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Chapter 1

Introduction

Data storage plays a major role in information technology. The rapid advances in
this area are driven by the need to read and write the information with ever faster
speed and ever increasing storage density. These demands are creating new frontiers
in solid state physics which fuel the development of new materials, the investigation
of new physical phenomena and the development of new methods.

Among competing modern mass storage concepts, rewritable optical storage de-
vices based on phase-change media provide one future option to store large amount
of data at high data transfer-rates. The understanding, and consequently the de-
velopment of new, and the improvement of existing rewritable phase change media,
which should allow sub-micron bit sizes to be written, read and erased within a few
nanoseconds determine the future and the spread of this storage concept. At present
such devices are build as exchangeable discs, the rewritable Digital Versatile Disc
(DVD). The storage process itself can compete to those of magnetic hard discs in
terms of storage/access time.

In devices based on the phase-change effect, information bits correspond to small
spots being either in the crystalline or in an amorphous state. These two states
of matter exhibit two different reflectivities for incident light, which is optically
detected and used to encode the bits 0 and 1. A change between these two states
of matter is induced by local heating; either above the melting temperature in the
case of writing by transforming the crystalline structure into the amorphous one; or
above a lower crystallization temperature, supplying enough energy to recrystallize
starting from the amorphous state.

The experimental activities in this field motivated us to investigate the optical
properties of phase-change materials based on modern microscopic and materials-
dependent theories of solid states physics. The theoretical groundwork for under-
standing the interaction of incident light with matter on a quantum-mechanical
level has already been developed in the late fifties and early sixties of the last cen-
tury by Ehrenreich and Cohen [EC59] and Adler [Adl62]. The intuitive description
involves transitions induced by photons between occupied and unoccupied single-
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electron states. However, the computational tools and capacities to corroborate this
framework with calculations for real complex materials has developed more recently.

The density functional theory (DFT), developed by Hohenberg and Kohn [HK64]
and Kohn and Sham [KS65], provide a powerful and accurate description of the
ground-state electronic properties of the many-electron problem in real materials.
The theoretical work discussed in this thesis is based on the local density approxi-
mation (LDA) and the generalized gradient approximation (GGA) of the exchange
correlation energy. This approach developed to the standard model in solid physics
for the description of real materials and has been applied to a large spectrum of
complex materials including surfaces and low-dimensional systems. This approach
describes the sensitivity of the electronic excitations to their ground-state properties.
The time-dependent extension of the density functional theory represents a more re-
fined treatment of the linear and nonlinear response of many-electron systems due to
time-dependent external perturbations [ZS80, SZ80, Mah80] than the random-phase
approximation described by Ehrenreich and Cohen [EC59]. A key feature of this
extension is that it provides a consistent treatment of electron-electron interactions
in the absence and the presence of time-varying fields, but it is beyond the scope of
this thesis.

At the center of this thesis is the implementation of the microscopic description
of the dielectric response function on the basis of the density functional theory in
the LDA and GGA. The dielectric function describes the response of matter in an
electric field. The implementation is restricted to the long-wavelength limit relevant
for light in the optical regime and to linear response theory suitable for low light
intensities. Non-linear response, the local field effects, and intraband transitions are
neglected. This dielectric response function has been implemented within the con-
text of the full-potential linearized augmented plane-wave (FLAPW) method. This
electronic structure method is an all-electron method. It is known to give precise
results for materials with transition-metal atoms in open structures and low sym-
metries as it is experienced in recently explored phase-change materials such as for
example the ternary alloys AgInTe, or AgSbTey. The implementation documented
in this thesis includes the momentum-matrix elements, which is a very elaborate
task due to the complexity of the LAPW basis-set. It includes also the development
of the tetrahedron-method for the Brillouin-zone integration of two-point functions
which include simultaneously occupied and unoccupied states. This is necessary
for the calculation of the imaginary part of the dielectric response function. The
Kramers-Kronig integration has been implemented to obtain the real part of the di-
electric function from the imaginary one. Since the FLAPW method FLEUR, used in
this thesis, is not capable to treat all Bravais lattices, some structures are calculated
in Bravais lattices, which are superstructures to the original lattice. This introduces
a backfolding in the electronic structure, which is analyzed with great care in this
thesis, not to introduce spurious optical transitions. The implementation is car-
ried out in an algorithm that allows an easy extension to parallel computing over
the individual tetrahedra and to program for magneto-optics. The method devel-



oped also works for electronic structure methods with a pure plane-wave basis sets
as it is common in pseudo-potential methods. All implementations and numerical
approximations have been tested thoroughly for Aluminum and Copper, for which
experimental similar theoretical results are available. Similar implementations in
all-electron methods have been carried out by Delin [Del98] in a full-potential lin-
ear muffin-tin orbital method (FP-LMTO), by Abt [Abt97] in the FLAPW-code
WIEN, by Krasovskii in the FLAPW [KS99], by Alouani in an LMTO and projector
augmented plane wave (PAW) method [AAW'97] and Oppeneer in a augmented
spherical wave (ASW) method [SBB*00].

In this thesis the dielectric function is determined for phase-change materials
calculated within density functional theory. It is structured as follows:

The main aspects of the density functional theory are reviewed in Chapter 2.
We define the quantities needed to evaluate the ground-state properties and discuss
important details of the computational procedures. Chapter 3 gives the formulation
of the dielectric response of matter. For this, general consequences of symmetry, ten-
sor properties, optical constants and spectral functions are recapitulated, followed
by a derivation of the dielectric function in the long-wavelength limit. The micro-
scopical and the macroscopical approach are addressed. Chapter 4 introduces basis
sets of different plane-wave based electronic structure methods. The LAPW method
that forms the basis of the calculations in this thesis is presented in more detail.
The implementation of the dielectric function — the momentum-matrix elements,
the tetrahedron method and the implementation of the Kramers-Kronig implemen-
tation — is layed out in the following chapter 5. A focus is put to the backfolding
effect, that occurs for calculations of non-minimal unit cells, and consequences for
the computation are explained. Test calculations are performed to compare to ref-
erence results. More details on the matrix elements of the momentum operator and
on the tetrahedron method are presented in appendices A and B.

A brief description of the class of phase-change materials are given in chapter 6.
The implemented method is applied to the GeTe compound in rocksalt and trigonal
AT structure. Although the density of states for both structures are very similar,
a significant difference is found for the reflectivity at the ultra-violet energy range,
which is also found in the experiment. In appendix C one finds details of used units
and in appendix D all computational details are collected. The thesis closes with a
conclusion.
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Chapter 2

Density Functional Theory

2.1 The Many-Particle Problem

The complete properties of solids can in principle be calculated ab initio — i.e. free
of any parameters, only using the setup of the system and its interactions — on a
quantum mechanical level. The whole information of a system is contained in the
system’s wave-function, which has to be obtained as solution of the Schrédinger
equation

H|U) = E|0), (2.1)

with H the Hamiltonian of a system of interacting nuclei and electrons (assuming
471'60 = ].)

N
E hZ E e’ Z; 1 27,7,
- ST (2.2
H Z.:12 |rz—fr']| Z|r _TJ| Z|T[—7-J| (2.2)

r denote the electronical coordinates and 7 those of the nuclei, Z; denotes the charge
of the nuclei. Spin-dependence and external fields are omitted. In the relativistic
case, the Dirac equation has to be solved. The energy of a state W is given by

= (U|H|D). (2.3)

The effort to solve this many-body problem scales exponentially with the number
of particles described and is unaccomplishable for everything except very small sys-
tems, and certainly for a macroscopic system with a number of particles of an order
of magnitude of 10%3.

A first and very general approximation is the Born-Oppenheimer method (also
called adiabatic approximation). Since the mass of the electrons is at least three
orders of magnitude smaller than those of the nuclei, the electrons are expected to
follow the motions of the nuclei instantaneously, while the nuclei will react slowly

5
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to a change in electronic configuration. Therefore, the ion’s position can be set
fixed, reducing the number of degrees of freedom. (From a strict point of view this
approximation needs more precise justification, see [Mad78].) This approximation
is used in the majority of electronic calculations.

When calculating the ground state of a system, the energy has to take its mini-
mum. Depending on your ansatz, the solution can usually be obtained by minimizing
the total energy.

2.2 The Hartree-Fock Ansatz

A variety of different approaches have been developed to tackle this many-particle
problem. One frequently used method (in many areas of physics) is to transfer the
many-body problem to a one-particle-like problem, for instance by imposing some
certain form on the wavefunction.

The most basic choice is the Hartree Ansatz, which replaces the wavefunction
U(ry,...,ry) with a product of NV one-particle wavefunctions v (r):

\I’(rl, o .,’l”N) = 77[)1(7'1) . ¢2(T2) LR ’LpN(’f’N), (24)

depending only on the spatial coordinate of one particle. If one introduces this
ansatz into the Schrodinger equation, one obtains N Schidinger-like single-particle
equations with a integral called Coulomb term or Hartree term, containing the
electron-electron interaction. This simple ansatz treats the particles independent
in the sense that every particle moves in a static potential created by the other
electrons, which is the only interaction considered.

It is possible to take care about the expelling properties of fermions resulting from
the Fermi principle — called ezchange interaction — by using a slater determinant of
wavefunctions instead of a simple product:

P(ry) ... ()
\I’(’l”l, .. .,’l”N) = — . (25)

wl(rN) . 'Q/}N(TN)

This Hartree-Fock Ansatz results in a significantly more complex numerical treat-
ment as well as in much better results. Including a wavefunction of this form into
the Schrodinger equation gives N single particle equations now containing an ad-
ditional term — the exchange or Fock term — containing contributions from all the
other single-particle wavefunctions.

The description is still incomplete due to the fact that the single particles are
not independent as assumed in this approximation. These correlation effects can
not be expressed analytically in the general case.
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2.3 Density Functional Theory

A new idea how to describe the ground state of a many-particle system has been
acquired by Hohenberg and Kohn in the 1960s. It turns the focus from the abstract
many-particle state as descriptive quantity of the system to the ostensive charge
density in real space. Not only that not the whole information content of the wave-
function is needed, it is not desirable to obtain the complete solution ¥ for a large
system since storage of it is as hardly possible as calculation of it.

One different approach, the Thomas-Fermi theory, was known since the late
twenties [Fer27, Tho27]. It assumes the interacting electrons to be independent,
moving in an external potential. (In this context the term ezternal means everything
except of this one particle itself, so it includes also the effects of the nuclei in the
system, not only those of fields external to the system.) Then the formulae for the
uniform electron gas are applied. The obtained results give only a few quantitative
trends, chemicals bonds for instance can not be predicted. However, the system is
described by the density only.

The Lemma of Hohenberg and Kohn: The charge density relates to the many-
particle wavefunction like

7mq:<m§¥@—rmw> (2.6)

Hohenberg and Kohn [HK64] derived that for a given ezternal potential the ex-
pectation value of any observable in the ground state is uniquely defined by and
functionals of the charge density. Furthermore, the functional of the total energy

E = E[n(r)] (2.7)

is minimized by the true ground state density ny(r). This implies that the ground
state density can be obtained from the minimization of this functional,

SE[n] = 0. (2.8)

The amount of charge

N = [ &) (2.9)

takes the role of a subsidiary parameter. Furthermore the density determines the
total potential and therewith the Hamiltonian, that means the complete system
and all its derivable properties (including many-body wavefunctions, two-particle
Green’s functions). A more mathematical insight is that there are functions n(r)
not yielding a valid potential v(r), so-called non V-representable functions. These
are non-physical densities.

The Hohenberg-Kohn lemma does not imply any knowledge about the physical
interactions and is universal thereby. On the other hand, nothing has been stated
about the form of the functional E[n] up to now.
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Kohn-Sham equations: Kohn and Sham [KS65] formulated a form for the energy
functional that proved to be very successful. They proposed to split it up into three
contributions

Eln] = Ti[n] + Uln] + Eq[n], (2.10)

T is the kinetic energy of non-interacting particles, U is the Coulomb energy, and
E,.. contains the remaining contributions to the energy due to exchange and correla-
tion. The Coulomb energy of the electrons is constructed out of the electron-electron
energy together with the external energy, resulting additively from the Coulomb field
of the nuclei and from fields external to the system:

Uln| = FEeuln|+ Eg(n] (2.11)
Boln] = / 1 Vs (r)n(r) (2.12)
Ey[n] = 4%%2/d3rd3r' % (2.13)

An advantage of this representation is that for the kinetic energy, which is a signifi-
cant proportion to the total energy, an analytic expression can be given (see Section
2.6). The density is related to the single particle wavefunctions via

n(r) =23 [wi(r)f*, (2.14)

with the factor 2 accounting the spin degeneracy®. For this choice the kinetic energy
reads

Tsn| = —2Z/d3r L/}Z(T)%VZ%(T). (2.15)

Equivalent to minimizing the energy with respect to the density, one can do so as
well with respect to the single wavefunctions or to their complex conjugates. The
subsidiary condition of particle conservation (2.9) is replaced by the normalization
of the wavefunctions

/d% ()2 = 1. (2.16)

Taking this requirement into account by Lagrange parameters ¢;, the variation of
the energy yields the Kohn-Sham equations

Hati(r) = {99+ Vi) () = et 217

'In this case, you calculate with half the number of electrons.
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which are Schrodinger-like equations of a one-particle Hamiltonian H; containing
an effective potential

V;:ff("") = ‘/ext(r) + VH(T) + ‘/;:c(r) (218)

consisting of the external, the Hartree and the exchange-correlation potential

Veur(r) = M(T)Eem(r) (2.19)
r) = 4me? S n(r)

Vi (r) 4 /d p— (2.20)

Vie(r) = Mir)Em(r). (2.21)

These potentials are simple functions, while the corresponding energies are consid-
ered as functionals of the density.

This choice (2.10) of kinetic energy and subsequent derivations converts the
problem to a problem of fictitious single particles moving in an effective potential
all other particles contribute to.

The parameters ¢; are introduced as Lagrangian parameters only. As a conse-
quence of Janak’s theorem, only the highest occupied value has a physical meaning,
i.e. it is equal to the chemical potential, the ionization energy of the system. Beyond
this, there is no justification to take these parameters as the one-particle energies.
However, it is known from experience that this assumption works surprisingly good,
and is thus commonly assumed in band structure calculations.

Eigenvalue problem: Usually the Kohn-Sham equations (2.17) are not solved
directly, but the solutions are represented in a basis. Then the operator H; has
to be constructed and diagonalized. Since the basis functions are not necessarily
orthogonal, one has to solve the generalized eigenvalue problem

(H1 —eS)e=0 (2.22)

(also called secular equation) with S the overlap matrix and ¢ the expansion coeffi-
cients.

Self-consistency: Since the electron density goes into the Hartree potential Vi
and the exchange-correlation potential V., and the effective potential determines
the solutions ¢; through (2.17), which again make the charge density (2.14), this
formalism comprises a self-consistency, as shown in Fig. (2.1).

To enter the loop one has to provide an appropriate starting density. With this
the potentials are generated and the one-particle solutions are calculated. In matrix
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Create starting density

Construct potentials

Solve eigenvalue problem

Mix charge densities

A

Construct charge density

|

Check convergence

|

Total energy

Figure 2.1: The self-consistency cycle of a density-functional calculation.

picture this is the setup of the H and S matrices and the solution of the general-
ized eigenvalue problem (2.22). With the results the temporary density nye, () is
calculated.

One now checks if the difference between the previous density n(”(r) and the
new one is sufficiently small. If not, the temporary density is incorporated into the
previous one. Since taking the calculated density as next input density n(+(r) for
the cycle would introduce too big steps which destroy convergence, some mixing has
to be performed. The simplest way is a linear mixing

n(r) = (1 — a)nD (1) + & Npew (1) (2.23)

with mixing parameter . More sophisticated methods like those of Broyden and
Anderson have been developed, which incorporate the knowledge of earlier iterations
and yield a faster convergence. After finishing the loop, one can process the obtained
density, e.g. calculate the total energy.
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2.4 Exchange and Correlation

Since no approximations have been made so far, density functional theory is ex-
act in principle. However, calculations are only possible with the knowledge of the
exchange-correlation energy functional E,.[n] defined by (2.10). The exact func-
tional is unknown and not soluble analytically. Solving it would be equivalent to
solving the many-body problem. Therefore, approximations have to be made.

Basically, the Kohn-Sham equations are a Hartree-like ansatz. All exchange
and correlation effects (i.e. all many-body effects) are included in the functional
E..[n]. It contains the fermionic effects, modifications to the effective potential
and corrections to the kinetic energy, all due to the electron-electron interaction.
This means that the exchange-correlation potential describes the effects of the Pauli
principle and the Coulomb potential beyond a pure electrostatic interaction of the
electrons.

The most widely used approach is the Local Density Approzimation (LDA). The
idea is to assume E,. to be that of a homogenous electron gas with density n(r):

Eyn(r)] = / 1 n(r)es(n(r)). (2.24)

The important simplification is that e,. is not a functional of the density, but a
function of the value of the density at some spatial coordinate. With this, also
the exchange-correlation potential V. in (2.19) takes the form of a function. One
possible approximation is to view exchange and correlation to be independent:

€xe(n(r)) = €2 (n(r)) + ec(n(r)) (2.25)

More complex parametrisations incorporate the results of Hartree-Fock or many-
body calculations. One would expect the LDA to fail systems with rapidly varying
densities. But it shows to give good results in an unexpected variety of systems.

A class of more sophisticated approximations is the Generalized Gradient Ap-
prozimation (GGA). It makes the same localization ansatz as in (2.24), but connects
€zc not only with the value of the density but also with the absolute value of its gra-
dient:

Epeln(r)] = / &Pr n(r)ege(n(r), [Vn(r)]). (2.26)

2.5 Spin-Density Functional Theory

The spin property of electrons, so far only accounted by a degeneracy factor of
two, can be easily incorporated into the theory. It has been shown that the basic
Hohenberg-Kohn theorem stands for spin-polarized densities as well. You redefine
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(in the non-relativistic case) the wavefunctions as spinors

(= [ Yir(r)
¥i(r) (%(r) ) (2.27)

With this slightly different notation, apart from the charge density there arises a
second central quantity out of these wavefunctions, the magnetization density m(r):

n(r) = Z%‘(?‘)?/}i(’f‘) (2.28)
m(r) = Zw;‘(r)az/)i(r). (2.29)

1=1

o is the vector (04, 0y, 0,) of Pauli matrices. The energy is now a functional of these
two densities:

E = E[n(r), m(r)] (2.30)

The two spins couple through an effective magnetic field appearing in the modified
Kohn-Sham equations. To incorporate the interaction of an external magnetic field
B,,; with this spin-polarized system, we include the energy contribution m(r) -
B.,;(7) into the Kohn-Sham equations and yield

Ho(r) = {—h—v Vgl >+aBeff(r>}wi(r>:eiwxr), (231)
B.jf(r) = By(r) + Beu(r), (2.32)
B,.(r) 6E[T;(rm)E:;(r)] . (2.33)

The approximations in Section 2.4 can be easily extended for the case of spin-
polarized systems.

