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Chapter 1Introdu
tionData storage plays a major role in information te
hnology. The rapid advan
es inthis area are driven by the need to read and write the information with ever fasterspeed and ever in
reasing storage density. These demands are 
reating new frontiersin solid state physi
s whi
h fuel the development of new materials, the investigationof new physi
al phenomena and the development of new methods.Among 
ompeting modern mass storage 
on
epts, rewritable opti
al storage de-vi
es based on phase-
hange media provide one future option to store large amountof data at high data transfer-rates. The understanding, and 
onsequently the de-velopment of new, and the improvement of existing rewritable phase 
hange media,whi
h should allow sub-mi
ron bit sizes to be written, read and erased within a fewnanose
onds determine the future and the spread of this storage 
on
ept. At presentsu
h devi
es are build as ex
hangeable dis
s, the rewritable Digital Versatile Dis
(DVD). The storage pro
ess itself 
an 
ompete to those of magneti
 hard dis
s interms of storage/a

ess time.In devi
es based on the phase-
hange e�e
t, information bits 
orrespond to smallspots being either in the 
rystalline or in an amorphous state. These two statesof matter exhibit two di�erent re
e
tivities for in
ident light, whi
h is opti
allydete
ted and used to en
ode the bits 0 and 1. A 
hange between these two statesof matter is indu
ed by lo
al heating; either above the melting temperature in the
ase of writing by transforming the 
rystalline stru
ture into the amorphous one; orabove a lower 
rystallization temperature, supplying enough energy to re
rystallizestarting from the amorphous state.The experimental a
tivities in this �eld motivated us to investigate the opti
alproperties of phase-
hange materials based on modern mi
ros
opi
 and materials-dependent theories of solid states physi
s. The theoreti
al groundwork for under-standing the intera
tion of in
ident light with matter on a quantum-me
hani
allevel has already been developed in the late �fties and early sixties of the last 
en-tury by Ehrenrei
h and Cohen [EC59℄ and Adler [Adl62℄. The intuitive des
riptioninvolves transitions indu
ed by photons between o

upied and uno

upied single-1



2 CHAPTER 1. INTRODUCTIONele
tron states. However, the 
omputational tools and 
apa
ities to 
orroborate thisframework with 
al
ulations for real 
omplex materials has developed more re
ently.The density fun
tional theory (DFT), developed by Hohenberg and Kohn [HK64℄and Kohn and Sham [KS65℄, provide a powerful and a

urate des
ription of theground-state ele
troni
 properties of the many-ele
tron problem in real materials.The theoreti
al work dis
ussed in this thesis is based on the lo
al density approxi-mation (LDA) and the generalized gradient approximation (GGA) of the ex
hange
orrelation energy. This approa
h developed to the standard model in solid physi
sfor the des
ription of real materials and has been applied to a large spe
trum of
omplex materials in
luding surfa
es and low-dimensional systems. This approa
hdes
ribes the sensitivity of the ele
troni
 ex
itations to their ground-state properties.The time-dependent extension of the density fun
tional theory represents a more re-�ned treatment of the linear and nonlinear response of many-ele
tron systems due totime-dependent external perturbations [ZS80, SZ80, Mah80℄ than the random-phaseapproximation des
ribed by Ehrenrei
h and Cohen [EC59℄. A key feature of thisextension is that it provides a 
onsistent treatment of ele
tron-ele
tron intera
tionsin the absen
e and the presen
e of time-varying �elds, but it is beyond the s
ope ofthis thesis.At the 
enter of this thesis is the implementation of the mi
ros
opi
 des
riptionof the diele
tri
 response fun
tion on the basis of the density fun
tional theory inthe LDA and GGA. The diele
tri
 fun
tion des
ribes the response of matter in anele
tri
 �eld. The implementation is restri
ted to the long-wavelength limit relevantfor light in the opti
al regime and to linear response theory suitable for low lightintensities. Non-linear response, the lo
al �eld e�e
ts, and intraband transitions arenegle
ted. This diele
tri
 response fun
tion has been implemented within the 
on-text of the full-potential linearized augmented plane-wave (FLAPW) method. Thisele
troni
 stru
ture method is an all-ele
tron method. It is known to give pre
iseresults for materials with transition-metal atoms in open stru
tures and low sym-metries as it is experien
ed in re
ently explored phase-
hange materials su
h as forexample the ternary alloys AgInTe2 or AgSbTe2. The implementation do
umentedin this thesis in
ludes the momentum-matrix elements, whi
h is a very elaboratetask due to the 
omplexity of the LAPW basis-set. It in
ludes also the developmentof the tetrahedron-method for the Brillouin-zone integration of two-point fun
tionswhi
h in
lude simultaneously o

upied and uno

upied states. This is ne
essaryfor the 
al
ulation of the imaginary part of the diele
tri
 response fun
tion. TheKramers-Kronig integration has been implemented to obtain the real part of the di-ele
tri
 fun
tion from the imaginary one. Sin
e the FLAPW method Fleur, used inthis thesis, is not 
apable to treat all Bravais latti
es, some stru
tures are 
al
ulatedin Bravais latti
es, whi
h are superstru
tures to the original latti
e. This introdu
esa ba
kfolding in the ele
troni
 stru
ture, whi
h is analyzed with great 
are in thisthesis, not to introdu
e spurious opti
al transitions. The implementation is 
ar-ried out in an algorithm that allows an easy extension to parallel 
omputing overthe individual tetrahedra and to program for magneto-opti
s. The method devel-



3oped also works for ele
troni
 stru
ture methods with a pure plane-wave basis setsas it is 
ommon in pseudo-potential methods. All implementations and numeri
alapproximations have been tested thoroughly for Aluminum and Copper, for whi
hexperimental similar theoreti
al results are available. Similar implementations inall-ele
tron methods have been 
arried out by Delin [Del98℄ in a full-potential lin-ear muÆn-tin orbital method (FP-LMTO), by Abt [Abt97℄ in the FLAPW-
odeWien, by Krasovskii in the FLAPW [KS99℄, by Alouani in an LMTO and proje
toraugmented plane wave (PAW) method [AAW+97℄ and Oppeneer in a augmentedspheri
al wave (ASW) method [SBB+00℄.In this thesis the diele
tri
 fun
tion is determined for phase-
hange materials
al
ulated within density fun
tional theory. It is stru
tured as follows:The main aspe
ts of the density fun
tional theory are reviewed in Chapter 2.We de�ne the quantities needed to evaluate the ground-state properties and dis
ussimportant details of the 
omputational pro
edures. Chapter 3 gives the formulationof the diele
tri
 response of matter. For this, general 
onsequen
es of symmetry, ten-sor properties, opti
al 
onstants and spe
tral fun
tions are re
apitulated, followedby a derivation of the diele
tri
 fun
tion in the long-wavelength limit. The mi
ro-s
opi
al and the ma
ros
opi
al approa
h are addressed. Chapter 4 introdu
es basissets of di�erent plane-wave based ele
troni
 stru
ture methods. The LAPW methodthat forms the basis of the 
al
ulations in this thesis is presented in more detail.The implementation of the diele
tri
 fun
tion { the momentum-matrix elements,the tetrahedron method and the implementation of the Kramers-Kronig implemen-tation { is layed out in the following 
hapter 5. A fo
us is put to the ba
kfoldinge�e
t, that o

urs for 
al
ulations of non-minimal unit 
ells, and 
onsequen
es forthe 
omputation are explained. Test 
al
ulations are performed to 
ompare to ref-eren
e results. More details on the matrix elements of the momentum operator andon the tetrahedron method are presented in appendi
es A and B.A brief des
ription of the 
lass of phase-
hange materials are given in 
hapter 6.The implemented method is applied to the GeTe 
ompound in ro
ksalt and trigonalA7 stru
ture. Although the density of states for both stru
tures are very similar,a signi�
ant di�eren
e is found for the re
e
tivity at the ultra-violet energy range,whi
h is also found in the experiment. In appendix C one �nds details of used unitsand in appendix D all 
omputational details are 
olle
ted. The thesis 
loses with a
on
lusion.
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Chapter 2Density Fun
tional Theory
2.1 The Many-Parti
le ProblemThe 
omplete properties of solids 
an in prin
iple be 
al
ulated ab initio { i.e. freeof any parameters, only using the setup of the system and its intera
tions { on aquantum me
hani
al level. The whole information of a system is 
ontained in thesystem's wave-fun
tion, whi
h has to be obtained as solution of the S
hr�odingerequationHj	i = Ej	i; (2.1)with H the Hamiltonian of a system of intera
ting nu
lei and ele
trons (assuming4�"0 = 1)H = � NXi=1 ~22mr2i + 12Xi 6=j e2jri � rjj �Xi;J e2ZJjri � � J j + 12XI 6=J e2ZIZJj� I � � J j : (2.2)r denote the ele
troni
al 
oordinates and � those of the nu
lei, ZI denotes the 
hargeof the nu
lei. Spin-dependen
e and external �elds are omitted. In the relativisti

ase, the Dira
 equation has to be solved. The energy of a state 	 is given byE = h	jHj	i: (2.3)The e�ort to solve this many-body problem s
ales exponentially with the numberof parti
les des
ribed and is una

omplishable for everything ex
ept very small sys-tems, and 
ertainly for a ma
ros
opi
 system with a number of parti
les of an orderof magnitude of 1023.A �rst and very general approximation is the Born-Oppenheimer method (also
alled adiabati
 approximation). Sin
e the mass of the ele
trons is at least threeorders of magnitude smaller than those of the nu
lei, the ele
trons are expe
ted tofollow the motions of the nu
lei instantaneously, while the nu
lei will rea
t slowly5



6 CHAPTER 2. DENSITY FUNCTIONAL THEORYto a 
hange in ele
troni
 
on�guration. Therefore, the ion's position 
an be set�xed, redu
ing the number of degrees of freedom. (From a stri
t point of view thisapproximation needs more pre
ise justi�
ation, see [Mad78℄.) This approximationis used in the majority of ele
troni
 
al
ulations.When 
al
ulating the ground state of a system, the energy has to take its mini-mum. Depending on your ansatz, the solution 
an usually be obtained by minimizingthe total energy.2.2 The Hartree-Fo
k AnsatzA variety of di�erent approa
hes have been developed to ta
kle this many-parti
leproblem. One frequently used method (in many areas of physi
s) is to transfer themany-body problem to a one-parti
le-like problem, for instan
e by imposing some
ertain form on the wavefun
tion.The most basi
 
hoi
e is the Hartree Ansatz, whi
h repla
es the wavefun
tion	(r1; : : : ; rN) with a produ
t of N one-parti
le wavefun
tions  (r):	(r1; : : : ; rN) =  1(r1) �  2(r2) � : : : �  N(rN); (2.4)depending only on the spatial 
oordinate of one parti
le. If one introdu
es thisansatz into the S
hr�odinger equation, one obtains N S
h�odinger-like single-parti
leequations with a integral 
alled Coulomb term or Hartree term, 
ontaining theele
tron-ele
tron intera
tion. This simple ansatz treats the parti
les independentin the sense that every parti
le moves in a stati
 potential 
reated by the otherele
trons, whi
h is the only intera
tion 
onsidered.It is possible to take 
are about the expelling properties of fermions resulting fromthe Fermi prin
iple { 
alled ex
hange intera
tion { by using a slater determinant ofwavefun
tions instead of a simple produ
t:	(r1; : : : ; rN) = 1pN ! �������  1(r1) : : :  N (r1)... . . . ... 1(rN) : : :  N(rN) ������� : (2.5)This Hartree-Fo
k Ansatz results in a signi�
antly more 
omplex numeri
al treat-ment as well as in mu
h better results. In
luding a wavefun
tion of this form intothe S
hr�odinger equation gives N single parti
le equations now 
ontaining an ad-ditional term { the ex
hange or Fo
k term { 
ontaining 
ontributions from all theother single-parti
le wavefun
tions.The des
ription is still in
omplete due to the fa
t that the single parti
les arenot independent as assumed in this approximation. These 
orrelation e�e
ts 
annot be expressed analyti
ally in the general 
ase.



2.3. DENSITY FUNCTIONAL THEORY 72.3 Density Fun
tional TheoryA new idea how to des
ribe the ground state of a many-parti
le system has beena
quired by Hohenberg and Kohn in the 1960s. It turns the fo
us from the abstra
tmany-parti
le state as des
riptive quantity of the system to the ostensive 
hargedensity in real spa
e. Not only that not the whole information 
ontent of the wave-fun
tion is needed, it is not desirable to obtain the 
omplete solution 	 for a largesystem sin
e storage of it is as hardly possible as 
al
ulation of it.One di�erent approa
h, the Thomas-Fermi theory, was known sin
e the latetwenties [Fer27, Tho27℄. It assumes the intera
ting ele
trons to be independent,moving in an external potential. (In this 
ontext the term external means everythingex
ept of this one parti
le itself, so it in
ludes also the e�e
ts of the nu
lei in thesystem, not only those of �elds external to the system.) Then the formulae for theuniform ele
tron gas are applied. The obtained results give only a few quantitativetrends, 
hemi
als bonds for instan
e 
an not be predi
ted. However, the system isdes
ribed by the density only.The Lemma of Hohenberg and Kohn: The 
harge density relates to the many-parti
le wavefun
tion liken(r) = �	j NPi=1 Æ(r � ri)j	�: (2.6)Hohenberg and Kohn [HK64℄ derived that for a given external potential the ex-pe
tation value of any observable in the ground state is uniquely de�ned by andfun
tionals of the 
harge density. Furthermore, the fun
tional of the total energyE = E[n(r)℄ (2.7)is minimized by the true ground state density n0(r). This implies that the groundstate density 
an be obtained from the minimization of this fun
tional,ÆE[n℄ = 0: (2.8)The amount of 
hargeN = Z d3r n(r) (2.9)takes the role of a subsidiary parameter. Furthermore the density determines thetotal potential and therewith the Hamiltonian, that means the 
omplete systemand all its derivable properties (in
luding many-body wavefun
tions, two-parti
leGreen's fun
tions). A more mathemati
al insight is that there are fun
tions n(r)not yielding a valid potential v(r), so-
alled non V-representable fun
tions. Theseare non-physi
al densities.The Hohenberg-Kohn lemma does not imply any knowledge about the physi
alintera
tions and is universal thereby. On the other hand, nothing has been statedabout the form of the fun
tional E[n℄ up to now.



8 CHAPTER 2. DENSITY FUNCTIONAL THEORYKohn-Sham equations: Kohn and Sham [KS65℄ formulated a form for the energyfun
tional that proved to be very su

essful. They proposed to split it up into three
ontributionsE[n℄ = Ts[n℄ + U [n℄ + Ex
[n℄: (2.10)Ts is the kineti
 energy of non-intera
ting parti
les, U is the Coulomb energy, andEx
 
ontains the remaining 
ontributions to the energy due to ex
hange and 
orrela-tion. The Coulomb energy of the ele
trons is 
onstru
ted out of the ele
tron-ele
tronenergy together with the external energy, resulting additively from the Coulomb �eldof the nu
lei and from �elds external to the system:U [n℄ = Eext[n℄ + EH [n℄ (2.11)Eext[n℄ = Z d3r Vext(r)n(r) (2.12)EH [n℄ = 4�e22 Z d3rd3r0 n(r)n(r0)jr � r0j (2.13)An advantage of this representation is that for the kineti
 energy, whi
h is a signi�-
ant proportion to the total energy, an analyti
 expression 
an be given (see Se
tion2.6). The density is related to the single parti
le wavefun
tions vian(r) = 2 NXi=1 j i(r)j2; (2.14)with the fa
tor 2 a

ounting the spin degenera
y1. For this 
hoi
e the kineti
 energyreads Ts[n℄ = �2 NXi=1 Z d3r  �i (r) ~2mr2 i(r): (2.15)Equivalent to minimizing the energy with respe
t to the density, one 
an do so aswell with respe
t to the single wavefun
tions or to their 
omplex 
onjugates. Thesubsidiary 
ondition of parti
le 
onservation (2.9) is repla
ed by the normalizationof the wavefun
tionsZ d3r j i(r)j2 = 1: (2.16)Taking this requirement into a

ount by Lagrange parameters �i, the variation ofthe energy yields the Kohn-Sham equationsH1 i(r) = �� ~22mr2 + Veff (r)� i(r) = �i i(r); (2.17)1In this 
ase, you 
al
ulate with half the number of ele
trons.



2.3. DENSITY FUNCTIONAL THEORY 9whi
h are S
hr�odinger-like equations of a one-parti
le Hamiltonian H1 
ontainingan e�e
tive potentialVeff(r) = Vext(r) + VH(r) + Vx
(r) (2.18)
onsisting of the external, the Hartree and the ex
hange-
orrelation potentialVext(r) = ÆÆn(r)Eext(r) (2.19)VH(r) = 4�e2 Z d3r n(r0)jr � r0j (2.20)Vx
(r) = ÆÆn(r)Ex
(r): (2.21)These potentials are simple fun
tions, while the 
orresponding energies are 
onsid-ered as fun
tionals of the density.This 
hoi
e (2.10) of kineti
 energy and subsequent derivations 
onverts theproblem to a problem of �
titious single parti
les moving in an e�e
tive potentialall other parti
les 
ontribute to.The parameters �i are introdu
ed as Lagrangian parameters only. As a 
onse-quen
e of Janak's theorem, only the highest o

upied value has a physi
al meaning,i.e. it is equal to the 
hemi
al potential, the ionization energy of the system. Beyondthis, there is no justi�
ation to take these parameters as the one-parti
le energies.However, it is known from experien
e that this assumption works surprisingly good,and is thus 
ommonly assumed in band stru
ture 
al
ulations.Eigenvalue problem: Usually the Kohn-Sham equations (2.17) are not solveddire
tly, but the solutions are represented in a basis. Then the operator H1 hasto be 
onstru
ted and diagonalized. Sin
e the basis fun
tions are not ne
essarilyorthogonal, one has to solve the generalized eigenvalue problem(H1 � �iS)
 = 0 (2.22)(also 
alled se
ular equation) with S the overlap matrix and 
 the expansion 
oeÆ-
ients.Self-
onsisten
y: Sin
e the ele
tron density goes into the Hartree potential VHand the ex
hange-
orrelation potential Vx
, and the e�e
tive potential determinesthe solutions  i through (2.17), whi
h again make the 
harge density (2.14), thisformalism 
omprises a self-
onsisten
y, as shown in Fig. (2.1).To enter the loop one has to provide an appropriate starting density. With thisthe potentials are generated and the one-parti
le solutions are 
al
ulated. In matrix



10 CHAPTER 2. DENSITY FUNCTIONAL THEORYCreate starting densityConstru
t potentialsSolve eigenvalue problemConstru
t 
harge densityChe
k 
onvergen
eTotal energy

Mix 
harge densities
??
??
?

6
�

Figure 2.1: The self-
onsisten
y 
y
le of a density-fun
tional 
al
ulation.pi
ture this is the setup of the H and S matri
es and the solution of the general-ized eigenvalue problem (2.22). With the results the temporary density nnew(r) is
al
ulated.One now 
he
ks if the di�eren
e between the previous density n(i)(r) and thenew one is suÆ
iently small. If not, the temporary density is in
orporated into theprevious one. Sin
e taking the 
al
ulated density as next input density n(i+1)(r) forthe 
y
le would introdu
e too big steps whi
h destroy 
onvergen
e, some mixing hasto be performed. The simplest way is a linear mixingn(i+1)(r) = (1� �)n(i)(r) + � nnew(r) (2.23)with mixing parameter �. More sophisti
ated methods like those of Broyden andAnderson have been developed, whi
h in
orporate the knowledge of earlier iterationsand yield a faster 
onvergen
e. After �nishing the loop, one 
an pro
ess the obtaineddensity, e.g. 
al
ulate the total energy.



