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2 CHAPTER 1. INTRODUCTION



Chapter 2Density Funtional Theory
2.1 The Many-Partile ProblemThe omplete properties of solids an in priniple be alulated ab initio { i.e. freeof any parameters, only using the setup of the system and its interations { on aquantum mehanial level. The whole information of a system is ontained in thesystem's wave-funtion, whih has to be obtained as solution of the Shr�odingerequationHj	i = Ej	i; (2.1)with H the Hamiltonian of a system of interating nulei and eletrons (assuming4�"0 = 1)H = � NXi=1 ~22mr2i + 12Xi6=j e2jri � rjj �Xi;J ZJe2jri � �J j + 12XI 6=J ZIZJe2j�I � �J j : (2.2)r denote the eletronial oordinates and � those of the nulei, ZI denotes theharge of the nulei. Spin-dependene and external �elds are omitted. In therelativisti ase, the Dira equation has to be solved. The energy of a state 	 isgiven byE = h	jHj	i: (2.3)The e�ort to solve this many-body problem sales exponentially with the numberof partiles desribed and is unaomplishable for everything exept very smallsystems, and ertainly for a marosopi system with a number of partiles of anorder of magnitude of 1023.A �rst and very general approximation is the Born-Oppenheimer method (alsoalled adiabati approximation). Sine the mass of the eletrons is at least threeorders of magnitude smaller than those of the nulei, the eletrons are expetedto follow the motions of the nulei instantaneously, while the nulei will reat3



4 CHAPTER 2. DENSITY FUNCTIONAL THEORYslowly to a hange in eletroni on�guration. Therefore, the ion's position anbe set �xed, reduing the number of degrees of freedom. (From a strit pointof view this approximation needs more preise justi�ation, see [Mad78℄.) Thisapproximation is used in the majority of eletroni alulations.When alulating the ground state of a system, the energy has to take itsminimum. Depending on your ansatz, the solution an usually be obtained byminimizing the total energy.2.2 The Hartree-Fok AnsatzA variety of di�erent approahes have been developed to takle this many-partileproblem. One frequently used method (in many areas of physis) is to transferthe many-body problem to a one-partile-like problem, for instane by imposingsome ertain form on the wavefuntion.The most basi hoie is the Hartree Ansatz, whih replaes the wavefuntion	(r1; : : : ; rN) with a produt of N one-partile wavefuntions  (r):	(r1; : : : ; rN) =  1(r1) �  2(r2) � : : : �  N(rN); (2.4)depending only on the spatial oordinate of one partile. If one introduesthis ansatz into the Shr�odinger equation, one obtains N Sh�odinger-like single-partile equations with a integral alled Coulomb term or Hartree term, on-taining the eletron-eletron interation. This simple ansatz treats the partilesindependent in the sense that every partile moves in a stati potential reatedby the other eletrons, whih is the only interation onsidered.It is possible to take are about the expelling properties of fermions result-ing from the Fermi priniple { alled exhange interation { by using a slaterdeterminant of wavefuntions instead of a simple produt:	(r1; : : : ; rN) = 1pN �������  1(r1) : : :  N(r1)... . . . ... 1(rN) : : :  N(rN) ������� : (2.5)This Hartree-Fok Ansatz results in a signi�antly more omplex numerial treat-ment as well as in muh better results. Inluding a wavefuntion of this form intothe Shr�odinger equation gives N single partile equations now ontaining an ad-ditional term { the exhange or Fok term { ontaining ontributions from allthe other single-partile wavefuntions.The desription is still inomplete due to the fat that the single partiles arenot independent as assumed in this approximation. These orrelation e�ets annot be expressed analytially in the general ase.



2.3. DENSITY FUNCTIONAL THEORY 52.3 Density Funtional TheoryA new idea how to desribe the ground state of a many-partile system hasbeen aquired by Hohenberg and Kohn in the 1960s. It turns the fous from theabstrat many-partile state as desriptive quantity of the system to the ostensiveharge density in real spae. Not only that not the whole information ontent ofthe wave-funtion is needed, it is not desirable to obtain the omplete solution 	for a large system sine storage of it is as hardly possible as alulation of it.One di�erent approah, the Thomas-Fermi theory, was known sine the latetwenties [Fer27, Tho27℄. It assumes the interating eletrons to be independent,moving in an external potential. (In this ontext the term external means every-thing exept of this one partile itself, so it inludes also the e�ets of the nuleiin the system, not only those of �elds external to the system.) Then the formulaefor the uniform eletron gas are applied. The obtained results give only a fewquantitative trends, hemials bonds for instane an not be predited. However,the system is desribed by the density only.The Lemma of Hohenberg and Kohn: The harge density relates to themany-partile wavefuntion liken(r) = �	j NPi=1 Æ(r� ri)j	�: (2.6)The amount of hargeN = Z d3r n(r) (2.7)takes the role of a subsidiary parameter.Hohenberg and Kohn derived that the expetation value of any observableis uniquely de�ned by the harge density. Furthermore, the funtional of totalenergyE = E[n(r)℄ (2.8)is minimized by the true ground state density n0(r). As a third point, theThe important onlusion of the Lemma of Hohenberg and Kohn [HK64℄ isthat the density n(r) of the ground state of a system of interating eletrons insome external potential v(r) determines this potential uniquely (of ourse up tosome unimportant onstant). The proof is shown in ontradition for the energyfuntionalEg = h	gjHj	gi (2.9)of a non-degenerate ground state, whih is shown to be expressable in terms ofthe density,Eg = E[n(r)℄: (2.10)



6 CHAPTER 2. DENSITY FUNCTIONAL THEORYIt is shown that It an easily be extended to the degenerate ase [Koh85℄.This means that n(r), determining the potential v(r) and the number ofpartiles N , desribes the Hamiltonian and therewith the omplete system and allits derivable properties (inluding many-body wavefuntions, two-partile Green'sfuntions). A more mathematial insight is that there are funtions n(r) notyielding a valid potential v(r), so-alled non V-representable funtions. Theseare non-physial densities.The Hohenberg-Kohn lemma does not imply any knowledge about the phys-ial interations and is universal thereby. On the other hand, nothing has beenstated about the form of the funtional E[n℄ up to now.Kohn-Sham equations: Kohn and Sham formulated a form for the energyfuntional that proved to be very suessful. They proposed to split it up intothree ontributionsE[n℄ = Ts[n℄ + U [n℄ + Ex[n℄: (2.11)Ts is the kineti energy of non-interating partiles, U is the Coulomb energy,and Ex ontains the remaining ontributions to the energy due to exhangeand orrelation. The Coulomb energy of the eletrons is onstruted out of theeletron-eletron energy together with the external energy, resulting additivelyfrom the Coulomb �eld of the nulei and from �elds external to the system:U [n℄ = Eext[n℄ + EH [n℄ (2.12)Eext[n℄ = Z d3r Vext(r)n(r) (2.13)EH [n℄ = e28�"0 Z d3rd3r0 n(r)n(r0)jr� r0j (2.14)An advantage of this representation is that for the kineti energy, whih is asigni�ant proportion to the total energy, an analyti expression an be given(see setion 2.7). The density is related to the single partile wavefuntions vian(r) = 2 NXi=1 j i(r)j2; (2.15)with the fator 2 aounting the spin degeneray1. For this hoie the kinetienergy readsTs[n℄ = �2 NXi=1 Z d3r  �i (r) ~2mr2 i(r): (2.16)1In this ase, you alulate with half the number of eletrons



2.3. DENSITY FUNCTIONAL THEORY 7Equivalent to minimizing the energy with respet to the density, one an do so aswell with respet to the single wavefuntions or to their omplex onjugates. Thesubsidiary ondition of partile onservation (2.7) is replaed by the normalizationof the wavefuntionsZ d3r j i(r)j2 = 1: (2.17)Taking this requirement into aount by Lagrange parameters �i, the variation ofthe energy yields the Kohn-Sham equationsH1 i(r) = �� ~2mr2 + Veff(r)� i(r) = �i i(r); (2.18)whih are Shr�odinger-like equations of a one-partile HamiltonianH1 ontainingan e�etive potentialVeff(r) = Vext(r) + VH(r) + Vx(r) (2.19)onsisting of the external, the Hartree and the exhange-orrelation potentialVext(r) = ÆÆn(r)Eext(r) (2.20)VH(r) = 4�e2 Z d3r n(r0)jr� r0j (2.21)Vx(r) = ÆÆn(r)Ex(r): (2.22)These potentials are simple funtions, while the orresponding energies are on-sidered as funtionals of the density.This hoie (2.11) of kineti energy and subsequent derivations onverts theproblem to a problem of �titious single partiles moving in an e�etive potentialall other partiles ontribute to.The parameter �i are introdued as Lagrangian parameters only. Aording toJanak's theorem, only the highest oupied value has a physial meaning, i.e. itis equal to the hemial potential, the ionisation energy of the system. Beyondthis, there is no justi�ation to take these parameters as the one-partile energies.However, it is known from experiene that this assumption works surprisinglygood, and this identity is ommonly assumed in bandstruture alulations.Eigenvalue problem: Usually the Kohn-Sham equations (2.18) are not solveddiretly, but the solutions are represented in a basis. Then the operator H1 hasto be onstruted and diagonalized. Sine the basis funtions are not neessarilyorthogonal, one has to solve the generalized eigenvalue problem(H1 � �iS) = 0 (2.23)(also alled seular equation) with S the overlap matrix and  the expansionoeÆients.



8 CHAPTER 2. DENSITY FUNCTIONAL THEORYSelf-onsisteny: Sine the eletron density goes into the Hartree potential VHand the exhange-orrelation potential Vx, and the e�etive potential determinesthe solutions  i through (2.18), whih again make the harge density (2.15), thisformalism omprises a self-onsisteny, as shown in �gure (2.1).
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����������������Figure 2.1: The self-onsisteny yle of a density-funtional alulation.To enter the loop one has to provide an appropriate starting density. Withthis the potentials are generated and the one-partile solutions are alulated. Inmatrix piture this is the setup of the H and S matries and the solution of thegeneralized eigenvalue problem (2.23). With the results the temporary densitynnew(r) is alulated.One now heks if the di�erene between the previous density n(i)(r) andthe new one is suÆiently small. If not, the temporary density is inorporatedinto the previous one. Sine taking the alulated density as next input densityn(i+1)(r) for the yle would introdue too big steps whih destroy onvergene,some mixing has to be performed. The simplest way is a linear mixingn(i+1)(r) = (1� �)n(i)(r) + � nnew(r) (2.24)with mixing parameter �. More sophistiated methods like those of Broydenand Anderson have been developed, whih inorporate the knowledge of earlieriterations and yield a faster onvergene. After �nishing the loop, one an proessthe obtained density, e.g. alulate the total energy.2.4 Exhange and CorrelationSine no approximations have been made so far, density funtional theory isexat in priniple. However, alulations are only possible with the knowledge ofthe exhange-orrelation energy funtional Ex[n℄ de�ned by (2.11). The exat



2.5. NOTES ON SYMMETRY 9funtional is unknown and not soluble analytially. Solving it would be equivalentto solving the many-body problem. Therefore, approximations have to be made.Basially, the Kohn-Sham equations are a Hartree-like ansatz. All exhangeand orrelation e�ets (i.e. all many-body e�ets) are inluded in the funtionalEx[n℄. It ontains the fermioni e�ets, modi�ations to the e�etive potentialand orretions to the kineti energy, all due to the eletron-eletron interation.This means that the exhange-orrelation potential desribes the e�ets of thePauli priniple and the Coulomb potential beyond a pure eletrostati interationof the eletrons.The most widely used approah is the Loal Density Approximation (LDA).The idea is to assume Ex to be that of a homogenous eletron gas with densityn(r): Ex[n(r)℄ = Z d3r n(r)�x(n(r)): (2.25)The important simpli�ation is that �x is not a funtional of the density, but afuntion of the value of the density at some spatial oordinate. With this, alsothe exhange-orrelation potential Vx in (2.20) takes the form of a funtion. Onepossible approximation is to view exhange and orrelation to be independent:�x(n(r)) = �x(n(r)) + �(n(r)) (2.26)More omplex parametrisations inorporate the results of Hartree-Fok or many-body alulations. One would expet the LDA to fail systems with rapidly varyingdensities. But it shows to give good results in an unexpeted variety of systems.A lass of more sophistiated approximations is the Generalized GradientApproximation (GGA). It makes the same loalization ansatz as in (2.25), butonnets �x not only with the value of the density but also with the absolutevalue of its gradient:Ex[n(r)℄ = Z d3r n(r)�x(n(r); jrn(r)j): (2.27)2.5 Notes on SymmetrySymmetries are operations that transfer a system into itself, so that both systemsare indistinguishable. In this ontext we are interested in symmetry operationsin real spae. Symmetry operators ommute with the Hamiltonian,[(�; T );H℄ = 0: (2.28)(�; T ) denotes an operation onsisting of a rotation � and a subsequent transla-tion T . Taking symmetries into aount an massively simplify the alulations,or makes it only possible.



10 CHAPTER 2. DENSITY FUNCTIONAL THEORYClassi�ations: Perfet rystals, that are systems possessing translationalsymmetry, are lassi�ed into lattie types. Considering translations only (noomplex oupations of the unit ell with atoms), this gives the minimal set ofessentially di�erent lattie types, the Bravais latties. In three dimensions thereare 14 Bravais latties: the seven latties ubi, trigonal, rhombi, hexagonal,monolini, trilini and tetragonal, de�ned by the length of and angles betweenthe basis vetors, and variations of these latties by oupying unit ell faes orthe unit ell enter with atoms. The aording translational operators of a lattieform the Translation group.The rotations of a system (i.e. the aording operators) that bring the rystalinto itself build the Rotation group. There are also non-symmorphi symmetrieswhih bring the rystal into itself only with an additional translation (whih isnot part of the translational group). The aording symmetry operations aresrew axis and glide planes. In this ase these rotations extend the rotationgroup to the Point group. (For symmorphi latties both are idential.) Thereare thirty-two di�erent point groups.The Spae group onsists of the totality of transformations that bring therystal into itself, ontaining the translational and the point group as subgroups.There are 230 possible spae groups; 157 of them are non-symmorphi, 73 aresimple.Translational symmetry: The translational operatorTR : r! r+R (2.29)for a lattie vetor R ommutes with the Hamiltonian. So both operators sharea set of eigenvalues. The onsequene is the so-alled Bloh theorem, that statesthat the wavefuntions an take the form n(k; r) = 'n(k; r)eikr; (2.30)de�ning k (often alled the rystal momentum) as a new good quantum number.This vetor k is taken from the reiproal spae, but one an redue onsiderationsto the �rst Brillouin zone. The spetrum of energy eigenvalues is periodi inreiproal spae,E(k) = E(k+G); (2.31)G being a reiproal lattie vetor.Rotational symmetry: To a rotation in real spae, the aording symmetryoperation in the reiproal spae is the inverse rotation. Analogously to the trans-lations, this redues the e�etive reiproal spae you have to onsider, leavingas unique part the irreduible wedge of the �rst Brillouin zone (IBZ).Consequenes for the atual omputation are remarked in hapter 4.