2.6 Determination of the Total Energy

When the total energy needs to be calculated, the ion-ion interaction FE;; of the
nuclei

L1y
E;=e Z |7- (2.34)

T2 1 T1 T TJ|
has to be included into the functional (2.10),

Eipt[n] = Ts[n| + Eg[n] + Ey[n] + Eewt + Eis. (2.35)
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Because of numerical reasons, it is not desirable to calculate the kinetic energy in
the form (2.15), applying the double spatial derivative. Instead, one utilizes the
Kohn-Sham equations (2.17). Rearranging, multiplying the Bra from the left and
summing over all occupied states gives

—%V%i(r) = (& — Veps(r)) i(r) (2.36)

ST = Zei—/d% n(r)Vis (). (2.37)

Ey and E,; are have the form (2.13) and (2.12), the exchange-correlation energy
is defined by (2.10) and implemented in an approximation like (2.24) or (2.26).

2.7 Improvements to Density Functional Theory

Many extensions has been made to the density functional theory and its different
approximations. It is a subject of active and continuous development. As we have
seen, the treatment of spin and the inclusion of external electric and magnetic fields
are a natural extension of the theory. New exchange-correlation functionals such as
the generalized gradient approximation (GGA) are being developed.

The GW-approximation is being developed to describe single particle excitation
properties based on the many-body perturbation theory in order to recover one of
the major drawbacks of the density functional theory in the LDA or GGA, which
is the considerable underestimation of the band-gaps in semiconductors. LDA+U
theory focuses on the description where the onsite Coulomb interaction is underes-
timated in the LDA, such as in oxide materials. It is used to improve correlation
driven bandgaps. Advanced theories like time-dependent density functional theory
(TDDFT) treat electronic excitations due to time-dependent external excitations.
It includes single-particle as well as collective excitations and it is based on a fully
quantum mechanical formulation of the nonlocal electronic response.

The density functional theory has proven to be a very powerful tool to treat a
many-body problem of real material efficiently and precisely in the framework of a
one-particle picture. It has been applied also in a variety of other disciplines, like
super-conductivity or astrophysics.
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Chapter 3

Dielectric Properties of Solids

Before going into the details of the dielectric function, general concepts of symme-
try and second rank tensors are recapitulated. Important relations of macroscopic
optics are given in 3.3, introducing the complex refractive index and the complex
dielectric function. The connection between the real and imaginary part is explained
in Section 3.4. The connection of optics to a quantum mechanical representation is
subsequently given in Section 3.5, and the differences to a microscopic treatment of
the electromagnetic wave are addressed in 3.6.

3.1 Notes on Symmetry

Symmetry operations transfer a system into itself, leaving it indistinguishable to the
initial state. In this context we are interested in symmetry operations in real space.
Symmetry operators commute with the Hamiltonian,

[(ce, T), H] = 0. (3.1)

(e, T) denotes an operation consisting of a rotation a and a subsequent translation
7. Taking symmetries into account can massively simplify the calculations, or makes
it only possible.

Classifications:  Perfect crystals — systems possessing translational symmetry —
are classified into lattice types. Considering translations only, this gives the minimal
set of essentially different lattice types, the Bravais lattices. In three dimensions
there are 14 Bravais lattices: the seven lattices cubic, trigonal, rhombic, hexagonal,
monoclinic, triclinic and tetragonal, defined by the length of and angles between the
basis vectors, and variations of these lattices by occupying unit cell faces or the unit
cell center with atoms. The according translational operators of a lattice form the
Translation group.

15
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The rotations of a system (i.e. the according operators) that map the crystal into
itself build the Rotation group. There are also non-symmorphic symmetries which
bring the crystal into itself only with an additional translation (which is not part
of the translational group). The according symmetry operations are screw axes and
glide planes. These rotations extend the rotation group to the Point group. For
symmorphic lattices both groups are identical. There are thirty-two different point
groups.

The Space group contains of the totality of transformations that bring the crystal
into itself, containing the translational and the point group as subgroups. There are
230 possible space groups; 157 of them are non-symmorphic, 73 are simple.

Translational symmetry: The translational operator
Tr: 7 —>7T+R (3.2)

of a lattice vector R commutes with the Hamiltonian so that both operators share
a set of eigenvectors. The consequence is the so-called Bloch theorem, that states
that the eigenfunctions can take the form

Un(k,r) = e* o, (k,7), with o,(k,7) = p,(k,7 + R) (3.3)

defining k (often called the crystal momentum) as a new good quantum number.
©on(k,r) is a lattice periodic function. This vector k is taken from the reciprocal
space. The energy spectrum is periodic in reciprocal space,

E(k) = E(k + G) (3.4)

with G being a reciprocal lattice vector. Thus one can reduce considerations to the
first Brillouin zone.

Rotational symmetry: To a rotation in real space, the according symmetry
operation in the reciprocal space is the inverse rotation. Analogously to the transla-
tions, this reduces the effective reciprocal space to consider, leaving as unique part
the irreducible wedge of the first Brillouin zone (IBZ).

3.2 Physical Tensors

Let us connect two physical vector quantities linearly via
B =Ta. (3.5)

If B is simply proportional to a (i.e. pointing in the same direction) T is a scalar
factor, but in the general case, 71" is a tensor of second rank. By its definition, a
tensor transforms under a basis change A to

I’ = AIAT, or I;] - AikAlekz- (3'6)
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Any second-rank tensor can be split up into a symmetric and an antisymmetric part,

1
15, =T;+1y, T5=14-Ty 1= E(Ifj +17) (3.7)
but most physical second-rank tensors are purely symmetrical (i.e. T;; = Tj;), for
example the dielectric tensor being subject of this thesis. (One of the few exceptions
is the thermoelectric tensor.) Nye [Nye57| remarks that this symmetry property of
tensors is not an obvious one, and that the proof necessarily involves thermodynam-
ical considerations.

The behavior of a symmetric second-rank tensor T;; under coordinate transfor-
mation of the coordinates x; follows the equation

Tiiwvx; =1, 3.8
jLidj

which defines a sphere that is either an ellipsoid, a hyperboloid of one or a hy-
perboloid of two sheets. This equation is called the representation quadric for the
tensor Tj;. An important property of a quadric is that it possesses principal azes.
These are three directions at right angles such that the general quadric (3.8) takes
the form

T]_ll'% + ngx% + ngl'g = ]_, (39)

when referred to these axes.

A symmetrical tensor referring to arbitrary axes has six independent compo-
nents. When referring to its principal axes it depends on the symmetry of the
crystal in consideration how many independent coefficients remain. The Neumann
principle states that the symmetry elements of any physical property of a crystal
must include the symmetry elements of the point group of the crystal. Thus tensors
(or the crystals, accordingly) are grouped in the following three so-called optical
classifications:

Isotropic (Anaxial) crystals: These are crystals in which three arbitrary crys-
tallographically equivalent orthogonal axes can be chosen. These three axes are the
principal axes of the tensor. All diagonal elements are equal (see table below), and
the crystal acts like an amorphous medium, meaning equal in all directions.

Uniaxial tensors: These crystals do not possess three orthogonal equivalent axes,
but two or more of these axes in one plane. This is the case for lattices of the tricline,
trigonal and hexagonal kind. The plane with the equivalent axes is perpendicular to
the three-fold, four-fold or six-fold symmetry axis, respectively. One of the optical
axes coincides with this symmetry axes, the others form a pair of orthogonal axes
in the plane.
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Classification | Crystal System! Indep. Coeff. Tensor shape
7 0 0
Anaxial Cubic 1 0 7 0
0 0 T
Tetragonal T, 0 0
Uniaxial Hexagonal 2 0 77 0
Trigonal 0 0 T;
T, 0
Orthorhombic 3 0 1T, 0
0 0 1Tj
Ty 0 T3
Biaxial Monoclinic 4 0 17y 0
T3 0 T3
Ty T T3
Triclinic 6 Ty Ty Ty
Ty Toz T3

Table 3.2: Shapes of second-rank tensors for different crystal structures, taken from
a table of ([Nye57]).

Biaxial tensors: Crystals with lower symmetry. For orthorhombic crystals, the
tensor possesses diagonal form with each different elements. The optical axes co-
incide with the crystal axes. In monocline and tricline systems, the optical axes
are not alleged. (In this case, it would be possible to rotate the axes of the tensor
such that only the three principal coefficients are necessary, but one would have no
information regarding the orientation of the representation’s sphere relative to the
crystallographic axes, please confer [Lov89].)

In most cases of calculations the used basis vectors coincide with the optical axes
of the crystal in study.
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3.3 Macroscopic Optics

Maxwell equations: This set of equation describes electromagnetic waves. In
the presence of matter they read

0

VxE(rt) = _EB(T’t) (3.10)
V- -D(r,t) = p(r,t) (3.11)
VxH(rt) = jrt)+ %D(r,t) (3.12)
V-B(r,t) = 0, (3.13)

with E, D the electric field and the electric displacement, B the magnetic induction
and H the magnetic field. p and 7 describe the external charges and currents.
The induced charge and current vanish by the averaging done for this macroscopic
approach. This description is complete only if the coupling between the D and E
and between B and H is given.

Material coefficients: To describe the response linearly, one introduces two
coupling functions (also called constants frequently), the dielectric function ¢ (also
known as permittivity) and the magnetic permeability p, by

D = 880E, B = /L,U/OH (314)

Alternatively the electric polarization P and the magnetization M are defined by

D = sE+P, P =o,E = x5 E, (3.15)
1

H - —B-M, M =y,H, (3.16)
Ho

defining the electric and magnetic susceptibilities x and x,, and the polarizability
Q, as

e=14+x, a=¢c0x, p=14+xm (3.17)

When coupling the current 3 proportional to the electric field according to Ohm'’s
law, the electrical conductivity o is introduced:

j=0oE. (3.18)
The conductivity relates to the dielectric function by

o(w) = —iwegx(w). (3.19)
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Absorption of waves: In vacuum, the electric field of a free electromagnetic
wave follows the wave equation

2
AE(’I",t) = MUSO@E(T,&, (320)

which has solutions

E(r,t) = Eoel*r—t), (3.21)
When penetrating matter, the amplitude decays exponentially,

E = Eye 2%, (3.22)

with the absorption coefficient o defined as
dl
o=
for penetration in z-direction, and I ~ |E|? the intensity. The complex refractive
index

n(w) = n(w) + ik(w) (3.24)

—al (3.23)

include the real refractive index n and the extinction coefficient k. The dielectric
function is coupled via the relation

e(w) = n*(w) (3.25)

with the dielectric constant £(w) = 1(w) + icz2(w). The real and imaginary part are
related to n and k as

n* -k’ = g (3.26)
2nk = g9, (3.27)

or vice versa

v =5 (V) (329)
ko= \/% (\/5??3—51)- (3.29)

Taking into account the boundary conditions of the electric and magnetic field at
an interface of one dielectric to air, the reflectivity of a bulk surface reads

(1-n 2_(n—1)2+f€2
R_<1+ﬁ> (n+1)2+ k2 (3:30)

In the case of thin films, different formulae have to be used to determine the re-
flectivity, taking into account multiple reflections inside the film and interference of
these.
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Tensor properties: In the general case, the couplings (3.14),(3.18) are not sim-
ple scalars, but tensor-like and they are not constants but depend on the frequency
w and momentum k. Since the coupling is homogeneous in time, and for the macro-
scopic approach also in space, the arguments of the susceptibilities read

P(rt) = < / i / dt' x(r — 't — ) E(r, 1) (3.31)
M(r,t) = / i / dt' x (r— vt — )V H(r' ¥ (3.32)

Causality has to be conserved by appropriate integration boundaries, or by defining
the susceptibilities zero for this values. In Fourier space this convolution gives

P(k,w) X(k,w)E(k,w) (3.33)
M(k,w) = x (kw)H(k w). (3.34)

3.4 Relation between real and imaginary part

The real and imaginary parts of the refractive index and of the dielectric function
are not independent, but closely related to each other. Due to the Dirac relation

1 1 .
e P; +imd(e) (3.35)

a spectral distribution function with an energylike parameter w

RTINS Y F(k)
Glw) = lim /d RS —— (3:36)
has its real part
_ 1 5, F(K)
RG(w) = NP/d s (3.37)
and its imaginary part
SG(W) = /d3k Fk)S(w — w(k)), (3.38)

which are Hilbert transforms of each other. P denotes the principle value of an
integral, that is the integral with singularities excluded. For instance if within the
interval [a, b] the function f contains one singularity at x¢, the principal value reads

b ro—g b
P/dm flz) = glirJrrlo / de f(z) + / dz f(z). (3.39)
a a Zo+yg

The principal value might converge even if each of the two integrals on the right
side diverge.
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Kramers-Kronig Relation: These relations connect the real and imaginary part
of any spectral function that relates two fields in a linear and causal way. The
relations read

_ 1 i &(n)

e1(w) = 1+7r73/d7]77_w (3.40)
1 ra ei(n) —1

e(w) = Wp_l dniﬁ—w : (3.41)

P denotes the principal value of the integral. Since w > 0 it is desirable to transform
(3.40) to integrals over the domain (0, 00). Utilizing the relation

e(—w) =e1(—w) + =" (w), (3.42)

and by multiplying both the numerator and denominator of (3.40) with (n+w), one
yields

nea(n
alw) = 1+ P/d = _w2 (3.43)
2 ei(n) —1
0

The consequence of the Kramers-Kronig relations is that once the imaginary part
is known for the whole spectrum, the real part is known as well, and vice versa. It
is also worth to notice that these relations are of universal validity since they do
not imply any knowledge of the interactions inside the solid. However, it poses a
difficult task in experiments to scan the whole frequency range.

One can also construct Kramers-Kronig relations for other quantities, like the
magnitude and the phase of the complex reflection coefficient.

3.5 Macroscopic Dielectric Function

Up to now there is no connection between the dielectric function and the quantum
mechanical state of the system. The first such formulation has been given in the
self-consistent field (SCF) method. Starting point is the single-particle Liouville-von
Neumann equation

92w, (3.45)
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with H the Hamiltonian and p the density operator. H is separated into an time-
independent part Hy and a time-dependent perturbation V/,

H="Ho+V(r,t). (3.46)
The unperturbed system has solutions

Holk) = E(k)|k), (3.47)
and the density operator of this system acts like

polk) = fo(E(k))|K), (3.48)

fo being the Fermi distribution function for zero temperature. By assuming the
density operator of the perturbed system to be of the form p = py + p;, one arrives
at the linearized form of the Liouville equation (3.45)

ap1

“ar = [Ho, p1] + [V, po] (3.49)

if the term of higher order [V, pi] is neglected. Assuming a time dependence V' ~

e~ “ed of an electromagnetic oscillation, one obtains

fo(E(k +q)) — fo(E(K))

(klpi|k +q) = E(k+q) — E(k) — hw + ihd

(k|V|k + q). (3.50)

This self-consistent field method relates the induced density p; to the perturbing
potential. The form of the perturbing potential makes this a semi-classical model,
treating the electrons quantum mechanically and the photon as a classical electro-
magnetic wave (though it gives away its energy quantized). Lindhard [Lin54] has
given an expression for the dielectric function within this self-consistent field method

dme” 5, Jo(E(k+q)) — fo(E(k))
‘et };%/d "Bk +aq) — Bk —ho+iho] (3:51)

E(Q,M) =1-

The integration runs over the whole system, 2* is the system’s volume. Ehrenreich
and Cohen [EC59] showed that this is equivalent to a many-particle approach based
on the random-phase approximation (RPA) for a Fermi gas at zero temperature
given by Noziére and Pines [NP58b, NP58a|. Ehrenreich applied this to solids of
cubic structure and obtains

B 4rre? 3, |(f, k + q|ik)|?
flaw) = 1= 55 513%2/d Ei(k+q) — Ei(k) — hw + iho
[fo( i(k+Q))_f0(Ef( I (3.52)

the two summation indices running over all bands. The integration runs over the
unit cell with volume €2. The g indicate involved phonons, taking up a difference
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/I\ /\
Figure 3.1: Sketch of interband and intraband transitions. In the shown model band
structures (i.e. plots of energy F vs. crystal momentum k) the spots indicate one-particle

states. On the left an interband transition from band % to band f is drafted, on the right
an intraband transition within one band s.

» »
» >

in crystal momentum. Compared to (3.51) the square of the matrix element in the
numerator has appeared. Perturbation theory in the limit |g| — 0 yields

(ko alik) =0+ (=) (L) 1k (3:59)

wfi

with fuwwy; = Ef(k) — E;j(k). The |ik) are Bloch states. In order to consider the
long-wavelength limit ¢ — 0, the dielectric function is split up into the interband
and the intraband part sketched in Fig. 3.1,

e(w) = ™ (w) + ™ (w). (3.54)

For reasons of convenience, both parts are split into their real and imaginary parts
£ = ¢1 + ieo. The intraband contribution gives [ZL83]

. w
a,_:zlntra,(w) — _w_g (355)
gitre(y) = —mwga%d(w). (3.56)

An intraband transition involves a photon and is therefore a process of higher order.
The imaginary part vanishes everywhere except of w = 0 and has a singularity at
this point. The plasma frequency w, of a homogeneous electron gas of density n is
defined by

.

wo = : (3.57)

p m
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The effective plasma frequency w, together with the optical effective mass mgy is
defined by

2
2= = 477;5 Zvia/d% folE;(k)V2E;(k). (3.58)

The interband part takes the form

ﬁmw>=ﬂ%ﬂ27/f RIS R

fo( i( )L — fo(Ef( ))]
(Ef(k) — Ei(k))? — (hw)? (3.59)

e (w) = #szj;/d% (fR| T ik)|* x
0(Ey(k) — Ei(k) — w) - fo(Ei(k))[1 — fo(Er(k))]. (3.60)

The two summation indices indicate transitions ¢ — f from an occupied to an unoc-
cupied state. For non-cubic structures, the tensor takes the same form, except that
the square of the matrix element turns to a tensor product. Converting the volume
integral to a surface integral, the imaginary part of the interband contribution to
the dielectric tensor reads

: , Gkl 52 |7 I i)
e (w) = QWmeZZ/ V(B (k) — Bi(k)]

fo(Ei(R))[L = fo(Ef(R))]. (3.61)

This function has been implemented in this thesis. The integral runs over the
constant-energy surface hw = Ef(k) — E;j(k). A term often referred to in this
context is the joint density-of-states (JDOS)

dk?
m:§/M@W—MWI (362

over the plane of constant energy F = Ey (k) — E;(k). For propagation g along unit
vector u, the dielectric function is

w) = Z Ugallqs - e2?, (3.63)
ap

The longitudinal and transversal projectors are defined by

L=ugouy, T=1—-ugouy,, L+T=1. (3.64)
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The dielectric tensor can thus be partitioned into

e = (L+T)e(L+T) (3.65)
= LeL+ LeT +T:eL + T<T (3.66)
= gutéEyTEyTtey (367)

In a homogenous medium like the free-electron gas, longitudinal (transverse) elec-
tromagnetic fields would only cause a longitudinal (transverse) response. In inho-
mogeneous media such as periodic crystals a purely longitudinal or transverse field
induces both kinds of responses. Above, only the longitudinal response has been
calculated. It has been shown by Ambegaokar and Kohn [AK60] for cubic crystals
and by Del Sole and Fiorino [SF84] for crystals of lower symmetry that in the limit
of vanishing g the effect of a transverse perturbation (electro-magnetic fields) can
be described by a longitudinal response.

