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Abstract

e design of suitable materials for application in future devices requires a de-
tailed understanding of their electronic and structural properties. e ab initiometh-
od density functional theory (DFT) has emerged as the most commonly applied
technique based on its high accuracy predicting characteristics of a wide range of
materials. e limits of the predictive power of DFT are set by the availability of
precise approximations to the exchange-correlation functional. In this thesis, we de-
veloped a scheme to realize screened nonlocal potentials within the full-potential
linearized augmented-plane-wave (FLAPW) method and applied it, in particular,
to the screened Heyd-Scuseria-Ernzerhof (HSE) functional. Incorporating a certain
fraction of nonlocal exchange, hybrid functionals improve on the conventional local
functionals by partly correcting for the spurious self interaction. is self interaction
is most prominent in materials with localized states, so that we expect an improved
description of transition-metal and rare-earth compounds. e strong localization
of the d and f electrons in these materials complicates a description by pseudopoten-
tial methods, so that they are particularly suited for the all-electron FLAPW scheme.
e nonlocal exchange is computationally very demanding, hence, we discuss two
approximations to improve the computation time of hybrid functional calculations:
a spacial restriction of the nonlocal exchange and the employment of a smaller k-
point mesh in the calculation of the nonlocal exchange. We demonstrate that both
schemes are feasible for selected materials, but not in general for all materials.

Employing our implementation of hybrid functionals, we analyze the electronic,
structural, and magnetic properties of the rare-earth compounds GdN, EuO, EuS,
EuSe, and EuTe and compare to results of DFT+U calculations from the literature.
We ĕnd that GdN is close to a semi-metal/semiconductor phase transition, which
may explain that both states are observed experimentally. In the EuX series, we re-
produce the major trends in the series, i.e., the opening of the band gap as well as the
transition froma ferromagnetic to an antiferromagnetic ground state. In a systematic
study of several simple cubic perovskites, we assess the improvement of the HSE hy-
brid functional over the local PBE functional concerning the prediction of the lattice
constant and the band transitions. Finally, we analyze the ground state of PbCrO3,
where the experimental semiconducting ground state could not be reproduced in
previous DFT calculations. We determine the relaxed structure for all possible space
groups, which are accessible by a combination of tilting and Jahn-Teller distortion of
the oxygen octahedra as well as a polar displacement. Depending on the Hubbard
U employed in the calculation, we obtain two different energetically optimal struc-
tures. Both structures exhibit a band gap and a polar displacement indicating that
PbCrO3 may be multiferroic.
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Introduction
e development of better devices is increasingly driven by the selective engineer-
ing of material properties. is trend promotes the research of the dependence of
characteristic features on subtle changes in the composition of compounds, in the
defect concentration, and in the stacking in heterostructures. Of particular interest
are complex oxide materials which allow for various attractive properties by small
changes in the electronic or ionic structure. Technological demand for more effi-
cient computer chips draws attention to magnetoelectric materials in which a fer-
romagnetic order is controlled not only by a magnetic but also by an electric ĕeld.
Vice versa, a ferroelectric order is subject to changes in the external magnetic ĕeld.
Hence, materials which combine both orders, the so-called multiferroics,1 recently
gained a lot of interest.2

Spaldin and Pickett 3 illustrate a general guideline how to design these functional
materials. e selection of an appropriate method is important. We employ density
functional theory (DFT)4,5 which is the most widely applied method in theoretical
material design due to its high predictive power. As DFT is in principle an exact so-
lution of the many-body Schrödinger equation it contains no adjustable parameters
and is commonly referred to as ab initio or ĕrst principles method. Conceptually,
DFT reduces the complexity of a system with N electrons from the 3N-dimensional
wavefunction to the 3-dimensional density. e Hohenberg and Kohn 4 theorem
proves that this mapping is exact. However in practice, the part of the total-energy
originating from the exchange and the correlation of electrons is too complex to cal-
culate for any material with more than a few electrons. us, Kohn and Sham 5

introduced a ĕctitious non-interacting system, in which all many-body effects are
subsumed in the exchange-correlation functional.

