These relations connect the real
and imaginary part of any parameter that relates two fields in a linear and causal
way. The relations read

= 1y 1P [ e
e1(w) + = / 9=

= (3.30)
ew = - P [ dp?

P denotes the principal value of the integral. Since w > 0 it is desirable to
transform (3.32) to integrals over the domain (0oc). We use the relation

e(—w) =e1(~w) +

By multiplying both the numerator and demoninator of (3.30) with (n+ w), one
yields

io(—w)

= c*(w) (3.31)

—W

aw) = 1+ %Pfdn%
9 (3.32)

aw) = - 2P [dfs
0

The consequence of the Kramers-Kronig relations is that once the imaginary part
is known for the whole spectrum, you know the real part as well, and vice versa.
It is also worth to notice that these relations are of universal validity since they
do not imply any knowledge of the interactions inside the solid.

One can also construct Kramers-Kronig relations for other quantities, like the
magnitude and the phase of the complex reflection coefficient.

3.4 Ideas

Effective mass
oszillator strength
conductivity...

3.5 Transmission spectra

e bandgap - absorption edge

e photonic range

e clectronic/interband absorption
e anisotropy

e cubic same in all directions
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3.6 Classical Models

e classical, semi-classical, fully quantum mechanical model
e oszillator model
e Lorentz (Tauc-Lorentz?)

e gas: wc, plasma frequency

3.7 Dielectric function

Microscopic means local, macroscopic means averaged.
Here relation to one-particle image. Missing many-particle effects, excita-
tions)

3.7.1 Microscopic definition, dielectricity

Microscopic Maxwell equations are

mic . a
Veoe="2"" ¥ % b= igjmic + fo—e
o ot

0

V.b=0, Vxe=——b

ot

with e = e(r,t) the microscopic electric field and b = b(r,¢) the microscopic
magnetic induction. You acquire the macroscopic quantities by averaging:

Now additionally ....

1
D=¢gE+P, H=—B-M (3.34)
Ho

Definition of dielectric function and inverse:
E(r,t) = ¢, / d*r’ / dt'e, ! (r—1'.t — D', 1)
e(r,t) = &' / d*r’ / dt's, (v,v' t —t)D(r', )

where ¢ is a tensor. Medium is homogenous from macroscopic point of view, but
not microscopic; there only lattice periodicity. DF and inverse obey the relation

et (.0t —1)emic(r, 2"t —1") = §(r —1)5(r' — v")5(t — )5 (¢ — ") (3.35)

mic
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3.7.2 Fourier transforms

Now fourier transforms ! of the macroscopic electric field:

E(q,w) = & € pmac(a,w)D(q, 1) (3.36)
The microscopic one:
EmicT + R, T+ R E— 1) = epue(r, o’ t — 1)
= emic(q,q w) = PIR L(q,q W)

with R a reciprocal lattice vector. Since this means ¢ is only non-zero for a
difference q—q' equal to a reciprocal lattice vector, we make the following change
in notation:

Emic(Q A, W) = Emic(k + Gk + G, w), (3.37)

which means

fd3q - fBZ d’k pOFer
f d3qf d*q — fBZ d*k ZG,G’J
Ik + Gk + G)e(k+ Gk + G = dearderar

Together with the definition (3.33) this results in the following fourier transform
for the microscopic dielectric function:

Z / &’k / dw e (HENe(k + G, w)
_ /dS I<Z /dS /dw o (k+G)r+(k+G’)r’ wt)gmzc(q,q’ ))
G,G’
(Z/db‘ku/ (K"+G")r— w”t)D(q// w//))

GII

= ek+Gw)

— Z (k+G k_|_G_l Z/d3kl’D kII+GII) /d3 i z(k+Gl K'+G")
G’ fell .

= ) e(k+G k+G) Z/d*k"D (k" + G")d(k + G' + k" + G")
G’ G

= ) e(k+G,k+G)Dk+G)
GI

'In the following the Fourier transforms are written in the form f(r,t) =

» [ d*q [ dw exp(i(qr — wt))f(q,w) and f(q,w) = [d°r [dt exp(—i(qr — wt))f(r,t), so the
kmd of function is identifiable by its parameters. Also only partly fourier transformed functions
may appear.
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3.7.3 dielectricity <> internal charge density

Next: Averaging...(244-246) With the fourier transforms of two maxwell equa-
tions

, 1
iqe(q) = —p
0

mic(

q), igD(q) = p(q), (3.38)

we conclude to
Pk + Gk + G
(k + G')?
Pk + G) + pit(k + G')
(k + G')?

pPUk+G) = ) (k+G)(k+G.k+G)

GI

Y |k+G| k+G|e(k+Gk+G)
GI
with e(k + G, k + G') = ugge(k + G,k + G')ug g the longitudinal dielectric
function (uy = % unit vector).

Using the fourier transform p®*(q) = &¢ - Q*U***(q), we transform to

d el k+G" k+G)eg- (k+G)’U™(k+G) =
G

pind (k + G)
S k+ Gl [k+ G e (k+G" k+G)e(k+ G,k + G (eoU“t(“ &) + Tk+—e)) |
G,G’

which results in

Pk +G) =20 Y (¢ '(k+ G, k+G') —baa) [k + G| [k+ G'|U" (k + G)
GI

and

1 - -1 opid (k+G)
g (k + G’, k ‘I‘ G’) — (SGG’ ‘I‘ \k+GE\ \k+G’\ SU”t(k+G)

3.8 Quantum mechanical model

e Indirect transitions:

e Direct Transitions...

3.9 Comparison

Possible reasons
e DFT doesn’t describe excited states
e just quasi-particles

e other contributions: xxx
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3.10 Missing
Missing:

e local field corrections (Fox, 2.2.3)

o RPA
471'2?2 dk? <ZE|pa|JE><ZE|pa‘]E> 7 7
. - —~7/o(Ei(k) (1= fo(E;(k)))
Z ({ vy Ve (B8~ B(B)
(3.39)
g9 = ng‘ﬂeaeﬁ, (3.40)
a,pB

For the cubic case:

m2w?

DN <iél§|jk>()>fo( N Rl E )

What about prefactor? Atomic units, — -i—g
Definition of JDOS:

J(E) =) / dk?( - ! . (3.42)

3.11 Krasovskii

€ = Eintra T Einter v

Elintra = 1- Zz’
8
E2intra ™ 3_6( )

10E, (k)
B Ok

(1k|V]ik) = (3.43)

Types of critical points? (e.g. Dragoman p.9)
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Chapter 4

Basis sets

As already mentioned in section 2.3, the eigenfunctions are usually expanded in
a basis,

(1lik) = i, 1) = —= 3 O grsalr). (41)
NG

where €2 is the unit cell volume. The Hamilton and overlap matrices H and S
are constructed for a set of k-points, and the generalized eigenvalue problem

[H(k) — &S(k)]ci(k) =0 (4.2)

is solved, with c;(k) = (Cf,g) the vector of the C-coefficients (of eigenvalue i
and vector k) for all G’s. Many questions of detail, as well as general properties
of your calculation like accuracy and computational effort depend on the choice
of your basis set.

The better the basis functions match the shape of the actual wavefunctions,
the better the convergence is. Some basis sets may have drawbacks that can not
always be lifted by a bigger cut-off.

4.1 The Plane-Wave Basis

A very simple basis set is build out of plane waves (PWs), the eigenfunctions for
a constant potential, that are free electrons
¢k+G(r) _ ei(k+G)r’
The use of this basis complies to a simple fourier transform. Typically this is
a good choice for nearly free electrons and delocalized electrons.

The simple analytic form usually leads to well-performing calculations that
are straight-forward to implement. The hamilton and overlap matrices can easily

27



28 CHAPTER 4. BASIS SETS

be calculated as

h2
HG,G’(k) = %‘k + G|26GGI + ‘/(G,G/)’ (43)
Vie-a) = /dgr e NS Vg (x)
SG,G’ - 6GG’

The matrix elements of the momentum operator for instance in this basis (in
terms of the eigenfunctions) give

Figure 4.1:  Used G-vectors in expansion. Small x-like crosses indicate the basis
vectors of reciprocal space. The plus-like crosses indicate the (k + G)-vectors corre-
sponding to the k-vector drawn in the origin. The large circle encloses all vectors of
|G| < Gpas, the smaller one those of [k + G| < Gz

G

The choice of G-vectors is illustrated in figure 4.1. After choosing a cut-off value
Guaz, all (k + G)-vectors are used that obey |k + G| < G,,4,. This choice is
necessary because of numerical reasons. The number of basis functions obviously
depends on the k-point in consideration.
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Potentials: XX , and less efficient for systems including localized valence elec-
trons, like transition metals.

The price for this simplicity is the inability of this basis set to describe the
strong interactions including the nuclear potential ~ % As a solution, the idea
of pseudopotentials has been developed. The potentials are identical to the all-
electron potential outside a given core-radius, but of different, smoother shape
inside. They are constructed just that the resulting pseudo-wavefunction mimics
the all-eletron wavefunction outside this radius as close as possible. For many
elements, this method works reliable, yielding smooth potentials.

4.2 The APW method

N\

Figure 4.2: Spatial partitioning in augmented basis sets. The circles are the muffin
tins, leaving the interstitial region, plotted grayed.

A basis set of better shape has been proposed by Slater already in 1937
[S1a37]. In this Augmented Plane Wave (APW) basis, space is divided into spheres
that are centered around each atom, so-called muffin-tins (MTs), and into the
remaining interstitial region (IS)'. While plane waves are used as basis functions

!For non-bulk systems, different choices can be made. For slabs, an additional vacuum region
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in the interstitial, they are augmented in the spheres by spherical harmonics time
radial basis functions that are solutions to of the radial Schrodinger equation to
an [-dependent energy

hQ 62 hQ l(l+1)
2mar?  2m -k = U 4.
{ 2m Or? + oIm 2 +V(r) z} ru(r) =0 (4.5)

Expanding the function in a series of these functions up to an [-cutoff [,,,4,, this
gives the basis functions (the augmented plane waves)

(i(k+G)r r €IS
l l
r) = max 46
Prra(r) Z Z al (k + G)u(r, E) Yy (8) T e MT,. (4.6)
=0 m=—1

The calculation of matrix elements becomes more complicated due to the radial
functions being non-orthogonal when restricted to the muffin-tins, and due to the
complex shape of the interstitial region.