2.6. SPIN-DENSITY FUNCTIONAL THEORY 112.6 Spin-Density Funtional TheoryThe spin property of eletrons, so far only aounted by a degeneray fator oftwo, an be easily inorporated into the theory. It has been shown that thebasi Hohenberg-Kohn theorem stands for spin-polarized densities as well. Yourede�ne (in the non-relativisti ase) the wavefuntions as spinors i(r) =   i"(r) i#(r) ! : (2.32)With this slightly di�erent notation, apart from the harge density there arisesa seond entral quantity out of these wavefuntions, the magnetization densitym(r): n(r) = NXi=1  i(r)� i(r) (2.33)m(r) = NXi=1  i(r)�� i(r): (2.34)� is the vetor (�x; �y; �z) of Pauli matries. The energy is now a funtional ofthese two densities:E = E[n(r);m(r)℄ (2.35)The two spins ouple through an e�etive magneti �eld appearing in the modi�edKohn-Sham equations. To inorporate the interation of an external magneti�eld Bext with this spin-polarized system, we inlude the energy ontributionm(r) �Bext(r) into the Kohn-Sham equations and yieldH1 i(r) = �� ~2mr2 + Veff (r) + �Beff(r)� i(r) = �i i(r); (2.36)Beff(r) = Bx(r) +Bext(r); (2.37)Bx(r) = ÆE[n(r);m(r)℄Æm(r) : (2.38)The approximations in setion 2.4 an be easily extended for the ase of spin-polarized systems.2.7 Determination of the Total EnergyWhen the total energy needs to be alulated, the ion-ion interation Eii of thenuleiEii = e2XI 6=J ZIZJj�I � �J j (2.39)



12 CHAPTER 2. DENSITY FUNCTIONAL THEORYhas to be inluded into the funtional (2.11),Etot[n℄ = Ts[n℄ + EH [n℄ + Ex[n℄ + Eext + Eii: (2.40)Beause of numerial reasons, it is not desirable to alulate the kineti energyin the form (2.16), applying the double spatial derivative. Instead, one utilizesthe Kohn-Sham equations (2.18). Rearranging, multiplying the Bra from the leftand summing over all oupied states gives� ~2mr2 i(r) = (�i � Veff(r)) i(r); (2.41)Ts[n℄ = �2 NXi=1 Z d3r  �i (r) ~2mr2 i(r) (2.42)= NXi=1 �i � Z d3r n(r)Veff(r) (2.43)Putting all the ontributions together we obtainE[n;m℄ = NXi=1 �i � Z d3r n(r)Veff(r) (2.44)� Z d3r m(r) �Beff(r) (2.45)� 4�e2 MXI=1 Z d3r n(r)ZIjr� �I j (2.46)� Z d3r n(r) ~Vext(r) (2.47)+ 4�e2 � 12 Z d3rd3r0 n(r)n(r0)jr� r0j (2.48)+ Z d3r n(r)�x(n(r); jm(r)j) (2.49)+ 4�e2 MXI 6=J ZIZJj�I � �J j ; (2.50)with the potential ~Vext(r) due to an eletri �eld external to the system.2.8 Improvements to Density Funtional The-oryMany extensions has been made to the density funtional theory, and it is still asubjet of ontinuous development. As we have seen, the observane of spin and



2.8. IMPROVEMENTS TO DENSITY FUNCTIONAL THEORY 13the inlusion of external eletri and magneti �elds are a natural extension ofthe theory.New exhange-orrelation funtionals are being developed. Methods like thesimple sissors operator or the more sophistiated LDA+U theory fous on oneof the entral drawbaks of the loal density (LDA) or generalized gradient ap-proximation (GGA), the mismathing band-gap. The time-dependent densityfuntional theory re�nes the knowledge about the development of the system intime, and results in a better desription of exited states.The density funtion theory has proven to be a very powerful tool to treat amany-body problem eÆiently and preisely in the framework of a one-partilepiture. It has been applied also in a diversity of other disiplines, like super-ondutivity or astrophysis.



14 CHAPTER 2. DENSITY FUNCTIONAL THEORY



Chapter 3Dieletri Properties of SolidsBefore going into the details of the dieletri funtion, let us �rst disuss generalproperties of physial tensors (of rank two).3.1 Physial TensorsLet us onnet onnet two physial vetor quantities linearly viaB = Ta: (3.1)If B is simply proportional to a (i.e. pointing in the same diretion) T is a salarfator. But in the general ase, T is a tensor of seond rank. By its de�nition, atensor transforms under a basis hange A toT 0 = ATAT ; or T 0ij = AikAjlTkl: (3.2)Any seond-rank tensor an be split up into a symmetri and an antisymmetripart, Tij = 12(Tij + Tji) + 12(Tij � Tji); (3.3)but most physial seond-rank tensors are purely symmetrial (i.e. Tij = Tji),for example the dieletri tensor being subjet of this thesis. (One of the fewexeptions is the thermoeletri tensor.) Nye [Nye57℄ remarks that this symmetryproperty of tensors is not an obvious one, and that the proof neessararily involvesthermodynamial onsiderations.The behaviour of a symmetri seond-rank tensor Tij under oordinate trans-formation is the same as for the equationTijxixj = 1; (3.4)whih de�nes a sphere that is either an ellipsoid, a hyperboloid of one or ahyperboloid of two sheets. This equation is alled the representation quadri for15



16 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDSthe tensor Tij. An important property of a quadri is the possession of prinipalaxes. These are three diretions at right angles suh that the general quadri(3.4) takes the formT11x21 + T22x22 + T33x23 = 1; (3.5)when referred to these axes.In a symmetrial tensor referred to arbitrary axes the number of independentomponents is six. How many independent oeÆients remain when referring toits prinipal axes depends on the symmetry of the rystal in onsideration. TheNeumann priniple states that the symmetry elements of any physial propertyof a rystal must inlude the symmetry elements of the point group of the rys-tal. As a result of these onsiderations, one groups the tensors (or the rystals,aordingly) in the following three so-alled optial lassi�ations:Isotropi (Anaxial) rystals: Crystals in whih you an hoose arbitrarilythree rystallographially equivalent orthogonal axes. These three axes are theprinipal axes of the tensor. All diagonal elements are equal (see table below),and the rystall ats like an amorphous medium.Uniaxial tensors: Crystals without three orthogonal equivalent axes, but withtwo or more these axes in one plane. This is the ase for the triline, trigonal andhexagonal latties. The plane with the equivalent axes is perpendiular to thethree-fold, four-fold or six-fold symmetry axis, respetively. One of the optialaxes oinides with this symmetry axes, the others form a pair of orthogonal axesin the plane.Biaxial tensors: Crystals with lower symmetry. For orthorombi rystals,the tensor possesses diagonal form with eah di�erent elements. The optial axesoinide with the rystal axes. In monoline and triline systems, the optial axesare not alleged. (In this ase, it would be possible to rotate the axes of the tensorsuh that only the three prinipal oeÆients are neessary, but one would haveno information regarding the orientation of the representation's sphere relativeto the rystallographi axes [Lov89℄.)The orresponding shape of the tensors is taken from a table of ([Nye57℄).In most ases of alulations the used basis vetors oinide with the optialaxes of the rystal in study.3.2 Marosopi OptisWe make a marosopi approah to the eletromagneti desription of a matter.Its properties a desribed by the
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Classi�ation Crystal System Indep. Coe�. Tensor shapeAnaxial Cubi 1 0B� T 0 00 T 00 0 T 1CAUniaxial TetragonalHexagonalTrigonal 2 0B� T1 0 00 T1 00 0 T3 1CAOrthorhombi 3 0B� T1 0 00 T2 00 0 T3 1CABiaxial Monolini 4 0B� T11 0 T310 T2 0T31 0 T33 1CATrilini 6 0B� T11 T12 T31T12 T22 T23T31 T23 T33 1CATable 3.1: Shapes of seond-rank tensors for di�erent rystal strutures.



18 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDSMaxwell equations:r� E(r; t) = � ��tB(r; t) (3.6)r �D(r; t) = �(r; t) (3.7)r�H(r; t) = j(r; t) + ��tD(r; t) (3.8)r �B(r; t) = 0; (3.9)with E, D the eletri �eld and the eletri displaement, B the magneti in-dution and H the magneti �eld. � and j desribe the external harges andurrents. The indues ones vanish by the averaging done for this marosopiapproah. This desription is omplete only if the oupling between the D andE, and between B and H, respetively, is given.Material oeÆients: To desribe the response linearly, one introdues twooupling funtions (also alled onstants frequently), the dieletri funtion "(also known as permittivity) and the magneti permeability �:D = ""0E; B = ��0H; (3.10)or alternatively de�ning the eletri polarizability P and the magnetization Mby D = "0E+P; P = �pE = �"0E; (3.11)H = 1�0B�M; M = 1�m�0H; (3.12)de�ning the eletri and magneti suseptibilities � and �m and the polarizability�p as " = 1 + �; �p = "0�; (3.13)� = 1� �m; � (3.14)The magneti suseptibility is not given attention anymore. When oupling theurrent j linearly to the eletri �eld aording to Ohm's law, you introdue theeletrial ondutivity �:j = ~�E: (3.15)Absorption of waves: In vauum, the eletri �eld of a free eletro-magnetiwave follows the wave equation4E(r; t) = �0"0" �2�t2E(r; t); (3.16)



3.2. MACROSCOPIC OPTICS 19whih has solutionsE(r; t) = E0ei(kr�!t): (3.17)When penetrating matter, the amplitude lowers exponentially,E = E0e�; (3.18)with the absorption oeÆient � de�ned asdIdz = ��I (3.19)for penetration in z-diretion, and I = jEj2 the amplitude.The rest...Elementary lassis (see Madelung [Mad78℄): We assume a lassial eletro-magneti wave of form~A(~r; t) = ~A0ei( ~K~r�!t) = A0~eei( ~n ~!~r�!t)with omplex refrative index ~n(!) = n(!)+ i�(!). If refration and dieletriityare oupled by �(!) = ~n2(!) with �(!) = �1(!) + i�2(!) omplex, we get theonnetionn2 � �2 = �1 (3.20)2n� = �2: (3.21)Another well mesurable quantity is the relexion of a perpendiular inomingwave R(!) whih is related to n(!) and k(!) byR = �1� ~n1 + ~n� = (n� 1)2 + k2(n+ 1)2 + k2 :Tensor properties: In the general ase, the oupling (3.10) is not simplesalar, but tensor-like, as well as depending on the frequeny and the loation.Sine the oupling is homogeneous in time, and for the marosopi approah alsoin spae, the arguments of the suseptibilities read (with the array boundariesmaking the statements ausal, or an appropiate de�ned suseptiblilty)P(r; t) = Z d3r0 Z dt0 ~�(r� r0; t� t0)E(r0; t0) (3.22)M(r; t) = Z d3r0 Z dt0 ~�m(r� r0; t� t0)H(r0; t0) (3.23)In Fourier spae this onvolution givesP(k; !) = ~�(k; !)E(k; !) (3.24)M(k; !) = ~�m(k; !)H(k; !): (3.25)



20 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDSHeadwords:� reletivity, transmitivity, extintion� Beer's law, sattering ross setion� refrative index, (omplex) dieletri funtion� eps1 - refration, eps2 - absorption� Reetion R=r(n,kappa)� Kramers-KronigFor �nite temperatures, system is not desribable by a wave funtion. statis-tial averaging needed. (springer,S250)XXX RPA?� kramers-kronig relations� Transformations.3.3 Relation between real and imaginary partBakground: Due to the Dira relation1! + i� = P 1! + i�Æ(�) (3.26)a spetral distribution funtion with an energylike parameter !G(!) = lim"!0 1N Z d3k F (k)E � E(k)� i" (3.27)has its real and imaginary parts<G(!) = P 1N Z d3k F (k)! � !(k) (3.28)and =G(!) = �N Z d3k F (k)Æ(! � !(k)); (3.29)whih are the Hilbert transforms of eah other.