2.4. EXCHANGE AND CORRELATION 112.4 Ex
hange and CorrelationSin
e no approximations have been made so far, density fun
tional theory is ex-a
t in prin
iple. However, 
al
ulations are only possible with the knowledge of theex
hange-
orrelation energy fun
tional Ex
[n℄ de�ned by (2.10). The exa
t fun
-tional is unknown and not soluble analyti
ally. Solving it would be equivalent tosolving the many-body problem. Therefore, approximations have to be made.Basi
ally, the Kohn-Sham equations are a Hartree-like ansatz. All ex
hangeand 
orrelation e�e
ts (i.e. all many-body e�e
ts) are in
luded in the fun
tionalEx
[n℄. It 
ontains the fermioni
 e�e
ts, modi�
ations to the e�e
tive potentialand 
orre
tions to the kineti
 energy, all due to the ele
tron-ele
tron intera
tion.This means that the ex
hange-
orrelation potential des
ribes the e�e
ts of the Pauliprin
iple and the Coulomb potential beyond a pure ele
trostati
 intera
tion of theele
trons.The most widely used approa
h is the Lo
al Density Approximation (LDA). Theidea is to assume Ex
 to be that of a homogenous ele
tron gas with density n(r):Ex
[n(r)℄ = Z d3r n(r)�x
(n(r)): (2.24)The important simpli�
ation is that �x
 is not a fun
tional of the density, but afun
tion of the value of the density at some spatial 
oordinate. With this, alsothe ex
hange-
orrelation potential Vx
 in (2.19) takes the form of a fun
tion. Onepossible approximation is to view ex
hange and 
orrelation to be independent:�x
(n(r)) = �x(n(r)) + �
(n(r)) (2.25)More 
omplex parametrisations in
orporate the results of Hartree-Fo
k or many-body 
al
ulations. One would expe
t the LDA to fail systems with rapidly varyingdensities. But it shows to give good results in an unexpe
ted variety of systems.A 
lass of more sophisti
ated approximations is the Generalized Gradient Ap-proximation (GGA). It makes the same lo
alization ansatz as in (2.24), but 
onne
ts�x
 not only with the value of the density but also with the absolute value of its gra-dient:Ex
[n(r)℄ = Z d3r n(r)�x
(n(r); jrn(r)j): (2.26)2.5 Spin-Density Fun
tional TheoryThe spin property of ele
trons, so far only a

ounted by a degenera
y fa
tor oftwo, 
an be easily in
orporated into the theory. It has been shown that the basi
Hohenberg-Kohn theorem stands for spin-polarized densities as well. You rede�ne



12 CHAPTER 2. DENSITY FUNCTIONAL THEORY(in the non-relativisti
 
ase) the wavefun
tions as spinors i(r) =   i"(r) i#(r) ! : (2.27)With this slightly di�erent notation, apart from the 
harge density there arises ase
ond 
entral quantity out of these wavefun
tions, the magnetization densitym(r):n(r) = NXi=1  �i (r) i(r) (2.28)m(r) = NXi=1  �i (r)� i(r): (2.29)� is the ve
tor (�x; �y; �z) of Pauli matri
es. The energy is now a fun
tional of thesetwo densities:E = E[n(r);m(r)℄ (2.30)The two spins 
ouple through an e�e
tive magneti
 �eld appearing in the modi�edKohn-Sham equations. To in
orporate the intera
tion of an external magneti
 �eldBext with this spin-polarized system, we in
lude the energy 
ontribution m(r) �Bext(r) into the Kohn-Sham equations and yieldH1 i(r) = �� ~22mr2 + Veff(r) + �Beff (r)� i(r) = �i i(r); (2.31)Beff (r) = Bx
(r) +Bext(r); (2.32)Bx
(r) = ÆE[n(r);m(r)℄Æm(r) : (2.33)The approximations in Se
tion 2.4 
an be easily extended for the 
ase of spin-polarized systems.2.6 Determination of the Total EnergyWhen the total energy needs to be 
al
ulated, the ion-ion intera
tion Eii of thenu
leiEii = e2XI 6=J ZIZJj� I � � J j (2.34)has to be in
luded into the fun
tional (2.10),Etot[n℄ = Ts[n℄ + EH [n℄ + Ex
[n℄ + Eext + Eii: (2.35)



2.7. IMPROVEMENTS TO DENSITY FUNCTIONAL THEORY 13Be
ause of numeri
al reasons, it is not desirable to 
al
ulate the kineti
 energy inthe form (2.15), applying the double spatial derivative. Instead, one utilizes theKohn-Sham equations (2.17). Rearranging, multiplying the Bra from the left andsumming over all o

upied states gives� ~2mr2 i(r) = (�i � Veff(r)) i(r) (2.36)) Ts[n℄ = NXi=1 �i � Z d3r n(r)Veff(r): (2.37)EH and Eext are have the form (2.13) and (2.12), the ex
hange-
orrelation energyis de�ned by (2.10) and implemented in an approximation like (2.24) or (2.26).2.7 Improvements to Density Fun
tional TheoryMany extensions has been made to the density fun
tional theory and its di�erentapproximations. It is a subje
t of a
tive and 
ontinuous development. As we haveseen, the treatment of spin and the in
lusion of external ele
tri
 and magneti
 �eldsare a natural extension of the theory. New ex
hange-
orrelation fun
tionals su
h asthe generalized gradient approximation (GGA) are being developed.The GW-approximation is being developed to des
ribe single parti
le ex
itationproperties based on the many-body perturbation theory in order to re
over one ofthe major drawba
ks of the density fun
tional theory in the LDA or GGA, whi
his the 
onsiderable underestimation of the band-gaps in semi
ondu
tors. LDA+Utheory fo
uses on the des
ription where the onsite Coulomb intera
tion is underes-timated in the LDA, su
h as in oxide materials. It is used to improve 
orrelationdriven bandgaps. Advan
ed theories like time-dependent density fun
tional theory(TDDFT) treat ele
troni
 ex
itations due to time-dependent external ex
itations.It in
ludes single-parti
le as well as 
olle
tive ex
itations and it is based on a fullyquantum me
hani
al formulation of the nonlo
al ele
troni
 response.The density fun
tional theory has proven to be a very powerful tool to treat amany-body problem of real material eÆ
iently and pre
isely in the framework of aone-parti
le pi
ture. It has been applied also in a variety of other dis
iplines, likesuper-
ondu
tivity or astrophysi
s.
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Chapter 3Diele
tri
 Properties of SolidsBefore going into the details of the diele
tri
 fun
tion, general 
on
epts of symme-try and se
ond rank tensors are re
apitulated. Important relations of ma
ros
opi
opti
s are given in 3.3, introdu
ing the 
omplex refra
tive index and the 
omplexdiele
tri
 fun
tion. The 
onne
tion between the real and imaginary part is explainedin Se
tion 3.4. The 
onne
tion of opti
s to a quantum me
hani
al representation issubsequently given in Se
tion 3.5, and the di�eren
es to a mi
ros
opi
 treatment ofthe ele
tromagneti
 wave are addressed in 3.6.3.1 Notes on SymmetrySymmetry operations transfer a system into itself, leaving it indistinguishable to theinitial state. In this 
ontext we are interested in symmetry operations in real spa
e.Symmetry operators 
ommute with the Hamiltonian,[(�; T );H℄ = 0: (3.1)(�; T ) denotes an operation 
onsisting of a rotation � and a subsequent translationT . Taking symmetries into a

ount 
an massively simplify the 
al
ulations, or makesit only possible.Classi�
ations: Perfe
t 
rystals { systems possessing translational symmetry {are 
lassi�ed into latti
e types. Considering translations only, this gives the minimalset of essentially di�erent latti
e types, the Bravais latti
es. In three dimensionsthere are 14 Bravais latti
es: the seven latti
es 
ubi
, trigonal, rhombi
, hexagonal,mono
lini
, tri
lini
 and tetragonal, de�ned by the length of and angles between thebasis ve
tors, and variations of these latti
es by o

upying unit 
ell fa
es or the unit
ell 
enter with atoms. The a

ording translational operators of a latti
e form theTranslation group. 15



16 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDSThe rotations of a system (i.e. the a

ording operators) that map the 
rystal intoitself build the Rotation group. There are also non-symmorphi
 symmetries whi
hbring the 
rystal into itself only with an additional translation (whi
h is not partof the translational group). The a

ording symmetry operations are s
rew axes andglide planes. These rotations extend the rotation group to the Point group. Forsymmorphi
 latti
es both groups are identi
al. There are thirty-two di�erent pointgroups.The Spa
e group 
ontains of the totality of transformations that bring the 
rystalinto itself, 
ontaining the translational and the point group as subgroups. There are230 possible spa
e groups; 157 of them are non-symmorphi
, 73 are simple.Translational symmetry: The translational operatorTR : r ! r +R (3.2)of a latti
e ve
tor R 
ommutes with the Hamiltonian so that both operators sharea set of eigenve
tors. The 
onsequen
e is the so-
alled Blo
h theorem, that statesthat the eigenfun
tions 
an take the form n(k; r) = eikr'n(k; r); with 'n(k; r) = 'n(k; r +R) (3.3)de�ning k (often 
alled the 
rystal momentum) as a new good quantum number.'n(k; r) is a latti
e periodi
 fun
tion. This ve
tor k is taken from the re
ipro
alspa
e. The energy spe
trum is periodi
 in re
ipro
al spa
e,E(k) = E(k +G) (3.4)with G being a re
ipro
al latti
e ve
tor. Thus one 
an redu
e 
onsiderations to the�rst Brillouin zone.Rotational symmetry: To a rotation in real spa
e, the a

ording symmetryoperation in the re
ipro
al spa
e is the inverse rotation. Analogously to the transla-tions, this redu
es the e�e
tive re
ipro
al spa
e to 
onsider, leaving as unique partthe irredu
ible wedge of the �rst Brillouin zone (IBZ).3.2 Physi
al TensorsLet us 
onne
t two physi
al ve
tor quantities linearly viaB = Ta: (3.5)If B is simply proportional to a (i.e. pointing in the same dire
tion) T is a s
alarfa
tor, but in the general 
ase, T is a tensor of se
ond rank. By its de�nition, atensor transforms under a basis 
hange A toT 0 = ATAT ; or T 0ij = AikAjlT kl: (3.6)



3.2. PHYSICAL TENSORS 17Any se
ond-rank tensor 
an be split up into a symmetri
 and an antisymmetri
 part,T sij = T ij + T ji; T aij = T ij � T ji; T ij = 12(T sij + T aij) (3.7)but most physi
al se
ond-rank tensors are purely symmetri
al (i.e. Tij = Tji), forexample the diele
tri
 tensor being subje
t of this thesis. (One of the few ex
eptionsis the thermoele
tri
 tensor.) Nye [Nye57℄ remarks that this symmetry property oftensors is not an obvious one, and that the proof ne
essarily involves thermodynam-i
al 
onsiderations.The behavior of a symmetri
 se
ond-rank tensor Tij under 
oordinate transfor-mation of the 
oordinates xi follows the equationTijxixj = 1; (3.8)whi
h de�nes a sphere that is either an ellipsoid, a hyperboloid of one or a hy-perboloid of two sheets. This equation is 
alled the representation quadri
 for thetensor Tij. An important property of a quadri
 is that it possesses prin
ipal axes.These are three dire
tions at right angles su
h that the general quadri
 (3.8) takesthe formT11x21 + T22x22 + T33x23 = 1; (3.9)when referred to these axes.A symmetri
al tensor referring to arbitrary axes has six independent 
ompo-nents. When referring to its prin
ipal axes it depends on the symmetry of the
rystal in 
onsideration how many independent 
oeÆ
ients remain. The Neumannprin
iple states that the symmetry elements of any physi
al property of a 
rystalmust in
lude the symmetry elements of the point group of the 
rystal. Thus tensors(or the 
rystals, a

ordingly) are grouped in the following three so-
alled opti
al
lassi�
ations:Isotropi
 (Anaxial) 
rystals: These are 
rystals in whi
h three arbitrary 
rys-tallographi
ally equivalent orthogonal axes 
an be 
hosen. These three axes are theprin
ipal axes of the tensor. All diagonal elements are equal (see table below), andthe 
rystal a
ts like an amorphous medium, meaning equal in all dire
tions.Uniaxial tensors: These 
rystals do not possess three orthogonal equivalent axes,but two or more of these axes in one plane. This is the 
ase for latti
es of the tri
line,trigonal and hexagonal kind. The plane with the equivalent axes is perpendi
ular tothe three-fold, four-fold or six-fold symmetry axis, respe
tively. One of the opti
alaxes 
oin
ides with this symmetry axes, the others form a pair of orthogonal axesin the plane.



18 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDSClassi�
ation Crystal System1 Indep. Coe�. Tensor shapeAnaxial Cubi
 1 0B� T 0 00 T 00 0 T 1CAUniaxial TetragonalHexagonalTrigonal 2 0B� T1 0 00 T1 00 0 T3 1CAOrthorhombi
 3 0B� T1 0 00 T2 00 0 T3 1CABiaxial Mono
lini
 4 0B� T11 0 T310 T2 0T31 0 T33 1CATri
lini
 6 0B� T11 T12 T31T12 T22 T23T31 T23 T33 1CATable 3.2: Shapes of se
ond-rank tensors for di�erent 
rystal stru
tures, taken froma table of ([Nye57℄).

Biaxial tensors: Crystals with lower symmetry. For orthorhombi
 
rystals, thetensor possesses diagonal form with ea
h di�erent elements. The opti
al axes 
o-in
ide with the 
rystal axes. In mono
line and tri
line systems, the opti
al axesare not alleged. (In this 
ase, it would be possible to rotate the axes of the tensorsu
h that only the three prin
ipal 
oeÆ
ients are ne
essary, but one would have noinformation regarding the orientation of the representation's sphere relative to the
rystallographi
 axes, please 
onfer [Lov89℄.)In most 
ases of 
al
ulations the used basis ve
tors 
oin
ide with the opti
al axesof the 
rystal in study.



3.3. MACROSCOPIC OPTICS 193.3 Ma
ros
opi
 Opti
sMaxwell equations: This set of equation des
ribes ele
tromagneti
 waves. Inthe presen
e of matter they readr�E(r; t) = � ��tB(r; t) (3.10)r �D(r; t) = �(r; t) (3.11)r�H(r; t) = j(r; t) + ��tD(r; t) (3.12)r �B(r; t) = 0; (3.13)with E, D the ele
tri
 �eld and the ele
tri
 displa
ement, B the magneti
 indu
tionand H the magneti
 �eld. � and j des
ribe the external 
harges and 
urrents.The indu
ed 
harge and 
urrent vanish by the averaging done for this ma
ros
opi
approa
h. This des
ription is 
omplete only if the 
oupling between the D and Eand between B and H is given.Material 
oeÆ
ients: To des
ribe the response linearly, one introdu
es two
oupling fun
tions (also 
alled 
onstants frequently), the diele
tri
 fun
tion " (alsoknown as permittivity) and the magneti
 permeability �, byD = ""0E; B = ��0H: (3.14)Alternatively the ele
tri
 polarization P and the magnetizationM are de�ned byD = "0E + P ; P = �pE = �"0E; (3.15)H = 1�0B �M ; M = �mH; (3.16)de�ning the ele
tri
 and magneti
 sus
eptibilities � and �m and the polarizability�p as " = 1 + �; �p = "0�; � = 1 + �m (3.17)When 
oupling the 
urrent j proportional to the ele
tri
 �eld a

ording to Ohm'slaw, the ele
tri
al 
ondu
tivity � is introdu
ed:j = �E: (3.18)The 
ondu
tivity relates to the diele
tri
 fun
tion by�(!) = �i!"0�(!): (3.19)



20 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDSAbsorption of waves: In va
uum, the ele
tri
 �eld of a free ele
tromagneti
wave follows the wave equation4E(r; t) = �0"0 �2�t2E(r; t); (3.20)whi
h has solutionsE(r; t) = E0ei(kr�!t): (3.21)When penetrating matter, the amplitude de
ays exponentially,E = E0e� 12�z; (3.22)with the absorption 
oeÆ
ient � de�ned asdIdz = ��I (3.23)for penetration in z-dire
tion, and I � jEj2 the intensity. The 
omplex refra
tiveindex �n(!) = n(!) + i�(!) (3.24)in
lude the real refra
tive index n and the extin
tion 
oeÆ
ient �. The diele
tri
fun
tion is 
oupled via the relation"(!) = �n2(!) (3.25)with the diele
tri
 
onstant "(!) = "1(!)+ i"2(!). The real and imaginary part arerelated to n and � asn2 � �2 = "1 (3.26)2n� = "2; (3.27)or vi
e versan = s12 �q"21 + "22 + "1� (3.28)� = s12 �q"21 + "22 � "1�: (3.29)Taking into a

ount the boundary 
onditions of the ele
tri
 and magneti
 �eld atan interfa
e of one diele
tri
 to air, the re
e
tivity of a bulk surfa
e readsR = �1� �n1 + �n�2 = (n� 1)2 + �2(n+ 1)2 + �2 : (3.30)In the 
ase of thin �lms, di�erent formulae have to be used to determine the re-
e
tivity, taking into a

ount multiple re
e
tions inside the �lm and interferen
e ofthese.



3.4. RELATION BETWEEN REAL AND IMAGINARY PART 21Tensor properties: In the general 
ase, the 
ouplings (3.14),(3.18) are not sim-ple s
alars, but tensor-like and they are not 
onstants but depend on the frequen
y! and momentum k. Sin
e the 
oupling is homogeneous in time, and for the ma
ro-s
opi
 approa
h also in spa
e, the arguments of the sus
eptibilities readP (r; t) = "0 Z d3r0 Z dt0 �(r � r0; t� t0)E(r0; t0) (3.31)M(r; t) = Z d3r0 Z dt0 �m(r � r0; t� t0)H(r0; t0) (3.32)Causality has to be 
onserved by appropriate integration boundaries, or by de�ningthe sus
eptibilities zero for this values. In Fourier spa
e this 
onvolution givesP (k; !) = �(k; !)E(k; !) (3.33)M(k; !) = �m(k; !)H(k; !): (3.34)3.4 Relation between real and imaginary partThe real and imaginary parts of the refra
tive index and of the diele
tri
 fun
tionare not independent, but 
losely related to ea
h other. Due to the Dira
 relation1! + i� = P 1! + i�Æ(�) (3.35)a spe
tral distribution fun
tion with an energylike parameter !G(!) = lim"!0 1N Z d3k F (k)E � E(k)� i" (3.36)has its real part<G(!) = 1NP Z d3k F (k)! � !(k) (3.37)and its imaginary part=G(!) = �N Z d3k F (k)Æ(! � !(k)); (3.38)whi
h are Hilbert transforms of ea
h other. P denotes the prin
iple value of anintegral, that is the integral with singularities ex
luded. For instan
e if within theinterval [a; b℄ the fun
tion f 
ontains one singularity at x0, the prin
ipal value readsP bZa dx f(x) = limg!+0 x0�gZa dx f(x) + bZx0+g dx f(x): (3.39)The prin
ipal value might 
onverge even if ea
h of the two integrals on the rightside diverge.



22 CHAPTER 3. DIELECTRIC PROPERTIES OF SOLIDSKramers-Kronig Relation: These relations 
onne
t the real and imaginary partof any spe
tral fun
tion that relates two �elds in a linear and 
ausal way. Therelations read�1(!) = 1 + 1�P +1Z�1 d� �2(�)� � ! (3.40)�2(!) = � 1�P +1Z�1 d� �1(�)� 1� � ! : (3.41)P denotes the prin
ipal value of the integral. Sin
e ! > 0 it is desirable to transform(3.40) to integrals over the domain (0;1). Utilizing the relation"(�!) = "1(�!) + i�(�!)�! = "�(!); (3.42)and by multiplying both the numerator and denominator of (3.40) with (�+!), oneyields�1(!) = 1 + 2�P 1Z0 d� ��2(�)�2 � !2 (3.43)�2(!) = � 2�P 1Z0 d� �1(�)� 1�2 � !2 : (3.44)The 
onsequen
e of the Kramers-Kronig relations is that on
e the imaginary partis known for the whole spe
trum, the real part is known as well, and vi
e versa. Itis also worth to noti
e that these relations are of universal validity sin
e they donot imply any knowledge of the intera
tions inside the solid. However, it poses adiÆ
ult task in experiments to s
an the whole frequen
y range.One 
an also 
onstru
t Kramers-Kronig relations for other quantities, like themagnitude and the phase of the 
omplex re
e
tion 
oeÆ
ient.3.5 Ma
ros
opi
 Diele
tri
 Fun
tionUp to now there is no 
onne
tion between the diele
tri
 fun
tion and the quantumme
hani
al state of the system. The �rst su
h formulation has been given in theself-
onsistent �eld (SCF) method. Starting point is the single-parti
le Liouville-vonNeumann equationi���t = [H; �℄ (3.45)



3.5. MACROSCOPIC DIELECTRIC FUNCTION 23with H the Hamiltonian and � the density operator. H is separated into an time-independent part H0 and a time-dependent perturbation V ,H = H0 + V (r; t): (3.46)The unperturbed system has solutionsH0jki = E(k)jki; (3.47)and the density operator of this system a
ts like�0jki = f0(E(k))jki; (3.48)f0 being the Fermi distribution fun
tion for zero temperature. By assuming thedensity operator of the perturbed system to be of the form � = �0 + �1, one arrivesat the linearized form of the Liouville equation (3.45)i��1�t = [H0; �1℄ + [V; �0℄ (3.49)if the term of higher order [V; �1℄ is negle
ted. Assuming a time dependen
e V �e�i!teÆt of an ele
tromagneti
 os
illation, one obtainshkj�1jk + qi = f0(E(k + q))� f0(E(k))E(k + q)� E(k)� ~! + i~Æ hkjV jk + qi: (3.50)This self-
onsistent �eld method relates the indu
ed density �1 to the perturbingpotential. The form of the perturbing potential makes this a semi-
lassi
al model,treating the ele
trons quantum me
hani
ally and the photon as a 
lassi
al ele
tro-magneti
 wave (though it gives away its energy quantized). Lindhard [Lin54℄ hasgiven an expression for the diele
tri
 fun
tion within this self-
onsistent �eld method"(q; !) = 1� 4�e2q2
� limÆ!0 Z d3k f0(E(k + q))� f0(E(k))E(k + q)� E(k)� ~! + i~Æ : (3.51)The integration runs over the whole system, 
� is the system's volume. Ehrenrei
hand Cohen [EC59℄ showed that this is equivalent to a many-parti
le approa
h basedon the random-phase approximation (RPA) for a Fermi gas at zero temperaturegiven by Nozi�ere and Pines [NP58b, NP58a℄. Ehrenrei
h applied this to solids of
ubi
 stru
ture and obtains"(q; !) = 1� 4�e2q2
 limÆ!0Xi;f Z d3k jhf;k + qjikij2Ef(k + q)� Ei(k)� ~! + i~Æ �[f0(Ei(k + q))� f0(Ef(k))℄; (3.52)the two summation indi
es running over all bands. The integration runs over theunit 
ell with volume 
. The q indi
ate involved phonons, taking up a di�eren
e
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Figure 3.1: Sket
h of interband and intraband transitions. In the shown model bandstru
tures (i.e. plots of energy E vs. 
rystal momentum k) the spots indi
ate one-parti
lestates. On the left an interband transition from band i to band f is drafted, on the rightan intraband transition within one band i.in 
rystal momentum. Compared to (3.51) the square of the matrix element in thenumerator has appeared. Perturbation theory in the limit jqj ! 0 yieldsjhf;k + qjikij2 = Æfi + (1� Æfi)� qm!fi�2 j
fkjri jik�j2; (3.53)with ~!fi = Ef(k) � Ei(k). The jiki are Blo
h states. In order to 
onsider thelong-wavelength limit q ! 0, the diele
tri
 fun
tion is split up into the interbandand the intraband part sket
hed in Fig. 3.1,"(!) = "inter(!) + "intra(!): (3.54)For reasons of 
onvenien
e, both parts are split into their real and imaginary parts" = "1 + i"2. The intraband 
ontribution gives [ZL83℄"intra1 (!) = 1� ~!2p!2 (3.55)"intra2 (!) = �i�~!2p ��! Æ(!): (3.56)An intraband transition involves a photon and is therefore a pro
ess of higher order.The imaginary part vanishes everywhere ex
ept of ! = 0 and has a singularity atthis point. The plasma frequen
y !p of a homogeneous ele
tron gas of density n isde�ned by!2p = 4�e2nm : (3.57)