It is useful to normalize the radial functions like

Ra

gl ug) = /dr w2 =1 (A7)

0

To ensure that these basis functions are continuous, one has to match the muffin-
tin functions to the planewaves on the boundaries. To arrange this, one expands
the spherical harmonics into planewaves using the Rayleigh relation

¢ = dr Y i ji(r KV, (K) Vi (8). (4.8)

K = |K]| is the length of the vector K = k + G, and j, is the Bessel function
of the first kind. An atom « at position S, owns a coordinate frame (U,,S,)
(in the style of symmetry operations 7?7, U, being the rotation matrix). In this
frame, a plane-wave takes the form

eiI(I‘ - ei(uaK)(r+uasa) (49)

Matching the planewaves on the sphere boundaries with the muffin-tin functions
for every augmented wave gives the a-coefficients as

47t

o (K) = oKSa
alm( ) € UZ(RQ,EZ)

3(KR,) Y (UK). (4.10)

This leaves the C-coefficients (and the energies E)) as the variational parameters
of the method, the a’s being determined by them. In fact this matching works

is introduced as a two half-spaces, expanding the function in decaying exponentials [Kur00].
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only on a few points exactly, but the so-chosen A-coefficients yield the smallest
mismatch.
With these basis functions the wavefunction take the form

Z Cheyae' ™o rels

wlen = zzc il G E)Yin®) 1 € VIT,

(4.11)

Since the a-coefficients are  together with the expansion coefficients C'  the only
terms inside the spheres depending on G, one can write the whole wavefunction
shorter as

L, i(k+G)r rc IS

—Cy gt
dillr) = { 2

A (4.12)
> A (K)uy(r, B)Yi(B) € MT,
Im
with the shorthand
AL (k) = 3 O, gaf(k + G). (4.13)
G

Potentials: Since these basis functions are the solutions of a constant potential
in the interstitial and a spherical potential in the muffin tins, this muffin-tin
approzimation for the shape of the potentials has initially been used. In the
warped muffin-tin approximation, the interstitial potential is extended to general
shape, that means extended in planewaves.

Problems of the method: According to (4.10) the A’s are determined com-
pletely by the planewave coefficients. So these C' coefficients together with the
energy parameters F; are the variational parameters of this method. If the en-
ergy parameters were taken as fixed rather than as a variational parameter, the
method would simply consist of the use of the APW basis set with solving the
secular equation (4.1). The solutions would give the band energies.

Unfortunately, this is not a workable scheme. The basis functions lack varia-
tional freedom, this means they do not yield correct results if the energy parame-
ters E) mismatch the actual band energies. This means that these energies for one
k-point can not be obtained from a single diagonalization, but it has to be solved
iteratively. This makes this method much more computationally demanding.

Furthermore it is difficult to use a general potential beyond the warped muffin-
tin approximation [Sin94]. Another obstacle is the so-called asymptote problem.
There might be energy parameters for which u; vanishes or becomes very small on
the sphere boundary. As a consequence the planewaves and the radial functions
become decoupled.
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4.3 The LAPW method

Much work has been devoted to lifts the described problems. In 1975, Andersen
introduced the Linearized Augmented Plane Wave (LAPW) method. The central
idea is to describe the basis functions inside the muffin-tins not only by solutions
of the radial Schrodinger equation w;(r, E;), but as well by its energy derivates
w(r, E) = ;’E w/(r, Ey). If By differs slightly from the true band energy €, according
to an expansion with respect to the energy,

w(r,€) = w(r, By) + (e — B)iy(r, B) + O((e — E})?), (4.14)

the true radial function can be approximated sufficiently. The error in the band
energies will be of the order O((e — E;)*). The energy derivatives can acquired
from (4.5), taking the energy derivative:

2mor?  2m r

{_h_Qa_Q h_Ql(l_Zl) +V(T)—EZ}TZILZ(T):TUZ(T). (415)

The basis functions are now

1 .
( _ez(k-I—G)r relS

VQ

lmaz l

Prr(r) = S S fat (k+ Gu(r, B+ (4.16)

=0 m=—1

b (k + G)iy(r, B)] Yin(£) € MT,,.

\

Analogous to the APW method, the muffin-tin coefficients are determined as

) A7t .
ag, (K) = XSy (U,K)

W
[ul(Ra)Kle(KRa) o u;(Ra)jl(KRa)] (417)
() = 5TV U K)
[ (Ra) Kji (K Ra) — uy(Ra)ji(K Ra)] (4.18)
with the Wroskian
W = [iy(Ra)uj(Ry) — ui(Re) i (Ry)]. (4.19)

Collecting terms equivalent to the APW basis set, with the definitions

A;ﬁ(k) = ch+G alm k+G)a

Im

Bin(k) = Z Ciic  bim(k+ G) (4.20)
G
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the wavefunctions take the form

1 . .
ﬁ Z CIZH_GGZ(IH—G)T r & IS
Yi(k,r) = G . (4.21)
> (A K)u(r, B) + By (K)i(r, B)] Vi (£) € MT,
Im

The detailed construction of the H and S matrices is described in [Kur00].

With this additional flexibility, the LAPWSs form a good basis for most setups.
In contrast to the APW method only one diagonalisation is needed to obtain the
band energies. And since it is very unlikely that both radial function and its
derivative vanish the asymptote problem does not occur.

Basis conversion: A method to link the simplicity of the planewave basis with
the accuracy of the more sophisticated LAPW basis set has been proposed by
Krasovskii [KSS99]. In this Augmented Fourier components method (AFC), the
vicinity of the core containing rapid alterations of the wavefunctions is considered
to be of low influence on the chemical behaviour. The results of calculation
in LAPW basis are therefore gauged by an appropiate function, generating a
smoother wavefunction in this region and leaving a slowly varying valence charge,
which can be represented adequately in a planewave basis. From this results,
quantities can be calculated in the simple planewave formalism.

4.4 The Local Orbital extension

There might be situations where the variational freedom of the LAPW basis set
is not sufficient. One example are semi-core states, which are states of low energy
thatdo not decay completely within the muffin-tins, but have an overlap into the
interstitial. Singh [Sin91] introduced the Local Orbital extension to the LAPW
set to deal with such problems.

The idea is to expand the basis set by additional functions that are zero in
the interstitial, to extend flexibility inside the muffin-tins. By construcing these
additional basis functions such that the derivative vanishes on the sphere bound-
aries as well, the A- and B- coefficients constructed in (4.17) remain unchanged.
The new basis function should have the characteristic of a certain angular mo-
mentum [, and energy FE,,. This is ensured by a combination of three radial
wavefunctions,

Do ~ [afuf(r, By)) + bl (r, By) + ¢ ul(r, Ey,)). (4.22)

Here the index lo =1, ..., ny, runs over the number of local orbitals introduced,
the ay,, by, €10 are the corresponding coefficients for each atom. The [ = [, in-
dicates the angular momentum quantum number associated with this local or-
bital. This construction contains the essential characteristics in the third part
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(I(l0), Ej,), enriched with the LAPW-like first two parts ensuring the conditions
of the boundary.

These two conditions together with the normalization condition determine
the a, b, ¢ coefficients of each local orbital (for details on this, as well as on the
construction of the matrix elements, see [Kur00]). The basis functions have to
sitisfy Bloch’s theorem. They are therefore matched to fictitious planewaves to
obtain the proper XXX

4.5 Notes on symmetry

symmetries can be used to simplify the calculations.
. (as well as the other quantities like charge density and potentials)

e point group symmetry and space group symmetry.
e inversion symmetry: real and complex

Creal! (4.23)

equivalent atoms

4.6 Notes on the kinetic energy operator
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Implementation

The implementation of the dielectric function for this thesis has been done with
the FLEUR code [FLE] in bulk mode. FLEUR is a full-potential linear aug-
mented plane-wave (FLAPW) code. In the following sections some details of this
implementation shall be discussed.

Since the linearized augmented plane-waves are the basis of choice, the for-
mulae of the momentum matrix elements in this basis are presented in section
5.1. Details on performing the k-space integration to obtain the real part of the
dielectric function are shown in 5.2. The real part is obtained in 5.3. Due to
a restriction of FLEUR, the effect of backfolding has to be discussed in section
5.4. The problematic influence of this backfolding on the numerical integration
is described in section 5.5. Some remarks in 5.6 are followed by a two test calcu-
lations.

When referring in the following to the dielectric function, often it’s imaginary
part is meant. This should be clear from the context.

5.1 Momentum matrix elements in the LAPW
basis

The momentum matrix elements (MMEs)'

h

SRV =% [ ) r) = My (k) G.1)

uc

are to be calculated in the LAPW basis. Due to the partitioning of the unit cell
into muffin-tins and the interstitial region by the choice of the augmented basis,

1To avoid confusion with the imaginary unit i, the initial electronic transition level is labeled

35



36 CHAPTER 5. IMPLEMENTATION

the matrix elements have to be calculated in these regions separately:
(V) = <V>IS + Z <V>MTQ‘ (5.2)

The formulae are presented in atomic units (see appendix C), so the factor i =1
disappears.

5.1.1 Interstitial contribution

In the interstitial, the wavefunctions are?

k) | ZCk+G i(ktG)r  p e 8, (5.3)

and the nabla operator acts like

1 .
Viik) = & Y ik + G)Cp g™ 1 els, (5.4)
G
so that the interstitial part of the matrix element reads
1 * 1 i(G—-G')r
(fK[YIk), = a D (k+ G)cl{+G,ck+G/d3r (GG, (5.5)
GG’ is

The non-trivial interstitial volume the integral acts on is handled by subtracting
the muffin-tins from the whole unit cell :

/d?’Te(GG) /dSTeGG Z/d%eGGl (5.6)
18 Q ¢ MTa

While the first integral gives the simple value Q20gq/, the integral over a muffin-tin
centered at S, gives the split solution

: ' V G=G
3 I(G-G)r __
/ d’r 6( = { 3V, sinz—zcosz | ei(GfG’)Sa G 7& G’ (57)

3
MT, T

with x = |G — G'|R, and R,,V, the radius and the volume, respectively, of
sphere a. Altogether this gives

(KT, = 52+ @)
G

e x)

S o T o)y

G'#£G a
= ) (k+G)Cp,oClia - 5(G— G). (5.9)
GG’

2For convenience, the general Ket symbol is used in place of its spatial representation.
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In the last line, the expressions of the preceeding integral were merged into the
function s, that is

%(Q_ZVQ) G=¢G

S G*G’ = @ ; / 5.10
G971 anviemeicos gre .

with the above © = |G — G'|R,. This is the Fourier representation of the step-
function

1 IS
Sy =4 7€ (5.11)
0, reMT,

which is usually constructed already for the construction of the Hamilton and
overlap matrices H and S in the self-consistency part.

