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CHAPTER 1

INTRODUCTION

Magnetism is an intriguing phenomenon. It has fascinated people already in ancient times,

when performers demonstrated the invisible magnetostatic forces which enable amber to

attract lint and dust in an – at that time – incomprehensible and miraculous way. Since then,

the exploration of magnetic effects has long been extended beyond pure curiosity. Nowadays

a lot of the fundamental magnetic mechanisms are well understood, leading to a manifold of

applications that are part of our every-day life in one way or another, ranging from effects

on a macroscopic scale, such as the compass or the generator, to omnipresent applications of

modern micro- and nanoelectronics most notably in the area of computing and information

technology. The delightful journey into the magnetic realm has just begun, and – sufficient

fundamental knowledge provided – stimulating developments are ahead of us!

Applications of magnetism The most prominent utilization on a microscopic scale is

probably magnetic data storage – including computer hard disk drives – which is present in all

aspects of information technology, ranging from IT infrastructure to consumer devices. The

astonishing growth in electronics capabilities (e.g., computing power or storage capacity),

which is commonly dubbed synonymously with Moore’s Law, would not have been possible

without continuous improvement in the underlying basic technology, and extension of the

understanding and application of magnetism on a microscopic level.

A key achievement in this regard was the discovery of the effect of Giant Magnetoresis-

tance (GMR), which is based on the orientation of magnetic moments in an assembly of

different magnetic and non-magnetic slim layers of a thickness of only a few atoms. It is

this effect which boosted the development and enabled the tremendous growth of hard disk

capacity of the last decade. Further applications include new magnetic sensors. The out-

standing relevance of this development is reflected by the joint awarding of the Nobel Prize

of Physics in 2007 to the discoverers of this effect, Peter Grünberg and Albert Fert.

Magnetic data storage is now a key technology of the information age and will continue to

be so for the foreseeable future. In order to fuel the development of ever miniaturized areas in

magnetic storage and ever decreasing switching times of devices a deepened understanding

of the magnetic properties of the materials in use, in particular its magnetic excitations and

switching dynamics is indispensable.

Theoretical and experimental investigations While macroscopic properties have

been understood quite early from a phenomenological point of view, its microscopic ori-

gin has been unclear for a long time. This has only been revealed after the development of
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CHAPTER 1 — INTRODUCTION

quantum mechanics and the discovery of the electron spin in the early 20th century and the

emerging solid-state physics.

However, it is this nano-scale insight into magnetism which is indispensable in order to

match the continuous demand for device engineering on an atomic level. One important kind

of corroboration is provided by theoretical investigations, which nowadays prominently in-

clude computer simulations. These computations serve not only as a tool to better understand

the results of conducted experiments; they should also feature a significant extend of predic-

tive power. In this sense, the implementations of theoretical methods in computer codes can

act as a virtual laboratory, enabling the investigation of new problems not yet realized in

real-world setups, and providing answers as well as new input for novel experiments.

The goal is to bring together theoretical and practical experiments as two different bran-

ches of related investigations, with the aim to harmonize their findings, or to identify and

systematically categorize remaining deviations and learn about their origins. Such a com-

bined approach should enable for the utilization of the advantages of each discipline, leading

to new ideas to be thought, and will finally result in new applications of magnetic effects,

leading to new real-world products available to customers.

The spin-flip response function According to the very fundamental rules that make

the world stick together, a system not being exposed to any perturbing interaction is striv-

ing towards its energetical ground state, which has an associated magnetic structure. This

can include very diverse setups such as ferromagnetic, ferrimagnetic or antiferromagnetic

orientation of the magnetic moments on an atomic scale.

Apart from the inherent magnetic ground-state structure of solids and molecules, the reac-

tion of a system to external magnetic fields is the key property to study. This is condensed

in the response function χ+− which, from a mathematical point of view, is defined as a

functional derivative of the magnetization with respect to the external perturbing magnetic

field. From a physical point of view, this quantity describes how a charge-neutral elementary

spin excitation (i.e., an increase or decrease of the total spin of the system due to an external

probe) propagates in the system. In model calculations, two distinct kinds of such excitations

can be distinguished:

• single-particle excitations that involve individual particles of the system (in the scope

of the density functional theory: fictitious non-interacting particles), which are called

spin-flip excitations; and

• collective excitations that involve the whole ensemble of particles of the system, which

are called spin-wave excitations. In the Heisenberg model, these excitations can be

conveniently visualized as wave-like spin oscillations which spread throughout the sys-

tem.

In real materials, these two kinds of excitations cannot be clearly separated. Subsequently,

the according response function χ+− which describes both of these effects can be called

spin-flip response function or spin-wave response function.

The representation of this spin-flip response function in the energy and momentum do-

main, which reads χ+−(q, ω), provides information on the strength of the response to probes

of the given characteristics. For example, spin waves of a given energy and momentum are

excited in neutron scattering experiments by matching neutrons. Another example includes a
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change of the magnetic structure (like the switching of magnetic orientation in a microscopic

domain, representing a data bit in a storage device) which also involves elementary magnetic

excitations. For the design of electromagnetic devices the necessary energies to be applied

and the encountered switching times are key factors.

Method of investigation Different methods have been developed to compute the elec-

tronic structure of solids, which can be grouped into model approaches and first-principles

(also called ab initio) approaches. Each approach has its specific advantages and disadvan-

tages. First-principles methods (such as the Density Functional Theory) establish a calcu-

lation procedure essentially without any material-specific parameters, which enables such

calculations for predictive statements. Model-based approaches, on the other hand, comprise

such adjustable parameters. However, specifically tailored model approaches might yield

significant advantages in terms of computation time or in terms of physical systems which

are accessible. (For instance, models based on the Hubbard Hamiltonian are geared towards

the investigation of strongly correlated systems which are barely accessible with Density

Functional Theory.)

The investigations in this thesis are based on the Density Functional Theory (DFT), which

is the prevalent ab initio approach. It is geared towards the determination of the ground state

of a physical system. Any excited states, though, are beyond the scope of this theory. Subse-

quently, the task to determine the magnetic response function results in a two-step procedure:

In the first part the ground state is determined using DFT, in the subsequent second part the

response function is calculated on top of the DFT result. Two common methods exist for this

task: The many-body perturbation theory (MBPT) and the time-dependent extension of the

conventional DFT (TDDFT).

Calculations in this thesis In this thesis, the spin-flip response function χ+− is de-

termined by means of the TDDFT. This method is suited in particular for charge-neutral

excitations, which include spin-wave excitations. The detailed incarnation involves the full-

potential linearized augmented plane-wave method (FLAPW). Up to the author’s knowledge,

this combination has not been implemented so far.

Several characteristic features of the spin-flip response can be efficiently studied for the

homogeneous electron gas. The according formalism is derived in this thesis. The results

help both in the implementation of the method as well as in the understanding of the results.

Subsequently, the method is tested on real systems. The focus is put on a systematic

analysis of the method. The influence of the computational parameters is evaluated for the

simple transition metals Iron, Cobalt and Nickel. The resulting spin-wave dispersions are

compared to other calculations and measurements.

Structure of this thesis According to the statements above, this text contributes to the

exploration of magnetism a theoretical investigation based on first-principles methods. A new

combination of methods is implemented. Therefore the main goal of this thesis is a consistent

formulation and presentation of the theory, and a reliable assessment of the implementation.

The structure is as follows.

• The basic theory that underlies all the calculations of this work – the conventional
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density-functional theory (DFT) as well as its time-dependent extension (TDDFT) – is

introduced in chapter 2.

• The crucial physical quantity that is to be investigated, the spin-flip correlation func-

tion χ+−(q, ω), is worked out in chapter 3 and connected to the density-functional

formalism.

• In order to deepen the understanding and put the relations from the preceding chapter

into perspective, the formalism is executed in chapter 4 on the homogeneous electron

gas.

• Practical implementation issues for real materials are worked out in chapter 5, in par-

ticular the FLAPW and the mixed-basis method.

• Results from this implementation are presented in chapter 6.

Each of these chapters starts with a brief overview. The work concludes with an outlook

(chapter 7). Derivations and a notation index are found in the appendices.
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CHAPTER 2

DENSITY-FUNCTIONAL THEORY

Contents

2.1 The Many-Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Density-Functional Fundamentals . . . . . . . . . . . . . . . . . . . . 9

2.3 The Kohn-Sham Formalism . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Performance of DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Time-Dependent DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

In this chapter I introduce the theory that underlies the current work, namely the methods

used to obtain the electronic structure of the solids. The theory of the magnetic response is

explored later in chapter 3.

The fundamental framework for any such system is the quantum-mechanical many-body

formalism (section 2.1), which in all its beauty is equally universal and insoluble except for

very simple cases. Subsequently, focus is put on density-functional theory (DFT, section

2.2), one of the most capable first-principles theories in solid-state physics, which – though

providing a framework only – leads to a practical method to handle complex systems. The

practicability stems from the ansatz of Kohn and Sham (section 2.3) that leads to the Kohn-

Sham equations (2.25) of fictitious non-interacting particles in a replacement system with an

additional exchange-correlation potential. Special emphasis is put on one specific approx-

imation for this exchange-correlation potential – the local-density approximation (LDA) –

and on the spin-specific aspects of the formalism, both of central importance in the further

chapters.

Though enormously powerful, DFT also has some shortcomings briefly discussed in sec-

tion 2.4. (This should clarify why the particular methods – adiabatic LDA on top of a

FLAPW DFT calculation – have been chosen.) The time-dependent extension to the density-

functional theory (section 2.5), which overcomes some of these problems, provides the the-

oretical link to the response function that is the subject of chapter 3.

2.1 The Many-Body Problem

A realistic quantum-mechanical many-body system is not a trivial composition of its con-

stituents, likewise it is highly non-trivial to calculate seemingly elementary properties, such

as the energies of the addition to or the removal of one particle from such a system. In fact,

the single constituents of such an interacting many-body system can no longer be identified
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CHAPTER 2 — DENSITY-FUNCTIONAL THEORY

separately, but the concept of quasi-particles needs to be established. This holds true even

for the homogeneous electron gas that is probably the simplest periodic system, which is

the class of systems we are interested in. In order to establish a deep understanding of the

physical properties of solids, a quantum-mechanical treatment has to be applied that reflects

the physical interactions between its constituents. This is best taken into account by em-

ploying the true physical interactions, namely the Coulomb attraction and repulsion between

the charges of electrons and nuclei. Such an ab initio description yields, for instance, the

complete energy spectrum, containing all excitations.

According to elementary quantum mechanics, the state |Ψ(t)〉 of a given system contains

the complete information of the system at time t. If zero temperature and an isolated setup

without interaction with any environment is assumed, the state vector is determined by the

time-dependent Schrödinger equation1

i~
∂

∂t
|Ψ(t)〉 = Ĥmb|Ψ(t)〉. (2.1)

As a first-order differential equation in the time coordinate this equation poses an initial-value

problem which demands the specification of an initial state |Ψ(0)〉. Commonly the ground

state is chosen as the initial state.

Finally, we are interested in the response to arbitrary external fields which will, however,

be treated as a perturbation in linear response. For the moment, we can therefore neglect

them and remain with a many-body Hamilton operator which does not vary in time in any

way, Ĥmb 6= Ĥmb(t). Then, the time-dependent part of the state can be separated,

|Ψ(t)〉 = |Ψ〉e− i
~
Et (2.2)

with the system’s stationary state |Ψ〉 understood as a function of, e.g., spin and spatial

variables of all particles. Together with the total energy E this stationary state is given (for

the ground state as well as for excited states) by the time-independent Schrödinger equation

Ĥmb|Ψ〉 = E|Ψ〉. (2.3)

Due to the second derivative in the kinetic-energy operator T̂ , this equation is a boundary-

value problem that requires adequate boundary conditions, e.g., the crystallographic spatial

periodicity. These statements are also true for the Kohn-Sham equations (2.25) and (2.50)

presented in the coming sections. Independent of the kind of the differential problem, both

Schrödinger equations have the further boundary condition of yielding physical states which

for fermionic systems need to be anti-symmetric with respect to particle interchange.

The setups considered here are solids consisting of N electrons moving in the potential of

Nnuc positive nuclear point charges at positions Rα. The Hamiltonian

Ĥmb = T̂ + V̂ + Û + Ûnuc (2.4)

is made up of the operators of the kinetic energy T̂ , the electron-nuclei interaction V̂ and the

electron-electron interaction Û as well as the nuclei-nuclei interaction Ûnuc. The operators in

1The presentation in this work is restricted to the non-relativistic case.
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2.1 The Many-Body Problem

first quantization and in SI units read

T̂ = − ~2

2me

N∑

i=1

∇̂2
i

V̂ =
N∑

i=1

Vext(r̂i), Vext(r̂i) = − 1

4πε0

Nnuc∑

α=1

Zαe
2

|̂ri − R̂α|

Û =
1

2

1

4πε0

N∑

i 6=j

e2

|̂ri − r̂j|

Ûnuc =
1

2

1

4πε0

Nnuc∑

α 6=β

ZαZβe
2

|R̂α − R̂β|

(2.5)

We apply the Born-Oppenheimer approximation, that is we assume fixed coordinates of the

nuclei and thus exclude phononic degrees of freedom. The nuclear coordinates Rα are then

understood not as expectation values of operators, but as fixed parameters. Then, the opera-

tors read in second quantization:

T̂ = − ~2

2me

∑

i

∫

d3r ψ̂†
i (r)∇2ψ̂i(r)

V̂ =
N∑

i=1

∫

d3r ψ̂†
i (r)Vext(ri)ψ̂i(r), Vext(ri) = − 1

4πε0

Nnuc∑

α=1

Zαe
2

|ri − Rα|

Û =
1

2

1

4πε0

N∑

i 6=j

∫

d3r d3r′ ψ̂†
i (r)ψ̂

†
j(r

′)
e2

|ri − rj|
ψ̂j(r

′)ψ̂i(r)

Ûnuc =
1

2

1

4πε0

Nnuc∑

α 6=β

ZαZβe
2

|Rα − Rβ|
.

(2.6)

In this context the external potential2 Vext is understood as being external to the electronic

part of the system, and takes up the sum of all nuclear potentials. It would also take up scalar

potentials external to the system, however we neglected such potentials earlier. Such a ‘true’

external field will be used in the time-dependent formalism in section 2.5. The term Unuc

yields a constant energy value Enuc
3 for a given setup of coordinates Rα.

The Hilbert space encompassing the state vector is built out of subspaces of its con-

stituents, and many-body operators are composed of single-particle operators (like r̂i or ∇̂i

2It should be noted that the unit of the potentials used in this thesis are that of energy, since it acts on the

particle density instead of the charge density, which does not contribute the factor e, according to (2.13). In

atomic units, however, this distinction disappears.
3This should express that the value is constant for one given setup of nuclear coordinates. It is finite if

calculated for one unit cell of a periodic system, but diverges for the whole system.

7



CHAPTER 2 — DENSITY-FUNCTIONAL THEORY

above) acting on the according subspaces. The particle and spin density read

n(r) = 〈Ψ|
N∑

i=1

δ(r− r̂i)|Ψ〉 (2.7)

σσσ(r) = 〈Ψ|
N∑

i=1

σ̂σσiδ(r− r̂i)|Ψ〉 (2.8)

where σ̂σσi = (σx, σy, σz)i is the vector of Pauli Matrices

σx =

(
0 1
1 0

)

σy =

(
0 −i
i 0

)

σz =

(
1 0
0 −1

)

(2.9)

acting on the 2× 2 spin subspace of particle i.
In practice, it turns out that many mesoscopic and macroscopic solids (like the lattice-

periodic crystals we consider) are either non-magnetic, i.e., σσσ(r) = 0 in the whole system, or

collinear, i.e., the spin density σσσ is everywhere parallel to one fixed axis commonly chosen as

the z direction. As a consequence, the four-component description (n,σσσ) can be simplified

to (n↑, n↓) or (n, σ) or (n, ξ), involving the spin polarization ξ.

n(r) = n↑(r) + n↓(r) (2.10)

σ(r) = n↑(r)− n↓(r), σσσ(r) = σ(r)ez (2.11)

ξ(r) =
σ(r)

n(r)
, 0 ≤ |ξ(r)| ≤ 1. (2.12)

The consequences of collinearity for the formulation of the theory will be pointed out

throughout the text. The connection between charge and particle density and between

magnetization and spin density read :

ρ(r) = −en(r) (2.13)

m(r) = −gµB

~
S(r) = −g

2

µB

~
σσσ(r) (2.14)

with the Bohr magneton µB (whose value in SI units is e~
2me

, please confer appendix A.1) and

positively defined elementary charge e. The spin operators are related by

Ŝ =
~

2
σ̂σσ. (2.15)

The factor

g = 2
(

1 +
α

2π
+O(α2)

)

≈ 2.0023 (2.16)

is called Landé factor. α ≈ 1/137 is the universal fine-structure constant. The value g = 2
can be obtained from the Dirac equation, however, a proper treatment according to quantum

electrodynamics leads to the small deviations noted above.

From now on, the atomic Hartree units (see appendix A.1) are used, which are the standard

set of units for quantum-mechanical calculations, involving the setting e = me = ~ = 1,

8



2.2 Density-Functional Fundamentals

µB = 1/2. However, I will continue to use the symbol µB since it usually appears together

with the Landé factor and µBg ≈ 1.

The effort to solve (2.3) scales exponentially with the number of particles and is much

too complex to be solved exactly [Koh99]. In spatial representation the system’s eigenstate

reads Ψ(r1, σ1, . . . , rN , σN ), being a function of 3N spatial variables and N spin variables.

Both the computation and storage of the eigenvector of all but the smallest systems (that are,

depending on the exact method, systems of maybe a handful of particles) exceed any existing

and foreseeable future resources. Furthermore, the full state vector is a bulk of data of which

only few exclusive pieces of information – like some operator expectation values – are of

interest, while the rest is undesired overhead.

Thus, more efficient formalisms have to be employed that are on the one hand practically

applicable, while on the other hand still comprise the essential physics of the system in order

to reliably compute the desired quantities.

2.2 Density-Functional Fundamentals

Draw the curtain for density-functional theory (DFT), the de facto standard framework for

ab initio calculations of solids! It is a powerful tool with predictive power that has led to a

deep insight into the inner workings of matter. It was developed in 1964 by Hohenberg and

Kohn [HK64].

Its central theorem comes in two parts. The first statement establishes the fundamental

importance of the particle density n(r). Utilizing the Rayleigh-Ritz variational principle, it

is proved by contradiction that there is an invertible mapping between the external potential

Vext(r) (2.5) and the particle density (2.7) of the ground state, n0(r), with the sole ambiguity

of an additional constant in the potential. For a solid described by equation (2.3) this means

that the charge distribution determines the lattice structure, and vice versa. Therefore, if

the external potential Vext is a functional of the ground-state density, so is the Hamiltonian

Ĥmb = Ĥmb[n0] as well as the many-body state |Ψ〉 = |Ψ[n0]〉, and the expectation value of

any observable Ô in the ground state, is determined as

O0 = O[n0] = 〈0|Ô|0〉, |0〉 = |Ψ[n0]〉 (2.17)

with the many-body ground state |0〉. In practice, however, no feasible way is known to

calculate most of these physical quantities from the ground-state density directly, which still

has to be determined in the first place.

The second part of the theorem states that for each possible physical potential Vext(r) there

exists a unique functional E[n] which under the boundary condition of particle conservation
∫
n(r) d3r = N obtains its minimum for the ground-state density n0(r) and yields the ground-

state energy E0:

E0 = E[n0]
!
= min

n
E[n]. (2.18)

While the initial proof was limited to a non-degenerate ground state, this restriction was

removed later [DG90]. In a more elegant derivation of the above theorems, Levy [Lev79]

furthermore showed that the unique energy functional E[n] for any physical density n(r) can

9
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be defined as the minimum over all many-body states |Ψ〉 which yield the density n(r),

E[n] = min
|Ψ〉 n

〈Ψ|T̂ + Û + V̂ext|Ψ〉 (2.19)

and can be written as

E[n] = F [n] +

∫

n(r)Vext(r) d
3r, (2.20)

where the simple functional dependence of the energy on Vext is explicitly displayed. The

functional

F [n] = min
|Ψ〉 n

〈Ψ|T̂ + Û |Ψ〉 (2.21)

is universal in the sense that it does not depend on Vext and that it has the same form for all

systems described by the Schrödinger equation (2.3).

It should be noted that this formalism also holds for systems containing particles with

a spin degree of freedom. The magnetization is then given as a functional of the charge

density, m = m[n]. However, this turns out to be impractical, consequently the spin-density

functional theory has emerged, which describes all the functionals with respect to both charge

density and magnetization, e.g., E = E[n,m]. This description is used in the forthcoming

sections. An equivalent formulation involves a four-component density matrix ραβ .

If external fields are present, the central conclusion of the Hohenberg-Kohn theorem, the

mapping between charge and external potential breaks down4; further development on this

led to the current-density functional theory [VR87], which uses functionals E = E[n,m, j]
of charge and magnetization as well as the current density j(r). This will not be a subject in

this thesis.

2.3 The Kohn-Sham Formalism

Density-functional theory has led us to a vast reduction of the problem, from handling

the 4N -dimensional function Ψ to finding the minimum of E[n] with respect to the three-

dimensional trial function n(r). However, since the explicit form (with respect to the density)

of the functional F [n] remains unknown, the theory seems to be rather academic and of little

use. At this point, the work of Kohn and Sham [KS65] enters the stage, for the moment being

presented for a non-spin-polarized system. (Thus, the number of electrons N is considered

to be even. This limitation is lifted in the next paragraph on the spin-dependent Kohn-Sham

formalism.)

The central idea is to construct a fictitious auxiliary system of N independent particles

described by wave functions ϕi(r) moving in an effective potential Veff(r). This potential is

4To be more precise, the Hohenberg-Kohn theorem still holds for physical external fields of finite size. How-

ever, the Hamiltonians in use frequently lead to infinite fields, let it be scalar fields of a form Vz = −Ez
or magnetic fields mediated by a vector potential. Such fields cannot be covered by the Hohenberg-Kohn

theorem anymore because they possess no well-defined ground state.
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chosen such that the density of this auxiliary system

n(r) =
∑

i

|ϕi(r)|2f(ǫi) (2.22)

equals the interacting system’s density. The energy functional (2.20) then reads

Es[n] = Ts[n] +

∫

n(r)Veff(r) d
3r. (2.23)

with the kinetic energy functional

Ts[n] = −1

2

occ∑

i

∫

ϕ∗
i (r)∇2ϕi(r) d

3r. (2.24)

Since we are within the scope of DFT, we only describe the ground state, and our many-body

state is combined out of the N energetically lowest single-particle states. This is reflected by

the Fermi occupation function f in (2.22). The variation ofEs[n] with respect to the complex

conjugate of these orbitals ϕ then leads to the Kohn-Sham equations

[

−1

2
∇2 + Veff(r)

]

ϕi(r) = ǫiϕi(r) (2.25)

which resemble one-particle Schrödinger equations. The Lagrange parameters ǫi enter due to

the boundary condition of charge conservation,
∫
n(r) d3r = N , and further ensure normal-

ization 〈ϕi|ϕj〉 = δij . These parameters as well as the eigenfunctions are a purely mathemat-

ical construct without physical meaning.5 Nevertheless, it is common practice to interpret the

ǫi not only as single-particle energies of the Kohn-Sham system but as quasi-particle energies

of the interacting system. Experience shows both qualitative agreement with experimental

results, e.g., obtained by angular-resolved photo-emission spectroscopy (ARPES), as well as

systematic quantitative deviations.

Since we consider a non-spin-polarized (also casually called paramagnetic) system, each

state ϕi(r) is occupied twice. Subsequently one can understand the index i to cover electrons

of one spin channel only, and account for the other spin channel by a factor of 2 where

necessary. However, this notation is not picked up in this text.

In order to apply this scheme, a useful expression for the effective potential Veff must be

found. The important achievement of Kohn and Sham was to write the true system’s total

energy (2.20) as

E[n] = Ts[n] + EH[n] + Eext[n] + Exc[n] + Enuc (2.26)

with the Hartree energy

EH[n] =
1

2

∫
n(r)n(r′)

|r− r′| d3r d3r′ (2.27)

5 Exempt from this is the highest occupied eigenvalue εN , which according to Janak’s theorem [Jan78] equals

the chemical potential of the real system.

11
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and the “external energy” resulting from the influence of the external potential,

Eext[n] =

∫

n(r)Vext(r) d
3r. (2.28)

The term Enuc accounts for the repulsion of the atomic nuclei, c.f., Ûnuc in (2.6). Finally,

the newly introduced exchange-correlation energy Exc is defined such that the sum in (2.26)

results in the total energy E of the interacting system. The exact form of this exchange-

correlation energy is unknown, and its exact determination amounts to the solution of the

many-body problem.

The functional variation of the total energy (2.26) that yielded the Kohn-Sham equations

(2.25) leads to the effective potential

Veff(r) = VH(r) + Vext(r) + Vxc(r) (2.29)

VH(r) =

∫
n(r′)

|r− r′| d
3r′ (2.30)

=

∫

v(r, r′)n(r′) d3r′, v(r, r′) =
1

|r− r′| . (2.31)

Analogously, the exchange-correlation potential Vxc is the functional derivative of the

exchange-correlation energy

Vxc(r) =
δExc

δn(r)
, (2.32)

which makes it a local function of the spatial coordinate r. The Kohn-Sham equations (2.25)

facilitate real-world calculations, provided that approximations to this functional of sufficient

accuracy as well as analytic simplicity are available.

Since both the Hartree potential VH and exchange-correlation potential Vxc are determined

by the density n(r), this establishes a self-consistency cycle pictured in figure 2.1. If an

initial density n(r) – for instance from a superposition of atomic densities – is provided, the

effective potential and the Hamiltonian can subsequently be constructed. The eigenvalues

and eigenvectors provide a new density nnew(r) to be constructed according to (2.22) that

the procedure can work on. In practice, a DFT cycle will most likely not converge if, for

an iteration started with density n(n)(r), the next iteration’s density is set straightforward as

n(n+1)(r) = nnew(r). Instead some kind of mixing between the old and the new density is

necessary in order to smooth the changes in density and to yield convergence. The simplest

method is the linear mixing

n(n+1)(r) = (1− α)n(n)(r) + αnnew(r), 0 < α < 1. (2.33)

If used in solid-state physics, α is typically of the size of just a few percent. Usually more

sophisticated mixing algorithms are used, see, e.g., [Joh88] and references therein. The cal-

culation is considered to be converged if the distance between the iteration’s initial density

n(n)(r) and the newly constructed density nnew(r) is sufficiently small. If successfully con-

verged, the final density enables us to explore the system’s ground-state properties, such as

total energies, band structures, density of states, magnetic moments and many more.
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Starting density

Generate potential (2.29)

Solve eigensystem (2.25)
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Figure 2.1: Sketch of the self-consistency that leads from an initial to the final charge density

by use of the Kohn-Sham self-consistency cycle (which is boxed by dotted lines).

Spin-Polarized Kohn-Sham Method The Kohn-Sham formalism introduced in the

preceding lines did not include any freedom in the spin coordinate. However, an extension to

spin-polarized systems is possible [PR72, vH72] starting from (2.23), treating the electrons

of the Kohn-Sham system as spinors6 of wave functions ϕiσ,

ϕi(r) =

(
ϕi↑(r)
ϕi↓(r)

)

(2.34)

with σ ∈ {↑, ↓} denoting the spin coordinate.

As stated earlier the exchange-correlation potential Exc[n] is determined solely by the

charge density also in the case of spin-polarized systems where the magnetization can also be

understood as a functional of the density, m[n]. However, it it is most helpful to parametrize

it with respect to both charge and magnetization density, Exc = Exc[n,m]. The Kohn-Sham

equations
[(

−1

2
∇2 + Veff(r)

)

1− m̂ · Bxc(r)

]

ϕi(r) = ǫiϕi(r) (2.35)

6This notation treats a Kohn-Sham particle as a spinor based on the spin coordinate σ. This excludes a fully-

relativistic treatment (in which the spin is not a good quantum number anymore), which would require the

introduction of the combined moment Ĵ = L̂ + Ŝ of the angular and the spin moment. In the method

presented in section 5.2.4 the core electrons are calculated separately in a fully relativistic way while the

valence electrons are calculated scalar-relativistic.
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are then a system of two equations, now also containing the magnetic moment vector operator

m̂, c.f., (2.9), (2.14), and the exchange-correlation magnetic field

Bxc(r) = −δExc[n,m]

δm(r)
. (2.36)

Thus, the independent Kohn-Sham electrons are not only moving in the mean-field potential

Veff , but also couple to the effective magnetic field Beff = Bxc + Bext (where Bext = 0 was

assumed). In order to properly account for this, the momentum operator would be needed to

replaced by 1
i
∇  1

i
∇ + A, introducing a vector potential A and leading to the aforemen-

tioned current-spin-density-functional theory. However, this modification causes very small

corrections in the situation discussed here, and is neglected in the following.

The coupling between the two equations is due to the magnetic moment operator m̂. How-

ever, in systems with collinear spin structure the states ϕi can be chosen to exclusively have

either spin-up or spin-down contributions,

ϕi =

(
ϕi↑
0

)

or ϕi =

(
0
ϕi↓

)

(2.37)

and the charge per spin channel can be written

nσ(r) =
∑

i

|ϕiσ(r)|2f(ǫiσ). (2.38)

With relations (2.9), (2.14) the Kohn-Sham system of equations (2.35) separates into two

single equations

[

−1

2
∇2 + Veff(r) +

1

2
µBgσBxc(r)

]

ϕiσ(r) = ǫiσϕiσ(r) (2.39)

with the variable σ = ±1 for the spin index σ =↑, ↓, respectively. The index i now separately

runs over the states of each spin channel. The last term in the brackets can result in a splitting

between the two spin directions, leading to a net magnetization of the system. However,

magnetism, which is omnipresent in single atoms, becomes increasingly suppressed with

higher dimensionality. Among the three-dimensional pure (i.e., systems consisting of one

element only) bulk transition metals, only the five elements chromium and manganese (both

anti-ferromagnets) and iron, cobalt and nickel (all ferromagnets) show a magnetic order in

the ground state [Blu05]. More on the features of magnetic systems is presented in section

3.1.

The Exchange-Correlation Energy The exchange-correlation energy constitutes the

link in order to perform practical calculations. All the effects that lie beyond the Hartree pic-

ture are put into this functional. The magnitude of this energy in comparison to the kinetic

and Coulomb terms is illustrated in table 2.1. The big advantage of the Kohn-Sham approach

compared to earlier approaches like the Thomas-Fermi model [Fer27, Tho27] is the accurate

description of the kinetic term which is obviously of major significance. Furthermore, the

exchange-correlation contribution to the total energy plays a significant role and needs to be

represented accurately. Since it is not possible in general to obtain an analytical expression
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Nickel Silicon

Ts[n] +1545.25 +290.87
ECoul[n] −3002.49 −560.03
Exc[n] −63.59 −20.88
Etot[n] −1520.83 −290.04

Table 2.1: Contributions to the total energy (2.26) for two different crystals, given in Hartree

per unit cell. All Coulomb interactions are summed up in the term ECoul =
EH + Eext + Enuc. The Perdew-Burke-Ernzerhof GGA is used. The numbers

also suggest a good agreement with the virial theorem that holds also for solids

[Jan74].

some kind of approximation is needed, commonly involving some fitted parametrization.

Fortunately functionals have been found that are both feasible and accurate. The goal in

solid-state physics is to provide universally applicable methods. The involved approxima-

tions might include adjustable parameters, but they are fixed globally for any given calcula-

tion to physically sound values. In particular, they are independent of properties of the spe-

cific system setup (such as the elements involved). These parameters are not to be understood

as a degree of freedom in order to fit, e.g., computational results to their experimental coun-

terparts. This needs to be kept in mind when referring to these calculations as parameter-free

or ab initio.

The simplest approximation to this functional is the local-density approximation (LDA)

that has the form

Exc = ELDA
xc [n, |m|] =

∫

n(r) [εx(n,m) + εc(n,m)] n=n(r)
m=|m(r)|

d3r. (2.40)

It is separated into an exchange and a correlation contribution, represented by the energies

per particle εx and εc. Both terms are negative. The exchange part is usually larger than the

correlation part, typically by a factor of 3 to 10 in crystallographic systems.

This approximation is inspired by the homogeneous electron gas: In this case the LDA

exchange term is equal to the Fock term of the Hartree-Fock method. Thus, it accounts for

exchange effects; further correlation effects are covered by the correlation energy per particle

εc. Due to the nature of the homogeneous electron gas, this functional ELDA
xc depends only

on the absolute value of the magnetization m(r) = |m(r)|. The energy densities εx and εc are

commonly given as functions of n and ξ. The exchange energy density is known analytically

as

εx(n, ξ) = εx(n, 0) + [εx(n, 1)− εx(n, 0)] f(ξ) (2.41)

with the spin polarization ξ from (2.12). The constituents read

εx(n, 0) = −Cxn
1/3, εx(n, 1) = −2

1/3Cxn
1/3, Cx =

3

4

(
3

π

)1/3

(2.42)

and

f(ξ) =
(1 + ξ)4/3 + (1− ξ)4/3 − 2

24/3 − 2
. (2.43)
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The correlation part, however, is not known in an analytical form, but numerically from quan-

tum Monte-Carlo calculations [CA80]. Different parametrizations exist in order to provide

an analytical approximation. In this work the parametrization of Perdew and Wang [PW92] is

used. The LDA exchange-correlation functions are detailed out in chapter 4 in the evaluation

of the homogeneous electron gas.

While this LDA approach is surprisingly successful, some shortcomings are attributed to

it, which led to the subsequent level of approximation to the exchange-correlation energy

beyond the LDA, namely the class of generalized gradient approximations (GGA) [PK98].

It approximates the missing functional by

EGGA
xc [n] =

∫

g(n, g)|n=n(r)
g=∇n(r)

d3r (2.44)

where the scalar function g depends not only on the density at one coordinate like in the

LDA but also on its gradient, which makes this method infinitesimally non-local. Different

than in the case of the LDA, the function g is not unique and many different forms have been

suggested (e.g., prominent functionals from Perdew and coworkers [PCV+92, PBE96] and

subsequent improvements [ZY98, HHN99]) incorporating a number of known properties of

the exact functional, for instance limits and scaling behaviors. Recent developments [KPB99,

TPSS03], termed meta-GGAs, include further variables into the functional such as

Emeta−GGA
xc [n] =

∫

g(n, g, τ)| n=n(r)
g=∇n(r)
τ=τ(r)

d3r (2.45)

with the kinetic energy density

τ(r) = −1

2

occ∑

i

ϕ∗
i (r)∇2ϕi(r). (2.46)

In practice, however, these meta-GGA functionals are typically used as an add-on calculation

step after the self-consistency cycle applying one of the aforementioned functionals. Other

work focuses on orbital functionals, that are more general functional approximations to the

exchange-correlation energy which depend on the Kohn-Sham orbitals. One prominent rep-

resentative is the exact exchange method [Har84] calculating the Hartree-Fock exchange of

the Kohn-Sham orbitals, which in particular avoids self-interaction. So-called hybrid func-

tionals [Bec93] combine such exact-exchange functionals with conventional GGA function-

als. While the notation above on GGAs and meta-GGAs has neglected the spin degree, it can

be easily generalized to the magnetic case where the function g depends on twice the number

of arguments, the density, density gradient and kinetic energy density of both spin directions.

The magnetic response calculations later in this thesis, however, are restricted to the LDA

and do not involve gradient corrections.

2.4 Performance of DFT

The history of density-functional theory is characterized by a continuous and ever-growing

diversity of methods that have been developed and implemented within this framework with
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different problems and applications in mind. There are for instance real-space and basis-

representation methods; methods taking into account the interactions between all the sys-

tem’s constituents (commonly scaling to the third power of the system size N ) and order-N
methods considering only the near neighborhood; basis-representation methods based on

Bloch functions or on localized functions; full-potential and pseudo-potential methods; and

many more. Subsequent research led to detailed insight into the physics of materials in gen-

eral and their actual properties in particular.

However, due to the complicated nature of electronic interactions on the one hand and

their intransparent mapping onto the Kohn-Sham system on the other it is difficult to pose

statements of general validity regarding their capabilities, yet more difficult to provide an

overview of properly detailed scope. For such reviews, please refer to, e.g., [JG89] or

[AG98]. In particular, it is often difficult to clearly attribute a deficiency either to the DFT

in general, to a particular parametrization of the exchange-correlation energy (such as LDA)

or to the method actually used. Below I will outline some capabilities of DFT in view of my

spin-response calculations presented later.