3.4. IDEAS 21Consequene: Kramers-Kronig Relation These relations onnet the realand imaginary part of any parameter that relates two �elds in a linear and ausalway. The relations read�1(!) = 1+ 1�P +1R�1 d� �2(�)��!�2(!) = � 1�P +1R�1 d� �1(�)�1��! : (3.30)P denotes the prinipal value of the integral. Sine ! > 0 it is desirable totransform (3.32) to integrals over the domain (01). We use the relation"(�!) = "1(�!) + i�(�!)�! = "�(!) (3.31)By multiplying both the numerator and demoninator of (3.30) with (� + !), oneyields �1(!) = 1+ 2�P 1R0 d� !0�2(�)�2�!2�2(!) = � 2�P 1R0 d� �1(�)�1�2�!2 : (3.32)The onsequene of the Kramers-Kronig relations is that one the imaginary partis known for the whole spetrum, you know the real part as well, and vie versa.It is also worth to notie that these relations are of universal validity sine theydo not imply any knowledge of the interations inside the solid.One an also onstrut Kramers-Kronig relations for other quantities, like themagnitude and the phase of the omplex reetion oeÆient.3.4 IdeasE�etive massoszillator strengthondutivity...3.5 Transmission spetra� bandgap - absorption edge� photoni range� eletroni/interband absorption� anisotropy� ubi same in all diretions



22 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDS3.6 Classial Models� lassial, semi-lassial, fully quantum mehanial model� oszillator model� Lorentz (Tau-Lorentz?)� gas: !C , plasma frequeny3.7 Dieletri funtionMirosopi means loal, marosopi means averaged.Here relation to one-partile image. Missing many-partile e�ets, exita-tions)3.7.1 Mirosopi de�nition, dieletriityMirosopi Maxwell equations arer � e = �mi"0 ; r� b = �0jmi + �0"0 ��ter � b = 0; r� e = � ��tbwith e = e(r; t) the mirosopi eletri �eld and b = b(r; t) the mirosopimagneti indution. You aquire the marosopi quantities by averaging:� = h�mii; j = hjmii; E = hei; B = hbi: (3.33)Now additionally ....D = "0E+P; H = 1�0B�M (3.34)De�nition of dieletri funtion and inverse:E(r; t) = "�10 Z d3r0 Z dt0"�1ma(r� r0; t� t0)D(r0; t0)e(r; t) = "�10 Z d3r0 Z dt0"�1mi(r; r0; t� t0)D(r0; t0)where " is a tensor. Medium is homogenous from marosopi point of view, butnot mirosopi; there only lattie periodiity. DF and inverse obey the relation"�1mi(r; r0; t� t0)"mi(r0; r00; t0� t00) = Æ(r� r0)Æ(r0� r00)Æ(t� t0)Æ(t0� t00) (3.35)



3.7. DIELECTRIC FUNCTION 233.7.2 Fourier transformsNow fourier transforms 1 of the marosopi eletri �eld:E(q; !) = "�10 "�1ma(q; !)D(q; t) (3.36)The mirosopi one:"mi(r+R; r0 +R; t� t0) = "mi(r; r0; t� t0)) "mi(q;q0; !) = ei(qiqR�q0)R"mi(q;q0; !)with R a reiproal lattie vetor. Sine this means " is only non-zero for adi�erene q�q0 equal to a reiproal lattie vetor, we make the following hangein notation:"mi(q;q0; !)! "mi(k+G;k+G0; !); (3.37)whih means R d3q ! RBZ d3kPG;R d3q R d3q0 ! RBZ d3kPG;G0;"�1(k+G;k+G0)"(k+G0;k+G00) = ÆGG0ÆG0G00Together with the de�nition (3.33) this results in the following fourier transformfor the mirosopi dieletri funtion:XG Z d3k Z d! ei((k+G)r�!t)e(k +G; !)= Z d3r0 XG;G0 Z d3k Z d! ei((k+G)r+(k+G0)r0�!t)"mi(q;q0; !)! � XG00 Z d3k00 Z !00ei((k00+G00)r�!00t)D(q00; !00)!) e(k+G; !)= XG0 "(k+G;k+G0)XG00 Z d3k00D(k00 +G00) Z d3r0ei(k+G0+k00+G00)= XG0 "(k+G;k+G0)XG00 Z d3k00D(k00 +G00)Æ(k +G0 + k00 +G00)= XG0 "(k+G;k+G0)D(k+G0)1In the following the Fourier transforms are written in the form f(r; t) =12� R d3q R d! exp(i(qr � !t))f(q; !) and f(q; !) = R d3r R dt exp(�i(qr � !t))f(r; t), so thekind of funtion is identi�able by its parameters. Also only partly fourier transformed funtionsmay appear.



24 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDS3.7.3 dieletriity $ internal harge densityNext: Averaging...(244-246) With the fourier transforms of two maxwell equa-tions iqe(q) = 1"0�mi(q); iqD(q) = �ext(q); (3.38)we onlude to�ext(k +G) = XG0 (k +G)"(k+G;k+G0)�mi(k+G0)(k+G0)(k +G0)2XG0 jk+Gj jk+G0j "(k+G;k+G0)�ext(k+G) + �indmi(k+G0)(k+G0)2with "(k +G;k +G0) = uk+G"(k +G;k +G0)uk+G0 the longitudinal dieletrifuntion (uk = kjkj unit vetor).Using the fourier transform �ext(q) = "0 � q2U ext(q), we transform toXG "�1(k+G00;k+G)"0 � (k +G)2U ext(k+G) =XG;G0 jk+Gj jk+G0j "�1(k+G00;k+G)"(k+G;k +G0)�"0U ext(k+G0) + �indmi(k+G)(k+G0)2 � ;whih results in�indmi(k +G) = "0XG0 �"�1(k+G;k+G0)� ÆGG0� jk+Gj jk+G0jU ext(k+G0)and "�1(k+G;k+G0) = ÆGG0 + "�1jk+Gj jk+G0j ��indmi(k+G)�Uext(k+G)3.8 Quantum mehanial model� Indiret transitions:� Diret Transitions...3.9 ComparisonPossible reasons� DFT doesn't desribe exited states� just quasi-partiles� other ontributions: xxx



3.10. MISSING 253.10 MissingMissing:� loal �eld orretions (Fox, 2.2.3)� RPA"��2 = 4�2e2m2!2 Xi;j Z~!=Ej(~k)�Ei(~k) dk2(2�)3 hi~kjp�jj~kihi~kjp�jj~ki���r~k �Ej(~k)� Ei(~k)����f0(Ei(~k))(1�f0(Ej(~k)))(3.39)"2 =X�;� "��2 e�e�; (3.40)For the ubi ase:"2 = 4�2e2m2!2 Xi;j Z~!=Ej(~k)�Ei(~k) dk2(2�)3 jhi~kjpjj~kij2���r~k �Ej(~k)� Ei(~k)����f0(Ei(~k))(1�f0(Ej(~k)))(3.41)What about prefator? Atomi units, ! �4�"0 .De�nition of JDOS:J(E) =Xi;j ZE=Ej(~k)�Ei(~k) dk2(2�)3 1���r~k �Ej(~k)� Ei(~k)���� (3.42)3.11 Krasovskii" = "intra + "inter"1intra = 1� !2p!2"2intra � !2p ��!Æ(!)h{kjrj{ki = 1~ �E{(k)�k (3.43)Types of ritial points? (e.g. Dragoman p.9)
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Chapter 4Basis setsAs already mentioned in setion 2.3, the eigenfuntions are usually expanded ina basis,hrjiki =  i(k; r) = 1p
XG Cik+G�k+G(r); (4.1)where 
 is the unit ell volume. The Hamilton and overlap matries H and Sare onstruted for a set of k-points, and the generalized eigenvalue problem[H(k)� �iS(k)℄ i(k) = 0 (4.2)is solved, with i(k) = (Cik+G) the vetor of the C-oeÆients (of eigenvalue iand vetor k) for all G's. Many questions of detail, as well as general propertiesof your alulation like auray and omputational e�ort depend on the hoieof your basis set.The better the basis funtions math the shape of the atual wavefuntions,the better the onvergene is. Some basis sets may have drawbaks that an notalways be lifted by a bigger ut-o�.4.1 The Plane-Wave BasisA very simple basis set is build out of plane waves (PWs), the eigenfuntions fora onstant potential, that are free eletrons�k+G(r) = ei(k+G)r;The use of this basis omplies to a simple fourier transform. Typially this isa good hoie for nearly free eletrons and deloalized eletrons.The simple analyti form usually leads to well-performing alulations thatare straight-forward to implement. The hamilton and overlap matries an easily27



28 CHAPTER 4. BASIS SETSbe alulated asHG;G0(k) = ~22m jk+Gj2ÆGG0 + V(G�G0); (4.3)V(G�G0) = Zu d3r e�i(G�G0)r Veff(r)SG;G0 = ÆGG0The matrix elements of the momentum operator for instane in this basis (interms of the eigenfuntions) give

Figure 4.1: Used G-vetors in expansion. Small x-like rosses indiate the basisvetors of reiproal spae. The plus-like rosses indiate the (k +G)-vetors orre-sponding to the k-vetor drawn in the origin. The large irle enloses all vetors ofjGj < Gmax, the smaller one those of jk+Gj < Gmax.
fkjri jik�PW = 1
XG (k+G)Cf�k+GCik+G: (4.4)The hoie of G-vetors is illustrated in �gure 4.1. After hoosing a ut-o� valueGmax, all (k + G)-vetors are used that obey jk + Gj � Gmax. This hoie isneessary beause of numerial reasons. The number of basis funtions obviouslydepends on the k-point in onsideration.



4.2. THE APW METHOD 29Potentials: XX , and less eÆient for systems inluding loalized valene ele-trons, like transition metals.The prie for this simpliity is the inability of this basis set to desribe thestrong interations inluding the nulear potential � 1r . As a solution, the ideaof pseudopotentials has been developed. The potentials are idential to the all-eletron potential outside a given ore-radius, but of di�erent, smoother shapeinside. They are onstruted just that the resulting pseudo-wavefuntion mimisthe all-eletron wavefuntion outside this radius as lose as possible. For manyelements, this method works reliable, yielding smooth potentials.4.2 The APW method

Figure 4.2: Spatial partitioning in augmented basis sets. The irles are the muÆntins, leaving the interstitial region, plotted grayed.A basis set of better shape has been proposed by Slater already in 1937[Sla37℄. In this Augmented PlaneWave (APW) basis, spae is divided into spheresthat are entered around eah atom, so-alled muÆn-tins (MTs), and into theremaining interstitial region (IS)1. While plane waves are used as basis funtions1For non-bulk systems, di�erent hoies an be made. For slabs, an additional vauum region



30 CHAPTER 4. BASIS SETSin the interstitial, they are augmented in the spheres by spherial harmonis timeradial basis funtions that are solutions to of the radial Shr�odinger equation toan l-dependent energy�� ~22m �2�r2 + ~22m l(l + 1)r2 + V (r)� El� rul(r) = 0: (4.5)Expanding the funtion in a series of these funtions up to an l-uto� lmax, thisgives the basis funtions (the augmented plane waves)�k+G(r) = 8><>: ei(k+G)r r 2 ISlmaxXl=0 lXm=�l a�lm(k +G)ul(r; El)Ylm(r̂) r 2 MT�: (4.6)The alulation of matrix elements beomes more ompliated due to the radialfuntions being non-orthogonal when restrited to the muÆn-tins, and due to theomplex shape of the interstitial region.It is useful to normalize the radial funtions likehuljuli = R�Z0 dr julj2 = 1 (4.7)To ensure that these basis funtions are ontinuous, one has to math the muÆn-tin funtions to the planewaves on the boundaries. To arrange this, one expandsthe spherial harmonis into planewaves using the Rayleigh relationeiKr = 4�Xlm iljl(rK)Y �lm(K̂)Ylm(r̂): (4.8)K = jKj is the length of the vetor K = k + G, and jl is the Bessel funtionof the �rst kind. An atom � at position S� owns a oordinate frame (U�;S�)(in the style of symmetry operations ??, U� being the rotation matrix). In thisframe, a plane-wave takes the formeiKr ! ei(U�K)(r+U�S�) (4.9)Mathing the planewaves on the sphere boundaries with the muÆn-tin funtionsfor every augmented wave gives the a-oeÆients asa�lm(K) = eiKS� 4�ilul(R�; El)jl(KR�)Y �lm(U�K̂): (4.10)This leaves the C-oeÆients (and the energies El) as the variational parametersof the method, the a's being determined by them. In fat this mathing worksis introdued as a two half-spaes, expanding the funtion in deaying exponentials [Kur00℄.



4.2. THE APW METHOD 31only on a few points exatly, but the so-hosen A-oeÆients yield the smallestmismath.With these basis funtions the wavefuntion take the form i(k; r) = 8>><>>: 1p
XG Cik+Gei(k+G)r r 2 ISXG Xlm Cik+Ga�lm(k+G)ul(r; El)Ylm(r̂) r 2 MT� (4.11)Sine the a-oeÆients are { together with the expansion oeÆients C { the onlyterms inside the spheres depending on G, one an write the whole wavefuntionshorter as i(k; r) = 8><>: 1p
Cik+Gei(k+G)r r 2 ISXlm Ai;�lm(k)ul(r; El)Ylm(r̂) r 2 MT� (4.12)with the shorthandAi;�lm(k) =XG Cik+Ga�lm(k+G): (4.13)Potentials: Sine these basis funtions are the solutions of a onstant potentialin the interstitial and a spherial potential in the muÆn tins, this muÆn-tinapproximation for the shape of the potentials has initially been used. In thewarped muÆn-tin approximation, the interstitial potential is extended to generalshape, that means extended in planewaves.Problems of the method: Aording to (4.10) the A's are determined om-pletely by the planewave oeÆients. So these C oeÆients together with theenergy parameters El are the variational parameters of this method. If the en-ergy parameters were taken as �xed rather than as a variational parameter, themethod would simply onsist of the use of the APW basis set with solving theseular equation (4.1). The solutions would give the band energies.Unfortunately, this is not a workable sheme. The basis funtions lak varia-tional freedom, this means they do not yield orret results if the energy parame-ters El mismath the atual band energies. This means that these energies for onek-point an not be obtained from a single diagonalization, but it has to be solvediteratively. This makes this method muh more omputationally demanding.Furthermore it is diÆult to use a general potential beyond the warped muÆn-tin approximation [Sin94℄. Another obstale is the so-alled asymptote problem.There might be energy parameters for whih ul vanishes or beomes very small onthe sphere boundary. As a onsequene the planewaves and the radial funtionsbeome deoupled.