3.5. MACROSCOPIC DIELECTRIC FUNCTION 25The e�e
tive plasma frequen
y ~!p together with the opti
al e�e
tive mass mopt isde�ned by~!2p � mmopt!2p = 4�e2~2 Xi 1VG Z d3k f0(Ei(k))r2kEi(k): (3.58)The interband part takes the form"inter1 (!) = e2�2m2 Xi;f P Z d3k ~2Ef(k)� Ei(k) j
fkjri jik�j2 �f0(Ei(k))[1� f0(Ef (k))℄(Ef(k)� Ei(k))2 � (~!)2 (3.59)"inter2 (!) = e22�m2!2 Xi;f Z d3k j
fkjri jik�j2 �Æ(Ef(k)� Ei(k)� ~!) � f0(Ei(k))[1� f0(Ef(k))℄: (3.60)The two summation indi
es indi
ate transitions i! f from an o

upied to an uno
-
upied state. For non-
ubi
 stru
tures, the tensor takes the same form, ex
ept thatthe square of the matrix element turns to a tensor produ
t. Converting the volumeintegral to a surfa
e integral, the imaginary part of the interband 
ontribution tothe diele
tri
 tensor reads"��2 (!) = e22�m2!2 Xi;f Z dk2 
ikjr�i jfk�Dfkjr�i jikEjrk(Ef(k)� Ei(k))j �f0(Ei(k))[1� f0(Ef (k))℄: (3.61)This fun
tion has been implemented in this thesis. The integral runs over the
onstant-energy surfa
e ~! = Ef (k) � Ei(k). A term often referred to in this
ontext is the joint density-of-states (JDOS)J(E) =Xi;f Z dk2jrk(Ef(k)� Ei(k))j (3.62)over the plane of 
onstant energy E = EF (k)�Ei(k). For propagation q along unitve
tor uq the diele
tri
 fun
tion is"2(!) =X�� uq;�uq;� � "��2 : (3.63)The longitudinal and transversal proje
tors are de�ned byL = uq Æ uq; T = 1� uq Æ uq; L+ T = 1: (3.64)
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tri
 tensor 
an thus be partitioned into" = (L+ T )"(L + T ) (3.65)= L"L+L"T + T "L+ T "T (3.66)= "ll + "lt + "tl + "tt: (3.67)In a homogenous medium like the free-ele
tron gas, longitudinal (transverse) ele
-tromagneti
 �elds would only 
ause a longitudinal (transverse) response. In inho-mogeneous media su
h as periodi
 
rystals a purely longitudinal or transverse �eldindu
es both kinds of responses. Above, only the longitudinal response has been
al
ulated. It has been shown by Ambegaokar and Kohn [AK60℄ for 
ubi
 
rystalsand by Del Sole and Fiorino [SF84℄ for 
rystals of lower symmetry that in the limitof vanishing q the e�e
t of a transverse perturbation (ele
tro-magneti
 �elds) 
anbe des
ribed by a longitudinal response.3.6 Mi
ros
opi
 Diele
tri
 Fun
tionThe derivation above started from a ma
ros
opi
 point of view, i.e. the ma
ros
opi
Maxwell equations. However, a pre
ise des
ription on the mi
ros
opi
 s
ale is onlygiven by the mi
ros
opi
 Maxwell equationsr � e = �mi
"0 (3.68)r� b = �0jmi
 + �0"0 ��te (3.69)r � b = 0 (3.70)r� e = � ��tb (3.71)with e = e(r; t) the mi
ros
opi
 ele
tri
 �eld and b = b(r; t) the mi
ros
opi
 mag-neti
 indu
tion. The ma
ros
opi
 quantities result from the mi
ros
opi
 ones byaveraging over one unit 
ell� = h�mi
i; j = hjmi
i; E = hei; B = hbi: (3.72)The inverse of the ma
ros
opi
 and mi
ros
opi
 diele
tri
 fun
tion (or tensor, re-spe
tively) are both related to the ele
tri
 displa
ement D byE(r; t) = "�10 Z d3r0 Z dt0 "�1ma
(r � r0; t� t0)D(r0; t0) (3.73)e(r; t) = "�10 Z d3r0 Z dt0 "�1mi
(r; r0; t� t0)D(r0; t0): (3.74)
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ausality must be 
onserved. Both diele
tri
 fun
tions are homogeneousin time, but only from the ma
ros
opi
 point of view the medium is homogeneous;thus the relation for the mi
ros
opi
 diele
tri
 fun
tion is more 
omplex. The FouriertransformsE(k; !) = "�10 "�1ma
(k; !)D(k; !) (3.75)e(k +G; !) = "�10 XG0 "�1mi
(k +G;k +G0; !)D(k +G0; !) (3.76)re
e
t this. In (3.76) re
ipro
al spa
e arguments have been parted into a re
ipro
allatti
e ve
tor G (or G0, respe
tively) and a ve
tor k within the Brillouin zone.Due to the 
oupling of the inverse of the diele
tri
 fun
tion to the ele
tri
 dis-pla
ement in (3.74), this is the quantity that 
an initially be derived. Out of thisthe diele
tri
 fun
tion itself is determined. "�1mi
 is not only the inverse with respe
tto the tensor 
hara
ter, but it relates to the diele
tri
 fun
tion by"�1mi
(r; r0; t� t0)"mi
(r0; r00; t0� t00) = Æ(r�r0)Æ(r0�r00)Æ(t� t0)Æ(t0� t00)1: (3.77)Adler [Adl62℄ and Wiser [Wis63℄ derived the expli
it 
onne
tion of the mi
ros
opi
and ma
ros
opi
 quantities. For this it is useful to understand the ve
tors G;G0from the Fourier transform as matrix indi
es. This way the mi
ros
opi
 diele
tri
tensor"mi
(k +G;k +G0; !) ! ["mi
(k; !)℄GG0 (3.78)appears as a matrix with elements whi
h are tensor fun
tions of k and !. Eq. (3.76)turns to a ve
tor equation with a matrix-ve
tor multipli
ation on the right. Theinverse of the ma
ros
opi
 tensor is equal to the inverse of the mi
ros
opi
 tensorfor G = G0 = 0,"�1ma
(k; !) = "�1mi
(k;k; !): (3.79)This 
an be written like"ma
(k; !) = �"�1mi
(k;k; !)��1 (3.80)as well, but one has to remember the matrix 
hara
ter of "�1mi
. Only the negle
tionof all o�-diagonal matrix elements G 6= G0 (the so-
alled lo
al �eld e�e
ts) gives theeasy relation"ma
(k; !) = "mi
(k; !): (3.81)In pra
ti
al appli
ations the matrix "mi
 has to be 
onstru
ted for a set of G ve
torsand the (0; 0)-element has to be determined.For the a
tual derivation [ZL83℄ all quantities are 
onsequently Fourier trans-formed. For the longitudinal response, an expression for the mi
ros
opi
 diele
tri
fun
tion and its inverse depending on the indu
ed mi
ros
opi
 
harge density 
an be
al
ulated. For the approximation of independent parti
les, in the long-wavelengthlimit the same result as in the ma
ros
opi
 
ase (3.60) is found when lo
al �elds arenegle
ted.
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Chapter 4Basis setsAs already mentioned in Se
tion 2.3, the eigenfun
tions are usually expanded in abasis,hrjiki =  i(k; r) = 1p
XG Cik+G�k+G(r); (4.1)where 
 is the unit 
ell volume. The Hamilton and overlap matri
es H and S are
onstru
ted for a set of k-points, and the generalized eigenvalue problem[H(k)� �iS(k)℄ 
i(k) = 0 (4.2)is solved, with 
i(k) = (Cik+G) the ve
tor of the C-
oeÆ
ients (of eigenvalue i andve
tor k) for all G's. Many questions of detail, as well as general properties of the
al
ulation like a

ura
y and 
omputational e�ort depend on the 
hoi
e of the basisset. The better the basis fun
tions mat
h the shape of the a
tual wavefun
tions, thebetter the 
onvergen
e is. Some basis sets may have drawba
ks that 
an not alwaysbe lifted by a bigger 
ut-o�.At this point two possibilities to exploit symmetry should be noted. First onedoes not need to 
al
ulate the whole Brillouin zone (BZ), but 
an redu
e the 
om-putation to the irredu
ible part (IBZ) in whi
h points 
an not mapped onto ea
hother by symmetry operations. Furthermore the presen
e of inversion symmetry hasa spe
ial in
uen
e on the wavefun
tion 
oeÆ
ients. Let I be the inversion operatorIr ! �r: (4.3)The Hamilton operator is hermitian, H(k; r) = H�(k; r). If the system possesses29



30 CHAPTER 4. BASIS SETSinversion symmetry (i.e. H(r) = H(�r)), the Hamiltonian matrix elements readHGG0(k) = Z d3r '�G(r)H(k; r)'G0(r)= Z d3r '�G(�r)H(k;�r)'G0(�r)= Z d3r 'G(r)H�(k; r)'�G0(r)= (HGG0(k))� ; (4.4)if the basis fun
tions obeyI'G(r) = '�G(r): (4.5)The same is obviously true for the overlap matrix. This means that in this 
ase thegeneralized eigenvalue problem deals with real instead of 
omplex matri
es, whi
hmeans a signi�
ant ease of 
al
ulation. Of 
ourse also the expansion 
oeÆ
ients Care real in this 
ase.4.1 The Plane-Wave BasisA very simple basis set is build out of plane waves (PWs), the eigenfun
tions for a
onstant potential, that are free ele
trons�k+G(r) = ei(k+G)r;The use of this basis 
omplies to a simple Fourier transform. Typi
ally this is a good
hoi
e for nearly free ele
trons and delo
alized ele
trons. The simple analyti
 formusually leads to well-performing 
al
ulations that are straight-forward to implement.The Hamilton and overlap matri
es 
an easily be 
al
ulated asHG;G0(k) = ~22m jk +Gj2ÆGG0 + V(G�G0); (4.6)V(G�G0) = Zu
 d3r e�i(G�G0)r Veff(r)SG;G0 = ÆGG0The matrix elements of the momentum operator for instan
e in this basis (in termsof the eigenfun
tions) give
fkjri jik�PW = 1
XG (k +G)Cf�k+GCik+G: (4.7)The 
hoi
e ofG-ve
tors is illustrated in Fig. 4.1. After 
hoosing a 
ut-o� valueGmax,all (k +G)-ve
tors are used that obey jk +Gj � Gmax. This 
hoi
e is ne
essarybe
ause of numeri
al reasons. The number of basis fun
tions obviously depends onthe k-point in 
onsideration.
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Figure 4.1: Used G-ve
tors in expansion. Small x-like 
rosses indi
ate the basis ve
torsof re
ipro
al spa
e. The plus-like 
rosses indi
ate the (k +G)-ve
tors 
orresponding tothe k-ve
tor drawn in the origin. The large 
ir
le en
loses all ve
tors of jGj < Gmax, thesmaller one those of jk +Gj < Gmax.Potentials: The pri
e for this simpli
ity is the inability of this basis set to des
ribethe strong intera
tions in
luding the nu
lear potential� 1r . As a solution, the idea ofpseudopotentials has been developed. The potentials are identi
al to the all-ele
tronpotential outside a given 
ore-radius, but of di�erent, smoother shape inside. Theyare 
onstru
ted just that the resulting pseudo-wavefun
tion mimi
s the all-ele
tronwavefun
tion outside this radius as 
lose as possible.For many elements, this method is appli
able, i.e su
h pseudopotentials 
an be
onstru
ted. Usually systems in
luding lo
alized valen
e ele
trons, like transitionmetals, are more problemati
.Symmetry: The potential and the 
harge density are represented in planewavesexp(iGr) whi
h are k-independent, in 
ontrast to the expansion of the wavefun
-tions. The needed 
ut-o� should be at least twi
e as large as for the eigenve
tors.The symmetry of the latti
e 
an be used to simplify the representation. The sumof the planewaves of all G-ve
tors obtained by the spa
e group operations of thelatti
e applied on one G-ve
tors is 
alled a star,�S = 1NOpXR eiRG(r�t): (4.8)



32 CHAPTER 4. BASIS SETSNOp is the number of the spa
e group operationsR; t. Potentials and 
harge densities
an be expanded in these stars.Planewaves naturally obey the relationIei(k+G)r = �ei(k+G)r�� ; (4.9)whi
h means that (4.4) is valid for this basis, i.e. H is real in 
ase of inversionsymmetry.4.2 The APW method

Figure 4.2: Spatial partitioning in augmented basis sets. The 
ir
les are the muÆn tins,leaving the interstitial region, plotted grayed.A basis set of better shape has been proposed by Slater already in 1937 [Sla37℄.In this Augmented PlaneWave (APW) basis, spa
e is divided into spheres that are
entered around ea
h atom, so-
alled muÆn-tins (MTs), and into the remaininginterstitial region (IS)1. While plane waves are used as basis fun
tions in the inter-stitial, they are augmented in the spheres by spheri
al harmoni
s time radial basisfun
tions that are solutions to of the radial S
hr�odinger equation to an l-dependentenergy�� ~22m �2�r2 + ~22m l(l + 1)r2 + V (r)� El� rul(r) = 0: (4.10)If the a

ording relativisti
 equation is solved, the solutions are spinors, 
ontaining alarge and a small 
omponent. Expanding the fun
tion in a series of these fun
tions1For non-bulk systems, di�erent 
hoi
es 
an be made. For slabs, an additional va
uum regionis introdu
ed as a two half-spa
es, expanding the fun
tion in de
aying exponentials [Kur00℄.



4.2. THE APW METHOD 33up to an l-
uto� lmax, this gives the basis fun
tions (the augmented plane waves)�k+G(r) = 8><>: ei(k+G)r r 2 ISlmaxXl=0 lXm=�l a�lm(k +G)ul(r; E�l )Ylm(r̂) r 2 MT�: (4.11)The 
al
ulation of matrix elements be
omes more 
ompli
ated due to the radialfun
tions being non-orthogonal when restri
ted to the muÆn-tins, and due to the
omplex shape of the interstitial region.It is useful to normalize the radial fun
tions likehuljuli = R�Z0 dr julj2 = 1 (4.12)To ensure that these basis fun
tions are 
ontinuous, one has to mat
h the muÆn-tinfun
tions to the planewaves on the boundaries. To arrange this, one expands thespheri
al harmoni
s into planewaves using the Rayleigh relationeiKr = 4�Xlm iljl(rK)Y �lm(K̂)Ylm(r̂): (4.13)K = jKj is the length of the ve
tor K = k +G, and jl is the Bessel fun
tion ofthe �rst kind. Atoms that 
an be transformed into ea
h other with a symmetryoperation form one atom kind. For ea
h atom kind, one of its atoms is de
lared asits representative (see Fig. 4.3). An atom � at position S� owns a 
oordinate frame(U�;S�) (in the style of symmetry operations 3.1, U� being the rotation matrix). Inthis frame, a plane-wave takes the formeiKr ! ei(U�K)(r+U�S�) (4.14)Mat
hing the planewaves on the sphere boundaries with the muÆn-tin fun
tions forevery augmented wave gives the a-
oeÆ
ients asa�lm(K) = eiKS� 4�ilul(R�; E�l )jl(KR�)Y �lm(U�K̂): (4.15)This leaves the C-
oeÆ
ients (and the energies E�l ) as the variational parameters ofthe method, the a's being determined by them. In fa
t this mat
hing works only ona few points exa
tly, but the so-
hosen A-
oeÆ
ients yield the smallest mismat
h.With these basis fun
tions the wavefun
tion take the form i(k; r) = 8>><>>: 1p
XG Cik+Gei(k+G)r r 2 ISXG Xlm Cik+Ga�lm(k +G)ul(r; E�l )Ylm(r̂) r 2 MT� (4.16)
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Fα

Fβ

F
g

MTα
MTβ

SαSβFigure 4.3: Equivalent atoms and its 
oordinate frames. MT�, MT� are the spheres
entered at S�, S�. The lo
al frame F� of the representative of this atom kind 
oin
ideswith the global frame Fg, while the se
ond sphere's frame evolves from the �rst by arotation.Sin
e the a-
oeÆ
ients are { together with the expansion 
oeÆ
ients C { the onlyterms inside the spheres depending on G, one 
an write the whole wavefun
tionshorter as i(k; r) = 8><>: 1p
Cik+Gei(k+G)r r 2 ISXlm Ai;�lm(k)ul(r; E�l )Ylm(r̂) r 2 MT� (4.17)with the shorthandAi;�lm(k) =XG Cik+Ga�lm(k +G): (4.18)Potentials: Sin
e these basis fun
tions are the solutions of a 
onstant potentialin the interstitial and a spheri
al potential in the muÆn tins, this muÆn-tin ap-proximation for the shape of the potentials has initially been used. In the warpedmuÆn-tin approximation, the interstitial potential is extended to general shape,that means extended in planewaves.Sin
e the a
tual in
uen
e all ele
trons are taken into a

ount, this method 
ountsto the all-ele
tron methods, other than pseudopotential methods. However, it isreasonable to treat the inner shells of the atoms independently sin
e these 
orestates do not take part in the 
hemi
al bond. Only the outer shells are determined



4.2. THE APW METHOD 35by solving the 
rystal eigenvalue problem. Nevertheless, the potentials is made upof all ele
trons.Symmetry: The representation of 
harge densities and potentials by stars is over-taken from the planewaves for the interstitial region. In the spheres, due to symme-try operations one 
an 
olle
t spheri
al harmoni
s to latti
e harmoni
s and expandin this basis [Sin94℄.Applying the inversion operator on the APW basis fun
tions 
onsidering the
onstru
tion of the A 
oeÆ
ients, it turns out that { like the planewaves { also theaugmented planewaves obeyIei(k+G)r = �ei(k+G)r�� ; (4.19)whi
h makes the Hamiltonian H real in 
ase of inversion symmetry [Kur00℄.The A 
oeÆ
ients of equivalent atoms are 
onne
ted, though this 
an not be seeneasily due to the (lm)-expansion in di�erent lo
al frames. However, for the 
ase oftwo equivalent atoms �,� mapped onto ea
h other by inversion, the 
oeÆ
ients obeyAi;�lm = �Ai;�lm�� (4.20)for all (lm) and all states i.Problems of the method: A

ording to (4.15) the A's are determined 
ompletelyby the planewave 
oeÆ
ients. So these C 
oeÆ
ients together with the energy pa-rameters El are the variational parameters of this method. If the energy parameterswere taken as �xed rather than as a variational parameter, the method would simply
onsist of the use of the APW basis set with solving the se
ular equation (4.1). Thesolutions would give the band energies.Unfortunately, this is not a workable s
heme. The basis fun
tions la
k variationalfreedom, this means they do not yield 
orre
t results if the energy parameters Elmismat
h the a
tual band energies. This means that these energies for one k-point
an not be obtained from a single diagonalization, but it has to be solved iteratively.This makes this method mu
h more 
omputationally demanding.Furthermore it is diÆ
ult to use a general potential beyond the warped muÆn-tin approximation [Sin94℄. Another obsta
le is the so-
alled asymptote problem.There might be energy parameters for whi
h ul vanishes or be
omes very small onthe sphere boundary. As a 
onsequen
e the planewaves and the radial fun
tionsbe
ome de
oupled.
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h work has been devoted to lifts the des
ribed problems, e.g. the modi�ed aug-mented planewave (MAPW) approa
h by Bross [Bro64, Bro68, BBM+70℄. In 1975,Andersen introdu
ed the Linearized Augmented Plane Wave (LAPW) method. The
entral idea is to des
ribe the basis fun
tions inside the muÆn-tins not only by solu-tions of the radial S
hr�odinger equation ul(r; El), but as well by its energy derivatives_ul(r; El) � ��Eul(r; El). If El di�ers slightly from the true band energy �, a

ordingto an expansion with respe
t to the energy,ul(r; �) = ul(r; El) + (�� El) _ul(r; El) +O((�� El)2); (4.21)the true radial fun
tion 
an be approximated suÆ
iently. The error in the bandenergies will be of the order O((��El)4). The energy derivatives 
an a
quired from(4.10), taking the energy derivative:�� ~22m �2�r2 + ~22m l(l + 1)r2 + V (r)� El� r _ul(r) = rul(r): (4.22)The basis fun
tions are now�k+G(r) = 8>>>>><>>>>>:
1p
ei(k+G)r r 2 ISlmaxXl=0 lXm=�l [a�lm(k +G)ul(r; E�l )+b�lm(k +G) _ul(r; E�l )℄Ylm(r̂) r 2 MT�: (4.23)Analogous to the APW method, the muÆn-tin 
oeÆ
ients are determined asa�lm(K) = eiKS� 4�ilW Y �lm(U�K̂)[ _ul(R�)Kj 0l(KR�)� _u0l(R�)jl(KR�)℄ (4.24)b�lm(K) = eiKS� 4�ilW Y �lm(U�K̂)[ul(R�)Kj 0l(KR�)� u0l(R�)jl(KR�)℄ (4.25)with the WronskianW = [ _ul(R�)u0l(R�)� ul(R�) _u0l(R�)℄: (4.26)Colle
ting terms equivalent to the APW basis set, with the de�nitionsAi;�lm(k) = XG Cik+G � a�lm(k +G);Bi;�lm (k) = XG Cik+G � b�lm(k +G) (4.27)