In the material design process, if the results of theory and experiment are not
consistent, the applied methods have to be reĕned.3 Within DFT, this includes the
development of more sophisticated exchange-correlation functionals which is alle-
gorically referred to as Jacob’s ladder.6 e ĕrst idea was the development of the
local density approximation (LDA)7–12 which is a pure functional of the density.
Later, the accuracy of DFT was improved by including the gradient of the density in
the generalized gradient approximation (GGA) functionals.13–17 However, despite
their success for a wide range of materials, these local exchange-correlation func-


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tionals include an unphysical interaction of an electron with itself, the so-called self-
interaction, which yields a systematic underbinding of strongly localized states. is
– in connection with the difficulties to systematically improve local functionals –
leads to the emergence of orbital dependent exchange-correlation functionals. Küm-
mel and Kronik 18 point out four classes of orbital dependent functionals: the meta-
GGAs,19 the self-interaction correction,11 the hybrid functionals,20 and the exact ex-
change with orbital-dependent correlation.21 Within this thesis, we employ local and
hybrid functionals. e consideration of the adiabatic connection between the non-
interacting Kohn-Sham system and the full-interacting real one, inspired Becke 20 to
construct hybrid functionals in which an empirically optimized fraction of nonlocal
Hartree-Fock (HF) exchange replaces a corresponding part of local exchange.20,22,23
Later, Perdew et al. 24 proposed a parameter-free PBE0 hybrid functional in which
the mixing parameter is inferred from expanding the adiabatic-connection formula
and from comparing to Møller-Plesset perturbation theory25 aerwards. e inclu-
sion of the HF exchange partly corrects the spurious self-interaction resulting in an
improved description of localized states. e calculation of the nonlocal exchange
leads to a high computational cost of hybrid functionals. Several ideas to reduce
the computation time were proposed. Heyd et al. 26 suggested to apply a range sep-
aration to the exchange functional and to limit the nonlocal HF exchange to the
short-range (SR) contribution, since the screening by the electrons limits the dis-
tance of the exchange interaction in real material. is reduces the computational
cost of hybrid functional calculations in real space26 as well as in reciprocal space27

codes. Tran et al. 28 suggested to restrict the hybrid functionals to on-site contribu-
tions only, which would raise the speed of these calculations close to conventional
calculations. Taking advantage of the small dispersion of the exchange energy, Paier
et al. 27 introduced a downsampling of the k-point mesh. We discuss the effect of
similar approximations in Chap. 6.

In this thesis, we develop an implementation of the Heyd-Scuseria-Ernzerhof
(HSE) hybrid functional within the full-potential linearized augmented-plane-wave
(FLAPW) method.29 In this all-electron method,30–32 the crystal is separated into
muffin-tin (MT) spheres centered at the atomic sites and the interstitial region (IR).
e basis functions are a product of numerical radial functions and spherical har-
monics in the MT spheres which are linearly matched to the plane waves employed
in the IR. e evaluation of the PBE0 functional within the FLAPW method was
pioneered by Betzinger et al.,33 projecting the wavefunction products necessary for
the HF exchange onto an auxiliary product basis. In Chap. 5, we extend this scheme
to any nonlocal potential which is a pure function of the distance and apply it to
the screened HSE functional. We achieve a combination of the FLAPW method
speciĕcally tailored to accurately describe atomic-like states and the screened hybrid
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functionals suited in particular for localized electrons.
is facilitates the description of rare-earth compounds where the strong local-

ization of the 4f states causes difficulties for pseudopotential methods and common
exchange-correlation functionals. In particular, we focus on the isostructural and
isovalent GdN, EuO, EuS, EuSe, and EuTe (Chap. 7). In GdN, a vivid discussion in
the literature focuses on the nature of the transition between Γ- and X-point. In-
dications for an insulating34–38 or a semi-metallic38–42 ground state have been ob-
tained. We predict a semi-metallic state at low temperatures which changes into an
insulating state upon small changes in the lattice constant.29 e europium chalco-
genides EuX (X = O, S, Se, Te) recently regained high interest. In particular the high
spin polarization of EuO, which grows lattice matched on several typical semicon-
ductors,43–46 offers the prospect of efficient spin ĕlters.47,48 e Curie temperature of
69K49 increases by defects50,51 or doping.51–56 In this thesis, we investigate the funda-
mental properties of the EuX series (Chap. 7) and ĕnd an overall excellent agreement
with experimental observations of structural and magnetic properties.