32 CHAPTER 4. BASIS SETS4.3 The LAPW methodMuh work has been devoted to lifts the desribed problems. In 1975, Andersenintrodued the Linearized Augmented Plane Wave (LAPW) method. The entralidea is to desribe the basis funtions inside the muÆn-tins not only by solutionsof the radial Shr�odinger equation ul(r; El), but as well by its energy derivates_ul(r; El) � ��Eul(r; El). If El di�ers slightly from the true band energy �, aordingto an expansion with respet to the energy,ul(r; �) = ul(r; El) + (�� El) _ul(r; El) +O((�� El)2); (4.14)the true radial funtion an be approximated suÆiently. The error in the bandenergies will be of the order O((� � El)4). The energy derivatives an aquiredfrom (4.5), taking the energy derivative:�� ~22m �2�r2 + ~22m l(l + 1)r2 + V (r)� El� r _ul(r) = rul(r): (4.15)The basis funtions are now�k+G(r) = 8>>>>><>>>>>:
1p
ei(k+G)r r 2 ISlmaxXl=0 lXm=�l [a�lm(k +G)ul(r; El)+b�lm(k+G) _ul(r; El)℄Ylm(r̂) r 2 MT�: (4.16)Analogous to the APW method, the muÆn-tin oeÆients are determined asa�lm(K) = eiKS� 4�ilW Y �lm(U�K̂)[ _ul(R�)Kj 0l(KR�)� _u0l(R�)jl(KR�)℄ (4.17)b�lm(K) = eiKS� 4�ilW Y �lm(U�K̂)[ul(R�)Kj 0l(KR�)� u0l(R�)jl(KR�)℄ (4.18)with the WroskianW = [ _ul(R�)u0l(R�)� ul(R�) _u0l(R�)℄: (4.19)Colleting terms equivalent to the APW basis set, with the de�nitionsAi;�lm(k) = XG Cik+G � a�lm(k+G);Bi;�lm (k) = XG Cik+G � b�lm(k+G) (4.20)



4.4. THE LOCAL ORBITAL EXTENSION 33the wavefuntions take the form i(k; r) = 8>><>>: 1p
XG Cik+Gei(k+G)r r 2 ISXlm �Ai;�lm(k)ul(r; El) +Bi;�lm (k) _ul(r; El)�Ylm(r̂) r 2 MT� (4.21)The detailed onstrution of the H and S matries is desribed in [Kur00℄.With this additional exibility, the LAPWs form a good basis for most setups.In ontrast to the APW method only one diagonalisation is needed to obtain theband energies. And sine it is very unlikely that both radial funtion and itsderivative vanish the asymptote problem does not our.Basis onversion: A method to link the simpliity of the planewave basis withthe auray of the more sophistiated LAPW basis set has been proposed byKrasovskii [KSS99℄. In this Augmented Fourier omponents method (AFC), theviinity of the ore ontaining rapid alterations of the wavefuntions is onsideredto be of low inuene on the hemial behaviour. The results of alulationin LAPW basis are therefore gauged by an appropiate funtion, generating asmoother wavefuntion in this region and leaving a slowly varying valene harge,whih an be represented adequately in a planewave basis. From this results,quantities an be alulated in the simple planewave formalism.4.4 The Loal Orbital extensionThere might be situations where the variational freedom of the LAPW basis setis not suÆient. One example are semi-ore states, whih are states of low energythatdo not deay ompletely within the muÆn-tins, but have an overlap into theinterstitial. Singh [Sin91℄ introdued the Loal Orbital extension to the LAPWset to deal with suh problems.The idea is to expand the basis set by additional funtions that are zero inthe interstitial, to extend exibility inside the muÆn-tins. By onstruing theseadditional basis funtions suh that the derivative vanishes on the sphere bound-aries as well, the A- and B- oeÆients onstruted in (4.17) remain unhanged.The new basis funtion should have the harateristi of a ertain angular mo-mentum llo and energy Elo. This is ensured by a ombination of three radialwavefuntions,�lo � [a�lou�l (r; El) + b�lo _u�l (r; El) + �lou�l (r; Elo)℄: (4.22)Here the index lo = 1; : : : ; nlo runs over the number of loal orbitals introdued,the alo; blo; lo are the orresponding oeÆients for eah atom. The l = llo in-diates the angular momentum quantum number assoiated with this loal or-bital. This onstrution ontains the essential harateristis in the third part



34 CHAPTER 4. BASIS SETS(l(lo); Elo), enrihed with the LAPW-like �rst two parts ensuring the onditionsof the boundary.These two onditions together with the normalization ondition determinethe a; b;  oeÆients of eah loal orbital (for details on this, as well as on theonstrution of the matrix elements, see [Kur00℄). The basis funtions have tositisfy Bloh's theorem. They are therefore mathed to �titious planewaves toobtain the proper XXX4.5 Notes on symmetrysymmetries an be used to simplify the alulations.... (as well as the other quantities like harge density and potentials)� point group symmetry and spae group symmetry.� inversion symmetry: real and omplexCreal! (4.23)equivalent atoms4.6 Notes on the kineti energy operator



Chapter 5ImplementationThe implementation of the dieletri funtion for this thesis has been done withthe FLEUR ode [FLE℄ in bulk mode. FLEUR is a full-potential linear aug-mented plane-wave (FLAPW) ode. In the following setions some details of thisimplementation shall be disussed.Sine the linearized augmented plane-waves are the basis of hoie, the for-mulae of the momentum matrix elements in this basis are presented in setion5.1. Details on performing the k-spae integration to obtain the real part of thedieletri funtion are shown in 5.2. The real part is obtained in 5.3. Due toa restrition of FLEUR, the e�et of bakfolding has to be disussed in setion5.4. The problemati inuene of this bakfolding on the numerial integrationis desribed in setion 5.5. Some remarks in 5.6 are followed by a two test alu-lations.When referring in the following to the dieletri funtion, often it's imaginarypart is meant. This should be lear from the ontext.5.1 Momentum matrix elements in the LAPWbasisThe momentum matrix elements (MMEs)1~i hfkjrj{ki = ~i Zu d3r  �f (k; r)r {(k; r) �Mfi(k) (5.1)are to be alulated in the LAPW basis. Due to the partitioning of the unit ellinto muÆn-tins and the interstitial region by the hoie of the augmented basis,1To avoid onfusion with the imaginary unit i, the initial eletroni transition level is labeled{. 35



36 CHAPTER 5. IMPLEMENTATIONthe matrix elements have to be alulated in these regions separately:hri = hriIS +X� hriMT�: (5.2)The formulae are presented in atomi units (see appendix C), so the fator ~ = 1disappears.5.1.1 Interstitial ontributionIn the interstitial, the wavefuntions are2j{kiIS = 1
XG C {k+Gei(k+G)r; r 2 IS; (5.3)and the nabla operator ats likerj{ki = 1
XG i(k +G)C {k+Gei(k+G)r; r 2 IS; (5.4)so that the interstitial part of the matrix element reads
fkjri j{k�IS = 1
XGG0(k+G)Cf�k+G0C {k+G ZIS d3r ei(G�G0)r: (5.5)The non-trivial interstitial volume the integral ats on is handled by subtratingthe muÆn-tins from the whole unit ell 
:ZIS d3r ei(G�G0)r = Z
 d3r ei(G�G0)r �X� ZMT� d3r ei(G�G0)r: (5.6)While the �rst integral gives the simple value 
ÆGG0, the integral over a muÆn-tinentered at S� gives the split solutionZMT� d3r ei(G�G0)r = ( V G = G03V� sinx�x os xx3 � ei(G�G0)S� G 6= G0 (5.7)with x = jG � G0jR� and R�; V� the radius and the volume, respetively, ofsphere �. Altogether this gives
fkjri j{k�IS = 1
XG (k+G)"C {k+G 
�X� V�!�XG0 6=GCf�k+G0X� 3V� sinx� x os xx3 � ei(G�G0)S�# (5.8)= XGG0(k+G)C {k+GCf�k+G0 � s(G�G0): (5.9)2For onveniene, the general Ket symbol is used in plae of its spatial representation.



5.1. MOMENTUM MATRIX ELEMENTS IN THE LAPW BASIS 37In the last line, the expressions of the preeeding integral were merged into thefuntion s, that iss(G�G0) = 8<: 1
(
�P� V�) G = G0� 3
P� V� sinx�x osxx3 ei(G�G0)S� G 6= G0 (5.10)with the above x = jG �G0jR�. This is the Fourier representation of the step-funtionS(r) = ( 1; r 2 IS0; r 2MT; (5.11)whih is usually onstruted already for the onstrution of the Hamilton andoverlap matries H and S in the self-onsisteny part.5.1.2 MuÆn-tin ontributionsThe further proedure depends on what form of wavefuntions you start from.If you use the LAPW funtions written expliitly in the basis funtions (4.16),without the summation (4.20) in the alulation of your MMEs (5.1), you obtainthe summations over G,l,m eah twie. In the further derivation, not only onepair of the (l; m)-summation vanishes, but also, by lever onversion, the seondm-summation [Kra℄. This leaves summations G;G0; l. If you do this, you ansimply hek the hermitiity of your matrix for every G-vetor.In the derivation used in this thesis, LAPWs of the aumulated form (4.21)are used. To derive the matrix elements in the spheres, the momentum operatoris expressed in spherial oordinates, and its impat on the spherial harmonisis alulated. Sine this part is a bit lengthy, it is moved to appendix A.In allusion to the ladder operators L+ and L� of the angular momentum oper-ator, one expresses the momentum matrix elements not in terms of (�x; �y; �z)T ,but in the rotated form0B� �x + i�y�x� i�y�z 1CA =M0B� �x�y�z 1CA � 0B� �1�2�3 1CA ; (5.12)with the base hange matrix and its inverseM = 0B� 1 i 01 �i 00 0 1 1CA ; M�1 = 0B� 12 12 0�12 i 12 i 00 0 1 1CA : (5.13)



38 CHAPTER 5. IMPLEMENTATIONThe result ontains only one (l; m)-summation an be expressed ashfkj�nj{ki = lmax�1Xl=0 lXm=�l (5.14)[ ( R ul+1u0l r2dr � l R ul+1ul rdr) Af�l+1;m0A{l;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) Af�l+1;m0B{l;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) Bf�l+1;m0A{l;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) Bf�l+1;m0B{l;m ℄ F (2n�1)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) Af�l;mA{l+1;m00+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) Af�l;mB{l+1;m00+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) Bf�l;mA{l+1;m00+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) Bf�l;mB{l+1;m00 ℄ F (2n)l+1;m00for n = 1; 2; 3 indiating the omponents, and m0,m00 given bym0 = 0B� m + 1m� 1m 1CA ; m00 = 0B� m� 1m + 1m 1CA for n = 0B� 123 1CA : (5.15)The fators F (n)lm are de�ned in appendix A. In the ombinations of oeÆientsowning angular quantum numbers l and l+1 in the produts, one reognizes thedipole seletion rules, i.e. the onservation of angular momentum.The notation already indiates that only the large omponent of the wavefun-tion inside the muÆn-tins is taken into aount. For the valene states onsideredthis is a good approximation. The ontributions resulting from the loal orbitalextension to the LAPW basis set (??) are similar in shape to those of the simpleLAPW basis (5.14), but more lengthy, and are hene given in appendix A as well.5.1.3 Properties of the matrix elementsHermitiity: Sine the momentum operator is an observable and therewithhermitian, so must be its matrix elements. This an be shown easily by applyingpartial integration to the de�ning formula of the matrix elements (5.1). It is alsoobvious for the MMEs written in the plane-wave basis (4.4).However it an be hardly seen from the formulae written in LAPW basis,sine the interstitial plane-waves are expanded on the muÆn-tin boundaries interms of spherial harmonis utilizing the Rayleigh relation (4.8). If one appliespartial integration to the LAPW formulae, one an see that e.g. for the (x +iy)-omponent of the muÆn-tin ontribution to the MME, parts of the fatorsontaining F (1)l;m ompensate with the omplex onjugate of the fators ontainingF (2)l+1;m�1, leaving the boundary values of the integration un-ompensated.



5.1. MOMENTUM MATRIX ELEMENTS IN THE LAPW BASIS 39The rest has to be taken by the di�erene in onjugating the interstitial on-tribution, whih is sensitive to onjugation due to the fator (k+G) in the �rstsum in (5.9).Reality: The diagonal matrix elements are real sine the momentum operatoris an observable. Furthermore this an also be seen from and ompared with thederivatives of the energy bands (3.43). The non-diagonal parts are in general om-plex, as an be assumed beause of the omplex A,B muÆn-tin oeÆients. Forthe ase of inversion symmetry, however, the matrix elements beome real. Thisis obvious for the plane-wave basis (4.4) due to the now real C oeÆients (4.23),but not for LAPW basis (due to the re-expansion on the muÆn-tin boundaries).Equivalent atoms: XXXXShould be real for diagonalIn general omplex, but "2 is real again!'magi of numbers'5.1.4 Illustration
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Figure 5.1: The absolute value of matrix elements for �ve seleted transitions evolvingon paths on the border of the irreduible Brillouin zone. The initial and �nal level {and f are given in the legend.To give an impression of the amplitude and k-dependene, a band struture-like plot of matrix elements is shown in �gure 5.1. These are seleted MMEs for



40 CHAPTER 5. IMPLEMENTATIONa simple-ubi Aluminum setup with one atom per unit ell, that is investigatedin setion 5.4. The path is (0; 0; 0)! (12 ; 0; 0)! (12 ; 12 ; 0)! (12 ; 12 ; 12)! (0; 0; 0),and due to big variations in amplitude, the plot uses a logarithmi y-axis.The progression of the urve is monotonous in most areas. On the orners ofthe path, the matrix elements are not unique due to degeneray (ompare to theband strutures in setion 5.4). However, some transitions have a rapid hangein amplitude when approahing the orners. In this ase, only the sum overthe transitions has a physial meaning and gives deterministi results. Anotherirregularity are jumps that our within a path, whih an usually be onnetedto band rossings.5.2 k-spae integrationThe task to perform an integration in k-spae1VG Xi ZBZ d3k U(k)f(�i(k)) (5.16)(VG being the volume of the Brillouin zone, f the Fermi fator at temperaturezero, i.e. a step funtion) frequently appears in band struture alulations,for instane in the determination of the Fermi energy in the self-onsisteny ofthe density funtional theory desribed in setion 2.3. The integrand U(k) isalulated only for a very �nite set of sample k-points.There are di�erent kinds of methods, e.g. the speial points method [CC73,Cun74℄. It provides a set of speial k-points in the irreduible Brillouin zonewith alleged weights to alulate the integrand on. This transfers the integration(5.16) into a summation1VG Xi ZBZ d3k U(k)f(�i(k))!Xi Xk U(k)wik: (5.17)For smoothly varying funtions this yields reliable results. However, for inom-plete oupied bands the integrand in (5.16) is not smooth due to the sharpFermi fator. Consider for instane a band lose to the Fermi energy. In theself-onsisteny, this band ould be shifted above or below the Fermi energy, re-sulting in big hanges in the harge density. This an degrade or even destroythe onvergene. One an implement a more elaborate Fermi fator like the trueFermi funtionf(�) = e e�EFkT � 1; (5.18)that is making the integrand smoothly by a temperature broadening.