4.3. THE LAPW METHOD 37the wavefun
tions take the form i(k; r) = 8>><>>: 1p
XG Cik+Gei(k+G)r r 2 ISXlm �Ai;�lm(k)ul(r; E�l ) +Bi;�lm (k) _ul(r; E�l )�Ylm(r̂) r 2 MT� (4.28)The detailed 
onstru
tion of the H and S matri
es is des
ribed in [Kur00℄. Theformulation above re
e
ts a non-relativisti
 ansatz. The relativisti
 approa
h usuallydetermines the relativisti
 radial wavefun
tions ul(r) inside the muÆn-tins, whi
hare spinors. In the interstitial, the Hamiltonian is treated non-relativisti
. Forthe mat
hing on the muÆn-tin boundaries, only the large 
omponent is taken intoa

ount, sin
e the small 
omponent pra
ti
ally vanishes on the sphere boundaries.With this additional 
exibility, the LAPWs form a good basis for most setups. In
ontrast to the APW method only one diagonalization is needed to obtain the bandenergies. And sin
e it is very unlikely that both radial fun
tion and its derivativevanish the asymptote problem does not o

ur.Potentials: In the APW method, a des
ription of the potential beyond themuÆn-tin approximation leads to serious problems. For the LAPW method on theother hand, this pro
edure 
an be implemented. This full-potential LAPW method(FLAPW or FPLAPW) [Ham79, WKWF81℄ expands the potential into stars in theinterstitial, and into spheri
al harmoni
s in the spheres.Basis 
onversion: A method to link the simpli
ity of the planewave basis withthe a

ura
y of the more sophisti
ated LAPW basis set has been proposed byKrasovskii [KSS99℄. In this Augmented Fourier 
omponents method (AFC), thevi
inity of the 
ore 
ontaining rapid alterations of the wavefun
tions is 
onsideredto be of low in
uen
e on the 
hemi
al behavior. The results of 
al
ulation in LAPWbasis are therefore gauged by an appropriate fun
tion, generating a smoother wave-fun
tion in this region and leaving a slowly varying valen
e 
harge, whi
h 
an berepresented adequately in a planewave basis. From this results, quantities 
an be
al
ulated in the simple planewave formalism.Symmetry: The LAPW basis obviously in
ludes the same symmetry as the APWbasis set. A

ording to (4.20), the 
oeÆ
ients for two atoms 
onne
ted by inversionsymmetry obeyAi;�lm = �Ai;�lm�� ; Bi;�lm = �Bi;�lm�� (4.29)
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al Orbital extensionThere might be situations where the variational freedom of the LAPW basis setis not suÆ
ient. One example are semi-
ore states, whi
h are states of low energythat do not de
ay 
ompletely within the muÆn-tins, but have an overlap into theinterstitial. Singh [Sin91℄ introdu
ed the Lo
al Orbital extension to the LAPW setto deal with su
h problems.The idea is to expand the basis set by additional fun
tions that are zero inthe interstitial, to extend 
exibility inside the muÆn-tins. By 
onstru
ting theseadditional basis fun
tions su
h that the derivative vanishes on the sphere boundariesas well, the A- and B- 
oeÆ
ients 
onstru
ted in (4.24) remain un
hanged. The newbasis fun
tion should have the 
hara
teristi
 of a 
ertain angular momentum llo andenergy Elo. This is ensured by a 
ombination of three radial wavefun
tions. Hen
ethe additional wavefun
tion (i.e. one lo
al orbital) takes the form�k+Glo(r) = lloXm=�llo[a�lo;m(k +Glo)u�l (r; E�l ) + b�lo;m(k +Glo) _u�l (r; E�l ) +
�lo;m(k +Glo)u�llo(r; Elo)℄Yllo;m(r̂): (4.30)inside muÆn-tin �, 
ompare (4.23). The index lo = 1; : : : ; nlo runs over the numberof lo
al orbitals introdu
ed, the alo; blo; 
lo are the 
orresponding 
oeÆ
ients for ea
hsphere. The l = llo indi
ates the angular momentum quantum number asso
iatedwith this lo
al orbital. Ea
h lo
al orbital 
ontains only anm-sum. This 
onstru
tion
ontains the essential 
hara
teristi
s in the third part (llo; Elo), enri
hed with theLAPW-like �rst two parts ensuring the 
onditions of the boundary (i.e. the fun
tionitself and its derivative equal zero).These two 
onditions together with the normalization 
ondition do determinethe three 
oeÆ
ients of ea
h lo
al orbital. But furthermore they are 
oupled to�
ti
ious planewave, indi
ated above by the ve
tors Glo. Though no boundary
onditions have to be satis�ed, this ensure the lo
al orbital to have Blo
h form.2.The a; b; 
 
oeÆ
ients above result from this mat
hing.Colle
ting the lo
al orbital 
oeÆ
ients similar to (4.27), the wavefun
tions insidesphere � take the form i(k; r) = Xlm �Ai;�lm(k)ul(r; E�l ) +Bi;�lm (k) _ul(r; E�l )�Ylm(r̂) +Xlo;m[Ai;�lo;m(k)ul(r; E�l ) +Bi;�lo;m(k) _ul(r; E�l ) + (4.31)Ci;�lo;m(k)ullo(r; Elo)℄Yllo;m(r̂):2For details on this, as well as on the 
onstru
tion of the matrix elements, see [Kur00℄



4.5. A NOTE ON THE KINETIC ENERGY IN THE LAPW BASIS 39The �rst line is the un
hanged LAPW, while lines two and three are the 
ontributionsof the lo
al orbitals, whi
h are summed together in the A,B,C with index (lo;m).These 
oeÆ
ients are sets of 
oeÆ
ients di�erent from the standard LAPW A,B
oeÆ
ients, as well as from the plane-wave 
oeÆ
ients C.4.5 A note on the kineti
 energy in the LAPWbasisWithin the standard APW method one 
an in prin
iple 
al
ulate the exa
t eigen-fun
tions by in
reasing the number of basis fun
tions. For the LAPW basis this isnot obvious sin
e one does not perform an iteration to solve the eigenvalue problem.Though the LAPW has been very su

essful in 
al
ulations of the ele
troni
 stru
-ture and thus is widely used, it turns out that while yielding good energy eigenvalues,the quality of the wavefun
tions is de�
ient.But this property is of signi�
ant importan
e for the 
al
ulation of matrix ele-ments in general and for the momentum matrix elements and opti
al properties inspe
ial. An investigation of this fa
t has been done by Krasovskii et al. [KNA93℄.Di�erent approa
hes have been developed to improve this fa
t. Bross et al. for in-stan
e enhan
ed the MAPWmethod, and developed the spline augmented planewave(SAPW) method. This method yields good values for the momentum matrix ele-ments [Feh88℄. Within the LAPW framework, this dis
repan
y of MMEs has in fa
tbeen one of the reasons of the development of the lo
al orbitals, and the similar ap-proa
h of Extended Linear Augmented Planewaves (ELAPW) by Krasovskii [Kra97,KS01℄.
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Chapter 5ImplementationThe implementation of the diele
tri
 fun
tion for this thesis has been done with theFLEUR 
ode [FLE℄ in bulk mode. FLEUR is a full-potential linear augmented plane-wave (FLAPW) 
ode. In the following se
tions some details of this implementationshall be dis
ussed.Sin
e the linearized augmented plane-waves are the basis of 
hoi
e, the formulaeof the momentum matrix elements in this basis are presented in Se
tion 5.1. Detailson performing the k-spa
e integration to obtain the real part of the diele
tri
 fun
tionare shown in 5.2. The real part is obtained in 5.3. Due to a restri
tion of FLEUR, thee�e
t of ba
kfolding has to be dis
ussed in Se
tion 5.4. The problemati
 in
uen
eof this ba
kfolding on the numeri
al integration is des
ribed in Se
tion 5.5. Someremarks in 5.6 are followed by a two test 
al
ulations.When referring in the following to the diele
tri
 fun
tion, often it's imaginarypart is meant. This should be 
lear from the 
ontext.5.1 Momentum matrix elements in the LAPWbasisThe momentum matrix elements (MMEs)1~i hfkjrj{ki = ~i Zu
 d3r  �f (k; r)r {(k; r) �Mfi(k) (5.1)are to be 
al
ulated in the LAPW basis. Due to the partitioning of the unit 
ellinto muÆn-tins and the interstitial region by the 
hoi
e of the augmented basis, thematrix elements have to be 
al
ulated in these regions separately:hri = hriIS +X� hriMT� : (5.2)1To avoid 
onfusion with the imaginary unit i, the initial ele
troni
 transition level is labeled {.41



42 CHAPTER 5. IMPLEMENTATIONThe formulae are presented in atomi
 units (see appendix C), so the fa
tor ~ = 1disappears.5.1.1 Interstitial 
ontributionIn the interstitial, the wavefun
tions are2j{kiIS = 1
XG C {k+Gei(k+G)r; r 2 IS; (5.3)and the nabla operator a
ts likerj{ki = 1
XG i(k +G)C {k+Gei(k+G)r; r 2 IS; (5.4)so that the interstitial part of the matrix element reads
fkjri j{k�IS = 1
XGG0(k +G)Cf�k+G0C {k+G ZIS d3r ei(G�G0)r: (5.5)The non-trivial interstitial volume the integral a
ts on is handled by subtra
ting themuÆn-tins from the whole unit 
ell 
:ZIS d3r ei(G�G0)r = Z
 d3r ei(G�G0)r �X� ZMT� d3r ei(G�G0)r: (5.6)While the �rst integral gives the simple value 
ÆGG0 , the integral over a muÆn-tin
entered at S� gives the split solutionZMT� d3r ei(G�G0)r = ( V G = G03V� sinx�x 
osxx3 � ei(G�G0)S� G 6= G0 (5.7)with x = jG�G0jR� and R�; V� the radius and the volume, respe
tively, of sphere�. Altogether this gives (
f. Se
tion 5.6)
fkjri j{k�IS = 1
XG (k +G)"C {k+G 
�X� V�!�XG0 6=GCf�k+G0X� 3V� sin x� x 
os xx3 � ei(G�G0)S�35 (5.8)= XGG0(k +G)C {k+GCf�k+G0 � s(G�G0): (5.9)2For 
onvenien
e, the general Ket symbol is used in pla
e of its spatial representation.



5.1. MOMENTUM MATRIX ELEMENTS IN THE LAPW BASIS 43In the last line, the expressions of the pre
eeding integral were merged into thefun
tion s, that iss(G�G0) = 8<: 1
(
�P� V�) G = G0� 3
P� V� sin x�x 
osxx3 ei(G�G0)S� G 6= G0 (5.10)with the above x = jG � G0jR�. This is the Fourier representation of the step-fun
tionS(r) = ( 1; r 2 IS0; r 2MT; (5.11)whi
h is 
onstru
ted already for the setup of the Hamilton and overlap matri
es Hand S in the self-
onsisten
y part.5.1.2 MuÆn-tin 
ontributionsThe further pro
edure depends on what form of wavefun
tions you start from. If youuse the LAPW fun
tions written expli
itly in the basis fun
tions (4.23), without thesummation (4.27) in the 
al
ulation of your MMEs (5.1), you obtain the summationsover G,l,m ea
h twi
e. In the further derivation, not only one pair of the (l; m)-summation vanishes, but also, by 
lever 
onversion, the se
ondm-summation [Krab℄.This leaves summationsG;G0; l. If you do this, you 
an simply 
he
k the hermiti
ityof your matrix for every G-ve
tor.In the derivation used in this thesis, LAPWs of the a

umulated form (4.28)are used. To derive the matrix elements in the spheres, the momentum operatoris expressed in spheri
al 
oordinates, and its impa
t on the spheri
al harmoni
s is
al
ulated. Sin
e this part is a bit lengthy, it is moved to appendix A.In allusion to the ladder operators L+ and L� of the angular momentum operator,one expresses the momentum matrix elements not in terms of (�x; �y; �z)T , but inthe rotated form0B� �x + i�y�x � i�y�z 1CA =M0B� �x�y�z 1CA � 0B� �1�2�3 1CA ; (5.12)with the base 
hange matrix and its inverseM = 0B� 1 i 01 �i 00 0 1 1CA ; M�1 = 0B� 12 12 0�12 i 12 i 00 0 1 1CA : (5.13)



44 CHAPTER 5. IMPLEMENTATIONThe result 
ontains only one (l; m)-summation and 
an be expressed ashfkj�nj{kiMT� = lmax�1Xl=0 lXm=�l (5.14)[ ( R ul+1u0l r2dr � l R ul+1ul rdr) Af�l+1;m0A{l;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) Af�l+1;m0B{l;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) Bf�l+1;m0A{l;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) Bf�l+1;m0B{l;m ℄ F (2n�1)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) Af�l;mA{l+1;m00+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) Af�l;mB{l+1;m00+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) Bf�l;mA{l+1;m00+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) Bf�l;mB{l+1;m00 ℄ F (2n)l+1;m00for n = 1; 2; 3 indi
ating the 
omponents, and m0,m00 given bym0 = 0B� m+ 1m� 1m 1CA ; m00 = 0B� m� 1m+ 1m 1CA for n = 0B� 123 1CA : (5.15)The fa
tors F (n)lm are de�ned in appendix A. In the 
ombinations of 
oeÆ
ientsowning angular quantum numbers l and l + 1 in the produ
ts, one re
ognizes thedipole sele
tion rules, i.e. the 
onservation of angular momentum.The notation already indi
ates that only the large 
omponent of the wavefun
tioninside the muÆn-tins is taken into a

ount. For the valen
e states 
onsidered thisis a good approximation.5.1.3 Properties of the matrix elementsHermiti
ity: Sin
e the momentum operator is an observable and therewith her-mitian, so must be its matrix elements. This 
an be shown easily by applying partialintegration to the de�ning formula of the matrix elements (5.1). It is also obviousfor the MMEs written in the plane-wave basis (4.7).However it 
an be hardly seen from the formulae written in LAPW basis, sin
ethe interstitial plane-waves are expanded on the muÆn-tin boundaries in terms ofspheri
al harmoni
s utilizing the Rayleigh relation (4.13). If one applies partialintegration to the LAPW formulae, one 
an see that e.g. for the (x+ iy)-
omponentof the muÆn-tin 
ontribution to the MME, parts of the fa
tors 
ontaining F (1)l;m
ompensate with the 
omplex 
onjugate of the fa
tors 
ontaining F (2)l+1;m�1, leavingthe boundary values of the integration un-
ompensated.



5.1. MOMENTUM MATRIX ELEMENTS IN THE LAPW BASIS 45The rest has to be taken by the di�eren
e in 
onjugating the interstitial 
ontri-bution, whi
h is sensitive to 
onjugation due to the fa
tor (k +G) in the �rst sumin (5.9).Reality: The diagonal matrix elements are real sin
e the momentum operatoris an observable. Furthermore this 
an also be seen from and 
ompared with thederivatives of the energy bandsh{kjrj{ki = 1~ �E{(k)�k : (5.16)The non-diagonal parts are in general 
omplex, as 
an be assumed be
ause of the
omplex A,B muÆn-tin 
oeÆ
ients. For the 
ase of inversion symmetry, however,the matrix elements be
ome real. This is obvious in the 
ase of a plane-wave basisset (4.7) due to the now real C 
oeÆ
ients, but not for LAPW basis (due to there-expansion on the muÆn-tin boundaries).Equivalent atoms: If one views the muÆn-tin part of the MMEs, one sees thatapart from the radial fun
tions ul(r) and its derivatives the A,B 
oeÆ
ients are theonly 
ontributions spe
i�
 for the atoms. The former are identi
al for equivalentatoms, a

ording to Chapter 4. The latter are dependent for equivalent atoms. Forthe 
ase of inversion symmetry, the 
oeÆ
ients of symmetry equivalent atoms arethe 
omplex 
onjugates of ea
h other. So are the momentum matrix elements,hfkjrj{kiMT� = hfkjrj{kiMT� (5.17)for equivalent atoms �,� due to 4.29 and 5.14.5.1.4 IllustrationTo give an impression of the amplitude and k-dependen
e, a band stru
ture-like plotof matrix elements is shown in Fig. 5.1. These are sele
ted MMEs for a simple-
ubi
Aluminum setup with one atom per unit 
ell, that is investigated in Se
tion 5.4.The path is (0; 0; 0) ! (12 ; 0; 0) ! (12 ; 12 ; 0) ! (12 ; 12 ; 12) ! (0; 0; 0), and due to bigvariations in amplitude, the plot uses a logarithmi
 y-axis.The progression of the 
urve is monotonous in most areas. On the 
orners of thepath, the matrix elements are not unique due to degenera
y (
ompare to the bandstru
tures in Se
tion 5.4). However, some transitions have a rapid 
hange in ampli-tude when approa
hing the 
orners. In this 
ase, only the sum over the transitionshas a physi
al meaning and gives deterministi
 results. Another irregularity arejumps that o

ur within a path, whi
h 
an usually be 
onne
ted to band 
rossings.



46 CHAPTER 5. IMPLEMENTATION

0.001

0.01

0.1

1
| M

fi
(k

) 
|

1 - 2
1 - 3
1 - 4
2 - 3
2 - 4





0.0
0.0

0.0








0.0
0.5

0.0








0.5
0.5

0.0








0.5
0.5

0.5








0.0
0.0

0.0



Figure 5.1: The absolute value of matrix elements for �ve sele
ted transitions evolvingon paths on the border of the irredu
ible Brillouin zone. The initial and �nal level { andf are given in the legend.5.2 k-spa
e integrationThe task to perform an integration in k-spa
e1VG Xi ZBZ d3k U(k)f(�i(k)) (5.18)(VG being the volume of the Brillouin zone, f the Fermi fa
tor at temperature zero,i.e. a step fun
tion) frequently appears in band stru
ture 
al
ulations, for instan
e inthe determination of the Fermi energy in the self-
onsisten
y of the density fun
tionaltheory des
ribed in Se
tion 2.3. The integrand U(k) is 
al
ulated only for a very�nite set of sample k-points.There are di�erent kinds of methods, e.g. the spe
ial points method [CC73,Cun74℄. It provides a set of spe
ial k-points in the irredu
ible Brillouin zone withalleged weights to 
al
ulate the integrand on. This transfers the integration (5.18)into a summation1VG Xi ZBZ d3k U(k)f(�i(k))!Xi Xk U(k)wik: (5.19)



5.2. K-SPACE INTEGRATION 47For smoothly varying fun
tions this yields reliable results. However, for in
ompleteo

upied bands the integrand in (5.18) is not smooth due to the sharp Fermi fa
tor.Consider for instan
e a band 
lose to the Fermi energy. In the self-
onsisten
y, thisband 
ould be shifted above or below the Fermi energy, resulting in big 
hanges inthe 
harge density. This 
an degrade or even destroy the 
onvergen
e. One 
animplement a more elaborate Fermi fa
tor like the true Fermi fun
tionf(�) = 1e ��EFkT + 1 ; (5.20)that is making the integrand smoothly by a temperature broadening.Another method of integration is to divide the volume into subvolumes of a
ertain shape and perform the integration in the volume analyti
ally over the inter-polated fun
tion. Among the method of Gilat and Raubenheimer [GR66, Bro93℄,the Tetrahedron Method is the most prominent integration method of this kind.Tetrahedra: This method was introdu
ed independently by Lehmann and Taut [LT72℄in 1972 and by Andersen and Jepsen [JA71℄ in 1971. It's idea is to divide the inte-gration volume into tetrahedra. This is always possible, though not uniquely. Thetetrahedra 
an in prin
iple have arbitrary shape, but ought to be as regular in shapeas possible (e.g. not 
attened). The integration thus 
hanges to1VG ZBZ d3k ! XfTetg VTVG ZVT d3k : (5.21)VT is the tetrahedron's volume. In ea
h tetrahedron, the energy interpolated linearlyis given uniquely by the four 
orner energies.Interpolation in one tetrahedron: The 
orners are labeled from 0 to 3 within
reasing energy, i.e.3�0 < �1 < �2 < �3: (5.22)For the k-ve
tors (with the same indi
es ordered in terms of its 
orresponding energy)the energy in linear interpolation is�(k) = �0 + b � (k � k0): (5.23)3In this integration s
heme one has to avoid equal energies. This does not pose a problem sin
eone 
an slightly shift the energies without introdu
ing a signi�
ant error. In the 
ase of two (orthree) identi
al energies (i.e. ��ij = 0, 
f. appendix B) the 
ontribution of one tetrahedron (or the
orner weights, respe
tively) is equal to a tetrahedron with one of the 
riti
al energies shifted by� in the limit �! 0.
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1
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k1
~

k3
~

k2
~Figure 5.2: A tetrahedron with 
orner labels sorted by energy, and interpolation ve
torb. The small 
ir
le marks the penetration point of the ve
tor.Here, the ve
tor b is de�ned su
h that the energy 
oin
ides for k equal k0;k1;k2;k3with the given 
orner energies. This is provided by the de�nitionb = 3Xi=1 (�i � �0)ri; (5.24)in
luding the auxiliary ve
tors~ki = ki � k0; i 2 f1; 2; 3g (5.25)ri = 1VT ~kj � ~kk; fi; j; kg 
y
li
: (5.26)This interpolation yields a 
ontinuous energy in the whole integration volume BZmade out of the set of tetrahedra. The integrand 
an be interpolated analogouslylike U(k) = U0 + b0 � (k � k0) (5.27)with the a

ording de�nitionb0 = 3Xi=1 (Ui � U0)ri: (5.28)With this the whole integrand is 
ontinuous in the integration volume. A possiblesimpli�
ation is to take the integrand set to a 
onstant value �U averaged over thetetrahedron. With this, the quantity is of 
ourse not 
ontinuous anymore.Given this linear form of the integrand, the integration in ea
h tetrahedron 
anbe performed analyti
ally.