5.1.2 Muffin-tin contributions

The further procedure depends on what form of wavefunctions you start from.
If you use the LAPW functions written explicitly in the basis functions (4.16),
without the summation (4.20) in the calculation of your MMEs (5.1), you obtain
the summations over G,l,m each twice. In the further derivation, not only one
pair of the (I, m)-summation vanishes, but also, by clever conversion, the second
m-summation [Kra|. This leaves summations G, G',[. If you do this, you can
simply check the hermiticity of your matrix for every G-vector.

In the derivation used in this thesis, LAPWs of the accumulated form (4.21)
are used. To derive the matrix elements in the spheres, the momentum operator
is expressed in spherical coordinates, and its impact on the spherical harmonics
is calculated. Since this part is a bit lengthy, it is moved to appendix A.

In allusion to the ladder operators L, and L_ of the angular momentum oper-
ator, one expresses the momentum matrix elements not in terms of (9x, dy, 9z)7,
but in the rotated form

Ox + 10y ox o
dr—idy | =M 0y | =] 0 |, (5.12)
0z 0z 83

with the base change matrix and its inverse

1 % % 0
M=11 i 0], M'=| -1 Lio (5.13)
0 01 0 01
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The result contains only one ([, m)-summation can be expressed as

lmaz -

AR SE D (5.14)

m=—1

[ ([ upau) r2dr — I [ wruy rdr) Alfjl,m,Aim
+  ( [ugyridr — U [ wgaty rdr) Alfil,m'Bll,m
+  ( [lyguridr — U [ gy rdr) Blfjl,m’Az,m
+ f71l+171§ ridr — ! qulul rdr) Blf—:l,m’BlZ,m] Fl(,i:kl)
+ [ Jwup, r?dr + (+2) [wiiw rdr) Alf,:;lA;+1,m”
+ (g, v+ (42) [ugaigrdr) ALLBL
+ (S, rdr + (+2) [ dgqw rdr) Bl{;A§+1,m”
+  ( Jwdap, rdr + (1+2) [0 rdr) Bl{;Blz+1,m” ] F}(-I%Tll,)m”

for n = 1,2, 3 indicating the components, and m’,m" given by

m—+1 m— 1

m=1 m—-11, m"=| m+1 for n=1 2 |[. (5.15)

m m

The factors EEZ) are defined in appendix A. In the combinations of coefficients
owning angular quantum numbers [ and [ + 1 in the products, one recognizes the
dipole selection rules, i.e. the conservation of angular momentum.

The notation already indicates that only the large component of the wavefunc-
tion inside the muffin-tins is taken into account. For the valence states considered
this is a good approximation. The contributions resulting from the local orbital
extension to the LAPW basis set (?7) are similar in shape to those of the simple

LAPW basis (5.14), but more lengthy, and are hence given in appendix A as well.

5.1.3 Properties of the matrix elements

Hermiticity: Since the momentum operator is an observable and therewith
hermitian, so must be its matrix elements. This can be shown easily by applying
partial integration to the defining formula of the matrix elements (5.1). It is also
obvious for the MMEs written in the plane-wave basis (4.4).

However it can be hardly seen from the formulae written in LAPW basis,
since the interstitial plane-waves are expanded on the muffin-tin boundaries in
terms of spherical harmonics utilizing the Rayleigh relation (4.8). If one applies
partial integration to the LAPW formulae, one can see that e.g. for the (z +
iy)-component of the muffin-tin contribution to the MME, parts of the factors

containing Fl(i’)l

2
F}(-I—)l,mfl’

compensate with the complex conjugate of the factors containing

leaving the boundary values of the integration un-compensated.
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The rest has to be taken by the difference in conjugating the interstitial con-
tribution, which is sensitive to conjugation due to the factor (k + G) in the first
sum in (5.9).

Reality: The diagonal matrix elements are real since the momentum operator
is an observable. Furthermore this can also be seen from and compared with the
derivatives of the energy bands (3.43). The non-diagonal parts are in general com-
plex, as can be assumed because of the complex A,B muffin-tin coefficients. For
the case of inversion symmetry, however, the matrix elements become real. This
is obvious for the plane-wave basis (4.4) due to the now real C' coefficients (4.23),
but not for LAPW basis (due to the re-expansion on the muffin-tin boundaries).

Equivalent atoms: XXXX
Should be real for diagonal
In general complex, but &5 is real
'magic of numbers’

again!

5.1.4 Illustration
l:\ ‘ T ‘ T ‘ T ‘ \::\ ‘ T ‘ T ‘ T ‘ \::\ ‘ T ‘ T ‘ T ‘ \::\ ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘:
- T S N N
N b T \ ! \\ T
r T e L Y \
i L \ v
i 1 1 o+ Vi \ A
: | \ \
B 1 \llll \
0.1 + o T i‘ﬁ, Y
- —+ 4 - " H
i T T T \!ii i
= + T T ! !
s 1 1 T | :
= - - 4 L ! 4
= - i s i I
—_ 1
- T r T 1
: il I]
H g i Wy
001f- + + + h y
] 1
: 2 ¥ ¥ i 1
2 i T T 1-2 &
- i 1 A4 1-3 E“: 3
L i I [ 1-4 ¥ i
| ! : : -—-2-3 |::= E
! i T 2-4| & k
i ! b [
0001l NN TR R
[D.00 [0.50 [0.50 [D.0C
[0.00 [0.50 [0.50 [0.0C
[D.00 [0.00 .50 [D.0C

Figure 5.1: The absolute value of matrix elements for five selected transitions evolving
on paths on the border of the irreducible Brillouin zone. The initial and final level 2
and f are given in the legend.

To give an impression of the amplitude and k-dependence, a band structure-
like plot of matrix elements is shown in figure 5.1. These are selected MMEs for
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a simple-cubic Aluminum setup with one atom per unit cell, that is investigated
in section 5.4. The path is (0,0,0) = (5,0,0) = (3,3.0) = (3,3,3) — (0,0,0),
and due to big variations in amplitude, the plot uses a logarithmic y-axis.

The progression of the curve is monotonous in most areas. On the corners of
the path, the matrix elements are not unique due to degeneracy (compare to the
band structures in section 5.4). However, some transitions have a rapid change
in amplitude when approaching the corners. In this case, only the sum over
the transitions has a physical meaning and gives deterministic results. Another
irregularity are jumps that occur within a path, which can usually be connected

to band crossings.

5.2 k-space integration

The task to perform an integration in k-space
1 3
-3 / P U (K) f (e (k) (5.16)
" Bz

(Vi being the volume of the Brillouin zone, f the Fermi factor at temperature
zero, i.e. a step function) frequently appears in band structure calculations,
for instance in the determination of the Fermi energy in the self-consistency of
the density functional theory described in section 2.3. The integrand U(k) is
calculated only for a very finite set of sample k-points.

There are different kinds of methods, e.g. the special points method [CC73,
Cun74]. It provides a set of special k-points in the irreducible Brillouin zone
with alleged weights to calculate the integrand on. This transfers the integration
(5.16) into a summation

ViG > / P UK ) > Y03 UR)w (5.17)

For smoothly varying functions this yields reliable results. However, for incom-
plete occupied bands the integrand in (5.16) is not smooth due to the sharp
Fermi factor. Consider for instance a band close to the Fermi energy. In the
self-consistency, this band could be shifted above or below the Fermi energy, re-
sulting in big changes in the charge density. This can degrade or even destroy
the convergence. One can implement a more elaborate Fermi factor like the true
Fermi function

fle) =eFm —1, (5.18)

that is making the integrand smoothly by a temperature broadening.
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Another method of integration is to divide the volume into subvolumes of a
certain shape and perform the integration in the volume analytically over the
interpolated function. Among the method of Gilat and Raubenheimer [GR66,
Bro93], the Tetrahedron Method is the most prominent integration method of
this kind.

Tetrahedra: This method was introduced independently by Lehmann and Taut
[LT72] in 1972 and by Andersen and Jepsen [JA71] in 1971. It’s idea is to di-
vide the integration volume into tetrahedra. This is always possible, though not
uniquely. The tetrahedra can in principle have arbitrary shape, but ought to be
as regular in shape as possible (e.g. not flattened). The integration thus changes
to

1 Vi
— A’k — | &Pk . 5.19
Ve - 2 / (5.19)

BZ {Tet} Vi

Vr is the tetrahedron’s volume. In each tetrahedron, the energy interpolated
linearly is given uniquely by the four corner energies.

Interpolation in one tetrahedron: The corners are labeled from 0 to 3 with
increasing energy, i.e.

Figure 5.2: A tetrahedron with corner labels sorted by energy, and interpolation
vector b. The small circle marks the penetration point of the vector.

€ < €1 < €9 < €3. (520)
For equally indicated k-vectors, the energy in linear interpolation is

(k) = ey +b - (k— k). (5.21)
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Here, the vector b is defined just that the energy coincides for k equal kg, k1, ko, k3
with the given corner energies. This is provided with the definition

3

b=> (6 €, (5.22)

i=1
including the auxiliary vectors
ki, = k; — ko, ie€{1,2,3} (5.23)
1~ -
r, = —k; xkg, {i,7k} cyclic. (5.24)
Vr

This interpolation yields a continuous energy in the whole integration volume BZ

made out of the set of tetrahedra. The integrand can be interpolated analogously
like

Uk)=Uy+ b (k — ko) (5.25)

with the according definition

3

b' = (Ui — Uy)r;. (5.26)

i=1

With this the whole integrand is continuous in the integration volume. A possible
simplification is to take the integrand set to a constant value U averaged over the
tetrahedron. With this, the quantity is of course not continuous anymore.

Given this linear form of the integrand, the integration in each tetrahedron
can be performed analytically.