5.2. K-SPACE INTEGRATION 41Another method of integration is to divide the volume into subvolumes of aertain shape and perform the integration in the volume analytially over theinterpolated funtion. Among the method of Gilat and Raubenheimer [GR66,Bro93℄, the Tetrahedron Method is the most prominent integration method ofthis kind.Tetrahedra: This method was introdued independently by Lehmann and Taut[LT72℄ in 1972 and by Andersen and Jepsen [JA71℄ in 1971. It's idea is to di-vide the integration volume into tetrahedra. This is always possible, though notuniquely. The tetrahedra an in priniple have arbitrary shape, but ought to beas regular in shape as possible (e.g. not attened). The integration thus hangesto 1VG ZBZ d3k ! XfTetg VTVG ZVT d3k : (5.19)VT is the tetrahedron's volume. In eah tetrahedron, the energy interpolatedlinearly is given uniquely by the four orner energies.Interpolation in one tetrahedron: The orners are labeled from 0 to 3 withinreasing energy, i.e.
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~Figure 5.2: A tetrahedron with orner labels sorted by energy, and interpolationvetor b. The small irle marks the penetration point of the vetor.�0 < �1 < �2 < �3: (5.20)For equally indiated k-vetors, the energy in linear interpolation is�(k) = �0 + b � (k� k0): (5.21)



42 CHAPTER 5. IMPLEMENTATIONHere, the vetor b is de�ned just that the energy oinides for k equal k0;k1;k2;k3with the given orner energies. This is provided with the de�nitionb = 3Xi=1 (�i � �0)ri; (5.22)inluding the auxiliary vetors~ki = ki � k0; i 2 f1; 2; 3g (5.23)ri = 1VT ~kj � ~kk; fi; j; kg yli: (5.24)This interpolation yields a ontinuous energy in the whole integration volume BZmade out of the set of tetrahedra. The integrand an be interpolated analogouslylike U(k) = U0 + b0 � (k� k0) (5.25)with the aording de�nitionb0 = 3Xi=1 (Ui � U0)ri: (5.26)With this the whole integrand is ontinuous in the integration volume. A possiblesimpli�ation is to take the integrand set to a onstant value �U averaged over thetetrahedron. With this, the quantity is of ourse not ontinuous anymore.Given this linear form of the integrand, the integration in eah tetrahedronan be performed analytially.Spetral alulations: This method works �ne for spetral integrals (for in-stane those kinds of integrals mentioned in setion 3.3. Take integrals of thetype of the density-of-statesD(E) = 1VG Xi ZBZ d3k Æ(E � Ei(k))= 1VG Xi ZE=Ei(k) dS 1jrkEi(k)j : (5.27)If this integrand is interpolated linearly like in (5.25), it gives1jrkE(k)j = 1jbj : (5.28)The onstant-energy plane E = Ei(k) in one tetrahedron is the ross-setion ofa plane perpendiular to b. There are three possible ase of this plane to ut



5.2. K-SPACE INTEGRATION 43the tetrahedron, yielding a utting area A and leading to a ontribution of theintegral equal Ajbj . The expliit results are [LT72℄DT (�) = 8>>>><>>>>: 0 � < �1 or �4 < �VTVG 3(���1)2�21�31�41 �1 < � < �2VTVG 1�31�41 h3�21 + 6(�� �2)� 3 (�31+�42)(���2)2�32�42 i �2 < � < �3VTVG 3(�4��)2�41�42�43 �3 < � < �4 (5.29)with the energy di�erenes �ij = �i � �j.Inlusion of Fermi fators: If unlike (5.27) the integral ontains a Fermifator like (5.16) whih is simply inluded into the integrand, the desribed pro-eeding will not give good results sine the values are possibly interpolated to zerobeause of this fator. But due to the linear interpolation, energy ross-setionsare easy to determine, as done for the density of states. Nothing else is a Fermifator that separates the oupied and unoupied part by a onstant-energyplane.For in integral (5.16), depending on the energy � and the Fermi energy �Freferring to, the valid ontribution an onsist out zero volume (�F < �1), onesubtetrahedron (�1 < �F < �2), three subtetrahdra (�2 < �F < �3 or �3 < �F < �4),or the omplete tetrahedron (�4 < �F ) [RF75℄.
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Figure 5.3: A tetrahedron that is divided due to two Fermi fators. The numbersat the orners are the sorted energy indies for the initial and �nal bands { and f , thetwo vetors are the orresponding b vetors (5.22). In this diagram the energy utsboth bands within the tetrahedron and results in two rossing onstant-energy planes.Cutting of vetors with these planes or the tetrahedra boundary are marked with smallirles. The valid subvolume is marked with the red arrow, as well as shown on theleft, with its division into three subtetrahedra.



44 CHAPTER 5. IMPLEMENTATIONFor an integral ontaining two Fermi fators like (3.39), one performs oneah subtetradron obtained for the �rst Fermi fator the (inverse) oupationproedure for the seond Fermi fator, resulting in at most nine subtetrahedrafor the initial tetrahedron. Note that for the seond step a renumbering has tobe made due to the possibly di�erent order of the energies Ef .For the integration (3.39), this means that for every transition { ! f , thevalid volume is determined, and the remaining integrand, i.e.U(k) = h{kjp�jfkihfkjp�j{kijrk(Ef(k)� E{(k))j ; (5.30)is evaluated for eah of the valid volume's tetrahedra.Weighted formulation: Bl�ohl has shown that the tetrahedron method analso be written to result in the form of a weighted summation (5.17). Theseweights are given in appendix B. With this formalism, arbitrary funtions anbe integrated without doing the geometri derivation done for instane in theformulae of the density-of-states above.It should be noted that the obtained weights do not oinide with those of thespeial point method whih are based on symmetry, i.e. the tetrahedron methoddoes not take into aount the high symmetry harater of the irreduible zone'sboundaries. This leads to a worse onvergene than using the speial pointsmethod, and is the reason why the tetrahedron method is usually not used forthe self-onsisteny, but for spetral alulations.Attempts have been made to raise the level of interpolation to a quadratione. When marking out suh a formalism to the linear one introdued above, thelatter one is referred to expliitly as linear tetrahedron (LT) method.Redution to the Irreduible Brillouin Zone (IBZ): Usually the eigen-vetors and eigenvalues are alulated only in the irreduible part of the Brillouinzone. Let's onsider the e�et on integral (3.39). Let R be an appropriate rota-tion matrix. The energies are the same at the rotated k-pointE{(k) = E{(Rk); (5.31)but the eigenvetors are rotated:hrj{;Rki = hR�1rj{;ki (5.32)For the alulation of the momentum matrix elements, instead of rotating theeigenvetors one an also rotate the oordinate system and therewith the nablaoperator, in symbols rRr = Rrr. With this the matrix element for a k-point Rr



5.2. K-SPACE INTEGRATION 45in the �rst Brillouin zone, but outside the irreduible wedge, an be omputedlike hf;Rkjrj{;Rki = Z d3r  �f (Rk; r) rr  {(Rk; r)= Z d3r  �f (k;R�1r) rr  {(k;R�1r)= Z d3r  �f (k; r) rRr  {(k; r)= Rhfkjrj{ki (5.33)When alulating the integral"��2 (!) �X{f BZZ~!=�E dS h{kjr�jfkiyhfkjr�j{kijrk(Ef(k)� E{(k))j f(E{(k))[1� f(Ef(k))℄ (5.34)with only use of the irreduible part, one uses the identity of the energies at theorresponding k-points (5.31). Furthermore Ry = R�1, so that the numerator ofthe fration in the preeding integral givesh{;Rkjr�jf;Rkiyhf;Rkjr�j{;Rki = h{kjr�jfkiyhfkjr�j{ki (5.35)and the integral itself"��2 (!) � NRX{f IBZZ~!=�E dS h{kjr�jfki�hfkjr�j{kijrk(Ef (k)� E{(k))j f(E{(k))[1�f(Ef(k))℄ (5.36)with NR the number of symmetry operations.A note on ubi systems: Sine we know from setion three that the di-eletri tensor has unit form for ubi rystals, one an immediately redue thealulation (5.36) to the salar ase, using the square of the absolute value in thenumerator.This is not to be mixed up with the momentummatrix elements itself, whih ofourse still have independent omponents. For instane remember the diagonalMMEs being proportional to the band derivatives, whih have a well-de�neddiretion.Reality: The imaginary part of the dieletri funtion "2(!) is a real funtion.So must be the results of (5.36). For the ubi ase this is obvious sine thedenominator redues to a real expression.In the ase of non-ubi systems (3.39), the integral ontains produts ofmomentum matrix elements M��{f M�f{ whih are in general omplex. This means



46 CHAPTER 5. IMPLEMENTATIONthat the omponents of the tensor obtained from (5.36) an be omplex, obeyingthe relation "��2 = "���2 . But aording to (3.40), the resulting dieletri funtionalong a unit vetor u is omposed of a summation"2 =X�;� "��2 u�u�; (5.37)ontaining for every ontribution of "��2 the transposed part "��2 as well. Thereforethe dieletri funtion "2 beomes real, and one an redue the dieletri tensorto its real part ~"2 = <"2 (i.e. symmetrizing it by (~"��2 = 12("��2 + "��2 )). This alsorestores onsisteny with the statement in hapter 3 that the dieletri tensor issymmetrial.5.3 The Real part of the Dieletri FuntionDue to the tight relation between real (3.28) and imaginary part (3.29) of spetralfuntions, one an set up a formula for the real part similar to (3.39) ontaininga k-spae integration. This has been done e.g. for the magneti suseptibility byGilat and Bharatiya [GB75℄. They used the tetrahedron integration sheme toderive analytial expressions for the integral ontributions that are quite lengthy.In this thesis, the alternative path is followed, i.e. the Kramers-Kronig inte-gration transformation (3.32) is employed.Numerial auray of the Kramers-Kronig relations: The auray ofthe applied integration should be tested on a prominent analytial example, thisis the harmoni osillator. The real and imaginary part are given by"1(!) = 1 + N0e2m (!20 � !2)(!2o � !2)2 + !2Æ2 (5.38)"2(!) = N0e2m !Æ(!2o � !2)2 + !2Æ2 : (5.39)The funtions are plotted in �gures 5.4 and 5.5 for two di�erent attenuationsÆ = 0:2 and Æ = 1:0, furthermore: N0e2=m = 1, !max = 101s , !0 = 4:51s . Theanalytial solutions are plotted in thik blak, while the numerial solutions ofthe real part are plotted dashed blue. Numerial solutions are given for threedi�erent number of sampling points, 100, 400, 1000, and 25000 (in the seondplot only).One an see that there is a need for an appropriate set of mesh points (inthe order of thousand or more) to ahieve a numerial urve lose to the analytione. The �rst region of problem of these urves is at the extrema lose to !0,where the numerial solution slowly onverges to the analyti one. The seondproblemati energy range is for energies lose to zero. There is a disrepanyraising with the attenuation Æ that is not removed by a larger mesh point set.
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Figure 5.4: Analyti real and imaginary part for Æ = 0:2 (thik blak lines) andnumerial real part for di�erent numbers of mesh points (blue lines).5.4 BakfoldingAt this point it should be mentioned that there are degrees of freedom in thehoie of the unit ell. There might be unit ells of di�erent shapes for the samenumber of atoms, resulting in a di�erent reiproal lattie. In doing so the bandstruture stays unhanged in the reiproal spae, but appears di�erent due tothe di�erently hosen basis. There is also the possibility and (possibly the need)to hoose a bigger unit ell to model the system, giving a smaller Brillouin zonewith modi�ed bands.The e�et on the band struture, alled bakfolding, shall be disussed here.Sine the dieletri properties are understood to be transitions between bands,understanding of the impat of bakfolding is essential if dealing with bigger unitells.5.4.1 Algebrai onsiderationsTo understand the e�et of periodiity, the Bloh theorem should be reapitu-lated, to simplify matters in one dimension for a non-degenerate system inludingtime-reversal symmetry. The Shr�odinger equationH n(r) = E n(r) (5.40)
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Figure 5.5: Analyti real and imaginary part for Æ = 1:0 (thik blak lines) andnumerial real part for di�erent numbers of mesh points (blue lines).yields eigenvalues E and eigenvetors  . When the system onsists of unit ellsof length R, the orresponding translation operator is de�ned asTR : r ! r +R; (5.41)with the properties[TR;H℄ = 0; (5.42)TR n(r) =  n(r +R): (5.43)This translation operator shares a ommon set of eigenvetors with the Hamilto-nian. Sine the absolute square of the wavefuntions is independent under propertranslations,TRj j2 = TR( � ) = (T �R �)(TR ) = j�j2j j2; (5.44)the eigenvalues of the translational operator take the form � = eikr, whih atthe same time lassi�es the wavefuntions:  n(r)!  n(k; r). Furthermore, as aonsequene of (5.42) these wavefuntions an be hosen to take Bloh form n(k; r) = eikR'n(k; r); 'n(k; r) = 'n(k; r +R); (5.45)



5.4. BACKFOLDING 49onsisting of an exponential and a lattie-periodi funtion. The essential lounow is how Bloh waves shifted in k-spae reat on translations in real spae:TR n(k +G; r) = ei(k+G)R n(k +G; r) = eikR n(k +G; r): (5.46)This means that all shifted k-vetors k + G are assoiated to the same eigen-value � = eikR of the translation operator. Therefore the set of eigenvalues andeigenvetors at k +G are equivalent to those at k. Therefore one an redue allonsiderations to the �rst Brillouin zone �K2 � k � K2 ; K = 2�L . One might be