5.2. K-SPACE INTEGRATION 49Spe
tral 
al
ulations: This method works �ne for spe
tral integrals, for instan
ethose kinds of integrals mentioned in Se
tion 3.4. Take integrals of the type of thedensity-of-statesD(E) = 1VG Xi ZBZ d3k Æ(E � Ei(k))= 1VG Xi ZE=Ei(k) dS 1jrkEi(k)j : (5.29)If this integrand is interpolated linearly like in (5.27), it gives1jrkE(k)j = 1jbj : (5.30)The 
onstant-energy plane E = Ei(k) in one tetrahedron is the 
ross-se
tion of aplane perpendi
ular to b. There are three possible 
ases of this plane to 
ut thetetrahedron, yielding a 
utting area A and leading to a 
ontribution of the integralequal Ajbj . The expli
it results are [LT72℄
DT (�) = 8>>>>>>>><>>>>>>>>:

0 � < �1 or �4 < �VTVG 3(�� �1)2�21�31�41 �1 < � < �2VTVG 1�31�41 �3�21 + 6(�� �2)� 3(�31 + �42)(�� �2)2�32�42 � �2 < � < �3VTVG 3(�4 � �)2�41�42�43 �3 < � < �4(5.31)with the energy di�eren
es �ij = �i � �j.In
lusion of Fermi fa
tors: The pro
eeding des
ribed will not give good resultsif the integrand is not 
ontinuous but in
ludes Fermi fa
tors, like in (5.18) or (3.61).For 
orners with energy above Fermi energy the value zero will be used for inter-polation irrespe
tive of the o

upation of the tetrahedron. But a Fermi fa
tor justde�nes a 
onstant-energy plane that separates the o

upied and uno

upied part.Due to the linear interpolation, su
h an energy plane is easy to determine, as donefor the density of states.Taking one Fermi fa
tor into a

ount (like in integral (5.18)) means 
uttingout the remaining valid volume, i.e. the volume the Fermi fa
tor is unequal zero in.Depending on the energy � and the Fermi energy �F referring to, this volume 
onsistsout of zero volume (�F < �1), one subtetrahedron (�1 < �F < �2), three subtetrahdra(�2 < �F < �3 or �3 < �F < �4), or the 
omplete tetrahedron (�4 < �F ) [RF75℄.
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Figure 5.3: A tetrahedron that is divided due to two Fermi fa
tors. The numbers at the
orners are the sorted energy indi
es for the initial and �nal bands { and f , the two ve
torsare the 
orresponding b ve
tors (5.24). In this diagram the energy 
uts both bands withinthe tetrahedron and results in two 
rossing 
onstant-energy planes. Cutting of ve
torswith these planes or the tetrahedra boundary are marked with small 
ir
les. The validsubvolume is marked with the red arrow, as well as shown on the left, with its divisioninto three subtetrahedra.For an integral 
ontaining two Fermi fa
tors like (3.61), one performs on ea
hsubtetradron obtained for the �rst Fermi fa
tor the (inverse) o

upation pro
edurefor the se
ond Fermi fa
tor, resulting in at most nine subtetrahedra for the initialtetrahedron. Note that for the se
ond step a renumbering has to be made due tothe possibly di�erent order of the energies Ef .For the integration (3.61), this means that for every transition { ! f , the validvolume is determined, and the remaining integrand, i.e.U(k) = h{kjp�jfkihfkjp�j{kijrk(Ef (k)� E{(k))j ; (5.32)is evaluated for ea
h of the valid volume's tetrahedra.Weighted formulation: Bl�o
hl has shown that the tetrahedron method 
an alsobe written to result in the form of a weighted summation (5.19). These weights aregiven in appendix B. With this formalism, arbitrary 
ontinuous fun
tions 
an beintegrated without doing the geometri
 derivation (i.e. 
al
ulating the 
ross se
tionof the 
onstant-energy plane with the tetrahedron) mentioned above for the densityof states.It should be noted that the obtained weights do not 
oin
ide with those of thespe
ial point method whi
h are based on symmetry, i.e. the tetrahedron methoddoes not take into a

ount the high symmetry 
hara
ter of the irredu
ible zone'sboundaries. This leads to a worse 
onvergen
e than using the spe
ial points method,



5.2. K-SPACE INTEGRATION 51and is the reason why the tetrahedron method is usually not used for the self-
onsisten
y, but for spe
tral 
al
ulations.Attempts have been made to raise the level of interpolation to a quadrati
 one.When marking out su
h a formalism to the linear one introdu
ed above, the latterone is referred to expli
itly as linear tetrahedron (LT) method.Redu
tion to the Irredu
ible Brillouin Zone (IBZ): Usually the eigenve
-tors and eigenvalues are 
al
ulated only in the irredu
ible part of the Brillouin zone.Let's 
onsider the e�e
t on integral (3.61). Let R be an appropriate rotation matrix.The energies are the same at the rotated k-pointE{(k) = E{(Rk); (5.33)but the eigenve
tors are rotated:hrj{;Rki = hR�1rj{;ki (5.34)For the 
al
ulation of the momentum matrix elements, instead of rotating the eigen-ve
tors one 
an also rotate the 
oordinate system and therewith the nabla operator,in symbols rRr = Rrr. With this the matrix element for a k-point Rr in the �rstBrillouin zone, but outside the irredu
ible wedge, 
an be 
omputed likehf;Rkjrj{;Rki = Z d3r  �f(Rk; r) rr  {(Rk; r)= Z d3r  �f(k;R�1r) rr  {(k;R�1r)= Z d3r  �f(k; r) rRr  {(k; r)= Rhfkjrj{ki (5.35)When 
al
ulating the integral"��2 (!) �X{f BZZ~!=�E dS h{kjr�jfkiyhfkjr�j{kijrk(Ef(k)� E{(k))j f(E{(k))[1� f(Ef(k))℄ (5.36)with only use of the irredu
ible part, one uses the identity of the energies at the
orresponding k-points (5.33). Furthermore Ry = R�1, so that the numerator ofthe fra
tion in the pre
eding integral givesh{;Rkjr�jf;Rkiyhf;Rkjr�j{;Rki = h{kjr�jfkiyhfkjr�j{ki (5.37)and the integral itself"��2 (!) � NRX{f IBZZ~!=�E dS h{kjr�jfki�hfkjr�j{kijrk(Ef(k)� E{(k))j f(E{(k))[1�f(Ef(k))℄ (5.38)with NR the number of symmetry operations.



52 CHAPTER 5. IMPLEMENTATIONA note on 
ubi
 systems: Sin
e we know from se
tion three that the diele
tri
tensor is proportional to the unit matrix for 
ubi
 
rystals, one 
an immediatelyredu
e the 
al
ulation (5.38) to the s
alar 
ase, using the square of the absolutevalue in the numerator.This is not to be mixed up with the momentum matrix elements itself, whi
hof 
ourse still have independent 
omponents. For instan
e remember the diago-nal MMEs being proportional to the band derivatives, whi
h have a well-de�neddire
tion.Reality: The imaginary part of the diele
tri
 fun
tion "2(!) is a real fun
tion. Somust be the results of (5.38). For the 
ubi
 
ase this is obvious sin
e the denominatorredu
es to a real expression.In the 
ase of non-
ubi
 systems (3.61), the integral 
ontains produ
ts of mo-mentum matrix elements M��{f M�f{ whi
h are in general 
omplex. This means thatthe 
omponents of the tensor obtained from (5.38) 
an be 
omplex, obeying therelation "��2 = "���2 . But a

ording to (3.63), the resulting diele
tri
 fun
tion alonga unit ve
tor u is 
omposed of a summation"2 =X�;� "��2 u�u�; (5.39)
ontaining for every 
ontribution of "��2 the transposed part "��2 as well. Thereforethe diele
tri
 fun
tion "2 be
omes real, and one 
an redu
e the diele
tri
 tensor toits real part ~"2 = <"2 (i.e. symmetrizing it by (~"��2 = 12("��2 + "��2 )). This alsorestores 
onsisten
y with the statement in Chapter 3 that the diele
tri
 tensor issymmetri
al.5.3 The Real part of the Diele
tri
 Fun
tionDue to the tight relation between real (3.37) and imaginary part (3.38) of spe
tralfun
tions the real and imaginary part of the interband transitions both take similarform (3.59) and (3.60). The �rst possibility is to perform k-spa
e integrations forboth the real and imaginary part. This has been done e.g. for the magneti
 sus-
eptibility by Gilat and Bharatiya [GB75℄. They used the tetrahedron integrations
heme to derive analyti
al expressions for the integral 
ontributions whi
h are quitelengthy. In this thesis, the alternative path is followed, i.e. only the imaginary part isdetermined, and the Kramers-Kronig integration transformation (3.43) is employedafterwards to obtain the real part.Numeri
al a

ura
y of the Kramers-Kronig relations: In this implementa-tion an external integration routine has been used (
ourtesy of E. Krasovskii). The
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ura
y of this method should be tested for a prominent analyti
al example, this isthe harmoni
 os
illator. The real and imaginary part of the diele
tri
 fun
tion aregiven by"1(!) = 1 + N0e2m (!20 � !2)(!2o � !2)2 + !2Æ2 (5.40)"2(!) = N0e2m !Æ(!2o � !2)2 + !2Æ2 : (5.41)
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Figure 5.4: Numeri
al results of the Kramers-Kronig transform for the harmoni
 os
il-lator. The analyti
al solutions are plotted in straight bla
k lines, numeri
al solutions forfour di�erent numbers of mesh points are drawn in dotted 
olored lines.Several attenuations and resonan
e frequen
ies have been tested. Representative
urves are plotted in Fig. 5.4. The used data are Æ = 1:0, N0e2=m = 1, !max = 101s ,!0 = 1:51s . The numeri
al integration yields good agreement with the analyti
 
urve,supposing that an appropriate set of mesh points (in the order of thousand or more)has been 
hosen.5.4 Ba
kfoldingAt this point it should be mentioned that there are degrees of freedom in the 
hoi
eof the unit 
ell. There might be unit 
ells of di�erent shapes for the same numberof atoms, resulting in a di�erent re
ipro
al latti
e. In doing so the band stru
turestays un
hanged in the re
ipro
al spa
e, but appears di�erent due to the di�erently
hosen basis. There is also the possibility and (possibly the need) to 
hoose a biggerunit 
ell to model the system, giving a smaller Brillouin zone with modi�ed bands.



54 CHAPTER 5. IMPLEMENTATIONThe e�e
t on the band stru
ture, 
alled ba
kfolding, shall be dis
ussed here.Sin
e the diele
tri
 properties are understood to be transitions between bands, un-derstanding of the impa
t of ba
kfolding is essential if dealing with bigger unit 
ells.5.4.1 Algebrai
 
onsiderationsTo understand the e�e
t of periodi
ity, the Blo
h theorem should be re
apitulated,to simplify matters in one dimension for a non-degenerate system in
luding time-reversal symmetry. The S
hr�odinger equationH n(r) = E n(r) (5.42)yields eigenvalues E and eigenve
tors  . When the system 
onsists of unit 
ells oflength R, the 
orresponding translation operator is de�ned asTR : r ! r +R; (5.43)with the properties[TR;H℄ = 0; (5.44)TR n(r) =  n(r +R): (5.45)This translation operator shares a 
ommon set of eigenve
tors with the Hamilto-nian. Sin
e the absolute square of the wavefun
tions is independent under propertranslations,TRj j2 = TR( � ) = (T �R �)(TR ) = j�j2j j2; (5.46)the eigenvalues of the translational operator take the form � = eikr, whi
h at thesame time 
lassi�es the wavefun
tions:  n(r)!  n(k; r). Furthermore, as a 
onse-quen
e of (5.44) these wavefun
tions 
an be 
hosen to take Blo
h form n(k; r) = eikR'n(k; r); 'n(k; r) = 'n(k; r +R); (5.47)
onsisting of an exponential and a latti
e-periodi
 fun
tion. The essential step nowis how Blo
h waves shifted in k-spa
e rea
t on translations in real spa
e:TR n(k +G; r) = ei(k+G)R n(k +G; r) = eikR n(k +G; r): (5.48)This means that all shifted k-ve
tors k+G are asso
iated to the same eigenvalue � =eikR of the translation operator. Therefore the set of eigenvalues and eigenve
tors atk+G are equivalent to those at k. Therefore one 
an redu
e all 
onsiderations to the�rst Brillouin zone �K2 � k � K2 ; K = 2�L . One might be 
onfused by this insightsin
e the Hamiltonian in matrix representation in a basis seems to 
hange with asubstitution of k to k + G. For the 
ase of an in�nite basis this substitution only
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0 k K k+K-k0.5K 0.5KFigure 5.5: Sample band stru
ture similar to nearly-free ele
trons. The First Brillouinzone's boundary is at 12K. Two equivalent k-points to k are marked, �k and k +K.

on
erns permutations of rows and 
olumns. For a �nite basis, one gets numeri
alproblems for high-lying states.The 
onsequen
e for the band stru
ture is shown for a system similar to nearly-free ele
trons in Fig. 5.5. The solid verti
al lines at 12K;K; : : : are the boundariesof the Brillouin zones. The dashed lines indi
ate one k-point k and equivalents of itat �k and k +K.If one now imposes a lower periodi
ity like ~R = 2R, the re
ipro
al latti
e andtherewith the Brillouin zone redu
es to half the size, jkj � ~K; ~K = �L . A denserperiodi
ity of ~K = K2 is demanded now instead of K in the �rst pla
e, with . Thismakes the point �k (whi
h is equivalent to k due to time-reversal) equivalent to�k+ ~K = K2 � k. Sin
e these two points have (possibly) distin
t sets of eigenvaluesin the initial setup of high periodi
ity, these two sets sum up in this setup.The 
orresponding band stru
ture is shown in Fig. 5.6. The periodi
ity ofbran
hes has been doubled, the �rst Brillouin zone shrinks to half the size ~K, andthe number of bands in it doubled. This �gure gives an idea of the origin of theterm ba
kfolding. The bands look folded ba
k at the 
enter of the former biggerBrillouin zone; but the superposition with an additional band stru
ture is a betterway to visualize.
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0 k-k0.5K K k+K

0.5~K

~K~K-kFigure 5.6: Sample band stru
ture for a system for that a lower translational symmetrythan in Fig. 5.5 has been used. The new Brillouin zone border is 12 ~K. Additionally, ~K�kis marked as equivalent to k now.5.4.2 Representation in a basisThe impa
t of ba
kfolding on the energy eigenvalues has been shown in the previousparagraph. But the diele
tri
 fun
tion essentially depends on the momentum matrixelements and therewith on the wavefun
tions. Here, the e�e
t of ba
kfolding shouldbe illustrated for a plane-wave 
al
ulation.For simpli
ity, I 
hoose a simple, hypotheti
al system of Aluminum (Al) in asimple 
ubi
 (s
) stru
ture4. This is 
al
ulated in two setups (A denotes sets ofbasis ve
tors, D are atom positions in 
oordinates of these basis ve
tors)A1 = 8><>:L0B� 100 1CA ; L0B� 010 1CA ; L0B� 001 1CA9>=>; ; D1 = 8><>:0B� 000 1CA9>=>; (5.49)and A2 = 8><>:L0B� 100 1CA ; L0B� 010 1CA ; L0B� 002 1CA9>=>; ; D2 = 8><>:0B� 000 1CA ;0B� 0012 1CA9>=>; ; (5.50)4So in this 
ontext, SC is not meant to be an abbreviation of self-
onsisten
y, as in the theoreti
alpart before.
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ond setup doubles the �rst one in z-dire
tion. The resulting re
ipro
allatti
es (written in form of Bravais matri
es, i.e. writing the (transposed) re
ipro
albasis ve
tors in matrix form) areB1 = 2�L 0B� 1 0 00 1 00 0 1 1CA ; B2 = 2�L 0B� 1 0 00 1 00 0 12 1CA ; (5.51)the se
ond setup having a Brillouin zone halved in z-dire
tion. The wavefun
tionsshould be expressed in plane-waves for both setups, (1)i (k; r) = 1p
 XG12G1C(1)ik+G �k+G1(r); (5.52) (2)i (k; r) = 1p2
 XG22G2C(2)ik+G2 �k+G2(r); (5.53)with 
 the volume of the small unit 
ell, G1, G2 the two sets of G-ve
tors. The 'are the 
ommon plane-wave basis fun
tions�k+G(r) = ei(k+G)r: (5.54)As a result of the smaller Brillouin zone the set of G ve
tors in the se
ond setup isdouble as dense as in the �rst one, see Fig. 5.7. Sin
e we 
ut a sphere of jGj � Gmax,

Figure 5.7: The kx� kz-plane of the re
ipro
al latti
es for the two setups. Basis ve
torsare indi
ated by x-like 
rosses, (k +G)-ve
tors for one spe
ial k drawn in the origin byplus-like 
rosses.the set G2 
ontains approximately double the number of ve
tors. So for every ve
tor



58 CHAPTER 5. IMPLEMENTATIONG out of G1 we assign a ve
torG = G + ~K; ~K = (0; 0; �L); (5.55)so that all the ve
tors fG;Gg form the se
ond set G2. This assignment works onlyapproximately due to the shape of the sphere, but is valid for a suÆ
ient expansion
ut-o� Gmax: Sin
e the in
uen
e (i.e. the magnitude of the expansion 
oeÆ
ient)of large G-ve
tors vanish in the 
ase of a valid 
onvergen
e, the dis
repan
y 
an benegle
ted. So we 
an take G2 double as large as G1, and omit indi
es to the G-ve
torssin
e it should be 
lear from the 
ontext whi
h ve
tors are referred to.Let's wat
h the generalized eigenvalue problem (2.22). Sin
e the plane-wave areorthogonal, the overlap has unit shape:[H(k)� �(k)1℄
(k) = 0: (5.56)For the two setups the elements of these matri
es read (see (4.6))H(1)G;G0(k) = ~22m jk +Gj2ÆGG0 + V (1)(G�G0); V (1)(G�G0) = 1
 Zu
1 d3r e�i(G�G0)r Veff(r)H(2)G;G0(k) = ~22m jk +Gj2ÆGG0 + V (2)(G�G0); V (2)(G�G0) = 12
 Zu
2 d3r e�i(G�G0)r Veff (r);(5.57)integrations performed over the real spa
e units 
ells one (u
1) and two (u
2).Now we want to relate the Hamilton matri
es of the two systems. Sin
e thefun
tion Veff is periodi
 in the �rst unit 
ell u
1 (thus twi
e periodi
 in u
2), and anexponential exp (i(G�G0)r) is simple periodi
 in u
2, 
ontributions of the potentialof mixed G-ve
tors vanish:V (2)(G�G0 ) = V (2)(G�G0 ) = 0: (5.58)If we therefore rearrange the ve
tors of G2 when applying them on H to group theve
tors of G1 �rst, we obtain for the Hamiltonian the blo
k formH(2) =  H(2a) 00 H(2b) ! ; (5.59)the submatrix (a) taking the 
ontributions of the undashed, (b) taking those of thedashed G-ve
tors.Contributions (G�G0) to the potential are identi
al to 
ontributions (G�G0)of the 
orresponding undashed G-ve
tors. In the formula for the potential, the
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an
els with the fa
tor 12 in front of the integral, and the
ontribution is the same as in the small setup:V (2)(G�G0) = V (2)(G�G0 ) = V (1)(G�G0 ): (5.60)Sin
e the kineti
 part of H(2a) is identi
al to H(1), so is the whole submatrix. Let'sturn fo
us on H(2b). It readsH(2b)G;G0(k) = ~22m jk +Gj2ÆGG0 + V(G�G0): (5.61)We assume time reversal symmetry, i.e. H(k) yields the same set of eigenve
tors andeigenvalues for �k. We apply this on our submatrix H(2b). Be
ause of G = G+ ~Kand (5.60), our matrix elements are equivalent toH(2b)G;G0(k) = ~22m j( ~K � k) +Gj2ÆGG0 + V(G�G0) (5.62)= H(1)G;G0( ~K � k): (5.63)With de�ning a ba
kfolding operator Tk : k! ~K � k, the Hamiltonian readsH(2)(k) =  H(1)(k) 00 H(1)(Tkk) ! : (5.64)The spe
trum of su
h a matrix is the sum of the spe
tra of the submatri
es. Theeigenve
tors are �lled up with zeros in its additional 
omponents. If the small setuphas the eigenvalues and eigenve
torsf�(1)j (k)g; fjjkig = n�C(1)j(k+G)�o ; (5.65)those of the large setup aref�(2)i (k)g = f�(1)j (k)g [ f�(1)j (Tkk)g andfjikig = ( C(1)j(k+G)0 !) [( 0C(1)j(Tkk+G) !) (5.66)(with j (i) running over all bands of the small (large) system).It should be noted that the derivations given above only �t approximately, dueto the �nite set of G-ve
tors. This is illustrated in Fig. 5.7, where a sample 
uttingsphere is plotted. For su
h a small set of ve
tors, it is barely possible to make areasonable mapping (5.55). This e�e
t should diminish for an in
reasing number ofbasis fun
tions.