In the material design of multiferroic materials, the most investigated structure
is the perovskite one, ABO3. An ideal perovskite is characterized by a cubic arrange-
ment of A-site atoms. e B-site atom in the center of the cube is surrounded by an
octahedron of oxygen atoms.a is arrangement allows to design materials, where
the A site drives ferroelectricity and the B site is magnetic as in the famous BiFeO3.57
Furthermore, in a concept referred to as strain-engineering, the properties of ma-
terial are tuned by growing the material on a substrate with a small misĕt in the
lattice constant.58 A particular interesting example is the switching from an antifer-
romagnetic (AFM) to a ferromagnetic (FM) arrangement in strained EuTiO3 upon
changing the polarization.59 ese properties require an accurate description of the
structural properties of the chosenmaterials. However, it is known60 that apart from
an underestimation (overestimation) of the lattice constant of ferroelectrics, the local
functional LDA (GGA) also show strong deviations for other structural parameters,
such as c/a ratio of the tetragonal unit cells of the ferroelectric deformation. In this
thesis, we investigate the performance of the HSE hybrid functional for a set of cu-
bic perovskite materials and outline the improvement over LDA and GGA results
(Chap. 8), in particular for lattice constants and band transitions.

Finally, we investigate the properties of PbCrO3 (PCO) in Chap. 9. At ĕrst glance,
the material is similar to BiFeO3 with the lone pair of Pb which might drive ferro-
electricity on the A site and themagnetic Cr ion on the B site. However, experiments
around 1970 indicate61–63 that PCO has a semiconducting cubic ground state struc-
turewith anAFMarrangement of Cr ions. More recently, thematerial has been revis-

aWenote that structures with other anions exist, but we limit ourselves to the oxygen compounds.
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ited and several interesting phenomena have been observed: a random displacement
of the Pb ions,64 a mixed valency of the Cr ions,65 a non-collinear spin reorientation
leading to weak ferromagnetism,66 and a phase transition under compressive pres-
sure that goes along with large volume collapse.67 So far, DFT calculations were not
able to reproduce any of the experimental results. All calculations predict a metal-
lic ground state, which typically has a much smaller volume than the experimental
one.68–70 Only Ganesh and Cohen 70 found a state with a volume comparable to ex-
periment, however their result is metallic and has a strong tetragonal distortion. In
Chap. 9 we present our investigation based on an analysis of all possible space groups
accessible by tilting and Jahn–Teller (JT) distortion of the oxygen octahedron. As a
result, we ĕnd the ĕrst theoretically obtained insulating ground state. Our results in-
dicate, that PCO ismicroscopically unstable against tilting of the oxygen octahedron.
Furthermore, we obtain a displacement of the Pb atoms giving rise to a ferroelectric
polarization.

is thesis is organized as follows. We start with a general introduction to DFT,
the conventional exchange-correlation functionals, and their limitations in the chap:d.
In Chap. 3, we present the FLAPW method. We motivate the intermixing of a frac-
tion of HF exchange in the hybrid functionals and discuss their implementation
within the FLAPWmethod inChap. 4. In the chap:impl, we replace the pureCoulomb
interaction by a screened one as used in the HSE functional. In Chap. 6, we analyze
different approximations that would allow a faster evaluation of the hybrid func-
tional. en we switch to the application of DFT to complex materials. In Chap. 7,
we apply hybrid functionals to GdN and to the europium chalcogenides. An in-
vestigation of the performance of the HSE functional for perovskites is presented in
Chap. 8. e detailed analysis of the perovskite PCO is contained in Chap. 9. Finally,
we conclude the thesis in the chap:concl.
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eunderlying physical laws necessary for themathematical the-
ory of a large part of physics and the whole of chemistry are thus
completely known, and the difficulty is only that the exact appli-
cation of these laws leads to equations much too complicated to
be soluble. It therefore becomes desirable that approximate prac-
tical methods of applying quantum mechanics should be devel-
oped, which can lead to an explanation of the main features of
complex atomic systems without too much computation.