3.6 Microscopic Dielectric Function

The derivation above started from a macroscopic point of view, i.e. the macroscopic
Maxwell equations. However, a precise description on the microscopic scale is only
given by the microscopic Maxwell equations

V.e = [Dme (3.68)
€0
) 0
Vxb = [Lg]mic‘l‘ﬂggoae (3.69)
Vb =0 (3.70)
0
= — b 71
V X e 5 (3.71)

with e = e(r,t) the microscopic electric field and b = b(r,t) the microscopic mag-
netic induction. The macroscopic quantities result from the microscopic ones by
averaging over one unit cell

pP= <pmic>7 J= <jmic>7 E = <6>, B = <b> (372)

The inverse of the macroscopic and microscopic dielectric function (or tensor, re-
spectively) are both related to the electric displacement D by

B(rt) = = / i / it ==L (r— 1/t —¢)D(r', ¥ (3.73)

e(r,t) = 601/d3r'/dt' et (rr t—t)D(r',t). (3.74)
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Asin (3.31) causality must be conserved. Both dielectric functions are homogeneous
in time, but only from the macroscopic point of view the medium is homogeneous;
thus the relation for the microscopic dielectric function is more complex. The Fourier
transforms

E(k,w) = &y'e.l (k,w)D(k,w) (3.75)
elk+G,w) = Zsfl (k+ G, k+G',w)D(k + G',w) (3.76)

mic

reflect this. In (3.76) reciprocal space arguments have been parted into a reciprocal
lattice vector G (or G, respectively) and a vector k within the Brillouin zone.

Due to the coupling of the inverse of the dielectric function to the electric dis-
placement in (3.74), this is the quantity that can initially be derived. Out of this
the dielectric function itself is determined. £} is not only the inverse with respect
to the tensor character, but it relates to the dielectric function by

et (ror t—t)g, (P e —t") =6(r—r)S(r' —r")S(t—t")5(t —t")1. (3.77)

Zmic

Adler [Adl62] and Wiser [Wis63] derived the explicit connection of the microscopic
and macroscopic quantities. For this it is useful to understand the vectors G, G’
from the Fourier transform as matrix indices. This way the microscopic dielectric
tensor

mlC

k + G k + G, ) — [gmic(ka w)]GG' (378)

appears as a matrix with elements which are tensor functions of k and w. Eq. (3.76)
turns to a vector equation with a matrix-vector multiplication on the right. The

inverse of the macroscopic tensor is equal to the inverse of the microscopic tensor
for G = G' =0,

k,w)= k k,w). (3.79)
This can be written like
k,w) = [g .k, k,w)]” (3.80)

as well, but one has to remember the matrix character of ¢,,;.. Only the neglection
of all off-diagonal matrix elements G # G’ (the so-called local field effects) gives the
easy relation

k,w) = k,w). (3.81)

In practical applications the matrix g,,,,. has to be constructed for a set of G vectors
and the (0, 0)-element has to be determlned.

mzc(

mac ( mzc (

-1
mac(

mac ( mzc (

For the actual derivation [ZL83] all quantities are consequently Fourier trans-
formed. For the longitudinal response, an expression for the microscopic dielectric
function and its inverse depending on the induced microscopic charge density can be
calculated. For the approximation of independent particles, in the long-wavelength
limit the same result as in the macroscopic case (3.60) is found when local fields are
neglected.
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Chapter 4

Basis sets

As already mentioned in Section 2.3, the eigenfunctions are usually expanded in a
basis,

(rlik) = vilk,7) = —= 3 Ch gbrrc(r), (4.1
VQ

where () is the unit cell volume. The Hamilton and overlap matrices H and S are
constructed for a set of k-points, and the generalized eigenvalue problem

is solved, with ¢;(k) = (C},_ ) the vector of the C-coefficients (of eigenvalue ¢ and
vector k) for all G’s. Many questions of detail, as well as general properties of the
calculation like accuracy and computational effort depend on the choice of the basis
set. The better the basis functions match the shape of the actual wavefunctions, the
better the convergence is. Some basis sets may have drawbacks that can not always
be lifted by a bigger cut-off.

At this point two possibilities to exploit symmetry should be noted. First one
does not need to calculate the whole Brillouin zone (BZ), but can reduce the com-
putation to the irreducible part (IBZ) in which points can not mapped onto each
other by symmetry operations. Furthermore the presence of inversion symmetry has
a special influence on the wavefunction coefficients. Let Z be the inversion operator

Ir — —r. (4.3)

The Hamilton operator is hermitian, H(k,r) = H*(k,r). If the system possesses

29
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inversion symmetry (i.e. #(r) = H(—r)), the Hamiltonian matrix elements read

How (k) = / &1 o (r)H(k, g ()
- / &1 o (—r)H(k, —r)pe(—1)
- / &1 pa(r)H (k, )k (r)
= (Hea (k) (4.4)
if the basis functions obey
Tpa(r) = gi(r). (4.5)

The same is obviously true for the overlap matrix. This means that in this case the
generalized eigenvalue problem deals with real instead of complex matrices, which
means a significant ease of calculation. Of course also the expansion coefficients C
are real in this case.

4.1 The Plane-Wave Basis

A very simple basis set is build out of plane waves (PWs), the eigenfunctions for a
constant potential, that are free electrons

¢k+G’ (’I") _ ei(k+G’)r,

The use of this basis complies to a simple Fourier transform. Typically this is a good
choice for nearly free electrons and delocalized electrons. The simple analytic form
usually leads to well-performing calculations that are straight-forward to implement.
The Hamilton and overlap matrices can easily be calculated as

h2
Heo (k) = %V“ + G*oge + Vie-a), (4.6)

Vig-a) = / d’r =G Vg (r)
See = Jga

The matrix elements of the momentum operator for instance in this basis (in terms
of the eigenfunctions) give

. 1 e
(fEIY]ik),,, = o Y (k+G)CiigChic (4.7)
G

The choice of G-vectors is illustrated in Fig. 4.1. After choosing a cut-off value G4z,
all (k + G)-vectors are used that obey |k + G| < Gap- This choice is necessary
because of numerical reasons. The number of basis functions obviously depends on
the k-point in consideration.
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Figure 4.1: Used G-vectors in expansion. Small x-like crosses indicate the basis vectors
of reciprocal space. The plus-like crosses indicate the (k 4+ G)-vectors corresponding to
the k-vector drawn in the origin. The large circle encloses all vectors of |G| < Gpqz, the
smaller one those of |k + G| < Gyqs-

Potentials: The price for this simplicity is the inability of this basis set to describe
the strong interactions including the nuclear potential ~ % As a solution, the idea of
pseudopotentials has been developed. The potentials are identical to the all-electron
potential outside a given core-radius, but of different, smoother shape inside. They
are constructed just that the resulting pseudo-wavefunction mimics the all-electron
wavefunction outside this radius as close as possible.

For many elements, this method is applicable, i.e such pseudopotentials can be
constructed. Usually systems including localized valence electrons, like transition
metals, are more problematic.

Symmetry: The potential and the charge density are represented in planewaves
exp(iGr) which are k-independent, in contrast to the expansion of the wavefunc-
tions. The needed cut-off should be at least twice as large as for the eigenvectors.
The symmetry of the lattice can be used to simplify the representation. The sum
of the planewaves of all G-vectors obtained by the space group operations of the
lattice applied on one G-vectors is called a star,

1 .
¢S = N— GZRG(T_t). (48)
Op R
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Nop is the number of the space group operations R, t. Potentials and charge densities
can be expanded in these stars.

Planewaves naturally obey the relation

Ie’i(k-l—G)T — (ei(k-l-G)T)*7 (49)

which means that (4.4) is valid for this basis, i.e. H is real in case of inversion
symmetry.

4.2 The APW method

OOOOO)
OO
900000
000000

Figure 4.2: Spatial partitioning in augmented basis sets. The circles are the muffin tins,
leaving the interstitial region, plotted grayed.

A basis set of better shape has been proposed by Slater already in 1937 [Sla37].
In this Augmented Plane Wave (APW) basis, space is divided into spheres that are
centered around each atom, so-called muffin-tins (MTs), and into the remaining
interstitial region (IS)'. While plane waves are used as basis functions in the inter-
stitial, they are augmented in the spheres by spherical harmonics time radial basis
functions that are solutions to of the radial Schrédinger equation to an [-dependent
energy

R RI+1)
(St + g+ V() — Eifru(r) =0 (410

If the according relativistic equation is solved, the solutions are spinors, containing a
large and a small component. Expanding the function in a series of these functions

'For non-bulk systems, different choices can be made. For slabs, an additional vacuum region
is introduced as a two half-spaces, expanding the function in decaying exponentials [Kur00].
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up to an [-cutoff [,,,,, this gives the basis functions (the augmented plane waves)

kG r €IS
! !
N 411
Pric(r) YD ik + Glulr, E)Yim(#) r € MT,. .
(=0 m=-I

The calculation of matrix elements becomes more complicated due to the radial
functions being non-orthogonal when restricted to the muffin-tins, and due to the
complex shape of the interstitial region.

It is useful to normalize the radial functions like

Ro

(wlug) = /dr gl = 1 (4.12)

0

To ensure that these basis functions are continuous, one has to match the muffin-tin
functions to the planewaves on the boundaries. To arrange this, one expands the
spherical harmonics into planewaves using the Rayleigh relation

KT = ar Y il (rK) Yy, (K) Yim(2). (4.13)

Im
Im

K = |K] is the length of the vector K = k + G, and j; is the Bessel function of
the first kind. Atoms that can be transformed into each other with a symmetry
operation form one atom kind. For each atom kind, one of its atoms is declared as
its representative (see Fig. 4.3). An atom « at position S, owns a coordinate frame
(U, So) (in the style of symmetry operations 3.1, U, being the rotation matrix). In
this frame, a plane-wave takes the form

KT _y iltla K)(r+UaSa) (4.14)

Matching the planewaves on the sphere boundaries with the muffin-tin functions for
every augmented wave gives the a-coefficients as

477!

« o iKSai - * %
a’lm(K) =€ ul(Ra,Ela)Jl(KRa) lm(uOéK)' (415)

This leaves the C-coefficients (and the energies Ef*) as the variational parameters of
the method, the a’s being determined by them. In fact this matching works only on
a few points exactly, but the so-chosen A-coefficients yield the smallest mismatch.

With these basis functions the wavefunction take the form

1 ) .
—= Y Choge™* O relS
Q G

> Ciigtin(k+ Gu(r, EY)Yim(#) 7€ MT,
G Im

vi(k,r) = (4.16)
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—
g

Figure 4.3:  Equivalent atoms and its coordinate frames. MT,, MTs are the spheres
centered at S, Sg. The local frame F,, of the representative of this atom kind coincides
with the global frame Fj, while the second sphere’s frame evolves from the first by a
rotation.

Since the a-coefficients are — together with the expansion coefficients C' — the only
terms inside the spheres depending on G, one can write the whole wavefunction
shorter as

1 . )
ﬁchcez(km)r relS
A I i ; (4.17)
lm(k)ul(’r; El )Yim(r) r e MTa
Im
with the shorthand
A (k) = Chyqin(k + G). (4.18)
G

Potentials: Since these basis functions are the solutions of a constant potential
in the interstitial and a spherical potential in the muffin tins, this muffin-tin ap-
proximation for the shape of the potentials has initially been used. In the warped
muffin-tin approximation, the interstitial potential is extended to general shape,
that means extended in planewaves.

Since the actual influence all electrons are taken into account, this method counts
to the all-electron methods, other than pseudopotential methods. However, it is
reasonable to treat the inner shells of the atoms independently since these core
states do not take part in the chemical bond. Only the outer shells are determined
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by solving the crystal eigenvalue problem. Nevertheless, the potentials is made up
of all electrons.

Symmetry: The representation of charge densities and potentials by stars is over-
taken from the planewaves for the interstitial region. In the spheres, due to symme-
try operations one can collect spherical harmonics to lattice harmonics and expand
in this basis [Sin94].

Applying the inversion operator on the APW basis functions considering the
construction of the A coefficients, it turns out that — like the planewaves — also the
augmented planewaves obey

Teik+G)r — (cilk+C)r) " (4.19)

which makes the Hamiltonian H real in case of inversion symmetry [Kur00].

The A coefficients of equivalent atoms are connected, though this can not be seen
easily due to the (Im)-expansion in different local frames. However, for the case of
two equivalent atoms «,f mapped onto each other by inversion, the coefficients obey

A= (A) (4.20)

for all (Im) and all states .

Problems of the method: According to (4.15) the A’s are determined completely
by the planewave coefficients. So these C' coefficients together with the energy pa-
rameters F; are the variational parameters of this method. If the energy parameters
were taken as fixed rather than as a variational parameter, the method would simply
consist of the use of the APW basis set with solving the secular equation (4.1). The
solutions would give the band energies.

Unfortunately, this is not a workable scheme. The basis functions lack variational
freedom, this means they do not yield correct results if the energy parameters E
mismatch the actual band energies. This means that these energies for one k-point
can not be obtained from a single diagonalization, but it has to be solved iteratively.
This makes this method much more computationally demanding.

Furthermore it is difficult to use a general potential beyond the warped muffin-
tin approximation [Sin94]. Another obstacle is the so-called asymptote problem.
There might be energy parameters for which u; vanishes or becomes very small on
the sphere boundary. As a consequence the planewaves and the radial functions
become decoupled.
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4.3 The LAPW method

Much work has been devoted to lifts the described problems, e.g. the modified aug-
mented planewave (MAPW) approach by Bross [Bro64, Bro68, BBM*70]. In 1975,
Andersen introduced the Linearized Augmented Plane Wave (LAPW) method. The
central idea is to describe the basis functions inside the muffin-tins not only by solu-
tions of the radial Schrédinger equation u(r, E;), but as well by its energy derivatives
w(r, Ey) = 8%1”(7" E)). If E; differs slightly from the true band energy e, according
to an expansion with respect to the energy,

ul(r, 6) = Ul(’l“, El) + (6 — El)’('tl(’l“, El) + (’)((e — El)Q), (421)

the true radial function can be approximated sufficiently. The error in the band
energies will be of the order O((e — E;)*). The energy derivatives can acquired from
(4.10), taking the energy derivative:

{_h_28_2+h2l(l+)

2mor? = 2m  r?

+V(r)— El} ray(r) = ru(r). (4.22)

The basis functions are now
(1

VQ
lmaw

Prra(T) = Z Z a® (k + G)u(r, E*)+ (4.23)

[=0 m=—1

ei(k+G’)1‘ relS

b (k + Q)iy(r, BY)] Vim(#) ™ € MT,.

\

Analogous to the APW method, the muffin-tin coefficients are determined as

) At .
@ (K) = ¢85 "lyr 1K)

(R (K R) — (R o) (4.24)
() = 5y 0 R)
(R K (K Ra) — (o) ji (K Ry (4.25)
with the Wronskian
W = [in(Ra)uf(Ra) — w(Ro)if(Ra). (4.26)

Collecting terms equivalent to the APW basis set, with the definitions
Ap(k) = ch+c (b + G),

B (k) = ch+c b (k+ G) (4.27)
G
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the wavefunctions take the form

1 . .
ﬁ Z C”L‘H_Gel(k-l—G)’l' rc IS
vi(k,r) = G . (4.28)
Z (AL (K)uy(r, EX) + Bp2 (K)iy(r, B)] Yin(7) T € MT,
Im

The detailed construction of the # and S matrices is described in [Kur00]. The
formulation above reflects a non-relativistic ansatz. The relativistic approach usually
determines the relativistic radial wavefunctions u;(r) inside the muffin-tins, which
are spinors. In the interstitial, the Hamiltonian is treated non-relativistic. For
the matching on the muffin-tin boundaries, only the large component is taken into
account, since the small component practically vanishes on the sphere boundaries.

With this additional flexibility, the LAPWs form a good basis for most setups. In
contrast to the APW method only one diagonalization is needed to obtain the band
energies. And since it is very unlikely that both radial function and its derivative
vanish the asymptote problem does not occur.

Potentials: In the APW method, a description of the potential beyond the
muffin-tin approximation leads to serious problems. For the LAPW method on the
other hand, this procedure can be implemented. This full-potential LAPW method
(FLAPW or FPLAPW) [Ham79, WKWEF81] expands the potential into stars in the
interstitial, and into spherical harmonics in the spheres.

Basis conversion: A method to link the simplicity of the planewave basis with
the accuracy of the more sophisticated LAPW basis set has been proposed by
Krasovskii [KSS99]. In this Augmented Fourier components method (AFC), the
vicinity of the core containing rapid alterations of the wavefunctions is considered
to be of low influence on the chemical behavior. The results of calculation in LAPW
basis are therefore gauged by an appropriate function, generating a smoother wave-
function in this region and leaving a slowly varying valence charge, which can be
represented adequately in a planewave basis. From this results, quantities can be
calculated in the simple planewave formalism.

Symmetry: The LAPW basis obviously includes the same symmetry as the APW
basis set. According to (4.20), the coefficients for two atoms connected by inversion
symmetry obey

A= (A7), B =(B) (4.29)
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4.4 The Local Orbital extension

There might be situations where the variational freedom of the LAPW basis set
is not sufficient. One example are semi-core states, which are states of low energy
that do not decay completely within the muffin-tins, but have an overlap into the
interstitial. Singh [Sin91] introduced the Local Orbital extension to the LAPW set
to deal with such problems.