Spectral calculations: This method works fine for spectral integrals (for in-
stance those kinds of integrals mentioned in section 3.3. Take integrals of the
type of the density-of-states

D(E) = V%Z/d% S(E — Ei(K))

1 1
= — dS ———. 5.27
v 2 / VB (k) 20
E=E; (k)

If this integrand is interpolated linearly like in (5.25), it gives

L (5.29)

IVkE(K)|  [b] '
The constant-energy plane F = F;(k) in one tetrahedron is the cross-section of
a plane perpendicular to b. There are three possible case of this plane to cut
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the tetrahedron, yielding a cutting area A and leading to a contribution of the

integral equal ﬁ. The explicit results are [LT72]

0 €< € 0re<Ee€
_ 2
( ) g_?632(1663?611 € < €< €y ( )
Drle) =9 v ) 5.29
Ve 1 ) — glentem)(ee)’
Ve ea1ea 3621 + 6(6 62) 3 caz€4a € < €< €3
o €3 < €< €y

VG eareaneqs

with the energy differences €;; = ¢; — ¢;.

Inclusion of Fermi factors: If unlike (5.27) the integral contains a Fermi
factor like (5.16) which is simply included into the integrand, the described pro-
ceeding will not give good results since the values are possibly interpolated to zero
because of this factor. But due to the linear interpolation, energy cross-sections
are easy to determine, as done for the density of states. Nothing else is a Fermi
factor that separates the occupied and unoccupied part by a constant-energy
plane.

For in integral (5.16), depending on the energy € and the Fermi energy e
referring to, the valid contribution can consist out zero volume (ep < €), one
subtetrahedron (e; < €p < €3), three subtetrahdra (e; < €p < €3 0r €3 < €p < €4),
or the complete tetrahedron (¢4 < ep) [RFT5].

Figure 5.3: A tetrahedron that is divided due to two Fermi factors. The numbers
at the corners are the sorted energy indices for the initial and final bands 2 and f, the
two vectors are the corresponding b vectors (5.22). In this diagram the energy cuts
both bands within the tetrahedron and results in two crossing constant-energy planes.
Cutting of vectors with these planes or the tetrahedra boundary are marked with small
circles. The valid subvolume is marked with the red arrow, as well as shown on the
left, with its division into three subtetrahedra.
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For an integral containing two Fermi factors like (3.39), one performs on
each subtetradron obtained for the first Fermi factor the (inverse) occupation
procedure for the second Fermi factor, resulting in at most nine subtetrahedra
for the initial tetrahedron. Note that for the second step a renumbering has to
be made due to the possibly different order of the energies E;.

For the integration (3.39), this means that for every transition + — f, the
valid volume is determined, and the remaining integrand, i.e.

_ (kipa | fk)(fk|pglik)
U0K) = 19, (8,1 - B,)

(5.30)

is evaluated for each of the valid volume’s tetrahedra.

Weighted formulation: Blochl has shown that the tetrahedron method can
also be written to result in the form of a weighted summation (5.17). These
weights are given in appendix B. With this formalism, arbitrary functions can
be integrated without doing the geometric derivation done for instance in the
formulae of the density-of-states above.

It should be noted that the obtained weights do not coincide with those of the
special point method which are based on symmetry, i.e. the tetrahedron method
does not take into account the high symmetry character of the irreducible zone’s
boundaries. This leads to a worse convergence than using the special points
method, and is the reason why the tetrahedron method is usually not used for
the self-consistency, but for spectral calculations.

Attempts have been made to raise the level of interpolation to a quadratic
one. When marking out such a formalism to the linear one introduced above, the
latter one is referred to explicitly as linear tetrahedron (LT) method.

Reduction to the Irreducible Brillouin Zone (IBZ): Usually the eigen-
vectors and eigenvalues are calculated only in the irreducible part of the Brillouin
zone. Let’s consider the effect on integral (3.39). Let R be an appropriate rota-
tion matrix. The energies are the same at the rotated k-point

E,(k) = F,(Rk), (5.31)
but the eigenvectors are rotated:

(r[s, Rk) = (R 'r|s, k) (5.32)
For the calculation of the momentum matrix elements, instead of rotating the

eigenvectors one can also rotate the coordinate system and therewith the nabla
operator, in symbols Vg, = RV,. With this the matrix element for a k-point Rr
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in the first Brillouin zone, but outside the irreducible wedge, can be computed
like

(f,Rk|V|1, Rk) = /d% v} (Rk, r) Vy t,(Rk, 1)
— /d% ik, R7'r) V, th(k, R 'r)

= /dr;T w;(k, I‘) Vre wl(kar)
R{FKIV k) (5.33)

When calculating the integral

5 ] O s
of po— '

with only use of the irreducible part, one uses the identity of the energies at the
corresponding k-points (5.31). Furthermore RT = R !, so that the numerator of
the fraction in the preceding integral gives

(1, RK|V o £, RE) (f, RK|V 51, RK) = (k| Va|fk) (Fk|V 5|ik) (5.35)

and the integral itself

(1K V0 1K) (K| V ) .
~ N Y / 05 e ] (E L T (B (5.56)

' hw=AE

with Ng the number of symmetry operations.

A note on cubic systems: Since we know from section three that the di-
electric tensor has unit form for cubic crystals, one can immediately reduce the
calculation (5.36) to the scalar case, using the square of the absolute value in the
numerator.

This is not to be mixed up with the momentum matrix elements itself, which of
course still have independent components. For instance remember the diagonal
MMEs being proportional to the band derivatives, which have a well-defined
direction.

Reality: The imaginary part of the dielectric function £9(w) is a real function.
So must be the results of (5.36). For the cubic case this is obvious since the
denominator reduces to a real expression.

In the case of non-cubic systems (3.39), the integral contains products of
momentum matrix elements M;}*Mﬁ which are in general complex. This means



46 CHAPTER 5. IMPLEMENTATION

that the components of the tensor obtained from (5.36) can be complex, obeying
the relation £5° = £5°*. But according to (3.40), the resulting dielectric function

along a unit vector u is composed of a summation

g9 = ngﬂuauﬂ, (5.37)
a’ﬁ

containing for every contribution of 5;"‘* the transposed part 550‘ as well. Therefore
the dielectric function €5, becomes real, and one can reduce the dielectric tensor
to its real part £, = Rey (i.e. symmetrizing it by (557 = %(53’8 +e5%)). This also
restores consistency with the statement in chapter 3 that the dielectric tensor is

symmetrical.

5.3 The Real part of the Dielectric Function

Due to the tight relation between real (3.28) and imaginary part (3.29) of spectral
functions, one can set up a formula for the real part similar to (3.39) containing
a k-space integration. This has been done e.g. for the magnetic susceptibility by
Gilat and Bharatiya [GB75]. They used the tetrahedron integration scheme to
derive analytical expressions for the integral contributions that are quite lengthy.

In this thesis, the alternative path is followed, i.e. the Kramers-Kronig inte-
gration transformation (3.32) is employed.

Numerical accuracy of the Kramers-Kronig relations: The accuracy of
the applied integration should be tested on a prominent analytical example, this
is the harmonic oscillator. The real and imaginary part are given by
Nye? (w2 — w?)
m (w2 — w?)? + w22
Noye? wd
ea(w) = — (5.39)

m (w2 — w?)? + w26?

gi(w) = 1+ (5.38)

The functions are plotted in figures 5.4 and 5.5 for two different attenuations
§ = 0.2 and § = 1.0, furthermore: Noe?/m = 1, Wz = 10%, Wy = 4.5%. The
analytical solutions are plotted in thick black, while the numerical solutions of
the real part are plotted dashed blue. Numerical solutions are given for three
different number of sampling points, 100, 400, 1000, and 25000 (in the second
plot only).

One can see that there is a need for an appropriate set of mesh points (in
the order of thousand or more) to achieve a numerical curve close to the analytic
one. The first region of problem of these curves is at the extrema close to wy,
where the numerical solution slowly converges to the analytic one. The second
problematic energy range is for energies close to zero. There is a discrepancy
raising with the attenuation ¢ that is not removed by a larger mesh point set.
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Figure 5.4: Analytic real and imaginary part for § = 0.2 (thick black lines) and
numerical real part for different numbers of mesh points (blue lines).

5.4 Backfolding

At this point it should be mentioned that there are degrees of freedom in the
choice of the unit cell. There might be unit cells of different shapes for the same
number of atoms, resulting in a different reciprocal lattice. In doing so the band
structure stays unchanged in the reciprocal space, but appears different due to
the differently chosen basis. There is also the possibility and (possibly the need)
to choose a bigger unit cell to model the system, giving a smaller Brillouin zone
with modified bands.

The effect on the band structure, called backfolding, shall be discussed here.
Since the dielectric properties are understood to be transitions between bands,
understanding of the impact of backfolding is essential if dealing with bigger unit
cells.

5.4.1 Algebraic considerations

To understand the effect of periodicity, the Bloch theorem should be recapitu-
lated, to simplify matters in one dimension for a non-degenerate system including
time-reversal symmetry. The Schrodinger equation

Hipn(r) = En(r) (5.40)
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Figure 5.5: Analytic real and imaginary part for 6 = 1.0 (thick black lines) and
numerical real part for different numbers of mesh points (blue lines).

yields eigenvalues E and eigenvectors ¢. When the system consists of unit cells
of length R, the corresponding translation operator is defined as

Tr:r —r+R, (5.41)
with the properties

Tr,H] = 0, (5.42)

This translation operator shares a common set of eigenvectors with the Hamilto-
nian. Since the absolute square of the wavefunctions is independent under proper
translations,

Trl* = Te(W™) = (Ta")(Tet) = AP [v ), (5.44)

the eigenvalues of the translational operator take the form A = e’*", which at
the same time classifies the wavefunctions: ¢, (r) — ¢, (k,r). Furthermore, as a
consequence of (5.42) these wavefunctions can be chosen to take Bloch form

Yu(k,r) = ™o, (k.r),  @u(k,r) = pu(k,r + R), (5.45)
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consisting of an exponential and a lattice-periodic function. The essential clou
now is how Bloch waves shifted in k-space react on translations in real space:

Trtn(k + G, r) = e ETORY, (b + G, r) = e* By, (k + G, 7). (5.46)

This means that all shifted k-vectors k£ + G are associated to the same eigen-
value A = e*% of the translation operator. Therefore the set of eigenvalues and
eigenvectors at k + G are equivalent to those at k. Therefore one can reduce all

considerations to the first Brillouin zone —% <k< %, K = 27” One might be

0.5K -k 0 k 0.5K K k+K

Figure 5.6: Sample band structure similar to nearly-free electrons. The First Brillouin
zone’s boundary is at %K Two equivalent k-points to k are marked, —k and k + K.

confused by this insight since the Hamiltonian in matrix representation in a basis
seems to change with a substitution of k£ to k¥ + G. For the case of an infinite
basis this substitution only concerns permutations of rows and columns. For a
finite basis, one gets numerical problems for high-lying states.