Successes and Problems DFT has become the undisputed number-one ab initio theory

for the computation of the electronic structure of condensed matter, being widely used in

solid-state physics and quantum chemistry as well as in bio-chemistry. Many calculated

properties are in very good agreement with corresponding experiments, unveiling predictive

power for properties that still have to be measured or even materials that have yet to be

synthesized.

In the focus of the majority of solid-state DFT calculations are often semi-conductors,

simple metals and, partially, transition metals, applying LDA or GGA. For these materials,

features that are well described by DFT include:

• Total energy differences can be well determined, leading to reliable structure informa-

tion such as lattice type or molecular coordination.

• Lattice constants are commonly matched within a few percent. (LDA tends to under-

estimate lattice constants while GGA overestimates them a little bit.)

• Many ground-state properties, such as bulk moduli and other mechanical properties,

are well described, including phonon frequencies.

• Magnetic structures can be accurately determined, including magnetic moments of

atoms and non-collinear configurations.

However, no light without shade. Problems met in practice include:

• There are no conceptual limitations as far as DFT itself is concerned. However, the

actual method of choice might imply additional constraints, such as pseudo-potential

methods ruling out certain classes of elements.

• All kinds of excitations are by definition beyond the scope of DFT.

• The interpretation of Kohn-Sham eigenstates and eigenenergies (both occupied and un-

occupied) as one-particle states (more precisely quasi-particle states in the many-body
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framework that is also used in chapter 3) is invalid – doing so nevertheless, however,

yields reasonable results in many cases.

• Simple approximations to the exchange-correlation energy such as LDA and GGA

fail to reproduce certain features, which are correctly described by the true exchange-

correlation functional, partly also by exact exchange. This includes the large and

systematic underestimation of semi conductor and isolator band gaps, as well as the

wrongly predicted exponential decay instead of the true van der Waals attraction ∼ 1/r
[DN92]. In a few cases the spatial or magnetic structure or conductance character

(metallic instead of semi-conducting) is predicted wrong.

• LDA and GGA in particular are not suited to treat strongly correlated systems

[KSH+06], such as, e.g., 4f systems or Mott-Hubbard insulators.

• Accuracy for most of the properties that can be well described is often limited to very

few percent. This might be insufficient, e.g., for certain tasks of quantum chemistry.

Methods beyond Several ways have been explored beyond the formalism presented up

to now in order to address certain problems, including the following:

• If a particular restriction originates only from the applied method itself, it might pos-

sibly be extended. For instance, the incompleteness of the LAPW basis set presented

in chapter 5 can lead to problems for localized states. In this case the basis can be

augmented with local orbitals.

• Some deficiencies of the local-density approximation (LDA) might get cured by a bet-

ter exchange-correlation functional, such as the mentioned more involved GGA or

meta-GGA functionals.

• Several corrections can be combined with DFT, such as the self-energy correction

(SIC) [PZ81], which is important for localized electron states, or the LDA+U method

that incorporates localization effects in a Hubbard-model manner. The latter one ad-

dresses systems with dominant correlation effects [AAL+88] and insulators in which

the exchange treatment is corrected for proper band gaps.

• Finally there are methods that truly go beyond DFT, e.g., in order to determine energies

and lifetimes of different kinds of excitations.

The last item is the proper choice when tackling excited states. Two very different ab initio

frameworks exist for this purpose. The first one is the many-body perturbation theory briefly

referred to in section 3.4, which utilizes the tool of Feynman diagrams. Applications include

the by now well-established GW approximation [Hed65] for Kohn-Sham energy corrections

and the Bethe-Salpeter equation for calculating the proper correlation function. These ap-

proaches typically involve a significant increase of computational effort compared to LDA.

The second option in order to access excited states is the time-dependent extension of the

density-functional theory. Its central quantity remains the charge density, which keeps the

computational effort significantly smaller compared to many-body approaches. It is intro-

duced in the next section and consequently applied in the coming chapters. Both methods

can be applied in linear response on-top of a self-consistent DFT calculation.
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Position of the Methods used in this Work The DFT method used in this work – the

FLAPW method introduced in section 5.2.3 – is among the most costly DFT methods with

respect to both implementation and computing effort while being one of the most flexible

and accurate DFT methods. It has no limitation to certain classes of systems and is therefore

a genuine and proven tool for the investigation of the ground state of magnetic solids such

as transition metals. The time-dependent density-functional theory promises to be a suitable

and efficient approach to access the charge-neutral spin excitations presented in section 3.

2.5 Time-Dependent DFT

The time-dependent formulation of density-functional theory (TDDFT) [MG06] extends the

applicability of the framework to time-dependent phenomena, i.e., a time-dependent Hamil-

ton operator. In particular, it can treat external electro-magnetic fields, and with it excitation

and de-excitation of the system. It is an alternative formulation to the time-dependent wave-

function mechanics (2.1), as is conventional DFT to the time-independent wave-function me-

chanics contained in (2.3). Apart from the access to particle-conserving excitations, both the

time-dependent density-functional framework and its Kohn-Sham formulation inherit most

of the restrictions from their time-independent counterparts.

The derivation of TDDFT is similar to that of conventional DFT, yet it is more involved,

and there are significant differences in the details. The first difference stems from the fact

that for a time-dependent Hamiltonian Ĥmb(t) its expectation value – the total energy E – is

not a conserved quantity anymore. However, there exists a different quantity that does not

change in time, the quantum-mechanical action

A[Ψ(t)] =

∫ t1

t0

dt 〈Ψ(t)|i ∂
∂t

− Ĥ(t)|Ψ(t)〉, (2.47)

from which the time-dependent Schrödinger equation emerges by equating its functional

derivative to zero. Therefore, solving for the time-dependent state |Ψ(t)〉, is equivalent to

calculating the stationary point of the action A. Since A is zero for the true physical solution

|Ψ(t)〉, it does not yield any further useful information.

The time-dependent Schrödinger equation as a first-order differential equation in the time

coordinate poses an initial-value problem, while the time-independent equation – being a

second-order differential equation in the space coordinates – poses a boundary-value prob-

lem. This also holds true for the derived time-dependent and time-independent Kohn-Sham

equations (2.25) and (2.50).

The analogous statement to that of Hohenberg and Kohn is the Runge-Gross theorem

[RG84, GK85, GK86]. Its proof is more elaborate, since no minimization principle can

be applied on the quantum-mechanical action, but only a condition of extremalization. The

theorem states a one-to-one correspondence – up to a time-dependent function c(t) – between

the external potential V (r, t) and the density n(r, t) now both being time-dependent:

n(r, t) ↔ Vext(r, t) + c(t). (2.48)

Analogously to (2.17) this means that also in the time-dependent setting the external potential

Vext(t) as well as the Hamiltonian Ĥmb(t), the many-body states |Ψ(t)〉 or any observable
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O(t) can be considered as a functional of the density n. It is important to realize that in

this time-dependent framework this means that these quantities are functionals of the density

in the whole space and the current time as well as all past times. This is important since

one can construct two systems which have identical densities n(r, t) and external potentials

Vext(r, t) in the whole space and for a given time t, but propagate differently for future times.

Therefore identical densities and external potentials for one given time are not sufficient;

instead identical densities and potentials have to be ensured for all past times as well.

Consequently, one-particle orbitals ϕ can be constructed in the spirit of Kohn and Sham,

which in the collinear case are related to the density by

n(r, t) =
∑

i,σ

|ϕiσ(r, t)|2f(ǫiσ) (2.49)

and are determined by the time-dependent Kohn-Sham equations:

i
∂

∂t
ϕiσ(r, t) =

[

−1

2
∇2 + Veff(r, t) +

1

2
µBgσBeff(r, t)

]

ϕiσ(r, t). (2.50)

The external contribution to the now time-dependent effective potential

Veff(r, t) = Vext(r, t) + VH(r, t) + Vxc(r, t) (2.51)

takes up the external field newly added in TDDFT, as does the external contribution to the

effective magnetic field

Beff(r, t) = Bext(r, t) + Bxc(r, t). (2.52)

The exchange-correlation functional now depends on the density and magnetization in the

whole space at all past times. The potential and magnetic field could naively be defined

in analogy to conventional DFT as functional derivatives of the quantum-mechanical action

with respect to the density and magnetization. However, the exchange-correlation poten-

tial now memorizes the development of the system in time, provoking a problem related to

causality [GDP96, GUG95]. This theoretical issue was resolved by van Leeuwen [van98]

using the Keldysh formalism, leading to an alternative action functional Ã[n,m] that the

derivatives are applied on.

While this general statement about Exc completes the theoretical framework of TDDFT,

the exchange-correlation potentials are still unknown but nevertheless as crucial for practical

applications as they are in conventional DFT. The easiest and most apparent approximation

is the use of adiabatic functionals, i.e., the functionals from common DFT are evaluated with

the time-dependent density:

V TDDFT
xc [n,m] = V DFT

xc [n,m]
∣
∣
n(r)=n(r,t)
m(r)=m(r,t)

. (2.53)

This makes the functional local in time, which is a quite drastic approximation, but also

avoids the causality problem mentioned above. Since V DFT
xc is derived as a ground-state

property, we can expect this to work only in cases where the temporal dependence is small

and the time-dependent system is locally close to equilibrium. The particular use of the LDA

functional in the TDDFT framework is commonly denoted as TDLDA or adiabatic LDA

(ALDA).
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Other approximations for the action are the exact-exchange (EXX) and optimized effective

potential methods (OEP) or to functionals with memory. For more details, please refer to a

review on TDDFT, e.g., [BSDR07, MG06]. The time-dependent DFT excels in particular in

the computation of finite systems, however, also applications to solids are very promising.

Due to its efficiency compared to the formalism of many-body perturbation theory, it is one

of the premier tools to employ.

Linear Response and Applicability In practice, the full TDDFT method needs to be

applied only if the time-dependent potential is significant compared to the initial system,

such as, e.g., for strong laser pulses. In the regime of weak perturbation – such as those

that excite our desired low-energy spin-wave excitations – it is sufficient to resort to the

linear-response theory, which is performed in chapters 3 and 4 in the particular form of the

adiabatic LDA. It enables us to calculate the response from the ground state only, which is

determined by common DFT. In fact, the vast majority of TDDFT calculations have been

performed in linear response, and most of such ab initio TDDFT calculations are based on

pseudo-potentials (which are briefly mentioned in chapter 5).
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The focus of this chapter is the response of an electronic system’s charge and magnetiza-

tion to external scalar and vector potentials, i.e., to electric potentials V and magnetic fields

B. While the essential quantities are quoted for the dielectric response as well, focus is put

on the magnetic response and magnetic excitations whose context is presented in section 3.1,

identifying (3.3) as the central operator to describe the coupling to magnetic fields. Among

the magnetic excitations two kinds can be distinguished which can both be understood as

quasi-particles: the single-particle spin-flip (or Stoner) excitations and the collective spin-

wave (or magnon) excitations.

The central quantity of interest as presented in section 3.2 is the correlation function χ−+

defined in (3.17) which, provided collinearity, is shown to contain single S ± 1 spin exci-

tations. In its projected (macroscopic) representation χ+−(q, ω) (3.40) it exhibits the quasi-

particle excitations of momentum q and energy dispersion ω(q). While single magnetic exci-

tations are described to the full extent by this quantity, effects like magnon-magnon scattering

are beyond this formalism.

Actual means to calculate this correlation function is provided by time-dependent density-

functional theory (section 3.3), based on an equivalent definition of the correlation function as

a functional derivative (3.49). For systems with collinear ground state we obtain a universal

formalism for the computation of χ+− through the Dyson equation (3.64). This relation is

general within the range of TDDFT if regarding linear coupling to the perturbing magnetic

field. The required ingredients are the Kohn-Sham response χ+−
KS (3.46) and the exchange-

correlation kernel f+−
xc . This kernel is investigated in more detail in chapter 4 in the regime

of the adiabatic LDA.
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In the closing section 3.4 of this chapter the formalism is connected to the well known

language of Feynman diagrams. Both the magnetic and the dielectric response are covered,

highlighting crucial differences. More extensive derivations are moved to appendix B. This

combined machinery of applying ALDA on a ground state obtained by a DFT calculation is

carried out analytically for the homogeneous electron gas in the following chapter 4.

Notation In chapter 2 the quantities describing the magnetic degree of freedom were cho-

sen according to common literature, i.e., the magnetization density m (see (2.36)) and the

spin polarization ξ (see (2.40)). While the latter parametrization is also used in section 2.3

in the evaluation of the exchange-correlation kernel within the LDA, it turns out that for the

framework of the spin response the spin density S is suited best.

The magnetic and dielectric components of the fields and densities are denoted x, y, z and

0. The correlation and response functions are in general 4 × 4 tensors, which suggests the

definition of a combined four-component charge consisting of scalar and magnetic charge

density, and a four-component potential containing scalar potential and magnetic field. How-

ever, since we are mainly interested in the transversal magnetic response (its components

denoted by + and −), we avoid the overhead of such a notation and stay with the 3× 3 mag-

netic quantities in most places, explaining in words when referring to the tensor components

involving dielectric contributions.

3.1 Magnetism in Solids and Spin Waves

Magnetism is an inherently complex phenomenon that originates from the combination of

the orbital and spin moments of the ensemble of all electrons, which need to fulfill the Pauli

exclusion principle as a boundary condition. The moments of the nuclei are several orders

of magnitude smaller than the electrons’ moments since they scale proportionally to the in-

verse of the particle mass, leading to very small so-called hyper fine-field effects which are

neglected here.

While the combination of two angular momenta is already non-trivial, the coupling of

many of them is extremely complicated. In order to identify the operators which describe

the essential interactions, the effect of spin and magnetic momenta is recapitulated, starting

from single atoms leading to solids.

Atomic Magnetism The proper fully-relativistic description of an atom would be the

Dirac formalism which yields the existence of the electron spin as a necessary quantity and

couples both spin and angular momentum of the electrons. In the non-relativistic Schrödinger

formulation the spin is postulated as a angular momentum of type one-half. Such a Hamilton

operator for an atom of one electron then reads [Nol86a]

Ĥatom = T̂ + V̂coul + ĤSO (3.1)

with the kinetic term T̂ and the Coulomb term V̂coul expressing attraction between nucleus

and electrons as well as repulsion between electrons. The spin-orbit coupling ĤSO ∼ L̂ · Ŝ is

composed of the total angular-momentum operator L̂ and the total spin operator Ŝ. It is the

largest of three lowest-order terms which are obtained from a relativistic expansion: the other
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two are a kinetic-energy correction that can be put into T̂ and the smaller so-called Darwin

term that was neglected in (3.1). Since the orbital moment is mostly suppressed in solids, the

spin-orbit term becomes small and can subsequently be treated as a perturbation or even be

omitted.

In the presence of a magnetic field B additional terms appear due to the coupling of the

orbital moment mL and spin moment m to that field. The total Hamiltonian then reads

Ĥatom
B = Ĥatom − (m̂L + m̂) · B+ Ĥdia. (3.2)

The diamagnetic term Ĥdia is very small (thus neglected in the following) and relevant only

if the other terms vanish. In this case, however, it leads to the macroscopic effect of diamag-

netism.

The density-functional theory which is the basis for the studies of this work operates at the

one-electron level, thus using the one-electron operators m̂in the formula above.

Magnetism in Solids Magnetism is prevalent for single atoms whose atomic shells are

occupied according to Hund’s rule. It turns out that with higher dimensionality (i.e., going

from single atoms or clusters of atoms to wires, slabs and bulk materials) magnetism is

more and more suppressed, and many magnetic structures take a collinear magnetic order.

While nearly all single atoms carry a net magnetic moment, only few elements possess a

magnetization in the bulk state. On the other hand it is not obvious from the spin-polarized

Kohn-Sham equations (2.35) how magnetism at all comes into existence. It turns out that

the exchange interaction is the driving mechanism leading to magnetism in solids (and not

for instance a direct interaction between magnetic moments). Different models have been

built on this insight, like the mean-field Stoner model [Sto39] or the Heisenberg model of

localized spins [Nol86b].

A more detailed investigation reveals that in particular the orbital moments get suppressed

in solids and one can subsequently put the focus on the spin-moments. According to (3.2) a

single localized spin then couples to a magnetic field B (be it an external field or an effective

field created by the surrounding particles) yielding a magnetic contribution to the Hamilton

operator

Ĥmagn = −m̂ · B = µBgŜ · B =
µBg

2
σ̂σσ · B (3.3)

which is also called Zeeman term. This kind of operator Ĥmagn has already been used to

account for the magnetic contribution to the Kohn-Sham equations (2.35), and is an essential

operator in the derivations of the following sections. (In appendix B.2 it is used in its many-

body notation.)

Magnetic Excitations The magnetic (or spin) excitations of a system are particle-

conserving excitations which increase or decrease the total spin of the system by one. More

precisely, a collinear setup is assumed, and such an excitation corresponds to the change

of the z-component of the total spin (along the preferential magnetic direction) by plus or

minus one: Sz → Sz ± 1. These excitations are thus of bosonic character, obeying the

Bose-Einstein energy distribution with respect to temperature. However, this detail is of

no concern in this text since the zero-temperature formalism is used. Being elementary
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E(k)

EF

k

∆q

∆E

L

x

Figure 3.1: A sketch of the two kinds of magnetic excitations. On the left, a spin-flip exci-

tation of band electrons is pictured, flipping an occupied state from the majority

band (solid blue line) to an unoccupied state of the minority band (dashed blue

line). The transition involves a transfer of momentum ∆q and energy ∆E. On

the right, an excited state of the Heisenberg model is shown. The periodicity L
relates to the momentum |q| = 2π/L. For evolving time all the spins precess on

a cone which due to the constant phase shift between sites appear as a wave-like

pattern.

excitations of the many-particle system, they can be classified as quasi-particles [FW71]

carrying a momentum q and energy ω.

On a micromagnetic scale, many calculations have successfully mapped experimental re-

sults to calculations of the prominent Landau-Lifshitz-Gilbert theory. It models the magnetic

structure by magnetic moments obeying the rules of electro-dynamics. This method relies

on empirical parameters. For a parameter-free theory one needs to turn to the quantum-

mechanical nanoscale which comprises the origin of magnetism. Nevertheless, it is an es-

sential topic of future research to bridge the gap in system size by obtaining the parameters

of the models on the micromagnetic scale from nano-scale calculations.

On a nano-scale one needs to handle transitions between quantum-mechanical spin eigen-

states. In this framework it is advantageous to introduce the ladder operators and fields

Ŝ± = Ŝx ± iŜy (3.4)

B± = Bx ± iBy. (3.5)

which allow for the alternative expression of the magnetic term (3.3) in the Hamiltonian as

µBg Ŝ · B =
µBg

2
(Ŝ−B+ + Ŝ+B−) + µBgŜ

zBz. (3.6)

Two different kinds of excitations can be identified, depending on the method in use. The first

one is the change of one single spin, like the spin of one Kohn-Sham electron in DFT or the
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spin on one site in the Heisenberg model. Such excitations are called spin-flip or Stoner exci-

tations. A spin-flip between band electrons is sketched on the left side of figure 3.1. While a

spin-flip between Bloch electrons is not strictly local but bound to two single (but extended)

Bloch states, nevertheless the whole class of one-particle excitations is occasionally denoted

as local excitations, stemming from the picture of localized spins.

However, there can be further excitations of the many-body system not described by this

concept, namely collective excitations which is the topic of the current chapter and this whole

thesis.

Collective Excitations Excitations which are beyond the scope of flips of independent

spins are called collective spin excitations. They are delocalized and can extend throughout

the whole system. The respective quasi-particles are called spin waves or magnons. In

the Heisenberg model the ground state and isolated single excited states of this kind can

be analytically calculated, involving the time evolution of the system. While all the spins

perform a uniform precession movement along the z axis in the ground state, there exist

excitation states which are characterized by a constant phase shift of this precession from

one site to the next. These excitations are pictured on the right side of figure 3.1.

Several properties of the excitations can be extracted from the Heisenberg model [Nol86b]

which also hold true for general itinerant systems. These include thermodynamical proper-

ties as well as characteristics of the dispersion. In the Heisenberg model there exists only one

single acoustic mode which for small momenta q has quadratic dispersion ωsw(q) ∼ q2 for

ferromagnets and linear dispersion ωsw(q) ∼ |q| for antiferromagnets. For larger q the exci-

tation strength becomes weaker, and fades out if it enters the range of the Stoner excitations.

Spin-flip excited states are collinear, since they only change the magnetization along the

preferential direction. Spin-wave excitations instead excite the magnetic moments off this

preferential axis, leading to a non-collinear state. However, also the latter can be calculated

within a collinear framework provided the linear-response formalism is used. Both spin-

flip and spin-wave excitations originate from the ladder operators (3.4) or, in other words,

from the components χ[x,y] of the response function (3.15). This means they involve the x-

and y-components of the spin operators, perpendicular to the preferential z axis. Therefore

both kinds of excitations together form the transversal response of the system, while the

longitudinal component of the response does not contain spin excitations.

Experimental Techniques There is a large amount of experimental methods that al-

low for the investigation of the magnetic structure of matter. In the analysis of magnetic

excitations, however, two methods are dominant, namely inelastic neutron scattering which

deeply penetrates the sample due to the weakly interacting neutrons, and the spin-polarized

electron-energy loss spectroscopy (SPEELS) which mainly investigates the surface. Spin

waves have been observed in different kind of materials such as ferromagnets, ferrimagnets,

and antiferromagnets.
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3.2 The Correlation Function

3.2.1 Definition and Shape

The charge- and spin-correlation function χ is the central quantity that describes the response

of a system to external fields. It is defined as a 4× 4 tensor

iχij(r, t, r′, t′) = 〈0| [Ŝi(r, t), Ŝj(r′, t′)] |0〉Θ(t− t′) (3.7)

=
1

(µBg)2
〈0| [m̂i(r, t), m̂j(r′, t′)] |0〉Θ(t− t′) (3.8)

where the indices i, j ∈ {x, y, z, 0} indicate the charge or spin component, and the many-

body ground state |0〉 is the same as in (2.17). The Heisenberg picture is used, with the time

dependence moved from the states |Ψ(t)〉 → |Ψ(t0)〉 into the operators Â→ Â(t),

Â→ Â(t) = e+
i
~
Ĥ(t−t0)Âe−

i
~
Ĥ(t−t0) (3.9)

for a time-independent Hamiltonian Ĥ 6= Ĥ(t) and some constant time t0 < t usually set

t0 = 0. The spin-density operators can further be written as

Ŝi(r, t) =
∑

α,β

ψ̂†
α(r, t)S

i
αβψ̂β(r, t), (3.10)

involving the creation and annihilation operators ψ̂†
α, ψ̂α which create or annihilate a particle

in spin channel α.1 The operator Si is a 2× 2 operator in spin-space that is connected to the

Pauli matrices by (2.15). The density operator n̂(r, t) = Ŝ0(r, t) is contained in (3.10) by the

definition of the diagonal matrix

S0 =

(
1 0
0 1

)

. (3.11)

The field operators for electrons (which are fermions) obey the anticommutation relations

{

ψ̂α(r, t), ψ̂
†
β(r

′, t′)
}

= δ(r− r′)δ(t− t′)δαβ (3.12)
{

ψ̂†
α(r, t), ψ̂

†
β(r

′, t′)
}

=
{

ψ̂α(r, t), ψ̂β(r
′, t′)

}

= 0. (3.13)

The definition of (3.7) is causal (i.e., retarded), indicated by the step function in time and by

the commutator brackets. The expanded bracket

[Ŝi(r, t), Ŝj(r′, t′)] = Ŝi(r, t)Ŝj(r′, t′) + Ŝj(r′, t′)Ŝi(r, t) (3.14)

includes a plus sign since the spin-density operators Ŝ involve one creation and one annihi-

lation operator each, according to (3.10).

1Such an operator applied to a Slater determinant of collinear single-particle states will create or annihilate a

spin-up or spin-down electron. In the non-collinear case, however, only the spin-up or spin-down component

(that means only a fraction) of a non-collinear single electron is created or annihilated.
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In general all coefficients of this tensor can be independent. The spin operators act on the

many-body state |0〉 which is composed of a linear combination of Slater determinants of

single-particle states. In collinear systems, due to the particular shape of the Pauli matrices

(2.9) the correlation function takes the simpler block-diagonal form

χ[x,y,z,0] =







χxx χxy 0 0
χyx χyy 0 0
0 0 χzz χz0

0 0 χ0z χ00






. (3.15)

This means that the transversal part (the x and y magnetization components that we will

further investigate) and the longitudinal part (the z magnetization and charge component)

each form independent 2 × 2 tensors. In the longitudinal part, it is common to separate the

longitudinal magnetic (zz) and the dielectric (00) contribution. The latter one is also called

polarization function P = χ00. Further evaluation using the particular shape of the Pauli

matrices (2.9) reveals the antisymmetric form of the transversal part:

χ[x,y,z,0] =







χxx χxy 0 0
−χxy χxx 0 0
0 0 χzz 0
0 0 0 P






. (3.16)

For magnetic excitations we will focus on the transversal part. Instead of the [x, y] represen-

tation above it is advantageous to access the [+,−] representation using the ladder operators

(3.4), resulting in the definition of the spin-flip response

iχ−+(r, t, r′, t′) = 〈0| [Ŝ−(r, t), Ŝ+(r′, t′)] |0〉Θ(t− t′) (3.17)

and analogous for χ+−. The transforms to cartesian components read

χ−+ = 2χxx + 2iχxy

χ+− = 2χxx − 2iχxy.
(3.18)

In the spin subspace the spin-flip operators read

S− =

(
0 0
1 0

)

S+ =

(
0 1
0 0

)

(3.19)

S−+ = S−S+ =

(
0 0
0 1

)

S+− = S+S− =

(
1 0
0 0

)

(3.20)

and further S++ = S−− = 0. The susceptibility tensor – now transformed to the [+,−, z, 0]
basis – then simplifies to

χ[+,−,z,0] =







0 χ+− 0 0
χ−+ 0 0 0
0 0 χzz 0
0 0 0 P






. (3.21)
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3.2.2 The Lehmann Representation

For a time-independent Hamiltonian, the correlation function becomes translationally invari-

ant in time,

χ(r, t, r′, t′)  χ(r, r′; t− t′), (3.22)

and a Fourier transform on the time coordinate can be performed. Further on, a Lehmann

representation can be derived (please confer section B). For this we characterize the many-

body states as |n, Sz〉, where Sz is the expectation value of the z-component of the total spin

of the system defined by

Ŝz|n, Sz〉 = Sz|n, Sz〉 (3.23)

The index n incorporates all other degrees of freedom, most notably the total particle number

N and the total spin S. In this notation the ground state keeps its common abbreviation

|0, S(0)
z 〉 = |0〉. The Lehmann representation for the spin-flip correlation function then reads

χ−+(r, r′;ω) = lim
η→0+

[
∑

n

〈0|Ŝ−(r)|n, S(0)
z + 1〉〈n, S(0)

z + 1|Ŝ+(r′)|0〉
ω − (E

n,S
(0)
z +1

− E0) + iη
−

∑

n

〈0|Ŝ+(r′)|n, S(0)
z − 1〉〈n, S(0)

z − 1|Ŝ−(r)|0〉
ω + (E

n,S
(0)
z −1

− E0) + iη

]

(3.24)

with the ground state assumed to be non-degenerate in order to keep the energy difference in

the denominator to be non-zero. Due to the form of the spin-flip operators only states S
(0)
z ±1

contribute, which is indicated by the square brackets at the sums, and could alternatively bee

understood as a constraint to the summation. The index n runs over all total spin quantum

numbers S (which therefore do not have any particular meaning in this formalism) and all

further electronic excitations, with the restriction that the total number of particles is kept

constant. Single terms in the sums and thus the whole correlation function can diverge when

a denominator becomes zero. We will follow the common diction and refer to these poles as

S ± 1 excitations instead of S
(0)
z ± 1 excitations, neglecting the z index.

For the dielectric correlation function P we obtain, according to notation (3.11), the

Lehmann representation

P (r, r′;ω) = lim
η→0+

[
∑

n 6=0

〈0|ρ̂(r)|n〉〈n|ρ̂(r′)|0〉
ω − (En − E0) + iη

−
∑

n 6=0

〈0|ρ̂(r′)|n〉〈n|ρ̂(r)|0〉
ω + (En − E0) + iη

]

. (3.25)

The sum runs over all excited states. No explicit restriction was performed as in the Lehmann

representation of χ−+ above; however, only charge-conserving excited states with unchanged

spin quantity S
(0)
z will contribute non-zero matrix elements in the numerator. As above, a

non-degenerate ground state is assumed. Furthermore, the ground state itself is excluded

from the sum, indicated by the index n 6= 0. The ground state did not need to be excluded in

(3.24) since it does not lead to any contribution.

Since the sum over all excited states |n〉 also contains each complex conjugate, the numer-

ators in the Lehmann representation can be considered real and can be factored out.
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(r, t)(r, t)

(r′, t′)(r′, t′)

Figure 3.2: The physical meaning of the one-particle Green function G and the spin corre-

lation function χ−+. On the left, the propagation (blue arrow) of an additional

particle (light-filled circle) is sketched which is injected at space-time coordinate

(r′, t′) and removed at coordinate (r, t) (red arrows). On the right, a particle-

conserving spin-up excitation (dotted non-colored circle) is injected instead. The

functions G and χ−+ are the probability amplitude of these processes.

Interpretation Apart from the causal definition (3.7), also a time-ordered (t.o.) definition

is possible,

iχ−+
t.o. (r, t, r

′, t′) = 〈0| T [Ŝ−(r, t)Ŝ+(r′, t′)] |0〉 (3.26)

with the time-ordering operator

T [Ŝ−(r, t)Ŝ+(r′, t′)] =

{
Ŝ−(r, t)Ŝ+(r′, t′) for t > t′

Ŝ+(r′, t′)Ŝ−(r, t) for t < t′
(3.27)

which does not contain a minus sign for the same reasons as in (3.14). This formulation pro-

nounces the similarity to the one-particle Green function G which describes the propagation

of one additional particle (or hole) through a system, as sketched in figure 3.2. Completely

analogous, χ−+
t.o. is the probability amplitude that a charge- and particle-neutral additional

spin injected at space-time coordinate (r′, t′) propagates to coordinate (r, t) for t > t′; for

t < t′ a “spin hole” propagation is described. χ+−
t.o. describes the same propagation of spins

and spin holes for t < t′ and t > t′, respectively.

The Green function, whose Lehmann representation of course has the same structure as

(3.24), exhibits poles at the excitation energies of particle addition to and particle removal

from the system. Analogously, the poles of the spin-flip correlation function determine the

energies of spin addition to and spin removal from the system, that are spin flips S → S ± 1.

Indeed, the Lehmann representation (3.24) of χ−+ reveals2 that the poles corresponding to

the S + 1 excitations lie on the positive ω axis, while those of the S − 1 excitations lie on

the negative axis, c.f., figure 3.3. For magnetic materials the two excitation spectra should be

strictly different. The Lehmann representation of χ+− reveals poles for the excitations S − 1
on the positive and S + 1 on the negative axis. In order to catch all the S ± 1 excitations one

either has to evaluate one of χ−+ and χ+− on the whole frequency axis, or evaluate the sum

of it on the positive or negative axis.

2This form of the spectral function demands the form (A.12) of the Fourier transform of the time coordinate.

The inverse choice of signs in the exponent would lead to a substitution ω → −ω with a flip of the S + 1
excitations to the negative axis and S − 1 excitations to the positive axis.
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Re ω

Re ω

Im
ω

Im
ω

χ+−

χ−+

Figure 3.3: A sketch of the position of the poles of the spin-flip response functions χ−+ and

χ+− in the complex frequency plane, according to the Lehmann representation

(3.24). Excitations S+1 are marked by green crosses, while S−1 excitations are

marked in blue. All positions lie below the real axis by an infinitesimal constant

shift η.

The positive sign of the imaginary contribution +iη of the two denominators in the

Lehmann representation (3.24) reflect the retarded nature of these functions, causing all the

poles to lie in fact not on the real ω axis, but slightly below by an infinitesimally small value

η (which will, however, not be explicitly stated anymore). For the time-ordered functions,

the poles on the positive ω axis lie infinitesimally below the axis, while lying infinitesimally

above on the negative ω axis.

The interpretation of both the definition of χ−+ and its Lehmann representation shows

that only single spin excitations are described by (3.17). Neither simultaneous magnon exci-

tations nor processes of higher order, like for instance magnon-magnon or magnon-phonon

scattering, are contained in this quantity. However, for a low density of excitations they can

be treated independently, and mentioned linearization is valid. Further on, these single-spin

excitations can be both of single-particle or of collective nature, i.e., being Stoner excitations

or spin waves.

The understanding of the polarization function P is mostly equivalent. It describes the

propagation of a charge fluctuation from (r′, t′) to (r, t) for t > t′, or the propagation of a

charge-hole fluctuation for t < t′. The excitations on the negative axis are possible only

for non-zero temperature, please compare to the explicitly evaluated Kohn-Sham correlation

function on page 36. However, the temperature-dependent formalism is not treated in this

work.

3.2.3 Properties

Symmetries For the correlation function defined in a time-ordered manner χij
t.o. (and in

particular for its dielectric component P ) the following symmetries in space and time stand,

χij
t.o.(r, r

′;ω) = χji
t.o.(r

′, r;ω) (3.28)

χij
t.o.(r, r

′;ω) = χij
t.o.(r, r

′;−ω) (3.29)
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which follow from the Lehmann representation for χij
t.o.. The tensor indices are flipped from

ij to ji for the spatial symmetry relation. The proof uses (Ŝi)† = Ŝi for i ∈ {x, y, z, 0} and

the fact that for each eigenstate also its complex conjugate solves the Schrödinger equation.

The sum in the Lehmann representation runs over all states, including their conjugates. As a

consequence, the complexity of the response function only stems from the denominators, and

the principal relation (B.1) can be applied. The aforementioned time symmetry only holds

for the time-ordered correlation function χij
t.o.; for the retarded function χij defined by (3.7)

a distinction has to be made for the real and imaginary contributions:

χij(r, r′;ω) = χji(r′, r;ω) (3.30)

Re χij(r, r′;ω) = Re χij(r, r′;−ω)
Im χij(r, r′;ω) = −Im χij(r, r′;−ω).

(3.31)

For the spin-flip correlation function, obeying (Ŝ±)† = Ŝ∓ the relations read a bit different:

χ−+(r, r′;ω) = χ−+(r′, r;ω) (3.32)

Re χ−+(r, r′;ω) = Re χ+−(r, r′;−ω)
Im χ−+(r, r′;ω) = −Im χ+−(r, r′;−ω). (3.33)

The flip in tensor components – from χ−+ to χ+− – now occurs in the symmetry relation

for time inversion instead. This needs to be considered, e.g., in an implementation of the

Kramers-Kronig transform mentioned in the next paragraph.

Spectral Function A retarded correlation function χ can be expressed component-wise

through its corresponding spectral function S by

χij(r, r′;ω) = lim
η→0+

+∞∫

−∞

d̟
Sij(r, r′;̟)

ω −̟ + iη
, (3.34)

and equally for the spin-flip function χ−+. Its spectral function is of the form

S−+(r, r′;ω) =

[Sz+1]
∑

m

〈0|Ŝ−(r)|m,Sz + 1〉〈m,Sz + 1|Ŝ+(r′)|0〉 δ(ω − [Em,Sz+1 − E0])−

[Sz−1]
∑

m

〈0|Ŝ+(r′)|m,Sz − 1〉〈m,Sz − 1|Ŝ−(r)|0〉 δ(ω + [Em,Sz−1 − E0]). (3.35)

It is a real function since the spin-flip operators are real, acting on eigenstates. As can be

seen from (B.1), the imaginary part of the correlation function further obeys

− 1

π
Im χ−+(r, r′;ω) = S−+(r, r′;ω). (3.36)

Thus, in order to obtain information about the excitation spectra, the imaginary part of the

correlation function is a convenient quantity to study. A direct connection between the real
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ωω
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Figure 3.4: The structure of the spectral function S−+(q, ω) as function of ω for one fixed

vector q, sketched for a finite (left) and an infinite system (right). The poles on

the left are broadened to peaks of finite height on the right. The lifetime attributed

to the excitation scales with the width of the peak according to ∆τ ∼ ∆ω−1.

and the imaginary part is provided by the Hilbert transform

Re χij(ω) = +
1

π
P
∫ +∞

−∞
d̟

Im χij(̟)

̟ − ω

Im χij(ω) = − 1

π
P
∫ +∞

−∞
d̟

Re χij(̟)

̟ − ω

(3.37)

where spatial variables to χ have been omitted. Utilizing the time symmetry (3.31) the

Kramers-Kronig relations [Kra26, dLK26] emerge which restrict the integration to positive

frequencies only:

Re χij(ω) = +
2

π
P
∫ +∞

0

d̟
̟Im χij(̟)

̟2 − ω2

Im χij(ω) = −2ω

π
P
∫ +∞

0

d̟
Re χij(̟)

̟2 − ω2
.