60 CHAPTER 5. IMPLEMENTATIONThe experien
e shows that the distin
tion (5.66) into two di�erent kinds of eigen-ve
tors is also valid for the same system in an LAPW basis. This has been testedfor the 
al
ulation presented in the next subse
tion.However, if the ba
kfolding involves a more 
omplex transformation of basisve
tors, these results { the form of the eigenve
tors (5.66) { do not stand stri
tlyanymore.
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Figure 5.8: Band stru
ture for s

 Aluminum, setup 1 (small unit 
ell).
5.4.3 IllustrationThis e�e
t should be demonstrated now by some band stru
tures for this system.Figs. 5.8 and 5.9 show the band stru
tures for the two systems along the path(0; 0; 0) ! (12 ; 0; 0) ! (12 ; 12 ; 0) ! (12 ; 12 ; 12) ! (0; 0; 0), ea
h in internal 
oordinates.Due to the symmetry mentioned above, every plot k1 ! k2 in the large system isthe sum of the plots k1 ! k2 and ( ~K � k1)! ( ~K � k2) of the small system (with~K = (0; 0; 2�L )).Due to the simple kind of ba
kfolding in this setup, one sees the ba
kfoldingni
ely in a plot along z-dire
tion. In Fig. 5.10 the path (12 ; 12 ; 0)! (12 ; 12 ; 12) is shown,that is the third se
tion of Fig. 5.9. The band stru
ture of the large system is givenby that of the small system overlapped with the additional path (12 ; 12 ; 12)! (1; 12 ; 12).In Fig. 5.11 the band stru
ture (0; 0; 0)! (12 ; 0; 0) is plotted. The bands of thelarge system on the right are those of the small system along the same line on the
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Figure 5.9: Band stru
ture for s

 Aluminum, setup 2 (large unit 
ell).
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Figure 5.10: Ba
kfolded band stru
ture parallel to z-dire
tion. On the left two bandstru
tures of the small system are shown that overlap to the band stru
ture of the largesystem on the right.very left, superposed by the bands (0; 0; 12)! (12 ; 0; 12). Here it is already diÆ
ult todistinguish the two kinds of bands by a simple glimpse.
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Figure 5.11: Ba
kfolded band stru
ture perpendi
ular to z-dire
tion. The right bandstru
ture (large setup) is the sum of the two on the left (small setup).5.4.4 Consequen
es for 
omputationThe 
al
ulation of a physi
al property (i.e. the expe
tation value of a hermitianoperator) must be the same whatever 
hoi
e of the unit 
ell has been made. Sin
ethe band stru
tures 
hange, one might get the impression that this rule is violated.One essential ingredient of the diele
tri
 fun
tion (3.61) are the transitions fromone band to another, that is a double sum over o

upied and uno

upied states. Thissummation will 
hange if the band stru
ture 
hanges. The joint density of states(JDOS) for example, given by (3.62), relies on these transitions only, meaning onlyon the gradient of the energy di�eren
es. It does not depend additionally on matrixelements like the diele
tri
 fun
tion (3.61). This leads to di�erent results for aba
kfolded setup.To show this, the diele
tri
 fun
tion (3.61) is plotted in graph 5.12 with matrixelements negle
ted, i.e. the numerator equal to one. Though not the same quantity,this term su�ers the same e�e
t with respe
t to ba
kfolding as the JDOS does. It
an diverge for small energies due to the fa
tor 1!2 . This di�eren
e for the two setupsdoes not 
ontradi
t physi
s sin
e the JDOS is not an observable and does not havea physi
al meaning by itselves.The di�eren
e of the diele
tri
 fun
tion for the two di�erent unit 
ells in thesmall graph in Fig. 5.12 results from the k-points being double as dense for thelarge setup as for the small one (the same number of k-points was used), and fromthe remaining e�e
ts of the additional bands. Furthermore one sees by 
omparingthe two 
urves for the small setup (bla
k 
urve with markers on the right, and the
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Figure 5.12: Diele
tri
 fun
tion of s

 Aluminum without in
lusion of matrix elements~"2 on the left and with in
lusion of matrix elements "2 on the right. Both graphs showthe results for the large setup (red 
urve) and the small setup (bla
k 
urve with markers).The small graph on the left ~"2 of the small system is enlarged. 288 k-points have beenused.small graph on the left) that the pure band stru
ture (i.e. negle
ting the momentummatrix elements) already possesses some of the 
hara
teristi
s, e.g. the two peaksat 0:6eV and 0:8eV . Other 
hara
teristi
s (like the de
rease for small frequen
ies)are obtained only by in
luding the matrix elements.The diele
tri
 fun
tion on the other hand yields the same results for both setupsdue to the momentum matrix elements in
luded in its mathemati
al des
ription.These matrix elements have the property to vanish if being applied on a regular anda ba
kfolded eigenfun
tion:hfkjrj{ki = 0 for a ba
kfolded transition; (5.67)that is one state of { or f being ba
kfolded, the other one regular. For the simplesetup of Se
tion 5.4, this 
an be seen easily from the form of the eigenve
tors (5.66)and the form of the matrix elements in plane-wave basis (4.7).5.5 Resulting problems in the integrationUp to now, the interesting insights of the previous se
tion do not pose any analyti
alproblems. But in the numeri
al treatment, problems appear due to the interpolation



64 CHAPTER 5. IMPLEMENTATIONbetween k-points made in the integration s
heme des
ribed above. The two di�erentkinds of problems en
ountered in the implementation are des
ribed in this se
tion.Before des
ribing the details, one should remember the way a 
omputer handlesbands. A human 
an 
onne
t k-points logi
ally to bands by wat
hing a band-stru
ture, or 
an give it a mathemati
al 
hara
ter. Initially, 
omputers 
an onlyenumerate the eigenvalues, and uses the a

ording eigenve
tors. It needs additionale�ort [YKS℄ to re
ognize band 
rossings.5.5.1 The In
uen
e of Degenera
yThe �rst problem with ba
kfolding arises at points with degenerated energy eigenval-ues. At these points the eigenve
tors are determined only up to linear 
ombinationsof ea
h other. (This means that the matrix elements are not unique for eigenve
torswith degenerated eigenvalues, even not for an observable like the momentum. In the
ase of the diele
tri
 fun
tion that 
ontains transitions from one level to another,only the sum over these transitions { as it is 
ontained in (3.61) { gives a uniquevalue.) An example for degenerated eigenvalues is sket
hed in Fig. 5.13. For in-stan
e, k3 
ould be the zone boundary. It is known that the matrix elements vanishfor a degenerate energy eigenvalues,hfkgjrj{kgi = 0 for E{(kg) = Ef(kg); (5.68)as in our 
ase. (This is shown by Mavropoulos, Papanikolaou and Dederi
hs [MPD03℄.)It should be valid in the limit k! kg, too. Therefore, one should not expe
t prob-lems from this.The situation is di�erent if you 
onsider transitions to another band 
 in a systempossessing ba
kfolding. In the last named �gure, let bands a and 
 be regular, whileb is ba
kfolded. Transitions b ! 
 should not give any 
ontributions. This is
onsistent with the image that a

ording to (5.66), the eigenve
tors of bands b and
 have the formjaki �  �0 ! ; jbki �  0� ! ; j
ki �  �0 ! ; k 2 (k1; k3): (5.69)At k3, however, due to the intermixture of a and b, the eigenve
tors take the formjaki �  �� ! ; jbki �  �� ! ; (5.70)resulting in a matrix element M
b(k3) 6= 0. In the analyti
al solution this is noproblem due to the singularity of this point (or plane in three dimensions, respe
-tively). In a linear interpolation s
heme, though, this leads to �nite 
ontributions,as sket
hed in the small pi
ture in Fig. 5.13.
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Figure 5.13: One-dimensional illustration of degenera
y. The straight red lines are thetrue bands, while the dotted bla
k ones are interpolated linearly from the energy values(plotted as stars) at the mesh points k1,k2,k3. The horizontal dotted line indi
ates theFermi energy. In the small pi
ture, a linear interpolation is sket
hed in dotted bla
k, thetrue dis
ontinuous path in solid red.A possible solution: It is neither 
ommon nor possible without additional numer-i
al e�ort to determine the \natural form" j{kgin of the wavefun
tions at a k-pointkg possessing degenera
y (that would be j{kgin = limk!kg j{ki). Furthermore it isquite improbable (if possible at all with limited numeri
al pre
ision) for a samplek-point within the irredu
ible Brillouin zone to hit a point of degenera
y. On theother hand degenera
y on the Brillouin zone's boundary (and at high symmetrypoints in it, whi
h are in turn boundaries of the irredu
ible part of the Brillouinzone) is very 
ommon. Experien
e aÆrms that matrix elements like M
b(k) qui
klyvanish when moving o� the high symmetry (see next subse
tion).Therefore a simple solution is just to shift all k-points marginally o� the bound-ary inside the irredu
ible wedge. If ba
kfolding is absent, this leads to only amarginal but noti
eable error, due to the qui
k variations of the matrix elements
lose to high-symmetry planes. In the presen
e of ba
kfolding, the e�e
t is similar tonegle
ting the matrix elements (shown in Fig. 5.12): The diele
tri
 fun
tion will getadditional 
ontributions due to wrong interpolation, espe
ially big values for smallfrequen
ies.
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uen
e of Band 
rossing
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Figure 5.14: One-dimensional example for band 
rossing. The straight red lines are thetrue bands, while the dotted bla
k lines are interpolated from the energy values (plottedas stars) at the mesh points k1,k2,k3. Fermi energy is dotted in the upper third.In the 
ase of band 
rossing, the interpolation errors have a signi�
ant in
uen
e.This is illustrated for a one-dimensional example in Fig. 5.14. The true bands areapproximated linearly from the energy values at three sampling k-points k1,k2,k3.As in the sket
h before the bands are labeled a,b,
. For a human observer this refersthe true bands, while a 
omputer gives these labels to the eigenvalues ordered frombottom to up.Let the bands a and 
 be regular, while band b is ba
kfolded, and fo
us on theinterval [k1; k2℄. A

ording to (5.66) the eigenvalues at k1 take the formjak1i �  �0 ! ; jbk1i �  0� ! ; j
k1i �  �0 ! ; (5.71)and the formjak2i �  0� ! ; jbk2i �  �0 ! ; j
k2i �  �0 ! (5.72)



5.5. RESULTING PROBLEMS IN THE INTEGRATION 67at point k2. This results in matrix elements for a transition b! 
 of the formM
b(k1) = 0; but M
b(k2) 6= 0: (5.73)Due to the non-vanishing matrix element at k2, the matrix element is interpolatedin [k1; k2℄ 
ontinuous in the range [0;M
b(k2)℄. In the given example, this resultsin transitions at low frequen
ies �num (see Fig. 5.14), while analyti
ally (and for anin�nitely dense mesh) only transitions down to �real are possible in this interval.Though also o

urring in the absen
e of ba
kfolding, the impa
t on 
al
ulationsare stronger with ba
kfolding present due to the larger number of bands. Furtheron, the di�eren
es resulting from matrix elements equal zero being interpolatedin
orre
tly are 
ru
ial, espe
ially for small energies due to the fa
tor 1!2 that goesinto the diele
tri
 fun
tion (3.61).
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Figure 5.15: Diele
tri
 fun
tion for f

 Aluminum, with and without sorted eigenvaluesto 
orre
t 
rossing with ba
kfolded bands (288 k-points).
An approa
h to avoid the problem: A method to minimize the 
ontribution ofba
kfolding to this e�e
t is to renumber the bands. This is possible up to a 
ertainpoint for 
rossings of regular bands with ba
kfolded ones, as mentioned earlier (5.66).In Fig. 5.15, this method has been applied to aluminum for a mesh of 288 k-points. Only with this method one restores the 
orre
t absorption edge of the 
urve.Cal
ulations show that without reordering of bands, this e�e
t is still present for a
al
ulation involving 11000 k-points (likewise in the irredu
ible BZ).



68 CHAPTER 5. IMPLEMENTATIONThe higher the eigenvalues are, and the 
loser the k-points to high symmetrypositions, the worse is 
lassi�
ation into regular and ba
kfolded ones. The �rst itemis not too serious be
ause transitions of higher energy 
ontribute less to the diele
tri
fun
tion, due to the prefa
tor 1!2 . Se
ond one 
an assume band 
rossings of regularand ba
kfolded bands not to appear in the very 
lose vi
inity of high-symmetryplanes. Starting from this one 
an hope to get good results with this method.
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Figure 5.16: The overlap of wavefun
tions 1 and 2 of an f

 Copper system.In Fig. 5.16 the a
tual de
ay of overlap and absolute value of matrix elements isshown. The observed system is the se
ond test system in Se
tion 5.7, f

 Copper.The two lowest bands are examined along the k-ve
tors (z; z; z) for z 2 [0:499; 0:5℄.The plot is double logarithmi
. It gives an idea of how far to shift k-points o� theboundary so that the matrix elements vanish (as they should) and the bands 
an be
lassi�ed 
orre
tly.5.6 A Note on Computational DemandsFor sophisti
ated spe
tral 
omputations you need an adequate set of k-points {possibly in the order of thousands. This meets the fa
t that for large systems witha big number of ele
trons, the number of transitions roughly s
ales quadrati
ally toit. Together this 
an result in signi�
ant demands of 
omputer memory, so that onehas to 
onsider how to provide these matrix elements to your integration routine.It turns out that the 
al
ulation of the matrix elements (and herein the interstitial
ontribution) is the major 
omputational e�ort. So one 
an 
al
ulate the MMEs inadvan
e, resulting in minimal 
omputational 
osts and biggest memory demands.On the other hand the matrix elements 
an be 
omputed on-the-
y, abandon the useof the big array memory, but needing to 
al
ulate the same matrix elements several
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an try to 
a
he sele
ted elements in memory to 
ombinethe advantages of both approa
hes with minimal drawba
ks.At this point, the spe
ial way of 
onne
tions of your k-points to tetrahedra andthe order of tetrahedra 
an be of big help. For instan
e, regard a typi
al tetrahedraset 
onne
ting nearest neighbors in a set of nk k-points equidistant in the threespatial 
oordinates. This tetrahedra should be arranged in layers, e.g. in z-dire
tion,with the same order in ea
h layer (a

ording to the layer shape whi
h may di�er).If one pro
esses the tetrahedra sequentially, the data of the 
orresponding k-points (in
luding the matrix elements) are not needed only for a short time. Con-versely, even if one does not want to 
al
ulate the matrix elements multiple times,you need to store only nsim matrix elements at the same time, where nsim 
an be
onsiderably smaller than nk.
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Figure 5.17: Computational amount depending on 
a
he size (1470 k-points, 6591 tetra-hedra).If you take a 
a
he smaller than these nsim entries, you will have to 
al
ulatematrix elements partly again sin
e you have to skip some whi
h you need later.But you 
an still take good advantage of that method, depending on whi
h matrixelements you skip. In Fig. 5.17 this is illustrated for a k-point of 1470 points (it isa prism-shaped box with 14 equidistant points per edge), giving 6591 tetrahedra.Only matrix elements for nsim = 116 k-points are needed simultaneously not to
al
ulate them repeatedly.If you lower the size of your 
a
he below this value, your number of 
al
ulationsin
rease, depending on your strategy. The point (116; 1470) at the lower right isthe starting point of a 
omplete 
a
hing. If the 
a
he is full when a matrix element



70 CHAPTER 5. IMPLEMENTATIONshould be stored, the �rst strategy writes the new element in the beginning of the
a
he, while the se
ond one looks for the oldest element in 
a
he. Though thenumber of 
omputations qui
kly nearly doubles for a small de
rease of 
a
he size(� (106; 2650)), it stays below 3000 { roughly double the 
omputational amount {for even a �fth of the starting size.As already mentioned, the 
al
ulation of the momentum matrix elements 
on-sumes most of the CPU time. In the 
urrent implementation the 
ontribution ofthe interstitial a

ording to (5.9) is 
ostly. Investigations gave a ration between 75%and more than 95%, depending on the system size. In future we plan to repla
e thisroutine (in
luding a double summation over G-ve
tors) by an FFT te
hnique.5.7 Test 
al
ulationThe parameters used for these systems as well as for the systems 
al
ulated inChapter six are listed in appendix D.5.7.1 Aluminum
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Figure 5.18: Total energy against the volume of the unit 
ell relative to the experimentalvalue, i.e. VVexp = ( LLexp )3.In nature, Aluminum exists in the fa
e-
entered 
ubi
 
on�guration. This 
an



5.7. TEST CALCULATION 71be modeled in the basisA1 = L0B� 12 12 012 0 120 12 12 1CA ; B1 = 2�L 0B� 1 1 �11 �1 1�1 1 1 1CA (5.74)of real and re
ipro
al spa
e. In the 
urrent 
al
ulation it is modeled in the real-spa
eand re
ipro
al-spa
e basisA2 = L0B� 12 12 012 �12 00 0 1 1CA ; B2 = 2�L 0B� 1 1 01 �1 00 0 1 1CA ; (5.75)with two atoms per unit 
ell on internal 
oordinates (0; 0; 0) and 12(1; 1; 1). Thelatti
e parameter was varied and is plotted against the total energy in Fig. 5.18.Bir
h [Bir78℄ gives a relation for the total energy of a 
rystal against the volumeV . For hydrostati
 
ompression of 
ubi
 
rystals, the strain tensor e�� redu
es to as
alar e. For the limit e! 0 the energy readsE(V ) = E0 + 98K0V0 "�V0V � 23 � 1#2 ; (5.76)with E0 the energy of the equilibrium state, V0 it's volume, and K0 = �V (�P�V )jV=V0is the modulus of 
ompression (or bulk 
ompression) in equilibrium. In this 
ase,the 
al
ulation reprodu
es the experimental latti
e 
onstant nearly exa
tly, with adeviation of 0.3 per
ent, Lnum = 1:003Lexp. Though the 
urve of a quadrati
 �tdoes not di�er signi�
antly, the lo
ation of the minimum is di�erent.A band stru
ture (along the same path as those in Se
tion 5.4) is shown inFig. 5.19, together with the density of states. The 3s ele
trons of this system showa behavior similar to free ele
trons, as 
an be seen in the parabola-like bands in theband stru
ture, and in the square-root-like DOS. One 
an 
ompare these results tothose of the simple-
ubi
 systems in Se
tion 5.4.The (imaginary) diele
tri
 fun
tion has already been shown in Fig. 5.15 for asmall number of k-points to demonstrate the in
uen
e of the sorting of eigenval-ues. In Fig. 5.20 it is shown for di�erent larger number of k-points. It shows theslow 
onvergen
e known from literature. Furthermore, two 
hara
teristi
 peaks arelo
ated at 0:5eV and 1:6eV.Literature: Experimental data have been obtained by Ehrenrei
h and Phillips [EPS63℄.A �rst 
omputational approa
h has been made by Brust [Bru70℄. An analysis 
om-bining data from re
e
tan
e, ellipsometry and other measurements is presentedin [SSIS80℄. An analysis of aluminum within the APW method has been doneby Szmulowi
z and Segall [SS81℄. One plot from this arti
le is shown in Fig. 5.20.
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Figure 5.19: The band stru
ture (0; 0; 0) ! (12 ; 0; 0)! (12 ; 12 ; 0)! (12 ; 12 ; 12)! (0; 0; 0) ofAluminum in f

 
oordination is shown on the left. The right plot 
ontains the a

ordingDensity of states.
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Figure 5.20: The imaginary part of the diele
tri
 fun
tion for f

 Aluminum is shownon the left for di�erent number of k-points, ea
h in the IBZ. On the right, the real part ofthe 
ondu
tivity �1(!) is plotted, taken from [SS81℄.It shows the not the imaginary diele
tri
 fun
tion but the related real 
ondu
tivity�1(!) = !4�"2(!). It shows the same 
hara
teristi
 peaks. Position of the peaks andthe rough shape of the 
urve show good agreement. But due to the slow 
onver-gen
e, a quantitative 
omparison is not possible (therefore a 
hange of the plot from



5.7. TEST CALCULATION 73diele
tri
 fun
tion to opti
al 
ondu
tivity has not been made).
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Figure 5.21: The imaginary part of the diele
tri
 fun
tion of Aluminum for a mesh of288 k-points and three di�erent latti
e 
onstants.
Numeri
al 
onsiderations: The self-
onsisten
y has been done for 6 k-pointsand alternatively for 100 k-points. The diele
tri
 fun
tion does not show a visibledi�eren
e. The dependen
e on the Gmax 
ut-o� value has been 
he
ked for the valuesGmax = 3:5; 4:8. No di�eren
e is visible. (Both is not shown expli
itely in graphs.)Further, the diele
tri
 fun
tion was 
al
ulated for three slightly di�erent latti
e
onstants, shown in Fig. 5.21. Obviously the diele
tri
 fun
tion is very sensitive tothe shape of the Fermi surfa
e, whi
h (among other things) depends on the latti
e
onstant and the Fermi energy. Thus a 
areful determination of the optimal latti
e
onstant is re
ommended.The a

ura
y and 
orre
tness were tested with respe
t to hermiti
ity and inde-penden
e to the 
oordinate frame of referen
e and to the symmetry requirements.In both 
ases the deviations were within the overall a

ura
y. The 
hoi
e of themuÆn-tin radii (within a reasonable range) did 
ause no impa
t on the diele
tri
fun
tion.
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Figure 5.22: Band stru
ture and Density of states of Copper.5.7.2 CopperThe se
ond test system is 
opper, whi
h 
ondensates in the fa
e-
entered 
ubi
stru
ture as well, therefore the same unit 
ell is used. This system was alreadyreferred to in Fig. 5.16 where the overlap for two bands is shown.Band stru
ture and DOS are shown in Fig. 5.22. The valen
e band is formedout of ten 3d ele
trons and one 4s ele
tron per atom. The bands in the range�5eV::: � 1eV are mostly d-like, while the lowest is mostly s-like. The diele
tri
fun
tion is shown in 5.23. Due to the lonely band 
rossing the Fermi surfa
eLiterature: Experimental results have been reported by Ehrenrei
h and Phillip [EP62℄.Cal
ulations have been done by Mueller and Phillip [MP66℄. The 
al
ulated 
urveshow meets many 
hara
teristi
s of the latter literature referen
e. There is a gap upto 2eV , a peak at 4:5eV and a de
ay towards higher energies that is a bit slower thantowards lower energies. Beyond this qualitatively agreement, the numbers do notexa
tly �t, due to the di�erent 
al
ulation methods as well as due to the di�erentnumber of k-points.
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Figure 5.23: Imaginary part of the diele
tri
 fun
tion of Copper. The solid red line isthe 
al
ulated result (288 irredu
ible k-points), while the dashed bla
k line is a result of anELAPW 
al
ulation (897 irredu
ible k-points = 32768 k-point in whole BZ; by 
ourtesyof E. Krasovskii [Kraa℄).
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Chapter 6Appli
ation to Phase-ChangeMaterialsIn this 
hapter, the method previously presented is applied. After a brief introdu
-tion of the idea of phase-
hange materials two 
lasses of 
ompounds (namely GeTeand AgTe 
ompounds) are introdu
ed. Band stru
ture 
al
ulations are performed,and the diele
tri
 fun
tion is determined for the GeTe system.6.1 Phase-Change Materials
Tr Tr Tr