0 k K k+K-k0.5K 0.5KFigure 5.6: Sample band struture similar to nearly-free eletrons. The First Brillouinzone's boundary is at 12K. Two equivalent k-points to k are marked, �k and k +K.onfused by this insight sine the Hamiltonian in matrix representation in a basisseems to hange with a substitution of k to k + G. For the ase of an in�nitebasis this substitution only onerns permutations of rows and olumns. For a�nite basis, one gets numerial problems for high-lying states.The onsequene for the band struture is shown for a system similar tonearly-free eletrons in �gure 5.6. The solid vertial lines at 12K;K; : : : are theboundaries of the Brillouin zones. The dashed lines indiate one k-point k andequivalents of it at �k and k +K.If one now imposes a lower periodiity like ~R = 2R, the reiproal lattieand therewith the Brillouin zone redues to half the size, jkj � ~K; ~K = �L . Adenser periodiity of ~K = K2 is demanded now instead of K in the �rst plae,
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~K~K-kFigure 5.7: Sample band struture for a system for that a lower translational symmetrythan in �gure 5.6 has been used. The new Brillouin zone border is 12 ~K. Additionally,~K � k is marked as equivalent to k now.with . This makes the point �k (whih is equivalent to k due to time-reversal)equivalent to �k + ~K = K2 � k. Sine these two points have (possibly) distintsets of eigenvalues in the initial setup of high periodiity, these two sets sum upin this setup.The orresponding band struture is shown in �gure 5.7. The periodiity ofbranhes has been doubled, the �rst Brillouin zone shrinks to half the size ~K,and the number of bands in it doubled. This �gure gives an idea of the originof the term bakfolding. The bands look folded bak at the enter of the formerbigger Brillouin zone; but the superposition with an additional band struture isa better way to visualize.5.4.2 Representation in a basisThe impat of bakfolding on the energy eigenvalues has been shown in the previ-ous paragraph. But the dieletri funtion essentially depends on the momentummatrix elements and therewith on the wavefuntions. Here, the e�et of bak-folding should be illustrated for a plane-wave alulation.For simpliity, I hoose a simple, hypothetial system of Aluminum (Al) in asimple ubi (s) struture3. This is alulated in two setups (A denotes sets of3So in this ontext, SC is not meant to be an abbreviation of self-onsisteny, as in the



5.4. BACKFOLDING 51basis vetors, D are atom positions in oordinates of these basis vetors)A1 = 8><>:L0B� 100 1CA ; L0B� 010 1CA ; L0B� 001 1CA9>=>; ; D1 = 8><>:0B� 000 1CA9>=>; (5.47)andA2 = 8><>:L0B� 100 1CA ; L0B� 010 1CA ; L0B� 002 1CA9>=>; ; D2 = 8><>:0B� 000 1CA ;0B� 0012 1CA9>=>; ; (5.48)that is the seond setup doubles the �rst one in z-diretion. The resulting reip-roal latties (written in form of Bravais matries, i.e. writing the (transposed)reiproal basis vetors in matrix form) areB1 = 2�L 0B� 1 0 00 1 00 0 1 1CA ; B2 = 2�L 0B� 1 0 00 1 00 0 12 1CA ; (5.49)the seond setup having a Brillouin zone halved in z-diretion. The wavefuntionsshould be expressed in plane-waves for both setups, (1)i (k; r) = 1p
 XG12G1C(1)ik+G �k+G1(r); (5.50) (2)i (k; r) = 1p2
 XG22G2C(2)ik+G2 �k+G2(r); (5.51)with 
 the volume of the small unit ell, G1, G2 the two sets of G-vetors. The 'are the ommon plane-wave basis funtions�k+G(r) = ei(k+G)r: (5.52)As a result of the smaller Brillouin zone the set of G vetors in the seond setupis double as dense as in the �rst one, see �gure 5.8. Sine we ut a sphere ofjGj � Gmax, the set G2 ontains approximately double the number of vetors. Sofor every vetor G out of G1 we assign a vetorG = G+ ~K; ~K = (0; 0; �L); (5.53)so that all the vetors fG;Gg form the seond set G2. This assignment worksonly approximately due to the shape of the sphere, but is valid for a suÆienttheoretial part before.
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Figure 5.8: The kx � kz-plane of the reiproal latties for the two setups. Basisvetors are indiated by x-like rosses, (k+G)-vetors for one speial k drawn in theorigin by plus-like rosses.expansion ut-o� Gmax: Sine the inuene (i.e. the magnitude of the expansionoeÆient) of large G-vetors vanish in the ase of a valid onvergene, the dis-repany an be negleted. So we an take G2 double as large as G1, and omitindies to the G-vetors sine it should be lear from the ontext whih vetorsare referred to.Let's wath the generalized eigenvalue problem (2.23). Sine the plane-waveare orthogonal, the overlap has unit shape:[H(k)� �(k)I℄(k) = 0: (5.54)For the two setups the elements of these matries read (see (4.3))H(1)G;G0(k) = ~22m jk+Gj2ÆGG0 + V (1)(G�G0); V (1)(G�G0) = 1
 Zu1 d3r e�i(G�G0)r Veff(r)H(2)G;G0(k) = ~22m jk+Gj2ÆGG0 + V (2)(G�G0); V (2)(G�G0) = 12
 Zu2 d3r e�i(G�G0)r Veff (r);(5.55)integrations performed over the real spae units ells one (u1) and two (u2).Now we want to relate the Hamilton matries of the two systems. Sine thefuntion Veff is periodi in the �rst unit ell u1 (thus twie periodi in u2), andan exponential exp (i(G�G0)r) is simple periodi in u2, ontributions of thepotential of mixed G-vetors vanish:V (2)(G�G0) = V (2)(G�G0 ) = 0: (5.56)



5.4. BACKFOLDING 53If we therefore rearrange the vetors of G2 when applying them on H to groupthe vetors of G1 �rst, we obtain for the Hamiltonian the blok formH(2) =  H(2a) 00 H(2b) ! ; (5.57)the submatrix (a) taking the ontributions of the undashed, (b) taking those ofthe dashed G-vetors.Contributions (G�G0) to the potential are idential to ontributions (G�G0)of the orresponding undashed G-vetors. In the formula for the potential, thedouble integration range anels with the fator 12 in front of the integral, andthe ontribution is the same as in the small setup:V (2)(G�G0) = V (2)(G�G0 ) = V (1)(G�G0 ): (5.58)Sine the kineti part of H(2a) is idential to H(1), so is the whole submatrix.Let's turn fous on H(2b). It readsH(2b)G;G0(k) = ~22m jk+Gj2ÆGG0 + V(G�G0): (5.59)We assume time reversal symmetry, i.e. H(k) yields the same set of eigenvetorsand eigenvalues for �k. We apply this on our submatrix H(2b). Beause ofG = G + ~K and (5.58), our matrix elements are equivalent toH(2b)G;G0(k) = ~22m j( ~K � k) +Gj2ÆGG0 + V(G�G0) (5.60)= H(1)G;G0( ~K � k): (5.61)With de�ning a bakfolding operator Tk : k! ~K � k, the Hamiltonian readsH(2)(k) =  H(1)(k) 00 H(1)(Tkk) ! : (5.62)The spetrum of suh a matrix is the sum of the spetra of the submatries. Theeigenvetors are �lled up with zeros in its additional omponents. If the smallsetup has the eigenvalues and eigenvetorsf�(1)j (k)g; fjjkig = n�C(1)j(k+G)�o ; (5.63)those of the large setup aref�(2)i (k)g = f�(1)j (k)g [ f�(1)j (Tkk)g andfjikig = ( C(1)j(k+G)0 !) [( 0C(1)j(Tkk+G) !) (5.64)



54 CHAPTER 5. IMPLEMENTATION(with j (i) running over all bands of the small (large) system).It should be noted that the derivations given above only �t approximately,due to the �nite set of G-vetors. This is illustrated in �gure 5.8, where a sampleutting sphere is plotted. For suh a small set of vetors, it is barely possible tomake a reasonable mapping (5.53). This e�et should diminish for an inreasingnumber of basis funtions.The experiene shows that the distintion (5.64) into two di�erent kinds ofeigenvetors is also valid for the same system in an LAPW basis. This has beentested for the alulation presented in the next subsetion.However, if the bakfolding involves a more omplex transformation of basisvetors, these results { the form of the eigenvetors (5.64) { do not stand stritlyanymore.
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Figure 5.9: Band struture for s Aluminum, setup 1 (small).5.4.3 IllustrationThis e�et should be demonstrated now by some band strutures for this system.Figures 5.9 and 5.10 show the band strutures for the two systems along thepath (0; 0; 0) ! (12 ; 0; 0) ! (12 ; 12 ; 0) ! (12 ; 12 ; 12) ! (0; 0; 0), eah in internaloordinates. Due to the symmetry mentioned above, every plot k1 ! k2 in thelarge system is the sum of the plots k1 ! k2 and ( ~K � k1) ! ( ~K � k2) of thesmall system (with ~K = (0; 0; 2�L )).Due to the simple kind of bakfolding in this setup, one sees the bakfoldingniely in a plot along z-diretion. In �gure 5.11 the path (12 ; 12 ; 0) ! (12 ; 12 ; 12) is
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Figure 5.10: Band struture for s Aluminum, setup 2 (large).
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Figure 5.11: Bakfolded band struture parallel to z-diretion. On the left two bandstrutures of the small system are shown that overlap to the band struture of the largesystem on the right.
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Figure 5.12: Bakfolded band struture perpendiular to z-diretion. The right bandstruture (large setup) is the sum of the two on the left (small setup).shown, that is the third setion of �gure 5.10. The band struture of the largesystem is given by that of the small system overlapped with the additional path(12 ; 12 ; 12)! (1; 12 ; 12).In �gure 5.12 the band struture (0; 0; 0)! (12 ; 0; 0) is plotted. The bands ofthe large system on the right are those of the small system along the same lineon the very left, superposed by the bands (0; 0; 12)! (12 ; 0; 12). Here it is alreadydiÆult to distinguish the two kinds of bands by a simple glimpse.5.4.4 Consequenes for omputationThe alulation of a physial property (i.e. the expetation value of a hermitianoperator) must be the same whatever hoie of the unit ell has been made.Sine the band strutures hange, one might get the impression that this rule isviolated.One essential ingredient of the dieletri funtion (3.39) are the transitionsfrom one band to another, that is a double sum over oupied and unoupiedstates. This summation will hange if the band struture hanges. The jointdensity of states (JDOS) for example, given by (3.42), relies on these transitionsonly, meaning only on the gradient of the energy di�erenes. It does not dependadditionally on matrix elements like the dieletri funtion (3.39). This leads todi�erent results for a bakfolded setup.
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Figure 5.13: Dieletri funtion of s Aluminum with (small graph, "2) and without(large graph, ~"2) inlusion of matrix elements (288 k-points) for small and large unitell.To show this, the dieletri funtion (3.39) is plotted in graph 5.13 with matrixelements negleted, i.e. the numerator equal to one. Though not the same quan-tity, this term su�ers the same e�et with respet to bakfolding as the JDOSdoes. It an diverge for small energies due to the fator 1!2 . This di�erene forthe two setups does not ontradit physis sine the JDOS is not an observableand does not have a physial meaning by itselves.The dieletri funtion on the other hand yields the same results for bothsetups due to the momentum matrix elements inluded in its mathematial de-sription. These matrix elements have the property to vanish if being applied ona regular and a bakfolded eigenfuntion:hfkjrj{ki = 0 for bakfolded transition; (5.65)that is one state of { or f being bakfolded, the other one regular. For the simplesetup of setion 5.4, this an be seen easily from the form of the eigenvetors(5.64) and the form of the matrix elements in plane-wave basis (4.4).



58 CHAPTER 5. IMPLEMENTATION5.5 Resulting problems in the integrationUp to now, the interesting insights of the previous setion do not pose any an-alytial problems. But in the numerial treatment, problems appear due to theinterpolation between k-points made in the integration sheme desribed above.The two di�erent kinds of problems enountered in the implementation are de-sribed in this setion.Before desribing the details, one should remember the way a omputer han-dles bands. A human an onnet k-points logially to bands by wathing aband-struture, or an give it a mathematial harater. Initially, omputers anonly enumerate the eigenvalues, and uses the aording eigenvetors. It needsadditional e�ort [YKS℄ to reognize band rossings.5.5.1 The Inuene of DegenerayThe �rst problem with bakfolding arises at points with degenerated energy eigen-values. At these points the eigenvetors are determined only up to linear om-binations of eah other. An example for degenerated eigenvalues is skethed in�gure 5.14. For instane, k3 ould be the zone boundary. It is known that thematrix elements vanish for a degenerate energy eigenvalues,hfkgjrj{kgi = 0 for E{(kg) = Ef(kg); (5.66)as in our ase. (This is shown by Mavropoulos, Papanikolaou and Dederihs[MPD℄.) It should be valid in the limit k ! kg, too. Therefore, one should notexpet problems from this.The situation is di�erent if you onsider transitions to another band  in asystem possessing bakfolding. In our �gure, let bands a and  be regular, whileb is bakfolded. Transitions b !  should not give any ontributions. This isonsistent with the image that aording to (5.64), the eigenvetors of bands band  have the formjaki �  �0 ! ; jbki �  0� ! ; jki �  �0 ! ; k 2 (k1; k3): (5.67)At k3, however, due to the intermixture of a and b, the eigenvetors take the formjaki �  �� ! ; jbki �  �� ! ; (5.68)resulting in a matrix element Mb(k3) 6= 0. In the analytial solution this is noproblem due to the singularity of this point (or plane in three dimensions, respe-tively). In a linear interpolation sheme, though, this leads to �nite ontributions,as skethed in the small piture in �gure 5.14.
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Figure 5.14: One-dimensional illustration of degeneray. The straight red lines are thetrue bands, while the dotted blak ones are interpolated linearly from the energy values(plotted as stars) at the mesh points k1,k2,k3. The horizontal dotted line indiates theFermi energy. In the small piture, a linear interpolation is skethed in dotted blak,the true disontinuous path in solid red.A possible solution: It is neither ommon nor possible without additionalnumerial e�ort to determine the \natural form" j{kgin of the wavefuntions at ak-point kg possessing degeneray (that would be j{kgin = limk!kg j{ki). Further-more it is quite improbable (if possible at all with limited numerial preision) fora sample k-point within the Brillouin zone (exluding the origin) to hit a point ofdegeneray. On the other hand degeneray on the Brillouin zone's boundary andat high symmetry points in it (whih are in turn boundaries of the irreduiblepart of the Brillouin zone) is very ommon. Experiene aÆrms that matrix ele-ments like Mb(k) quikly vanish when moving o� the high symmetry (see nextsubsetion).Therefore a simple solution is just to shift all k-points marginally o� theboundary inside the irreduible wedge. If bakfolding is absent, this leads toonly a marginal but notieable error, due to the quik variations of the matrixelements lose to high-symmetry planes. In the presene of bakfolding, the e�etis similar to negleting the matrix elements (shown in �gure 5.13): The dieletri