(3.38)

These relations only hold for i, j ∈ {x, y, z, 0}. For the components χ−+ or χ+−, these con-

venient simplifications (3.38) do not hold because of their different time-symmetry relations

(3.33).

Sum Rule From the spin response the magnetization m(r) can be obtained by the follow-

ing integration:

∫

d3r′ lim
δ→0

i

2π

∫ +∞

−∞
dω χ+−(r, r′;ω)e−iωδ = m(r) (3.39)

Macroscopic Quantities For macroscopic properties, matter is usually probed with

some quantum (for instance photons, electrons, neutrons) carrying a momentum q. For

describing the interaction (or transfer) of this momentum there is usually no need for in-

formation of atomic spatial resolution. Instead, a projection of the functions onto a plane

wave of according momentum is considered:
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Figure 3.5: The positions of the peaks on the energy scale on the left yield the dispersion re-

lation ωsw(q) on the right, omitting the detailed structure of the spectral function.

χ+−(q, ω) =

∫

e−iqrχ+−(r, r′;ω)e+iqr′ d3r d3r′. (3.40)

The above formula can also be understood as a the G = G′ = 0 element (also called the head

element) of a Fourier representation χ−+
GG′(q, ω) of χ−+ with full spatial resolution. The head

element contains the contribution constant on atom scale, while higher elements contain the

variations on atomic scale.

The spectral function of infinite systems as well as all the related functions have a different

analytical structure than for finite systems. Instead of a finite number of δ-peaks like in (3.35),

the spectrum changes to a continuous function of finite height. It can be separated into a

peak contribution (if present) that consists of clearly defined peaks, which are attributed to

the spin waves, and a continuum contribution that is a smooth function over a broad range of

frequencies without pronounced maxima, which is attributed to the Stoner excitations. The

spin-wave peaks have a certain width ∆ω in the spectrum and a corresponding finite lifetime

∆τ , see figure 3.4. The peak positions on the energy scale can then be plotted against the

corresponding q-vector to yield the dispersion relation of these quasi-particles, see figure 3.5.

In the limit q → 0 the function χ−+ (or similar quantities like the polarization function

P or the dielectric function ε) do still depend on the direction of the small vector q. As a

consequence the scalar function P (q, ω) becomes a 3 × 3 tensor P (q = 0, ω) of the spatial

directions x, y, z. Its number of independent coefficients can be reduced due to symmetry

reasons [Nye57] to, e.g., one coefficient for cubic structures, two coefficients for hexagonal

structures etc. However, it should be stressed that this kind of tensor is inherently different

to the tensors (3.7) introduced in this chapter. This limit q → 0 is important for instance for

excitations with photons of optical energies, which have a negligible momentum compared to

the size of the Brillouin zone. Magnons, however, are usually excited with finite momenta,

and the limit of small q-vectors is not pursued further in this context. (However, in the

discussion of the homogeneous electron gas in chapter 4.4 this limit needs to be investigated.)
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3.2.4 The Susceptibility of Non-Interacting Particles

For systems of independent particles – like the Kohn-Sham electrons – the Lehmann rep-

resentation (3.24) can be explicitly evaluated. The many-body eigenstates such as |0〉 and

|n, S(0)
z ± 1〉 take the form of a single Slater determinant composed of single-particle spinors

(2.34). The spin operators Ŝ± read

Ŝ±(r) = ψ̂†(r)S±ψ̂(r) (3.41)

where the field operator spinors ψ̂, ψ̂† create or annihilate one single-particle spinors on

which the S± (3.19) operate. The introduction of the creation and annihilation operators of

single particle states ân, â†n,

ψ̂†(r) =
∑

n

ϕ∗
n(r)â

†
n (3.42)

ψ̂(r) =
∑

n

ϕn(r)ân (3.43)

allows for the expression of the spin-flip response function of a collinear system as

χ−+
0 (r, r′;ω) = lim

η→0+

[
∑

n,n′

f(ǫn↓)[1− f(ǫn′↑)]

ω − (ǫn′↑ − ǫn↓) + iη
ϕ∗
n↓(r)ϕn′↑(r)ϕ

∗
n′↑(r

′)ϕn↓(r
′) −

∑

n,n′

f(ǫn↑)[1− f(ǫn′↓)]

ω + (ǫn′↓ − ǫn↑) + iη
ϕ∗
n↑(r

′)ϕn′↓(r
′)ϕ∗

n′↓(r)ϕn↑(r)

]

, (3.44)

with the Fermi occupation function f . The one-particle energies and wave functions are

obtained for instance from the Kohn-Sham equation (2.39). As the sums partially cancel

each other, this result can also be written in the more compact form

χ−+
0 (r, r′;ω) = lim

η→0+

∑

n,n′

f(ǫn↓)− f(ǫn′↑)

ω − (ǫn′↑ − ǫn↓) + iη
ϕ∗
n↓(r)ϕn′↑(r)ϕ

∗
n′↑(r

′)ϕn↓(r
′) (3.45)

and

χ+−
0 (r, r′;ω) = lim

η→0+

∑

n,n′

f(ǫn↑)− f(ǫn′↓)

ω − (ǫn′↓ − ǫn↑) + iη
ϕ∗
n↑(r)ϕn′↓(r)ϕ

∗
n′↓(r

′)ϕn↑(r
′). (3.46)

The polarization function for non-interacting particles read

P0(r, r
′;ω) = lim

η→0+

∑

σ

∑

n,n′

f(ǫnσ)− f(ǫn′σ)

ω − (ǫn′σ − ǫnσ) + iη
ϕ∗
nσ(r)ϕn′σ(r)ϕ

∗
n′σ(r

′)ϕnσ(r
′). (3.47)

For a non-magnetic system it is P0 = 2χ+− = 2χ−+. The symmetry relations regarding

ω ↔ −ω introduced in section 3.2.3 become apparent.

This correlation functions are evaluated analytically for the homogeneous electron gas in

chapter 4, and calculated numerically for the Kohn-Sham systems investigated in the further

course of chapter 6.
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These correlation functions solely contain the single-particle spin-flip excitations, which

term a flip of an particle from an occupied state in the spin-down channel to an unoccupied

spin-up state, or vice versa from spin-up to spin-down channel. The collective spin-wave

excitations naturally lie beyond the scope of the one-particle view of this system. To acquire

these excitations other means are needed like the Dyson equation introduced in the coming

sections.

3.3 The Response in Time-Dependent DFT

The response function of a system describes in general the reaction of the charge to an ex-

ternal field it couples to, in linear order with respect to that field. We are interested in the

response of the spin density S to an external magnetic field Bext. The expansion with respect

to the external field reads

m(r, t) = m(0)(r, t) +

∫

R(r, t, r′, t′)Bext(r
′, t′) d3r′ dt′ + . . . (3.48)

where m(0) is the magnetization density of the ground state, with no external field applied.

The factor in the integral – the response function R – is defined as

R(r, t, r′, t′) =
δm(r, t)

δBext(r′, t′)

∣
∣
∣
∣
Bext(r′,t′)=0

(3.49)

and is causal by definition. If the coupling equation (3.48) is formulated in a more general

manner in order to couple both the charge and spin density to scalar and magnetic fields,

the susceptibility becomes a 4 × 4 tensor. However, since we are mainly interested in the

magnetic response we restrict ourselves to the notation above (see page 24). The evaluation

of the response function in time-dependent perturbation theory in first order to the perturbing

field (please confer to appendix B) results in an expression nearly identical to the retarded

correlation function (3.7):

Rij(r, t, r′, t′) = −(µBg)
2χij(r, t, r′, t′). (3.50)

Assuming the Hamiltonian to contain a magnetic term (3.3) the susceptibility can also be

written as a functional derivative of the total energy:

R(r, t, r′, t′) = − δ2E

δBext(r, t)δBext(r′, t′)

∣
∣
∣
∣
Bext(r′,t′)=0

, (3.51)

compare also to (3.7). Since we are interested in the spin-flip processes, it is reasonable

to consider not only the cartesian components χij of the correlation function but also the

spin-flip components χ−+ and χ+−. Up to now they have not been defined in terms of

functional derivatives. In order to keep the equality between the variational and the many-

body approach (3.50) (please see appendix B), one has to use the following definition3 when

3This definition is opposite in sign to the intuitive definition δ/δB± = δ/δ(Bx ± iBy) = δ/δBx ∓ iδ/δBy .

Also does it not correspond to a unitary transformation from the cartesian components to the spin-flip

components based on (3.4), (3.5).
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performing functional derivatives with respect to the spin-flip magnetic field B±:

δ

δB± =
δ

δBx
± i

δ

δBy
. (3.52)

Since we assume the external field to be a small perturbation, we do not need to employ the

full TDDFT formalism, but stay with the concept of linear response. The response function

can then be derived from ground-state properties only which are obtained from DFT. Starting

from the definition (3.49) the decomposition of the external magnetic field Bext into an effec-

tive and an exchange-correlation contribution according to (2.52) allows for the derivation of

a Dyson equation

δmi(r, t)

δBj
ext(r

′, t′)
=

δmi(r, t)

δBj
eff(r

′, t′)
+

∫

d3r1 d
3r2 dt1 dt2

∑

k,l

δmi(r, t)

δBk
eff(r

′, t′)

δBk
xc(r, t)

δml(r′, t′)

δml(r, t)

δBj
ext(r

′, t′)
. (3.53)

Using (3.50) this can also be written as

χij(r, t, r′, t′) = χij
KS(r, t, r

′, t′) + (µBg)
2

∫

d3r1 d
3r2 dt1 dt2

∑

l,m

χil
KS(r, t, r1, t1)f

lm
xc (r1, t1, r2, t2)χ

mj(r2, t2, r
′, t′) (3.54)

with the Kohn-Sham response function

−(µBg)
2χij

KS(r, t, r
′, t′) =

δmi(r, t)

δBj
eff(r

′, t′)
. (3.55)

and the exchange-correlation kernel

f ij
xc(r, t, r

′, t′) = − δBi
xc(r, t)

δmj(r′, t′)
=

δ2Exc

δmi(r, t) δmj(r′, t′)
(3.56)

which will be examined in more detail in the next section. For systems with a time-

independent Hamiltonian a Fourier transformation can be pursued, where the convolution in

time resolves to a plain product in frequency space

χij(r, r′;ω) = χij
KS(r, r

′;ω) + (µBg)
2

∫

d3r1 d
3r2

∑

l,m

χil
KS(r, r1;ω)f

lm
xc (r1, r2;ω)χ

mj(r2, r
′;ω). (3.57)

In a symbolic notation (please see appendix A) this reads

χ = χKS + (µBg)
2χKSfxcχ (3.58)

= χKS + (µBg)
2χKSfxcχKS + (µBg)

4χKSfxcχKSfxcχKS + . . . (3.59)
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3.3 The Response in Time-Dependent DFT

with fxc the magnetic exchange-correlation kernel tensor. If this series converges, it can be

solved by inversion

χ =
[
1− (µBg)

2χKSfxc
]−1

χKS. (3.60)

One commonly says that χKS is renormalized by fxc in order to yield χ.

In the collinear case the response χ has the shape (3.15), and the Dyson equation (3.58)

separates into two Dyson equations for the transversal components χ[x,y] and the longitudinal

components χ[z,0]. We focus on the transversal part and understand (3.58) and (3.60) as

equations of 2×2 tensors in [x, y] representation. The kernel is defined as a double derivative

which can be applied in both orders. Furthermore, the x and y directions (and thus derivatives

with respect to the according component of the spin magnetization) are equivalent. Therefore

the kernel would have the symmetrical shape

f [x,y]
xc =

(
fxx
xc fxy

xc

fxy
xc fxx

xc

)

, (3.61)

opposed to the shape of the response function (3.16). Indeed, this is not yet consistent with

the Dyson equation (3.57) but furthermore demands the off-diagonal terms fxy
xc to be zero.

This is also equivalent to the straight-forward application of the ladder field components

(3.52) which results in

f−+
xc = f+−

xc = 2Kxx
xc (3.62)

(please compare to (3.18)). Altogether this leads us from the equation (3.58) of 2× 2 tensors

to the Dyson equations

χ−+ = χ−+
KS +

(µBg

2

)2

χ−+
KS f

−+
xc χ

−+ (3.63)

χ+− = χ+−
KS +

(µBg

2

)2

χ+−
KS f

+−
xc χ

+− (3.64)

of scalar functions. Though we are finally interested only in the imaginary part of χ−+, we

need both the real and the imaginary part of χ−+
KS in order to solve this equation.

Dyson equation (3.64) is a universal scheme to calculate spin-wave excitations, restricted

only by the general applicability of time-dependent density-functional theory (falling short

for instance of the description of strongly correlated systems). While means to calculate χ−+
KS

are already provided by (3.45), further evaluation of the exchange-correlation kernel takes

place in chapter 4.

The Dielectric Incarnation In order to show the differences to the better known dielec-

tric case the corresponding formulas should be presented briefly. The response of the charge

density n to a weak external potential V reads

n(r, t) = n(0)(r, t) +

∫

P (r, t, r′, t′)Vext(r
′, t′) d3r′ dt′ + . . . (3.65)

with the polarization function now written as

P (r, t, r′, t′) =
δn(r, t)

δVext(r′, t′)

∣
∣
∣
∣
Vext(r′,t′)=0

. (3.66)
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The initial substitution is performed according to the separation of the time-dependent ef-

fective potential Veff (2.51). Due to definition (2.30) of the Hartree potential the Coulomb

interaction v enters the integration kernel of the Dyson equation:

P (r, r′, ω) = PKS(r, r
′, ω) +

∫

d3r1 d
3r2

PKS(r, r1, ω) [v(r1, r2) + fxc(r1, r2, ω)]P (r2, r
′, ω). (3.67)

The Kohn-Sham polarization function

PKS(r, t, r
′, t′) =

δn(r, t)

δVeff(r′, t′)
(3.68)

coincides with (3.47), and the scalar dielectric exchange-correlation kernel reads

fxc(r, t, r
′, t′) =

δ2Exc

δn(r, t) δn(r′, t′)
=
δVxc(r, t)

δn(r′, t′)
. (3.69)

which is also contained in definition (3.56) as fxc = f 00
xc if understood in a four-component

notation.

3.4 The Bigger Context

In order to better understand the context of the theory of spin response it is contrasted to the

dielectric response, which in this section is expressed both in formulas and in terms of Feyn-

man diagrams. Starting from the dielectric case, the proper inclusion of the spin coordinate

should be worked out, as well as the misleading similar shape but different meaning of the

RPA dielectric response and the TDDFT spin response.

The dielectric response function P and all other response functions which are referred to in

this chapter are used in their time-ordered shape, whose connection to the causal shape was

pointed out earlier on page 31ff. This will not be explicitly stated anymore, and subsequently

indices such as in Pt.o. as used earlier will be omitted. Furthermore, the shorthand notation

1 = (r1, t1), 2 = (r2, t2) etc. will be used. The influence of the spin coordinate is discussed

in paragraph on the magnetic TDDFT on page 43.

Since the polarization function P contains each two creation and annihilation operators

according to (3.7) the response function P is a special case of the two-particle Green function

G2, a function of four space-time coordinates defined as

i2G2(1, 2, 3, 4) = 〈0|T
[

ψ̂(1)ψ̂(2)ψ̂†(3)ψ̂†(4)
]

|0〉. (3.70)

In analogy to the one-particle Green function G this quantity G2 is the probability ampli-

tude of a propagation of two quasi-particles through the system. Depending on the or-

der of the time coordinates, this quantity describes either particle-particle propagation (if

t3, t4 < t1, t2), particle-hole propagation (if t2, t4 < t1, t3) or hole-hole propagation (if

t1, t2 < t3, t4). These three cases are represented by the following three Feynman diagram

symbols

4

3

2

1

2

3

4

1

2

1

4

3

(3.71)
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where electrons propagate from left to right and holes from right to left and the labels are set

accordingly. We are interested in the charge-neutral processes sketched by the middle graph,

denoted Ḡ2 and, in order to simplify matters, omit the labels and the arrows on its four legs.

Hence Ḡ2 quantity can be expanded in an infinite series of Feynman diagrams [GR86] like:

= + + + + + . . . (3.72)

Solid lines with an arrow are free electron or hole propagators G(0) while wiggly lines corre-

spond to the Coulomb interaction v as formulated in (2.31). Small opaque circles represent

the external parameter variables 1, 2, 3, 4, while empty circles represent integration variables

internal to the diagram.

The polarization function P as defined earlier is related to the two-particle Green function

Ḡ2 by essentially contracting the legs on the left and on the right (i.e., the coordinates are set

2 = 3 and 4 = 1)

iPt.o.(1, 2) = Ḡ2(1, 2, 2, 1)−G(1, 1+)G(2, 2+) (3.73)

where G is the one-particle Green function. Here the coordinate 1+ implies a limit

G(1, 1+) = limη→0G(r1, t1, r2, t1+η) in order to properly resolve the implicit time-ordering

operator. Visualized in diagrams it reads

= − . (3.74)

The symbol newly introduced on the left is the dielectric response function P , while the

shaded symbol on the right-hand side is the two-particle Green function Ḡ2 from (3.72) with

its legs contracted on the left and on the right. The subtracted term on the right just corre-

sponds to the exclusion n 6= 0 from the summation in the Lehmann representation (3.25). The

response function P can thus be equally expressed through a series of Feynman diagrams.

These diagrams can be grouped into those diagrams which can be cut into two separate dia-

grams by just removing one Coulomb interaction wiggle (such as the third diagrams on the

right-hand side of (3.72)) and those diagrams which cannot be split in such a way. The latter

ones are collected into a newly defined quantity named irreducible polarization propagator

Q, and the series can be rewritten in terms of diagrams as

= + (3.75)

where Q has been depicted by the hatched bubble on the right-hand side. The full (or so-

called reducible) polarization function P is the sum of all possible queueings of the irre-

ducible polarization propagator Q connected by Coulomb interactions. Expressed in formu-

las it reads

P (1, 2) = Q(1, 2) +

∫

d3 d4 Q(1, 3)v(3, 4)P (4, 1). (3.76)

This equation is the general Dyson equation for the polarization function P . It is completely

general, with the complexity of the problem being moved into the quantity Q. Crucial quan-

tities commonly derived from this include the dielectric function ε which describes, e.g.,
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absorption spectra, and its inverse ε−1 crucial for electron energy loss spectra (EELS) or

inelastic X-ray scattering:

ε(1, 2) = 1−
∫

d3 v(1, 3)Q(3, 2) (3.77)

ε−1(1, 2) = 1 +

∫

d3 v(1, 3)P (3, 2). (3.78)

The latter one connects the Coulomb potential to the screened interaction

W (1, 2) =

∫

d3 ε−1(1, 3)v(3, 2). (3.79)

used for instance in the so-called GW -approximation which is nowadays the premium ab

initio method to improve density-functional results by means of many-body perturbation

theory [AG98].

RPA The simplest and most commonly used method in this context is the random-phase

approximation (RPA, also called ring-graph approximation or time-dependent Hartree the-

ory). It considers for the irreducible polarization Q only the lowest-order term of P (0) (the

empty polarization bubble)

QRPA(1, 2) ≡ P (0)(1, 2) = iG(1, 2)G(2, 1+) (3.80)

which is the polarization propagator of non-interacting particles. The variable 1+ implies a

limit in the time coordinate as mentioned before. This polarization bubble is a very descrip-

tive visualization of the physical process: at some space-time coordinate 2 a particle-hole

pair comes into existence and propagates to coordinate 1. The Dyson equation (3.76) now in

RPA then reads

PRPA(1, 2) = P (0)(1, 2) +

∫

d3 d4 P (0)(1, 3)v(3, 4)PRPA(4, 2). (3.81)

Expressed in diagrams this reads

= +

= + + + . . .

(3.82)

This result for the response function can also be obtained by solving the time-dependent

Hartree equations. The RPA results are exact in the limit of an infinitely dense homogeneous

system, therefore it has been applied to real metallic materials quite successfully. However,

processes that are naturally distinct from these boundary conditions – such as excitonic ef-

fects in semi-conductors – are not at all reproduced by RPA.

In practical DFT calculations the free Green function (or polarization function, respec-

tively) are substituted by the Kohn-Sham quantities, P (0) = PKS, and the Dyson equation

then reads

PRPA(1, 2) = PKS(1, 2) +

∫

d3 d4 PKS(1, 3)v(3, 4)PRPA(4, 2). (3.83)
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Dielectric TDDFT For the dielectric framework a Dyson equation was derived within

TDDFT (3.67), now written in the new notation as

P (1, 2) = PKS(1, 2) +

∫

d3 d4 PKS(1, 3)[v(3, 4) + fxc(3, 4)]P (4, 2). (3.84)

This can also be sketched in terms of diagrams

= + + (3.85)

The zig-zag wiggle in the last term represents the dielectric exchange-correlation kernel fxc.
It should be stressed that this is merely a visualization and not a valid expansion in Feynman

diagrams anymore, because the zig-zag can not be expressed in terms of free Green functions

G(0) and Coulomb interactions v; time-dependent DFT, which is itself completely general,

is definitely a non-diagrammatic method. It can be seen from the derivation before that it is

not possible to express the kernel zig-zag in terms of diagrams: Any diagram resulting from

(3.85) has at least one empty polarization bubble attached on the left, thus not all diagrams

can be constructed if the kernel would be a combination of other diagrams. However, since

this is not the case, the kernel can compensate for that since it has a difficult functional

structure, and can lead to exact and general results by itself.

This allows the following classification of the presented Dyson equations: The RPA Dyson

equation (3.81) simplifies the general Dyson equation (3.76) by considering the ring dia-

grams only. The TDDFT Dyson equation (3.84) extends the RPA equation and recovers gen-

erality while keeping the mathematical form of the RPA equation, by moving the complex

many-body interactions from the irreducible polarization propagator Q into the exchange-

correlation kernel fxc. In this context the RPA naturally appears as a theory that neglects

exchange and correlation effects (the kernel fxc), thus being the time-dependent Hartree the-

ory.

It is valuable to realize that the two renormalizations of v and fxc can be performed subse-

quently. Equation (3.84) can also be written in the form

P (1, 2) = PRPA(1, 2) +

∫

d3 d4 PRPA(1, 3)fxc(3, 4)P (4, 2). (3.86)

with PRPA given by (3.83). It would be equally possible to renormalize first with fxc and

with v afterwards. The effect of the kernel is expected to be small compared to that of the

Coulomb potential which is the dominant effect in solids. This can also be seen from the

different magnitude of the Coulomb energy Ecoul and the exchange-correlation energy Exc

in table 2.1.

Spin Coordinates and Magnetic TDDFT Up to now the spin index has been ne-

glected in the formulation of this section. A natural extension would be to use the shorthand

1 = (r1, t1, σ1) in all the formulas of this section 3.4, which means for the creation and an-

nihilation operators – the operators at the very bottom of the whole theory discussed in this

chapter – a formulation ψ̂(1) = ψ̂(r1, t1, σ1). However, it turns out that this is impractical.

Instead it is much more reasonable to keep the interpretation of the quantities as it is up to

now – e.g., P(1,2) is the propagation of charge fluctuations between space-time coordinates

43



CHAPTER 3 — THE SPIN RESPONSE

2 and 1, irrespective of spin coordinates – and replace in the according definitions the scalar

field operators with spinors

ψ̂(1) = ψ̂(r1, t1) =

(
ψ̂(r1, t1, ↑)
ψ̂(r1, t1, ↓)

)

(3.87)

ψ̂†(1) = ψ̂†(r1, t1) =

(
ψ̂†(r1, t1, ↑)
ψ̂†(r1, t1, ↓)

)

. (3.88)

Many-body states consist of a single or a linear combination of Slater determinants, which

themselves consist of scalar functions in the non-magnetic case and spinors in the magnetic

formulation. The field operator spinors shown above can thus conveniently operate on these

states.

The basic building blocks of Feynman diagrams are the spin-independent and spin-

conserving Coulomb interaction and free propagators, which should now be understood as

free spinor propagators. A change in spin can happen with neither of these two ingredients.

Instead, additional spin-flip operators (3.41) have to be included that were not present in the

dielectric-only theory. Since they are local they can act only at crossing points in Feynman

diagrams, denoted by small diamonds. E.g., the expansion (3.72) now additionally contains

all the diagrams decorated with any combination of spin-flip operators. Also the polarization

propagator P (1, 2) contains all kinds of spin flips; physically this means that any kinds of

spin flips are allowed on the way 2 → 1, as long as the initial and the final spin are equal.

In the general Dyson equation (3.75) for P the spin-flip operators are contained in the

irreducible propagator Q, the hatched bubble. In the RPA equation (3.81), however, these

processes have been excluded.

The magnetic response χ−+(1, 2) is equivalently interpreted as a particle propagation 2 →
1 yet with a spin-flip occurring from down to up. (Only the final spin orientation matters, of

course multiple spin flips might occur during the scattering through the system.) Its relation

to the two-particle Green function is sketched analogously as

= . (3.89)

Here the small diamond symbols represent spin-flip operators Ŝ±(1). The whole graph on

the left can be understood as the spin-flip response χ−+ (or χ+−, respectively). The term

on the right side is the two-particle Green function from formula (3.72) with its legs both

on the left and on the right-hand side contracted and a spin-flip operator attached. As an

important difference to the dielectric case, no local term needs to be subtracted like the

local polarization term in (3.74), since it does not contribute due to the spin-flip operators.

Furthermore, no distinction has been made between spin-up and spin-down flips, thus it is

not clear initially whether the equation above refers to χ−+ or χ+−; however, this should be

either insignificant or obvious from context. With this notation the magnetic Dyson equation

(3.64), written again as

χ−+(1, 2) = χ−+
KS (1, 2) +

1

4
χ−+
KS (1, 3)K

−+
xc (3, 4)χ−+(4, 2), (3.90)

can be sketched as

= + (3.91)
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which is the magnetic analogon to (3.85). As in the dielectric diagrams the empty diamonds

denote spin flips at internal integration coordinates. Most importantly, these are no valid

Feynman diagrams as reasoned before since the exchange correlation kernel is not a diagram-

matic quantity. The kernel wiggle is decorated with two spin-flip operators: this indicates

that the magnetic kernel Kxc needs to be used instead of the dielectric kernel fxc.
In the dielectric TDDFT equation the interaction can be separated into the dominant

Coulomb term and the exchange-correlation term. In the magnetic case there is no Coulomb

interaction, thus no RPA-like approximation is possible, instead the exchange-correlation

term has to be treated accurately. In particular, though the shape of (3.91) is very similar to

(3.82) there is no theoretical link between dielectric RPA and magnetic TDDFT.

Effect on Non-Magnetic Systems It should be remarked that the magnetic formalism

can of course also be employed on non-magnetic systems. The Kohn-Sham susceptibilities

turn out to be identical,

χ−+
KS (1, 2) = χ+−

KS (1, 2) =
1

2
PKS(1, 2). (3.92)

Also the dielectric and magnetic kernels are very similar, as shown in section 4.3. The

full response functions, however, are definitely unequal, since they obey different Dyson

equations. While the magnetic Kohn-Sham response is renormalized by the magnetic kernel

only, the dielectric counterpart is renormalized by the sum of dielectric kernel and Coulomb

interaction. It is made plausible for the case of the homogeneous electron gas in the next

chapter that there cannot appear spin waves in non-magnetic materials.

Another Approach A theoretical framework to evaluate the spin-flip response diagram-

matically has been established by Aryasetiawan and Karlsson [AK99]. Starting from the

two-particle Green function (3.72) a higher class of vertex diagrams is included, which in-

volves theGW -approximation for the self-energy, Σ = iGW . This leads to a series of ladder

diagrams involving the screened interaction W (3.79). Approximations such as on-site only

interactions are applied. The result is a Bethe-Salpeter equation, resembling in structure the

Dyson equation of TDDFT. On the one hand this approach is more systematic compared to

TDDFT in the sense that you can select certain classes of diagrams which might be connected

to specific physical processes. On the other hand it is expected to be computationally more

demanding if the screened interaction is properly accounted for.
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The formalism of spin-wave excitations introduced in the previous chapter is now applied

to the homogeneous electron gas. Apart from allowing a lot of calculations to be done ana-

lytically, it is very instructive to see the formalism work on simple formulas, giving rise to

spin waves.

In the beginning section 4.1, the characteristic quantities such as density, spin polarization

and total energy are discussed. At this stage only the exchange is taken into account while

the correlation contribution is neglected for the moment. While this restriction allows for an

exact analytical treatment, the resulting densities for which the homogeneous electron gas is

spin-polarized corresponds closer to the values of real physical systems which are polarized

(such as for instance the bulk transition metals). The one-particle viewpoint is treated within

the Kohn-Sham DFT picture. In section 4.2 the spin-flip response of this Kohn-Sham system

is investigated. The following section details out the formulas of the exchange-correlation

kernel in adiabatic LDA. These ingredients are combined into the ALDA spin-wave treat-

ment in section 4.4, employing the Dyson equation that was introduced in the previous chap-

ter. Two important insights are that this method is very sensitive to inaccuracies, and that

exchange and correlation need to be treated consistently in the single-particle Kohn-Sham

equation and the ALDA linear-response part.

The correlation energy is finally treated in section 4.5. While it is an additional contribu-

tion which is parametrized with more complicated formulas, it does not change the principle

findings of the previous sections. The chapter closes with an outlook on real materials, point-

ing out some differences and conclusions that can be drawn from the homogeneous system.
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4.1 Characteristic Quantities

The electron gas is infinitely extended in space, and is characterized by the two constant

spin densities n↑ and n↓. The total density n, spin density σ, magnetization m and spin

polarization ξ are defined as

n = n↑ + n↓, σ = n↑ − n↓, ξ =
n↑ − n↓
n↑ + n↓

=
σ

n
, (4.1)

m = −µBgS = −1

2
µBgσ = −1

2
µBgnξ, (4.2)

where ↑ and ↓ are the majority and the minority components, respectively, and S is the total-

spin quantum number. The electron gas is thus either non-magnetic or collinear magnetic

along an arbitrary axis, which we choose as the z axis. The Fermi wave vectors result in

k3F↑ = 6π2n↑, k3F↓ = 6π2n↓. (4.3)

This can also be expressed as

kF↑ = kF(1 + ξ)
1
3 , kF↓ = kF(1− ξ)

1
3 , k3F = 3π2n (4.4)

kF is the Fermi vector of the non-magnetic case. The total energy reads

E(n, ξ) = −
∑

i

k2i
2

+ Exc(n, ξ) + Eext(n, ξ) (4.5)

In the case of the homogeneous electron gas the local-density approximation (LDA) yields

the correct value for the exchange-correlation energy. It can be separated into two contribu-

tions Exc = Ex +Ec, see (2.40). The latter one, the correlation contribution Ec, is neglected

until section 4.5. The exchange contribution reads

Ex(n, ξ) = V nǫx(n, ξ) = −CxV n
4
3

[

1− (2
1
3 − 1)f(ξ)

]

. (4.6)

The quantities in this equation have been introduced in chapter 2:

Cx =
3

4

(
3

π

) 1
3

, f(ξ) =
(1 + ξ)

4
3 + (1− ξ)

4
3 − 2

2
4
3 − 2

. (4.7)

The exchange energy’s derivatives are

Vx =
1

V

∂Ex

∂n
, (4.8)

Bx = − 1

V

∂Ex

∂m
=

2

µBgV n

∂Ex

∂ξ
ez. (4.9)

The contribution due to a constant external magnetic field Bext (which can be chosen to point

into the z direction without loss of generality) is

Eext(n, ξ) = −
∫

m(r) · Bext(r) d
3r =

1

2
nV µBgξBext. (4.10)
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Altogether the energy reads1

E(n, ξ) =
3

20
(3π2)

2
3

[

(1 + ξ)
5
3 + (1− ξ)

5
3

]

V n
5
3−

3

4

(
3

π

) 1
3 [

1 + (2
1
3 − 1)f(ξ)

]

V n
4
3 +

1

2
ξµBgBextV n. (4.11)

The positive kinetic term counters the negative exchange energy. They have different func-

tional dependencies on n and ξ. For a given density n the physical spin polarization ξ is

determined by minimizing the total energy (4.11). If another spin polarization is desired, an

external magnetic field Bext can be used to pin any desired value. Without any external field

applied, Bext = 0, the polarization that yields the minimal energy is

ξ(n) =

{
0 n > n1

1 n < n1
(no external field) (4.12)

with the threshold density

n1 =
125

24π5(2
1
3 + 1)3

= 1.47 · 10−3 1

a3B
, rs1 =

2

5
(2

1
3 + 1)

(
9π4

4

) 1
3

= 5.45aB. (4.13)

When numerical values for charge radii and densities are given in this section, the units –

if not explicitly provided – are understood as the standard atomic units for these quantities:

Bohr radii or the inverse third power of Bohr radii, respectively. The corresponding density

radius rs1 is also provided, which relates to the density like

4

3
πr3s =

1

n
. (4.14)

The total energy without external field has interesting features. Two further threshold values

are defined:

n0 =
1

3π5
= 1.09 · 10−3 1

a3B
, rs0 =

(
9π4

4

) 1
3

= 6.03aB, (4.15)

n2 =
4

3π5
= 4.36 · 10−3 1

a3B
, rs2 =

(
9π4

16

) 1
3

= 3.80aB. (4.16)

For different fixed densities n the total energy is plotted in the right tableau of figure 4.1 as a

function of the spin polarization ξ. It has the following characteristics:

• For n < n0: Maximum at ξ = 0, absolute minimum at ξ = 1 (black and red curves on

the right-hand side of figure 4.1).

• For n0 < n < n1: Local minimum at ξ = 0, maximum in the range 0 < ξmax(n) <
ξmax(n1) with ξmax(n1) ≈ 0.788, absolute minimum at ξ = 1. (In the plot there is no

curve for a corresponding density from this range, it would lie between the red and the

blue curve.)

1This ground-state total energy in DFT without correlation is identical to the value obtained from the Hartree-

Fock method; however, the one-particle energy dispersion and thus the susceptibility is different for Hartree-

Fock and is not treated in this work.
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Figure 4.1: On the right-hand side the total energyE(n, ξ), c.f. (4.11), is plotted as a function

of ξ for different densities n. Since the extrema are difficult to identify with the

bare eye, their positions are pictured separately on the left-hand side by thick

lines in the (n, ξ)-plot. The thin dotted vertical lines correspond to the values of

the densities for which E(n, ξ) was plotted on the right-hand side. The vertical

dashed black lines indicate the threshold values n0, n1, n2. The four orange

circles indicate the (n, ξ) values named (A)-(D) for which a spectrum is shown

in figure 4.4.

• For n1 < n < n2: absolute minimum at ξ = 0, maximum in the range ξmax(n1) <
ξmax(n) < 1, local minimum at ξ = 1. (Blue, dark green, orange and light green

curves. For the last two, the local minimum cannot be identified in this magnification.)

• For n > n2: Absolute minimum at ξ = 0, maximum at ξ = 1.

Between these extrema the function is strictly monotonous. The location of the maximum

ξmax(n) cannot be obtained analytically, but only numerically, e.g., by interval nesting. Sum-

marizing, for a given density n the following spin polarizations ξ(n) yield an extremum of

the total energy E(n, ξ(n)):

Absolute minimum

(thick red lines)
ξ(n) =

{
1 n < n1

0 n > n1

Local minimum

(thick green lines)
ξ(n) =

{
0 n0 < n < n1

1 n1 < n < n2

Maximum

(thick blue lines)
ξ(n) =







0 n < n0

ξmax(n) n0 ≤ n ≤ n2

1 n > n2

(4.17)
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kk

ǫ↑(k)ǫ↑(k) ǫ↓(k)ǫ↓(k)

ǫF ǫFξ

2∆
kFkF kF↑ kF↓

Figure 4.2: The energy dispersion ǫ(k) of both spin channels in the paramagnetic case (left)

and the spin-polarized case (right). The origin of the energy axis is the crossing

point of the two coordinate axes. The gray area represents the occupied states. In

particular, it is ǫF 6= ǫFξ.