The idea is to expand the basis set by additional functions that are zero in
the interstitial, to extend flexibility inside the muffin-tins. By constructing these
additional basis functions such that the derivative vanishes on the sphere boundaries
as well, the A- and B- coefficients constructed in (4.24) remain unchanged. The new
basis function should have the characteristic of a certain angular momentum [, and
energy FEj,. This is ensured by a combination of three radial wavefunctions. Hence
the additional wavefunction (i.e. one local orbital) takes the form

lio

Sric,(r) = D laf,.(k+ Gu)uf(r, Ef) + b, . (k + Gio)if (r, Bf) +
m=—l,
Crom (B + Gio)up (1, Eio)]Yy, m(E). (4.30)
inside muffin-tin «, compare (4.23). The index lo = 1,...,ny, runs over the number

of local orbitals introduced, the a,,, b;,, ¢;, are the corresponding coefficients for each
sphere. The [ = [, indicates the angular momentum quantum number associated
with this local orbital. Each local orbital contains only an m-sum. This construction
contains the essential characteristics in the third part (I;,, Ej,), enriched with the
LAPW-like first two parts ensuring the conditions of the boundary (i.e. the function
itself and its derivative equal zero).

These two conditions together with the normalization condition do determine
the three coefficients of each local orbital. But furthermore they are coupled to
ficticious planewave, indicated above by the vectors G;,. Though no boundary
conditions have to be satisfied, this ensure the local orbital to have Bloch form.2.
The a, b, ¢ coefficients above result from this matching.

Collecting the local orbital coefficients similar to (4.27), the wavefunctions inside
sphere « take the form

villk,r) = > [AR(k)u(r, BY) + B (k)i (r, Bf)] Yim(#) +

Im

> LA (R)yuy(r, EY) + By, (k)i (r, Ef) + (4.31)

lo,m

Cloim ()t (1, 1) Yiyy ().

2For details on this, as well as on the construction of the matrix elements, see [Kur00]
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The first line is the unchanged LAPW, while lines two and three are the contributions
of the local orbitals, which are summed together in the A,B,C' with index (lo, m).
These coefficients are sets of coefficients different from the standard LAPW A B
coefficients, as well as from the plane-wave coefficients C.

4.5 A note on the kinetic energy in the LAPW
basis

Within the standard APW method one can in principle calculate the exact eigen-
functions by increasing the number of basis functions. For the LAPW basis this is
not obvious since one does not perform an iteration to solve the eigenvalue problem:.
Though the LAPW has been very successful in calculations of the electronic struc-
ture and thus is widely used, it turns out that while yielding good energy eigenvalues,
the quality of the wavefunctions is deficient.

But this property is of significant importance for the calculation of matrix ele-
ments in general and for the momentum matrix elements and optical properties in
special. An investigation of this fact has been done by Krasovskii et al. [KNA93|.

Different approaches have been developed to improve this fact. Bross et al. for in-
stance enhanced the MAPW method, and developed the spline augmented planewave
(SAPW) method. This method yields good values for the momentum matrix ele-
ments [Feh88]. Within the LAPW framework, this discrepancy of MMEs has in fact
been one of the reasons of the development of the local orbitals, and the similar ap-
proach of Extended Linear Augmented Planewaves (ELAPW) by Krasovskii [Kra97,
KSO01].
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Chapter 5

Implementation

The implementation of the dielectric function for this thesis has been done with the
FLEUR code [FLE] in bulk mode. FLEUR is a full-potential linear augmented plane-
wave (FLAPW) code. In the following sections some details of this implementation
shall be discussed.

Since the linearized augmented plane-waves are the basis of choice, the formulae
of the momentum matrix elements in this basis are presented in Section 5.1. Details
on performing the k-space integration to obtain the real part of the dielectric function
are shown in 5.2. The real part is obtained in 5.3. Due to a restriction of FLEUR, the
effect of backfolding has to be discussed in Section 5.4. The problematic influence
of this backfolding on the numerical integration is described in Section 5.5. Some
remarks in 5.6 are followed by a two test calculations.

When referring in the following to the dielectric function, often it’s imaginary
part is meant. This should be clear from the context.

5.1 Momentum matrix elements in the LAPW
basis

The momentum matrix elements (MMEs)!

h h .

K|V ]k) = /d% 5 (ke )V, (K, ) = My (k) (5.1)
are to be calculated in the LAPW basis. Due to the partitioning of the unit cell
into muffin-tins and the interstitial region by the choice of the augmented basis, the
matrix elements have to be calculated in these regions separately:

(V} = <v>15 + Z <V>MTQ- (5-2)

1To avoid confusion with the imaginary unit ¢, the initial electronic transition level is labeled 2.

41



42 CHAPTER 5. IMPLEMENTATION

The formulae are presented in atomic units (see appendix C), so the factor i = 1
disappears.

5.1.1 Interstitial contribution

In the interstitial, the wavefunctions are?
Z Ch ge'*ter  peIs, (5.3)

and the nabla operator acts like

VIik) = & Z i(k+ G)C 'O pc IS, (5.4)

so that the interstitial part of the matrix element reads
1 * 7 i(G-G")r
(fEIY|k),, = 3 > (k+G) C,§+G,Ck+G/d3r GG (5.5)
GG’ is

The non-trivial interstitial volume the integral acts on is handled by subtracting the
muffin-tins from the whole unit cell £2:

/d3re(G Gr /d37"eGG Z/d?’reGG, (5.6)
18 Q ¢ MT,

While the first integral gives the simple value Q0gqg, the integral over a muffin-tin
centered at S, gives the split solution

; ’ V G - G,
3 (G-G")r __
/ d’r e - { 3Vasinw7$cosw . elG-G")S. ¢ ” el (57)

3
MTg r

with z = |G — G'|R,, and R,,V, the radius and the volume, respectively, of sphere
«. Altogether this gives (cf. Section 5.6)

Chic (Q -y va> -

(RIS = 5 Y (k+G)

D Clie D BVarg 660 (5.8)
G'#£G e
= ) (k+G)C;, oCl e - (G- @) (5.9)
GG’

2For convenience, the general Ket symbol is used in place of its spatial representation.
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In the last line, the expressions of the preceeding integral were merged into the
function s, that is

Q- V) G=G'
_3 V(;sinx—g:cosxei((}’f(}”)sa G 7£ G’

T
«

s(G -G = (5.10)

with the above x = |G — G'|R,. This is the Fourier representation of the step-
function

1 I
S(r):{ , Tels (5.11)
0, reMT,

which is constructed already for the setup of the Hamilton and overlap matrices H
and S in the self-consistency part.

5.1.2 Muffin-tin contributions

The further procedure depends on what form of wavefunctions you start from. If you
use the LAPW functions written explicitly in the basis functions (4.23), without the
summation (4.27) in the calculation of your MMEs (5.1), you obtain the summations
over G,l,m each twice. In the further derivation, not only one pair of the (I, m)-
summation vanishes, but also, by clever conversion, the second m-summation [Krab)].
This leaves summations G, G', [. If you do this, you can simply check the hermiticity
of your matrix for every G-vector.

In the derivation used in this thesis, LAPWs of the accumulated form (4.28)
are used. To derive the matrix elements in the spheres, the momentum operator
is expressed in spherical coordinates, and its impact on the spherical harmonics is
calculated. Since this part is a bit lengthy, it is moved to appendix A.

In allusion to the ladder operators L, and L_ of the angular momentum operator,
one expresses the momentum matrix elements not in terms of (9z,dy, dz)*, but in
the rotated form

Ox + 10y 0x O
or—idy | =M 0oy | =] 0. |, (5.12)
0z 0z 63

with the base change matrix and its inverse

1 0 5 3 0
o . -1 . .
M=|1 - 0|, M = -3 2 0 (5.13)
0 01 0 01
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The result contains only one (I, m)-summation and can be expressed as

lmaz 1

(fE|OuK) g, = > Z (5.14)

1=0 m=—1
[ ([ wgy r?dr — I [ ww rdr) A{Lm Lm
+  ( [wgpd r?dr — U [ wgaty rdr) A{:lm B,
+  ( [igpu) r?dr — U [y rdr) Blf:l Al
+ faHlaE ridr — ! ful+1ul rdr) Blf:I m'BlZ,m] Fl(,i?il)
+ [ ( fUlUEH r’dr + (1+2) fulHul rdr) Af* A;+1 m!!
+  ( Jwip, r*dr 4+ (1+2) [ wgady rdr) Af* R
+ f ., r?dr + (I+2) f Upruy dr) Bf* A§+1 m
([, e+ (+2) [ rdr) Bf Bl ] FEO
for n =1, 2,3 indicating the components, and m/,m" given by
m+1 m—1
m=1 m—-11, m"=] m+1 for n=1 2 [. (5.15)
m m

The factors Fl(g) are defined in appendix A. In the combinations of coefficients
owning angular quantum numbers [ and [ 4+ 1 in the products, one recognizes the
dipole selection rules, i.e. the conservation of angular momentum.

The notation already indicates that only the large component of the wavefunction
inside the muffin-tins is taken into account. For the valence states considered this
is a good approximation.

5.1.3 Properties of the matrix elements

Hermiticity: Since the momentum operator is an observable and therewith her-
mitian, so must be its matrix elements. This can be shown easily by applying partial
integration to the defining formula of the matrix elements (5.1). It is also obvious
for the MMEs written in the plane-wave basis (4.7).

However it can be hardly seen from the formulae written in LAPW basis, since
the interstitial plane-waves are expanded on the muffin-tin boundaries in terms of
spherical harmonics utilizing the Rayleigh relation (4.13). If one applies partial
integration to the LAPW formulae, one can see that e.g. for the (z + iy)-component

of the muffin-tin contribution to the MME, parts of the factors containing Fl(:g

(2)

compensate with the complex conjugate of the factors containing £y . 4,

the boundary values of the integration un-compensated.

leaving
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The rest has to be taken by the difference in conjugating the interstitial contri-
bution, which is sensitive to conjugation due to the factor (k + G) in the first sum
in (5.9).

Reality: The diagonal matrix elements are real since the momentum operator
is an observable. Furthermore this can also be seen from and compared with the
derivatives of the energy bands

1 0, (k)

(1k|V|ik) = T

(5.16)

The non-diagonal parts are in general complex, as can be assumed because of the
complex A,B muffin-tin coefficients. For the case of inversion symmetry, however,
the matrix elements become real. This is obvious in the case of a plane-wave basis
set (4.7) due to the now real C coefficients, but not for LAPW basis (due to the
re-expansion on the muffin-tin boundaries).

Equivalent atoms: If one views the muffin-tin part of the MMEs, one sees that
apart from the radial functions u;(r) and its derivatives the A,B coefficients are the
only contributions specific for the atoms. The former are identical for equivalent
atoms, according to Chapter 4. The latter are dependent for equivalent atoms. For
the case of inversion symmetry, the coefficients of symmetry equivalent atoms are
the complex conjugates of each other. So are the momentum matrix elements,

<fk|v|lk>MTa = (fk|v|2k>MT5 (5.17)

for equivalent atoms «, due to 4.29 and 5.14.

5.1.4 Illustration

To give an impression of the amplitude and k-dependence, a band structure-like plot
of matrix elements is shown in Fig. 5.1. These are selected MMEs for a simple-cubic
Aluminum setup with one atom per unit cell, that is investigated in Section 5.4.
The path is (0,0,0) — (%,0,0) — (%,%,0) — (%,%,%) — (0,0,0), and due to big
variations in amplitude, the plot uses a logarithmic y-axis.

The progression of the curve is monotonous in most areas. On the corners of the
path, the matrix elements are not unique due to degeneracy (compare to the band
structures in Section 5.4). However, some transitions have a rapid change in ampli-
tude when approaching the corners. In this case, only the sum over the transitions
has a physical meaning and gives deterministic results. Another irregularity are
jumps that occur within a path, which can usually be connected to band crossings.
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Figure 5.1: The absolute value of matrix elements for five selected transitions evolving
on paths on the border of the irreducible Brillouin zone. The initial and final level 2 and
f are given in the legend.

5.2 k-space integration

The task to perform an integration in k-space

> / Pk U (k) f (k) (5.18)

' Bz

(Vi being the volume of the Brillouin zone, f the Fermi factor at temperature zero,
i.e. a step function) frequently appears in band structure calculations, for instance in
the determination of the Fermi energy in the self-consistency of the density functional
theory described in Section 2.3. The integrand U(k) is calculated only for a very
finite set of sample k-points.

There are different kinds of methods, e.g. the special points method [CC73,
Cun74]. It provides a set of special k-points in the irreducible Brillouin zone with
alleged weights to calculate the integrand on. This transfers the integration (5.18)
into a summation

ViG > / P U (ek) = 32 S Uk v (5.19)
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For smoothly varying functions this yields reliable results. However, for incomplete
occupied bands the integrand in (5.18) is not smooth due to the sharp Fermi factor.
Consider for instance a band close to the Fermi energy. In the self-consistency, this
band could be shifted above or below the Fermi energy, resulting in big changes in
the charge density. This can degrade or even destroy the convergence. One can
implement a more elaborate Fermi factor like the true Fermi function

f(ﬁ):%

) (5.20)
e *T +1

that is making the integrand smoothly by a temperature broadening.

Another method of integration is to divide the volume into subvolumes of a
certain shape and perform the integration in the volume analytically over the inter-
polated function. Among the method of Gilat and Raubenheimer [GR66, Bro93],
the Tetrahedron Method is the most prominent integration method of this kind.

Tetrahedra: This method was introduced independently by Lehmann and Taut [LT72]
in 1972 and by Andersen and Jepsen [JA71] in 1971. It’s idea is to divide the inte-
gration volume into tetrahedra. This is always possible, though not uniquely. The
tetrahedra can in principle have arbitrary shape, but ought to be as regular in shape

as possible (e.g. not flattened). The integration thus changes to

1 Vi
— [ &’k = — | &’k . 5.21
B >t (5.21)
BZ {Tet} Vi
Vi is the tetrahedron’s volume. In each tetrahedron, the energy interpolated linearly

is given uniquely by the four corner energies.

Interpolation in one tetrahedron: The corners are labeled from 0 to 3 with
increasing energy, i.e.’

€ < €1 < €9 < €3. (522)

For the k-vectors (with the same indices ordered in terms of its corresponding energy)
the energy in linear interpolation is

e(k) =€+ b- (k— k). (5.23)

3In this integration scheme one has to avoid equal energies. This does not pose a problem since
one can slightly shift the energies without introducing a significant error. In the case of two (or
three) identical energies (i.e. Ae;; = 0, cf. appendix B) the contribution of one tetrahedron (or the
corner weights, respectively) is equal to a tetrahedron with one of the critical energies shifted by
€ in the limit € — 0.
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Figure 5.2: A tetrahedron with corner labels sorted by energy, and interpolation vector
b. The small circle marks the penetration point of the vector.

Here, the vector b is defined such that the energy coincides for k equal kg, k1, k2, k3
with the given corner energies. This is provided by the definition

b=> (&—co)ri, (5.24)

1=1

including the auxiliary vectors

ki = k;— ko, i€{1,2,3} (5.25)
1 - -

r, = —k;jxkg {i7jk} cyclic. (5.26)
Vr

This interpolation yields a continuous energy in the whole integration volume BZ
made out of the set of tetrahedra. The integrand can be interpolated analogously
like

Ulk)=Uy+ b - (k — k) (5.27)

with the according definition

3

1=1

With this the whole integrand is continuous in the integration volume. A possible
simplification is to take the integrand set to a constant value U averaged over the
tetrahedron. With this, the quantity is of course not continuous anymore.

Given this linear form of the integrand, the integration in each tetrahedron can
be performed analytically.
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Spectral calculations: This method works fine for spectral integrals, for instance
those kinds of integrals mentioned in Section 3.4. Take integrals of the type of the
density-of-states

7

1 1
= — dS ——. 5.29
Ve Zl: / \ViEi(k)| (529)
E=Fi (k)

D(E) = V%Z/d% §(E — E;i(k))

If this integrand is interpolated linearly like in (5.27), it gives

L (5.30)
IViE(K)[  [b] '
The constant-energy plane E = E;(k) in one tetrahedron is the cross-section of a
plane perpendicular to b. There are three possible cases of this plane to cut the
tetrahedron, yielding a cutting area A and leading to a contribution of the integral
equal |—‘;‘|. The explicit results are [LT72]

;

0 e<€erore <e
Vi 3(e —€1)?
—Q €61 <e< e
Det = { 15 9 (e + e (e — )°
T(€) = T €31 + €42) (€ — €

— 3€g) +6(e —€) — 3 51 2 2 €y < € < €3
Vo o esiea ) €32€42
Vi 3(es — €
—Q €3 < €< €

\ Vo €ar€aneus

(5.31)

with the energy differences €;; = ¢; — ¢;.

Inclusion of Fermi factors: The proceeding described will not give good results
if the integrand is not continuous but includes Fermi factors, like in (5.18) or (3.61).
For corners with energy above Fermi energy the value zero will be used for inter-
polation irrespective of the occupation of the tetrahedron. But a Fermi factor just
defines a constant-energy plane that separates the occupied and unoccupied part.
Due to the linear interpolation, such an energy plane is easy to determine, as done
for the density of states.

Taking one Fermi factor into account (like in integral (5.18)) means cutting
out the remaining valid volume, i.e. the volume the Fermi factor is unequal zero in.
Depending on the energy € and the Fermi energy e referring to, this volume consists
out of zero volume (er < €1), one subtetrahedron (€; < €p < €;), three subtetrahdra
(2 < €p < €3 0Or €3 < € < €4), or the complete tetrahedron (e4 < ep) [RF75].
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A

Figure 5.3: A tetrahedron that is divided due to two Fermi factors. The numbers at the
corners are the sorted energy indices for the initial and final bands ¢ and f, the two vectors
are the corresponding b vectors (5.24). In this diagram the energy cuts both bands within
the tetrahedron and results in two crossing constant-energy planes. Cutting of vectors
with these planes or the tetrahedra boundary are marked with small circles. The valid
subvolume is marked with the red arrow, as well as shown on the left, with its division
into three subtetrahedra.

For an integral containing two Fermi factors like (3.61), one performs on each
subtetradron obtained for the first Fermi factor the (inverse) occupation procedure
for the second Fermi factor, resulting in at most nine subtetrahedra for the initial
tetrahedron. Note that for the second step a renumbering has to be made due to
the possibly different order of the energies Ey.

For the integration (3.61), this means that for every transition : — f, the valid
volume is determined, and the remaining integrand, i.e.