Paul Dirac71

2.1 Signiöcance of DFT
Since Dirac’s well-known quote more than 80 years have passed and his statement is
still as true as at his time. Nevertheless with the advent of computer assisted calcula-
tions, several numerical techniques for solving the many-particle Schrödinger equa-
tion became feasible. Density functional theory (DFT) is one of the most efficient
methods to solve the Schrödinger equation, as it maps the complicated interacting
many-body problem exactly to an equivalent non-interacting single-particle one.72

e impact of DFT for the theoretical investigation of complex molecules and
solids manifested itself in the Nobel prize for Walter Kohn in 1998. In his Nobel
lecture,73 he highlighted two of the important contributions DFT made to the ĕeld
ofmany-body quantumphysics. On the one handDFT simpliĕed the understanding
of these systems by reducing the complexity from themultiple-particle wavefunction


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with 3N independent coordinates, where N is the number of electrons, to the density
n(r) which can be much easier visualized, analyzed, and hence comprehended. is
reduction in complexity on the other hand made numerical calculations possible.
Numerical DFT calculations grew signiĕcantly in popularity in the 1990s72 once the
balance between accuracy and computational cost was demonstrated. Nowadays,
DFT is successfully used to investigate materials properties from ĕrst principles.

is chapter is structured as follows. In Sec. 2.2, we introduce the Hohenberg-
Kohn theorem and theKohn-Sham equations. In Sec. 2.3, we illustrate how the inter-
acting many-body problem is mapped onto the non-interacting single-particle sys-
tem. In the sec:exc, we introduce themost commonly used local exchange-correlation
functionals. References 72–75 were used in the preparation of this chapter.

2.2 The theoretical foundations of DFT
As pointed out by Dirac,71 the physics of condensed matter and molecules is entirely
described by the Schrödinger equation of the system. roughout this work, we use
the Born-Oppenheimer approximation76 to separate the slow motion of the heavy
nuclei and the much faster electronic motion into separate Hamiltonians and limit
ourselves to the electronic Hamiltonian

H = T +Vext. +Vee (2.1)

with the the kinetic energy

T =∑
i

p2
i
2

= −∑
i

△i

2
, (2.2)

the external potential
Vext =∑

i
∑
a

Za

∣ri − Ra∣
, (2.3)

and the electron-electron interaction

Vee = −1
2 ∑

i≠j

1
∣ri − rj∣

. (2.4)

e small letter ri indicates the position of an electron, the capital letter Ra the posi-
tion of an atom, and Za is its atomic number. Here and in the following atomic units
are used (see Sec. A).77,78

e central concept of DFT theory is the mapping of this N electron system onto
an equivalent single-particle system. e auxiliary single-electron system is con-
structed to reproduce the density n(r) of the many-particle system, since the system
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is entirely described by its electronic density. e cusps in the density indicate the
position of the nuclei which determine the external potential and hence the Hamil-
tonian (Eq. (2.1)). Hohenberg and Kohn 4 conĕrmed this qualitative understanding
for non-degenerate eigenstates via proof by contradiction. Assuming two different
external potentials V(1)

ext.(r) and V(2)
ext.(r) with different ground-state wave functions

Φ1(r) and Φ2(r) could yield the same ground-state density, we ĕnd that

⟨Φ1 ∣T +V(1)
ext. +Vee∣Φ1⟩ ≤ ⟨Φ2 ∣T +V(1)

ext. +Vee∣Φ2⟩ and (2.5)

⟨Φ1 ∣T +V(2)
ext. +Vee∣Φ1⟩ ≥ ⟨Φ2 ∣T +V(2)

ext. +Vee∣Φ2⟩ . (2.6)

e contribution of the external potential depends only on the density, hence we get