The color of the lines refers to the left plot in figure 4.1. Real materials commonly have a

density radius of the valence electrons from roughly the region 2aB < rs < 5aB. As discussed

above, the density radii for which the homogeneous electron gas – calculated with exchange

only – becomes magnetic are below these values: r > rs1 = 5.45aB. This corresponds to

densities slightly lower than the average density of typical real materials. This might be kept

in mind when comparing results with those obtained here for the homogeneous electron gas.

One-Particle Point of View Along the lines of the density-functional formalism intro-

duced in chapter 2, the electron gas can now be studied with the help of an auxiliary system

of independent non-interacting particles. According to (2.39) the collinear Kohn-Sham equa-

tions read
[

−1

2
∇2 + Veff +

1

2
µBgσBeff

]

ϕkσ(r) = ǫσ(k)ϕkσ(r) (4.18)

with the scalar constant effective fields

Veff = Vxc, Beff = Bxc + Bext. (4.19)

The spin index σ ∈ {↑, ↓} has also been used on the left-hand side of the equation in the

Hamiltonian with the values σ = ±1. (This should not be confused with the spin density

σ = nξ. However, the correct meaning should be apparent from the context.) The mag-

netic term in the Kohn-Sham equation above corresponds to a magnetic term −m · Beff ,

c.f. (2.35). The value Beff is negative, or pointing in the −z direction, respectively. There-

fore the ground-state magnetization also points in the −z direction in order to yield a lower

energy contribution, and the spin polarization points in the +z direction. Thus, the spin-up

component is indeed the majority channel. The energies and wave functions evaluate to

ǫσ(k) =
1

2
k2 + Veff +

1

2
µBgσBeff , ϕkσ(r) =

1√
V
eik·r. (4.20)
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The volume V of the system goes to infinity. The effective potential Veff is identical for

both spin channels, thus corresponding to a global energy shift which can consequently be

neglected. For the moment we set the external magnetic field Bext = 0. For a fixed density n
this equation has to be iterated: Starting from an initial spin polarization ξ(0) one obtains the

effective magnetic field and scalar potential and can solve the Kohn-Sham equations, leading

to parabolas

ǫσ(k) =
1

2
k2 − σ∆, ∆ = −1

2
µBgBxc, (4.21)

with the spin-dependent energy splitting 2∆. This is sketched in figure 4.2. If the system is

not completely spin polarized, 0 ≤ ξ < 1, there exists a bijective mapping from the density

n and spin polarization ξ to the splitting ∆:

∆(n, ξ) =
1

4
(k2F↑ − k2F↓) =

1

4
k2F

[

(1 + ξ)
2
3 − (1− ξ)

2
3

]

if 0 ≤ ξ < 1. (4.22)

The condition 0 ≤ ξ < 1 is equivalent to the condition |∆| < ∆lim where the limiting value

∆lim = 2−
4
3k2F (4.23)

is the minimal spin splitting which yields full spin polarization ξ = 1. If ∆ increases beyond

this value the spin polarization remains the same, there is no invertible mapping between

ξ and ∆ anymore and one cannot construct a functional relation ∆(n, ξ) for ξ = 1. This

argumentation is the same for the Fermi energy:

ǫFξ =

{
1
4
(k2F↑ + k2F↓) =

1
4
k2F

[

(1 + ξ)
2
3 + (1− ξ)

2
3

]

if 0 ≤ ξ < 1

−|∆|+ 2−
1
3k2F if ξ = 1.

(4.24)

Thus, the new spin polarization (a mixing procedure as mentioned in chapter 2 is not neces-

sary for this simple setup) can be obtained as the inverse function of (4.22) as

ξ =

{
ξ(∆) |∆| ≤ ∆lim

±1 |∆| > ∆lim.
(4.25)

The convergence can be understood best by imaging the two quantities ∆(ξ) and

−1
2
µBgBxc(ξ) being plotted in one graph as functions of ξ. The self-consistency cycle

corresponds to an iteration of ξ(0) → Bxc(ξ) → ∆(Bxc) = −1
2
µBgBxc → ξ(∆), provided

the mentioned condition is fulfilled. The obtained ξ is the starting value for another loop.

The result is as follows:

• For n < n0, polarization converges to ξ = 1.

• For n0 < n < n2 and ξ(0) > ξmax(n), polarization converges to ξ = 1.

• For n0 < n < n2 and ξ(0) = ξmax(n), polarization does not change and is already

converged to ξ = ξmax(n).

• For n0 < n < n2 and ξ(0) < ξmax(n), polarization converges to ξ = 0.
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• For n > n2, polarization converges to ξ = 0.

In the region n0 < n < n2 the starting spin polarization ξ(0) is essential for the result. If

chosen not close enough to the final result the convergence might lead to a local minimum

instead of the total minimum. In the special case where the initial spin polarization is set

equal the polarization of the energy maximum ξmax(n) that was obtained earlier, the calcula-

tion does not at all converge to a minimum.

In summary it turns out that for a given density n, the DFT method determines the extremal

points of the total energy, just as it is expected for a variational method operating on this

energy. The solutions ξmax(n) are usually discarded because the resulting state has an energy

maximum. This leaves only DFT solutions ξ = 0 (for large densities) and ξ = 1 (for small

densities). However, one might be interested to make an electron-gas calculation for a spin

polarization other than these values. Thus, for testing purposes one can, instead of discarding

the energy-maximum solutions as being unphysical, determine n ∈ [n0, n2] for a desired ξ
for which ξmax(n) = ξ, and use this setup (namely the (n, ξ) value pair) in the further ALDA

formalism. Consequently setup (B) from figure 4.1 is used in the following chapters.2

These statements do refer to the case of absent external magnetic field, Bext = 0 as we

have implied starting from equation (4.20). If we lift this restriction, we can choose a proper

Bext for any (n, ξ) such that this is the ground state (i.e., the state of minimum energy) of the

electron gas. Formulated in another way: When doing the variation of the total energy (4.5) in

order to obtain the Kohn-Sham equations (please refer to chapter 2) one introduces Lagrange

Parameters ǫ which ensure the boundary condition of particle conservation. Analogously one

can introduce another Lagrange Parameter which provides for a given total magnetization.

This parameter is just the external magnetic field Bext.

4.2 The Kohn-Sham Response

The spin-flip susceptibility for the homogeneous electron gas χ+−
KS can be easily obtained

from equation (3.46). Using the known shape of the eigenstates (4.20) and eigenvalues (4.21)

and performing a Fourier transform leads to

χ+−
KS (q, ω) =

1

V
lim
η→0+

∑

k

f(ǫ↑(k))− f(ǫ↓(k+ q))

ω − [ǫ↓(k+ q)− ǫ↑(k)] + iη
. (4.26)

The susceptibility is spherically symmetric with respect to q. According to the derivations in

appendix B.3 the real and imaginary part can be evaluated to

Re χ+−
KS (q, ω) = − 1

4π2q

∑

σ

σ

[
1

2
(k2Fσ − u2σ) ln

∣
∣
∣
∣

uσ + kFσ
uσ − kFσ

∣
∣
∣
∣
+ uσkFσ

]

(4.27)

Im χ+−
KS (q, ω) = − 1

8πq

∑

σ

σ(k2Fσ − u2σ)Θ(kFσ − |uσ|) (4.28)

2It should be noted that the spin-wave excitations calculated from such a non-ground state should in principle

have negative energies. Nevertheless, the ALDA method is applied onto this state for positive energies. It

turns out that the formalism yields positive spin-wave energies, see figure 4.7.

53



CHAPTER 4 — THE SPIN-POLARIZED HOMOGENEOUS ELECTRON GAS

0 1 2 3 4 5
-0.2

-0.1

0

0.1

0.2

0 1 2 3 4 5
-0.1

-0.08

-0.06

-0.04

-0.02

0
q=0.0

q=0.1

q=0.4

q=0.8

q=1.2

(B) (B)

ω/ωFω/ωF

R
e
χ
+
−

K
S
(q
,ω

)

Im
χ
+
−

K
S
(q
,ω

)

Figure 4.3: The real and imaginary part of the Kohn-Sham susceptibility χ+−
KS displayed as a

function of energy ω for different q vectors and n = n1 = 1.47 · 10−3, ξ = 0.788.

(This setup is labeled (B) in the following.) q vectors are given in Fermi wave

vectors kF = 0.3518 1
aB

, ω in Fermi energies ωF = 0.06188Htr.

with the abbreviation

uσ =
2∆− ω + 1

2
σq2

q
. (4.29)

Samples of these functions are plotted in figure 4.3. For small q vectors the imaginary part has

a narrow high peak which lowers and broadens for increasing q. The peak is a superposition

of two parabolas with different axis offsets and opposite sign, as is obvious from (4.28). The

θ functions limit the contributions to the negative sections. The real part has a characteristic

peak structure due to very small or very large arguments of the logarithm. The peak quickly

decreases and changes its shape for increasing q vector.

Since we are mainly interested in the imaginary part it is plotted in a color-contour plot

in figure 4.4. In order to better understand this function it is shown for four different (n, ξ)
setups labeled (A) to (D), which are also denoted by orange circles in figure 4.1. Plot (A)

on the top left shows the paramagnetic case while plot (B) has intermediate polarization and

plots (C) and (D) show a fully polarized system. According to the previous discussion, cases

(A) and (C) correspond to states of minimal total energy with respect to the spin polarization

ξ, i.e., physical spin polarizations. In plot (C) it is ∆ > ∆lim, c.f. (4.23), leading to a spectrum

contour of the imaginary part that is shifted that much to larger energies that it does not cross

the q axis. For reasons of better illustration, the following plots will use the (n, ξ) settings

(B) and (D). In the white areas of the plots the imaginary part of the susceptibility is zero,

while it has non-zero values in the colored region and in particular large values in the yellow

regions. It has diverging values for (q → 0, ω = 2∆).
The contour of the spectrum (i.e., the area of the Stoner excitations) has a typical form that

is sketched in figure 4.5. Three characteristic cases are highlighted with their transition in

k-space (right-hand side) and their place of contribution to the spectrum (left-hand side). The

54



4.2 The Kohn-Sham Response

q/kFq/kF

ω
/ω

F
ω
/ω

F

Figure 4.4: The spectrum Im χ+−
KS (q, ω) for four different value pairs (n, ξ) labeled (A) to

(D): (n1, 0.0), (n1, 0.788), (n1, 1.0) and (n2, 1.0). These values correspond to the

four orange circles in figure 4.1. The parameters q and ω are rescaled with the

corresponding Fermi values.

red and the blue markers, respectively, correspond to transitions from majority to minority

states without energy transfer (ω = 0), thus transitions from one Fermi surface to the other,

which by definition have the same energy. These transitions require a momentum kF↑−kF↓ ≤
q ≤ kF↑ + kF↓. The green markers represent transitions without momentum transfer (q = 0),

which can occur anywhere in k-space where majority is occupied and minority is unoccupied.

In all these places there is the same energy difference ǫ↑(q) − ǫ↓(q) = 2∆. This is stressed

by the set of green markers in the right sketch in figure 4.5. Since the valid region in k-space

is not only a surface but a volume this leads to the aforementioned pole at (q → 0, ω = 2∆).
As can be easily shown by performing the integration on formulas (4.27), (4.28), the sus-

ceptibility obeys the sum rule
∫ ∞

−∞
χ+−
KS (q, ω)dω = −2πinξ. (4.30)

for any fixed value q, c.f. (3.39). Also the right-hand side is understood as a complex quantity,

thus the integral over the real part equals zero.

Limits For the investigation of spin waves in section 4.4 it is necessary to evaluate the

limit of small q vectors. In particular, the logarithm from the real part of the susceptibility

55



CHAPTER 4 — THE SPIN-POLARIZED HOMOGENEOUS ELECTRON GAS
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Figure 4.5: On the left-hand side a spectrum Im χ+−
KS (q, ω) is sketched, with the gray area

indicating values unequal zero. Three limiting cases are highlighted by colored

markers, the corresponding transitions are pictured in the two-dimensional recip-

rocal space on the right.

evaluates to

ln

∣
∣
∣
∣

uσ + kFσ
uσ − kFσ

∣
∣
∣
∣
=

2kFσ
2∆− ω

q +

[ 8
3
k3Fσ

(2∆− ω)3
− 2σkFσ

(2∆− ω)2

]

q3 +O(q4). (4.31)

It is important to also take the order O(q3) into account. The real part simplifies to

Re χ+−
KS (q, ω) = − 1

4π2

{
2
3
(k3F↑ − k3F↓)

2∆− ω
+

(
1
4
(kF↑ − kF↓)

2∆− ω
−

5
3
(k3F↑ + k3F↓)

(2∆− ω)2
+

4
3
(k5F↑ − k5F↓)

(2∆− ω)3

)

q2

}

. (4.32)

At the (q, ω) origin the real part takes the value

Re χ+−
KS (0, 0) = − 1

4π2

k3F↑ − k3F↓
3∆

. (4.33)

In the limit q → 0 the non-zero values of the imaginary part narrow to the frequency ω = 2∆:

lim
q→0

Im χ+−
KS (q, ω) =

{
0 ω 6= 2∆
∞ ω = 2∆

(4.34)

with the asymptotic proportionality

Im χ+−
KS (q, 2∆) ≈ −

k2F↑ − k2F↓
8πq

for small q, (4.35)

compare figure 4.4.
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4.3 The Exchange-Correlation Kernel in ALDA

In order to employ the ALDA formalism the exchange-correlation kernel which has been

defined in section 3.3 needs to be evaluated for the homogeneous electron gas.

Exchange-Correlation Quantities in General In order to make a general point of the

exchange-correlation kernel we reconsider the shape of the exchange-correlation energy in

LDA for general densities. For a homogeneous system the value of the exact functional is

identical to the value of the LDA functional:

Ehom
xc = ELDA

xc . (4.36)

However, the general functional dependence on the density n or even on infinitesimal devia-

tions from homogeneity is unknown. The exchange-correlation potential and magnetic field

read

Vxc(r) =
δExc

δn(r)
, Bxc(r) = − δExc

δm(r)
. (4.37)

For a homogeneous system both derivatives become constants value due to the homogeneity:

V hom
xc (r) = V LDA

xc , Bhom
xc (r) = BLDA

xc ez. (4.38)

The exact values (i.e., the derivatives of the exact functionalExc for the case of homogeneous

density) on the left-hand side of the equations are identical to the LDA values on the right-

hand side.

However, this identity of the LDA quantities to the quantities of the homogeneous electron

gas holds only for the exchange-correlation energy, potential and magnetic field, but not for

the kernel. The dielectric and magnetic exchange-correlation kernels in general read

fxc(r, t, r
′, t′) =

δExc

δn(r, t) δn(r′, t′)
, f ij

xc(r, t, r
′, t′) =

δExc

δmi(r, t) δmj(r′, t′)
. (4.39)

For a homogeneous system these quantities become homogeneous in time and space,

fhom
xc (r, t, r′, t′) = fhom

xc (r− r′, t− t′), (4.40)

f ij,hom
xc (r, t, r′, t′) = f ij,hom

xc (r− r′, t− t′), (4.41)

which is further approximated in the ALDA to be local in time and space:

fALDA
xc (r, t, r′, t′) = fALDA

xc δ(r− r′)δ(t− t′), (4.42)

f ij,ALDA
xc (r, t, r′, t′) = f ij,ALDA

xc δ(r− r′)δ(t− t′). (4.43)

The Fourier transforms read fhom
xc (q, ω), f+−,hom

xc (q, ω), which are constant in ALDA. This

summary was to elucidate the fact that the general kernel of a homogeneous system indeed

has a (q, ω)-dependence, which might not be obvious from the beginning. On the other

hand this is same for the kernel fxc ∼ δ2Exc/(δmδm) as it is for the susceptibility χ ∼
−δ2E/(δBδB) for which the (q, ω)-dependence is intuitive.
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As shown in the next paragraph, the kernel becomes constant (i.e., depending only on

n and ξ, not on q and ω) if evaluated within ALDA. For the dielectric kernel there exists a

relation (called compressibility sum rule [DPT02]) identifying the ALDA kernel as the proper

limit of the exact kernel for the homogeneous electron gas fhom
xc for vanishing q vector and

energy ω:

lim
q→0

fhom
xc (q, 0) = fALDA

xc . (4.44)

According to (3.62) the spin-flip kernel is constructed as f+−
xc = 2fxx

xc . Based on our deriva-

tions on page 63 for the check of the Goldstone theorem we can assume an equivalent state-

ment as for the magnetic kernel:

lim
q→0

f+−,hom
xc (q, ωsw(q)) = f+−,ALDA

xc (4.45)

with the spin-wave energy ωsw(q).

Exchange-Correlation Quantities in ALDA The exchange-correlation energy for a

homogeneous electron gas of density n and magnetization m (i.e., spin polarization ξ) in

LDA reads

Exc[n,m] =

∫

n(r)ǫxc(n, ξ) d
3r = V nǫxc(n, ξ) (4.46)

with ǫxc = ǫx + ǫc, and its derivatives

Vxc(n,m) =
1

V

∂Ex

∂n
= εxc(n, ξ) + n

∂εxc
∂n

, (4.47)

Bxc(n,m) = − 1

V

∂Ex

∂m
= −n∂εxc

∂m
=

2

µBg

∂εxc
∂ξ

(4.48)

with m = −1
2
µBgnξ, c.f. (4.8), (4.9). The scalar dielectric exchange kernel and the magnetic

exchange kernel tensor evaluate as

fxc(n,m) =
1

V 2

∂2Ex

∂n2
=

2

V

∂εxc
∂n

+
n

V

∂2εxc
∂n2

, (4.49)

f ij
xc(n,m) =

1

V 2

∂2Ex

∂mi∂mj

=
n

V

∂2ǫxc
∂mi∂mj

. (4.50)

In this whole chapter m is considered negative, thus it relates to the absolute value like

m = −|m| = −
√

m2
x +m2

y +m2
z,

dm

dmi

=
mi

m
. (4.51)

Calculating for general magnetizations m and applying an appropriate chain rule leads to

f ij
xc(n,m) =

n

V

(
∂2ǫxc
∂m2

mimj

m2
+
∂ǫxc
∂m

δij
m

− ∂ǫxc
∂m

mimj

m3

)

. (4.52)

Evaluating for m = (0, 0,m) leads to

f+−
xc (n,m) =

2n

mV

∂ǫxc
∂m

= − 2

V

Bxc

m
, f+−

xc (n, ξ) =
8

(µBg)2nξ

∂ǫxc
∂ξ

. (4.53)
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Illustration of the Kernel In order to get an idea of the role of the magnetic exchange-

correlation kernel one might imagine a homogeneous electron gas whose magnetization m 6=
0 is modified by an infinitesimally small arbitrary vector δm. Then, the exchange-correlation

energy of of the modified magnetization m+ δm is

Exc(n,m+ δm) = Exc(n,m)−
∑

i

Bi
xc(n,m)δmi+

1

2

∑

i,j

δmif
ij
xc(n,m)δmj +O

(
(δm)3

)
. (4.54)

If we assume the magnetization density along the z axis, m = (0, 0,m0), the derivatives

simplify to

Bxc =





0
0

Bz
xc(n,m)



 , (4.55)

fxc =





1
2
f+−
xc 0 0
0 1

2
f+−
xc 0

0 0 f zz
xc



 . (4.56)

Neglecting terms of third and higher order, the energy reads

Exc(n,m+ δm) = Exc(n,m)− Bxc(n,m)δmz + f zz
xc (n,m)δm2

z+

1

2
f+−
xc (n,m)(δm2

x + δm2
y). (4.57)

The variations of Exc can be separated into longitudinal components ‖ along the magnetiza-

tion axis and transversal components ⊥ perpendicular to the given magnetization:

Exc(n,m+ δm)− Exc(n,m) = −Bxc(n,m)δm‖ +
1

2
f+−
xc (n,m)δm2

⊥. (4.58)

The term ∼ δm2
z(= δm2

‖) has been neglected since there is already a lower-order term ∼ δm‖
in the equation. The longitudinal contribution, a first-order term in δm, describes the change

of energy if the magnetization is increased or decreased along the given magnetization di-

rection, while the transversal contribution, which is of second order, describes the energy

change for a tilt of the magnetization.

If the magnetization goes to zero (m→ 0), the longitudinal term vanishes due toBxc → 0.

Although f+−
xc ∼ m−1, c.f. (4.53), the total transversal contribution to Exc remains infinites-

imally small due to the factor (δm⊥)
2, in total it is ∼ δm. For zero magnetization there is no

distinguished axis and the exchange-correlation energy changes isotropic with respect to an

infinitesimal magnetization δm. Consequently there is no distinction of its derivatives into

longitudinal and transversal contributions.

Evaluation of the Exchange Contribution The exchange-energy density ǫx (or ex-

change energy per particle) is known analytically and already given in (2.41):

εx(n, ξ) = εx(n, 0) + [εx(n, 1)− εx(n, 0)] f(ξ) (4.59)

εx(n, 0) = −Cxn
1
3 , εx(n, 1) = −2

1
3Cxn

1
3 , Cx =

3

4

(
3

π

) 1
3

. (4.60)

59



CHAPTER 4 — THE SPIN-POLARIZED HOMOGENEOUS ELECTRON GAS

The spin polarization factor f(ξ) and limit for small ξ read

f(ξ) =
(1 + ξ)

4
3 + (1− ξ)

4
3 − 2

2
4
3 − 2

=
2

9

ξ2

2
1
3 − 1

+
5

243

ξ4

2
1
3 − 1

+O(ξ6) (4.61)

∂f

∂ξ
=

4

3

(1 + ξ)
1
3 − (1− ξ)

1
3

2
4
3 − 2

=
4

9

ξ

2
1
3 − 1

+
20

243

ξ3

2
1
3 − 1

+O(ξ5). (4.62)

For small spin polarization the factor f(ξ) is well approximated already by the lowest-order

term f(ξ) ≈ 0.855ξ2. The exchange potential and magnetic field read

Vx = −4

3
Cxn

1
3

[

1 +
(

2
1
3 − 1

)

f(ξ)
]

(4.63)

Bx = −2Cx

µBg
n

1
3

(

2
1
3 − 1

) df

dξ
. (4.64)

The magnetic and the dielectric exchange kernel read

f+−
x (n, ξ) =

8

ξ
Cxn

− 2
3

(

2
1
3 − 1

) ∂f

∂ξ
(4.65)

fx(n, ξ) = −4

9
Cxn

− 2
3

(

1 +
(

2
1
3 − 1

)

f(ξ)
)

. (4.66)

Both kernels are very similar in a small-ξ expansion:

f+−
x (n, ξ) = −32

9
Cxn

− 2
3

(

1 +
5

27
ξ2 +O(ξ4)

)

(4.67)

fx(n, ξ) = −4

9
Cxn

− 2
3

(

1 +
2

9
ξ2 +O(ξ4)

)

. (4.68)

4.4 Spin Waves from ALDA

Now we would like to apply the adiabatic LDA as introduced in section 3.3 in order to obtain

the full spin-flip response χ+− starting from the Kohn-Sham susceptibility χ+−
KS .

The Dyson Equation The starting point is the Dyson equation (3.64) which in the case

of the homogeneous electron gas can be evaluated as

χ+−(q, ω) = χ+−
KS (q, ω) +

(µBg

2

)2

χ+−
KS (q, ω)f

+−
xc (q, ω)χ+−(q, ω) (4.69)

=
χ+−
KS (q, ω)

1−
(
µBg
2

)2
f+−
xc (q, ω)χ+−

KS (q, ω)
(4.70)

with all quantities in this equation being scalar functions. In ALDA the kernel becomes a

constant, f+−
xc (q, ω) = f+−

xc . The imaginary part of the full (or renormalized) susceptibility

then reads

Im χ+−(q, ω) =
Im χ+−

KS (q, ω)
[

1−
(
µBg
2

)2
f+−
xc Re χ+−

KS (q, ω)
]2

+
[(

µBg
2

)2
f+−
xc Im χ+−

KS (q, ω)
]2 . (4.71)
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Figure 4.6: The spectrum Im χ+−(q, ω) of the full (renormalized) susceptibility for the (n, ξ)
values of cases (B) and (D) from figure 4.4. The spin waves are not included yet.

Due to its denominator it appears to have the same pole structure as Im χ+−
KS (q, ω), i.e., the

two quantities are zero at exactly the same (q, ω) values. The distribution of small and large

values, however, are different as can be seen from the example plot in figure 4.6. While the

Kohn-Sham response χ+−
KS has its large values close to the (q, ω) value (0, 2∆), c.f. figure

4.4, the renormalized susceptibility has large values close to the q axis (see yellow region in

figure 4.6).

A more detailed inspection of (4.71), however, reveals that the imaginary part can take

non-zero values also for the particular case (spin-wave condition)

1−
(µBg

2

)2

f+−
xc Re χ+−

KS (q, ωsw(q)) = 0 if Im χ+−
KS (q, ωsw(q)) = 0. (4.72)

Solving this equation yields the spin-wave dispersion ωsw(q).

The Goldstone Theorem In non-magnetic materials the non-existent magnetization is

isotropic in all directions. In magnetic materials, on the other hand, this rotational symmetry

with respect to the magnetization is broken. In the common collinear case, for instance, the

magnetization commonly points into one designated direction.

The Goldstone theorem (in its non-relativistic incarnation) states that when a global sym-

metry of the system under consideration is broken spontaneously, there corresponds a quasi-

particle in the excitation spectrum with no energy gap.

Applied to our setting this means that in the case of a magnetic material (in which the

rotational symmetry of magnetization is broken) possible magnetic excitations are quan-

tized in quasi-particles (namely magnons) which have zero energy for vanishing wave vector:

ωsw(0) = 0. In other words, the spin-wave branch starts in the origin.

Obtaining the Spin-Wave Dispersion According to the discussion above the spin-

wave dispersion ωsw(q) is an additional branch to the spectrum not present in the Kohn-Sham

response. It starts at the origin and, as it turns out, has infinitely small line width (in the case

of the homogeneous electron gas) until it enters the region of Stoner excitations. Combining
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Figure 4.7: Left-hand side: the real part of the susceptibility χ+−
KS for different q vectors for

setting (B) of figure 4.4, i.e., n = 0.00147, ξ = 0.788. This is a small clipping

of the left plot in figure 4.3. The thick dashed black line indicates the value

χ+−
KS (0, 0). Crossings of curves for different q with this line determine the spin-

wave dispersion ωsw(q) which is shown on the right-hand side as a red curve.

the Goldstone theorem with (4.72), the spin-wave condition can be written as

χ+−
KS (q, ωsw(q)) = χ+−

KS (0, 0). (4.73)

This equation is solved for a given q by interval nesting. It is equivalent to solving the Dyson

equation for spin waves with the boundary condition of a gap-less dispersion. Therefore the

kernel is in fact not needed in this step due to this boundary condition; however, it is used

below in the check of the Goldstone theorem. The choice of exchange and correlation is

already embedded in the Kohn-Sham response through the energy splitting of the two spin

channels which is determined by Bxc. The plots that are shown here are calculated with

exchange only.

In order to understand how this condition is fulfilled the real part of the non-interacting

susceptibility is plotted in figure 4.7. The first part of the spin-wave condition (4.72) corre-

sponds to the cut of the curve of the corresponding q vector with the thick dash-dotted line

which has the value χ+−
KS (0, 0). Solving for this leads to the spin-wave dispersion curve which

is plotted in red on the right-hand side. The curves stop where the spin-wave dispersion enters

the region of Stoner excitations.

The blue curve in the right plot in figure 4.7 shows the spin-wave dispersion for setup (D)

with full spin-polarization ξ = 1.0. Apparently the spin waves have smaller gradients (or

spin stiffness) for lower spin polarizations, and enter the Stoner region for smaller q values.

Furthermore, the energy scale of the spin excitations is so small that it would be barely visible

in figure 4.6. The spin-wave region of these plots is shown on an enlarged scale for the same

two (n, ξ) value pairs in figure 4.8. The spin waves enter the Stoner regime at the (q, ωsw(q))
point where this has its largest (diverging) value.
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q/kFq/kF

ω
/ω

F

Figure 4.8: The spectrum Im χ+−(q, ω) of the ALDA-renormalized susceptibility including

the spin-wave excitations. This is a magnification of figure 4.6.

Sensitivity of the Procedure Another important feature of the spin-wave dispersion be-

comes apparent when the spin-wave energy is determined by searching for the cut of graphs

on the left-hand side in figure 4.7. This procedure is very sensitive to the proper values of

the exchange-correlation kernel f+−
xc (and hence the susceptibility χ+−

KS ). While this is not

a problem in the case of the homogeneous electron gas, for which we know the analytical

formulas, it might result in problems in the case of real materials. In order to simulate the

effect one might solve the Dyson equation (4.69) with the kernel multiplied by a scalar factor

x close to one which should account for inaccuracies:

χ+−(q, ω) = χ+−
KS (q, ω) +

(µBg

2

)2

χ+−
KS (q, ω)xf

+−
xc (q, ω)χ+−(q, ω).

In figure 4.9 two spin-wave dispersions are shown: setup (B) on the left-hand side which was

already presented in figure 4.7, and setup (D) on the right-hand side. In both cases different

scalar factors x ∈ [0.98, . . . , 1.02] have been used in the solution of the Dyson equation,

and the corresponding curves are presented. Already for deviations as small as one percent

the dispersion changes considerably, either by having a spin-wave dispersion that starts at

positive energies (x < 1), or by starting not for q = 0 but at finite values of q (x > 1).

Check of the Goldstone Theorem for this Special Case As explained above, the

Goldstone theorem demands the spin-wave dispersion to start at the origin, ωsw(0) = 0.

In the case of the homogeneous electron gas this can be demonstrated by evaluating the

kernel and the susceptibility, which is a convenient check for the spin-wave condition and our

derivations so far. Evaluating the ALDA spin-wave condition (4.72) for (q, ω) = (0, ωsw(0))
reads

1−
(µBg

2

)2

f+−
xc Re χ+−

KS (0, ωsw(0)) = 0, (4.74)

where general exchange and correlation is taken into account. Due to (4.32) it is

Re χ+−
KS (0, ωsw(0)) = − 1

4π2

2
3
(k3F↑ − k3F↓)

2∆− ωsw(0)
(4.75)
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Figure 4.9: The spin-wave dispersion for setups (B) in red and (D) in blue (c.f. right-hand

side of figure 4.7) with an arbitrarily introduced factor x close to one multiplied

to the exchange-correlation kernel. This shows the sensitivity of the procedure

(please confer to the corresponding paragraph in the text).

Furthermore, according to (4.53),

f+−
xc =

2Bxc

m
(4.76)

k3F↑ − k3F↓ = 6π2(n↑ − n↓) = 6π2 m

−1
2
µBg

(4.77)

∆ = −1

2
µBgBeff , (4.78)

altogether leading to

Bext +
1

µBg
ωsw(0) = 0. (4.79)

This equation is solved by ωsw(0) = −µBgBext. If no external field is applied, the spin-wave

dispersion starts at the origin.

If there is an external field present, the result can be understood in the following way:

The additional field Bext is supposed to be negative, the energy of an electron of spin +1
2

in

this field is supposed to be −m · Bext =
µBg
2
Bext. If such a spin-up electron is removed and

a spin-down electron (spin −1
2
) is added to the system, the total energy difference matches

−µBgBext = ωsw(0). This means that the S−1 spin excitation (with S the total-spin quantum

number of the system) described by χ+− couples to the applied field Bext and contributes an

energy shift.

It should be stressed that the derivation in this paragraph is not restricted to exchange-only

formulas. Equation (4.74) is solved by any f+−
xc and χ+−

KS which are consistently obtained

from DFT, i.e., for any proper correlation contribution. This is not fulfilled if the (n, ξ) value

pair is not a proper solution of DFT according to section 4.1.

64



4.4 Spin Waves from ALDA

From the derivations above, we conclude that the ALDA in fact yields the proper limit of

the true exchange-correlation kernel for the homogeneous electron gas for q → 0, c.f. (4.45).

Another common Treatment in Literature: RPA The way the spin waves in the

homogeneous electron gas are treated in this chapter should briefly be contrasted to another

method which is common in literature. It is labeled RPA and is presented for instance in a

book by Moriya [Mor85]. In this method (which is also based on the one-particle picture, but

is not related to density-functional theory) the homogeneous electron gas of density n is set to

have a specific spin splitting ∆ and consequently spin polarization ξ. From the corresponding

one-electron states the spin-flip susceptibility of independent particles χ+−
KS (q, ω) is obtained.

In a second step a renormalization is applied to obtain from this quantity the full spin-flip

susceptibility χ+−(q, ω). This specific renormalization step gives the RPA method its name.

However, this does not refer to time-dependent Hartree theory such as in section 3.4, but

refers to time-dependent Hartree-Fock theory. With some approximations this results in a

Dyson equation

χ+−(q, ω) =
χ+−
KS (q, ω)

1− I · χ+−
KS (q, ω)

featuring the exchange integral I . The equation has the same shape as the Dyson equation

(4.70) but with the exchange integral taking the place of the exchange-correlation kernel,

I = (µBg
2
)2f+−

xc . This term I is considered as an adjustable parameter: It is chosen such

that the resulting spin-wave dispersion starts in the origin, ωsw(0) = 0 so that the Goldstone

theorem is fulfilled.

While the RPA method appears to be very similar to the ALDA, there are some crucial

differences that should be highlighted.

• The exchange integral I is considered as an arbitrary parameter, while the correspond-

ing term f+−
xc from ALDA has no freedom of choice, but is fixed through the values of

n and ξ.

• The spin polarization within the RPA method is fixed by parameter ξ which can be

freely chosen. In contrast to this, in ALDA the spin polarization ξ results from the

self-consistency cycle for the ground state. For the homogeneous electron gas, this

yields the values ξ = 1 for n < n1 and ξ = 0 for n > n1, c.f. figure 4.1.

• In ALDA, a magnetic field needs to be applied in order to tune the spin polarization to

a specific value (unequal to those spin polarizations of the ground state). In RPA, no

magnetic field is necessary since any spin polarization can be set through parameter ∆.

• As a consequence, the Goldstone theorem is fulfilled in the RPA as soon as the suitable

exchange integral I is chosen, independent of the spin polarization. In the ALDA

framework, however, the Goldstone theorem cannot be fulfilled for spin polarizations

that require an external magnetic field.

As a side note it should be mentioned that the formulas in the book of Moriya [Mor85]

differ in a few ways from the notation in this chapter. Relation (B.53) has been utilized

in that book to rescale momentum and frequency with their Fermi values, q → q/qF and

ω → ω/ωF. The resulting formulas for the Kohn-Sham susceptibility show some subtle

differences to (4.27) and (4.28).
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4.5 The Correlation Contribution

In the calculations up to now only the analytically known exchange contribution has been

taken into account. (However, some statements such as the shape of the spin-flip kernel or

the check of the Goldstone theorem have been stated for the general exchange-correlation

term.) In this section the missing treatment should be completed by introducing formulas for

the correlation part.

The correlation contribution to the exchange-correlation energy in LDA is, in contrast

to the exchange part, not known analytically. However, it has been determined numerically

through quantum Monte-Carlo calculations by Ceperley and Alder [CA80]. For practical cal-

culations one usually uses some parametrization of the exchange-correlation energy, which

is essentially a fit function ǫc(n, ξ) to obtain reasonably good values, augmented with analyt-

ically known asymptotic behavior [PW92].

ǫc in Perdew-Wang-92 One of the more recent of these parametrizations is the Perdew-

Wang LDA energy per particle [PW92]

εc(n, ξ) = εc(n, 0) + αc(n)
f(ξ)

f ′′(0)
(1− ξ4) + [εc(n, 1)− εc(n, 0)] f(ξ)ξ

4, (4.80)

where energy densities εc(n, 1), εc(n, 0) and the spin stiffness αc(n) are themselves fit func-

tions. The spin interpolation function f is already given in (4.61), the second derivative at

the origin has the value f ′′(0) = 4
9
(2

1
3 − 1)−1 ≈ 1.71. An expansion for small ξ leads to the

simpler expression

εc(n, ξ) = εc(n, 0) +
1

2
αc(n)ξ

2 +O(ξ4). (4.81)

The functions αc(n), εc(n, 0), εc(n, 1) are fit functions set equal to a parametrization function

G

−αc(n)
εc(n, 0)
εc(n, 1)






= G(rs, A, α1, β1, β2, β3, β4, p), (4.82)

each for a different set of parameters:

A α1 β1 β2 β3 β4
−αc(n) 0.016887 0.11125 10.357 3.6231 0.88026 0.49671
εc(n, 0) 0.031091 0.21370 7.5957 3.5876 1.6382 0.49294
εc(n, 1) 0.015545 0.20548 14.1189 6.1977 3.3662 0.62517

The last constant is chosen p = 1 for all three functions. The function G reads

G(rs) = −2A(1 + α1rs) ln

[

1 +
1

X(rs)

]

(4.83)

X(rs) = 2A(β1r
1
2
s + β2rs + β3r

3
2
s + β4r

p+1
s ). (4.84)
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Figure 4.10: Left-hand side: The three crucial functions from the PW92 parametrization,

shown on a logarithmic scale of densities. Right-hand side: The ratio of the

exchange and the PW92 correlation contributions to the exchange-correlation

energy.