U(k) = (tk|pal ) (E|ps|ik)

~ |Vi(Ef (k) — E,(k))|’ (5.32)

is evaluated for each of the valid volume’s tetrahedra.

Weighted formulation: Blochl has shown that the tetrahedron method can also
be written to result in the form of a weighted summation (5.19). These weights are
given in appendix B. With this formalism, arbitrary continuous functions can be
integrated without doing the geometric derivation (i.e. calculating the cross section
of the constant-energy plane with the tetrahedron) mentioned above for the density
of states.

It should be noted that the obtained weights do not coincide with those of the
special point method which are based on symmetry, i.e. the tetrahedron method
does not take into account the high symmetry character of the irreducible zone’s
boundaries. This leads to a worse convergence than using the special points method,
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and is the reason why the tetrahedron method is usually not used for the self-
consistency, but for spectral calculations.

Attempts have been made to raise the level of interpolation to a quadratic one.
When marking out such a formalism to the linear one introduced above, the latter
one is referred to explicitly as linear tetrahedron (LT) method.

Reduction to the Irreducible Brillouin Zone (IBZ): Usually the eigenvec-
tors and eigenvalues are calculated only in the irreducible part of the Brillouin zone.
Let’s consider the effect on integral (3.61). Let R be an appropriate rotation matrix.
The energies are the same at the rotated k-point

E(k) = E\(Rk), (5.33)
but the eigenvectors are rotated:
(rli, Rk) = (R™'r|, k) (5.34)

For the calculation of the momentum matrix elements, instead of rotating the eigen-
vectors one can also rotate the coordinate system and therewith the nabla operator,
in symbols Vg, = RV,. With this the matrix element for a k-point R in the first
Brillouin zone, but outside the irreducible wedge, can be computed like

(f,RE|V]1, RE) — /d% (R, 7) Y, 1,(Rk, 7)
_ / dr 3k, R77) Vi (ke R17)

_ /d% 5k, ) Yy (k)
— R{fK|V|ik) (5.35)

When calculating the integral

-y / i WIS VM) b — 1) 5.3
W pw= '

with only use of the irreducible part, one uses the identity of the energies at the
corresponding k-points (5.33). Furthermore R' = R~!, so that the numerator of
the fraction in the preceding integral gives

(1, RE|V ol f, RE)(f, RE|V 50, RE) = (1| V| [ R) (fE|V g[1k) (5.37)
and the integral itself

)~y [ s i - )] 639)

with Nz the number of symmetry operations.
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A note on cubic systems: Since we know from section three that the dielectric
tensor is proportional to the unit matrix for cubic crystals, one can immediately
reduce the calculation (5.38) to the scalar case, using the square of the absolute
value in the numerator.

This is not to be mixed up with the momentum matrix elements itself, which
of course still have independent components. For instance remember the diago-
nal MMEs being proportional to the band derivatives, which have a well-defined
direction.

Reality: The imaginary part of the dielectric function £,5(w) is a real function. So
must be the results of (5.38). For the cubic case this is obvious since the denominator
reduces to a real expression.

In the case of non-cubic systems (3.61), the integral contains products of mo-
mentum matrix elements M3 M fz which are in general complex. This means that
the components of the tensor obtained from (5.38) can be complex, obeying the
relation 53’8 = 55“*. But according to (3.63), the resulting dielectric function along

a unit vector w is composed of a summation

€9 = ng‘ﬂuaug, (5.39)
a,f

containing for every contribution of sg‘ﬁ the transposed part 55"‘ as well. Therefore
the dielectric function £, becomes real, and one can reduce the dielectric tensor to
its real part &, = Rey (i.e. symmetrizing it by (&7 = (e’ +£5%)). This also
restores consistency with the statement in Chapter 3 that the dielectric tensor is
symmetrical.

5.3 The Real part of the Dielectric Function

Due to the tight relation between real (3.37) and imaginary part (3.38) of spectral
functions the real and imaginary part of the interband transitions both take similar
form (3.59) and (3.60). The first possibility is to perform k-space integrations for
both the real and imaginary part. This has been done e.g. for the magnetic sus-
ceptibility by Gilat and Bharatiya [GB75]. They used the tetrahedron integration
scheme to derive analytical expressions for the integral contributions which are quite
lengthy. In this thesis, the alternative path is followed, i.e. only the imaginary part is
determined, and the Kramers-Kronig integration transformation (3.43) is employed
afterwards to obtain the real part.

Numerical accuracy of the Kramers-Kronig relations: In this implementa-
tion an external integration routine has been used (courtesy of E. Krasovskii). The
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accuracy of this method should be tested for a prominent analytical example, this is
the harmonic oscillator. The real and imaginary part of the dielectric function are
given by

N0€2 (wg — wZ)
El(w) = ]_ + m (w2 _ W2)2 + W262 (540)
0
N0€2 w&
62((4()) frd m (LU2 o w2)2 _|_ w262' (541)
o
T T T T i I ' I I
0.6} e, l00pts ||
-—- &, 1000pts | ]
04l € 10000pts |
270 N U P €,, 400pts i
5 0] e |
5 — &, anal.

E[eV]

Figure 5.4: Numerical results of the Kramers-Kronig transform for the harmonic oscil-
lator. The analytical solutions are plotted in straight black lines, numerical solutions for
four different numbers of mesh points are drawn in dotted colored lines.

Several attenuations and resonance frequencies have been tested. Representative
curves are plotted in Fig. 5.4. The used data are § = 1.0, Noe?/m = 1, wynee = 10%,
Wy = 1.5%. The numerical integration yields good agreement with the analytic curve,
supposing that an appropriate set of mesh points (in the order of thousand or more)
has been chosen.

5.4 Backfolding

At this point it should be mentioned that there are degrees of freedom in the choice
of the unit cell. There might be unit cells of different shapes for the same number
of atoms, resulting in a different reciprocal lattice. In doing so the band structure
stays unchanged in the reciprocal space, but appears different due to the differently
chosen basis. There is also the possibility and (possibly the need) to choose a bigger
unit cell to model the system, giving a smaller Brillouin zone with modified bands.
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The effect on the band structure, called backfolding, shall be discussed here.
Since the dielectric properties are understood to be transitions between bands, un-
derstanding of the impact of backfolding is essential if dealing with bigger unit cells.

5.4.1 Algebraic considerations

To understand the effect of periodicity, the Bloch theorem should be recapitulated,
to simplify matters in one dimension for a non-degenerate system including time-
reversal symmetry. The Schrédinger equation

Hip, (1) = Ehy, (1) (5.42)

yields eigenvalues E and eigenvectors ¢. When the system consists of unit cells of
length R, the corresponding translation operator is defined as

Tr:r —1+R, (5.43)

with the properties

[T, H] = 0, (5.44)
Teyn(r) = ¢u(r+ R). (5.45)

This translation operator shares a common set of eigenvectors with the Hamilto-
nian. Since the absolute square of the wavefunctions is independent under proper
translations,

Tel¥l” = Ta(¥"¢) = (Taw")(Tr) = [AP[0)7, (5.46)

the eigenvalues of the translational operator take the form A = €*”, which at the
same time classifies the wavefunctions: ¢, (r) — 1, (k,r). Furthermore, as a conse-
quence of (5.44) these wavefunctions can be chosen to take Bloch form

consisting of an exponential and a lattice-periodic function. The essential step now
is how Bloch waves shifted in k-space react on translations in real space:

Trbn(k + G, 1) = *TORY (K + G 1) = e*Fo, (k + G, 7). (5.48)

This means that all shifted k-vectors k+G are associated to the same eigenvalue A\ =
e*f of the translation operator. Therefore the set of eigenvalues and eigenvectors at
k4G are equivalent to those at k. Therefore one can reduce all considerations to the
first Brillouin zone —% <k< %, K = 2% One might be confused by this insight
since the Hamiltonian in matrix representation in a basis seems to change with a

substitution of k to k + G. For the case of an infinite basis this substitution only
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0.5K -k 0 k 0.5K K k+K

Figure 5.5: Sample band structure similar to nearly-free electrons. The First Brillouin
zone’s boundary is at %K . Two equivalent k-points to k£ are marked, —k and k + K.

concerns permutations of rows and columns. For a finite basis, one gets numerical
problems for high-lying states.

The consequence for the band structure is shown for a system similar to nearly-
free electrons in Fig. 5.5. The solid vertical lines at %K, K, ... are the boundaries
of the Brillouin zones. The dashed lines indicate one k-point k£ and equivalents of it
at —k and k£ + K.

If one now imposes a lower periodicity like R = 2R, the reciprocal lattice and

therewith the Brillouin zone reduces to half the size, [k| < K, K = T- A denser

periodicity of K = % is demanded now instead of K in the first place, with . This
makes the point —k (which is equivalent to k due to time-reversal) equivalent to
—k+ K = % — k. Since these two points have (possibly) distinct sets of eigenvalues

in the initial setup of high periodicity, these two sets sum up in this setup.

The corresponding band structure is shown in Fig. 5.6. The periodicity of
branches has been doubled, the first Brillouin zone shrinks to half the size K, and
the number of bands in it doubled. This figure gives an idea of the origin of the
term backfolding. The bands look folded back at the center of the former bigger
Brillouin zone; but the superposition with an additional band structure is a better
way to visualize.
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KRk K

0.5K

Figure 5.6: Sample band structure for a system for that a lower translational symmetry
than in Fig. 5.5 has been used. The new Brillouin zone border is %K . Additionally, K — k
is marked as equivalent to k now.

5.4.2 Representation in a basis

The impact of backfolding on the energy eigenvalues has been shown in the previous
paragraph. But the dielectric function essentially depends on the momentum matrix
elements and therewith on the wavefunctions. Here, the effect of backfolding should
be illustrated for a plane-wave calculation.

For simplicity, I choose a simple, hypothetical system of Aluminum (Al) in a
simple cubic (sc) structure!. This is calculated in two setups (A denotes sets of
basis vectors, D are atom positions in coordinates of these basis vectors)

0 0 0
Ai=<L|l 0 |,L|1]|,L] O , D)= 0 (5.49)
0 1 0
and
0 0 0
A,=<L|1 0 |,L| 1 |,L] O , Dy= 01,10 , (5.50)
0 0 2 0 :

4So in this context, SC is not meant to be an abbreviation of self-consistency, as in the theoretical
part before.
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that is the second setup doubles the first one in z-direction. The resulting reciprocal
lattices (written in form of Bravais matrices, i.e. writing the (transposed) reciprocal
basis vectors in matrix form) are

1 1

2 2

Bi=="1| 0 L By==—"10 (5.51)
0 0

L L

o = O
- o O
o = O
= O O

the second setup having a Brillouin zone halved in z-direction. The wavefunctions
should be expressed in plane-waves for both setups,

1

v (k,r) = 7 3" e dric(r), (5.52)
Gi€Gy
6Or) = —— 3 L bia(r), (5.53)

v 20 G2c0>

with € the volume of the small unit cell, G;, Gy the two sets of G-vectors. The ¢
are the common plane-wave basis functions

¢k+G (’I") = ei(k—l_G)T. (554)

As a result of the smaller Brillouin zone the set of G vectors in the second setup is
double as dense as in the first one, see Fig. 5.7. Since we cut a sphere of |G| < Gaz,

+ + O+ o+ o+
“+ 4 “+
“+ + % “+
“+ + Y “+
“+ + Y “+
“+ + Y “+
X %}l X + X + \l +
T FOF TF
3 + Y “+
“+ + Y “+
“+ + Y “+
“+ + G
“+ T e
X X X X X X X X X X X X

Figure 5.7: The k, — k,-plane of the reciprocal lattices for the two setups. Basis vectors
are indicated by x-like crosses, (k + G)-vectors for one special k drawn in the origin by
plus-like crosses.

the set Gy contains approximately double the number of vectors. So for every vector
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G out of G; we assign a vector

™

Q:G+K7 K:(OJOJZ)J

(5.55)
so that all the vectors {G, G} form the second set G,. This assignment works only
approximately due to the shape of the sphere, but is valid for a sufficient expansion
cut-off Gq,: Since the influence (i.e. the magnitude of the expansion coefficient)
of large G-vectors vanish in the case of a valid convergence, the discrepancy can be
neglected. So we can take G, double as large as G, and omit indices to the G-vectors
since it should be clear from the context which vectors are referred to.

Let’s watch the generalized eigenvalue problem (2.22). Since the plane-wave are
orthogonal, the overlap has unit shape:

[H(k) — e(k)Le(k) = 0. (5.56)

For the two setups the elements of these matrices read (see (4.6))

h? 1 , /

1 1 1 —iG-Gr

o) = olk+ GPooe + Vi gy, Vidlay =g [ @ e €& Vi

MO0 = 2kt Gloge + VY VS = oo | dPr e CET V()
GG om GG (G-G'y (G-G') ~ 90 eff\T)s

uc

(5.57)

integrations performed over the real space units cells one (uc;) and two (ucy).

Now we want to relate the Hamilton matrices of the two systems. Since the
function Vs is periodic in the first unit cell ue; (thus twice periodic in uc,), and an
exponential exp (i(G — G')r) is simple periodic in uey, contributions of the potential
of mixed G-vectors vanish:

() _v® _
V(G—g') = V(ch’) =0. (5.58)
If we therefore rearrange the vectors of Gy when applying them on H to group the
vectors of G; first, we obtain for the Hamiltonian the block form

H(Za) 0
5@ — ( . H<2”>)’ (5.59)

the submatrix (a) taking the contributions of the undashed, (b) taking those of the
dashed G-vectors.

Contributions (G — G') to the potential are identical to contributions (G — G')
of the corresponding undashed G-vectors. In the formula for the potential, the
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double integration range cancels with the factor 1 in front of the integral, and the

2
contribution is the same as in the small setup:

(2) _v® _ M

V(Q—Q’) o V(G—G’) o V(G—G’)' (5.60)
Since the kinetic part of H*® is identical to H"), so is the whole submatrix. Let’s
turn focus on H. It reads

2
2b h
G (k) = S|k + Goae + Vie-a, (561)
We assume time reversal symmetry, i.e. (k) yields the same set of eigenvectors and
eigenvalues for —k. We apply this on our submatrix H(*?. Because of G = G + K
and (5.60), our matrix elements are equivalent to

B -
oo (k) = SoI(K —k)+GPige +Vie-a) (5.62)
= HG\o (K —k). (5.63)

With defining a backfolding operator 7y : k — K — k, the Hamiltonian reads

(1)
HO (k) = ( H 0(Ic) H<1>(()Ek) ) . (5.64)

The spectrum of such a matrix is the sum of the spectra of the submatrices. The
eigenvectors are filled up with zeros in its additional components. If the small setup
has the eigenvalues and eigenvectors

(@, ik} ={(cie) }- (5.65)

those of the large setup are

(2k)} = {Pk)}u{"(Tik)} and

| o, o
= {( G ) { (e )} 0

(with j (¢) running over all bands of the small (large) system).

It should be noted that the derivations given above only fit approximately, due
to the finite set of G-vectors. This is illustrated in Fig. 5.7, where a sample cutting
sphere is plotted. For such a small set of vectors, it is barely possible to make a
reasonable mapping (5.55). This effect should diminish for an increasing number of
basis functions.
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The experience shows that the distinction (5.66) into two different kinds of eigen-
vectors is also valid for the same system in an LAPW basis. This has been tested
for the calculation presented in the next subsection.

However, if the backfolding involves a more complex transformation of basis
vectors, these results — the form of the eigenvectors (5.66) — do not stand strictly
anymore.
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Figure 5.8: Band structure for scc Aluminum, setup 1 (small unit cell).

5.4.3 Illustration

This effect should be demonstrated now by some band structures for this system.
Figs. 5.8 and 5.9 show the band structures for the two systems along the path
(0,0,0) = (5,0,0) = (5,3,0) = (3,3,3) — (0,0,0), each in internal coordinates.
Due to the symmetry mentioned above, every plot k; — ks in the large system is
the sum of the plots k; — k, and (K — k1) — (K — k) of the small system (with

K =(0,0,2)).

Due to the simple kind of backfolding in this setup, one sees the backfolding
nicely in a plot along z-direction. In Fig. 5.10 the path (%, %, 0) — (%, %, %) is shown,
that is the third section of Fig. 5.9. The band structure of the large system is given

by that of the small system overlapped with the additional path (%, 3,3) — (1,3, 3).

In Fig. 5.11 the band structure (0,0,0) — (%, 0,0) is plotted. The bands of the
large system on the right are those of the small system along the same line on the
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Figure 5.9: Band structure for scc Aluminum, setup 2 (large unit cell).
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Figure 5.10: Backfolded band structure parallel to z-direction. On the left two band

structures of the small system are shown that overlap to the band structure of the large
system on the right.

very left, superposed by the bands (0, 0, %) — (%, 0, %) Here it is already difficult to

distinguish the two kinds of bands by a simple glimpse.
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Figure 5.11: Backfolded band structure perpendicular to z-direction. The right band
structure (large setup) is the sum of the two on the left (small setup).

5.4.4 Consequences for computation

The calculation of a physical property (i.e. the expectation value of a hermitian
operator) must be the same whatever choice of the unit cell has been made. Since
the band structures change, one might get the impression that this rule is violated.

One essential ingredient of the dielectric function (3.61) are the transitions from
one band to another, that is a double sum over occupied and unoccupied states. This
summation will change if the band structure changes. The joint density of states
(JDOS) for example, given by (3.62), relies on these transitions only, meaning only
on the gradient of the energy differences. It does not depend additionally on matrix
elements like the dielectric function (3.61). This leads to different results for a
backfolded setup.

To show this, the dielectric function (3.61) is plotted in graph 5.12 with matrix
elements neglected, i.e. the numerator equal to one. Though not the same quantity,
this term suffers the same effect with respect to backfolding as the JDOS does. It
can diverge for small energies due to the factor ﬁ This difference for the two setups
does not contradict physics since the JDOS is not an observable and does not have
a physical meaning by itselves.

The difference of the dielectric function for the two different unit cells in the
small graph in Fig. 5.12 results from the k-points being double as dense for the
large setup as for the small one (the same number of k-points was used), and from
the remaining effects of the additional bands. Furthermore one sees by comparing
the two curves for the small setup (black curve with markers on the right, and the
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Figure 5.12: Dielectric function of scc Aluminum without inclusion of matrix elements
€y on the left and with inclusion of matrix elements €2 on the right. Both graphs show
the results for the large setup (red curve) and the small setup (black curve with markers).
The small graph on the left €5 of the small system is enlarged. 288 k-points have been
used.

small graph on the left) that the pure band structure (i.e. neglecting the momentum
matrix elements) already possesses some of the characteristics, e.g. the two peaks
at 0.6eV and 0.8eV. Other characteristics (like the decrease for small frequencies)
are obtained only by including the matrix elements.