The consequence for the band structure is shown for a system similar to
nearly-free electrons in figure 5.6. The solid vertical lines at %K, K, ... are the
boundaries of the Brillouin zones. The dashed lines indicate one k-point k and
equivalents of it at —k and k + K.

If one now imposes a lower periodicity like R = 2R, the reciprocal lattice

and therewith the Brillouin zone reduces to half the size, |k| < K, K = 7 A
K

denser periodicity of K = 5

is demanded now instead of K in the first place,
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0.5K

Figure 5.7: Sample band structure for a system for that a lower translational symmetry
than in figure 5.6 has been used. The new Brillouin zone border is %K Additionally,
K — k is marked as equivalent to k£ now.

with . This makes the point —k (which is equivalent to k& due to time-reversal)
equivalent to —k + K = % — k. Since these two points have (possibly) distinct
sets of eigenvalues in the initial setup of high periodicity, these two sets sum up
in this setup.

The corresponding band structure is shown in figure 5.7. The periodicity of
branches has been doubled, the first Brillouin zone shrinks to half the size K,
and the number of bands in it doubled. This figure gives an idea of the origin
of the term backfolding. The bands look folded back at the center of the former
bigger Brillouin zone; but the superposition with an additional band structure is
a better way to visualize.

5.4.2 Representation in a basis

The impact of backfolding on the energy eigenvalues has been shown in the previ-
ous paragraph. But the dielectric function essentially depends on the momentum
matrix elements and therewith on the wavefunctions. Here, the effect of back-
folding should be illustrated for a plane-wave calculation.

For simplicity, I choose a simple, hypothetical system of Aluminum (Al) in a
simple cubic (sc) structure®. This is calculated in two setups (A denotes sets of

3S0 in this context, SC is not meant to be an abbreviation of self-consistency, as in the
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basis vectors, D are atom positions in coordinates of these basis vectors)

0 0 0
Ai=<L| 0 ]|,.L]1]|,L] O , D= 0 (5.47)
0
and
0 0 0 0
A, =<XL| 0 |,L| 1 ]|,L| 0 , Dy = 01].] o0 , (5.48)
0 5

that is the second setup doubles the first one in z-direction. The resulting recip-
rocal lattices (written in form of Bravais matrices, i.e. writing the (transposed)
reciprocal basis vectors in matrix form) are

L, (10 , (100
Bi=""1| 01 C B="1010], (5.49)
L L
0 0 00 3

_ o O

the second setup having a Brillouin zone halved in z-direction. The wavefunctions
should be expressed in plane-waves for both setups,

1 i
1/)1(1)(1{7 I‘) = ﬁ Z Cl(clJZG ¢k+G1(r)7 (550)
Gi€G1
1 i
b (k1) = 755 > O, drraa(r), (5.51)
G2€G2

with Q the volume of the small unit cell, G;, G, the two sets of G-vectors. The ¢
are the common plane-wave basis functions

brera(x) = e0+O, (5.52)

As a result of the smaller Brillouin zone the set of G vectors in the second setup
is double as dense as in the first one, see figure 5.8. Since we cut a sphere of
|G| < Gz, the set Gy contains approximately double the number of vectors. So
for every vector G out of G; we assign a vector

™

QZG—FK, R:(OJOJZ)J

(5.53)

so that all the vectors {G, G} form the second set G,. This assignment works
only approximately due to the shape of the sphere, but is valid for a sufficient

theoretical part before.
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Figure 5.8: The k, — k,-plane of the reciprocal lattices for the two setups. Basis
vectors are indicated by x-like crosses, (k + G)-vectors for one special k drawn in the
origin by plus-like crosses.

expansion cut-off G,,4,: Since the influence (i.e. the magnitude of the expansion
coefficient) of large G-vectors vanish in the case of a valid convergence, the dis-
crepancy can be neglected. So we can take G, double as large as G;, and omit
indices to the G-vectors since it should be clear from the context which vectors
are referred to.

Let’s watch the generalized eigenvalue problem (2.23). Since the plane-wave
are orthogonal, the overlap has unit shape:

[H(k) — e(k)I]c(k) = 0. (5.54)

For the two setups the elements of these matrices read (see (4.3))

h? 1 ~ ,
1 1 1 i G—G)r
fH(G?G’(k) = %\k"‘GF(SGG’ +V((G)7G')’ V((G)fG') = 5/’137“ e GGV p4(r)
ucy
O 4 = s cs 2 e 1 [ e
Hoa (k) = %\ + GlYce + Vi@ ary V(GfG’)_E re e (x),
uco
(5.55)

integrations performed over the real space units cells one (uc;) and two (ucs).

Now we want to relate the Hamilton matrices of the two systems. Since the
function V. is periodic in the first unit cell ue; (thus twice periodic in uey), and
an exponential exp (i/(G — G')r) is simple periodic in ucy, contributions of the
potential of mixed G-vectors vanish:

@ _y®
Ve e = Ve a) =" (5.56)
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If we therefore rearrange the vectors of Go when applying them on H to group
the vectors of G, first, we obtain for the Hamiltonian the block form

HEZD 0
2 _
HP = ( . %(%)), (5.57)

the submatrix (a) taking the contributions of the undashed, (b) taking those of
the dashed G-vectors.

Contributions (G —G’) to the potential are identical to contributions (G —G")
of the corresponding undashed G-vectors. In the formula for the potential, the
double integration range cancels with the factor 1 in front of the integral, and

2
the contribution is the same as in the small setup:

(2) _v® _ v
V(gfg) = V(GiG,) = V(ch;’)' (5.58)
Since the kinetic part of #?% is identical to H(1), so is the whole submatrix.
Let’s turn focus on H®Y_ It reads

h2

2b

Heg (k) = 51k +Glac + Via-a) (5.59)
We assume time reversal symmetry, i.e. H(k) yields the same set of eigenvectors
and eigenvalues for —k. We apply this on our submatrix H@)  Because of
G = G + K and (5.58), our matrix elements are equivalent to

W
Heg () = 5—|(K =1) + Gldce + Vie-a) (5.60)
= HYle (K —X). (5.61)

With defining a backfolding operator 7j, : k — K — k, the Hamiltonian reads

M
HO (k) = ( H 0(k) 7{<1>((]77€k) ) . (5.62)

The spectrum of such a matrix is the sum of the spectra of the submatrices. The
eigenvectors are filled up with zeros in its additional components. If the small
setup has the eigenvalues and eigenvectors

[0 ikt ={(chis)}. (5.63)
those of the large setup are

(D)} = (DR} Uu{(TK)} and

| ol :
= {( 5 ) (e )}
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(with j (7) running over all bands of the small (large) system).

It should be noted that the derivations given above only fit approximately,
due to the finite set of G-vectors. This is illustrated in figure 5.8, where a sample
cutting sphere is plotted. For such a small set of vectors, it is barely possible to
make a reasonable mapping (5.53). This effect should diminish for an increasing
number of basis functions.

The experience shows that the distinction (5.64) into two different kinds of
eigenvectors is also valid for the same system in an LAPW basis. This has been
tested for the calculation presented in the next subsection.

However, if the backfolding involves a more complex transformation of basis
vectors, these results — the form of the eigenvectors (5.64) — do not stand strictly
anymore.

E-E, [eV]

-10
I — I — I — N I I N
.00 .50 .50 050 .00
0.00 0.00 050 050 0.0
.00 .00 .00 .50 .00

Figure 5.9: Band structure for scc Aluminum, setup 1 (small).

5.4.3 Illustration

This effect should be demonstrated now by some band structures for this system.
Figures 5.9 and 5.10 show the band structures for the two systems along the
path (0,0,0) — (3,0.0) — (3,3,0) = (3.3,3) — (0,0,0), each in internal
coordinates. Due to the symmetry mentioned above, every plot k; — ks in the
large system is the sum of the plots k; — ky and (K — k;) — (K — ky) of the
small system (with K = (0,0, ),

Due to the simple kind of backfolding in this setup, one sees the backfolding

nicely in a plot along z-direction. In figure 5.11 the path (%, %, 0) — (%, %, %) is
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E-E, [eV]
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Figure 5.10: Band structure for scc Aluminum, setup 2 (large).
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Figure 5.11: Backfolded band structure parallel to z-direction. On the left two band
structures of the small system are shown that overlap to the band structure of the large
system on the right.
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Figure 5.12: Backfolded band structure perpendicular to z-direction. The right band
structure (large setup) is the sum of the two on the left (small setup).

shown, that is the third section of figure 5.10. The band structure of the large
system is given by that of the small system overlapped with the additional path
(5:5.3) = (1,5, 3)-

In figure 5.12 the band structure (0,0,0) — (%, 0,0) is plotted. The bands of
the large system on the right are those of the small system along the same line
on the very left, superposed by the bands (0,0,1) — (1,0, 3). Here it is already
difficult to distinguish the two kinds of bands by a simple glimpse.

5.4.4 Consequences for computation

The calculation of a physical property (i.e. the expectation value of a hermitian
operator) must be the same whatever choice of the unit cell has been made.
Since the band structures change, one might get the impression that this rule is
violated.

One essential ingredient of the dielectric function (3.39) are the transitions
from one band to another, that is a double sum over occupied and unoccupied
states. This summation will change if the band structure changes. The joint
density of states (JDOS) for example, given by (3.42), relies on these transitions
only, meaning only on the gradient of the energy differences. It does not depend
additionally on matrix elements like the dielectric function (3.39). This leads to
different results for a backfolded setup.
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Figure 5.13: Dielectric function of scc Aluminum with (small graph, e5) and without
(large graph, €9) inclusion of matrix elements (288 k-points) for small and large unit
cell.