Apart from the constants A,α1, β1, β2, β3, β4, p it depends on the density radius rs, which

relates to the density n according to (4.14). The function G is constructed such that certain

analytically known limiting cases of εc(n, ξ) are reproduced. While this establishes a relation

between some of these parameters, the remaining numerical values are determined by a fit to

the quantum Monte-Carlo results of Ceperley and Alder, which leads to the constants in the

table above.

Correlation Kernel For the correlation contribution of the magnetic kernel these func-

tions do not need to be investigated in detail. According to (4.53) the kernel and its small-ξ
limit read

f+−
c (n, ξ) =

8

nξ

[
αc(n)

f ′′(0)

(
∂f

∂ξ
(1− ξ4)− 4f(ξ)ξ3

)

+

[εc(n, 1)− εc(n, 0)]

(
∂f

∂ξ
ξ4 + 4f(ξ)ξ3

)]

(4.85)

=
8

n
αc(n)

(

1 +
5

27
ξ2 +O(ξ4)

)

. (4.86)

Thus, for reasonably small ξ only the spin-stiffness αc(n) has an influence, while the func-

tions εc(n, 0) and εc(n, 1) do not contribute. The evaluation of the dielectric correlation

kernel is more complicated because it involves derivatives of G. According to (4.49) we

need the derivatives

∂εc
∂n

=
∂εc(n, 0)

∂n
+
∂αc(n)

∂n

f(ξ)

f ′′(0)
(1− ξ4) +

[
∂εc(n, 1)

∂n
− ∂εc(n, 0)

∂n

]

f(ξ)ξ4 (4.87)

∂2εc
∂n2

=
∂2εc(n, 0)

∂n2
+
∂2αc(n)

∂n2

f(ξ)

f ′′(0)
(1− ξ4) +

[
∂2εc(n, 1)

∂n2
− ∂2εc(n, 0)

∂n2

]

f(ξ)ξ4. (4.88)
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Due to (4.82) the single and double derivatives of εc(n, 0), εc(n, 1), αc(n) with respect to the

density involve the corresponding density derivatives of the function G,

∂G

∂n
=
∂G

∂rs

∂rs
∂n

,
∂2G

∂n2
=
∂2G

∂r2s

(
∂rs
∂n

)2

+
∂G

∂rs

∂2rs
∂n2

(4.89)

with the density radius derivatives

∂rs
∂n

= −1

3

(
3

4π

) 1
3

n− 4
3 ,

∂2rs
∂n2

=
4

9

(
3

4π

) 1
3

n− 7
3 . (4.90)

The derivatives of the function G with respect to the density radius

∂G

∂rs
= −2Aα1 ln

[

1 +
1

X

]

+ 2A(1 + α1rs)
1

X2 +X

∂X

∂rs
(4.91)

∂2G

∂r2s
=

4Aα1

X2 +X

∂X

∂rs
+ 2A(1 + α1rs)

[

1

X2 +X

∂2X

∂r2s
− 2X + 1

(X2 +X)2

(
∂X

∂rs

)2
]

(4.92)

incorporate derivatives of X as well:

∂X

∂rs
= 2A

(
1

2
β1r

− 1
2

s + β2 +
3

2
β3r

1
2
s + (p+ 1)β4r

p
s

)

(4.93)

∂2X

∂r2s
= 2A

(

−1

4
β1r

− 3
2

s +
3

4
β3r

− 1
2

s + p(p+ 1)β4r
p−1
s

)

. (4.94)

Altogether, this makes up the correlation part of the dielectric kernel.

Comparison to the Exchange Contribution In order to get an impression of the in-

fluence of the correlation contribution and how it relates to the exchange part, the correlation

energy per particle in PW92 parametrization ǫc(n, ξ) is plotted in figure 4.10. As expected,

it is always negative, as is the exchange contribution. Comparing the black and the red curve

on the left-hand side, it is apparent that the magnitude of ǫc for a given n becomes smaller for

increasing spin polarization. This is opposite to the exchange contribution, which has a larger

absolute value for increasing spin polarization. Therefore the ratio of the two contributions is

plotted on the right-hand side of the same figure as a function of the density n, both for zero

spin polarization as well as for full spin polarization. The exchange contribution dominates

with increasing density.

In figure 4.11 the spin-flip exchange-correlation kernel f+−
xc is shown in a similar fashion.

On the left-hand side, both the exchange and the correlation contribution are plotted, while

their ratio is shown on the right-hand side for zero and for full spin polarization. Different

than for the exchange-correlation energy, now both contributions have a larger absolute value

for larger spin polarization. However, the two contributions have opposite sign now. The ratio

of the two contributions to the kernel is smaller than but similar in shape to the ratio of the

energies in the previous figure.

While the correlation contribution to the exchange-correlation energy is significantly

smaller than the exchange contribution, it is nevertheless important for a proper descrip-

tion of the system under consideration. The examination in section 4.1 shows that the
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Figure 4.11: Left-hand side: The exchange and correlation contribution to the exchange-

correlation spin-flip kernel are shown for zero and for full spin polariza-

tion. Right-hand side: The ratio of the exchange and the PW92 correlation

contributions.

homogeneous electron gas becomes spin polarized only for low densities rs > 5.45aB if

only exchange is taken into account. If the correlation contribution is included as well this

threshold value for rs is shifted to much higher values, that is to lower densities. This is a

substantial change of the system behavior. However, values such as 2aB < rs5aB correspond

closer to the electron densities of real systems, which is the reason (apart from analytical

simplicity) that only the exchange part has been treated in most parts of this chapter. As has

been pointed out in figure 4.9 also the ALDA spin-response calculation is very sensitive to

small changes in the value of the exchange-correlation kernel.

These points indicate the importance of a full treatment of the exchange-correlation kernel.

While the qualitative results from the previous sections obtained with exchange only (such as

the check of the Goldstone theorem) remain true, the correlation part needs to be included for

quantitative investigations. Hence in the calculations of chapter 6 the exchange-correlation

kernel will be treated to the full extend within ALDA.

4.6 Differences and Conclusions for Real Materials

For non-homogeneous materials the Dyson equation does not simplify to an equation of

scalars like (4.69). In the following chapter 5 the susceptibility is expanded in a Bloch basis,

and the Dyson equation transforms to the same shape as (4.69) but with its constituents being

matrices instead of scalars.

The dispersion of free electrons is strictly monotonous and isotropic, leading to a spherical

Fermi surface. As a consequence the possible transitions between energy levels are limited

and Im χ+−
KS is non-zero only in a specific (q, ω)-range. Real materials, on the other hand,

usually have multiple bands, much less symmetry and energy band dispersions of much
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Figure 4.12: The spectrum Im χ+−(q, ω) of the ALDA-renormalized susceptibility including

the spin-wave excitations. This is identical to figure 4.8, but solved straightfor-

wardly by adding a small value to the imaginary part, resulting in a broadening

of the otherwise infinitely small spin-wave peaks.

higher complexity, resulting in a very structured Fermi surface. Consequently for practically

any (q, ω)-pair one can construct some band transition, and the imaginary part of the suscep-

tibility Im χ+−
KS usually has non-zero values for all ω, unlike for the homogeneous electron

gas. Then, the spin-wave condition (4.72), namely the vanishing of the real part of the de-

nominator of (4.71) does not lead to a pole since the imaginary part is still unequal zero.

Nevertheless we expect this to lead to a peak in the full susceptibility Im χ+−. This implies

a simplified procedure: while in the case of the homogeneous electron gas the infinitesimally

extended poles almost certainly lie in-between the mesh points of any (q, ω)-mesh (demand-

ing a separate interval nesting to determine the poles), they are not that strongly localized for

real materials. Thus, one can directly solve the Dyson equation for the full susceptibility on

a sufficiently dense (q, ω)-mesh and scan for peaks. This is pictured in figure 4.12: A small

value (in this case −10−8) is added to the imaginary part of the Kohn-Sham susceptibility,

then the Dyson equation is solved. The resulting spectrum contains broadened spin-wave

peaks. With larger numbers added to the imaginary part the peaks get lower and broader,

illustrating the transition to real materials.

In the general formalism the dielectric and spin-flip kernel have been defined in (3.69)

and (3.62). These quantities can easily be connected to the quantities derived in this chapter

through

f+−
xc (r, t, r′, t′) = δ(r− r′)δ(t− t′) f+−

xc (n, ξ)
∣
∣
n=n(r)
ξ=ξ(r)

(4.95)

f+−
xc (r, r′;ω) = δ(r− r′) f+−

xc (n, ξ)
∣
∣
n=n(r)
ξ=ξ(r)

(4.96)

for the magnetic kernel and

fxc(r, t, r
′, t′) = δ(r− r′)δ(t− t′) fxc(n, ξ)|n=n(r)

ξ=ξ(r)
(4.97)

fxc(r, r
′, ω) = δ(r− r′) fxc(n, ξ)|n=n(r)

ξ=ξ(r)
(4.98)

for the dielectric kernel, with the ALDA kernels fxc(n, ξ) and f+−
xc (n, ξ) given in (4.49) and

(4.53), respectively.
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Since this procedure to determine spin waves is very sensitive (c.f. figure 4.9) we will

probably need to push the convergence parameters of our calculations for real materials in

order to obtain thoroughly converged results.

Furthermore, the derivations in this chapter stress the need to consistently use the same

exchange-correlation functional in the DFT self-consistency cycle as well as in the ALDA

spin-wave calculation. If additional non-generic ingredients (such as the LDA+U method)

are used in the DFT part, this has to be treated consistently in the ALDA part.

In this chapter we have shown the consistence with the Goldstone theorem (namely the

start of the spin-wave dispersion in the origin) explicitly for the homogeneous electron gas.

This can be also be derived in the general case (see appendix B.4). Therefore we would

expect for highly converged ALDA calculation of a real magnetic material (which is spin

polarized without an applied external field) to find a spin-wave dispersion which does indeed

start at the origin such as it does for the homogeneous electron gas.
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The general theoretical framework of this thesis, time-dependent DFT, has been investi-

gated in chapters 2 and 3. However, as has been pointed out already in section 2.4, there exist

a large diversity of DFT methods to carry out calculations for different kinds of materials.

We are interested in the particular case of magnetic crystalline materials.

Crystalline materials are characterized by their translational symmetry. In order to account

for that, the central equations of the theory – namely the Kohn-Sham equations and suscep-

tibility as well as the ALDA Dyson equation – are reformulated in section 5.1 by taking the

lattice periodicity into account.

The representation of the DFT equations in terms of a set of basis functions is introduced in

section 5.2, and specific basis sets are presented. While the plane-wave set is convenient for

illustrations, the linearized augmented plane wave (LAPW, section 5.2.3) set is advantageous

for materials with localized electronic states (such as the magnetic transition metals), and is

used in this work for DFT calculations. A few details of the method are highlighted in section

5.2.4.

Also the spin-response part is treated in basis representation, see section 5.3. The Dyson

equation becomes a matrix equation (section 5.3.1). The LAPW basis set is not well suited

for the representation of the Kohn-Sham response function; instead the mixed product basis

is used (section 5.3.2). Some details of the implementation are discussed in section 5.3.3.

The DFT part of the calculations for real materials in chapter 6 is performed with the

FLEUR computer code [cca] that employs the FLAPW method. For the TDDFT part of the

calculation the SPEX computer code [ccb], which can do response calculations as well as
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exact-exchange and GW calculations, has been extended in order to treat magnetic excita-

tions. Both codes have been developed in the group of Prof. Blügel in the research center

Jülich [fFIFJ].

5.1 Reformulation for Lattice-Periodic Systems

Crystalline systems possess translational symmetry. Incorporating this lattice periodicity

yields a reformulation of the central equations which is presented below.

Density-Functional Framework As described in appendix A.2, due to the Bloch the-

orem (A.18) the energies and wave functions of the system are now characterized by a re-

ciprocal vector k from the first unit cell in reciprocal space, i.e., the Brillouin zone (BZ):

(ǫiσ, ϕiσ(r))  (ǫikσ, ϕikσ(r)). For practical calculations this volume must be sampled by a

discrete set of k points. At the same time many operations on the spatial coordinate r can be

reduced to one unit cell in the real space. The density is constructed from the one-particle

Kohn-Sham states by

n(r) =
V

(2π)3

∫

BZ

d3k
∑

i,σ

|ϕikσ(r)|2f(ǫikσ). (5.1)

V is the volume of the real-space unit cell. The Fermi factor f accounts for the occupation

of the bands and can incorporate a temperature broadening. In the DFT calculations of this

work this is used for convergence purposes only. The phononic degrees of freedom have been

excluded right from the beginning by pinning the atomic nuclei at fixed positions in (2.5).

The collinear Kohn-Sham equation (2.39) now has to be solved independently for each k

point:

[

−1

2
∇2

r + Veff(r)±
µBg

2
Bxc(r)

]

︸ ︷︷ ︸

ĤKS(r)

ϕikσ(r) = ǫikσϕikσ(r). (5.2)

The nabla operator acts on the spatial coordinate r. The Kohn-Sham Hamiltonian ĤKS on

the left is k dependent in the sense that the kinetic-energy operator acts on the Bloch state

ϕikσ(r) = eikrzikσ(r), i.e., acting on the exponential factor. However, instead of using this de-

composition and expanding z(r) directly we choose Bloch basis functions in order to expand

the wave function ϕ.

Spin-Response Function According to (A.21) in appendix A.2, the response function

χ as well as its spectral function S can be equally characterized by a Brillouin-zone vector q,

χ+−(r, r′;ω) χ+−(r, r′; q, ω), where both spatial coordinates r, r′ are confined to one unit

cell (u.c.). Then, the macroscopic spin-response function in analogy to (3.40) is determined

by

χ+−(q, ω) =

∫

u.c.

e−iqrχ+−(r, r′; q, ω)e+iqr′ d3r d3r′ (5.3)
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with the two integrations being restricted to the real-space unit cell. This projection

can also be understood as the G = G′ = 0 component of a plane-wave representation

χ+−(r, r′; q, ω)  χ+−
GG′(q, ω), where r, r′ are coordinates from within the real-space unit

cell and G,G′ are reciprocal lattice vectors. The spin-flip Dyson equation (3.64) for a local

exchange-correlation kernel f+−
xc (r) = f+−

xc (r, r′)δ(r− r′) such as in ALDA evaluates to

χ+−(r, r′; q, ω) = χ+−
KS (r, r

′; q, ω) +
(µBg

2

)2
∫

u.c.

d3r1 χ
+−
KS (r, r1; q, ω)f

+−
xc (r1)χ

+−(r1, r
′; q, ω). (5.4)

In here, the explicit form (4.95) of the spin-flip kernel f+−
xc in the ALDA is used, being

frequency- and k independent. It should be remarked that while the mentioned quantities

in the DFT part are integrated over (i.e., the k dependent wave functions integrated yield

the k independent density, which in turn provides means to determine the wave functions

again), the response function χ is studied for each wave vector independently. Therefore

it is denoted as q instead of k. As explained in section 3.1, this vector corresponds to the

momentum transfer ∆q from an external perturbation to a quasi-particle excitation. The

Kohn-Sham response (3.46) in crystal notation reads

χ+−
KS (r, r

′; q, ω) =

lim
η→0+

∫

BZ

d3k
∑

n,n′

f(ǫnk↑)− f(ǫn′k+q↓)

ω − (ǫn′k+q↓ − ǫnk↑) + iη
ϕ∗
nk↑(r)ϕn′k+q↓(r)ϕ

∗
n′k+q↓(r

′)ϕnk↑(r
′), (5.5)

involving a Brillouin zone integration over k. Together with the basis expansion presented in

the following section, this leads to the work flow sketched in figure 5.1.

5.2 DFT and the FLAPW method

5.2.1 The Kohn-Sham Formalism in Basis Representation

The Kohn-Sham equation for periodic systems (5.2) needs to be solved. This can be done

by sampling the wave functions on a real-space mesh, or by expanding the wave functions

in basis functions φ (labeled by indices ν and k) which are now assumed spin-dependent

and of Bloch character φ ∼ eikr. Thus, the set of basis functions is denoted {φνkσ(r)}, and

its corresponding biorthonormal set {φ̃νkσ(r)}. They obey the orthonormality and closure

relations

V

(2π)3

∫

BZ

d3k
∑

ν

|φ̃νkσ〉〈φνkσ| = 1 (5.6)

〈φ̃νkσ|φν′k′σ〉 = δkk′δνν′ . (5.7)

The Dirac bra-ket notation indicates integrations over the spatial coordinate r. The spin de-

notes that there are two independent sets of basis functions, each used for the representation

of wave functions of the according spin alignment. When representing other Bloch functions
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Figure 5.1: A sketch of the work flow of the density-functional self-consistency cycle, like

figure 2.1 but applied on a periodic system.

such as the wave functions the k integration disappears:

|ϕikσ〉 =
∫

BZ

d3k′
∑

ν

|φ̃νk′σ〉 〈φνk′σ|ϕikσ〉 (5.8)

⇒ ϕikσ(r) =
∑

ν

ciνkσφ̃νkσ(r), ciνkσ = 〈φνkσ|ϕikσ〉 . (5.9)

The matrix elements of the Hamiltonian ĤKS(r) given in (5.2) and of the overlap matrix read

H[m,n]
kσ = 〈φmkσ|ĤKS(r)|φnkσ〉 =

∫

u.c.

d3r φ∗
mkσ(r)ĤKS(r)φnkσ(r) (5.10)

S [m,n]
kσ = 〈φmkσ|φnkσ〉 =

∫

u.c.

d3r φ∗
mkσ(r)φnkσ(r). (5.11)

They are spin- and k dependent as well as hermitian and in general complex. Consequently

the Kohn-Sham equation (5.2) can be represented in these basis functions φ, resulting in a

so-called generalized eigenvalue problem (alternatively termed secular equation)

{Hkσ − εikσSkσ} cikσ = 0 (5.12)

with the vector c being the eigenvector (i.e., the coefficients in the biorthogonal set) for

a given (k, σ)-pair while the index i counts the eigenstates. This equation can be solved

independently for each k vector and spin direction.
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Using a Cholesky decomposition (see, for instance, Stoer [Sto94]) any hermitian and pos-

itive definite matrix can be decomposed into a matrix product of a lower triangular matrix

with only positive diagonal elements and its transposed. This way a generalized eigenvalue

problem can be reduced to an ordinary eigenvalue equation (which corresponds to (5.12) with

S being a unity matrix) which standard linear-algebra methods can be applied on to solve it.

Plane-Wave Basis Set The simplest Bloch-wave expansion is the plane-wave expansion

ϕikσ(r) =
∑

G

cikGσφkG(r) (5.13)

φkG(r) =
1√
V
ei(k+G)r. (5.14)

where the sum runs over all reciprocal lattice vectors G. Since this is not possible in actual

calculations, G vectors are chosen from a sphere such that |k+G| < Gmax. This has the effect

that for different k points some (k+ G) vectors can slip into or out of this sphere, leading to

a slightly varying number of basis functions for different k points. Also the LAPW basis set

as well as the mixed product basis set which are presented in this chapter share this property.

The plane waves form an orthogonal basis set. The Coulomb potential v(r) represented in

plane waves reads

v(r, r′) =
1

|r− r′|  vkG =
4π

|k+ G|2 (5.15)

revealing a most inconvenient singularity for k → 0. This needs to be properly taken care

of for instance when applying RPA or dielectric TDDFT, however, not in magnetic TDDFT

where the Coulomb interaction does not appear.

In practical calculations it turns out that the variations of the potential and thus the wave

functions close to the nuclei are too large, which requires an excessive number of plane waves

in order to properly expand these wave functions. On the other hand the chemical bonding

and the electronic band structure is mostly determined by the shape of the wave functions

in the overlapping region where only the valence electrons contribute. Based on this as-

sumption the concept of pseudo-potentials was developed [KB82, BHS82]. The effective

potential is replaced by a pseudo-potential which coincides with the original potential but

has a smoother shape close to the nucleus. Pseudo-potential methods have proved very use-

ful. However, it turns out that they are not capable of describing more localized systems (i.e.,

no proper pseudo-potentials can be generated) such as transition and rare-earth metals con-

taining incomplete d- and f -shells, which happen to be those elements crucial in magnetism.

Therefore other paths have to be explored.

5.2.2 The APW Method

A procedure to handle the strongly varying potential other than modifying this potential is

a modification of the basis set in a way that it shows a stronger resemblance to the wave

functions it should represent. A first such method was proposed by Slater [Sla37]. This

so-called augmented plane wave (APW) method divides the space into spheres which are

centered at the nuclei’s position – the so-called muffin-tin spheres (MTs) – and the remaining
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Figure 5.2: The space separation in the APW-type methods for a fictitious two-dimensional

hexagonal periodic solid. The positions of the nuclei of the constituting atoms

(which in this example are of different kind) are depicted by small red and blue

opaque circles. The circular white region around them is their corresponding

muffin-tin sphere. The remaining shaded space forms the interstitial region. A

selected unit cell is marked by a dashed gray parallelogram.

interstitial region (IS), as depicted in figure 5.2. Assuming that the potential in the interstitial

region is smooth, the expansion in plane waves is reasonable and thus retained in this region.

Inside the muffin tin spheres the potential is assumed to be spherically symmetric, V̄ (r) =
V̄ (r). A good set of basis functions consists of products of spherical harmonics Ylm and

radial basis functions ul with the quantum number l:

φGσ(r) =







1

V
ei(k+G)r r ∈ IS

∑

l,m

almµGσulµ(r;Elµσ)Ylm(r̂) r ∈ MTµ.
(5.16)

The different (kinds of) muffin-tin spheres in the unit cell are label µ.

While there are degrees of freedom in formula (5.16) as given above due to the a-

coefficients, the APW basis functions φ are furthermore demanded to be continuous also on

the muffin-tin sphere boundaries. The Rayleigh expansion provides a decomposition of a

plane wave into an infinite sum of spherical harmonics,

eiKr = 4π
∑

l,m

iljl(rK)Y ∗
lm(K̂)Ylm(r̂) (5.17)

with K = k+G,K = |K|. Applying this for each radial muffin-tin sphere radiusRMTµ allows

for a proper determination of the a-coefficients in order to yield continuity. In practice a finite

cut-off lmax for the spherical expansion is chosen and small mismatches persist.

The radial muffin-tin function ul is determined as solution of a radial Schrödinger equation

{

−1

2

∂2r

∂r2
+

1

2

l(l + 1)

r2
+ V̄µ(r)− Elµσ

}

rulµσ(r;Elµσ) = 0 (5.18)

for a given spin-dependent energy parameter Elµσ and a spherically symmetric potential
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V̄ (r). These radial basis functions are commonly normalized within the muffin-tin sphere,

〈ulµ|ul′µ〉 =
∫ RMTµ

0

r2|ulµ(r)|2 dr = 1. (5.19)

If the energy parameter E is chosen fixed throughout the whole calculation it turns out that

the basis functions do not offer enough variational freedom, i.e., they are to stiff to properly

represent the actual Kohn-Sham orbitals. The proper solution is to set E equal the actual

Kohn-Sham one-particle energy ǫikσ, for which the radial functions will evidently be a good

choice of basis set. However, this poses the problem that an additional iteration has to be

performed (at each k point) for each Kohn-Sham orbital, starting from an initial value for

El and converging to the actual Kohn-Sham energy. This non-linearity makes APW, while

being very powerful, a very costly method. Further details of this method can be found in

[Lou67].

5.2.3 The LAPW Method

A subsequent development is the linearized augmented plane wave (LAPW) method [And75]

proposed by Anderssen. The central idea is to extend the variational freedom of the basis set

by applying an expansion of the radial function ul around a given fixed energy El:

ul(r; ε) = ul(r;El) + u̇(r;El)(ε− El) +O([ǫ− El]
2) (5.20)

with the energy derivative u̇ = ∂u/∂ǫ. Thus, the energy ε is not determined iteratively

as in the APW method; instead it is approximated by the energy El which can, however,

be adjusted from one iteration step of the DFT self-consistency to the next. Due to the

variational principle, an error of second order of the term (ǫ − El) in the wave functions

results in errors of higher order in the energy eigenvalues. This higher order leads to very

good results of this linearization in broad energy regions. Applying this expansion to (5.16)

yields the LAPW basis functions

φGσ(r) =







ei(k+G)r r ∈ IS
∑

l,m

[almµGσulµ(r;Elµσ) + blmµGσu̇lµ(r;Elµσ)]Ylm(r̂) r ∈ MTµ. (5.21)

The energy derivative u̇ can be determined by taking the energy derivative of (5.18):
{

−1

2

∂2r

∂r2
+

1

2

l(l + 1)

r2
+ V̄µ(r)− Elµσ

}

ru̇lµ(r;Elµσ) = rulµ(r;Elµσ). (5.22)

The basis functions have to be continuous on the muffin-tin sphere boundaries in the same

way as for the APW method, fixing , now also their radial derivative is demanded to be

continuous at the sphere boundaries, which fixes the b-coefficients. Orthogonality of u and u̇
inside the muffin-tin sphere has to be explicitly assured.

In many cases it is convenient to combine this actual form of the LAPW basis functions

with the expansion (5.8) of the wave functions; the LAPW wave functions then have the form

ϕikσ(r) =







∑

G

ckGe
i(k+G)r r ∈ IS

∑

l,m

[Almµkσulµ(r;Elµσ) + Blmµkσu̇lµ(r;Elµσ)]Ylm(r̂) r ∈ MTµ.
(5.23)
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with the combined factors

Almµσ(k) =
∑

G

ck,Ga
G
lmµσ (5.24)

Blmµσ(k) =
∑

G

ck,Gb
G
lmµσ. (5.25)

Also here it is obvious that the A and B coefficients are not independent components of the

eigenvectors, but are determined by the plane-wave expansion coefficients c.

Shape Approximations and the FLAPW Method The potentials in the APW have a

restricted shape: they are assumed constant in the interstitial region and spherically symmet-

ric in the muffin-tin region,

V (r) =

{
V IS
0 r ∈ IS
V MT
0 (r) r ∈ MT.

(5.26)

Here the potential V is one of the potentials Veff , VH, Vxc, Vext as it appears in the eigenvalue

problem (5.12). Such approximations may be reasonably justified for close-packed metallic

systems, but not for open systems. Also early and more simple LAPW implementations are

based on this shape approximation. A first step to lift these restrictions are warped interstitial

potentials [Koe70] which employ a plane-wave expansion in the interstitial region. Further

development led to the full-potential linearized augmented plane wave (or FLAPW) method

[WKWF81, Ham79] which does a full expansion of the density and the potential including

their non-spherical contributions. In a straightforward manner these two quantities could be

expanded analogous to the wave functions: into plane waves in the interstitial region, and

radial functions times spherical harmonics in the muffin-tin spheres. However, a lot of the

expansion coefficients would turn out to be zero due to symmetry reasons.

Therefore it is advantageous to build the symmetry into the expansion. For this the sym-

metrized plane waves are defined in the interstitial region as

φsym(r) =
1

Nsym

∑

j

ei(RjG)r. (5.27)

The number of symmetry operations is denoted Nsym, and Rj is the rotation matrix corre-

sponding to symmetry operation j. There might be groups of G vectors which have identical

symmetrized plane waves. Each of these groups is combined to form one star Ss(r) which

can be written as

Ss(r) =
∑

k

dstarsk eiGskr. (5.28)

The index s labels the star, and k runs over all members of this star. Thus, the star with

index s is a linear combination of plane waves of vectors Gsk with coefficients dstarsk which

are determined by symmetry and ensure normalization.

The same is done in the muffin tins: There exist groups of (lm) components for which the

spherical harmonics are identical when applying symmetry operations. As a result the lattice
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Figure 5.3: The spherical (l = 0) radial charge density for Nickel. In the left tableau the

radial charge density n(r) (multiplied by the shell surface 4πr2) is plotted. There

are three curves for the spin-up (blue) and the spin-down (red) channel: The

contribution of the core electrons and the valence contribution as well as the sum

of the two (denoted total). According to (5.31) the radial integration yields the

charge confined inside the muffin-tin sphere, in this case 26.8 out of 28 electrons.

On the top right the total charge n(r) (without the prefactor 4πr2) is shown, on

the bottom right the relative spin polarization ξ(r).

harmonics Lν are defined which linearly combine one or more spherical harmonics of the

same orbital quantum number lν but different magnetic quantum number mν,i:

Lν(r̂) =

N lh
ν∑

i=1

dlhνiYlνmν,i
(r̂). (5.29)

N lh
ν are the number of members (i.e., m-quantum numbers) that belong to the lattice har-

monic labeled ν. In an actual calculation only the first nlh lattice harmonics are taken into

account when representing a function, see (5.33). The coefficients dlhνi are in general complex

and determined by the symmetry of the system and include the normalization as well. An

example of the reduction is given in table 5.1 for the fcc structure.

These functions are then used to expand the charge density and the potentials. The spin-

dependent density for instance reads

nσ(r) =







Nst
∑

s=1

nstar
sσ Ss(r) r ∈ IS

N lh
∑

ν=1

nlh
νµσ(r)Lν(r̂) r ∈ MTµ.

(5.30)

Inside the muffin-tin spheres the radial coordinates are shifted by the muffin-tin center, r →
r − RMTµ . The density is thus expressed in terms of expansion coefficients nstar

sσ in the
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ν lν N lh
ν mν,i, i = 1, . . . , N lh

ν

1 0 1 0
2 4 3 −4 0 +4
3 6 3 −4 0 +4
4 8 5 −8 −4 0 +4 +8

ν lν N lh
ν mν,i, i = 1, . . . , N lh

ν

1 0 1 0
2 3 2 −2 +2
3 4 3 −4 0 +4
4 6 3 −4 0 +4
5 7 4 −6 −2 +2 +6
6 8 5 −8 −4 0 +4 +8

Table 5.1: Non-zero contributions to the lattice harmonics up to l = 8 for two different cu-

bic crystal structures with 48 symmetry operations each. On the left Nickel (fcc

structure, one atom per unit cell) is shown, compared with Silicon on the right

(diamond structure, two atoms per unit cell).

interstitial and radial functions nlh
νµσ(r) inside the muffin-tin spheres. The total charge nµ

σ

inside one muffin-tin sphere µ is given by the l = 0 component only,

nµσ = 4π

∫ RMTµ

0

r2n0µσ(r) dr (5.31)

while the higher components indicate charge-neutral deviations from the spherical charge

distribution. Their total value integrates to zero due to
∫
Ylm(r̂)d

2r =
√
4πδl0. Their expan-

sion n(r) can be negative for lν > 0.

Calculation of the Exchange-Correlation Potential in FLAPW The potential

Vxc(r), depending on the charge and magnetization density, is given as a function in real

space, Vxc(r) = V LDA
xc (n(r),m(r)). The densities, however, are given in terms of stars and

lattice harmonics. Therefore the following transforms have to be performed in order to

calculate the exchange-correlation potential:

• First step: In the interstitial, starting from the coefficients nstar
sσ the density is calculated

on an equidistant real-space mesh by employing a Fast Fourier Transform (FFT), n(r).

• In order to treat the muffin-tin spheres a set of coordinates on a unit sphere is con-

structed. Then, starting from the radial lattice-harmonics coefficients for the density

nµνσ(r), the density n(r) is calculated at the proper spherical coordinates on the shell

of every radial coordinate.

• The density is now calculated on points in the real space both in the muffin-tin spheres

and the interstitial region. In a second step the LDA exchange-correlation function

Vxc(r) can be calculated at these points.

• In a third step this function is projected back onto stars in the interstitial region, and

onto lattice harmonics in the muffin-tin spheres.

This work flow can be sketched in the following way:

nstar
sσ

nlh
µνσ(r)

}

→ nσ(r)  Vxc(r) →
{
V star
s r ∈ IS
V lh
µν(r) r ∈ MTµ.

(5.32)
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The result is the potential provided in the stars/lattice harmonic expansion

Vxc(r) =







∑

s

V star
s Ss(r) r ∈ IS

∑

ν

V lh
νµ(r)Lν(r̂) r ∈ MTµ.

(5.33)

5.2.4 Further Implementation Details

An extensive review of the LAPW method is provided by Singh [Sin94]. Extensive deriva-

tions of the formulas of the FLAPW method are provided in [Kur00]. In this section some

aspects of the method should be highlighted without giving an in-depth presentation.

Spatial Geometry In practical calculations the basis set must be chosen according to the

physical system. The way the FLAPW Bloch basis, which has been defined in (5.21), is suit-

able for infinite periodic materials. Other choices are possible as well. For instance, modified

LAPW basis sets have been developed for film [Kur00] and wire geometries [MBB05] and

successfully applied to the investigation of magnetic nano-structures. In the same way the

mixed product basis approach could be extended to these systems.

Relativistic Generalization The formalism presented so far is restricted to non-

relativistic spin-collinear systems. As has been explained in chapter 2 in the general

non-collinear case the Kohn-Sham equations have to be solved for a spinor wave function.

In basis representation this means that one has a spinor of vectors that (in spin space) a

2 × 2 Hamilton matrix operates on. In the collinear case this Hamiltonian matrix becomes

block-diagonal and can be solved independently for each spin. The FLAPW formalism

[KFN+04] has also been implemented as a non-collinear treatment. Furthermore, a gen-

eralized Bloch theorem [San86] can be established which in addition to the spatial lattice

periodicity implies a steady uniform tilt of magnetization from one unit cell to the next,

which enables calculation of frozen magnons and spin spirals.

A fully relativistic treatment of the electrons would lead to a four-component spinor con-

sisting of a large and a small component per spin orientation, the latter of which vanishes

in the non-relativistic limit. Commonly the core electrons are in fact treated in a fully-

relativistic fashion. The valence electrons, however, cannot be treated this way since separate

spin and angular momentum quantum numbers σ and l are used independently in the LAPW

method up from the beginning, while they are coupled in the relativistic framework. One

can apply the so-called scalar-relativistic approximation (SRA) which takes the highest spin-

diagonal relativistic correction terms into account, but neglects the non-diagonal spin-orbit

term. This spin-orbit coupling can be treated afterwards in a variational manner. Typically

the small component from the SRA is neglected in the interstitial and subsequently in the

matching procedure at the muffin-tin sphere boundaries. This procedure is reasonable since

relativistic effects have significant contributions only close to the nucleus.

It should be noted that the restriction to collinearity is not a principal limitation of our

approach.
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Enhancement of Basis Flexibility As already remarked at the definition of the APW

basis set only the valence electrons are treated by the method so far. The core states are not

determined by the solution of the eigenvalue problem (5.12) but in a separate k independent

step. They can mostly be considered to be confined to the muffin-tin sphere, thus not to

overlap with the electrons in other muffin-tin spheres or in the interstitial region. This is

physically justified. They do not take part in the chemical bonding.

However, some problems might occur. Some high-lying so-called semi-core states might

not be reasonably confined into the muffin-tin sphere which has to be compensated. This

can lead to wrong results, for instance during the calculation of lattice constants, phonon

frequencies or forces. Furthermore, semi-core states can lead to so-called ghost bands, i.e.,

badly described core states which appear in the valence or conduction regions. One possible

solution is the the local-orbitals extension to the LAPW basis set [Sin91]. It adds additional

basis functions to the set. This expands the variational freedom and makes the treatment

of semi-core and valence states possible. An alternative approach to extend the variational

freedom of the LAPW basis was developed in the APW+lo approach [SNS00].

Brillouin-Zone Integration In the present algorithm integrations over the Brillouin zone

must be performed, e.g., in the construction of the density (5.1), the computation of the Kohn-

Sham response (5.5) and the setup of the potentials involved in the Hamiltonian (5.12). In

practice the first Brillouin zone is sampled by a finite number of k points.

Two kinds of methods are common, the special points method [CC73, Cun74] and the

tetrahedron method [JA71, LT72, BJA94], which both reduce to a weighted summation

V

(2π)3

∫

BZ

d3k F (k)  

∑

i

w(ki)F (ki). (5.34)

The difference lies in the way the weights are obtained. The special-points method defines a k

point mesh given due to the spatial symmetry and calculates the integrand at the given points,

which is straightforward to implement. The tetrahedron method on the other hand divides

the Brillouin zone into tetrahedra and applies linear interpolations of band energies and the

integrand F (k) inside them, which corresponds to a linear combination of the corner values.