60 CHAPTER 5. IMPLEMENTATIONfuntion will get additional ontributions due to wrong interpolation, espeiallybig values for small frequenies.5.5.2 The Inuene of Band rossing
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Figure 5.15: One-dimensional example for band rossing. The straight red lines arethe true bands, while the dotted blak lines are interpolated from the energy values(plotted as stars) at the mesh points k1,k2,k3. Fermi energy is dotted in the upperthird.In the ase of band rossing, the interpolation errors have a signi�ant in-uene. This is illustrated for a one-dimensional example in �gure 5.15. Thetrue bands are approximated linearly from the energy values at three samplingk-points k1,k2,k3. As in the sketh before the bands are labeled a,b,. For ahuman observer this refers the true bands, while a omputer gives these labels tothe eigenvalues ordered from bottom to up.Let the bands a and  be regular, while band b is bakfolded, and fous onthe interval [k1; k2℄. Aording to (5.64) the eigenvalues at k1 take the formjak1i �  �0 ! ; jbk1i �  0� ! ; jk1i �  �0 ! ; (5.69)



5.5. RESULTING PROBLEMS IN THE INTEGRATION 61and the formjak2i �  0� ! ; jbk2i �  �0 ! ; jk2i �  �0 ! (5.70)at point k2. This results in matrix elements for a transition b!  of the formMb(k1) = 0; but Mb(k2) 6= 0: (5.71)Due to the non-vanishing matrix element at k2, the matrix element is interpolatedin [k1; k2℄ ontinuous in the range [0;Mb(k2)℄. In the given example, this resultsin transitions at low frequenies �num (see �gure 5.15), while analytially (andfor an in�nitely dense mesh) only transitions down to �real are possible in thisinterval.The impat on the urrent alulations are strong sine though also ourringin its absene, the e�et is stronger with bakfolding present due to the largernumber of bands. Further on, the di�erenes resulting from matrix elementsequal zero being interpolated inorretly are ruial, espeially for small energiesdue to the fator 1!2 that goes into the dieletri funtion (3.39).An approah to avoid the problem: A method to minimize the ontributionof bakfolding to this e�et is to renumber the bands. This is possible up to aertain point for rossings of regular bands with bakfolded ones, as mentionedearlier (5.64).In �gure 5.16, this method has been applied to aluminum for a mesh of 288k-points. Only with this method one restores the orret absorption edge of theurve. Calulations show that without reordering of bands, this e�et is stillpresent for a alulation involving 11000 k-points.The higher the eigenvalues are, and the loser the k-points to high symmetrypositions, the worse is lassi�ation into regular and bakfolded ones. The �rstitem is not too serious beause transitions of higher energy ontribute less tothe dieletri funtion, due to the prefator 1!2 . Seond one an assume bandrossings of regular and bakfolded bands not to appear in the very lose viinityof high-symmetry planes. Starting from this one an hope to get good resultswith this method.In �gure 5.17 the atual deay of overlap and absolute value of matrix elementsis shown. The observed system is the seond test system in setion 5.7, fCopper. The two lowest bands are examined along the k-vetors (z; z; z) forz 2 [0:499; 0:5℄. The plot is double logarithmi. It gives an idea of how farto shift k-points o� the boundary so that the matrix elements vanish (as theyshould) and the bands an be lassi�ed orretly.
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Figure 5.16: Dieletri funtion for f Aluminum, with and without sorted eigenval-ues to orret rossing with bakfolded bands (288 k-points).
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Figure 5.17: The overlap of wavefuntions 1 and 2 of an f Copper system.5.6 A Note on Computational DemandsFor sophistiated spetral omputations you need an adequate set of k-points {possibly in the order of thousands. This meets the fat that for large systems with



5.6. A NOTE ON COMPUTATIONAL DEMANDS 63a big number of eletrons, the number of transitions roughly sales quadratiallyto it. Together this an result in quite big demands of omputer memory, so thatone has to onsider the question how to provide these matrix elements to yourintegration routine.It turns out that the alulation of the matrix elements (and herein the inter-stitial ontribution) is the major omputational e�ort. So one an alulate theMMEs in advane, resulting in minimal omputational osts and biggest memorydemands. On the other hand the matrix elements an be omputed on-the-y,abandon the use of the big array memory, but needing to alulate the same ma-trix elements several times. In between, you an try to ahe seleted elements inmemory to ombine the advantages of both approahes with minimal drawbaks.At this point, the speial way of onnetions of your k-points to tetrahedraand the order of tetrahedra an be of big help. For instane, regard a typialtetrahedra set onneting nearest neighbors in a set of nk k-points equidistant inthe three spatial oordinates. This tetrahedra should be arranged in layers, e.g.in z-diretion, with the same order in eah layer (aording to the layer shapewhih may di�er).If one proesses the tetrahedra sequentially, the data of the orrespondingk-points (inluding the matrix elements) are not needed only for a short time.Conversely, even if one does not want to alulate the matrix elements multipletimes, you need to store only nsim matrix elements at the same time, where nsiman be onsiderably smaller than nk.
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Figure 5.18: Computational amount depending on ahe size (1470 k-points, 6591tetrahedra).If you take a ahe smaller than these nsim entries, you will have to alulatematrix elements partly again sine you have to skip some whih you need later.



64 CHAPTER 5. IMPLEMENTATIONBut you an still take good advantage of that method, depending on whih matrixelements you skip. In �gure 5.18 this is illustrated for a k-point of 1470 points (it isa prism-shaped box with 14 equidistant points per edge), giving 6591 tetrahedra.Only matrix elements for nsim = 116 k-points are needed simultaneously not toalulate them repeatedly.If you lower the size of your ahe below this value, your number of alulationsinrease, depending on your strategy. The point (116; 1470) at the lower right isthe starting point of a omplete ahing. If the ahe is full when a matrix elementshould be stored, the �rst strategy writes the new element in the beginning of theahe, while the seond one looks for the oldest element in ahe. Though thenumber of omputations quikly nearly doubles for a small derease of ahe size(� (106; 2650)), it stays below 3000 { roughly double the omputational amount{ for even a �fth of the starting size.5.7 Test alulationIn this setion I investigate the inuene of� bakfolding� band rossing� Fermi energy (just remark).� number of k-pointsRemarks on omputational demand, salingRestrition of FLEUR, larger ells, bakfolding...Run-ow diagram of my ode??MME plotsIn this setion two alulations are ompared to literature. The parametersare listed in appendix D.5.7.1 AluminumIn nature, Aluminum exists in the fae-entered ubi on�guration. This an bemodeled in the basisA1 = L0B� 12 12 012 0 120 12 12 1CA ; B1 = 2�L 0B� 1 1 �11 �1 1�1 1 1 1CA (5.72)



5.7. TEST CALCULATION 65of real and reiproal spae. In the urrent alulation it is modeled in the real-spae and reiproal-spae basisA2 = L0B� 12 12 012 �12 00 0 1 1CA ; B2 = 2�L 0B� 1 1 01 �1 00 0 1 1CA ; (5.73)with two atoms per unit ell on internal oordinates (0; 0; 0) and 12(1; 1; 1). The

�������
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����������������Figure 5.19: The bandstruture (0; 0; 0) ! (12 ; 0; 0) ! (12 ; 12 ; 0)! (12 ; 12 ; 12)! (0; 0; 0)of Aluminum in f oordination is shown on the left. The right plot ontains theaording Density of states.used lattie parameter Lnum = XXXa0 was onverged to the minimum of thetotal energy. A bandstruture (along the same path as those in setion ??) isshown in �gure 5.19, together with the density of states. The 3s eletrons of thissystem show a behaviour similar to free eletrons, as an be seen in the parabola-like bands in the bandstruture, and in the DOS lose to pE. On an omparethese results to those of the simple-ubi systems in setion 5.4.The (imaginary) dieletri funtion has already been shown in �gure 5.16 fora small number of k-points to demonstrate the inuene of the sorting of eigenval-ues. In �gure 5.20 it is shown for di�erent larger number of k-points. It shows theslow onvergene known from literature. Furthermore, two harateristi peaksare loated at 0:5eV and 1:6eV.This aggrees with literature.Numerial onsiderations: The onvergene has been done for 6 k-pointsand alternatively for 100 k-points. The dieletri funtion does not show a visibledi�erene.
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����������������Figure 5.20: Imaginary dieletri funtion for f Aluminum for di�erent sets ofk-points.
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����������������Figure 5.21: The imaginary part of the dieletri funtion for f Aluminum for twodi�erent lattie onstants Lexp, Lnum = XXXLexp.As a seond test, in �gure 5.21 the dieletri funtion was alulated for theexperimental lattie onstant Lexp = 4:04�A = 7:64a0, a0 being the Bohr radius(see appendix C), i.e. a di�erene of XXX perent. It an be seen that XXX.5.7.2 CopperThe seond test system is opper, whih ondensates in the fae-entered ubistruture as well, therefore the same unit ell is used. In �gure 5.17 the overlapfor two bands of this system has been shown. Bandstruture and DOS are shownin �gure 5.22. The onverged lattie parameter is Lnum = XXX�A.The dieletri funtion is shown in 5.23. Literature XXX.
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����������������Figure 5.22: Bandstruture and Density of states of Copper.
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����������������Figure 5.23: Imaginary part of the dieletri funtion of Copper.
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Chapter 6ResultsBlabla

Figure 6.1: GeTe f struture.
6.1 GeTe ompoundsCalulate GeTe in zinblende struture. Between zinblende and amorphous, nobig di�erene in refration is experiened, but between amorphous and roksalt.� GeTe ubi, trigonal� Ge1Sb2Te4? 69



70 CHAPTER 6. RESULTSShow:� Desription of materials� Lattie onstants, Birge �t!� DOS,Bandstrutures� harge density plots?� Optial properties� Experiments� Comparison to measurements6.2 Calopyrites� AgInTe2� AgSbTe2� AuInTe2� AuSbTe2� AuSnTe2
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Appendix AMomentum matrix elementsThe matrix elements of the momentum operator should be expressed in terms ofthe LAPW basis set in summed form (4.21), i.e.
 {(k; r) = 8>>>>>><>>>>>>:

1p
XG C {k+Gei(k+G)r r 2 ISlmaxXl=0 lXm=�l [A{;�lm(k)ul(r;El)+B{;�lm (k) _ul(r;El)℄Ylm(r̂) r 2 MT�: (A.1)
The interstitial part of this matrix element is derived in setion 5.1.1. The partinside the muÆn-tins is more lengthy to derive and therefore done here. Thematrix element is not alulated in the arthesian basis but in the natural basis(�x + i�y; �x � i�y; �z). In spherial oordinates these partial derivatives read�x � i�y = sin �e�i' ��r + 1re�i' �os � ��� � isin � ��'��z = os � ��r � 1r sin � ��� : (A.2)The radial and spherial derivatives separate. Introduting the abbreviationsF (1)lm = � q (l+m+1)(l+m+2)(2l+1)(2l+3)F (2)lm = q (l�m)(l�m�1)(2l�1)(2l+1)F (3)lm = q (l�m+1)(l�m+2)(2l+1)(2l+3)F (4)lm = � q (l+m)(l+m�1)(2l�1)(2l+1)F (5)lm = q (l�m+1)(l+m+1)(2l+1)(2l+3)F (6)lm = q (l�m)(l+m)(2l�1)(2l+1) ; (A.3)
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74 APPENDIX A. MOMENTUM MATRIX ELEMENTSthe reurrene relations of the Legendre polynomials yield the equationse+i' sin �Yl;m = F (1)lm Yl+1;m+1 + F (2)l;mYl�1;m+1e+i' sin �Yl;m = F (3)lm Yl+1;m�1 + F (4)l;mYl�1;m�1os �Yl;m = F (5)lm Yl+1;m + F (6)lm Yl�1;m : (A.4)Furthermore the relationse+i' �os � ��� + isin � ��'�Ylm = �lF (1)lm Yl+1;m+1 + (l + 1)F (2)lm Yl�1;m+1e�i' �os � ��� � isin � ��'�Ylm = �lF (3)lm Yl+1;m�1 + (l + 1)F (4)lm Yl�1;m�1� sin � ���Ylm = �lF (5)lm Yl+1;m + (l + 1)F (6)lm Yl�1;m (A.5)In order to apply the derivatives on the LAPW funtions, we de�ne the funtions(ommiting the muÆn-tin index � for onveniene)U ilm = Ai;�lm(k)ul(r;El) +Bi;�lm (k) _ul(r;El)V ilm = ��r U ilm= Ai;�lm(k)u0l(r;El) +Bi;�lm (k) _u0l(r;El)W ilm = 1r � U ilm= 1r � �Ai;�lm(k)ul(r;El) +Bi;�lm (k) _ul(r;El)� (A.6)
First omponent �x + i�y: If one expresses the LAPWs with these funtions(A.6) utilizing the relations (A.2) and (A.5), one yields for the operation of theoperator(�x + i�y) i(k; r) = Plm h(V ilm � l W ilm)F (1)lm Yl+1;m+1(V ilm � (l + 1)W ilm)F (2)lm Yl�1;m+1i ; (A.7)omitting spatial oordinates, and the summation indies running through l =0; : : : ; lmax; m = �l : : : l. Multiplying the orresponding bra givesRMT� d3r  �f (k; r)(�x + i�y) i(k; r)= Plm;l0m0 R�R0 r2dr H d
 Uf�l0m0Y �l0m0 h(V ilm � l W ilm)F (1)lm Yl+1;m+1 +(V ilm � (l + 1)W ilm)F (2)lm Yl�1;m+1i= Plm;l0m0 R�R0 r2dr (1)D1l0m0lm H d
 Y �l0m0Yl+1;m+1+Plm;l0m0 R�R0 r2dr (2)D2l0m0lm H d
 Y �l0m0Yl�1;m+1 (A.8)