To show this, the dielectric function (3.39) is plotted in graph 5.13 with matrix
elements neglected, i.e. the numerator equal to one. Though not the same quan-
tity, this term suffers the same effect with respect to backfolding as the JDOS
does. It can diverge for small energies due to the factor % This difference for
the two setups does not contradict physics since the JDOS is not an observable

and does not have a physical meaning by itselves.

The dielectric function on the other hand yields the same results for both
setups due to the momentum matrix elements included in its mathematical de-
scription. These matrix elements have the property to vanish if being applied on
a regular and a backfolded eigenfunction:

(fk|V|ik) =0 for backfolded transition, (5.65)

that is one state of 2 or f being backfolded, the other one regular. For the simple
setup of section 5.4, this can be seen easily from the form of the eigenvectors
(5.64) and the form of the matrix elements in plane-wave basis (4.4).
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5.5 Resulting problems in the integration

Up to now, the interesting insights of the previous section do not pose any an-
alytical problems. But in the numerical treatment, problems appear due to the
interpolation between k-points made in the integration scheme described above.
The two different kinds of problems encountered in the implementation are de-
scribed in this section.

Before describing the details, one should remember the way a computer han-
dles bands. A human can connect k-points logically to bands by watching a
band-structure, or can give it a mathematical character. Initially, computers can
only enumerate the eigenvalues, and uses the according eigenvectors. It needs
additional effort [YKS] to recognize band crossings.

5.5.1 The Influence of Degeneracy

The first problem with backfolding arises at points with degenerated energy eigen-
values. At these points the eigenvectors are determined only up to linear com-
binations of each other. An example for degenerated eigenvalues is sketched in
figure 5.14. For instance, k3 could be the zone boundary. It is known that the
matrix elements vanish for a degenerate energy eigenvalues,

(fkg|V]ikg) =0 for E,(kg) = Ey(ky), (5.66)

as in our case. (This is shown by Mavropoulos, Papanikolaou and Dederichs
[MPD].) It should be valid in the limit k — k,, too. Therefore, one should not
expect problems from this.

The situation is different if you consider transitions to another band ¢ in a
system possessing backfolding. In our figure, let bands a and ¢ be regular, while
b is backfolded. Transitions b — ¢ should not give any contributions. This is
consistent with the image that according to (5.64), the eigenvectors of bands b
and ¢ have the form

|ak)~<;), bk>~<2), |ck>~(;), ke (b k). (5.67)

At k3, however, due to the intermixture of ¢ and b, the eigenvectors take the form

|a,k)~<:>, bk>~<:), (5.68)

resulting in a matrix element M (k3) # 0. In the analytical solution this is no
problem due to the singularity of this point (or plane in three dimensions, respec-
tively). In a linear interpolation scheme, though, this leads to finite contributions,
as sketched in the small picture in figure 5.14.
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Energy

Figure 5.14: One-dimensional illustration of degeneracy. The straight red lines are the
true bands, while the dotted black ones are interpolated linearly from the energy values
(plotted as stars) at the mesh points kq,ks,k3. The horizontal dotted line indicates the
Fermi energy. In the small picture, a linear interpolation is sketched in dotted black,
the true discontinuous path in solid red.

A possible solution: It is neither common nor possible without additional
numerical effort to determine the “natural form” |2k,) of the wavefunctions at a
k-point k, possessing degeneracy (that would be [1k,) = limy_,, [2k)). Further-
more it is quite improbable (if possible at all with limited numerical precision) for
a sample k-point within the Brillouin zone (excluding the origin) to hit a point of
degeneracy. On the other hand degeneracy on the Brillouin zone’s boundary and
at high symmetry points in it (which are in turn boundaries of the irreducible
part of the Brillouin zone) is very common. Experience affirms that matrix ele-
ments like M (k) quickly vanish when moving off the high symmetry (see next
subsection).

Therefore a simple solution is just to shift all k-points marginally off the
boundary inside the irreducible wedge. If backfolding is absent, this leads to
only a marginal but noticeable error, due to the quick variations of the matrix
elements close to high-symmetry planes. In the presence of backfolding, the effect
is similar to neglecting the matrix elements (shown in figure 5.13): The dielectric
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function will get additional contributions due to wrong interpolation, especially
big values for small frequencies.

5.5.2 The Influence of Band crossing

Figure 5.15: One-dimensional example for band crossing. The straight red lines are
the true bands, while the dotted black lines are interpolated from the energy values
(plotted as stars) at the mesh points ki,k9,k3. Fermi energy is dotted in the upper
third.

In the case of band crossing, the interpolation errors have a significant in-
fluence. This is illustrated for a one-dimensional example in figure 5.15. The
true bands are approximated linearly from the energy values at three sampling
k-points ki,ko,k3. As in the sketch before the bands are labeled a,b,c. For a
human observer this refers the true bands, while a computer gives these labels to
the eigenvalues ordered from bottom to up.

Let the bands a and ¢ be regular, while band b is backfolded, and focus on
the interval [k;, ko). According to (5.64) the eigenvalues at k; take the form
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and the form

0 * *
laky) ~ ( X ) . |bka) ~ ( 0 ) ,|cka) ~ ( 0 ) (5.70)

at point ky. This results in matrix elements for a transition b — ¢ of the form
My (k1) =0, but My(ks) # 0. (5.71)

Due to the non-vanishing matrix element at ko, the matrix element is interpolated
in [k, ko] continuous in the range [0, M (k2)]. In the given example, this results
in transitions at low frequencies vy, (see figure 5.15), while analytically (and
for an infinitely dense mesh) only transitions down to v, are possible in this
interval.

The impact on the current calculations are strong since though also occurring
in its absence, the effect is stronger with backfolding present due to the larger
number of bands. Further on, the differences resulting from matrix elements
equal zero being interpolated incorrectly are crucial, especially for small energies
due to the factor 25 that goes into the dielectric function (3.39).

An approach to avoid the problem: A method to minimize the contribution
of backfolding to this effect is to renumber the bands. This is possible up to a
certain point for crossings of regular bands with backfolded ones, as mentioned
earlier (5.64).

In figure 5.16, this method has been applied to aluminum for a mesh of 288
k-points. Only with this method one restores the correct absorption edge of the
curve. Calculations show that without reordering of bands, this effect is still
present for a calculation involving 11000 k-points.

The higher the eigenvalues are, and the closer the k-points to high symmetry
positions, the worse is classification into regular and backfolded ones. The first
item is not too serious because transitions of higher energy contribute less to
the dielectric function, due to the prefactor é Second one can assume band
crossings of regular and backfolded bands not to appear in the very close vicinity
of high-symmetry planes. Starting from this one can hope to get good results
with this method.

In figure 5.17 the actual decay of overlap and absolute value of matrix elements
is shown. The observed system is the second test system in section 5.7, fcc
Copper. The two lowest bands are examined along the k-vectors (z, z, z) for
z € [0.499,0.5]. The plot is double logarithmic. It gives an idea of how far
to shift k-points off the boundary so that the matrix elements vanish (as they
should) and the bands can be classified correctly.
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Figure 5.16: Dielectric function for fcc Aluminum, with and without sorted eigenval-
ues to correct crossing with backfolded bands (288 k-points).
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Figure 5.17: The overlap of wavefunctions 1 and 2 of an fcc Copper system.

5.6 A Note on Computational Demands

For sophisticated spectral computations you need an adequate set of k-points
possibly in the order of thousands. This meets the fact that for large systems with
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a big number of electrons, the number of transitions roughly scales quadratically
to it. Together this can result in quite big demands of computer memory, so that
one has to consider the question how to provide these matrix elements to your
integration routine.

It turns out that the calculation of the matrix elements (and herein the inter-
stitial contribution) is the major computational effort. So one can calculate the
MME:s in advance, resulting in minimal computational costs and biggest memory
demands. On the other hand the matrix elements can be computed on-the-fly,
abandon the use of the big array memory, but needing to calculate the same ma-
trix elements several times. In between, you can try to cache selected elements in
memory to combine the advantages of both approaches with minimal drawbacks.

At this point, the special way of connections of your k-points to tetrahedra
and the order of tetrahedra can be of big help. For instance, regard a typical
tetrahedra set connecting nearest neighbors in a set of n, k-points equidistant in
the three spatial coordinates. This tetrahedra should be arranged in layers, e.g.
in z-direction, with the same order in each layer (according to the layer shape
which may differ).

If one processes the tetrahedra sequentially, the data of the corresponding
k-points (including the matrix elements) are not needed only for a short time.
Conversely, even if one does not want to calculate the matrix elements multiple
times, you need to store only ng;, matrix elements at the same time, where ng;,,
can be considerably smaller than n.
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Figure 5.18: Computational amount depending on cache size (1470 k-points, 6591
tetrahedra).

If you take a cache smaller than these ng;, entries, you will have to calculate
matrix elements partly again since you have to skip some which you need later.



64 CHAPTER 5. IMPLEMENTATION

But you can still take good advantage of that method, depending on which matrix
elements you skip. In figure 5.18 this is illustrated for a k-point of 1470 points (it is
a prism-shaped box with 14 equidistant points per edge), giving 6591 tetrahedra.
Only matrix elements for ng;,, = 116 k-points are needed simultaneously not to
calculate them repeatedly.

If you lower the size of your cache below this value, your number of calculations
increase, depending on your strategy. The point (116,1470) at the lower right is
the starting point of a complete caching. If the cache is full when a matrix element
should be stored, the first strategy writes the new element in the beginning of the
cache, while the second one looks for the oldest element in cache. Though the
number of computations quickly nearly doubles for a small decrease of cache size
(~ (106, 2650)), it stays below 3000 — roughly double the computational amount
— for even a fifth of the starting size.

5.7 Test calculation
In this section I investigate the influence of
e backfolding
e band crossing
e Fermi energy (just remark).
e number of k-points

Remarks on computational demand, scaling

Restriction of FLEUR, larger cells, backfolding...

Run-flow diagram of my code??

MME plots

In this section two calculations are compared to literature. The parameters
are listed in appendix D.