Ta

Tm

Figure 6.1: The prin
iple of an information bit re
orded by phase 
hange. The 
ir
lesillustrate a small region in the medium at room temperature Tr, indi
ated by the smallthermometers. The 
hanges in stru
ture are indu
ed by fo
used laser beams symbolizedby the large thermometers, heating up the spot above the melting temperature Tm, orabove the a
tivation temperature Ta, respe
tively.The 
on
ept of phase 
hange re
ording is based on thin layers whi
h 
hangeits stru
ture reversibly against temperature. Being a 
rystal stru
ture at roomtemperature, the �lm lo
ally melts when shortly heated above a spe
i�
 temperatureTm by a fo
used laser beam of high intensity. After swit
hing o�, the �lm rapidly77
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ools down with a 
ooling rate > 109Ks . The rapid redu
tion of atomi
 mobility tonegligible amplitudes keeps the material in this amorphous state.When heated up again brie
y above a 
ertain a
tivation energy Ta that is smallerthan the melting temperature, the material re
rystallizes into the previous 
rystalstru
ture and keeps this stru
ture during 
ooling down. Due to their di�erent stru
-ture these two phases show di�erent response to light. This way a bit of information
an be stored. It is read out by a laser beam of low intensity, whi
h is re
e
teddi�erently depending on the stru
ture of the spot of information.In a
tual implementations, the phase 
hange layer is sandwi
hed within a mul-tilayer system of several diele
tri
s. This system is �xed onto a substrate.Motivation: In produ
tion of information storage devi
es di�erent demands 
om-pete with ea
h other, like a

ess time and pri
e per 
apa
ity. This has lead to ahierar
hy of storage devi
es, primary memory (in
luding random a

ess memory(RAM) te
hnologies), se
ondary memory (mass media like hard dis
s, read-only
ompa
t-dis
s (CD-ROMs), Digital Versatile Dis
s (DVDs)), and tertiary memory(tapes). In the 
ategory of rewritable mass media (se
ond level of the hierar
hy)apart from the well-known magneti
 devi
es two te
hnologies in parti
ular developedinto a
tual produ
ts, magneto-opti
al (MO) and phase 
hange (PC) based devi
es.The rewritable DVD is already based on a phase-
hange e�e
t. New materials arethe subje
t of 
ontinuous development to improve the quality of devi
es and todevelop new ones.Demands: To be of pra
ti
al use, a potential material must ful�ll several 
rite-ria [Wut01℄. In order to form a glass easily, the melting point should be reasonablylow, around 500ÆC. The biggest part of the absorbed energy should be 
onvertedlo
ally into heat to indu
e the phase 
hange, resulting in a low power demand for thetransformation. On the other hand the a
tivation energy Ta to restore the 
rystalstru
ture should be suÆ
iently high that the amorphous phase and therewith thestored data are persistent for a long period of time. A high opti
al 
ontrast is im-portant to distinguish a signal from noise, ensuring a reliable readability. A 
entralproblem in building stable layers is the me
hani
al stress linked with the phase trans-formation and the related volume 
hange. For appli
ability a fast re
rystallizationis 
ru
ial, sin
e this is the most time-
onsuming pro
ess, and an understanding ofthe underlying physi
s is needed. Investigations of potential phase-
hange materialsin
lude measurements of resistan
e, of stru
ture, of me
hani
al stress, spe
tros
opi
and ellipsometry measurements.At present, the dis
overy and development of phase-
hange materials is mainlybased upon empiri
al strategies. Detemple et al. [DWWB03℄ lately presented astru
tural 
riterion that needs to be met to enable the mandatory fast re
rystal-lization with suÆ
ient opti
al 
ontrast that 
hara
terizes suitable phase-
hange ma-terials. Only a 
ertain subset of Te alloys showed a suÆ
ient density 
hange in
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rystallization whi
h is requisite for a suÆ
ient opti
al 
ontrast between 
rystal andamorphous phase. The alloys of this subset show a 
ubi
 or near-
ubi
 
oordination.Using this improved knowledge of whi
h systems to study 
omputational meth-ods form a useful tool to support investigations. Two 
lasses are 
overed in thefollowing se
tions with fo
us on the opti
al properties.6.2 GeTe 
ompoundsThe majority of atoms that build the phase-
hange materials in investigation arefrom the groups 13 to 16 (formerly IIIB to VIB) of the periodi
 table, that is havingone to four ele
trons in the outer p-shell, most of them from the periods four and�ve (Ga, Ge, As, Se, In, Sn, Sb, Te). Together with Germanium, Tellurium is theelement 
hosen most frequently.Composites of these elements like GeTe, Ge1Sb2Te4, Ge4Sb1Te5, Ge2Sb2Te5 havebeen investigated [Wel02, Fri00, YOMU98℄. The �rst of these 
ompounds, GeTe, isnot only the easiest of these systems, but shows 
hara
teristi
s also found in other
ompounds.Stru
ture: The stru
ture and binding of GeTe has been presented in [Wel02℄and [Sin01℄ (and referen
es therein). GeTe appears in a high-temperature and alow-temperature stru
ture, 
alled �- and �-stru
ture. While being in trigonal stru
-ture at room temperature, it merges into the ro
ksalt stru
ture when 
rossing thetransition temperature Ttr. A value of Ttr = 700K is reported for this temperature,showing a strong dependen
e on the stoi
hiometry of the sample.These properties of bulk di�er for thin �lms. After being 
reated by ther-mal evaporation or sputtering on glass or sili
on, respe
tively, the �lm transformsfrom the amorphous to the high-temperature ro
ksalt stru
ture during temperingat 480K. This 
oordination is 
onserved when being 
ooled down. This is notthe high-temperature phase but a meta stable phase. Investigations show that thelatti
e parameters are 
omparable to that of the high-temperature phase.The ro
ksalt stru
ture is sket
hed in Fig. 6.2. It 
an be seen as two 
ombinedf

 latti
es shifted by 12(1; 1; 1), i.e. half of the diagonal of the 
ube. The basis 
ell
an be 
hosen asAf

 = b
ub2 0B� 1 1 01 0 10 1 1 1CA ; (6.1)forming a trigonal unit 
ell with angles � = 60Æ between the unit ve
tors and atom
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Figure 6.2: A sket
h of the ro
ksalt stru
ture. It 
onsists of two f

 latti
es pla
ed intoea
h others va
ant positions. The two kinds of atoms are symbolized by the blue andgreen balls, respe
tively. Three di�erent unit 
ells are marked with red sti
ks, a 
ubi
 oneon the bottom left, a trigonal one on the top left, and a hexagonal one on the right. Allatoms in the pi
ture belong to one 
rystal. Only for reasons of survey, atoms not part ofthese three unit 
ells are painted smaller.positions in this basisrGe
ub = 0B� 000 1CA ; rTe
ub = Æ0B� 111 1CA ; Æ = 12 ; (6.2)or vi
e versa. When referring to a 
ubi
 unit 
ellA
ub = a
ub0B� 1 0 00 1 00 0 1 1CA ; (6.3)the stru
ture is settled by the length of the 
ube a
ub = b
ubp2. The experimental
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e 
onstants is reported to be aexp
ub = 6:012�A [ZZ℄. The numeri
al latti
e 
onstantanum
ub = 6:083�A is taken from [Wel02℄ (see also appendix D). This stru
ture possessesthe usual 
ubi
 symmetries, that are three four-fold rotation axes along (100)-likeaxes, six two-fold axes along (110) and four three-fold rotation axes along (111) andthat like. It possesses inversion symmetry as well.The low temperature trigonal phase (also 
alled A7 phase) di�ers from the 
ubi
phase expressed in a trigonal 
ell (6.1) by a 
hange of the edge length btrig = 4:293�A,and the three angles still being equal among ea
h other, but taking the value�exp = 58:128Æ. Furthermore the parameter Æ now deviates from Æ = 0:5 giving the
on�guration with the farest distan
e to neighbors, but takes the value Æexp = 0:4746.The reason must therefore lie in the ele
troni
 stru
ture. This system does not pos-sess inversion symmetry anymore. One 
an imagine this as a ro
ksalt stru
turestret
hed in (111)-dire
tion and 
ompressed in the perpendi
ular dire
tions.In the present 
al
ulation this phase is modeled in hexagonal 
oordination de-s
ribed by two latti
e parameters (a; 
). To transform 
oordinates, the trigonal 
ellis written asAtrig = btrig0B� 0 X �X2Y �Y �YZ Z Z 1CA (6.4)with the naming X = q12(1� 
os�), Y = q16(1� 
os�), Z = q13(1 + 2 
os�).The atoms are pla
ed atrGetrig = 0B� 000 1CA ; rTetrig = Æ0B� 111 1CA : (6.5)The resulting hexagonal parameters derive toahex = btrigp2(1� 
os�); 
hex =p3(1 + 2 
os�) (6.6)and the atom positions torGehex = 8><>:0B� 000 1CA ;0B� 132313 1CA ;0B� 231323 1CA9>=>; ;rTehex = 8><>:0B� 00Æ 1CA ;0B� 132313 + Æ 1CA ;0B� 231323 + Æ 1CA9>=>; ; (6.7)



82 CHAPTER 6. APPLICATION TO PHASE-CHANGE MATERIALSreferring to the hexagonal basisAhex = 0B� ahex �12ahex 00 ahex 
os �6 00 0 
hex 1CA : (6.8)Thus the resulting hexagonal unit 
ell is three times as large as the trigonal one.Ele
troni
 stru
ture: The ro
ksalt stru
ture was 
al
ulated in a basis set withshape like those used for the 
al
ulation of the f

 stru
tures Al and Cu in Chapter�ve, thus 
ontaining four atoms per unit 
ell. The hexagonal unit 
ell that was usedto model the A7 stru
ture 
ontains six atoms.
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Figure 6.3: The band stru
ture of GeTe (ro
ksalt) with 4 atoms/u.
. Here as well as inthe following band stru
tures and density-of-states plots, the o

upied part below Fermienergy is marked with an orange �ll. For semi-
ondu
tors, the Fermi energy is pla
ed inthe middle of the gap. The red ellipse marks the lo
ation 
lose to whi
h large 
ontributionsto the diele
tri
 fun
tion arise.The band stru
ture for these two setups are shown in Figs. 6.3 and 6.4. The
ompound is a semi-
ondu
tor in both 
on�gurations. The bandgaps take values of0:51eV for the 
ubi
 stru
ture and 0:65eV for the A7 stru
ture. One should notethat these values are sensitive to a suÆ
ient Gmax 
ut-o�.
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Figure 6.4: The band stru
ture of GeTe (A7) with 6 atoms/u.
.The a

ording density-of-states are given in Fig. 6.5. Though not obvious fromthe band stru
tures due to the di�erent basis sets, one sees that there is only a smalldi�eren
e between the 
ubi
 and trigonal phase. A

ording to [Wel02℄, the bu
kle at�11eV is formed mainly by Te s-ele
trons, the bu
kle one around �8eV by the Ges-ele
trons. The 
ontribution �5eV::0eV is made by the Ge p- and Te p-ele
trons.The d-ele
trons form lower lying states.To investigate the possible in
uen
e of these d-states, the 
al
ulations have beenperformed with d-ele
trons in
luded in the valen
e band, 
.f. the dashed line inFig. 6.5. Both 
urves show good agreement in the o

upied part. Therefore it seemsreasonable to treat these ele
trons as 
ore states.Diele
tri
 properties: The diele
tri
 fun
tion for the GeTe system in the twostru
tures are shown in Fig. 6.6. The energy range 0eV::19eV has been 
al
ulated.For both systems the diele
tri
 fun
tion was 
al
ulated 
ubi
-like. The peak is verylarge for both systems. Its main 
ontribution 
ould be lo
ated 
lose to the regionmarked with a red 
ir
le in Fig. 6.3. Further analysis has to be made, espe
ially to
orrelation to the number of k-points used.The imaginary part of both 
urves are quite similar, as expe
ted. The gaps lastuntil Eg � 0:75eV and Eg � 1:0eV , respe
tively (
ubi
/trigonal). The broad-
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Figure 6.5: The density of states for the two GeTe stru
tures (
ubi
: 75 k-points,trigonal: 50 k-points).
ening at 0:5eV::0:75eV (
ubi
) might be due to ba
kfolding e�e
ts. The largepeaks are lo
ated at Ep = 1:50eV /Ep = 1:59eV and are of similar amplitude"2;max = 577/"2;max = 559. Both 
urves take a lo
al minimum around ~! � 5eVand rise again towards a lo
al maximum at ~! = 6:2eV /~! = 7:0eV . The di�eren
ein the resulting real parts of the diele
tri
 fun
tion are more visible to the nakedeye. The positions of the peaks of the 
urve for 
ubi
 stru
ture are slightly shiftedtowards lower energies. The 
urve in total is lower 
ompared to the 
urve of thetrigonal stru
ture, giving a lower �rst posit iv peak and a se
ond negative peak ofhigher amplitude.To give a 
onne
tion to the opti
al appli
ation the re
e
tivity of a bulk surfa
eof this material (a

ording to Eq. (3.30)) is shown in Fig. 6.7. However, in orderto 
ompare to re
e
tivity measurements of thin �lms, a di�erent des
ription forthe re
e
tivity has to be used. At low frequen
ies in
luding the opti
al range thedi�eren
e between the two systems is marginal. Between 5:0eV and 6:5eV , however,the 
ubi
 stru
ture shows a signi�
ant lower re
e
tion, investigating the di�eren
ein energies of ex
ited states as well as in the matrix elements.At this point the 
omparison to 
al
ulations of amorphous stru
tures would beinteresting. From a numeri
al point of view, the in
uen
e of the in
lusion of thed-ele
trons into the valen
e band on the diele
tri
 fun
tion should be 
he
ked.
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Figure 6.6: The real and imaginary part of the diele
tri
 fun
tion of the GeTe system.The ro
ksalt stru
ture is shown on the left, the trigonal A7 stru
ture on the right.
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e
tivity of the two GeTe systems. To give a relation to theenergy s
ale, the opti
al range (i.e. the energy range of light from 400nm to 750nm) ismarked with an orange �ll. Solid state lasers presently used in opti
al data storage havea wavelength of 780nm.
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Figure 6.8: Sket
h of spe
trometri
 devi
es (in transmission mode). The left one baseson latti
e spe
tros
opy. A beam from a light sour
e L (dashed line) is redu
ed to a 
ertainwavelength by the mono
hromator M
, and hits (after passing the apertures A) a probeP . The dete
tor's signal depends on the setting of the mono
hromator. On the right adraft of a Fourier Analyzer is given. The light beam hits a semi-permeable mirror M0that splits it into two beams (dotted lines) that are re
e
ted at the mirrors M1 and M2and reunite again at M0 to 
ontinue the path to the probe P . While one of the mirrorsM1;M2 is �xed, the other is movable to introdu
e a slight di�eren
e in the length of theopti
al path. The dete
tor's signal depends on this di�eren
e �x.Comparison to Measurements: In order to determine opti
al properties exper-imentally, a major group of investigations are formed by spe
tros
opi
 methods, thatare measurements to obtain a frequen
y dependent spe
trum [S
h00℄. It's prin
ipleis shown in Fig. 6.8. In dire
t spe
tros
opy, the wavelength of observation is sele
tedwith the mono
hromator. This gives the spe
trum P (!) of the signal P at the de-te
tor. In Fourier Spe
tros
opy, the light beam interferes with itself after being splitand introdu
ing a di�eren
e in opti
al path �x. One measures an interferen
e spe
-trum P (�x) whi
h is the Fourier transform of the desired spe
trum P (!). Withthese spe
tros
opi
 methods one 
an obtain for instan
e spe
tra of the transmissionT (!) or re
e
tion R(!). Another method of observation is ellipsometry, whi
h 
anbe used to determine the 
omplex diele
tri
 fun
tion [Bas95℄.In Fig. 6.9 the diele
tri
 fun
tion for the two GeTe stru
tures obtained by el-lipsometry measurements are shown. The divergen
e in the imaginary parts forsmall frequen
ies is expe
ted to be due to impurities within the samples. The am-plitude of the 
urves di�ers by one order of magnitude 
ompared to the 
al
ulated
urves in Fig. 6.6. This 
an not be explained at the moment. The peak positionsof Ep = 1:62eV /Ep = 1:65eV 
orrespond to the 
omputed values given above, 
on-
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Figure 6.9: Ellipsometry measurements of GeTe (by 
ourtesy of W. Welni
, [Wel02℄).Real and imaginary part of the diele
tri
 fun
tion are plotted for the 
ubi
 stru
ture onthe left, and for the trigonal stru
ture on the right.sidering the fa
t that a 
orre
tion of the bandgap (a systemati
ally underestimatedquantity within LDA and GGA 
al
ulations) shifts the 
omplete diele
tri
 fun
tionwith respe
t to energy. However, the shift of the peak (
omparing 
ubi
 to trigonalsetup) is larger in 
omputation (0:09eV ) than in measurement (0:03eV ). While theamplitude lowers in 
omputation with the 
hange from 
ubi
 to trigonal setup, itrises in measurement. The de
ay in the 
omputed 
urve is more rapid than in mea-surement. In the measured 
urves the lo
al minima around 5eV and the proximatelo
al maxima seen in 
al
ulation 
an not be found. Due to these di�eren
e, the realparts of 
omputation and measurement share signi�
ant 
hara
teristi
s, but do notagree quantitatively.Out of these data the bulk re
e
tion has been 
al
ulated (see Fig. 6.10)1. Thegeneral shape does qualitatively agree with Fig. 6.7 in some points. For energies1:0eV::1:6eV in the infrared range the experimental 
urves show the same ampli-tude as the theoreti
al ones. For lower energies the impurities in the measuredsample turn the re
e
tivity to one. In the opti
al range both stru
tures show pra
-1Sin
e the diele
tri
 fun
tion is determined by an expli
it surfa
e measurement, the 
al
ula-tion of the re
e
tivity in this 
ontext is of more a
ademi
al nature to determine the in
uen
e ofdi�eren
es in the diele
tri
 fun
tion on the re
e
tivity.
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Figure 6.10: The bulk re
e
tivity of the two GeTe systems determined out of theexperimental ellipsometry data.ti
ally identi
al but de
reasing re
e
tivity (with respe
t to the energy). Resultsfrom 
omputation also showed nearly equal but 
onstant values in this range. Alsofor the experimental data the 
ubi
 stru
ture takes a signi�
ant lower re
e
tivity of0:4 around the energy of 5:6eV .6.3 AgTe 
ompoundsCompounds made of the elements Ag, In, Sb and Te have been shown to besuitable for the realization of fast opti
al data storage devi
es [BvR+01℄. Su
h
ompounds frequently de
ompose into AgInTe2 and AgSbTe2 when persistentlyheated [IHN+01℄. These two 
ompounds have been investigated by Detemple etal. [DWWB03℄.Stru
ture: AgInTe2 appears in 
hal
opyrite stru
ture, while AgSbTe2 takes ro
k-salt stru
ture. In the latter one, one f

 sublatti
e is o

upied by Tellurium, theother sublatti
e is o

upied alternately by Silver and Antimony. These 
hal
opy-rite stru
ture is sket
hed in Fig. 6.11. The 
hal
opyrite stru
ture resembles thezin
blende stru
ture. It also 
onsists of two f

 latti
es shifted against ea
h other byone fourth of the 
ubes diagonal. But sin
e one sublatti
e is o

upied alternately byAg and In, the unit 
ell is double the size 
ompared to zin
blende. The appearan
eof this stru
tures �ts to the trend of a less 
ubi
 
oordination of AgTe alloys the
loser the third 
omponent (In and Sb in this 
ase) 
omes to the transition metals(from the point of view of the periodi
 table).
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Figure 6.11: Sket
h of a unit 
ell of the 
hal
opyrite stru
ture. It is formed by two f

sublatti
es o

upied by three 
onstituents in the ratio 1 : 1 : 2. For AgInTe2 for instan
e,the orange balls symbolize the Tellurium atoms while the green and blue balls symbolizethe Silver and Indium atoms.
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Figure 6.12: The band stru
ture of AgSbTe2 in ro
ksalt stru
ture.
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Figure 6.13: The density-of-states of AgSbTe2 in ro
ksalt stru
ture.
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Figure 6.14: The band stru
ture of AgInTe2 in ro
ksalt stru
ture.Ele
troni
 properties: To investigate the impa
t of the di�erent stru
tures, thetwo 
ompounds have been 
al
ulated ea
h in ro
ksalt and in 
hal
opyrite stru
ture.The ro
ksalt stru
ture was modeled with four atoms per unit 
ell, while the unit
ell of the 
hal
opyrite stru
ture takes sixteen atoms.Following [DWWB03℄, the two 
ompounds have been 
al
ulated in ea
h ro
ksaltand 
hal
opyrite stru
ture. The band stru
ture and density-of-states of AgSbTe2 inro
ksalt stru
ture are shown for in Figs. 6.12 and 6.13. The band stru
ture and DOSof AgInTe2 in ro
ksalt and 
hal
opyrite stru
ture are shown in Figs. 6.14, 6.15 and
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Figure 6.15: The band stru
ture of AgInTe2 in 
hal
opyrite stru
ture.
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Figure 6.16: The density-of-states of both AgInTe2 
ompounds.6.16. All of these systems are metals. (The gap in the plot of the DOS of AgInTe2in 
hal
opyrite stru
ture results from an inadequately 
hosen k-point set omittingthe vi
inity of the �-point.)Diele
tri
 properties: Due to the 
onsiderable 
omputational expense of the
hal
opyrite stru
tures, 
aused by the number of atoms in the unit 
ell and the lowsymmetry, studies of the diele
tri
ity 
ould not be made. Further investigations are
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Chapter 7Con
lusionIn this thesis we presented an implementation of the diele
tri
 response fun
tionin linear response theory for opti
al ex
itations negle
ting the lo
al �eld e�e
tsand intraband transitions. The diele
tri
 fun
tion is 
al
ulated within the densityfun
tional theory in the lo
al density approximation and the generalized gradientapproximation. The diele
tri
 fun
tion has been realized within the 
ontext of theFLAPW method Fleur and thus allows the treatment of materials 
ontaining tran-sition metals in 
omplex 
ompounds with open stru
tures and low symmetry. Themomentum-matrix elements, the tetrahedron method and the Kramers-Kronig in-tegration are des
ribed in detail as implemented to obtain the response fun
tion.Considerable problems o

urred due to the spurious transitions of ba
kfolded statesdue to 
al
ulations 
arried out in non-minimal unit-
ells, i.e. unit 
ells whi
h 
ontainmore than one 
hemi
al unit of a 
ompound. We 
areful examined these transitionsand to developed a pro
edure to minimize their 
ontribution.We give a detailed a

ount on the extensive tests 
arried out for Al and Cu whi
hin
luded the dependen
e on the number of k-points, the number of basis fun
tions,the dependen
e on the symmetry and the 
he
k of the hermiti
ity of the matrixelements. For Cu the results agree ni
ely with those of Krasovskii [Kraa℄ and theresults for Al agree with results from literature [SS81℄.We 
al
ulated the ele
troni
 properties in terms of the band stru
ture and den-sity of states for GeTe in ro
ksalt and trigonal A7 stru
ture and for AgSbTe2 andAbInTe2 ea
h in ro
ksalt and 
hal
opyrite stru
ture for the theoreti
al latti
e 
on-stants. Both are phase-
hange materials under 
urrent experimental investigations.For GeTe in both stru
tures the bandstru
ture and DOS agree to large extended.The two AgInTe2 stru
tures reveal substantial di�eren
es in ele
troni
 stru
ture
lose to Fermi energy. For GeTe we 
al
ulated also the diele
tri
 fun
tion and 
om-pared with ellipsometry measurements. Although the agreement of the re
e
tivityis very ni
e, the peaks in the diele
tri
 fun
tions from whi
h the re
e
tivity is 
al
u-lated di�er by a fa
tor 10 with the experimental data. The origin of this di�eren
eis not 
lear yet. 93



94 CHAPTER 7. CONCLUSIONThe method developed opens the possibility for the appli
ation on a large varietyof systems whi
h in
lude di�erent phase-
hange materials. The amorphous statemay be treated approximately using larger super
ells. Te
hni
al improvements mayin
lude the lo
al orbitals to treat semi-
ore states and to extend the basis set tohigher uno

upied states. The method may be parallelized over the tetrahedra torun on multipro
essor 
omputer ar
hite
tures. The work done in this thesis providesa basis from whi
h on a development in various dire
tions be
omes possible. Oneoption is to extend this method to deal with questions in the area of magneto-opti
s.The other option is to extend the treatment of the density fun
tional theory to theGW method to des
ribe the ex
itation within the framework of the many bodyperturbation theory or the time-dependent DFT.Though theoreti
ally well understood, the opportunities of 
omputation make opti
smore lively than ever!