The weights in the tetrahedron method are not necessarily symmetry-consistent as in the

special-points method; on the other hand it can be reformulated to handle integrations over

δ-peaks and is therefore preferable for spectral properties such as our Kohn-Sham response.

The special-points method can only cope with such peaks by applying a broadening.

One step in the setup of the new density is the determination of the Fermi energy since

only occupied states contribute to the new density. It is done simply by adding up states of

energy below a test energy. This test energy is refined by nested intervals until the summed-

up number of states coincides with the number of valence electrons.

Use of Symmetry The spatial and time-reversal symmetries can be exploited to sig-

nificantly reduce the computational effort. Symmetry operations are real-space operations

represented by a rotation matrix and a translational vector, {R, τ} : r 7→ Rr+ τ which leave

the system invariant. Several simplifications are provided by symmetry:
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• Time-inversion symmetry: If the system has time-inversion symmetry (such as for our

time-independent Hamiltonian) there is a symmetry k ↔ −k in the reciprocal space,

ǫikσ = ǫi−kσ. This means we only have to calculate half of the Brillouin zone.

• Spatial symmetry: The real-space and the reciprocal-space lattice have the same sym-

metries, thus all real-space symmetry operations can be applied in the reciprocal space.

This reduces the Brillouin zone to a small irreducible part for which the Kohn-Sham

equations need to be solved. This leads to huge savings in the eigenvalue part. The rest

of the Brillouin zone the solutions can be reconstructed from the irreducible part.

• Inversion symmetry: Furthermore, in systems that possess inversion symmetry both the

Hamiltonian and the overlap matrix are real symmetric rather than complex hermitian,

provided that the basis functions obey φ(−r) = φ∗(r). This leads to lower memory

demands for storage and faster computation.

• Density/potential representation: Physical observables such as the density and the po-

tential have the symmetry of the lattice. Consequently many expansion coefficients

are identical, or even zero. As shown on page 80, the definition of stars and lattice

harmonics leads to an efficient storage and computation of these quantities.

• Symmetry-equivalent atoms: If two or more atoms can be mapped onto each other by

virtue of one symmetry operation, they are said to form one atom type. All equivalent

atoms share the same radial functions ul(r) and have the same muffin-tin contribution

(apart from a symmetry operation applied) to the Hamiltonian. Thus, this contribution

needs only be calculated once, which reduces the computational effort.

Parameters to the DFT Calculation The following are the most important parameters

of a FLAPW DFT calculation:

• First of all the system has to be specified: atomic positions and element numbers,

lattice structure and constants.

• The cut-offs lmaxLAPW , GLAPW
max determine the size of the LAPW basis set, cut-offs for

the density and potentials are commonly provided as well.

• The radius of the muffin-tin spheres are usually chosen as large as possible, with an

exponential radial grid inside the spheres.

• Extensions to the basis set such as local orbitals can be included into the basis set to

increase its flexibility.

• The k point sampling is crucial for the integrated densities, in particular for the de-

scription of the Fermi surface in case of metals.

• Finally the choice of the exchange-correlation functional. In FLEUR different LDA

and GGA functionals are implemented. In the calculations in chapter 6 the PW92

LDA functional is used.
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5.3 ALDA and the Mixed Product Basis

5.3.1 The Dyson equation in basis notation

Also two-point functions such as the Kohn-Sham response can be conveniently represented in

a basis. We use the spin-independent mixed product basis introduced below which is denoted

by MIq with the capital basis index I . It obeys the closure and orthonormality relations (5.6)

and (5.7) (with M instead of φ). The susceptibility expressed in this basis reads

χ(r, r′; q, ω) =
∑

I,J

MIq(r)χIJ(q, ω)M
∗
Jq(r

′) (5.35)

χIJ(q, ω) = 〈M̃Iq|χ(q, ω)|M̃Jq〉 =
∫

M̃∗
Iq(r)χ(r, r

′; q, ω)M̃Jq(r
′) d3r d3r′. (5.36)

The Kohn-Sham response (5.5) in particular takes the form

χ+−
KS,IJ(q, ω) = lim

η→0+

∫

d3k

∑

n,n′

f(ǫnq↑)− f(ǫn′q+k↓)

ω − (ǫn′q+k↓ − ǫnq↑) + iη
〈M̃Ikϕnk↑|ϕn′k+q↓〉〈ϕn′k+q↓|ϕnk↑M̃Jk〉. (5.37)

The basis representation of the exchange-correlation kernel fxc is conveniently chosen in the

original basis M instead of M̃ ,

f+−
xc,IJ = 〈MIq|f+−

xc |MJq〉. (5.38)

It should be noted that local functions are not necessarily diagonal in a basis representation;

also real functions might have complex matrix elements depending on the chosen basis. The

Dyson equation for the spin-flip susceptibility χ+− in basis {M} reads

χ+−
IJ (q, ω) = χ+−

KS,IJ(q, ω) +
(µBg

2

)2∑

K,L

χ+−
KS,IK(q, ω)f

+−
xc,KL(q)χ

+−
LJ (q, ω) (5.39)

which is equivalent to (3.64) if the latter is understood as a matrix equation in the mixed

product basis set. The projection (3.40) onto plane waves becomes a vector-matrix-vector

product

χ+−(q, ω) =
∑

I,J

e∗qIχ
+−
IJ (q, ω)eqJ (5.40)

with the plane-wave vectors

eqI = 〈MqI |eiqr〉 =
∫

d3r M∗
qI(r)e

+iqr. (5.41)

The formulas for the dielectric case are analogous. The work flow resulting from these

formulas is plotted in figure 5.4. If the vector q is from the k-point mesh the one-shot DFT

calculation needs to be performed only once.
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DFT self-consistency (figure 5.1)
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Figure 5.4: A sketch of the work flow of a TDDFT calculation of a spin response spectrum.

Starting from a converged DFT calculation, a full response spectrum for a set of q

vectors is obtained by solving the Dyson equation for each q vector independently

(the steps in the dotted box). In the presented implementation, the DFT part is

performed within the FLAPW method, while the other steps in the box utilize the

mixed product basis set.

5.3.2 The Mixed Product Basis

The LAPW basis was chosen such that it properly represents the Kohn-Sham wave functions.

Therefore the LAPW basis is well suited for the treatment of the Kohn-Sham equations. The

solution of the Dyson equation, on the other hand, involves as a key ingredient the Kohn-

Sham response χ+−
KS (5.5) which contains products of wave functions. The so-called mixed

product basis set of functions is designed in order to properly represent wave-function prod-

ucts. The current implementation [FSBK06] is inspired by an earlier work of Aryasetiawan

[AG94]. First of all the set M of mixed product basis functions is a union set of muffin-tin

and interstitial functions

M =
{
MMT,M IS

}
(5.42)

which are non-zero only in their corresponding region. Unlike in the LAPW basis set, muffin-

tin and interstitial functions are independent and not matched at the muffin-tin sphere bound-

ary. Thus, the basis functions are not continuous at these boundary. However, if the basis set
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is fully converged (by increasing the parametersGmax and lmax which are introduced shortly)

products of wave functions – which are continuous – are exactly represented.

In the interstitial region, a product of two wave functions which are expanded in plane

waves is conveniently represented in plane waves again. Therefore the interstitial basis func-

tions read

M IS
k,I(r) =

1√
V
ei(k+GI)r ΘIS(r). (5.43)

with the interstitial step function

ΘIS(r) =

{
1 if r ∈ IS

0 else.
(5.44)

The set of G vectors is chosen such that |k + G| < GMB
max. In order to exactly represent

the product of two LAPW wave functions, a value of the convergence parameter GMB
max ≥

2GLAPW
max is necessary. In practice, however, a lower cut-off value such as GMB

max ≈ GLAPW
max is

sufficient.

Products of spherical harmonics yield a linear combination of spherical harmonics, due to

the relation

Y ∗
l′m′(r̂)Yl′′m′′(r̂) =

∑

l,m

Gl′m′,l′′m′′,lmYlm(r̂) (5.45)

where

Gl′m′,l′′m′′,lm =

∫

Y ∗
l′m′(r̂)Yl′′m′′(r̂)Y ∗

lm(r̂) d
2r̂ (5.46)

are the Gaunt coefficients. Consequently, the muffin-tin basis functions are defined

MMT
I (r) = ΦI(|r− RµI

|)Ylm( ̂r− RµI
) ΘMTµ(r). (5.47)

Here the muffin-tin step function of sphere µ is defined

ΘMTµ(r) =

{
1 if r ∈ MTµ

0 else.
(5.48)

ΦI is the radial function of muffin-tin basis function of index I which is a composite in-

dex I = (lInImIµI). The construction of these radial functions is described in the next

paragraph. A crucial difference between the LAPW muffin-tin function set and the mixed

product basis muffin-tin function set is the fact that the latter one can contain more than one

radial function Φnl per l character denoted by the index n, in contrast to the LAPW radial

functions ul (neglecting the muffin-tin index µ for the moment).

In the construction of the mixed product basis functions all l ≤ lMB
max are taken into account.

This lMB
max is a crucial convergence parameter of the method. Two angular momenta l′ and l′′

can be combined to new quantum numbers l in the range |l′ − l′′| ≤ l ≤ l′ + l′′. The wave

functions are represented by LAPW basis functions with l ≤ lLAPW
max . A product of two such

wave functions contain contributions of angular momentum quantum number l ≤ 2lLAPW
max .
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l n̄l nl Nl

0 54 13 13

1 112 12 49

2 160 11 104

3 194 10 174

4 218 9 255

5 228 8 343

6 228 8 447

7 214 7 552

8 190 7 671

SELECT=(8,8;8,8)

l n̄l nl Nl

0 18 9 9

1 36 9 36

2 44 8 76

3 38 8 132

4 22 6 186

SELECT=(2,2;3,3)

l n̄l nl Nl

0 6 4 4

1 10 6 22

2 12 6 52

3 10 5 87

4 6 3 114

SELECT=(2,-;3,-)

Table 5.2: The number of basis functions for three different parameter settings for fcc Nickel.

For each l there are n̄l product functions which reduce to nl functions due to linear

dependency. Nl =
∑l

l′=0 n
′
l′(2l

′ + 1) is the resulting number of muffin-tin basis

functions for lMB
max = l. The cut-offs for the construction of the product functions

are given below each table in the form SELECT=(loccmax, l̇
occ
max; l

unocc
max , l̇unoccmax ). The

tolerance to drop eigenvalues is 10−4.

For a complete representation of these products one would thus need lMB
max = 2lLAPW

max . Expe-

rience shows, however, that a significantly lower cut-off works as well which is a significant

saving, see table 5.2.

The above definition (5.47) is sufficient if matrix elements of a local function – such as

the exchange-correlation kernel – need to be evaluated. For a general two-point function (for

instance the Coulomb potential) a more general definition has to be constructed.

Construction of the Radial Functions In a first step intermediate radial product func-

tions Φ̄ are constructed by all combinations of radial functions ul and u̇l,

Φ̄ln̄(r) =







ul′(r)ul′′(r)
ul′(r)u̇l′′(r)
u̇l′(r)ul′′(r)
u̇l′(r)u̇l′′(r),

(5.49)

with valid angular momentum |l′ − l′′| ≤ l ≤ l′ + l′′. The number of such combinations is

denoted n̄l, so 1 ≤ n̄ ≤ n̄l. Independently for each muffin-tin sphere and l quantum number

the overlap matrix of these functions is calculated and diagonalized. Very small eigenvalues

(i.e., below a certain tolerance) indicate that eigenvectors are nearly linear dependent. This

can cause numerical instabilities, thus these eigenvectors are dropped. The remaining eigen-

vectors are linear combinations of Φ̄ln̄; these are the radial functions Φln. This procedure

can reduce the number of radial functions n̄l to a lower value nl, leading to significant com-

putational resource savings. The resulting functions Φ are by construction normalized and

orthogonal to each other.

Further it is possible to restrict the number of radial functions ul′ , ul′′ used in the con-

struction of products in (5.49). For this one should remember that the mixed product basis
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functions are used to build matrix products 〈M̃Ikϕnk↑|ϕn′k+q↓〉 in (5.37), including occupied

states ϕnk↑ and unoccupied states ϕn′k+q↓. Therefore two separate cut-off values are chosen

for the radial functions which contribute to (5.49): l′ ≤ loccmax for the occupied and l′′ ≤ lunoccmax

for the unoccupied states.

This should be illustrated by an example: For a Nickel calculation a cut-off lLAPW
max = 10

is chosen in the DFT part. We expect the main contribution to the susceptibility to come

from the s, p and d electrons, thus we choose lMB
max = 4 in order to be capable of representing

d − d products. However, many other angular momenta (such as, e.g., l′ = 4 and l′′ = 7)

can combine as well to l = 4, which we consider as an insignificant but computationally

demanding contribution. Thus, the cut-offs loccmax = 2 and lunoccmax = 3 have been chosen.

In order to properly represent products of LAPW wave functions, it is actually not suffi-

cient to use the radial functions ul in (5.49), but the energy derivatives u̇l have to be used as

well. Consequently they are treated on the same footing, and additional limits l̇occmax and l̇unoccmax

are used. In practice it turns out that in many cases the energy derivatives can be omitted,

i.e., one obtains accurate results with a mixed product basis comprising only the original

radial LAPW functions ul. Furthermore, it should be noted that the number of nodes of the

radial function (i.e., the number of r values for which Φ(r) = 0) is not directly related to

the l quantum number. While an LAPW radial function ul(r) of quantum numbers n and l
has n− l − 1 nodes, a product function Φln(r) does not have a fixed number of nodes since

it is constructed from many products ul′(r)ul′′(r) (or products involving u̇l′(r), u̇l′′(r) with

|l′ − l′′| ≤ l ≤ l′ + l′′.
An example of the construction of the set of radial product basis functions is shown in table

5.2 for a Nickel calculation for three different parameter sets, denoted by the SELECT state-

ments. On the left large cut-offs are chosen leading to a very large basis set of 671 muffin-tin

basis functions. Restricting oneself to that part of the basis that can properly represent d− d
wave function products leads to a set of 186 functions. Omitting the energy derivatives fur-

ther reduces the set to 114 functions. Since the setup of the Kohn-Sham susceptibility is the

main part of the calculation, its computation time scales roughly to the square of the basis

size. Thus, a small basis set is essential for reasonably fast calculations, as well as for a

sufficiently low memory demand.

A few generalizations to the procedure to built the radial product functions as discussed

above should be pointed out which are possible and partly implemented.

• Other extensions to the set of LAPW basis function should be included into the mixed

product basis functions. SPEX allows for the inclusion of FLEUR local orbitals (c.f.,

paragraph on page 84). Also the wave functions of the core electrons can be used.

• The present implementation actually offers the inclusion of arbitrary radial functions,

if the need arises to represent functions very different from the usual product functions.

• The LAPW radial functions ul are actually spin-dependent: For each spin a different

energy Elµσ is used in (5.21). This has not been denoted in (5.49). In the code both

spin up-up and spin down-down products are used in the construction of functions Φ̄ln̄

in (5.49).

• Inside the muffin-tin spheres the LAPW code generates basis functions from the scalar-

relativistic approximation, consisting of a large and a small component (see page 83).
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Figure 5.5: Left: Illustration of a general two-point function represented in the mixed product

basis (blue region), abbreviated MB. It consists of representations of muffin-tin

(MT-MT) and interstitial (IS-IS) parts (i.e., both coordinates from this spatial

region), and cross parts (MT-IS and IS-MT). The red region indicates additions

to the MB that would be needed in order to make it a complete basis. Center and

right: The particular shape of the Kohn-Sham susceptibility and the kernel in MB

representation. Stars indicate values that can in general be unequal zero.

In the construction of the product functions both components are taken into account by

means of a spinor multiplication (regarding the two functions as spinors of large and

small component).

Incompleteness of the Basis It should be noted that the mixed product basis is not

complete, i.e., it is not suitable to represent a general two-point function. This is sketched in

figure 5.5: The square on the left side is a matrix representation of a two-point function. The

representation in the mixed product basis corresponds to the bluish region. If the basis set is

augmented by (a possibly infinite number of) additional basis functions to make it complete,

the matrix extends over the red region. However, the (fully converged) mixed product basis

is well suited to fully represent the Kohn-Sham response χ+−
KS , thus it only has zero values

in the red regions (middle sketch). The mixed product basis representation can further be

divided into pure muffin-tin sphere and pure interstitial regions (denoted MT-MT and IS-

IS) and cross contributions (denoted MT-IS and IS-MT). The exchange-correlation kernel in

ALDA has only zero values in the cross contributions (see right sketch), since it is a local

function. But it could have significant contributions in the red region.

However, even if the exchange-correlation kernel is not well represented in the mixed

product basis, it is sufficient nevertheless because its essential parts are represented. This

is due to the Dyson equation which is sketched in figure 5.6 in the mixed product basis

representation. Provided that the contributions of the exchange-correlation kernel in the red

regions are finite, they are multiplied with zeros from the red region of the susceptibility χ+−
KS .

Subsequently the red region of the full susceptibility is zero and χ+− has the same shape as

the Kohn-Sham susceptibility, i.e., the complete red region is zero, and the Dyson equation

can be solved in the mixed product basis, i.e., the bluish regions of the matrices.
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Figure 5.6: The Dyson equation (5.39) illustrated in the mixed product basis. Due to the

particular shape of χ+−
KS (see figure 5.5) the mixed-basis is sufficient to com-

pletely represent the Dyson equation. Extensions to the basis (red regions) are

not necessary.

5.3.3 TDDFT Implementation Details

The Kohn-Sham Susceptibility The formula for the Kohn-Sham susceptibility χ+−
KS in

in the mixed product basis is already provided in (5.37). Actually, the SPEX code initially

calculates the spectral function – which is closely related (see (3.34)) and has a very similar

shape in the mixed product basis – on a special exponential mesh of frequencies. From this

the real and imaginary parts can be obtained by means of a Hilbert transformation.

As is apparent from (5.37), inside the integral and summations the frequency-dependent

denominator can be separated from the frequency-independent matrix elements. The k-space

integration is performed by means of the tetrahedron method which is well suited to handle

the δ-functions of the frequency term.

The ALDA Exchange-Correlation Kernel The ALDA kernel f+−
xc (n, ξ) has been de-

rived in chapter 4.3 for the homogeneous electron gas, c.f., formulas (4.65) and (4.85).

According to the connection to non-homogeneous systems given in (4.96) the exchange-

correlation kernel in the mixed product basis reads

f+−
xc,IJ = 〈MI |f+−

xc |MJ〉 (5.50)

=

∫

u.c.

f+−
xc (r)M∗

I (r)MJ(r) d
3r. (5.51)

This evaluation can be performed analogously to the evaluation of functions in the LAPW

basis on page 82. The charge density for both spin channels is provided in stars and lattice

harmonics, respectively. First it is transformed back to real space nσ(r) where the kernel

function f+−
xc (n, ξ) is applied. In a third step it is transformed to its mixed product basis

representation according to (5.51):

nstar
sσ

nlh
µνσ

}

→ nσ(r)  f+−
xc (r) → f+−

xc,IJ . (5.52)

Dyson Equation After χ+−
KS,IJ(q, ω) and f+−

xc,IJ are calculated the Dyson equation (5.39)

can be solved for the renormalized susceptibility χ+−(q, ω) by matrix inversion. The projec-

tion according to (5.40), (5.41) yields the macroscopic quantity.
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Symmetries The central point where symmetries can be taken advantage of in the ALDA

work flow is the Brillouin-zone integration in the Kohn-Sham susceptibility (5.37). An

equidistant k-point mesh is chosen. If the q vector is from this mesh the integration is per-

formed on, any vector k+q lies on this mesh as well. Any vector k or k+q can be mapped to

one vector inside the irreducible Brillouin zone (which also lies on the chosen k point mesh),

and the eigenenergies at this vector are identical to energies at the corresponding IBZ k vec-

tor. The eigenvectors can be obtained from the eigenvectors at the IBZ k vector by means of

a transformation.

As a consequence, if the q vector is from the k point mesh one can restrict the k point

integration for χ+−
KS to the irreducible zone. (This means that k is from the IBZ, while k + q

cannot be restricted to the IBZ.) However, there is the additional effort of the mentioned

transformation on the eigenvectors. If, on the other hand, the q vector lies off the k point

set, symmetry cannot be exploited and on the whole Brillouin zone the integration has to be

applied on.

Another symmetry that can actively be exploited is the inversion symmetry. For this the

mixed product basis needs to be modified such that MI(r) = M∗
I (−r). In this case the the

plane-wave coefficients provided by the DFT program are real. Furthermore, several quan-

tities represented in the mixed product basis are real instead of complex, e.g., the matrix

elements in (5.37) and the overlap and transformation matrices (c.f., previous paragraph on

the slimmed basis) as well as the Coulomb, the exchange-correlation kernel and the suscep-

tibility matrices.

Special Treatment at the Γ Point For q vectors approaching q = 0 numerical problems

can arise in the computation of (5.37) since both numerator and denominator can take very

small values. In the case q = 0 one can separate the band transitions into inter-band and

intra-band transitions, the latter one of which occurs only for metals and contributes a δ-
peak at ω = 0 to the imaginary part of the Kohn-Sham susceptibility. For this limit explicit

formulas are derived and implemented.

Furthermore, the Coulomb potential reveals a divergence in the case q → 0 according to

(5.15). This has to be taken care of properly, however, only for the Dyson equations of RPA

and dielectric TDDFT involving the Coulomb potential, and not for the magnetic case where

the Coulomb interaction does not appear.

Data needed from DFT The following data are passed from the FLEUR DFT program

to the SPEX code:

• First of all the system setup is needed, such as the unit cell geometry, atomic positions

and symmetry operations.

• LAPW basis information such as muffin-tin sphere radii, radial meshes and radial func-

tions as well as lLAPW
max and GLAPW

max cut-offs, parameters for local orbitals.

• The k points used in the DFT calculation. In the current calculations the k point set is

generated in advance by the SPEX code. This single k point set is used for both DFT

and TDDFT calculations.
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• The eigenvalues and eigenvectors for a sufficient number of bands on the given k point

set.

• For the exchange-correlation kernel: The symmetrized stars and lattice harmonics and

the charge density stored in this data structure.

Parameters for the Calculation of the Response The following parameters can be

adjusted in order to reach convergence:

• Most prominently the mesh of k points. It is created in advance and used for both the

DFT and TDDFT step of the calculation.

• The size of the mixed product basis is modified with the lMB
max and GMB

max cut-offs. Fur-

thermore, one can select the amount of functions that are used in the basis construction

by the switches (loccmax, l̇
occ
max; l

unocc
max , l̇unoccmax ), see page 90.

• The frequency mesh on which the spectral function is calculated.

• The number of unoccupied states that are taken into account in the calculation of the

Kohn-Sham response χ+−
KS .

• Obviously the (q, ω) points for which the renormalized response χ+−(q, ω) should be

calculated.
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RESULTS FOR REAL MATERIALS
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In this chapter calculations of the spin response within ALDA using the mixed product

basis method are presented. First general remarks are made in section 6.1 about the elements

that are investigated, the paths in the Brillouin zone, and how the results are presented.

In section 6.2 the convergence and the influence of different parameters are investigated.

The resulting parameters which yield both reasonably accurate and efficient calculations are

determined.

In sections 6.3 to 6.5 the spin-wave dispersion is determined for the three different ele-

ments Iron, Cobalt and Nickel along the three principal directions (001), (011) and (111).

Some of the results are compared to other ab initio calculations, either from TDDFT or

many-body perturbation theory.

Section 6.6 is devoted to a brief presentation of the frozen-magnon approximation, and a

comparison of results of this method and ALDA.

6.1 General remarks

Some general remarks should be made which apply to all the systems which are presented in

this chapter. The elements involved in these calculations are the following transition metals:

element symbol structure element number valence electrons

Iron Fe bcc 26 (3d)6(4s)2

Cobalt Co hcp 27 (3d)7(4s)2

Nickel Ni fcc 28 (3d)8(4s)2

The separation of the electrons into two categories was already discussed in the presentation

of the FLAPW code: Those electrons crucial for the chemical interaction between atoms are
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Figure 6.1: The density of states D(E) for the three transition metals Fe, Co and Ni. The

experimental lattice constant has been used. The spin splitting is marked with

blue lines.

termed valence electrons. The inner electrons which do not interact with the other atoms’

electrons are termed core states and treated separately. For the three elements shown above

these core states are the 18 electrons (1s)2(2s)2(2p)6(3s)2(3p)6.

Lattice constants As will be shown later the lattice constant has a significant influence

on the resulting spin-wave dispersion. Therefore the following table presents the experimen-

tal as well as the theoretical lattice constants, the latter ones which are obtained as the mini-

mum with respect to the lattice parameter of the total energy from a corresponding DFT cal-

culation. All DFT calculations are performed with the aforementioned Perdew-Wang LDA

parametrization (PW92) of the exchange-correlation energy. All calculations are performed

with one atom per unit cell, with the exception of hcp Cobalt which has two atoms in the unit

cell.

system aexp[pm] aexp[aB] mLDA[µB] ath[pm] ath[aB] mLDA[µB] d
Iron bcc 286.7 5.418 2.21 275.2 5.201 0.00 −4.0%
Iron fcc 361.2 6.826 2.09 337.5 6.378 2.01 −6.5%
Cobalt bcc 280.9 5.308 1.69 273.4 5.167 1.65 −2.7%
Cobalt fcc 353.9 6.688 1.62 342.7 6.476 1.55 −3.1%

(a) 250.7 4.738 — — —
Cobalt hcp

(c) 407.0 7.691
1.62

— —
—

—

Nickel bcc 279.7 5.286 0.72 272.2 5.143 0.38 −2.7%
Nickel fcc 352.4 6.659 0.64 342.4 6.471 0.57 −2.8%

The experimental lattice constants for the physical systems written in bold face (i.e.,

body-centered cubic for Iron, face-centered cubic for Nickel and hexagonal close-packed

for Cobalt) are taken from literature [tptotn]. The “experimental” lattice constants of the

non-physical structures are calculated from the true experimental ones by conserving the

volume per atom. The hexagonal Cobalt structure is characterized by two two lattice

constants, parameter a in hexagonal plane and parameter c perpendicular to it. The volume
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6.1 General remarks

of the unit cell is V = 3a2c sin(60◦). For this structure the theoretical lattice constants

have not been determined. The percental difference d of theoretical to experimental lattice

constant is determined as

d =
ath − aexp
aexp

. (6.1)

The values of d are negative, indicating the well-known fact that LDA underestimates the true

lattice constant. For the given lattice constants the magnetic moments mLDA from an LDA

calculation are shown as well. This value is the magnetic moment of the whole unit cell, not

only that one from the muffin-tin spheres. For these calculations a 24x24x24 k-points set has

been used.

Shape of and Special Points in the Brillouin Zone The real-space and reciprocal-

space basis vectors of the three structures fcc, bcc and hcp are given by the matrices

Afcc =
a

2





0 1 1
1 0 1
1 1 0



 , Bfcc =
2π

a





−1 1 1
1 −1 1
1 1 −1



 , (6.2)

Abcc =
a

2





−1 1 1
1 −1 1
1 1 −1



 , Bbcc =
2π

a





0 1 1
1 0 1
1 1 0



 , (6.3)

Ahcp =





a
2

a
2

0
a
√
3

2
−a

√
3

2
0

0 0 c



 , Bhcp =





2π
a

2π
a
√
3

0
2π
a

− 2π
a
√
3

0

0 0 2π
c



 . (6.4)

Some high-symmetry points in the reciprocal cells of these three structures (all written as

row vectors) which lie on the surface of the Brillouin zone read

fcc : X =
2π

a
(0, 0, 1) K =

π

a
(0,

3

2
,
3

2
) L =

π

a
(1, 1, 1) (6.5)

bcc : H =
2π

a
(0, 0, 1) N =

π

a
(0, 1, 1) P =

π

a
(1, 1, 1) (6.6)

hcp : K =
2π

a
(
2

3
, 0, 0) M =

2π

a
(
1

2
,
1

3
, 0) A =

π

c
(0, 0, 1). (6.7)

The point Γ = (0, 0, 0) is common to all lattices. These vectors q are given in cartesian

coordinates. If expressed in terms of the lattice vectors q′, i.e.,

q = Bq′ (6.8)

with the Bravais matrix of the reciprocal space B for the given structure, the mentioned

coordinates read

fcc : X ′ =
1

2
(1, 1, 0) K ′ =

3

8
(2, 1, 1) L′ =

1

2
(1, 1, 1) (6.9)

bcc : H ′ =
1

2
(1, 1,−1) N ′ =

1

2
(1, 0, 0) P ′ =

1

4
(1, 1, 1) (6.10)

hcp : K ′ =
1

3
(1, 1, 0) M ′ =

1

2
(1, 0, 0) A′ =

1

2
(0, 0, 1). (6.11)
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Paths in the Brillouin Zone The paths along the lines of highest symmetry, involving

the coordinates above, are labeled:

Path name direction path in fcc path in bcc

∆ (001) Γ → X Γ → H
Σ (011) Γ → K Γ → N
Λ (111) Γ → L Γ → P

Path name path in hcp

T Γ → K
Σ Γ →M
∆ Γ → A

The paths along the basis vectors are symmetric: Let B1 be one basis vector of the recip-

rocal lattice (i.e., one row of the Bravais matrix B), and M be the middle point of this vector.

Then, the paths Γ → M and B1 → M are symmetry equivalent and the spin-response func-

tion is identical for corresponding q vectors from these two paths. However, not all of the

paths above are complete symmetric paths in this sense.

This should be exemplified for the fcc structure: The point X lies half the way from

the Γ-point to a neighboring reciprocal lattice point in (001) direction, it is just the middle

point M . Continuing the path Γ → X beyond X is equivalent to moving towards the Γ
point again. The situation is different along the (011) direction. The special point K in this

direction does not lie halfway to the next lattice vector in this direction but only three eighth

of the way. As a consequence the section from K to the middle point M of the path to the

next lattice vector contains spectral information which is not part of the path Γ → K, but

additional information. (However, these points can of course be mapped to other points in

the irreducible part of the Brillouin zone.)

Therefore the spin-wave spectra which are presented in the following are calculated for the

full distance from Γ to the middle point M of the path to the next lattice vector. As pointed

out above this point does not necessarily coincide with the common high-symmetry point in

this direction. In these cases, M is identical to another high-symmetry points. The resulting

paths for the fcc and bcc structures in the three elemental directions then read

direction fcc path fcc path length bcc path bcc path length

(001) Γ → X 2π
a

Γ → H 2π
a

(011) Γ → K → X 2π
a

√
2 Γ → N π

a

√
2

(111) Γ → L π
a

√
3 Γ → P → H 2π

a

√
3

Presentation of Spectra In the results sections starting from 6.3 the spin response is

presented for all three elements Fe, Co and Ni. Both fcc and bcc structures are calculated,

and spectra are shown for all six paths shown above. The dispersion along these paths is

shown in one figure each. The dispersion is shifted such that the dispersion starts in the

origin. The shift is specified in the according text paragraph.

The basis of the calculation is a 24x24x24 k-point mesh. For reasons of performance (see

paragraph Symmetries on page 93 for more details) the vector q should be chosen from this

set of k-points. Along each elemental directions this leaves 12 q-points if the Γ-point is

included and the finishing point is omitted.

Since the spin-wave dispersion alone does not show all the useful information, the imag-

inary part of the spin-response function χ+−(q, ω) is presented as a function of ω. These

12 graphs are distributed into four plot for reasons of clarity. On the right-hand side the

resulting spin-wave dispersion ωsw(q) is shown. The curves on the left can easily mapped

to the according values on the q axis in the dispersion plot by counting the axis ticks. If the
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6.2 Tests of the Method

curve for one given q is identified as a spin-wave peak, the area under the curve is colored

on the left, and it is marked in the dispersion plot as a small filled red square with error bars

attached. This bar indicate the width of the peak, i.e., the energies ω for which the amplitude

of the response function has reduced to half of its maximum value. This does not indicate

errors of the method, or an error energy range in which the maximum can be adjusted.

If no clear peak structure can be identified, the area under the curve is not filled. Clear

maxima of the curves are noted in the dispersion plot by unfilled red squares without error

bars. Occasionally it happens that the response nearly vanishes. This means that it takes very

small values – less than 0.1 1
Htr

or even much below that – and has no peak structure. This

is indicated in the graphs by red circles on the q axis. This should not be interpreted as a

spin-wave excitation of zero energy.

It is expected that the dispersion curve has a quadratical form for small q values. In order

to illustrate this a green parabola ω = Dq2 is included in the plot which is scaled such

that it matches the spin-wave dispersion ωsw(q). The proportionality factor D is the spin-

wave stiffness. However, it should be stressed that values obtained in this way are not very

accurate, and inaccuracies of 5 to 10 percent are expected. The spin-wave stiffnesses are

provided in two different units which are common in literature, mRy a2B and [meV Å
2
].

6.2 Tests of the Method

This section describes the testing that has been performed on the code and the influence of

the different convergence parameters. There are many parameters which, if changed, induce

small changes in the spin response function. Since it is very costly (if possible) in terms

of CPU and memory demand to converge all these parameters, one has to make reasonable

choices on these parameters which are both in a regime which is nearly converged and which

are still sufficiently low to perform the demanded number of calculations. As a result, a

certain set of convergence parameters is chosen which is then used for the further calculations

of the subsequent sections. calculations of the further

Consistency checks Some checks have been performed to check the correct working

of the code.

• A setup for the ALDA code has been constructed which does not have any muffin-

tin contributions. In the interstitial region (which then corresponds to the whole unit

cell) the eigenvectors have been set to single plane waves. For this setup of the ho-

mogeneous electron gas the Kohn-Sham response χ+−
KS (q, ω) has been calculated and

successfully compared to the analytical solution (see chapter 4). The convergence is

quick, yielding already good results for a 16x16x16 k point mesh. This step checks

large parts of the code: the tetrahedron k space integration and the calculation of inter-

stitial matrix elements are covered and the projection to plane waves is partly covered,

while the calculation of muffin-tin matrix elements in the susceptibility is not covered

by this procedure.

• In the ALDA Dyson equation the exchange-correlation kernel has been replaced with

the Coulomb interaction. This RPA renormalization has been calculated and compared

to other such results.
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Figure 6.2: Convergence analysis exemplified for Nickel fcc along (001) direction with the-

oretical lattice constant. Left: The spin-wave dispersion ωsw(q) for different sets

of k-point mesh and mixed-product basis parameters. On the right the full re-

sponse function is shown for two different q vectors. (This corresponds to two

points from each the green and the red curve on the left side.)

• A modification of the muffin-tin sphere radius makes significant changes to the values

that are processed, but do not significantly change the end result, just as it needs to be.

Convergence parameters There are a number of convergence parameters involved in

the ALDA part of the calculation. The most important ones are the interstitial and muffin-

tin cut-off parameters of the mixed-product basis – GMB
max, lMB

max and the SELECT statement,

c.f. page 90 – the number of unoccupied bands and the number of frequency points for the

calculation of the susceptibility, and finally the number of k points for the Brillouin zone

sampling.

These parameters have been extensively checked separately. In order to properly present

the results, however, two set of these parameters are chosen, excluding the number of k

points: One parameter set of values that are considered sufficient (labeled low params), and

a set of larger chosen parameters (labeled high params) which do not lead to significant

changes.

label low high

GMB
max 2.0 3.0

lMB
max 4 6

SELECT 2,-;3,- 3,-;4,-

# of bands 15 20

# of frequencies 91 193

In figure 6.2 on the left-hand side the spin-wave dispersion is presented for the theoretical

lattice constant. It is calculated for two different k point set, a 24 × 24 × 24 set with 413

points in the irreducible zone, and a 48 × 48 × 48 mesh with 2769 points in the IBZ. (For
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Figure 6.3: Effects on the spin-wave dispersion of Nickel fcc along (001) direction. Left-

hand side: Influence of the k-point set in the DFT cycle. Right-hand side: Effect

of different lattice constants.

the low params set this are the black and the red curves.) In terms of calculation time there

is a factor of around 12 between points on the black and the red curve, and a further factor of

around 3.5 between the red and the green curve. There are a few things to be noted:

• Most obvious, the curves do not start at the origin, as it needs to be according to the

theory. According to extensive tests, this cannot be cured by higher values for the

convergence parameters. The reason for this is still undetermined.

• The differences between the two k point sets are visible but (after shifting to a common

origin) fairly small. Since also other points (such as lattice constant, for instance) have

a small effect, I consider the smaller k point set sufficient for the desired accuracy.