75with the abbreviations for D1,D2 equal to(j)D1l0m0lm = F (2j�1)lm Uf�l0m0(V ilm � l W ilm)(j)D2l0m0lm = F (2j)lm Uf�l0m0(V ilm � (l + 1)W ilm): (A.9)With the spherial harmonis being orthogonal,H d
 Y �l0m0Yl+1;m+1 = Æl0;l+1Æm0;m+1;H d
 Y �l0m0Yl�1;m+1 = Æl0;l�1Æm0;m+1; (A.10)the quadruple summation in the two terms redues to eah a double one:Plm;l0m0 :(j)D1l0m0lm Æl0;l+1Æm0;m+1 = lmax�1Pl=0 +lPm=�l :(j)D1l+1;m+1lmPlm;l0m0 :(j)D2l0m0lm Æl0;l�1Æm0;m+1 = lmax�1Pl=0 +lPm=�l :(j)D2lml+1;m�1: (A.11)Please note the maximum l dereased by one. Now applying the remaining radialintegration, and expanding the symbols D1 and D2 �nally gives:hfkj�x + i�yjiki = lmax�1Xl=0 lXm=�l[ ( R ul+1u0l r2dr � l R ul+1ul rdr) A�fl+1;m+1Ail;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) A�fl+1;m+1Bil;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) B�fl+1;m+1Ail;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) B�fl+1;m+1Bil;m ℄ F (1)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) A�fl;mAil+1;m�1+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) A�fl;mBil+1;m�1+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) B�fl;mAil+1;m�1+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) B�fl;mBil+1;m�1 ℄ F (2)l+1;m�1Seond omponent �x � i�y: The proedure is analogous for the next om-ponent. Again (A.2) and (A.5) help to express it as(�x � i�y) i(k; r) = Plm h(V ilm � l W ilm)F (3)lm Yl+1;m�1(V ilm � (l + 1)W ilm)F (4)lm Yl�1;m�1i : (A.12)Multiplying the bra,RMT� d3r  �f (k; r)(�x � i�y) i(k; r)= Plm;l0m0 R�R0 r2dr (3)D1l0m0lm H d
 Y �l0m0Yl+1;m�1+Plm;l0m0 R�R0 r2dr (4)D2l0m0lm H d
 Y �l0m0Yl�1;m�1; (A.13)



76 APPENDIX A. MOMENTUM MATRIX ELEMENTSalulating the integral over the spherial harmonis and reduing the resultingfourfold summation analougous to the �rst omponent,Plm;l0m0 :(j)D1l0m0lm Æl0;l+1Æm0;m�1 = lmax�1Pl=0 +lPm=�l :(j)D1l+1;m�1lm= Plm;l0m0 :(j)D2l0m0lm Æl0;l�1Æm0;m�1 = lmax�1Pl=0 +lPm=�l :(j)D2lml+1;m+1; (A.14)yieldshfkj�x � i�yjiki = lmax�1Xl=0 lXm=�l[ ( R ul+1u0l r2dr � l R ul+1ul rdr) A�fl+1;m�1Ail;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) A�fl+1;m�1Bil;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) B�fl+1;m�1Ail;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) B�fl+1;m�1Bil;m ℄ F (3)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) A�fl;mAil+1;m+1+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) A�fl;mBil+1;m+1+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) B�fl;mAil+1;m+1+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) B�fl;mBil+1;m+1 ℄ F (4)l+1;m�1:Third omponent �z: The same goes for the third omponent:�z i(k; r) = Plm h(V ilm � l W ilm)F (5)lm Yl+1;m(V ilm � (l + 1)W ilm)F (6)lm Yl�1;mi : (A.15)Multipliation of the orresponding bra from the left:RMT� d3r  �f (k; r)�z i(k; r)= Plm;l0m0 R�R0 r2dr (5)D1l0m0lm H d
 Y �l0m0Yl+1;m+Plm;l0m0 R�R0 r2dr (6)D2l0m0lm H d
 Y �l0m0Yl�1;m (A.16)
Redution of fourfold summation:Plm;l0m0 :(j)D1l0m0lm Æl0;l+1Æm0;m = lmax�1Pl=0 +lPm=�l :(j)D1l+1;mlm= Plm;l0m0 :(j)D2l0m0lm Æl0;l�1Æm0;m = lmax�1Pl=0 +lPm=�l :(j)D2lml+1;m (A.17)



77Result:hfkj�zjiki = lmax�1Xl=0 lXm=�l[ ( R ul+1u0l r2dr � l R ul+1ul rdr) A�fl+1;mAil;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) A�fl+1;mBil;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) B�fl+1;mAil;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) B�fl+1;mBil;m ℄ F (5)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) A�fl;mAil+1;m+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) A�fl;mBil+1;m+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) B�fl;mAil+1;m+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) B�fl;mBil+1;m ℄ F (6)l+1;m�1:More general notation: The results for the three omponents an be writtenin the formhfkj�njiki = lmax�1Xl=0 lXm=�l[ ( R ul+1u0l r2dr � l R ul+1ul rdr) A�fl+1;m0Ail;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) A�fl+1;m0Bil;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) B�fl+1;m0Ail;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) B�fl+1;m0Bil;m ℄ F (2n�1)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) A�fl;mAil+1;m00+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) A�fl;mBil+1;m00+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) B�fl;mAil+1;m00+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) B�fl;mBil+1;m00 ℄ F (2n)l+1;m00for n = 1; 2; 3, and �, m0,m00 given by� = 0B� �x + i�y�x � i�y�z 1CA ; m0 = 0B� m+ 1m� 1m 1CA ; m00 = 0B� m� 1m + 1m 1CA for n = 0B� 123 1CA :Loal orbital ontribution:
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Appendix BTetrahedron methodAs already mentioned in setion 5.2, Bl�ohl, Jepsen and Andersen [BJA94℄ gave aonvernient general notation for the tetrahedron method. They onsider integralsover the Brillouin zone (BZ) in k-spae like those of the expetation value of anoperator X,hXi = 1VG Xn ZBZ d3k Xn(k)f(�n(k)); (B.1)where f is the fermi fator to an energy �n. VG is the volume of the Brillouinzone, and the used k-dependent expetation value readsXn(k) = hnkjXjnki: (B.2)They show that in tetrahedron method this integral an be written ashXi =Xj;n Xn(kj)wnj: (B.3)This sum runs over all bands n and k-points j.B.1 Integration weightsThe weight of one k-point wnj is the sum of weights it gets in eah tetrahedra itbelongs to. In eah tetrahedra, the indies are assigned so that the energies areordered, �1 < �2 < �3 < �4.1. �F < �1w1 = w2 = w3 = w4 = 0: (B.4)79



80 APPENDIX B. TETRAHEDRON METHOD2. �1 < �F < �2w1 = C �4� (�F � �1)� 1�21 + 1�31 + 1�41��w2 = C �F � �1�21w3 = C �F � �1�31w4 = C �F � �1�41 (B.5)with C = VT4VG (�F � �1)3�21�31�41 : (B.6)3. �2 < �F < �3w1 = C1 + (C1 + C2)�3 � �F�31 + (C1 + C2 + C3)�4 � �F�41w2 = C1 + C2 + C3 + (C2 + C3)�3 � �F�32 + C3 �4 � �F�42w3 = (C1 + C2)�F � �1�31 + (C2 + C3)�F � �2�32w4 = (C1 + C2 + C3)�F � �1�41 + C3 �F � �2�42 (B.7)with C1 = VT4VG �F � �1)2�41�31C2 = VT4VG (�F � �1)(�F � �2)(�3 � �F )�41�32�31C3 = VT4VG (�F � �2)2(�4 � �F )�42�32�41 : (B.8)4. �3 < �F < �4w1 = C �4 � �F�41w2 = C �4 � �F�42w3 = C �4 � �F�43w4 = VT4VG � C �4� (�F � �1)� 1�21 + 1�31 + 1�41�� (B.9)



B.2. NUMBER AND DENSITY OF STATES 81with C = VT4VG (�4 � �F )3�41�42�43 : (B.10)5. �4 < �Fw1 = w2 = w3 = w4 = VT4VG : (B.11)B.2 Number and density of statesWhen negleting the matrix elements, one yields the well-known terms for thenumber of states nT (E) and the density of states DT (E) of one tetrahedron,whih are equivalent to the formulae given for instane by Lehmann and Taut[LT72℄.Negleting the matrix elements means setting them to one, i.e. Xn(kj) = 1in (B.3). With this the number of states and density of states take the formnT (�) = 4Xi=1 wi; DT (�) = ���nT (�); (B.12)and take the following values in the �ve regions:1. �F < �1nT (�) = 0DT (�) = 0 (B.13)2. �1 < �F < �2nT (�) = VTVG (�� �1)3�21�31�41DT (�) = VTVG 3(�� �1)2�21�31�41 (B.14)3. �2 < �F < �3nT (�) = VTVG 1�31�41 ��221 + 3�21(�� �2) + 3(�� �2)2 � �31 + �42�32�42 (�� �2)3�DT (�) = VTVG 1�31�41 �3�21 + 6(�� �2)� 3�31 + �42�32�42 (�� �2)2� (B.15)



82 APPENDIX B. TETRAHEDRON METHOD4. �3 < �F < �4nT (�) = VTVG �1� (�4 � �)3�41�42�43 �DT (�) = VTVG 3(�4 � �)2�41�42�43 (B.16)5. �4 < �FnT (�) = VTVGDT (�) = 0 (B.17)



Appendix CUnitsAmong gaussian and SI and other unit systems, there are the so alled atomiunits (see also appendix 6 in [ZL83℄), whih are favored in atomi alulations.This term atually refer to two slightly di�erent salings. As in all unit systems,the �ne-struture onstant� = e24�"0~(here given in SI units) has to be onserved. For alulations on the atomi sale,the harateristi length is the Bohr radiusa0 = 4�"0~2me2 = 5:29 � 10�11m;while the Rydberg energyRy = ~22ma20 = 13:61eVis the typial energy dimension.� For Hartree units you set~ = 1; m = 1; e = 1; "0 = 14� ;  = 1� � 137;with the result that lengths are given in Bohr radii, and energies are mul-tiples of 2Ry, whih is alled one Hartree. The kineti operator takes theusual formp22 or k22 : 83



84 APPENDIX C. UNITS� In the Rydberg set you plae~ = 1; m = 12 ; e2 = 2; "0 = 14� ;  = 2� � 2 � 137;resulting in lengths expressed in Bohr radii, and energies in multiple Ryd-bergs. But the kineti operator takes the unnormal formp2 or k2:Whihever of the two salings you hoose, you an just take a given gauss or SIformula and replae the quantities as mentioned above. The juntion to the SIquantities energy, frequeny and temperature is given by1eV = 1:602 � 10�19 Ws (C.1)1meV~ = 1:519 THz (C.2)1meVkB = 11:604 K: (C.3)



Appendix DParameters of alulationsEletroni shells: The elements used in the alulations have the atomion�gurationsElement number atomi levelsAl 13 [Ne℄.3s2:3p1Ge 32 [Ar℄.3d10:4s2:4p2Ag 47 [Kr℄.4d10:5s1In 49 [Kr℄.4d10:5s2:5p1Sn 50 [Kr℄.4d10:5s2:5p2Sb 51 [Kr℄.4d10:5s2:5p3Te 52 [Kr℄.4d10:5s2:5p4Au 79 [Xe℄.4f 14:5d10:6s1basing on the noble elements:Element number atomi levelsHe 2 1s2Ne 10 [He℄.2s2:2p6Ar 18 [Ne℄.3s2:3p6Kr 36 [Ar℄.3d10:4s2:4p6Xe 54 [Kr℄.4d10:5s2:5p6This setions lists the most important parameters for the self-onsistent FLAPWbulk alulations, whih have been performed with the FLEUR ode [FLE℄. Thespae groups are given in XXX notation. The used exhange-orrelation potentialis the GGA approximation of XXX.
85



86 APPENDIX D. PARAMETERS OF CALCULATIONSTest systems: These systems were alulated in hapter �ve for testing pur-poses. Aluminum was alulted in simple ubi on�guration (s) for two unitells to illustrate bakfolding. Al slattie struture s sspae groupinversion symmetry yes yesatoms per unit ell 1 2lattie parameters [a0℄ 5.16 5.16, 10.32Gmax[1=a0℄ 3.5 3.5# of basis funtions 110 206# of eletrons 3 6# of k-points 6 6loal orbitals no noIt was alulated in the atual fae-entered ubi (f) on�guration as well toompare to literature. Al flattie struture fspae groupinversion symmetry yesatoms per unit ell 2lattie parameters [a0℄ 5.41, 7.67Gmax[1=a0℄ 3.5# of basis funtions 184# of eletrons 6# of k-points 6loal orbitals noThe other test system was opper. Culattie struture fspae groupinversion symmetry yes



87atoms per unit ell 2lattie parameters [a0℄ 5.41, 7.67Gmax[1=a0℄ 3.5# of basis funtions 184# of eletrons 22# of k-points 6loal orbitals no
Germanium-Tellurium ompounds: The ubi and trigonal phases wereinvestigated: GeTe ubilattie struture roksaltspae groupinversion symmetry yesatoms per unit ell 4lattie parameters [a0℄ xxGmax[1=a0℄ xx# of basis funtions xx# of eletrons 20# of k-points xxloal orbitals noGeTe trigonallattie struture hexagonalspae groupinversion symmetry noatoms per unit ell 6lattie parameters [a0℄ xxGmax[1=a0℄ xx# of basis funtions xx# of eletrons 30# of k-points xx



88 APPENDIX D. PARAMETERS OF CALCULATIONSloal orbitals no
Calopyrites: The seond lass of systems investigated were Tellurium om-pounds in the alopyrite struture.AgInTe2lattie struture alopyritespae groupinversion symmetry yesatoms per unit ell 8lattie parameters [a0℄ xxGmax[1=a0℄ xx# of basis funtions xx# of eletrons 6# of k-points 6loal orbitals no
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