The dielectric function on the other hand yields the same results for both setups
due to the momentum matrix elements included in its mathematical description.
These matrix elements have the property to vanish if being applied on a regular and
a backfolded eigenfunction:

(fk|V|:k) =0 for a backfolded transition, (5.67)

that is one state of + or f being backfolded, the other one regular. For the simple
setup of Section 5.4, this can be seen easily from the form of the eigenvectors (5.66)
and the form of the matrix elements in plane-wave basis (4.7).

5.5 Resulting problems in the integration

Up to now, the interesting insights of the previous section do not pose any analytical
problems. But in the numerical treatment, problems appear due to the interpolation
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between k-points made in the integration scheme described above. The two different
kinds of problems encountered in the implementation are described in this section.

Before describing the details, one should remember the way a computer handles
bands. A human can connect k-points logically to bands by watching a band-
structure, or can give it a mathematical character. Initially, computers can only
enumerate the eigenvalues, and uses the according eigenvectors. It needs additional
effort [YKS]| to recognize band crossings.

5.5.1 The Influence of Degeneracy

The first problem with backfolding arises at points with degenerated energy eigenval-
ues. At these points the eigenvectors are determined only up to linear combinations
of each other. (This means that the matrix elements are not unique for eigenvectors
with degenerated eigenvalues, even not for an observable like the momentum. In the
case of the dielectric function that contains transitions from one level to another,
only the sum over these transitions — as it is contained in (3.61) — gives a unique
value.) An example for degenerated eigenvalues is sketched in Fig. 5.13. For in-
stance, k3 could be the zone boundary. It is known that the matrix elements vanish
for a degenerate energy eigenvalues,

(fky|V)iky) =0 for E,(k,) = Ef(k,), (5.68)

as in our case. (This is shown by Mavropoulos, Papanikolaou and Dederichs [MPD03].)
It should be valid in the limit k — k4, too. Therefore, one should not expect prob-
lems from this.

The situation is different if you consider transitions to another band ¢ in a system
possessing backfolding. In the last named figure, let bands a and ¢ be regular, while
b is backfolded. Transitions b — ¢ should not give any contributions. This is
consistent with the image that according to (5.66), the eigenvectors of bands b and
¢ have the form

|Myw(;>,|va<2>, Mﬁ~<;>, ke (ki ks). (5.69)

At k3, however, due to the intermixture of ¢ and b, the eigenvectors take the form

mmw(:>,|va<I>, (5.70)

resulting in a matrix element M (k3) # 0. In the analytical solution this is no
problem due to the singularity of this point (or plane in three dimensions, respec-
tively). In a linear interpolation scheme, though, this leads to finite contributions,
as sketched in the small picture in Fig. 5.13.
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Energy

Figure 5.13: One-dimensional illustration of degeneracy. The straight red lines are the
true bands, while the dotted black ones are interpolated linearly from the energy values
(plotted as stars) at the mesh points kj,k2,k3. The horizontal dotted line indicates the
Fermi energy. In the small picture, a linear interpolation is sketched in dotted black, the
true discontinuous path in solid red.

A possible solution: It is neither common nor possible without additional numer-
ical effort to determine the “natural form” [:k,), ~of the wavefunctions at a k-point
k, possessing degeneracy (that would be |ik,) = limg_g, [2k)). Furthermore it is
quite improbable (if possible at all with limited numerical precision) for a sample
k-point within the irreducible Brillouin zone to hit a point of degeneracy. On the
other hand degeneracy on the Brillouin zone’s boundary (and at high symmetry
points in it, which are in turn boundaries of the irreducible part of the Brillouin
zone) is very common. Experience affirms that matrix elements like M, (k) quickly
vanish when moving off the high symmetry (see next subsection).

Therefore a simple solution is just to shift all k-points marginally off the bound-
ary inside the irreducible wedge. If backfolding is absent, this leads to only a
marginal but noticeable error, due to the quick variations of the matrix elements
close to high-symmetry planes. In the presence of backfolding, the effect is similar to
neglecting the matrix elements (shown in Fig. 5.12): The dielectric function will get
additional contributions due to wrong interpolation, especially big values for small
frequencies.
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5.5.2 The Influence of Band crossing

Figure 5.14: One-dimensional example for band crossing. The straight red lines are the
true bands, while the dotted black lines are interpolated from the energy values (plotted
as stars) at the mesh points ki,k9,k3. Fermi energy is dotted in the upper third.

In the case of band crossing, the interpolation errors have a significant influence.
This is illustrated for a one-dimensional example in Fig. 5.14. The true bands are
approximated linearly from the energy values at three sampling k-points ki,ks,k3.
As in the sketch before the bands are labeled a,b,c. For a human observer this refers
the true bands, while a computer gives these labels to the eigenvalues ordered from
bottom to up.

Let the bands a and ¢ be regular, while band b is backfolded, and focus on the
interval [k, ks]. According to (5.66) the eigenvalues at k; take the form

|ak1>N(3>; |bk1>N<2>, |C]€1>N<;>, (5.71)

and the form

0 * *
|aks) ~ ( . ) , |bkg) ~ ( 0 ) , |eka) ~ ( 0 ) (5.72)
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at point ks. This results in matrix elements for a transition b — ¢ of the form
Mcb(kl) = 0, but Mcb(kQ) 7£ 0. (573)

Due to the non-vanishing matrix element at k,, the matrix element is interpolated
in [k, ko] continuous in the range [0, M (k2)]. In the given example, this results
in transitions at low frequencies vy, (see Fig. 5.14), while analytically (and for an
infinitely dense mesh) only transitions down to v,.., are possible in this interval.

Though also occurring in the absence of backfolding, the impact on calculations
are stronger with backfolding present due to the larger number of bands. Further
on, the differences resulting from matrix elements equal zero being interpolated
incorrectly are crucial, especially for small energies due to the factor ﬁ that goes
into the dielectric function (3.61).

80— — w/o sorted EVs
~— W/ sorted EVs
L ---- difference
60 — —

1 15 2 25
E[eV]

Figure 5.15: Dielectric function for fcc Aluminum, with and without sorted eigenvalues
to correct crossing with backfolded bands (288 k-points).

An approach to avoid the problem: A method to minimize the contribution of
backfolding to this effect is to renumber the bands. This is possible up to a certain
point for crossings of regular bands with backfolded ones, as mentioned earlier (5.66).

In Fig. 5.15, this method has been applied to aluminum for a mesh of 288 k-
points. Only with this method one restores the correct absorption edge of the curve.
Calculations show that without reordering of bands, this effect is still present for a
calculation involving 11000 k-points (likewise in the irreducible BZ).
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The higher the eigenvalues are, and the closer the k-points to high symmetry
positions, the worse is classification into regular and backfolded ones. The first item
is not too serious because transitions of higher energy contribute less to the dielectric
function, due to the prefactor é Second one can assume band crossings of regular
and backfolded bands not to appear in the very close vicinity of high-symmetry
planes. Starting from this one can hope to get good results with this method.

0.01

0.001

0.0001

1le-05

1e-06

0.49 0.492 0.494 0.496 0.498 05
z

Figure 5.16: The overlap of wavefunctions 1 and 2 of an fcc Copper system.

In Fig. 5.16 the actual decay of overlap and absolute value of matrix elements is
shown. The observed system is the second test system in Section 5.7, fcc Copper.
The two lowest bands are examined along the k-vectors (z, z, z) for z € [0.499, 0.5].
The plot is double logarithmic. It gives an idea of how far to shift k-points off the
boundary so that the matrix elements vanish (as they should) and the bands can be
classified correctly.

5.6 A Note on Computational Demands

For sophisticated spectral computations you need an adequate set of k-points —
possibly in the order of thousands. This meets the fact that for large systems with
a big number of electrons, the number of transitions roughly scales quadratically to
it. Together this can result in significant demands of computer memory, so that one
has to consider how to provide these matrix elements to your integration routine.

It turns out that the calculation of the matrix elements (and herein the interstitial
contribution) is the major computational effort. So one can calculate the MMEs in
advance, resulting in minimal computational costs and biggest memory demands.
On the other hand the matrix elements can be computed on-the-fly, abandon the use
of the big array memory, but needing to calculate the same matrix elements several
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times. In between, you can try to cache selected elements in memory to combine
the advantages of both approaches with minimal drawbacks.

At this point, the special way of connections of your k-points to tetrahedra and
the order of tetrahedra can be of big help. For instance, regard a typical tetrahedra
set connecting nearest neighbors in a set of n, k-points equidistant in the three
spatial coordinates. This tetrahedra should be arranged in layers, e.g. in z-direction,
with the same order in each layer (according to the layer shape which may differ).

If one processes the tetrahedra sequentially, the data of the corresponding k-
points (including the matrix elements) are not needed only for a short time. Con-
versely, even if one does not want to calculate the matrix elements multiple times,
you need to store only n;,, matrix elements at the same time, where ng;, can be
considerably smaller than ny.
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Figure 5.17: Computational amount depending on cache size (1470 k-points, 6591 tetra-
hedra).

If you take a cache smaller than these ng;,, entries, you will have to calculate
matrix elements partly again since you have to skip some which you need later.
But you can still take good advantage of that method, depending on which matrix
elements you skip. In Fig. 5.17 this is illustrated for a k-point of 1470 points (it is
a prism-shaped box with 14 equidistant points per edge), giving 6591 tetrahedra.
Only matrix elements for ng;,, = 116 k-points are needed simultaneously not to
calculate them repeatedly.

If you lower the size of your cache below this value, your number of calculations
increase, depending on your strategy. The point (116,1470) at the lower right is
the starting point of a complete caching. If the cache is full when a matrix element
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should be stored, the first strategy writes the new element in the beginning of the
cache, while the second one looks for the oldest element in cache. Though the
number of computations quickly nearly doubles for a small decrease of cache size
(~ (106, 2650)), it stays below 3000 — roughly double the computational amount —
for even a fifth of the starting size.

As already mentioned, the calculation of the momentum matrix elements con-
sumes most of the CPU time. In the current implementation the contribution of
the interstitial according to (5.9) is costly. Investigations gave a ration between 75%
and more than 95%, depending on the system size. In future we plan to replace this
routine (including a double summation over G-vectors) by an FFT technique.

5.7 Test calculation

The parameters used for these systems as well as for the systems calculated in
Chapter six are listed in appendix D.

5.7.1 Aluminum

-485.866 T T T T T T |
L X Numerical results
-—- quadratic fit
-485.868 — — Birchfit

-485.870 —

-485.872 —

Total energy [Htr]

-485.874 —

-485.876
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Figure 5.18: Total energy against the volume of the unit cell relative to the experimental

: v _ L _\3
value, ie. 7~ = (Lew) .

In nature, Aluminum exists in the face-centered cubic configuration. This can
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be modeled in the basis

5 5 0 o 1 1 -1
Ai=L| 30 5|, Bi=—| 1 -1 1 (5.74)
0 3 3 -1 1 1

of real and reciprocal space. In the current calculation it is modeled in the real-space
and reciprocal-space basis

oLl 10
1 1 2m
0 01 0 01

with two atoms per unit cell on internal coordinates (0,0,0) and 3(1,1,1). The
lattice parameter was varied and is plotted against the total energy in Fig. 5.18.
Birch [Bir78| gives a relation for the total energy of a crystal against the volume
V. For hydrostatic compression of cubic crystals, the strain tensor e,z reduces to a
scalar e. For the limit e — 0 the energy reads

(?)ng, (5.76)

with Ej the energy of the equilibrium state, V4 it’s volume, and Ky = —V(g—‘lj)h/:%
is the modulus of compression (or bulk compression) in equilibrium. In this case,
the calculation reproduces the experimental lattice constant nearly exactly, with a
deviation of 0.3 percent, L, = 1.003L.;,. Though the curve of a quadratic fit
does not differ significantly, the location of the minimum is different.

9
E(V)=Ey+ gKUVU

A band structure (along the same path as those in Section 5.4) is shown in
Fig. 5.19, together with the density of states. The 3s electrons of this system show
a behavior similar to free electrons, as can be seen in the parabola-like bands in the
band structure, and in the square-root-like DOS. One can compare these results to
those of the simple-cubic systems in Section 5.4.

The (imaginary) dielectric function has already been shown in Fig. 5.15 for a
small number of k-points to demonstrate the influence of the sorting of eigenval-
ues. In Fig. 5.20 it is shown for different larger number of k-points. It shows the
slow convergence known from literature. Furthermore, two characteristic peaks are
located at 0.5eV and 1.6eV.

Literature: Experimental data have been obtained by Ehrenreich and Phillips [EPS63)].
A first computational approach has been made by Brust [Bru70]. An analysis com-
bining data from reflectance, ellipsometry and other measurements is presented
in [SSIS80]. An analysis of aluminum within the APW method has been done
by Szmulowicz and Segall [SS81]. One plot from this article is shown in Fig. 5.20.
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Figure 5.19: The band structure (0,0,0) — (3,0,0) = (3,3,0) = (3,%,2) = (0,0,0) of

Aluminum in fec coordination is shown on the left. The right plot contains the according
Density of states.

T T T T | T eVl
_'uz_irﬂl.lﬁz‘ﬂ?iﬁsna.ﬁmﬁioﬂ‘ﬁmﬂ
2501~ 1 — 726kpts| ]| .
B — 2176 1 R
- —— 4851 | s
200 — 9126 ::
B — 15376 E 2 I
= 23976 _ ‘
3 150 ] :5
W = ] ?;
100 — |
\
50 — / \\\ —]
0 !
0 1 5 004 008 Q12 006 020 G24 028 -032 036 040 044 048

PHOTON ENERGY (Ryl

hw[eV]

Figure 5.20: The imaginary part of the dielectric function for fcc Aluminum is shown
on the left for different number of k-points, each in the IBZ. On the right, the real part of
the conductivity o;(w) is plotted, taken from [SS81].

It shows the not the imaginary dielectric function but the related real conductivity
o1(w) = ;%e2(w). It shows the same characteristic peaks. Position of the peaks and
the rough shape of the curve show good agreement. But due to the slow conver-
gence, a quantitative comparison is not possible (therefore a change of the plot from
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dielectric function to optical conductivity has not been made).

Figure 5.21: The imaginary part of the dielectric function of Aluminum for a mesh of
288 k-points and three different lattice constants.

Numerical considerations: The self-consistency has been done for 6 k-points
and alternatively for 100 k-points. The dielectric function does not show a visible
difference. The dependence on the G,,,, cut-off value has been checked for the values
Gmar = 3.5,4.8. No difference is visible. (Both is not shown explicitely in graphs.)

Further, the dielectric function was calculated for three slightly different lattice
constants, shown in Fig. 5.21. Obviously the dielectric function is very sensitive to
the shape of the Fermi surface, which (among other things) depends on the lattice
constant and the Fermi energy. Thus a careful determination of the optimal lattice
constant is recommended.

The accuracy and correctness were tested with respect to hermiticity and inde-
pendence to the coordinate frame of reference and to the symmetry requirements.
In both cases the deviations were within the overall accuracy. The choice of the
muffin-tin radii (within a reasonable range) did cause no impact on the dielectric
function.



74 CHAPTER 5. IMPLEMENTATION

T | T | T | T T | T | T | T | T | T 7 T | T 1T T 1T T T 1T
6 — ]
5 — —]
'3:‘ L .
< >
3 S 4 .
(@)
My a I H 1
L @3 7
i o r 7
2 — —]
l ! kjw_
_10 1 | I | 1 | I 1 | { | 1 | I 1 | 1 | 1 | |l | I | I 0 1 | 1 I | N Y N | 111
[0.00 [0.50 [0.50 [0.00 -10 -5 0 S
[0.00 [0.00 [0.50 [0.00 E-E-[eV]
[0.00 [0.00 [0.00 [0.00

Figure 5.22: Band structure and Density of states of Copper.

5.7.2 Copper

The second test system is copper, which condensates in the face-centered cubic
structure as well, therefore the same unit cell is used. This system was already
referred to in Fig. 5.16 where the overlap for two bands is shown.

Band structure and DOS are shown in Fig. 5.22. The valence band is formed
out of ten 3d electrons and one 4s electron per atom. The bands in the range
—5eV... — leV are mostly d-like, while the lowest is mostly s-like. The dielectric
function is shown in 5.23. Due to the lonely band crossing the Fermi surface

Literature: Experimental results have been reported by Ehrenreich and Phillip [EP62].

Calculations have been done by Mueller and Phillip [MP66]. The calculated curve
show meets many characteristics of the latter literature reference. There is a gap up
to 2eV, a peak at 4.5eV and a decay towards higher energies that is a bit slower than
towards lower energies. Beyond this qualitatively agreement, the numbers do not
exactly fit, due to the different calculation methods as well as due to the different
number of k-points.
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Figure 5.23: Imaginary part of the dielectric function of Copper. The solid red line is
the calculated result (288 irreducible k-points), while the dashed black line is a result of an
ELAPW calculation (897 irreducible k-points = 32768 k-point in whole BZ; by courtesy

of E. Krasovskii [Kraal).
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Chapter 6

Application to Phase-Change
Materials

In this chapter, the method previously presented is applied. After a brief introduc-
tion of the idea of phase-change materials two classes of compounds (namely GeTe
and AgTe compounds) are introduced. Band structure calculations are performed,
and the dielectric function is determined for the GeTe system.

6.1 Phase-Change Materials

Figure 6.1: The principle of an information bit recorded by phase change. The circles
illustrate a small region in the medium at room temperature 7, indicated by the small
thermometers. The changes in structure are induced by focused laser beams symbolized
by the large thermometers, heating up the spot above the melting temperature 71;,, or
above the activation temperature T,, respectively.

The concept of phase change recording is based on thin layers which change
its structure reversibly against temperature. Being a crystal structure at room
temperature, the film locally melts when shortly heated above a specific temperature
T,, by a focused laser beam of high intensity. After switching off, the film rapidly

77
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cools down with a cooling rate > 109§. The rapid reduction of atomic mobility to
negligible amplitudes keeps the material in this amorphous state.

When heated up again briefly above a certain activation energy T, that is smaller
than the melting temperature, the material recrystallizes into the previous crystal
structure and keeps this structure during cooling down. Due to their different struc-
ture these two phases show different response to light. This way a bit of information
can be stored. It is read out by a laser beam of low intensity, which is reflected
differently depending on the structure of the spot of information.

In actual implementations, the phase change layer is sandwiched within a mul-
tilayer system of several dielectrics. This system is fixed onto a substrate.