Appendix AMomentum matrix elementsThe matrix elements of the momentum operator should be expressed in terms of theLAPW basis set in summed form (4.28), i.e.
 {(k; r) = 8>>>>>><>>>>>>:

1p
XG C {k+Gei(k+G)r r 2 ISlmaxXl=0 lXm=�l [A{;�lm(k)ul(r;El)+B{;�lm (k) _ul(r;El)℄Ylm(r̂) r 2 MT�: (A.1)
The interstitial part of this matrix element is derived in se
tion 5.1.1. The partinside the muÆn-tins is more lengthy to derive and therefore done here. The matrixelement is not 
al
ulated in the 
arthesian basis but in the natural basis (�x +i�y; �x � i�y; �z). In spheri
al 
oordinates these partial derivatives read�x � i�y = sin �e�i' ��r + 1re�i' �
os � ��� � isin � ��'��z = 
os � ��r � 1r sin � ��� : (A.2)The radial and spheri
al derivatives separate. Introdu
ing the abbreviationsF (1)lm = � q (l+m+1)(l+m+2)(2l+1)(2l+3)F (2)lm = q (l�m)(l�m�1)(2l�1)(2l+1)F (3)lm = q (l�m+1)(l�m+2)(2l+1)(2l+3)F (4)lm = � q (l+m)(l+m�1)(2l�1)(2l+1)F (5)lm = q (l�m+1)(l+m+1)(2l+1)(2l+3)F (6)lm = q (l�m)(l+m)(2l�1)(2l+1) ; (A.3)

95



96 APPENDIX A. MOMENTUM MATRIX ELEMENTSthe re
urren
e relations of the Legendre polynomials yield the equationse+i' sin �Yl;m = F (1)lm Yl+1;m+1 + F (2)l;mYl�1;m+1e+i' sin �Yl;m = F (3)lm Yl+1;m�1 + F (4)l;mYl�1;m�1
os �Yl;m = F (5)lm Yl+1;m + F (6)lm Yl�1;m : (A.4)Furthermore the relationse+i' �
os � ��� + isin � ��'�Ylm = �lF (1)lm Yl+1;m+1 + (l + 1)F (2)lm Yl�1;m+1e�i' �
os � ��� � isin � ��'�Ylm = �lF (3)lm Yl+1;m�1 + (l + 1)F (4)lm Yl�1;m�1� sin � ���Ylm = �lF (5)lm Yl+1;m + (l + 1)F (6)lm Yl�1;m (A.5)In order to apply the derivatives on the LAPW fun
tions, we de�ne the fun
tions(omitting the muÆn-tin index � for 
onvenien
e)U ilm = Ai;�lm(k)ul(r;El) + Bi;�lm (k) _ul(r;El)V ilm = ��r U ilm= Ai;�lm(k)u0l(r;El) + Bi;�lm (k) _u0l(r;El)W ilm = 1r � U ilm= 1r � �Ai;�lm(k)ul(r;El) +Bi;�lm (k) _ul(r;El)� (A.6)
First 
omponent �x+i�y: If one expresses the LAPWs with these fun
tions (A.6)utilizing the relations (A.2) and (A.5), one yields for the operation of the operator(�x + i�y) i(k; r) = Plm h(V ilm � l W ilm)F (1)lm Yl+1;m+1(V ilm � (l + 1)W ilm)F (2)lm Yl�1;m+1i ; (A.7)omitting spatial 
oordinates, and the summation indi
es running through l = 0; : : : ; lmax; m =�l : : : l. Multiplying the 
orresponding bra givesRMT� d3r  �f (k; r)(�x + i�y) i(k; r)= Plm;l0m0 R�R0 r2dr H d
 Uf�l0m0Y �l0m0 h(V ilm � l W ilm)F (1)lm Yl+1;m+1 +(V ilm � (l + 1)W ilm)F (2)lm Yl�1;m+1i= Plm;l0m0 R�R0 r2dr (1)D1l0m0lm H d
 Y �l0m0Yl+1;m+1+Plm;l0m0 R�R0 r2dr (2)D2l0m0lm H d
 Y �l0m0Yl�1;m+1 (A.8)
with the abbreviations for D1,D2 equal to(j)D1l0m0lm = F (2j�1)lm Uf�l0m0(V ilm � l W ilm)(j)D2l0m0lm = F (2j)lm Uf�l0m0(V ilm � (l + 1)W ilm): (A.9)



97With the spheri
al harmoni
s being orthogonal,H d
 Y �l0m0Yl+1;m+1 = Æl0;l+1Æm0;m+1;H d
 Y �l0m0Yl�1;m+1 = Æl0;l�1Æm0;m+1; (A.10)the quadruple summation in the two terms redu
es to ea
h a double one:Plm;l0m0 :(j)D1l0m0lm Æl0;l+1Æm0;m+1 = lmax�1Pl=0 +lPm=�l :(j)D1l+1;m+1lmPlm;l0m0 :(j)D2l0m0lm Æl0;l�1Æm0;m+1 = lmax�1Pl=0 +lPm=�l :(j)D2lml+1;m�1: (A.11)Please note the maximum l de
reased by one. Now applying the remaining radialintegration, and expanding the symbols D1 and D2 �nally gives:hfkj�x + i�yjiki = lmax�1Xl=0 lXm=�l[ ( R ul+1u0l r2dr � l R ul+1ul rdr) A�fl+1;m+1Ail;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) A�fl+1;m+1Bil;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) B�fl+1;m+1Ail;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) B�fl+1;m+1Bil;m ℄ F (1)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) A�fl;mAil+1;m�1+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) A�fl;mBil+1;m�1+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) B�fl;mAil+1;m�1+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) B�fl;mBil+1;m�1 ℄ F (2)l+1;m�1Se
ond 
omponent �x�i�y: The pro
edure is analogous for the next 
omponent.Again (A.2) and (A.5) help to express it as(�x � i�y) i(k; r) = Plm h(V ilm � l W ilm)F (3)lm Yl+1;m�1(V ilm � (l + 1)W ilm)F (4)lm Yl�1;m�1i : (A.12)Multiplying the bra,RMT� d3r  �f (k; r)(�x � i�y) i(k; r)= Plm;l0m0 R�R0 r2dr (3)D1l0m0lm H d
 Y �l0m0Yl+1;m�1+Plm;l0m0 R�R0 r2dr (4)D2l0m0lm H d
 Y �l0m0Yl�1;m�1; (A.13)
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al
ulating the integral over the spheri
al harmoni
s and redu
ing the resultingfourfold summation analogous to the �rst 
omponent,Plm;l0m0 :(j)D1l0m0lm Æl0;l+1Æm0;m�1 = lmax�1Pl=0 +lPm=�l :(j)D1l+1;m�1lm= Plm;l0m0 :(j)D2l0m0lm Æl0;l�1Æm0;m�1 = lmax�1Pl=0 +lPm=�l :(j)D2lml+1;m+1; (A.14)yieldshfkj�x � i�yjiki = lmax�1Xl=0 lXm=�l[ ( R ul+1u0l r2dr � l R ul+1ul rdr) A�fl+1;m�1Ail;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) A�fl+1;m�1Bil;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) B�fl+1;m�1Ail;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) B�fl+1;m�1Bil;m ℄ F (3)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) A�fl;mAil+1;m+1+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) A�fl;mBil+1;m+1+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) B�fl;mAil+1;m+1+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) B�fl;mBil+1;m+1 ℄ F (4)l+1;m�1:Third 
omponent �z: The same goes for the third 
omponent:�z i(k; r) = Plm h(V ilm � l W ilm)F (5)lm Yl+1;m(V ilm � (l + 1)W ilm)F (6)lm Yl�1;mi : (A.15)Multipli
ation of the 
orresponding bra from the left:RMT� d3r  �f (k; r)�z i(k; r)= Plm;l0m0 R�R0 r2dr (5)D1l0m0lm H d
 Y �l0m0Yl+1;m+Plm;l0m0 R�R0 r2dr (6)D2l0m0lm H d
 Y �l0m0Yl�1;m (A.16)
Redu
tion of fourfold summation:Plm;l0m0 :(j)D1l0m0lm Æl0;l+1Æm0;m = lmax�1Pl=0 +lPm=�l :(j)D1l+1;mlm= Plm;l0m0 :(j)D2l0m0lm Æl0;l�1Æm0;m = lmax�1Pl=0 +lPm=�l :(j)D2lml+1;m (A.17)



99Result:hfkj�zjiki = lmax�1Xl=0 lXm=�l[ ( R ul+1u0l r2dr � l R ul+1ul rdr) A�fl+1;mAil;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) A�fl+1;mBil;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) B�fl+1;mAil;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) B�fl+1;mBil;m ℄ F (5)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) A�fl;mAil+1;m+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) A�fl;mBil+1;m+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) B�fl;mAil+1;m+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) B�fl;mBil+1;m ℄ F (6)l+1;m�1:More general notation: The results for the three 
omponents 
an be written inthe formhfkj�njiki = lmax�1Xl=0 lXm=�l[ ( R ul+1u0l r2dr � l R ul+1ul rdr) A�fl+1;m0Ail;m+ ( R ul+1 _u0l r2dr � l R ul+1 _ul rdr) A�fl+1;m0Bil;m+ ( R _ul+1u0l r2dr � l R _ul+1ul rdr) B�fl+1;m0Ail;m+ ( R _ul+1 _u0l r2dr � l R _ul+1 _ul rdr) B�fl+1;m0Bil;m ℄ F (2n�1)l;m+ [ ( R ulu0l+1 r2dr + (l + 2) R ul+1ul rdr) A�fl;mAil+1;m00+ ( R ul _u0l+1 r2dr + (l + 2) R ul+1 _ul rdr) A�fl;mBil+1;m00+ ( R _ulu0l+1 r2dr + (l + 2) R _ul+1ul rdr) B�fl;mAil+1;m00+ ( R _ul _u0l+1 r2dr + (l + 2) R _ul+1 _ul rdr) B�fl;mBil+1;m00 ℄ F (2n)l+1;m00for n = 1; 2; 3, and �, m0,m00 given by� = 0B� �x + i�y�x � i�y�z 1CA ; m0 = 0B� m+ 1m� 1m 1CA ; m00 = 0B� m� 1m+ 1m 1CA for n = 0B� 123 1CA :Lo
al orbital 
ontribution: The 
ontributions of the basis fun
tions additionalin the lo
al orbital extension 
an be 
al
ulated analogi
ally, resulting in extra termsof the same shape. The derivation 
an be found in [Abt97℄.
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Appendix BTetrahedron methodAs already mentioned in se
tion 5.2, Bl�o
hl, Jepsen and Andersen [BJA94℄ gave a
onvenient general notation for the tetrahedron method. They 
onsider integralsover the Brillouin zone (BZ) in k-spa
e like those of the expe
tation value of anoperator X,hXi = 1VG Xn ZBZ d3k Xn(k)f(�n(k)); (B.1)where f is the Fermi fa
tor to an energy �n. VG is the volume of the Brillouin zone,and the used k-dependent expe
tation value readsXn(k) = hnkjXjnki: (B.2)They show that in tetrahedron method this integral 
an be written ashXi =Xj;n Xn(kj)wnj: (B.3)This sum runs over all bands n and k-points j.B.1 Integration weightsThe weight of one k-point wnj is the sum of weights it gets in ea
h tetrahedron itbelongs to. In ea
h tetrahedra, the indi
es are assigned so that the energies areordered, �1 < �2 < �3 < �4.1. �F < �1w1 = w2 = w3 = w4 = 0: (B.4)101



102 APPENDIX B. TETRAHEDRON METHOD2. �1 < �F < �2w1 = C �4� (�F � �1)� 1�21 + 1�31 + 1�41��w2 = C �F � �1�21w3 = C �F � �1�31w4 = C �F � �1�41 (B.5)with C = VT4VG (�F � �1)3�21�31�41 : (B.6)3. �2 < �F < �3w1 = C1 + (C1 + C2)�3 � �F�31 + (C1 + C2 + C3)�4 � �F�41w2 = C1 + C2 + C3 + (C2 + C3)�3 � �F�32 + C3 �4 � �F�42w3 = (C1 + C2)�F � �1�31 + (C2 + C3)�F � �2�32w4 = (C1 + C2 + C3)�F � �1�41 + C3 �F � �2�42 (B.7)with C1 = VT4VG �F � �1)2�41�31C2 = VT4VG (�F � �1)(�F � �2)(�3 � �F )�41�32�31C3 = VT4VG (�F � �2)2(�4 � �F )�42�32�41 : (B.8)4. �3 < �F < �4w1 = C �4 � �F�41w2 = C �4 � �F�42w3 = C �4 � �F�43w4 = VT4VG � C �4� (�F � �1)� 1�21 + 1�31 + 1�41�� (B.9)



B.2. NUMBER AND DENSITY OF STATES 103with C = VT4VG (�4 � �F )3�41�42�43 : (B.10)5. �4 < �Fw1 = w2 = w3 = w4 = VT4VG : (B.11)B.2 Number and density of statesWhen negle
ting the matrix elements, one yields the well-known terms for the num-ber of states nT (E) and the density of states DT (E) of one tetrahedron, whi
h areequivalent to the formulae given for instan
e by Lehmann and Taut [LT72℄.Negle
ting the matrix elements means setting them to one, i.e. Xn(kj) = 1 in(B.3). With this the number of states and density of states take the formnT (�) = 4Xi=1 wi; DT (�) = ���nT (�); (B.12)and take the following values in the �ve regions:1. �F < �1nT (�) = 0DT (�) = 0 (B.13)2. �1 < �F < �2nT (�) = VTVG (�� �1)3�21�31�41DT (�) = VTVG 3(�� �1)2�21�31�41 (B.14)3. �2 < �F < �3nT (�) = VTVG 1�31�41 ��221 + 3�21(�� �2) + 3(�� �2)2 � �31 + �42�32�42 (�� �2)3�DT (�) = VTVG 1�31�41 �3�21 + 6(�� �2)� 3�31 + �42�32�42 (�� �2)2� (B.15)



104 APPENDIX B. TETRAHEDRON METHOD4. �3 < �F < �4nT (�) = VTVG �1� (�4 � �)3�41�42�43�DT (�) = VTVG 3(�4 � �)2�41�42�43 (B.16)5. �4 < �FnT (�) = VTVGDT (�) = 0 (B.17)



Appendix CUnitsAmong gaussian and SI and other unit systems, there are the so 
alled atomi
 units(see also appendix 6 in [ZL83℄), whi
h are favored in atomi
 
al
ulations. Thisterm a
tually refers to two slightly di�erent s
alings. As in all unit systems, the�ne-stru
ture 
onstant� = e24�"0~
(here given in SI units) has to be 
onserved. For 
al
ulations on the atomi
 s
ale,the 
hara
teristi
 length is the Bohr radiusa0 = 4�"0~2me2 = 5:29 � 10�11m;while the Rydberg energyRy = ~22ma20 = 13:61eVis the typi
al energy dimension.� For Hartree units you set~ = 1; m = 1; e = 1; "0 = 14� ; 
 = 1� � 137;with the result that lengths are given in Bohr radii, and energies are multiplesof 2Ry, whi
h is 
alled one Hartree. The kineti
 operator takes the usual formp22 or k22 :� In the Rydberg set you pla
e~ = 1; m = 12 ; e2 = 2; "0 = 14� ; 
 = 2� � 2 � 137;105



106 APPENDIX C. UNITSresulting in lengths expressed in Bohr radii, and energies in multiples of oneRydberg. But the kineti
 operator takes the unnormal formp2 or k2:Whi
hever of the two s
alings you 
hoose, you 
an take a formula in gaussian orSI system and repla
e the quantities as mentioned above. The jun
tion to the SIquantities energy, frequen
y and temperature is given by1eV = 1:602 � 10�19 Ws (C.1)1meV~ = 1:519 THz (C.2)1meVkB = 11:604 K: (C.3)



Appendix DParameters of 
al
ulationsEle
troni
 shells: In the following table the atomi
 
on�gurations for the ele-ments 
al
ulated with in this thesis are listed.Element number atomi
 levelsAl 13 [Ne℄.3s2:3p1Ge 32 [Ar℄.3d10:4s2:4p2Ag 47 [Kr℄.4d10:5s1In 49 [Kr℄.4d10:5s2:5p1Sn 50 [Kr℄.4d10:5s2:5p2Sb 51 [Kr℄.4d10:5s2:5p3Te 52 [Kr℄.4d10:5s2:5p4Au 79 [Xe℄.4f 14:5d10:6s1The notation of the atomi
 levels refers the the next smaller noble element, whi
hare: Element number atomi
 levelsHe 2 1s2Ne 10 [He℄.2s2:2p6Ar 18 [Ne℄.3s2:3p6Kr 36 [Ar℄.3d10:4s2:4p6Xe 54 [Kr℄.4d10:5s2:5p6This se
tions lists the most important parameters for the self-
onsistent FLAPWbulk 
al
ulations, whi
h have been performed with the FLEUR 
ode [FLE℄. Therevised version (revPBE) [ZY98℄ of the GGA potential of Perdew, Burke and Ernz-erhof (PBE) [PBE96℄ has been used. The number of basis fun
tions is the maximumnumber of G-ve
tors used. The number of k-points refers to the self-
onsistent 
al-
ulation, the DOS and the 
al
ulation of the diele
tri
 fun
tion.107



108 APPENDIX D. PARAMETERS OF CALCULATIONSTest systems: These systems were 
al
ulated in 
hapter �ve for testing purposes.Aluminum was 
al
ulated in simple 
ubi
 
on�guration (s
) for two unit 
ells toillustrate ba
kfolding. Al (hypoth.)latti
e stru
ture s
latti
e parameter anum = 2:729�Ainversion symmetry yesatoms per unit 
ell 1 2Gmax[1=a0℄ 3.5 3.5# of basis fun
tions 110 206# of ele
trons 3 6# of k-points 6 6It has been 
al
ulated in the a
tual fa
e-
entered 
ubi
 (f

) 
on�guration as wellto 
ompare to literature. Allatti
e stru
ture f

experimental parameters aexp = 4:049�Alatti
e parameters anum = 4:049�Adi�eren
e (numexp � 1) 0:1%inversion symmetry yesatoms per unit 
ell 2Gmax[1=a0℄ 3.5# of basis fun
tions 184# of ele
trons 6# of k-points 140, 300, variousThe se
ond test system was 
opper. Culatti
e stru
ture f

latti
e parameters a = 3:598�Aexperimental a = 3:615�Adi�eren
e (numexp � 1) �0:4%inversion symmetry yes



109atoms per unit 
ell 2Gmax[1=a0℄ 3.5# of basis fun
tions 142# of ele
trons 22# of k-points 30, 300, 288
GeTe 
ompounds: The 
ubi
 and trigonal phases were investigated. Latti
eparameters are taken from [Wel02℄.GeTe (high temp.)latti
e stru
ture ro
ksaltexp. latti
e parameters aexp = 6:012�Anum. latti
e parameters anum = 6:086�Adi�eren
e (numexp � 1) +1:23%inversion symmetry yesatoms per unit 
ell 4Gmax[1=a0℄ 3.5# of basis fun
tions 567# of ele
trons 20, 60# of k-points 84, 75, 288GeTe (low temp.)latti
e stru
ture trigonal (A7)exp. latti
e parameters atr = 4:293�A� = 58:128Æexp., hexagonal aexp = 4:171�A
exp = 10:662�Anum., hexagonal anum = 4:273�A
num = 10:725�Adi�eren
e (numexp � 1) +2:45%;+0:59%Æexp1 0.47461Please see 
hapter 6 for the meaning of this parameter.



110 APPENDIX D. PARAMETERS OF CALCULATIONSÆnum 0.4747inversion symmetry noatoms per unit 
ell 6Gmax[1=a0℄ 3.2# of basis fun
tions 665# of ele
trons 30# of k-points 85, 50, 146
AgTe 
ompounds: The se
ond 
lass of systems investigated were Silver-Tellurium
ompounds. The latti
e numeri
al parameters are taken fromDetemple et al. [DWWB03℄.AgSbTe2latti
e stru
ture ro
ksaltlatti
e parameters aexp = 6:08�Alatti
e parameters anum = 6:29�Adi�eren
e (numexp � 1) +3:5%inversion symmetry yesatoms per unit 
ell 4Gmax[1=a0℄ 3.4# of basis fun
tions 576# of ele
trons 58# of k-points 84,75AgInTe2latti
e stru
ture 
hal
opyritelatti
e parameters aexp = 6:42�A
exp = 12:58�Alatti
e parameters anum = 6:84�A
num = 13:12�Adi�eren
e (numexp � 1) +6:5%;+4:3%inversion symmetry noatoms per unit 
ell 16Gmax[1=a0℄ 3.2



111# of basis fun
tions 1937# of ele
trons 144# of k-points 26,50Detemple refers to [Hah53℄ for the experimental latti
e 
onstants of this system.AgInTe2latti
e stru
ture ro
ksaltlatti
e parameters aexp = 6:02�Alatti
e parameters anum = 6:22�Adi�eren
e (numexp � 1) +3:3%inversion symmetry yesatoms per unit 
ell 4Gmax[1=a0℄ 3.4# of basis fun
tions 554# of ele
trons 36# of k-points 84,75
No experimental data are available for this stru
ture.AgSbTe2 (hypoth.)latti
e stru
ture 
hal
opyritelatti
e parameters anum = 7:14�A
num = 13:49�Ainversion symmetry noatoms per unit 
ell 16Gmax[1=a0℄ 3.2# of basis fun
tions 1937# of ele
trons 144# of k-points 26
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