• The high params set does not yield significant changes, see the green curve in the plot.

Therefore the low params set is considered sufficient for the current calculations.

The effect of the different mixed-product basis parameters is exemplified on the right-hand

side of figure 6.2 where the imaginary part of the spin-flip susceptibility is shown for both

parameter sets for two different q points. The differences are barely visible for the larger q

vector. For the lower q vector the differences are similarly small, but they are more significant

due to the smaller peak width. It remains to be determined whether these parameters needs

to be increased for very small q vectors, such as for instance |q| < 1
100

, which is way smaller

than the q vectors in the calculations of this work.

The lattice constant also has a significant impact on the spin response. This is comprehen-

sible since it modifies the Fermi surface to which the Kohn-Sham response is very sensitive.

On the right-hand side of figure 6.3 the spin-wave dispersion is shown for the theoretical and

the experimental lattice constant, which demonstrates that the lattice constant (among with

other parameters) should be provided with any calculation. A few things are obvious:

• The offset for q = 0 changes significantly from ω ≈ 20meV to ω ≈ 50meV.
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• According to the first point on the q axis, a spin-wave stiffness determined for these

curves would yield different values.

• The shape for large q vectors is different: While the dispersion has a plateau for large

q in case of the theoretical lattice constant, the dispersion decreases in this region for

the experimental lattice constant.

Another aspect of convergence was observed in the studies: The k-point mesh that is used

in the DFT cycle is important as well. On the left-hand side of figure 6.3 the dispersion

curves for the two k-point meshes 24× 24× 24 and 48× 48× 48 are shown in black and red.

These are the same curves as in figure 6.2. In these cases the same k-point sets have been

used in the DFT and the ALDA parts of the calculation. Additionally a third curve is shown

in green which uses a 24×24×24 k-point mesh for the susceptibility, just as the black curve.

But in the DFT self-consistency cycle that preceded this ALDA calculation (and from which

the data for the ALDA calculation were taken) a larger 48 × 48 × 48 k-points set has been

used. This leads to a significant difference: The offset of the green curve larger than for the

two other curves, and for larger q it has a shape similar to the red curve. Conclusion: The

effect of different k-point sets in the DFT and ALDA steps is not obvious. In order to stay

consistent, one should use the same sets.

Additional Insights A few other things have been tested.

• Test calculations have been performed with a drastically simplified exchange-corre-

lation kernel, which uses the l = 0 component of the charge density only, which

fully neglects the interstitial contribution, and which uses a small-ξ expansion in the

formulas of the kernel. The result is that this is a very good approximation. It can thus

also serve in some situations as a test to a new implementation.

• In order to test the previous statement (see paragraph Incompleteness of Basis on page

91) it was tested whether the fact that the kernel itself is not well represented by the

mixed product basis poses a problem. The radial kernel function for l = 0 has been

added in the procedure to construct the radial functions of the mixed product basis, and

calculations have been performed. The differences were not visible with the bare eye.

Therefore this can serve as a demonstration that the previous argumentation is indeed

correct and only the proper representation of the Kohn-Sham susceptibility (but not

of the exchange-correlation kernel) is crucial for spin-response calculations with the

mixed product basis method.

• The temperature broadening that is used in the DFT self-consistency cycle for con-

vergence reasons broadens the contribution of one eigenstate among a small energy

region, determined by the broadening parameter. A common choice of this parameter

is 0.001Htr ≈ 27meV. This is a large value compared to spin-wave energies for small

q vectors. Decreasing this parameter leads to slight changes in the dispersion; however,

it does not, e.g., close the gap at the origin. The effect is present for a small k-point

set, whereas for a large k-point set (48× 48× 48) the effect diminishes.
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Consequences The preceding investigations lead to the following conclusions:

• For the calculations in the coming chapters a 24×24×24 k-points set is chosen, which

is identical for both the DFT and the ALDA part.

• The set of parameters which has been labeled low params above is used.

• The experimental lattice constant is used in favor of the theoretical one.

• As observed the dispersions do not start in the origin. In the following plots the disper-

sion is simply shifted such that ωsw(0) = 0. Another possibility would be to scale the

exchange-correlation kernel (in the way it was discussed on page 63. The differences

of these two procedures should be investigated.

• Due to the choice of cut-offs of the convergence parameters, small changes to the peak

positions can be possible. Their accuracy should not be expected to be below 10meV.

• Due to computational constraints, I need to choose the q vectors from the k-point

mesh in use. (Otherwise the data for the whole Brillouin zone needs to be stored

instead of only from the irreducible part, c.f. page 93. This leads to massively increased

memory demands.) This means that the smallest q vector possible in my calculations

is q = 1
24
(0, 0, 1).

• Subsequently spin-wave stiffnesses determined from my curves might be inaccurate.

6.3 Iron

The spin-wave dispersions for Iron are shown in figures 6.4 to 6.6 (bcc structure) and figure

6.7 (fcc structure). The energies by which the dispersion for this structure is shifted down-

wards are 57meV (bcc) and 35meV (fcc), respectively. The spin-wave stiffnesses D of these

Iron calculations are collected in the following table:

system D[mRy a2B] D[meV Å
2
] ratio D/Dmin

Fe bcc 001 58 219 1.50

Fe bcc 011 38 146 1.00

Fe bcc 111 53 201 1.38

Fe fcc 001 -97 -369

Iron bcc In the (001) direction the peaks broad only slowly with respect to q, see for

instance vector 3
12

on the Γ → H path in the dispersion plot in figure 6.4. Its width is barely

visible in this kind of plot. Peaks have a large amplitude for small q, −Im χ+−(q, ω) >
200 1

Htr
for q = 2π

a
(0, 0, x), x ≤ 2

12
. The peak positions move to above 200meV for a q vector

from the middle of the path, then the peaks lower again for a brief section of the path and

then vanish for larger q. In this region where the peaks exist the shape of the dispersion is

roughly parabolic. In the region with no peaks there is a continuum of significant amplitude

(around 2 1
Htr

) which has broad maxima at around 600meV, indicated by empty squares. For

the border point q = H the spin response vanishes, indicated by the red circle.
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Figure 6.4: The spin-response function χ+−(q, ω) and spin-wave dispersion ωsw(q) for bcc

Iron for q vectors along the (001) direction.
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Figure 6.5: The spin-response function χ+−(q, ω) and spin-wave dispersion ωsw(q) for bcc

Iron for q vectors along the (011) direction.
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Figure 6.6: The spin-response function χ+−(q, ω) and spin-wave dispersion ωsw(q) for bcc

Iron for q vectors along the (111) direction.

In the (011) direction there are spin-wave peaks along the whole path Γ → N . The energy

of the peaks increase throughout the whole path, i.e., there is no saturation towards the zone

boundary. The parabolic fit coincides well with the peak positions along the whole path. Only

for the border point q = N the spin response vanishes. The width of the peaks increases up to

around two third of the q path, then it diminishes slightly. There is no significant continuum

contribution to the spin response throughout the whole q path.

In (111) direction there are distinctive spin-wave peaks on the section Γ → P . The peak

width narrows towards the q point P . When comparing the amplitude of these peaks for

different directions, it needs to be kept in mind that the path Γ → H in (111) direction is sig-

nificantly longer then the path Γ → H in (001) direction due to a factor of
√
3. Therefore the

decay of the peak height appear to be similarly quick in these directions. There appears to be

a weakly pronounced double peak structure. There is no significant continuum contribution.

The parabolic fit matches nicely for around two third of the path Γ → P . At the point P and

beyond on the path P → H the peaks vanish, i.e., they drop to very low absolute values.

Comparing these dispersion curves it turns out that all three fit well to a parabolic shape

for small q. However, the spin-wave stiffness D is significantly smaller for the 011 direction

compared to the (001) and (111) directions.

Iron fcc Iron in the fcc structure is an interesting material to investigate because of its

magnetic structure. In a fully non-collinear calculation it reveals a spin-wave structure. If

restricted to a collinear alignment of the electron spin, it takes an anti-ferromagnetic config-

uration. In this calculation, it was calculated with one atom per unit cell, that is being fixed

to a ferromagnetic configuration. Since this is not the ground state regarding the magnetic
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Figure 6.7: The spin-response function χ+−(q, ω) and spin-wave dispersion ωsw(q) for fer-

romagnetic fcc Iron for q vectors along the (001) direction.

structure, “excited” states off this “ground” state are expected to have a lower total energy.

Consequently the corresponding excitation energies should be negative.

This is indeed what is observed in the calculations (figure 6.7), even though they are re-

stricted to positive energies. As for all other calculations of this chapter, the peak position for

q = Γ is not located at zero energy but at a positive energy (in this case: 35meV). The spec-

trum is shifted to lower energies by this amount, but the now negative section of the energy

axis is not cut. Then, for increasing q vector the peaks move to lower energies. However,

already for the vector q = 2π
a
(0, 0, 3

12
) the peak position has moved to such low energies that

it is not covered by the shifted energy range again. Therefore the spectra are not shown for

the larger q vectors. Calculations have been made for all three directions, however, only the

(001) direction is presented because the essential features are identical in the curves for the

(011) and (111) directions.

Comparison The spin-wave dispersion along two directions is compared to two other

publications in figure 6.8. On the left-hand side the dispersion of bcc Fe along (001) cal-

culated by Savrasov [Sav98] is presented in blue. The orange curve the author’s according

calculation, it is identical to figure 6.4. The framework used by Savrasov is time-dependent

DFT (such as this work) employed within the LMTO method, which has some similarities

to the LAPW method. The spin-response function, however, is not determined in recipro-

cal space by a Dyson equation, but through the real-space Sternheimer approach [Sav92].

The lattice constant that has been used in the calculation is not provided in the paper. The

spin-wave dispersion starts in the origin, while this is the case for the current work only by

shifting it accordingly. It is not known to the author whether the method of Savrasov yields
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Figure 6.8: Comparison of Iron spin-wave dispersions along two directions with two other

authors.

this result without any tuning. The curves of Savrasov and of this work coincide nicely for

small q vectors. In the intermediate region the orange curve shows a stronger increase and

does not follow the parabolic-like shape, as does the blue curve. It is common to both curves

that the amplitude of the spin response decays rapidly and vanishes at half or two thirds of the

length of path Γ − H . It should be kept in mind that in the fading-out of a dispersion there

is a certain freedom of choice of where it is considered to be vanished. The experimental

results [Lyn75] (which have also been cited in Savrasov’s publication) coincide well with the

blue curve.

The green diamonds indicate calculations of Buczek and coworkers [BESB09]. The em-

ployed formalism is also adiabatic LDA, i.e. the same matrix Dyson equation as in this

thesis is solved. However, the response function of non-interacting particles is determined

from the KKR Green’s function method. The experimental lattice constant of Fe bcc has

been used. The resulting spin-wave modes are (for small q vectors) higher in energy than in

this work. The determined spin-wave stiffness is determined as D = 252 meV Å2, compared

to D = 219 meV Å2 in this work. (However, it should be noted that the results of Buzcek

coincide well with experimental results of Mook referenced in [BESB09].)

On the right-hand side of figure 6.8 results for Iron bcc in (011) direction are compared.

Our data (orange curve) are contrasted to results of Karlsson and Aryasetiawan [KA00].

Their method is based on many-body perturbation theory as it was briefly outlined on page

45. The lattice constant is not provided. The dispersion of Karlsson starts in the origin.

According to private communication, this has been explicitly ensured by a properly chosen

screened interaction. For small q vectors both Karlsson and this work correspond well with

experiment (also from [Lyn75]). At around one third of the path Γ−N , however, the curve

does not increase as quickly anymore, but catches up again at around half of the path Γ−N .

There the Karlsson curve has a leap, which might indicate a double peak structure. In our

calculations we do not see a double-peak structure, c.f. figure 6.5. For large q vectors the

progression of the two dispersions is similar, though the one of Karlsson has higher energies

due to its leap.
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Figure 6.9: The spin-response function χ+−(q, ω) and spin-wave dispersion ωsw(q) for bcc

Nickel for q vectors along the (001) direction.

6.4 Nickel

In figures 6.9 to 6.11 the spin-wave dispersions of Nickel in the bcc structure are presented,

6.12 to 6.14 the dispersions of Nickel in the fcc structure. The energy shifts are 21meV and

56meV , respectively. The spin-wave stiffnesses D of these Nickel calculations are collected

in the following table:

system D[mRy a2B] D[meV Å
2
] ratio D/Dmin

Ni bcc 001 80 303 1.07

Ni bcc 011 93 353 1.25

Ni bcc 111 74 283 1.00

Ni fcc 001 353 1342 1.50

Ni fcc 011 235 893 1.00

Ni fcc 111 278 1057 1.18

Nickel bcc In (001) direction there is a pronounced peak structure for q = 2π
a
(0, 0, x), x ≤

4
12

, see figure 6.9. In this region the peak positions coincide nicely with a parabolic plot.

These peaks are significantly lower compared to Iron in the same structure and direction, see

6.4. For instance, the peak height for q = 2π
a
(0, 0, 2

12
) is roughly one order of magnitude

lower for Nickel than for Iron; the corresponding peak width is larger. For q larger than

q = 2π
a
(0, 0, 5

12
) the response broadens into a continuum with a few maxima. However,

the amplitude is quite low, therefore the maxima are only indicated by empty squares in

the figure. It should be noted that the separation between peaks and continuum is not well
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Figure 6.10: The spin-response function χ+−(q, ω) and spin-wave dispersion ωsw(q) for bcc

Nickel for q vectors along the (011) direction.

defined. It could also be interpreted as very broad peaks (partly with a double peak structure)

of a constant branch.

In the (011) direction there are peaks along the whole path Γ → N . The fit to the parabola

matches nicely up to half of the path. Then, the peak positions form a plateau, just to rise

again towards the zone boundary. The response function vanishes for q = N .

In the (111) direction there are well-defined peaks for small q vectors q = 2π
a
(0, x, x), x ≤

3
12

. The peak position fits well to the parabolic fit. On the second half of the path Γ → P ,

q = 2π
a
(0, x, x), 3

12
≤ x < 6

12
the peak broadens into a continuum featuring maxima. These

maxima also fit well to the parabola. On the path P → H the spin response vanishes. It has

very low amplitude and a broad shape without significant maxima (at least not in the shown

energy range). This last property is identical to Iron bcc (111) where the response vanishes

on the same section. This might be caused by symmetry reasons.

Nickel fcc In the fcc structure Nickel shows spin-wave peaks along the whole path Γ → X
in (001) direction. The parabolic fits well only for small q = 2π

a
(0, 0, x), x ≤ 2

12
. The peak

widths are a bit smaller than for the other curves shown up to now. For large q vectors the

width even diminishes again. The spin-wave curve has a maximum at around two thirds of

the path and moves to slightly lower energies further on. The amplitude for large q vectors

remains at around 4 1
Htr

which is larger than, e.g., for Iron. At the zone boundary, q = X , the

response function vanishes.

In (011) direction there are peaks on the section Γ → K, however, the response vanishes

for the section K → X . The parabolic fit suits only for small q vectors. After half of the

whole path, q = 2π
a
(0, x, x), 6

12
< x < 9

12
, the peak positions slightly decrease again.
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Figure 6.11: The spin-response function χ+−(q, ω) and spin-wave dispersion ωsw(q) for bcc

Nickel for q vectors along the (111) direction.
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Figure 6.12: The spin-response function χ+−(q, ω) and spin-wave dispersion ωsw(q) for fcc

Nickel for q vectors along the (001) direction.
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Figure 6.13: The spin-response function χ+−(q, ω) and spin-wave dispersion ωsw(q) for fcc

Nickel for q vectors along the (011) direction.
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Figure 6.14: The spin-response function χ+−(q, ω) and spin-wave dispersion ωsw(q) for fcc

Nickel for q vectors along the (111) direction.

111



CHAPTER 6 — RESULTS FOR REAL MATERIALS

0

100

200

300

400

500

Savrasov
Karlsson

Sasiouglu

this work
experiment

0

100

200

300

400

500

Sasioglu

this work

Experiment

Ni fcc (001) Ni fcc (111)

ω
sw
(q
)
[m

eV
]

ω
sw
(q
)
[m

eV
]

qq
ΓΓ X L

Figure 6.15: Comparison of Nickel spin-wave dispersions along two directions with other

authors.

In (111) there also exists a spin wave peaks on the whole path, such as in the (001) di-

rection. There is a significant amplitude −Im χ+−(q, ωsw(q)) > 2 1
Htr

at the spin-wave peak

also for large q vectors. The parabolic function matches the spin-wave dispersion for the first

quarter of the path. Then, the dispersion takes the opposite curvature and appears to have a

saturation for large q vectors. For q = L the response function vanishes.

Comparison In figure 6.15 four different theoretical results are presented together with

experiments [MP85a]. The orange curve is from this work, see figure 6.12. The curves of

Karlsson and Savrasov are from the publications that were previously cited on page 106. The

green curves were kindly provided by E. Sasioglu [Sasa]. They are based on a many-body

approach similar to that of Aryasetiawan and Karlsson, but bases on a different implementa-

tion, utilizing the FLAPW method and Wannier functions.

The experimental data (indicated by empty squares) show a split into two branches: The

lower branch starts at the origin and has a parabolic shape for small q. The second branch

sets in for q around 2
12

of the path. For intermediate q both branches increase, though more

in a low linear fashion. For large q there are no data.

The calculation of Karlsson (red curve) has a crucial difference to the other theoretical

curves. The exchange splitting of Nickel in DFT, if compared to experiment, is systematically

overestimated. It is understood that this leads to according overestimations of the amplitude

of the spin-wave energy. Karlsson diminished the exchange splitting of his DFT results by

hand in order to account for that. As a result his higher branch ranges at around half of the

energy if compared to the other calculations (250meV vs. 450-500meV). This way he closely

matches the experimental results.

Further on the results of Sasioglu and this work (both using the experimental lattice con-

stant) agree well up to intermediate q vectors. At large q the trend of decreasing ωsw(q) is

pronounced stronger in the TDDFT result. The Savrasov result shows a slightly slower in-

crease for intermediate q, and has a plateau for large q. This might be an indicator that the

theoretical lattice constant has been used in this computation, compare figure 6.3.
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On the right-hand side of figure 6.15 dispersion graphs of this work and Sasioglu are

compared to experiment [Sasb]. All in all the two theoretical curves coincide well. At q

values around one third of the path, however, the calculation of Sasioglu catches two paths,

while there is no such double-peak structure for the TDDFT calculation. One could at best

identify a weak shoulder, see figure 6.14. The lower branch of the Sasioglu curve matches

the experiment nicely. However, for larger q the spin-wave energies are too large by a factor

of around two, similar as in the (001). This is also due to the miscalculated exchange splitting

of Nickel in DFT.

In these comparisons for Nickel it became obvious that the TDDFT calculations of this

work did not show a double peak structure. It should be kept in mind that the structure

of the spin-response function is sensitive to several parameters. The lattice constant is of

importance, as well as the method how the dispersion is fixed to the origin. The work of

Sasioglu for instance uses a scaling of the screened interaction (which takes in that method

a similar place as the exchange-correlation kernel in this TDDFT method). Furthermore, the

resolution in q is limited to the chosen k-point set. It should be remarked that there has been

observed a double peak structure once: In figure 6.3, the red curve shows the dispersion of

Nickel fcc in (001) direction for the theoretical lattice constant on a 48 × 48 × 48 k-point

mesh. For the q-vector 3
24
X (which lies in-between two mesh points of the 24 × 24 × 24

k-point set) there are two peaks, indicated by an additional red square. It appears that if such

a double-peak structure appears in the TDDFT results, it is only in a very small region for

smaller q values. These detail should be investigated further. One consequence is that if one

misses a splitting into two branches, one considers the progression of peak positions as one

curve. A parabola that that is matched to the small-q values will subsequently lead to an

overestimation of the spin-wave stiffness.

6.5 Cobalt

The spin-wave spectra for Cobalt are plotted in figures 6.16 to 6.18 for the bcc structure and

in figures 6.19 to 6.21 in the fcc structure. The energy shifts are 66meV (bcc) and 67meV

(fcc), respectively. The Cobalt spin-wave stiffnesses D for these structures are:

system D[mRy a2B] D[meV Å
2
] ratio D/Dmin

Co bcc 001 152 577 1.14

Co bcc 011 174 662 1.31

Co bcc 111 133 504 1.00

Co fcc 001 117 446 1.00

Co fcc 011 132 503 1.13

Co fcc 111 121 459 1.03

Cobalt bcc In (001) direction there is a spin-wave dispersion along the whole path Γ →
H . With increasing q the peak position rises monotonically up to values above 900meV.

The peaks are very wide for intermediate vectors q = 2π
a
(0, 0, x), 6

12
< x < 9

12
, and narrow

again for larger q vectors. The spin-wave stiffness obtained from the parabolic fit for small q

vectors has a value significantly larger than for the previous Iron and Nickel calculations.
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Figure 6.16: The spin-response function χ+−(q, ω) and spin-wave dispersion ωsw(q) for bcc

Cobalt for q vectors along the (001) direction.
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Figure 6.17: The spin-response function χ+−(q, ω) and spin-wave dispersion ωsw(q) for bcc

Cobalt for q vectors along the (011) direction.
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Figure 6.18: The spin-response function χ+−(q, ω) and spin-wave dispersion ωsw(q) for bcc

Cobalt for q vectors along the (111) direction.

In the (011) direction the spin-wave stiffness is even larger. (This is not obvious from the

figures due to the fact that the path Γ → H is longer than the path Γ → N .) However, the

maximum spin-wave energy is reached at the zone boundary at around 500meV. The spin-

wave peaks exist along the whole path Γ → N , but rise only up to values around 500meV.

The peaks do not narrow towards the end of the path.

In (111) direction there are peaks along the section Γ → P , while it vanishes on the section

P → H . The maximum spin-wave energies are around 550meV close to point P .

Cobalt fcc In (001) direction there is a continuous spin-wave dispersion for the whole

path. The spin-wave peaks narrow again for large q vectors. There is an oscillation in the

peak width at around q = 2π
a
(0, 0, 4

12
). The peak for the next smaller q vector is smaller and

taller, as well as the peak for the next larger q vector. The same effect is there at a smaller

extend also in the (011) direction, but not in the (111) direction.

In (011) direction the spin-wave dispersion extends along the section Γ → K and vanishes

along K → X .

In (111) direction there are spin-wave peaks along the whole path Γ → L. The spin-wave

stiffness is the smallest of the other fcc Nickel dispersions.

Common observations for the three elements There are a few properties that are

common to the calculations for these three different transition metals.

• As discussed in section 6.1, there are directions in which the Brillouin zone boundary

does not coincide with the next high-symmetry point. These are the path Γ → P → H
in the (111) direction for the bcc structure, and the path Γ → K → X in the (011)
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Figure 6.19: The spin-response function χ+−(q, ω) and spin-wave dispersion ωsw(q) for fcc

Cobalt for q vectors along the (001) direction.
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Figure 6.20: The spin-response function χ+−(q, ω) and spin-wave dispersion ωsw(q) for fcc

Cobalt for q vectors along the (011) direction.
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Figure 6.21: The spin-response function χ+−(q, ω) and spin-wave dispersion ωsw(q) for fcc

Cobalt for q vectors along the (111) direction.

direction in fcc structure. On the second section of these paths (that are P → H and

K → X) the spin response vanishes for all three elements. This might be due to

symmetry reasons.

• For the high-symmetry points – i.e., the points X , K, L in fcc and points H , N , P in

bcc – the spin response usually vanishes. There is one exception: For fcc Cobalt the

spin-response does not vanish for q = X , see figures 6.19 and 6.20.

• The spin-response can also disappear within a high-symmetry path. This happens for

Ni bcc (001) and Fe bcc (001).

• The spin-wave peaks are very narrow for small q vectors and broaden for increasing q.

In some cases the width reduces again when approaching the high-symmetry point on

the path. In a few cases the width oscillates slightly, for instance for Ni bcc (011), Co

fcc (001) and Co fcc (011).

• The spin-wave stiffness has different values along the principle directions. Values can

change by as much as 50%. Regarding these numbers it should be kept in mind that

the current calculations are not optimal for the determination of these stiffnesses due

to the large q spacing (see also discussion on page 113).

• The spin-wave energies are below 400meV for Iron, below 600meV for Nickel and

below 1000meV for Cobalt.
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6.6 Comparison to Adiabatic Approximation

The results on the spin-wave dispersion ωsw(q) and the spin-stiffness D are compared to

results of the predominantly used adiabatic approximation to the magnon dispersion [RJ97,

HEPO98, vSA99, PKT+01]. In the adiabatic approximation one assumes that the time depen-

dence of the magnetization due to a slowly varying external magnetic field can be calculated

by replacing the average < M̂(t)> over the non-stationary state of electrons by average of

the electrons at the ground state <M > (t) at instant time t, < M̂(t) >≈<M > (t). I.e.

the precessional motion of the local magnetization present for a spin wave is neglected when

calculating the associated change of electronic energy. Clearly, the condition of validity of

this approximation is that the precession time, τp, of the magnetization should be large as

compared to characteristic times of electronic motion, namely, the hopping time, τh, of an

electron from a given site to a neighboring one, and the precession time of the spin of an

electron subject to the local exchange field. The hopping electrons determine the bandwidth

of a solid and the hopping time τh is approximately τh = ~/Ebandwidth, which approximately

the lattice constant a divided by the Fermi velocity vF, τh ≈ a/vF. In other words, since

the characteristic time scales are inversely proportional to the corresponding energy scale,

the adiabatic approximation becomes valid if the spin-wave energies are small as compared

to the bandwidth and to the exchange splitting. Considering that typical magnon energies of

the transition-metal itinerant magnets are in the order of a few tenth of an eV, the adiabatic

approximation is a good approximation for ferromagnets with a large exchange splitting such

as Fe and Co, but it is less justified for Ni that has a small exchange splitting of about 0.7 eV

(which is even overestimated in the conventional LDA and GGA approximations), see figure

6.1. The adiabatic approximation becomes exact in the limit of long-wavelength magnons

(if the underlying electronic and magnetic properties are described well by the exchange-

correlation functionals), so that the spin-wave stiffness constants D calculated from the adi-

abatic approximation becomes in principle exact.

The adiabatic approximation corresponds to a mapping of the itinerant electron system

onto an effective Hamiltonian with classical spins. In the generally adopted view that the

energy spectrum of the excited states beyond the ferromagnetic stateEo can be approximated

by the Heisenberg model as the effective model,

E = Eo −
∑

ij;i 6=j

Ji,jŜi · Ŝj (6.12)

where Ji,j is the exchange interaction energy between two particular sites (i, j), and Ŝi, Ŝj are

unit vectors pointing in the direction of local magnetic moments at sites (i, j), respectively.

The sign convention adopted corresponds to a ferromagnetic ground state for positive J , J >
0. Magnons are then dynamical solutions in the linear regime to the Heisenberg Hamiltonian.

A magnon is an excitation, where the local magnetic moments deviate slightly from the

ferromagnetic ground state (or any other magnetic state as ground state) and are typically

not stationary states in the context of the density functional theory. Therefore, the procedure

for performing the above mapping onto an Heisenberg Hamiltonian relies on the constrained

density-functional theory [DBZA84] which allows to obtain the ground-state energy for a

system subject to certain constraints. In the case of magnetic interactions, the constraint

consists in imposing a given configuration of spin-polarization directions, namely, along Ŝi
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6.6 Comparison to Adiabatic Approximation

within the atomic cell or atomic sphere i in case of the FLAPW method, respectively. Note

that with the FLAPW program FLEUR the intra-atomic noncollinearity of the spin polariza-

tion is neglected since we are primarily interested in low-energy excitations due to inter-

atomic noncollinearity [KFN+04].

To actually calculate the spin-wave energies, the frozen-magnon approach is applied. One

chooses the constrained spin-polarization configuration to be the one of a spin spiral, which

can be written in case of an one atom per unit cell as,

M(Ri) =Mo





cos(q · Ri) sin θ
sin(q · Ri) sin θ

cos θ



 (6.13)

which relates the local magnetic moment M at site Ri with the wave vector q, and a cone

angle θ accounting for the tilting of the spin-quantization axis with respect to the ferromag-

netic state. Using this ansatz the energy difference to the ferromagnetic state, ∆E(q, θ) =
E(q, θ)−E(0, 0), (and the dependence of the variation of the local magnetic momentM(q, θ)
as we will see below) is computed directly on the basis of the density functional theory by

employing the generalized Bloch theorem for a spin-spiral configuration [Her66] as imple-

mented in the FLEUR code [KFN+04] and further developed by Lezaic et al. [LMB] to

calculate the exchange energy parameters Ji,j to analyze the thermodynamical properties of

magnets. Please notice, in order to cover the full phase space of spin configurations, it would

be necessary in the representation of the magnetic moment of Eq. (6.13) to introduce two

independent wave vectors for the position dependence and treat θ analogous to φi = qRi.

However, we work here in the linear spin-wave theory, thus with linear spin-wave modes, re-

spectively, and then θ = const and we consider for unit cells of one atom only one constant

configuration.

The equations of motion subject to the classical Heisenberg Hamiltonian and the request

to work in linear spin-wave theory (dθ/dt = 0) imply immediately that θ ≪ 1 and dφ/dt =
const. Following Halilov et al. [HEPO98], the associated eigenvalue problem gives the

dispersion of the energy or frequency, respectively, of one spin-wave mode:

ωsw(q) = 2gµB

∆E(q)

Mo

, (6.14)

where ∆E(q) is the excitation energy with respect to and Mo is the local magnetic moment

of the ferromagnetic ground state (or any other ground state). 5and g is the gyromagnetic

factor (g ≃ 2). This equation holds under the assumption that the system can be described

by the Heisenberg model, which means:

M(q, θ) =Mo = const, and ∆E(q, θ) = ∆E(q) sin2(θ) (6.15)

and the condition that θ is small to remain in the linear magnon regime. For a true Heisenberg

ferromagnet above conditions Eq.(6.15) are fulfilled for all θ and ∆E(q) can be calculated

directly for a flat spiral ∆E(q) = ∆E(q, θ = π/2) = ∆EFS(q). For the typical itinerant

magnets Fe, Co, and Ni, this condition is not fulfilled. It is important to explore carefully the

regime of q, θ where above conditions hold. Below we use a small cone angle of θ ≤ 20◦.

Halilov et al.[HEPO98] extended the regime of applicability by interpreting the Heisen-

berg model Eq.(6.12) just of a convenient form to expand the total energy. On the basis of
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this interpretation it is natural that also the magnetic moment M depends on q, θ, as M(q, θ).
If there is a regime of (q, θ) where the energy difference ∆E(q, θ) can be expanded in the

form

∆E(q, θ) = ∆e(q)M2(q, θ) sin2 θ (6.16)

the above condition Eq. (6.15) is extended and the dispersion relation of the magnon fre-

quency is given by an analogous equation:

ωsw(q) = 2gµB ∆e(q)M(q, θ = 0). (6.17)

If ∆E(q, θ) and M(q, θ) has been calculated e(q) is obtained by a fit and the fit should hold

independent of θ.

Rosengaard et al.[RJ97] derived the spin-wave dispersion by noting that a spin flips over

one spin-wave from +1
2

to −1
2

and since the magnetic moment is related to spin by the

gyromagnetic ratio, gµB (with g ≃ 2), the total magnetization loss caused by a spin-wave

excitation is then gµB, while the magnetization loss per site is ∆M(q, θ). Hence the energy

or frequency of a spin-wave excitation is:

ωsw(q) = gµB lim
θ→0

∆E(q, θ)

∆M(q, θ)
(6.18)

For a Heisenberg system the magnetization loss per site is ∆M(q, θ) = Mo(1 − cos θ) =
2Mo sin

2(θ/2) and the energy change difference changes as ∆E(q, θ) = ∆E(q) sin2 θ and

both tends to zero for zero cone-angle θ. Hence the energy of a spin-wave excitation

ωsw(q) =
gµB

2

∆E(q) sin2 θ

Mo sin
2( θ

2
)

∣
∣
∣
θ=0

= 2gµB

∆E(q)

Mo

. (6.19)

Total energy calculation of spin-spirals of the form given in Eq. 6.13 may be applied

directly to determine ∆E(q, θ) and M(q, θ), but we work with small cone angles and thus

E(q, θ) is expected to be of a small deviation from the ferromagnetic state, and the magnetic

force theorem is expected to be a good approximation. Then, we can approximate the total

energies by the difference of the sum of single-particle energies

∆E(q, θ) =

EF(q,θ)∑

k,ν

εk,ν(q, θ)−
EF(0,0)∑

k,ν

εk,ν(0, 0) (6.20)

and self-consistency is avoided, which makes the calculation considerably faster and the

magnetic moment does not change due to the neglect of self-consistency.

The spin-wave stiffness constant D that relates the spin-wave frequency ωsw to the wave

vector in the long-wavelength limit as ωsw = D q2, may be calculated from the energy of

spin spiral excitation in the long wave-length limit (q → 0 and θ → 0):

D =
gµB

M(0)

d2E(q, θ)

dq2

∣
∣
∣
q=0, θ=0

or D =
gµB

Mo

d2E(q)

dq2

∣
∣
∣
q=0

, (6.21)

respectively. E(q) has to be calculated subject to the conditions given in Eq. 6.15. The region

of q for which the spin-wave dispersion is isotropic depends on the system.
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Figure 6.22: Adiabatic magnon dispersion relations (blue line) together with the TDDFT

result of this work (red line) for bulk fcc-Ni along the (111) oriented high-

symmetry line connecting the Γ-point with the L point. For comparison solid

circles mark calculated frequencies, lines are guides to the eye. For comparison

experimental room temperature data taken from Ref. [MP85b] are added.

Since we are primarily interested in spin-wave dispersion curves and the spin-wave stiff-

ness D the frozen-magnon approach is superior to the frequently used concept of calculating

the exchange interaction energies directly in real space using the Green-function method

based on infinitesimal rotations developed by Liechtenstein et al. [LKG84] as one can calcu-

late the q-vectors on an arbitrarily fine or course grid where necessary and the performance

of a Fourier transformation is avoided as well as the somewhat delicate analysis of the con-

vergence of the sum of exchange constants over shells of atoms to obtain a reliable number

for the spin-stiffness D. The advantage of Liechtenstein’s method is the use of infinitesi-

mal rotations which determines the Heisenberg parameters for an undisturbed ferromagnetic

state.

We have applied the adiabatic spin-wave theory to calculate the magnon spectrum and

the spin-stiffness constant of bulk fcc Ni. For this purpose we have used the full-potential

linearized augmented plane-wave method [WKWF81, WF82] as implemented in the FLEUR

code [KFN+04, cca]. All the structural and computational parameters such as the lattice con-

stant, muffin-tin radius, number of k-points in the Brillouin zone, number of basis functions

as well as the choice of the exchange-correlation functional are identical to the calculations

used in the TDDFT calculation.

By using the force theorem, we have calculated the total energy difference ∆E(q, θ0) for

a small cone angle of θ = 20◦ for q vectors along the (111) direction and fitted ∆E(q, θ)
according to ∆E(q, θ) = ∆e(q)M2(θ) sin2(θ) to obtain ∆e(q) from which we calculated the

adiabatic magnon dispersion shown in figure 6.22 (using a 71× 71× 71 k-point set) together
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with one obtained in TDDFT. Both use the experimental lattice constant.

Compare this graph to the right-hand side of figure 6.15 and its subsequent discussion.

The TDDFT curve (red) has similar values only for small q vectors, but turns then to what

is resolved in other calculations as the higher branch. The frozen-magnon calculation on the

other hand stays with the lower branch. It compares well with previous theoretical results

relying on the adiabatic approximation [RJ97, HEPO98, vSA99, PKT+01]. In the intermedi-

ate energy regime there is reasonably good agreement to available experimental data [Sasb]

of measured spin-wave spectra (plotted in empty black squares). According to the previous

discussion, the too large bandwidth of the magnon spectrum of Ni is usually argued to be

the neglect of the Stoner excitation kicking in at about 150 meV, which is neglected in the

adiabatic approximation.

From a fit of the quadratic form E(q) = D q2 to the adiabatic magnon dispersion we

obtain for the spin-stiffness constant D = 712 meV Å2 for our adiabatic value of Ni in good

agreement with previous calculations ofD = 739 meV Å2[RJ97],D = 740 meV Å2 [vSA99]

and D = 756 ± 29 meV Å2 [PKT+01]. The TDDFT result of D = 1057 meV Å2 (see

page 108) is an overestimation due to the previous argumentation. In comparison to the

experimental results ofD = 550 meV Å2 [DHM68],D = 555 meV Å2 according to neutron-

scattering measurement data at 4.2 K [MLN73] or of D = 422 meV Å2 according to the

magnetization measurement data at 4.2 K [Pau82] the theoretical data overestimate the spin-

stiffness coefficient by about 35%.
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CONCLUSIONS

Summary In this text, spin-wave excitations have been investigated. The employed ap-

proach is the time-dependent density functional theory (TDDFT), involving the FLAPW

method. The underlying theory has been presented, as well as the mechanism of spin excita-

tion leading to the spin-flip response function χ+−.