Motivation: In production of information storage devices different demands com-
pete with each other, like access time and price per capacity. This has lead to a
hierarchy of storage devices, primary memory (including random access memory
(RAM) technologies), secondary memory (mass media like hard discs, read-only
compact-discs (CD-ROMs), Digital Versatile Discs (DVDs)), and tertiary memory
(tapes). In the category of rewritable mass media (second level of the hierarchy)
apart from the well-known magnetic devices two technologies in particular developed
into actual products, magneto-optical (MO) and phase change (PC) based devices.
The rewritable DVD is already based on a phase-change effect. New materials are
the subject of continuous development to improve the quality of devices and to
develop new ones.

Demands: To be of practical use, a potential material must fulfill several crite-
ria [Wut01]. In order to form a glass easily, the melting point should be reasonably
low, around 500°C'. The biggest part of the absorbed energy should be converted
locally into heat to induce the phase change, resulting in a low power demand for the
transformation. On the other hand the activation energy T, to restore the crystal
structure should be sufficiently high that the amorphous phase and therewith the
stored data are persistent for a long period of time. A high optical contrast is im-
portant to distinguish a signal from noise, ensuring a reliable readability. A central
problem in building stable layers is the mechanical stress linked with the phase trans-
formation and the related volume change. For applicability a fast recrystallization
is crucial, since this is the most time-consuming process, and an understanding of
the underlying physics is needed. Investigations of potential phase-change materials
include measurements of resistance, of structure, of mechanical stress, spectroscopic
and ellipsometry measurements.

At present, the discovery and development of phase-change materials is mainly
based upon empirical strategies. Detemple et al. [DWWBO03] lately presented a
structural criterion that needs to be met to enable the mandatory fast recrystal-
lization with sufficient optical contrast that characterizes suitable phase-change ma-
terials. Only a certain subset of Te alloys showed a sufficient density change in
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crystallization which is requisite for a sufficient optical contrast between crystal and
amorphous phase. The alloys of this subset show a cubic or near-cubic coordination.

Using this improved knowledge of which systems to study computational meth-
ods form a useful tool to support investigations. Two classes are covered in the
following sections with focus on the optical properties.

6.2 GeTe compounds

The majority of atoms that build the phase-change materials in investigation are
from the groups 13 to 16 (formerly IIIB to VIB) of the periodic table, that is having
one to four electrons in the outer p-shell, most of them from the periods four and
five (Ga, Ge, As, Se, In, Sn, Sb, Te). Together with Germanium, Tellurium is the
element chosen most frequently.

Composites of these elements like GeTe, Ge;SbyTey, GesSbhyTes, GeySby'Tes have
been investigated [Wel02, Fri00, YOMU98|. The first of these compounds, GeTe, is
not only the easiest of these systems, but shows characteristics also found in other
compounds.

Structure:  The structure and binding of GeTe has been presented in [Wel02]
and [Sin01] (and references therein). GeTe appears in a high-temperature and a
low-temperature structure, called - and a-structure. While being in trigonal struc-
ture at room temperature, it merges into the rocksalt structure when crossing the
transition temperature 7},.. A value of T}, = 700K is reported for this temperature,
showing a strong dependence on the stoichiometry of the sample.

These properties of bulk differ for thin films. After being created by ther-
mal evaporation or sputtering on glass or silicon, respectively, the film transforms
from the amorphous to the high-temperature rocksalt structure during tempering
at 480K. 'This coordination is conserved when being cooled down. This is not
the high-temperature phase but a meta stable phase. Investigations show that the
lattice parameters are comparable to that of the high-temperature phase.

The rocksalt structure is sketched in Fig. 6.2. It can be seen as two combined
fce lattices shifted by %(1, 1,1), i.e. half of the diagonal of the cube. The basis cell
can be chosen as

b
Afcc _ cub

. (6.1)

o =
=
_ = o

forming a trigonal unit cell with angles v = 60° between the unit vectors and atom
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Figure 6.2: A sketch of the rocksalt structure. It consists of two fcc lattices placed into
each others vacant positions. The two kinds of atoms are symbolized by the blue and
green balls, respectively. Three different unit cells are marked with red sticks, a cubic one
on the bottom left, a trigonal one on the top left, and a hexagonal one on the right. All
atoms in the picture belong to one crystal. Only for reasons of survey, atoms not part of
these three unit cells are painted smaller.

positions in this basis

0 1 .
rgfb =10 |, rgfb =611, 0= 3 (6.2)
0 1

or vice versa. When referring to a cubic unit cell

Acub = Qcub (63)

o O =
o = O
_ O O

the structure is settled by the length of the cube a.., = beus V2. The experimental
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lattice constants is reported to be aS? = 6.012A [ZZ]. The numerical lattice constant

a™m™ = 6.083A is taken from [Wel02] (see also appendix D). This structure possesses
the usual cubic symmetries, that are three four-fold rotation axes along (100)-like
axes, six two-fold axes along (110) and four three-fold rotation axes along (111) and

that like. It possesses inversion symmetry as well.

The low temperature trigonal phase (also called A7 phase) differs from the cubic
phase expressed in a trigonal cell (6.1) by a change of the edge length b, = 4.293 A,
and the three angles still being equal among each other, but taking the value
a®P = 58.128°. Furthermore the parameter 0 now deviates from 6 = 0.5 giving the
configuration with the farest distance to neighbors, but takes the value 7 = 0.4746.
The reason must therefore lie in the electronic structure. This system does not pos-
sess inversion symmetry anymore. One can imagine this as a rocksalt structure
stretched in (111)-direction and compressed in the perpendicular directions.

In the present calculation this phase is modeled in hexagonal coordination de-
scribed by two lattice parameters (a,c¢). To transform coordinates, the trigonal cell
is written as

0 X -X
Atrig - btrig 2Y —Y —Y (64)
/A A

with the naming X = (/3(1 —cosa), Y = (/¢(l —cosa), Z = {/5(1 + 2cosa).

The atoms are placed at

1
ra=1 0|, ri,=0f 1 |. (6.5)
0 1

The resulting hexagonal parameters derive to

Ahew = birigV/2(1 — cos @),  Chey = V/3(1 +2cos ) (6.6)

and the atom positions to

([0 3 :
G
rh;;::{ ol.[2].]2%]¢.
1 2
(\ 0 3 3
4
0 1 2
3 3
e =130 2 L (6.7)
hex ) 3 ) 3 y .
1 2
[\ Lis 2456
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referring to the hexagonal basis

Ahex

Qhex - %ahex 0
= 0 apegcosy O . (6.8)
0 0 Chex

Thus the resulting hexagonal unit cell is three times as large as the trigonal one.

Electronic structure:  The rocksalt structure was calculated in a basis set with
shape like those used for the calculation of the fcc structures Al and Cu in Chapter
five, thus containing four atoms per unit cell. The hexagonal unit cell that was used
to model the A7 structure contains six atoms.

E-E.[eV]
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The band structure of GeTe (rocksalt) with 4 atoms/u.c. Here as well as in

the following band structures and density-of-states plots, the occupied part below Fermi
energy is marked with an orange fill. For semi-conductors, the Fermi energy is placed in
the middle of the gap. The red ellipse marks the location close to which large contributions
to the dielectric function arise.

The band structure for these two setups are shown in Figs. 6.3 and 6.4. The

compound
0.51eV for

is a semi-conductor in both configurations. The bandgaps take values of
the cubic structure and 0.65¢V for the A7 structure. One should note

that these values are sensitive to a sufficient G4, cut-off.
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Figure 6.4: The band structure of GeTe (A7) with 6 atoms/u.c.

The according density-of-states are given in Fig. 6.5. Though not obvious from
the band structures due to the different basis sets, one sees that there is only a small
difference between the cubic and trigonal phase. According to [Wel02], the buckle at
—11eV is formed mainly by Te s-electrons, the buckle one around —8eV by the Ge
s-electrons. The contribution —5eV..0eV is made by the Ge p- and Te p-electrons.
The d-electrons form lower lying states.

To investigate the possible influence of these d-states, the calculations have been
performed with d-electrons included in the valence band, c.f. the dashed line in
Fig. 6.5. Both curves show good agreement in the occupied part. Therefore it seems
reasonable to treat these electrons as core states.

Dielectric properties: The dielectric function for the GeTe system in the two
structures are shown in Fig. 6.6. The energy range 0eV..19¢V has been calculated.
For both systems the dielectric function was calculated cubic-like. The peak is very
large for both systems. Its main contribution could be located close to the region
marked with a red circle in Fig. 6.3. Further analysis has to be made, especially to
correlation to the number of k-points used.

The imaginary part of both curves are quite similar, as expected. The gaps last
until £, ~ 0.75eV and E, ~ 1.0eV, respectively (cubic/trigonal). The broad-
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Figure 6.5:  The density of states for the two GeTe structures (cubic: 75 k-points,
trigonal: 50 k-points).

ening at 0.5€V..0.75eV  (cubic) might be due to backfolding effects. The large
peaks are located at E, = 1.50eV/E, = 1.59¢V and are of similar amplitude
€9maz = OT1T/E2,max = 559. Both curves take a local minimum around hw ~ 5eV
and rise again towards a local maximum at iw = 6.2eV /fuww = 7.0eV. The difference
in the resulting real parts of the dielectric function are more visible to the naked
eye. The positions of the peaks of the curve for cubic structure are slightly shifted
towards lower energies. The curve in total is lower compared to the curve of the
trigonal structure, giving a lower first posit iv peak and a second negative peak of
higher amplitude.

To give a connection to the optical application the reflectivity of a bulk surface
of this material (according to Eq. (3.30)) is shown in Fig. 6.7. However, in order
to compare to reflectivity measurements of thin films, a different description for
the reflectivity has to be used. At low frequencies including the optical range the
difference between the two systems is marginal. Between 5.0eV and 6.5eV | however,
the cubic structure shows a significant lower reflection, investigating the difference
in energies of excited states as well as in the matrix elements.

At this point the comparison to calculations of amorphous structures would be
interesting. From a numerical point of view, the influence of the inclusion of the
d-electrons into the valence band on the dielectric function should be checked.
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Figure 6.6: The real and imaginary part of the dielectric function of the GeTe system.
The rocksalt structure is shown on the left, the trigonal A7 structure on the right.
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Figure 6.7: The bulk reflectivity of the two GeTe systems. To give a relation to the
energy scale, the optical range (i.e. the energy range of light from 400nm to 750nm) is
marked with an orange fill. Solid state lasers presently used in optical data storage have

a wavelength of 780nm.
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Figure 6.8: Sketch of spectrometric devices (in transmission mode). The left one bases
on lattice spectroscopy. A beam from a light source L (dashed line) is reduced to a certain
wavelength by the monochromator Me¢, and hits (after passing the apertures A) a probe
P. The detector’s signal depends on the setting of the monochromator. On the right a
draft of a Fourier Analyzer is given. The light beam hits a semi-permeable mirror M,
that splits it into two beams (dotted lines) that are reflected at the mirrors M; and M,
and reunite again at My to continue the path to the probe P. While one of the mirrors
My, M, is fixed, the other is movable to introduce a slight difference in the length of the
optical path. The detector’s signal depends on this difference Azx.

Comparison to Measurements: In order to determine optical properties exper-
imentally, a major group of investigations are formed by spectroscopic methods, that
are measurements to obtain a frequency dependent spectrum [Sch00]. It’s principle
is shown in Fig. 6.8. In direct spectroscopy, the wavelength of observation is selected
with the monochromator. This gives the spectrum P(w) of the signal P at the de-
tector. In Fourier Spectroscopy, the light beam interferes with itself after being split
and introducing a difference in optical path Ax. One measures an interference spec-
trum P(Ax) which is the Fourier transform of the desired spectrum P(w). With
these spectroscopic methods one can obtain for instance spectra of the transmission
T'(w) or reflection R(w). Another method of observation is ellipsometry, which can
be used to determine the complex dielectric function [Bas95].

In Fig. 6.9 the dielectric function for the two GeTe structures obtained by el-
lipsometry measurements are shown. The divergence in the imaginary parts for
small frequencies is expected to be due to impurities within the samples. The am-
plitude of the curves differs by one order of magnitude compared to the calculated
curves in Fig. 6.6. This can not be explained at the moment. The peak positions
of £, =1.62eV /E, = 1.65eV correspond to the computed values given above, con-
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Figure 6.9: Ellipsometry measurements of GeTe (by courtesy of W. Welnic, [Wel02]).
Real and imaginary part of the dielectric function are plotted for the cubic structure on
the left, and for the trigonal structure on the right.

sidering the fact that a correction of the bandgap (a systematically underestimated
quantity within LDA and GGA calculations) shifts the complete dielectric function
with respect to energy. However, the shift of the peak (comparing cubic to trigonal
setup) is larger in computation (0.09¢V") than in measurement (0.03e¢V"). While the
amplitude lowers in computation with the change from cubic to trigonal setup, it
rises in measurement. The decay in the computed curve is more rapid than in mea-
surement. In the measured curves the local minima around 5eV" and the proximate
local maxima seen in calculation can not be found. Due to these difference, the real
parts of computation and measurement share significant characteristics, but do not

agree quantitatively.

Out of these data the bulk reflection has been calculated (see Fig. 6.10)!. The
general shape does qualitatively agree with Fig. 6.7 in some points. For energies
1.0eV..1.6eV in the infrared range the experimental curves show the same ampli-
tude as the theoretical ones. For lower energies the impurities in the measured
sample turn the reflectivity to one. In the optical range both structures show prac-

1Since the dielectric function is determined by an explicit surface measurement, the calcula-
tion of the reflectivity in this context is of more academical nature to determine the influence of

differences in the dielectric function on the reflectivity.
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Figure 6.10:  The bulk reflectivity of the two GeTe systems determined out of the
experimental ellipsometry data.

tically identical but decreasing reflectivity (with respect to the energy). Results
from computation also showed nearly equal but constant values in this range. Also
for the experimental data the cubic structure takes a significant lower reflectivity of
0.4 around the energy of 5.6eV .

6.3 AgTe compounds

Compounds made of the elements Ag, In, Sb and Te have been shown to be
suitable for the realization of fast optical data storage devices [BvRT01]. Such
compounds frequently decompose into AglnTe, and AgSbTe, when persistently
heated [IHNT01]. These two compounds have been investigated by Detemple et
al. [ DWWBO03].

Structure: AglnTe, appears in chalcopyrite structure, while AgSbTe, takes rock-
salt structure. In the latter one, one fcc sublattice is occupied by Tellurium, the
other sublattice is occupied alternately by Silver and Antimony. These chalcopy-
rite structure is sketched in Fig. 6.11. The chalcopyrite structure resembles the
zincblende structure. It also consists of two fcc lattices shifted against each other by
one fourth of the cubes diagonal. But since one sublattice is occupied alternately by
Ag and In, the unit cell is double the size compared to zincblende. The appearance
of this structures fits to the trend of a less cubic coordination of AgTe alloys the
closer the third component (In and Sb in this case) comes to the transition metals
(from the point of view of the periodic table).
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Figure 6.11: Sketch of a unit cell of the chalcopyrite structure. It is formed by two fcc
sublattices occupied by three constituents in the ratio 1:1: 2. For AglnTe, for instance,
the orange balls symbolize the Tellurium atoms while the green and blue balls symbolize
the Silver and Indium atoms.
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Figure 6.12: The band structure of AgSbTes in rocksalt structure.
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Figure 6.13: The density-of-states of AgSbTes in rocksalt structure.
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Figure 6.14: The band structure of AgInTey in rocksalt structure.

Electronic properties:  To investigate the impact of the different structures, the
two compounds have been calculated each in rocksalt and in chalcopyrite structure.
The rocksalt structure was modeled with four atoms per unit cell, while the unit
cell of the chalcopyrite structure takes sixteen atoms.

Following [DWWBO03], the two compounds have been calculated in each rocksalt
and chalcopyrite structure. The band structure and density-of-states of AgSbTe, in
rocksalt structure are shown for in Figs. 6.12 and 6.13. The band structure and DOS
of AgInTe, in rocksalt and chalcopyrite structure are shown in Figs. 6.14, 6.15 and
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Figure 6.15: The band structure of AglnTey in chalcopyrite structure.
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Figure 6.16: The density-of-states of both AgIlnTes compounds.

6.16. All of these systems are metals. (The gap in the plot of the DOS of AgInTe,
in chalcopyrite structure results from an inadequately chosen k-point set omitting
the vicinity of the '-point.)

Dielectric properties: Due to the considerable computational expense of the
chalcopyrite structures, caused by the number of atoms in the unit cell and the low
symmetry, studies of the dielectricity could not be made. Further investigations are
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planned subsequent to this diploma thesis.



Chapter 7

Conclusion

In this thesis we presented an implementation of the dielectric response function
in linear response theory for optical excitations neglecting the local field effects
and intraband transitions. The dielectric function is calculated within the density
functional theory in the local density approximation and the generalized gradient
approximation. The dielectric function has been realized within the context of the
FLAPW method FLEUR and thus allows the treatment of materials containing tran-
sition metals in complex compounds with open structures and low symmetry. The
momentum-matrix elements, the tetrahedron method and the Kramers-Kronig in-
tegration are described in detail as implemented to obtain the response function.
Considerable problems occurred due to the spurious transitions of backfolded states
due to calculations carried out in non-minimal unit-cells, i.e. unit cells which contain
more than one chemical unit of a compound. We careful examined these transitions
and to developed a procedure to minimize their contribution.

We give a detailed account on the extensive tests carried out for Al and Cu which
included the dependence on the number of k-points, the number of basis functions,
the dependence on the symmetry and the check of the hermiticity of the matrix
elements. For Cu the results agree nicely with those of Krasovskii [Kraa| and the
results for Al agree with results from literature [SS81].

We calculated the electronic properties in terms of the band structure and den-
sity of states for GeTe in rocksalt and trigonal A7 structure and for AgSbTe, and
AbInTe, each in rocksalt and chalcopyrite structure for the theoretical lattice con-
stants. Both are phase-change materials under current experimental investigations.
For GeTe in both structures the bandstructure and DOS agree to large extended.
The two AglnTe, structures reveal substantial differences in electronic structure
close to Fermi energy. For GeTe we calculated also the dielectric function and com-
pared with ellipsometry measurements. Although the agreement of the reflectivity
is very nice, the peaks in the dielectric functions from which the reflectivity is calcu-
lated differ by a factor 10 with the experimental data. The origin of this difference
is not clear yet.