⟨Φ1 ∣T +Vee∣Φ1⟩ ≤ ⟨Φ2 ∣T +Vee∣Φ2⟩ , ⟨Φ1 ∣T +Vee∣Φ1⟩ ≥ ⟨Φ2 ∣T +Vee∣Φ2⟩ . (2.7)

ese inequalities can only be fullĕlled if the total energy is identical and hence the
wave functions are identical or degenerate. From the wave function the external
potential is deĕned by the inversion of the Schrödinger equation up to a constant

Vext. =∑
i

△iΦ(r)
2Φ(r) −Vee. (2.8)

Levy 79 established a constrained search formalism which extends the Hohenberg-
Kohn theorem for degenerate ground states.72 e search is constrained to all wave
functions which are antisymmetric and yield a density n(r). e ground state energy
is

E = min
n

(F[n] + ∫ d3rVext.(r)n(r)) . (2.9)

As the energy contribution of the external potential depends only on the density
(and not directly on the wave function), any wave function Φ which minimizes the
universal functional F[n]

F[n] = min
⟨Φ∣Φ⟩=n

⟨Φ ∣T +Vee∣Φ⟩ (2.10)

is a ground-state solution.
Kohn and Sham 5 applied the Hohenberg-Kohn theorem to a ĕctitious one-elec-

tron system with same density and the Hamiltonian

HKS = Ts +Veff.
s (r), (2.11)

where the interaction with the other electrons and the external potential are con-
densed in an effective single-particle potential Veff.

s (r). e theoretical foundation
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Figure 2.1: All information necessary to describe a physical system is contained
equally in the Hamiltonian H, the wave functions ϕKS

n , and the electronic density n.

of this mapping is presented in Sec. 2.3. e Kohn-Sham wave functions ϕKS
n (r) are

the eigenfunctions of this Hamiltonian with the eigenvalue εKS
n

HKS ∣ϕKS
n ⟩ = εKS

n ∣ϕKS
n ⟩ . (2.12)

Analogous to Eq. (2.10), the Kohn-Shamwave functionsminimize the single particle
kinetic energy under the constraint that they add up to the density72

Ts[n] = min
⟨ΦKS∣ΦKS⟩=n

⟨ΦKS ∣T∣ΦKS⟩ , (2.13)

with the Kohn-Sham wave functiona

∣ΦKS⟩ =
occ.
∏
n
∣ϕKS

n ⟩ . (2.14)

is construction indicates, that in general the Kohn-Shamwave function and eigen-
value of the ĕctitious single-particle system do not represent the physical wave func-
tion and eigenvalue of the many-body system. Nevertheless, one commonly approx-
imates the real values by their Kohn-Sham counterpart. For example the band gap
of the real system can be approximated by the difference of Kohn-Sham eigenvalues.

Figure 2.1 illustrates how the Hohenberg-Kohn theorem and the Kohn-Sham
equation can be used for practical DFT. e solution of the Kohn-Sham equation
yields the wave functions and straightforward the density. As the density uniquely
deĕnes the Hamiltonian, we can iterate this loop until self consistency is achieved.

aIn principle the Kohn-Shamwave function is the Slater determinant of the wave functions ∣ϕKS
n ⟩.

However, as we consider a non-interacting system, the simple product state yields equivalent results.
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e total energy in DFT is minimized by the ground-state density. As shown
above, the ground state wave function is a pure functional of the density

∣ϕn⟩ = ∣ϕn[n]⟩ , (2.15)

hence it is equivalent to formulate the energy either in terms of the density or in
terms of the wave functions. In the following all contributions to the total energy are
presented:

Kinetic energy e kinetic energy follows directly from the deĕnition of the Kohn-
Sham wave function in Eq. (2.13)

Ts[n] =
occ.
∑
n
⟨ϕn[n] ∣T∣ϕn[n]⟩ . (2.16)

As the Kohn-Sham wave function is constructed to minimize this kinetic en-
ergy, the single particle kinetic energy is less than or equal to the real kinetic
energy in Eq. (2.10). e functional dependence of the kinetic energy on the
density n is non trivial and is evaluated by diagonalizing the Hamiltonian (see
Sec. 3.1).