The formalism has been applied on the homogeneous electron gas, as well as on the sim-

ple transition metals Iron, Cobalt and Nickel, for which fcc and bcc configurations have been

computed. In particular the different elementary directions (001), (011) and (111) have been

investigated. Comparisons have been performed with experimental data and with other cal-

culations. While not all features that were reported in those papers were reproduced, there

is an overall agreement of the results. Furthermore , a more detailed comparison with the

adiabatic approximation is provided.

Computational outlook Regarding implementation features, there are different ways to

carry on the development of the computer code. For the calculations presented in this thesis

– which contain a small unit cell – the limiting factor was the computational time. While the

calculation is performed currently in one process only, a parallelization of the code would

benefit from multiple CPUs and CPU cores. The most crucial spot for such a parallelization

is the time-consuming calculation of the Kohn-Sham susceptibility χ+−
KS . For systems with a

larger unit cell, a parallelization might also help in terms of memory capacity.

For the calculations presented in this thesis, the choice of q vectors was restricted to the

sampling points of the Brillouin zone. While a choice of q vectors off the sampling grid is

in principle supported by the underlying code, this leads to a loss of symmetry in the cal-

culations, and one cannot reduce the Brillouin zone integration of the Kohn-Sham response

(5.37) to its irreducible part. In this case, the computational demands of the integration in

terms of computational time and memory increase that much that the density of the Brillouin

zone sampling needs to be reduced. Therefore, this approach is not feasible at the moment.

However, a parallelized version of the code which would decrease the amount of memory

that each process requires during the Brillouin zone integration might enable such a calcu-

lation. Nevertheless, due to the integration of the full Brillouin zone, such a calculation is

always more costly than a calculation with q vectors chosen from the BZ sampling grid. If

the disadvantage of higher computational cost is outweighed by the free choice of q vectors

depends on an analysis of the implementation of the parallelization to be employed.

Further desirable program features include the implementation of two-dimensional ge-

ometries [Kur00], which allows for the calculation of true film geometries without the use

of supercells. Further on, the treatment of spin-orbit coupling, which is implemented in the
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DFT code FLEUR, is currently incompatible with TDDFT calculations. The influence of this

correction term on spin-wave excitations is to be investigated.

Physical outlook After the code has been successfully applied onto the mentioned tran-

sition metals, the next steps are to explore more complex systems. The influence of lattice

configurations onto spin-wave spectra is to be investigated. In particular, the magnetic char-

acteristics of distinct elements need to be categorized if possible.

Even though there are a lot of perspectives in the ab initio exploration of more complex

materials, there are as well limitations due to the scaling of the computational demands of

these calculations with respect to the size of the unit cell. Therefore, opportunities to bridge

the dimensional gap shall be strived for. Methods are to be developed to distill key parameters

for model-based calculations on a microscopic and mesoscopic scale from ab initio calcula-

tions on the nano-scale. Possible investigations include, for instance, calculations based on

the Landau-Lifschitz-Gilbert equation. An important aspect is a proper determination and

treatment of the lifetimes of excited states and the dynamics of transition processes.

All these prospects show that the exploration of magnetic excitations remains an agile field

of research, and computational investigations are at the very core of it.
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A.1 Constants and Units

In this work the initial formulas in chapter 2 that define the many-body problem and the magnetic

quantities have been written down in SI units. Starting from close to the beginning of chapter 2 the

atomic units (more specifically the Hartree atomic unit set) has been used. (The only exception is the

derivation in appendix B.2 which is shown to have an additional factor in SI units which equals one

in atomic units; nevertheless one should be aware of that.) In the literature also the Gaussian unit set

is extensively used, which frequently causes confusion. In order to see the essential transformations

from one unit set to another, their most important specifics with respect to the theoretical framework

of this thesis is presented here, as briefly as possible.

On Units in General Classically a distinction is made between fundamental units and derived

units which are combined out of the former ones. However, as has been thoroughly discussed by

Bridgman [Bri31], the choice as well as the number of fundamental units is arbitrary. It is even

possible to reduce the set to one fundamental unit. In the regime of mechanics it is common to

establish three independent fundamental units for the quantities of mass, length and time. With the

advent of electrodynamics, there arose choice to describe the new effects by an additional unit like the

SI unit system featuring the Ampere, or describing it by the given mechanical units like the Gaussian

system. One interesting aspect is that for a given unit set there can be quantities of different physical

character which have the same unit. To complicate matters, due to historic reasons there exist several

variations of the unit sets, like other cgs systems.

Dimensionless quantities keep their value regardless of the choice of units, most prominently the

fine-structure constant

α = 0.0072974 . . . ≈ 1

137
(A.1)

indicating the strength of the electromagnetic interaction compared to the strong interaction. Quanti-

ties involving dimensions have a value specific to the unit system.

The SI System The Système international d’unités has the four fundamental units:

length (1 m) — mass (1 kg) — time (1 s) — current (1 A).
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Some derived units are:

quantity derived unit/relation to fundamental units

charge 1 C = 1 As
energy 1 J = 1 kgm2s−2

electric potential 1 JC−1

magnetic field 1 T = 1 kgC−1s−1

magnetic moment 1 JT−1

A single electron’s potential Ve and the kinetic energy operator T̂ in a vector potential A read

Ve(r) =
1

4πε0

e

r
(A.2)

T̂ =
~

i
∇+ eA. (A.3)

The interaction of magnetic moments with a magnetic field ∼ m · B keeps its form in all unit sets,

though the involved units do change. Some selected constants in SI units read

constant symbol relation numerical value

elementary charge e = 1.6022 · 10−19 C
Electronvolt eV = 1.6022 · 10−19 J
Rydberg energy Ry = ~2/(2mea

2
B) = 13.606 eV

electronic mass me = 9.1095 · 10−31 kg

speed of light c = 2.9979 · 108 ms−1

permitivity of free space ε0 = = 8.8542 · 10−12 A2s4kg−1m−3

Bohr magneton µB = e~/(2me) = 9.2741 · 10−24 JT−1

Bohr radius aB = 4πε0~
2/(mee

2) = 5.2918 · 10−11 m
Planck quantum ~ = 1.0546 · 10−34 J s
Fine-structure constant α = e2/(4πε0~c) ≈ 1/137

The elementary charge is defined as the positively signed charge of the electron. The numeric value

of the dielectric constant ε0 is fixed as 8.8542 · 10−12 = 1
4π10

7|c|−2.

Gaussian Units The three fundamental units of the Gauss unit set are:

length (1 cm) — mass (1 g) — time (1 s).

There are in fact different so-called cgs unit systems which have the same three fundamental units but

differ in the derived units. Some derived units of the Gaussian unit set read

quantity derived unit/relation to fundamental units

charge 1 esu = 1 erg
1
2 cm

1
2

energy 1 erg = 1 gmcm2s−2

electric potential 1 erg esu−1

electric/magnetic field 1 G = 1 gmcm− 1
2 s−1

magnetic moment 1 ergG−1

The electrostatic unit of charge (esu) is also called one statcoulomb. It is defined such that two unit

charges in the distance of 1 cm yield an electrostatic energy of 1 erg. The unit of the electric and the
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magnetic field is 1 Gauss (G). A single electron’s potential Ve and the kinetic energy operator T̂ in a

vector potential A read

Ve(r) =
e

r
(A.4)

T̂ =
~

i
∇+

e

c
A. (A.5)

The constants listed earlier now in Gaussian units read:

constant symbol relation numerical value

elementary charge e = 4.8032 · 10−10 esu

electronvolt eV = 1.6022 · 10−12 erg

electronic mass me = 9.1095 · 10−28 gm

speed of light c = 2.9979 · 1010 cm s−1

Bohr magneton µB = e~/(2mec) = 9.2741 · 10−21 ergG−1

Bohr radius aB = ~2/(mee
2) = 5.2918 · 10−9 cm

Planck quantum ~ = 1.0546 · 10−27 erg s

Rydberg energy Ry = ~2/(2mea
2
B) = 13.606 eV

Fine-structure constant α = e2/(~c) ≈ 1/137

The prefactor of the elementary charge e above can be connected to values of the SI system by its

definition as 4.8032 · 10−10 = 10|c| · |e|, with |c| and |e| the dimension-less values of the according

constants in SI units. The relation of a few Gaussian units to their SI equivalents read:

quantity SI unit Gaussian unit

length 1 m = 100 cm

mass 1 kg = 1000 gm

charge 1 C = 2.9979 · 109 esu
energy 1 J = 107 erg

magnetic field 1 T = 104 G

For more details on the cgs unit systems, the conversion between Gaussian and SI units and exten-

sive information on the Gaussian unit system in electrodynamics please refer to the Appendix of the

Jackson classic [Jac62].

Atomic Units Fundamental units in the atomic unit set are

length (1 aB) — mass (1me) — charge (1 e) — energy (1 Htr) — angular momentum (1 ~).

These units are combined to properly describe the following quantities:

quantity combination of units

frequency ([ω] = s−1) 1 Htr ~−1

speed 1 e2 ~−1

magnetic moment 1 µB = 1
2aB~m

−1
e

magnetic field 1 Htrµ−1
B
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For more details on conversion please confer to appendix 6 in [ZL83]. A single electron’s potential

Ve and the kinetic energy operator T̂ in a vector potential A read

Ve(r) =
1

r
(A.6)

T̂ =
1

i
∇+ A. (A.7)

The atomic units are chosen such that most of the constants from quantum mechanics take a numerical

value of one:

constant symbol and value

elementary charge e = 1 e

electronic mass me = 1me

dielectric constant ε0 =
1
4π

speed of light c = 1
α e2 ~−1 ≈ 137 e2 ~−1

Bohr magneton µB = 1 µB

Bohr radius aB = 1 aB

Planck quantum ~ = 1 ~

Rydberg energy Ry = 1
2 Htr

This has the nice consequence that a formula given in SI units can be simply transformed by applying

above equalities, e.g.

~ = 1, me = 1, e2 = 1, ε0 =
1

4π
, c =

1

α
≈ 137. (A.8)

It should be remarked that there is a concurring setting called the Rydberg set of atomic units, which

differ in the energy scale by a factor of two. The above conversion would then read

~ = 1, me =
1

2
, e2 = 2, ε0 =

1

4π
, c =

2

α
≈ 2 · 137. (A.9)

It should be stressed that this latter choice is not used in this thesis.

A.2 Fourier Transform and Lattice Periodicity

Several formulae in this text involve a Fourier transform in their derivation, thus a precise definition

is provided in order to eliminate potential ambiguities. Integrals, if not denoted otherwise, extend

throughout the whole space or time, respectively.

Fourier Transform in Time The Fourier transform can be written in a symmetrical form like

f(τ) =

∫ +∞

−∞
dν e+2πiντf(ν) (A.10)

f(ν) =

∫ +∞

−∞
dτ e−2πiντf(τ). (A.11)
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In physics, it is common to use an unsymmetrical form involving the substitution ω = 2πν, and use

the opposite choice of signs in the exponent:

f(τ) =
1

2π

∫

dω e−iωτf(ω) (A.12)

f(ω) =

∫

dτ e+iωτf(τ). (A.13)

This results in convolutions

f(τ) = a(τ)b(τ) ⇒ f(ω) =
1

2π

∫

dω′ a(ω − ω′)b(ω′) (A.14)

f(ω) = a(ω)b(ω) ⇒ f(τ) =

∫

dτ ′ a(τ − τ ′)b(τ ′). (A.15)

Double convolutions resolve analogously to

f(t− t′) =
∫

dt1dt2 a(t− t1)b(t1 − t2)c(t2 − t′) (A.16)

⇒ f(ω) = a(ω)b(ω)c(ω). (A.17)

Lattice Periodicity Quantum-mechanical wave functions ϕ(r) of an infinite lattice-periodic sys-

tem reveal symmetry by virtue of the Bloch theorem,

ϕ(r) = eikLϕ(r+ L), r ∈ R
3, L ∈ lattice, k ∈ BZ, (A.18)

and can be written in the form

ϕk(r) = eikru(r), u(r) = u(r+ L). (A.19)

The treatment of spatial coordinates can then be restricted to one unit cell. One- and two-point

functions that have possess lattice periodicity can be expressed in reciprocal lattice vectors G and

Brillouin-zone vectors q by

g(r) = g(r+ L) ⇒ g(r)⇋ gG (A.20)

g(r, r′) = g(r+ L, r′ + L) ⇒ g(r, r′)⇋ g(r̄, r̄′; q)⇋ gG,G′(q) (A.21)

where r̄, r̄′ denotes vectors restricted to the unit cell. The integer-based parameters G are written as

subscripts.

Spatial Fourier Transform For the Fourier transform between real and reciprocal space it is

common to use the other set of signs

g(r) =
1

(2π)3

∫

d3q e+iqrg(q) (A.22)

g(q) =

∫

d3r e−iqrg(r). (A.23)

The transforms between discrete and continuous variables regarding lattice symmetry – real-space

lattice vector L to Brillouin-zone coordinate k and unit-cell coordinate r to reciprocal lattice vector G

– read

gL =
1

(2π)3

∫

e+ikLg(k) d3k g(r) =
1

(2π)3

∑

G

e+iGrgG (A.24)

g(k) =
∑

L

e−ikLgL gG =

∫

e−iGrg(r) d3k (A.25)
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Convolutions g of two lattice-periodic two-point functions a and b read

g(r, r′) =
∫

d3r′′ a(r, r′′) b(r′′, r′) (A.26)

⇔ g(r̄, r̄′; k) =
∫

u.c.
d3r̄′′ a(r̄, r̄′′; k) b(r̄′′, r̄′; k) (A.27)

⇔ gG,G′(k) =
∑

G′′

aG,G′′(k) b−G′′,G′(k) (A.28)

Here again, the variables r̄ indicated by a bar extend throughout one unit cell only. This explicit

notation is applied only in this section; in the rest of the text – namely chapter 5 which employs the

crystal notation – it will be clear in the context whether or not the variables are confined into one unit

cell.
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This section presents a few instructive derivations that were referred to in the previous chapters.

Some details such as signs or prefactors should be detailed out since they are crucial for an actual

implementation. We are starting with a few identities useful in the coming derivations.

The principal identity is crucial for evaluating denominators running to infinity, used e.g. in the

derivation of the Lehmann representation (3.24):

lim
η→0+

∫ b

a

dx

x± iη
= P

∫ b

a

dx

x
∓ iπ

∫ b

a
δ(x)dx. (B.1)

P is the Cauchy principal value of the integral defined as

P
∫ b

a
f(x) dx = lim

η→0+

[∫ x0−η

a
f(x) dx+

∫ b

x0+η
f(x) dx

]

, (B.2)

where the function f is assumed to have one singularity at x0 inside the interval [a, b]. Relations of the

exponential function: The straightforward connection between the exponential and the δ-distribution

reads

∫ +∞

−∞
dω eiωτ = 2πδ(τ). (B.3)

Integrals over only half of the axis read

∫ +∞

0
dτ eiωτ = − lim

η→0+

1

i(ω + iη)
(B.4)

∫ 0

−∞
dτ eiωτ = lim

η→0+

1

i(ω − iη)
. (B.5)
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B.1 Lehmann Representation of the Spin-Flip

Response

The correlation function χij with cartesian indices is defined

iχij(r, t, r′, t′) = 〈0|T̂ [Ŝi(r, t), Ŝj(r′, t′)]|0〉Θ(t− t′) (B.6)

= 〈0|Ŝi(r, t)Ŝj(r′, t′)|0〉Θ(t− t′) + 〈0|Ŝj(r′, t′)Ŝi(r, t)|0〉Θ(t− t′), (B.7)

c.f. (3.7). The operators’ time dependence can be separated by changing from the Heisenberg picture

to the Schrödinger picture (3.9),

Ŝi(r, t) = e+iĤ·t Ŝi(r) e−iĤ·t. (B.8)

The unity relation is written
∑

n,Sz

|n, Sz〉〈n, Sz| = 1 (B.9)

where the bras and kets are many-body states indexed by the good quantum number Sz and the index

n which takes up e.g. particle number N , total spin quantum number S and any other quantum number

indexing excited eigenstates of the system. Applying this to the correlation function above yields

iχij(r, t, r′, t′) =
∑

n′,S′
z

[

〈0|eiĤtŜi(r)e−iĤt|n′, S′
z〉〈n′, S′

z|eiĤt′ Ŝj(r′)e−iĤt′ |0〉Θ(t− t′) +

〈0|eiĤt′ Ŝj(r′)e−iĤt′ |n′, S′
z〉〈n′, S′

z|eiĤtŜi(r)e−iĤt|0〉Θ(t− t′)
]

(B.10)

=
∑

n′,S′
z

[

e
−i

[

En′,S′
z
−E0

]

(t−t′)〈0|Ŝi(r)|n′, S′
z〉〈n′, S′

z|Ŝj(r′)|0〉Θ(t− t′) +

e
+i

[

En′,S′
z
−E0

]

(t−t′)〈0|Ŝj(r′)|n′, S′
z〉〈n′, S′

z|Ŝi(r)|0〉Θ(t− t′)

]

. (B.11)

In the second line a time-independent Hamiltonian has been assumed. Performing Fourier trans-

formation (A.13) together with relations (B.4), (B.5) we obtain the Lehmann representation of the

correlation function as

χij(r, r′;ω) =
∑

n′,S′
z

[∫ +∞

0

dτ

i
e
i[ω−(En′,S′

z
−E0)]τ 〈0|Ŝi(r)|n′, S′

z〉〈n′, S′
z|Ŝj(r′)|0〉+

∫ +∞

0

dτ

i
e
i[ω+(En′,S′

z
−E0)]τ 〈0|Ŝj(r′)|n′, S′

z〉〈n′, S′
z|Ŝi(r)|0〉

]

(B.12)

= lim
η→0+

∑

n′,S′
z

[

〈0|Ŝi(r)|n′, S′
z〉〈n′, S′

z|Ŝj(r′)|0〉
ω − (En′,S′

z
− E0) + iη

− 〈0|Ŝj(r′)|n′, S′
z〉〈n′, S′

z|Ŝi(r)|0〉
ω + (En′,S′

z
− E0) + iη

]

.

Now we turn to the spin-flip response χ−+, c.f. (3.18), leading to the operators Ŝ+ and Ŝ− in the

previous formula. In the bra-kets in the numerator, only certain states |n′, S′
z〉 yield non-zero contri-

butions, namely those with the same particle number N and an spin-z quantum number shifted from

the ground state by one, S′
z = S

(0)
z ± 1. Therefore the sum can be restricted to these states,

χ−+(r, r′;ω) = lim
η→0+

[
∑

n

〈0|Ŝ−(r)|n, S(0)
z + 1〉〈n, S(0)

z + 1|Ŝ+(r′)|0〉
ω − (E

n,S
(0)
z +1

− E0) + iη
−

∑

n

〈0|Ŝ+(r′)|n, S(0)
z − 1〉〈n, S(0)

z − 1|Ŝ−(r)|0〉
ω + (E

n,S
(0)
z −1

− E0) + iη

]

, (B.13)
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obtaining the Lehmann representation already shown in (3.24).

Remark In order to be able to perform the Fourier transform we have to ensure En′,S′
z
6= E0 in

(B.12). As a first step we assume a non-degenerate ground state. However, since we inserted a unity

relation in (B.10) the sum over all eigenstates |n′, S′
z〉 also includes the ground state |0, S(0)

z 〉.

• For the spin-flip response χ+− this does not pose a problem because only states with S′
z =

S
(0)
z ±1 contribute. The ground state, which does not contribute, can subsequently be removed

from the sum before the Fourier transform is performed.

• For the charge-charge correlation function χ00 this is not the case. Instead the term that the

ground state contributes to the sum is explicitly subtracted, compare (3.25). This is also com-

monly written as χ00 → χ00 − 〈χ00〉.

The derivative in this section for the causal correlation function, can be performed the same way for

the time-ordered correlation function.

B.2 Connection of Derivatives and Expectation

Values

In this section equation (3.50) should be derived which establishes the connection between the many-

body expectation value χ on the one hand that is defined in (3.7) and investigated in section 3.2, and

on the other hand the functional derivative R defined in (3.49) in section 3.3. Atomic units are used

as in the rest of this work. At first the notation of the numerator of the functional derivative

mi(r, t) = −µBg〈Ŝi(r, t)〉 = −µBg〈0|Ŝi(r, t)|0〉 = −µBg〈0(t)|Ŝi(r)|0(t)〉 (B.14)

is changed from the Heisenberg picture – c.f. formula (3.9) – to the Schrödinger picture. Here |0(t)〉
is the time-dependent many-body ground-state. Then, calculation is pursued within first-order time-

dependent perturbation theory, afterwards the functional derivative is performed.

Time-Dependent Perturbation For the evaluation of the just mentioned many-body terms

|0(t)〉 common time-dependent perturbation theory to the first order in the perturbation is used. The

unperturbed system is characterized by the Hamiltonian H(0) (c.f. (2.3)), its states |m〉 are determined

by the Schrödinger equation

Ĥ(0)|m(t)〉 = i
∂

∂t
|m(t)〉. (B.15)

The inclusion of a small perturbation H(1) yields the Hamiltonian

Ĥ = Ĥ(0) + λĤ(1)(t) (B.16)

with the interaction parameter λ. The states |n〉 of the perturbed system are determined from

Ĥ|n(t)〉 = i
∂

∂t
|n(t)〉 (B.17)

and can be expanded in λ as

|nλ(t)〉 = |n(0)
λ (t)〉+ λ|n(1)

λ (t)〉+O(λ2) (B.18)
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They furthermore obey the closure relation

∑

n

|n(t)〉〈n(t)| = 1. (B.19)

The term in linear order of λ that we are interested in can be expanded in the original states |m〉 as

|n(1)
λ (t)〉 =

∑

m

cmn(t)|m(0)(t)〉 (B.20)

cmn(t) =
1

i

∫ +∞

−∞
dt′ Θ(t− t′)〈m(0)(t′)|Ĥ(1)(t′)|n(0)(t′)〉. (B.21)

Here the notation |m(0)〉 was used to indicate that these are the unperturbed states (i.e. of zeroth order

in the perturbation).

Application to Magnetic Response In our case the perturbing Hamiltonian is determined

by the applied magnetic field and reads

Ĥ(1)(t) = µBg

∫

d3r Ŝ(r) · Bext(r, t). (B.22)

The linear-order terms of the spin density reads

S(r, t) = 〈Ŝ(r, t)〉(0) + λ〈Ŝ(r, t)〉(1) +O(λ2) (B.23)

〈Ŝ(r, t)〉(1) = 〈0(0)(t)|Ŝ(r)|0(1)(t)〉+ 〈0(1)(t)|Ŝ(r)|0(0)(t)〉. (B.24)

Combining the previous formulae into the evaluation of the first addend gives

〈0(0)(t)|Ŝi(r)|0(1)(t)〉 = µBg

i

∫

d3r′
∫ +∞

−∞
dt′ Θ(t− t′)Bext(r

′, t′)·

〈0(0)(t)|Ŝi(r)
∑

m

|m(0)(t)〉〈m(0)(t′)|Ŝ(r′)|0(0)(t′)〉. (B.25)

Applying a functional derivative of this equation, and switching again to the Heisenberg picture on

the right-hand side leads to

δ〈0(0)(t)|Ŝi(r)|0(1)(t)〉
δBj

ext(r
′, t′)

=
µBg

i
〈0(0) |Ŝi(r, t)Ŝj(r′, t′)|0(0)〉Θ(t− t′). (B.26)

Such a relation is also derived for the second term on the right-hand side of (B.24). The sum of both

can be combined in a commutator brackets and lead to the sought-after relation

Rij(r, t, r′, t′) =
δmi(r, t)

δBj
ext(r

′, t′)
(B.27)

= −µBg

(

δ〈0(1)(t)|Ŝi(r)|0(0)(t)〉
δBj

ext(r
′, t′)

+
δ〈0(0)(t)|Ŝi(r)|0(1)(t)〉

δBj
ext(r

′, t′)

)

(B.28)

= −(µBg)
2

i
〈0(0) |[Ŝi(r, t), Ŝj(r′, t′)]|0(0)〉Θ(t− t′) (B.29)

= −(µBg)
2χij(r, t, r′, t′). (B.30)
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This equality also holds for the spin-flip notation, provided that the definition (3.52) has been used for

the functional derivatives (c.f. the footnote on page 37). The need for this definition becomes obvious

from the derivation above, if one traces the origin of superscript j in the response function Rij . The

term 〈0(0)(t)|Ŝi(r)|0(1)(t)〉 in equation (B.25) contains a factor Ŝ ·Bext, and the functional derivative

yields δ(Ŝ · Bext)/δB
j
ext = Ŝj . In other words the term Bj

ext couples to Ŝj .

If one expresses this vector product by the ladder operators, c.f. (3.6), δ(Ŝ · Bext)/δB
+
ext = Ŝ−.

In other words the term B+
ext couples to Ŝ−, and B−

ext couples to Ŝ+. If one would like to keep the

proportionality also for the notation of ladder operators,

R−+(r, t, r′, t′) = −(µBg)
2χ−+(r, t, r′, t′), (B.31)

one needs to define the derivatives as

δ

δB± =
δ

δBx
± i

δ

δBy
, (B.32)

c.f. (3.52).

B.3 The Homogeneous Electron Gas

In this section the spin-flip susceptibility is evaluated for the homogeneous electron gas. Its single-

particle energies and wave functions are determined in section 4.1 as

ǫ↑(k) = ǫk −∆, ǫ↓(k) = ǫk +∆, ǫk =
1

2
k2, ϕkσ(r) =

1√
V
eik·r. (B.33)

The complex spin-flip susceptibility for non-interacting particles in general is given by (3.46), it eval-

uates to

χ+−
KS (r− r′;ω) = lim

η→0+

1

V 2

∑

k,k′

f(ǫ↑(k))− f(ǫ↓(k
′))

ω − (ǫ↓(k
′)− ǫ↑(k)) + iη

e−i(k−k′)·(r−r′). (B.34)

Applying a Fourier transform according to section A.2 leads to

χ+−
KS (q, ω) =

1

V
lim

η→0+

∑

k

f(ǫ↑(k))− f(ǫ↓(k+ q))

ω − [ǫ↓(k+ q)− ǫ↑(k)] + iη
(B.35)

=
1

V
lim

η→0+

∑

k

{
f(ǫk −∆)

ǫk − ǫk+q − 2∆ + ω + iη
− f(ǫk +∆)

ǫk+q − ǫk − 2∆ + ω + iη

}

. (B.36)

The susceptibility is spherically symmetric in q. Using spherical coordinates and considering
∑

k =
V/(2π)3

∫
d3k yields

χ+−
KS (q, ω) = lim

η→0+

1

(2π)2

{
∫ kF↑

0
k2dk

∫ +1

−1

dx

−1
2q

2 − kqx− 2∆ + ω + iη
−

∫ kF↓

0
k2dk

∫ +1

−1

dx

+1
2q

2 + kqx− 2∆ + ω + iη

}

(B.37)

where x = cos θ has been used and

ǫk+q − ǫk =
1

2
q2 + kqx. (B.38)
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We introduce the notation

uσ =
2∆− ω + 1

2σq
2

q
(B.39)

to formulate the intermediate result

χ+−
KS (q, ω) = − 1

4π2q
lim

η→0+

∑

σ

σ

∫ kFσ

0
k2dk

∫ +1

−1

dx

σkx+ uσ − iη
. (B.40)

Real and Imaginary Part Due to the principal relation (B.1) the real and imaginary part of the

susceptibility can be further derived. For the real part one evaluates the integration over the singularity

as

P
∫ x1

x0

dx

ax+ b
=

1

a
ln

∣
∣
∣
∣

ax1 + b

ax0 + b

∣
∣
∣
∣

(B.41)

and yields

Re χ+−
KS (q, ω) = − 1

4π2q

∑

σ

σ

∫ kFσ

0
k2dk P

∫ +1

−1

dx

σkx+ pσ
(B.42)

= − 1

4π2q

∑

σ

∫ kFσ

0
k ln

∣
∣
∣
∣

pσ + σk

pσ − σk

∣
∣
∣
∣
dk (B.43)

= − 1

4π2q

∑

σ

σ

∫ kFσ

0
k ln

∣
∣
∣
∣

pσ + k

pσ − k

∣
∣
∣
∣
dk. (B.44)

The remaining integral resolves to

∫

k ln(p± k) dk =

[
1

2
(p± k)2 − p(p± k)

]

ln(p± k) +

(
3

4
p2 ± 1

2
pk − 1

4
k2
)

(B.45)

∫ kFσ

0
k ln

∣
∣
∣
∣

p+ k

p− k

∣
∣
∣
∣
dk =

1

2
(k2Fσ − p2) ln

∣
∣
∣
∣

p+ kFσ
p− kFσ

∣
∣
∣
∣
+ pkFσ (B.46)

so that the final result for the real part reads

Re χ+−
KS (q, ω) = − 1

4π2q

∑

σ

σ

[
1

2
(k2Fσ − p2σ) ln

∣
∣
∣
∣

pσ + kFσ
pσ − kFσ

∣
∣
∣
∣
+ pσkFσ

]

(B.47)

For the imaginary part one takes into account

lim
η→0+

∫ +η

−η
δ(αx) dx =

1

|α| , α ∈ R (B.48)

and gets

Im χ+−
KS (q, ω) = − 1

4πq

∑

σ

σ

∫ kFσ

0
k2dk

∫ +1

−1
δ(σkx+ pσ) dx (B.49)

= − 1

4πq

∑

σ

σ

∫ kFσ

0
kΘ(k − |pσ|) dk. (B.50)
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Applying the integration

∫ c

0
kΘ(k − a) dk = Θ(c− a)

∫ c

a
k dk =

1

2
(c2 − a2)Θ(c− a) for a ≥ 0 (B.51)

finally gives

Im χ+−
KS (q, ω) = − 1

8πq

∑

σ

σ(k2Fσ − p2σ)Θ(kFσ − |pσ|). (B.52)

Rescaling The susceptibility should for the moment be denoted χ
+−[n,∆]
KS (q, ω) to stress its de-

pendence on the density n and the spin splitting ∆. If 0 ≤ ξ < 1 is assumed there exists a functional

mapping ∆ = ∆(ξ), c.f. (4.22), and the following scaling relation can be shown:

χ
+−[n0,∆]
KS (q, ω) =

1

α
χ
+−[α3n0,α2∆]
KS (αq, α2ω) if 0 ≤ ξ < 1 (B.53)

for any positive real number α. This useful equality can be used to incorporate the rescaling of the

parameters q → q/qF and ω → ω/ωF into the formulas for the Kohn-Sham susceptibility. This is

utilized e.g. in [Mor85].

B.4 The Goldstone Theorem for Magnons in Real

Materials

In section 4.4 the Goldstone theorem was presented which states for our particular case that the spin-

wave excitation energy is zero for vanishing q-vector: ωsw(0) = 0. It was demonstrated for the case

of the homogeneous electron gas by using the actual formulas for the susceptibility and the exchange-

correlation kernel. In the following this should be proved in a more general fashion for real materials.

As detailed out in chapter 3 the spin-flip susceptibility χ+− has poles at the true excitation energies

and obeys the Dyson equation

∫

u.c.

[

δ(r− r′)−
(µBg

2

)2
χ+−
KS (r, r

′; q, ω)f+−
xc (r′)

]

χ+−(r′, r′′; q, ω) d3r′

= χ+−
KS (r, r

′′; q, ω) (B.54)

if the adiabatic local density approximation is applied (crystal notation, c.f. (5.4)). The susceptibility

of independent particles χ+−
KS , on the other hand, remains finite at these excitation energies. According

to Petersilka et. al. [PGG96] the true excitation energies ωsw(q) can be characterized as those frequen-

cies where the eigenvalues of the integral operator on the left-hand side vanish or, equivalently, where

the eigenvalues λ of

∫

u.c.

[

δ(r− r′)−
(µBg

2

)2
χ+−
KS (r, r

′; q, ω)f+−
xc (r′)

]

ξ(r′; q, ω) d3r′ = λ(q, ω)ξ(r′; q, ω) (B.55)

satisfy λ(q, ωsw(q)) = 0. A similar equation will be derived below which will then be interpreted in

combination with the two previous integral equations.
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Reformulated Equation We start from the collinear Kohn-Sham equations in crystal notation

(5.2) for spin-up and spin-down channel,
[

−1

2
∇2

r′ + Veff(r
′) +

µBg

2
Beff(r

′)

]

ϕnk↑(r
′) = ǫnk↑ϕnk↑(r

′) (B.56)

[

−1

2
∇2

r′ + Veff(r
′)− µBg

2
Beff(r

′)

]

ϕ∗
n′k+q↓(r

′) = ǫn′k+q↓ϕ
∗
n′k+q↓(r

′). (B.57)

Subtracting the second equation multiplied with ϕnk↑(r′) from the first equation multiplied with

ϕ∗
n′k+q↓(r

′) yields [KL04]

µBgBeff(r
′)ϕ∗

n′k+q↓(r
′)ϕnk↑(r

′) = [ǫnk↑ − ǫn′k+q↓]ϕ
∗
n′k+q↓(r

′)ϕnk↑(r
′)+

1

2
∇r′
[
ϕ∗
n′k+q↓(r

′)(∇r′ϕnk↑(r
′))− (∇r′ϕ

∗
n′k+q↓(r

′))ϕnk↑(r
′)
]
. (B.58)

According to (5.5) the product of susceptibility and effective field reads

χ+−
KS (r, r

′; q, ω)Beff(r
′) = lim

η→0+

∑

k

∑

n,n′

f(ǫnk↑)− f(ǫn′k+q↓)

ω − (ǫn′k+q↓ − ǫnk↑) + iη

ϕ∗
nk↑(r)ϕn′k+q↓(r)

[
Beff(r

′)ϕ∗
n′k+q↓(r

′)ϕnk↑(r
′)
]
. (B.59)

By substituting the square bracket with (B.58) and assuming q = 0 this evaluates to

χ+−
KS (r, r

′; 0, ω)Beff(r
′) =

2

(µBg)2
m(r′)δ(r− r′)− χ+−

KS (r, r; 0, ω)
ω

µBg
+

Λ(r, r′; 0, ω)
µBg

(B.60)

with the newly introduced

Λ(r, r′; q, ω) =
1

2

∑

k

∑

n,n′

f(ǫnk↑)− f(ǫn′k+q↓)

ω − ǫn′k+q↓ − ǫnk↑ + iη
ϕ∗
nk↑(r)ϕn′k+q↓(r)

×∇r′
[
ϕ∗
n′k+q↓(r

′)(∇r′ϕnk↑(r
′))− (∇r′ϕ

∗
n′k+q↓(r

′))ϕnk↑(r
′)
]
. (B.61)

Λ is the gradient of a periodic function with respect to r′. An integration over the unit cell vanishes:
∫

u.c.
Λ(r, r′; q, ω) d3r′ = 0. (B.62)

Consequently, equation (B.60) can be transformed into an equation in the style of (B.55):

∫

u.c.

[

δ(r− r′)−
(µBg

2

)2
χ+−
KS (r, r

′; 0, ω)f+−
xc (r′)

]

m(r′) d3r′ =

∫

u.c.
χ+−
KS (r, r

′; 0, ω)
ω + µBgBext(r

′)
2µBg

d3r′ (B.63)

where f+−
xc (r′) = 2Bxc(r

′)/m(r′) (c.f. (4.53)) and Beff(r
′) = Bext(r

′)+Bxc(r
′) has been used. Thus,

Bext(r
′) is already demanded to be lattice periodic.

Interpretation If the external magnetic field is spatially homogeneous, i.e. Bext(r
′) = Bext, then

the right-hand side vanishes for ω = −µBgBext. The integral operator in the square brackets in (B.55)

hence possesses an eigenfunction ξ(r; 0,−µBgBext) = m(r) with eigenvalue λ(0,−µBgBext) =
0. According to the argumentation above, the spin-wave excitation energy then reads ωsw(0) =
−µBgBext. This corresponds to the earlier finding (4.79) for the homogeneous electron gas. In the

case of absent external magnetic field the spin-wave dispersion thus starts in the origin.
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