5.7.1 Aluminum

In nature, Aluminum exists in the face-centered cubic configuration. This can be
modeled in the basis

5 3 0 o 11 -1
Ar=L| 305 |, Bi=—| 1 -1 1 (5.72)
0+ 3 -1 1 1
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of real and reciprocal space. In the current calculation it is modeled in the real-
space and reciprocal-space basis

A =1L B,=="11 10|, (5.73)

— o O

1
2
1
2
0

O M= o=

with two atoms per unit cell on internal coordinates (0,0, 0) and %(1, 1,1). The

Figure 5.19: The bandstructure (0,0,0) — (5,0,0) — (3, 3.0) = (3,3, 3) = (0,0,0)
of Aluminum in fce coordination is shown on the left. The right plot contains the

according Density of states.

used lattice parameter L,,,, = XX Xay was converged to the minimum of the
total energy. A bandstructure (along the same path as those in section 77) is
shown in figure 5.19, together with the density of states. The 3s electrons of this
system show a behaviour similar to free electrons, as can be seen in the parabola-
like bands in the bandstructure, and in the DOS close to vE. On can compare
these results to those of the simple-cubic systems in section 5.4.

The (imaginary) dielectric function has already been shown in figure 5.16 for
a small number of k-points to demonstrate the influence of the sorting of eigenval-
ues. In figure 5.20 it is shown for different larger number of k-points. It shows the
slow convergence known from literature. Furthermore, two characteristic peaks
are located at 0.5eV and 1.6eV.

This aggrees with literature.

Numerical considerations: The convergence has been done for 6 k-points
and alternatively for 100 k-points. The dielectric function does not show a visible
difference.
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Figure 5.20: Imaginary dielectric function for fcc Aluminum for different sets of
k-points.

Figure 5.21: The imaginary part of the dielectric function for fcc Aluminum for two
different lattice constants Legp, Lyum = X XX Legy.

As a second test, in figure 5.21 the dielectric function was calculated for the
experimental lattice constant L, = 4.04A = 7.64ag, ay being the Bohr radius
(see appendix C), i.e. a difference of XXX percent. It can be seen that XXX.

5.7.2 Copper

The second test system is copper, which condensates in the face-centered cubic
structure as well, therefore the same unit cell is used. In figure 5.17 the overlap
for two bands of this system has been shown. Bandstructure and DOS are shown
in figure 5.22. The converged lattice parameter is L, = XXXA.

The dielectric function is shown in 5.23. Literature XXX.
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Figure 5.22: Bandstructure and Density of states of Copper.

Figure 5.23: Imaginary part of the dielectric function of Copper.
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Chapter 6

Results

Blabla

Figure 6.1: GeTe fcc structure.

6.1 GeTe compounds

Calculate GeTe in zincblende structure. Between zincblende and amorphous, no
big difference in refraction is experienced, but between amorphous and rocksalt.

e GeTe cubic, trigonal

e GelSh2Te4?

69
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Show:

e Description of materials

e Lattice constants, Birge fit!
e DOS,Bandstructures

e charge density plots?

e Optical properties

e Experiments

e Comparison to measurements

6.2 Calcopyrites

AgInTe2

AgShTe2
AulnTe2

e AuSbTe2

AuSnTe2
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Appendix A

Momentum matrix elements

The matrix elements of the momentum operator should be expressed in terms of
the LAPW basis set in summed form (4.21), i.e

( 1 .
K Z Cpy e rels

77bl(k, I‘) = lmi Z Aza Ul r El)+ (Al)

=0 m=—1

\ By (k)uy(r; )] Yim(t) r e MT,.
The interstitial part of this matrix element is derived in section 5.1.1. The part
inside the muffin-tins is more lengthy to derive and therefore done here. The
matrix element is not calculated in the carthesian basis but in the natural basis
(0y + 0y, 0, — 10y, 0,). In spherical coordinates these partial derivatives read

0y £10, = sin GPiw o -+ 1€¢w <(‘0€9 + 0 )

§1n03<p
_ o 1 8
0. = cosbly — g5

(A.2)

The radial and spherical derivatives separate. Introducting the abbreviations

F(]) _ (I4+m+1)(I+m+2)
Im (21+1)(21+3)
2 (I—m)(l—m—1)
By = @)
F(S) _ (I—m+1)(l—m+2)
Im (2l+])(2l+3) (A 3)
F(4) _ (I4+m)(l4+m—1) ’
Im (21—1)(21+1)
F(5) o (I—m+1)(l+m+1)
Im (21+1)(21+3)
(6) _ (I=m)(l+m)
Fim = D@

73
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the recurrence relations of the Legendre polynomials yield the equations

et sinfY,,, = Fl(nll)YHl,mH + Fz(,izYl*LmH
et sinfY,,, = F}S’l)yi+l,mfl + Fz(,izYl*mel ' (A4)
cos 0, = Fl(,;?ym,m + Fz(ri)ylfl,m

Furthermore the relations

et (COSQ%‘FSiig%) Yim = *lFl(nll)YlH,mH + (l+1)F1l(ri)Yifl,m+l
e i (cosegrﬁ%) Yim = FE Vi + (+DEDY ., (AD)
—Sin02Yim = —IF Y, A+ (A DEOY

In order to apply the derivatives on the LAPW functions, we define the functions
(ommiting the muffin-tin index « for convenience)

U = A ()ui(r; Br) + By (k)i (r; Ey)
Vz;n = % Uzim

= A (K)uy(r; Ey) + By (k)i (r; Ey) (A.6)
VVzlm = % Uzim

= L (A Qu(r; E) + By (k)in(r; )

First component 0, +i0,: If one expresses the LAPWSs with these functions
(A.6) utilizing the relations (A.2) and (A.5), one yields for the operation of the
operator

(0 +i0,) (k) = 3 |(Viiy = L W) B Vieamin o
lm i
(Vi = L+ DWEIEEYi |

omitting spatial coordinates, and the summation indices running through [ =
0,...,lmaz, m = —1...1. Multiplying the corresponding bra gives

[ &r ¢5(k, 1) (0, + 10, )ik, r)
MT,
Ry ) )
= X [ a0 Ul (Vi — D WY e +
Im,'m’ 0

(Vi — (L4 W) F2Yi (A.8)

Ra
_ Z f T2d7" (1)D1§n2n fdQ }/l;kml}/l+1,m+1+
Im,!m’ 0
Rq 1ol
S [ r2dr DD §dQ VLY

Im,'m’ 0
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with the abbreviations for D1,D2 equal to

: ') 27—1 * ; ;
Opim = FE DUl (i~ 1 W) (A9)
. 'm/ 27 % i °
Op2im = FUL (Vi — (L4 )W),
With the spherical harmonics being orthogonal,
f ds2 Y}I*mIYE+1,m+1 - 6l’,l+16m’,m+1a (A 10)
§ ds Yﬁmlyifl,m+1 - 6l’,l716m’,m+1a
the quadruple summation in the two terms reduces to each a double one:
lmaz 1
S ODU b =SS 3 DI
Im,l'm/' =0 m—fl
| . Lo (A.11)
> DDA S = Z Z G D2§T1 m1-
Im,l'm/' =0 m=-—1

Please note the maximum [ decreased by one. Now applying the remaining radial
integration, and expanding the symbols D1 and D2 finally gives:

Inas—1
(fk|0,; +i0,|ik) = Z Z
m=—1
[( [y T2d7" - U [ wgay rdr) AZ‘L m+1Ai
+  ( [wgwy r?dr — I [ iy rdr) Al+1 w1 Bl
+ ful“u; ridr — [ f11l+1ul rdr) Bl+1 m+1Al
+ ([ dupawy rPdr — I [y rdr) Bz+1m+1Bl ] Fz(z
+ [ Juy Pdr + (42) [ rdr) A7 AL
+  ( Jwidgy, r?dr + (1+2) [ugady rdr) A*f mBiitm 1
+ ([, r?dr + (1+2) [t rdr) B*f Al 1m 1
+ (i, r?dr + (1+2) [t rdr) B*f mBlitm1] Fz(i)1,m4

Second component 0, —i0,: The procedure is analogous for the next com-
ponent. Again (A.2) and (A.5) help to express it as

(0 = D) i(k, 1) = 5 [(Viy =L WL FS Yisim

m b o (A.12)
(Vi = L+ DWE)FYi 1
Multiplying the bra,
f d*r w}k‘ (ka I') (8I - Zay)'lv/}z(ka I')
MTy
= ; Of r2dr O D™ $dQ Y)Y mo+ (A.13)
Ra

> [ rdr D2 §dQ Y Y,

Im,'m’ 0



76 APPENDIX A. MOMENTUM MATRIX ELEMENTS

calculating the integral over the spherical harmonics and reducing the resulting
fourfold summation analougous to the first component,

S DD S b = 5SS @ppte
Im,l'm! N lml;[llmi;l | (A.14)
= lm;m D™ S 1 = Eﬂ m;l 2
yields
bmaz—1 1
(fk|0, —i0,lik) = > >
=0 m=—1
[ ( fUz+1UE ridr — l f“l+1“l rdr) A;J{I,mflAi,m
+  ( Jwpdg r?dr — L[ wgady rdr) Aﬁl,mleli,m
+  ( [lugpauy r?dr — L[ty rdr) Bﬁ:l,mflAi,m
+ fumu; r’dr — [ fleﬂll rdr) th{l,quzi,m] Fz(iz
+ [( fUzUEH ridr + (1+2) f“Hl“l rdr) AZ{nAfH,mH
+  ( Jwip, r?dr + (1+2) [wyt rdr) AZ{ﬂBziH,mH
+ ([, r?dr + (1+2) [t rdr) BZ{nA§+1,m+l
+  ( Jwd, r?dr + (1+2) [t rdr) Bl*jnBli+1,m+1 ] F}g)l,mfl‘

Third component J,: The same goes for the third component:

d.bi(k,r) = ) [(Vﬁn —1 Wzirn)Fz(:l)YlH,m
im . ‘ ) (A.15)
(Vibw = U+ DOWE)EY 1
Multiplication of the corresponding bra from the left:

f dgr 1/);; (k, r)azwz (ka I‘)

MT,
R,
= 3 [ ODU §dQ Y Yiimt (A.16)
3 R
> [ rfdr 6) pobm! $dQ Y)Y im
Im,'m’ 0

Reduction of fourfold summation:

. oy lmazfl +l . m
Z (])Dlgnrln 61',l+1(5m’,m = Z Z '(])Dléz—zly
Im,l'm/' =0 m=-—1
- S (A.17)
= Z (])DanT 6l’,l716m’,m = Z Z (])D2§T1,m

Im,l'm’ =0 m=-1



Result:

(fk|0:|ik) =

~ o~ o~ o~ o~ o~ o~ —~

+ 4+ 4+ + o+

Imaz—1 l

> D

=0 m=-I
[ wigru) ridr
[ wgra) ridr
[y gru) r2dr
[ 1) r2dr
[ wuyy rdr
[ wdg, rdr
[ )y r2dr

[ g, r2dr

More general notation:

in the form
(fk|0,|ik) =

[

[

+ o+ + 4+

(
(
(
(
(
(
(
(

lmaz 1

ZZ

m=—I

’d
fulHul redr
[ wgrt) r2dr
[ 1) r3dr
[y gra) r2dr
[ wuy .y rdr
[ wyy r2dr
[ )y r2dr
[ i, r*dr

+ + +

fUz+1Uz
[ wiaty
[ g
[ gty
fUz+1Uz
J wiriy
J g

[ gty

= R R e s
S 3 3 3 3 3 S

~— ~— ' e e S

<
=
3

Aﬁfl mAl
Aﬁfl m l
B/ AZ
BZ—I—I mBZ ]
At Al
A*f
B*f Al
I,m*H+1,m

B*f BZZ-I—lm]

l+1 m

l+1 m

+1m

F(5)
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I,m

F(ﬁ)

I+1,m—1"

The results for the three components can be written

+ (I+2
+ (I+2
+ (I+2
+ (I+2

forn =1,2,3, and 0, m',m"” given by

Oy + 10, m+1

o=\ 0,—1i0, |, m=]| m—-1
0, m

Local orbital contribution:

fUz+1Uz
[ gty
[ g
[ sty
fUz+1Uz
fuz+1?lz
[ g

[ i

n

rdr) A;‘j:l wAL
rdr) Al+1 - Bl
rdr) Bl+1 o A2
rdr) Bl+1 o BZ
rdr) Ay AL
rdr) AZ‘{”BHLm”
rdr) By Al
rdr) B*f Bt

m—1

m+1 for

m

]

F}(anl)
2n
] F1l(+1,)m”
1
n = 2
3
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Appendix B

Tetrahedron method

As already mentioned in section 5.2, Bléchl, Jepsen and Andersen [BJA94] gave a
convernient general notation for the tetrahedron method. They consider integrals
over the Brillouin zone (BZ) in k-space like those of the expectation value of an
operator X,

() ==X [ P X)) (B.1)

n

where f is the fermi factor to an energy €,. Vs is the volume of the Brillouin
zone, and the used k-dependent expectation value reads

X, (k) = (nk|X |nk). (B.2)

They show that in tetrahedron method this integral can be written as

(X) = ZXn(kj)wnj- (B.3)

This sum runs over all bands n and k-points j.

B.1 Integration weights

The weight of one k-point w,,; is the sum of weights it gets in each tetrahedra it
belongs to. In each tetrahedra, the indices are assigned so that the energies are
ordered, €; < €3 < €3 < €4.

W1 = W2 = W3 = Wy = 0. (B4)
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2. 6 < €p < €9

APPENDIX B. TETRAHEDRON METHOD

C |4 (er — €) i—i-i—l-i
€21 €31 €41

wy, =

€EFr — €1
wy = C

€21

€Er — €1
w3y = C

€31

€EFr — €1
wy = C

€41

with
Vi (er — €& 3

oo Vi (er @)

3. € < €p < €3
wy =
Wy =
w3 =
wy =

with

4. 3 < €p < €4
wy =
Wy =
w3 =

wy =

4V ear€31€41

Cy+ (O + C) 2L 4 (Cy + Oy + Cy) L

€31 €41
€3 — € €4 — €
CL+Cy+Cs+ (Cy+ Cy) 2—L 0y 2—F
€32 €42
€ — €1 €Fr — €2
(Cy + Cy) + (Cy + Cy)
€31 €32
€p — € €p — €
(Ch+Cy+Cy) E—L 0y =2
€41 €42
Vi 6F—'61)2
4Ve  eqnes
Vi (ep —€1)(ep — €2)(€3 — €R)
4‘43 €41€32€31
VT (GF — 62)2(64 — GF)
4V €42€32€41
€4 — €
C 4 F
€41
€4 — €
C 4 F
€42
€4 — €
%, 4 F
€43

Vr 1 1 1
L _Cl4=- — i R
4VG [ (GF 61) (621 * €31 * 641)}

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)
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with
Vi (64 - EF)3
C=_Lr\4 "F B.10
4V €s€sneas ( )
5. € < €p
Vi
wq Wy W3 Wy e ( )

B.2 Number and density of states

When neglecting the matrix elements, one yields the well-known terms for the
number of states ny(E) and the density of states Dy (E) of one tetrahedron,
which are equivalent to the formulae given for instance by Lehmann and Taut
[LT72].

Neglecting the matrix elements means setting them to one, i.e. X, (k;) =1
in (B.3). With this the number of states and density of states take the form

nr(e) = Zwi, Dr(e) = %nT(e), (B.12)

and take the following values in the five regions:

1. ep < €

nT(e) = 0
2. 6 < €p < €9

VT (6 — 61)3
nr(e) = ———
T( ) Va enezien
N 2
Dp(e) = vrdle—a) (B.14)

Vo eaesien

Vrp 1 31+ €

nple) = — [631 + 3€91 (€ — €2) + 3(€ — €3)* — u(e — 62)3]
Ve 31601 €32€42
Vrp 1 3 3

Di(e) = & [3621 L 6(c—ey) 3T 62)2} (B.15)
Ve 31601 €32€42
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4. €3 < €ep < gy

mi = = (1- =)

V_G €41€42€43
VT 3(64 — 6)2
D = - B.16
T(G) Vi €s1€40€43 ( )
5. € < €p
v
nple) = V_Z

Dy(e) = 0 (B.17)



Appendix C

Units

Among gaussian and SI and other unit systems, there are the so called atomic
units (see also appendix 6 in [ZL83]), which are favored in atomic calculations.
This term actually refer to two slightly different scalings. As in all unit systems,
the fine-structure constant

62

 dweghic

(here given in SI units) has to be conserved. For calculations on the atomic scale,
the characteristic length is the Bohr radius

47T€g hQ
ag —

=5.29-10""'m,

me?

while the Rydberg energy

2
L 13.61eV

Ry — _
Y 2ma3

is the typical energy dimension.

e For Hartree units you set

1

h=1 m=1,e=1, ¢g=—, c=— ~ 137,

1
47 o
with the result that lengths are given in Bohr radii, and energies are mul-
tiples of 2Ry, which is called one Hartree. The kinetic operator takes the
usual form

or —_.

p2 k2
2 2
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e In the Rydberg set you place

1 1 2

=1, m==, =2 gg=—, c==~2-137,
2 AT «

resulting in lengths expressed in Bohr radii, and energies in multiple Ryd-

bergs. But the kinetic operator takes the unnormal form

p> or k%

Whichever of the two scalings you choose, you can just take a given gauss or SI
formula and replace the quantities as mentioned above. The junction to the SI
quantities energy, frequency and temperature is given by

leV = 1.602-10" Ws (C.1)
1

H;iev — 1.519 THz (C.2)
meV 11 604 K. (C.3)

kg



Appendix D

Parameters of calculations

Electronic shells: The elements used in the calculations have the atomic
configurations

Element | number atomic levels

Al 13 [Ne].3s%.3p!

Ge 32 [Ar].3d".45%.4p?
Ag 47 [Kr].4d'" 55!

In 49 [Kr].4d'.5s2.5p!
Sn 50 [Kr].4d'.552.5p?
Sh 51 [Kr].4d" 552 5p?
Te 52 [Kr].4d".5s?.5p"
Au 79 [Xe].4 /54" .65

basing on the noble elements:

Element | number atomic levels

He 2 1s?

Ne 10 [He].25%.2p°

Ar 18 [Ne].3s%.3p°

Kr 36 [Ar].3d"".45%.4p"
Xe 54 [Kr].4d".552 .5p°

This sections lists the most important parameters for the self-consistent FLAPW
bulk calculations, which have been performed with the FLEUR code [FLE]. The
space groups are given in XXX notation. The used exchange-correlation potential
is the GGA approximation of XXX.
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Test systems: These systems were calculated in chapter five for testing pur-
poses. Aluminum was calculted in simple cubic configuration (sc) for two unit
cells to illustrate backfolding.

Al sc

lattice structure | sc sc
space group
inversion symmetry | yes | yes
atoms per unit cell | 1 2
lattice parameters [ao] | 5.16 | 5.16, 10.32
Gumac|[1/ao] | 3.5 | 3.5
# of basis functions | 110 | 206
# of electrons | 3 6
# of k-points | 6 6

local orbitals | no no

It was calculated in the actual face-centered cubic (fcc) configuration as well to
compare to literature.

Al fce

lattice structure | fcc
space group
inversion symmetry | yes
atoms per unit cell | 2
lattice parameters [ag] | 5.41, 7.67
Gonasl1 /0] | 3.5
# of basis functions | 184
# of electrons | 6
# of k-points | 6

local orbitals | no

The other test system was copper.

Cu

lattice structure | fcc

space group

inversion symmetry | yes



atoms per unit cell
lattice parameters [ay]
Gmaz|1/ 0]

# of basis functions
# of electrons

# of k-points

local orbitals

2

5.41, 7.67
3.9

184

22

6

no

Germanium-Tellurium compounds: The

investigated:

87

cubic and trigonal phases were

GeTe cubic

lattice structure

space group

inversion symmetry
atoms per unit cell
lattice parameters [ay]
G maa[1 /0]

# of basis functions
# of electrons

# of k-points

local orbitals

rocksalt

yes
4
XX
XX
XX
20

XX

no

GeTe trigonal

lattice structure

space group

inversion symmetry
atoms per unit cell
lattice parameters [ag]
Gnaa[1/ 0]

# of basis functions
# of electrons

# of k-points

hexagonal

no

XX
XX
XX

30

XX
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local orbitals | no

Calcopyrites: The second class of systems investigated were Tellurium com-
pounds in the calcopyrite structure.

AgInTe,

lattice structure | calcopyrite

space group

inversion symmetry | yes
atoms per unit cell | 8

lattice parameters [ag] | xx

Gaz|1/a0] | xx

# of basis functions | xx

# of electrons

# of k-points

local orbitals | no
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