93



94 CHAPTER 7. CONCLUSION

The method developed opens the possibility for the application on a large variety
of systems which include different phase-change materials. The amorphous state
may be treated approximately using larger supercells. Technical improvements may
include the local orbitals to treat semi-core states and to extend the basis set to
higher unoccupied states. The method may be parallelized over the tetrahedra to
run on multiprocessor computer architectures. The work done in this thesis provides
a basis from which on a development in various directions becomes possible. One
option is to extend this method to deal with questions in the area of magneto-optics.
The other option is to extend the treatment of the density functional theory to the
GW method to describe the excitation within the framework of the many body
perturbation theory or the time-dependent DFT.

Though theoretically well understood, the opportunities of computation make optics
more lively than ever!



Appendix A

Momentum matrix elements

The matrix elements of the momentum operator should be expressed in terms of the
LAPW basis set in summed form (4.28), i.e

| ,
T Z C,Zc_i_GeZ(k—'_G)r rc IS
lmaw
wz(k,’l“) = Z Z Aza Ul r El) (A].)

[=0 m=—1

By (k)i (r; E)] Yy, (1) r € MT,.

\

The interstitial part of this matrix element is derived in section 5.1.1. The part
inside the muffin-tins is more lengthy to derive and therefore done here. The matrix
element is not calculated in the carthesian basis but in the natural basis (0, +
i0y, Oy — 10y, 0,). In spherical coordinates these partial derivatives read

0y, £10, = sin Heiw o ~ + 1€iw (0089 + —i>

sin @ dp (A2)
0
8'3 - COSQW - rsilnﬂﬁ'
The radial and spherical derivatives separate. Introducing the abbreviations
OO (I+m+1)(I+m+2)
Im (20+1)(20+3)
2 (I—m)(l—=m—1)
By = RCE IS
F(3) o (l—=m+41)(l—m+2)
im - (2l+1)(2l+3) (A 3)
o [Em)am-1) '
Im = - 1)(20+1)
FO (I—m+D)(I+m+1)
Im = (20+1)(20+3)
®) _ (I=m)(I+m)
Fiy = e
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the recurrence relations of the Legendre polynomials yield the equations

erPsingYi, = Fi)Yimn + FoYioimer
eHPsingY, = FiVimoa + F;,nzn_l,m_l. (A.4)
8OV = FlVigim + FoYiim

Furthermore the relations

et (cos 0% + qigas ) Yim = —1FYima + (4 DEDY
e (cosOz; — gigas ) Yim = 1Y imer + (+D)E Yy (AD)
—sinfZYim = —lFYim  + (+DEYioim

In order to apply the derivatives on the LAPW functions, we define the functions
(omitting the muffin-tin index « for convenience)

Ul Ay (k)yui(r; Ey) + By (k)iu(r; Ey)
Vi = & U,

= Ape(k)uy(r; Ey) + B (k)i (r; E)) (A.6)
Wi, = 5 Ul

= L (Ap(k)u(r; E) + By (k)iu(r; B1))

First component 0,+:0,: If one expresses the LAPWSs with these functions (A.6)
utilizing the relations (A.2) and (A.5), one yields for the operation of the operator

(@0, +i0)il,m) = 3 | (Vi =L W) Ef Vi e o
im .
( lin - (l + I)I/I/lirn)ﬂft)%—l,m-i-l )

omitting spatial coordinates, and the summation indices running through [ =0, ..., 4z, m =
—[...l. Multiplying the corresponding bra gives

f d3r Y3k, 7)(0r +10,)i(k, )

-y fr2dr§d9 Ul Vi |V = LW F i +

I'm!
Im,l'm'
(Vi — (U + )VVlm)F Ylfl,m+1 (A.8)
= Z f 7"2d7a ].l’ m' § dQ }/Elml}/i+]_ m+]_+
Im,l'm'
Ra ! l
oo [ r2dr DD $dQ Y Y
Im,l'm’ 0
with the abbreviations for D1,D2 equal to
G prym’  — FQJ 1) Jf*, z i

G palm' - Fhfj U{;,(% - (l + )W)
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With the spherical harmonics being orthogonal,

§ dQ Y;km/ I+1,m+1 = 6['71+16m’,m+1;

; B (A.10)
$AUY Yiiimir = 010w m1s
the quadruple summation in the two terms reduces to each a double one:
; " Imga =1 I+1,m+1
> DI S abmmin = X Z DY,
o - [ lmaxo 1 m_il (All)
> DDA O = Y Z D2 1
Im,l'm’ =0 m=-I

Please note the maximum [ decreased by one. Now applying the remaining radial
integration, and expanding the symbols D1 and D2 finally gives:

lmaz 1

(k|0 +i0,|ik) = ) Z

=0 m=-—1

[ [ wpprug r2dr — U [ww rdr) A?-{l m+1A§,m
+  ( [uwqd) r?dr — I [ty rdr) ATL m1Bim
+ ([ gu) r?dr — I [dupu rdr) B z+1 mi 1AL
+ ([t r2dr — U [y rdr) Byl B, FL
+ [ Jwup, r*dr + (+2) [wiw rdr) A*f I
+  ( Jwag, rPdr + ((+2) [wty rdr) A;{nBH-lm L
+ falugﬂ r2dr + (1+2) fﬂz+1uz rdr) Bl*izAl-H,m—l
+  ( Jwdp, r*dr + (+2) [ty rdr) B*f Bll+1m 1 Fz(i)l,mq

Second component 0, —:9,: The procedure is analogous for the next component.
Again (A.2) and (A.5) help to express it as

(00 — 10,)00s(k, ) = 2 | (Vity = L W) ES Vi1
m o (A.12)
(Vi = (4 DWW EYiemo |

Multiplying the bra,

[ &r ik, r) (0, —i0y)i(k, r)

MT,

- > fr?dr DU §d9 Y, Vi 1+ (A13)

Im,l'm/
Ra
> [ ridr WD §dQ Y, Yim e,

Im,'m’ 0
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calculating the integral over the spherical harmonics and reducing the resulting
fourfold summation analogous to the first component,

. o1 tmaz =1 & i m—
| Zl; I.(J)Dlérzt O 1410mi 1 = z;) Zl,(y)Dliﬁ, 1
e — el A A
= l Xl; - D2 0y 1-10m! -1 = ;) ;l D2lT1 1
yields
lma(v 1
(fk|0, — 0, lik) = Y Z
=0 m=-I
wp ) r3dr — I [ upquy rdr) A Al
111 + 1+1,m—1
+  ( Jwpu) r?dr — U [ waiy rdr) A?-{lm lBlim
+ ([ gpu) r?dr — U [ty rdr) Blt{lm 1A§m
+ ([ igpa) ridr - I [ gty rdr) Bl+1m 1BZ ] Fl(iz
+ [( Jwup, r?dr + (+2) [wqiu rdr) A*f Af+1 m+1
+  ( Jwigy, r?dr + (1+2) [ wgaty rdr) A*f oz IR—
+  ( Jwup, rPdr + (142) [ rdr) B*f m AL m
+ fulangl ridr + (1+2) fal+1ul rdr) B*f Ble m+1 ] Fl(ﬁ)l,m—l'

Third component J,: The same goes for the third component:

Opile,r) = X (Vi = W) B Vi
(Vi = (L + DWE)F) Y 1] -
Multiplication of the corresponding bra from the left:

[ &r ik, r)0.4i(k,r)

MT,
= lzl; of ridr O D™ §dQ Y, Yiesmt (A.16)
f ridr O D20 $dQ Y Y 1m
Im,l'm’ 0

Reduction of fourfold summation:

i , , lma(v_l +l .
Z (J)Dlénzn 6!’,l+15m’,m = Z Z (J)Dlé;:zlym
Im,I'm/ =0 m=-—I
o (B = (A17)
= > DDA b = Y, Y WD2T

Im,l'm/ =0 m=-I
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(fk|0:|ik) =
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More general notation:

the form

(fk|0,)ik) =

—
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for n =1,2,3, and 9, m’,m” given by
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Local orbital contribution:
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TdT) Az(—{l,mA%,m

rdr) Aﬁ:l’mBli,m

rdr) Bl+1 mAZ

Td?”) Bl+1 mBZ ] FEE?;

rdr) Al*{nAlH .

rdr) A*f Bll+1 m

rdr) B *f A;H -

rdr) B*f L Blim | B

The results for the three components can be written in

rdr) AlJr1 - Al

rdr) Al+1 m,Bl

rdr) Bl*frcl Al

rdr) Bl+1 m'Bz ] Fl(,?r?il)
rdr) A*f AL

rdr) A*f Bf+1 !

rdr) B*f FAL

rdr) B*f BZH | Fl(f?)mu
m—1

m+ 1 for n=

The contributions of the basis functions additional
in the local orbital extension can be calculated analogically, resulting in extra terms
of the same shape. The derivation can be found in [Abt97].
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Appendix B

Tetrahedron method

As already mentioned in section 5.2, Blochl, Jepsen and Andersen [BJA94] gave a
convenient general notation for the tetrahedron method. They consider integrals
over the Brillouin zone (BZ) in k-space like those of the expectation value of an
operator X,

() = 1= 3 [ @k Xtk k) (B.1)

where f is the Fermi factor to an energy €,. Vi is the volume of the Brillouin zone,
and the used k-dependent expectation value reads

X, (k) = (nk|X|nk). (B.2)

They show that in tetrahedron method this integral can be written as

(X) = Xu(kj)wn;. (B.3)
Jn
This sum runs over all bands n and k-points j.

B.1 Integration weights

The weight of one k-point w,; is the sum of weights it gets in each tetrahedron it
belongs to. In each tetrahedra, the indices are assigned so that the energies are
ordered, €; < €3 < €3 < €4.
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2. €1 < €p < €9

1 1 1
w; = C|:4—(€F—€1) <€_+6_+6_>]
21 31 41

Wy = CeF — A
€21
ws = C€F — €1
€31
w, = ¢FE 4 (B.5)
€41
with
Vr (GF - 61)3
(= ——— | B.6
4V enezieq (B.6)
3. €9 < €p < €3
€3 — € €4 — €
wy = C1+(Cl+02)3 F+(CI+CQ+C3)4 i
€31 €41
€3 — € €4 — €
Wy — Cl+02+03+(02+03)3 F—|—034 r
€32 €42
€p — € € — €
Wws = (Cl+CQ)F 1+(02+03)F 2
€31 €32
€ — € € — €
wy = (C1+Cy+Cy)E—L 0322 (B.7)
€41 €42
with
C]_ = &;F _ 61)2
4V  eqesn
C, = Vir (GF - 61)(6F - 62)(63 - €F)
h =
4Vg €41€32€31
V; — €)% (e4 —
o = 2 lermallaze) (B.8)
4V €42€32€41
4. €3 < ep < ¢4
w, = 064 — €F
€41
we = 064 — €F
€42
ws = 064 — €F
€43

1 1 1
wy, = ——-Cld—(ep—€)| —+—+— B.9
! 4Va [ ( d 1) (621 €31 641)} ( )
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with
Vv _ 3
oo Vr(a—ep) (B.10)
4V eq1€49€43
9. € < €p
Vi
w1 Wo W3 Wy 4VG ( )

B.2 Number and density of states

When neglecting the matrix elements, one yields the well-known terms for the num-
ber of states nr(F) and the density of states Dr(E) of one tetrahedron, which are
equivalent to the formulae given for instance by Lehmann and Taut [LT72].

Neglecting the matrix elements means setting them to one, i.e. X, (k;) =1 in
(B.3). With this the number of states and density of states take the form

np(e) = Zw Dr(e) = %nT(e), (B.12)

and take the following values in the five regions:
1. ep < €

TLT(é) =
Dy(e) = 0 (B.13)

2. €1 < €p < €9

_Vr (€ —€)?
nT(G) B Va €a€31€41
2

Dp(e) = Yxdleza) (B.14)

Vo enesieqn

3. €0 < €p < €3

Vp 1
nple) = — |:€31 + 3€g1 (€ — €2) + 3(€ — €2)° —

Ve es1em

€31 + €42 (e - 62)3}
€32€42

Vp 1
Dp(e) = —& |:3621 +6(e —€) — 3

Ve es1en

R Y 62)2] (B.15)

€32€42
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4. €3 < €ep < €

APPENDIX B.

ﬁ (1 . (64 - €)3>
Ve €41€42€43
ﬁ3(64 —¢€)?

Vo eneseas

TETRAHEDRON METHOD

(B.16)

(B.17)



Appendix C

Units

Among gaussian and SI and other unit systems, there are the so called atomic units
(see also appendix 6 in [ZL83]), which are favored in atomic calculations. This
term actually refers to two slightly different scalings. As in all unit systems, the
fine-structure constant

62

“= dmeyhe

(here given in SI units) has to be conserved. For calculations on the atomic scale,
the characteristic length is the Bohr radius

4 2
ao = 2T 509 101,

me?
while the Rydberg energy

h2
= 13.61eV
2ma?

Ry =

is the typical energy dimension.

e For Hartree units you set

! ! 137
— = — &
47’ « ’
with the result that lengths are given in Bohr radii, and energies are multiples
of 2Ry, which is called one Hartree. The kinetic operator takes the usual form

h=1 m=1e=1, gy =

p? 'S
— or —_—.
9 2

e In the Rydberg set you place

1
=1, m=-, =2 gg=—, c=

— ~ 2137
2 47 ’

Ll
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resulting in lengths expressed in Bohr radii, and energies in multiples of one
Rydberg. But the kinetic operator takes the unnormal form

p? or k%

Whichever of the two scalings you choose, you can take a formula in gaussian or
Sl system and replace the quantities as mentioned above. The junction to the SI
quantities energy, frequency and temperature is given by

leV = 1.602-10" Ws (C.1)
1
H;:V = 1.519 THz (C.2)
1
meV 11604 K. (C.3)

ks



Appendix D

Parameters of calculations

Electronic shells:

In the following table the atomic configurations for the ele-
ments calculated with in this thesis are listed.

Element | number

atomic levels

Al
Ge
Ag
In
Sn
Sb
Te
Au

13
32
47
49
50
51
52
79

The notation of the atomic levels refers the the next smaller noble element, which

are:

Element | number

atomic levels

2
10
18
36
54

This sections lists the most important parameters for the self-consistent FLAPW
bulk calculations, which have been performed with the FLEUR code [FLE]|. The
revised version (revPBE) [ZY98] of the GGA potential of Perdew, Burke and Ernz-
erhof (PBE) [PBE96] has been used. The number of basis functions is the maximum
number of G-vectors used. The number of k-points refers to the self-consistent cal-
culation, the DOS and the calculation of the dielectric function.
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Test systems: These systems were calculated in chapter five for testing purposes.
Aluminum was calculated in simple cubic configuration (sc) for two unit cells to
illustrate backfolding.

Al (hypoth.)

lattice structure | sc
lattice parameter | apum = 2.729A
inversion symmetry | yes
atoms per unit cell | 1 2
Gmaz|l/ao] | 3.5 3.5
# of basis functions | 110 206
# of electrons | 3 6
# of k-points | 6 6

It has been calculated in the actual face-centered cubic (fcc) configuration as well
to compare to literature.

Al

fec
(erp = 4.0494
A = 4.049 A

lattice structure
experimental parameters

lattice parameters

difference (2" —1) | 0.1%
inversion symmetry | yes

atoms per unit cell | 2

Graz|l/a) | 3.5
# of basis functions | 184
# of electrons | 6

# of k-points

140, 300, various

The second test system was copper.

Cu
lattice structure | fcc
lattice parameters | a = 3.598 4
experimental | a = 3.615A
difference (%22 —1) | —0.4%
inversion symmetry | yes




atoms per unit cell | 2
Gmaz[1/ao] | 3.5
# of basis functions | 142
# of electrons | 22
# of k-points | 30, 300, 288

109

GeTe compounds: The cubic and trigonal phases were investigated. Lattice
parameters are taken from [Wel02].

GeTe (high temp.)

lattice structure | rocksalt
exp. lattice parameters | degp = 6.012A
num. lattice parameters | @,um = 6.086 A
difference (2t — 1) | +1.23%
inversion symmetry | yes
atoms per unit cell | 4
Gmaz[1/ao] | 3.5
# of basis functions | 567
# of electrons | 20, 60
# of k-points | 84, 75, 288

GeTe (low temp.)

lattice structure

exp. lattice parameters
exp., hexagonal
num., hexagonal

difference (%27 — 1)
»
1

(Sea:p

trigonal (A7)
ay = 4.293A
o = 58.128°
ey = 4.17T1A
Cerp = 10.662A
A = 4.273A
Crum = 10.725A
+2.45%, +0.59%

0.4746

! Please see chapter 6 for the meaning of this parameter.
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Onum | 0.4747
inversion symmetry | no
atoms per unit cell | 6
Gmas[1/a0] | 3.2
# of basis functions | 665
# of electrons | 30
# of k-points | 85, 50, 146

AgTe compounds:

The second class of systems investigated were Silver-Tellurium
compounds. The lattice numerical parameters are taken from Detemple et al. DWWBO03].

AgSbTe,
lattice structure | rocksalt
lattice parameters | a.qp = 6.08 4
lattice parameters | adpum = 6.294
difference (%2 —1) | +3.5%
inversion symmetry | yes
atoms per unit cell | 4
Gmaz|1/ao] | 3.4
# of basis functions | 576
# of electrons | 58
# of k-points | 84,75
AglInTey
lattice structure | chalcopyrite
lattice parameters | a.qp = 6.42A4
Corp = 12.584
lattice parameters | adpum = 6.844

difference (222 — 1)
P

inversion symmetry

Coum = 13.124
+6.5%, +4.3%

no

atoms per unit cell
Gmaaz []-/aO]

16
3.2




# of basis functions
# of electrons
# of k-points

1937
144
26,50

AgInTey
lattice structure | rocksalt
lattice parameters | a.qp = 6.024
lattice parameters | adpum = 6.224
difference (2" —1) | +3.3%
inversion symmetry | yes
atoms per unit cell | 4
Gmaz|1/ao] | 3.4
# of basis functions | 554
# of electrons | 36
# of k-points | 84,75

No experimental data are available for this structure.

AgSbTe, (hypoth.)

lattice structure

lattice parameters

inversion symmetry

chalcopyrite
A, = 7144
Coum = 13.49A

no

atoms per unit cell
Gimaa[1/00]

# of basis functions
# of electrons

# of k-points

16
3.2
1937
144
26
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Detemple refers to [Hahb3] for the experimental lattice constants of this system.
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Mein nachhaltigster Dank gilt meinen Eltern, die mir durch immerwéhrenden Zu-
spruch und Unterstiitzung alle Tiiren getffnet haben. Undenkbar, dafl ich ohne sie
diesen Weg hitte gehen konnen!

Hiermit versichere ich, daf} ich diese Arbeit eigenhéndig angefertigt habe.