External potential eenergy of a charge density in an external potential is straight-
forward

Eext = ∫ d3r n(r)Vext.(r). (2.17)

If the exact ground-state density is known, this energy is identical for the real
and the Kohn-Sham system by construction of the ĕctitious system.

Hartree energy e energy associated to the effective potential Veff.
ee is formally sep-

arated in several terms. e most prominent one, the classical Hartree energy
UH is evaluated directly from the density

UH[n] =
1
2 ∬ d3rd3r′ n(r)n(r

′)
∣r − r′∣ (2.18)

and corresponds to the Coulomb interaction of a charge density n(r) with it-
self.

Exchange energy e exchange energy is formally deĕned as the difference of the
real electron-electron interaction and the Hartree energy

Ex[n] = ⟨Φ[n] ∣Vee∣Φ[n]⟩ −UH[n]. (2.19)

However, in practical calculations this term is typically approximated, as the
direct evaluation is cumbersome.
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Correlation energy e correlation energy Ec[n] in DFT is deĕned as the differ-
ence of the energy of the real system and the previously mentioned energies.
Naturally, in any real system this is extremely expensive if not impossible to
evaluate. As for the exchange energy, approximations to this term are neces-
sary.

In summary, we ĕnd the total energy of the Kohn-Sham system

Etot[n] = Ts[n] + Eext.[n] +UH[n] + Ex[n] + Ec[n], (2.20)

where the latter two terms are oen subsumed in the so called exchange-correlation
energy Exc[n]. We will discuss the most common approaches to this functional in
Sec. 2.4. e total energy in Eq. (2.20) is minimized under a constrained total num-
ber of electrons N

∫ d3r n(r) = N. (2.21)

Hence, we add this contraint with a Lagrange multiplier μ and solve the Euler-La-
grange equation

δ
δn

[Etot[n(r)] − μ (∫ d3r n(r) −N)] = 0 (2.22)

δTs[n(r)]
δn(r) +Vext.(r) + ∫ d3r′ n(r′)

∣r − r′∣ +Vxc(r) = μ, (2.23)

with
Vxc(r) =

δExc[n(r)]
δn(r) . (2.24)

Equation (2.23) deĕnes the effective single-particle potential

Veff.
s (r) = Vext.(r) + ∫ d3r′ n(r′)

∣r − r′∣ +Vxc(r) (2.25)

in the Kohn-Sham Hamiltonian Eq. (2.11). We identify μ as the chemical potential
or Fermi energy EF of the system.

2.3 Adiabatic connection formula
Harris and Jones 80 introduced the concept of the adiabatic connection toDFT, which
provided important insight in the fundamental properties of the exchange-correla-
tion functional.20,80–82 Assume a λ-dependent Hamiltonian

Hλ = T + λV, 0 < λ <∞, (2.26)
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a)

.

Vee

..

b)

.

.

Veff.
ee

Figure 2.2: Example for the idea of the adiabatic connection in a interacting elec-
tron gas without external potential. a)e real systemwith the full electron-electron
interactionVee. b)e ĕctitious systemwhere the electron-electron interaction is re-
placed by an effective potential Veff.

ee that reproduces the same physics.

where λ determines the strength of the potential, then all eigenvalues and eigenfunc-
tions depend on λ.72 e wave functions depend only in second order on λ, as they
are variational extrema. Hence, the energy derivative with respect to the coupling
constant is

dEλ

dλ
= ⟨ϕλ ∣V∣ϕλ⟩ . (2.27)

Integrating this yields the Hellmann-Feynman theorem83–85

E = Eλ=1 = Eλ=0 + ∫
1

0
dλ ⟨ϕλ ∣V∣ϕλ⟩ . (2.28)

is idea is introduced in DFT by rewriting the universal functional as

Fλ[n] = min
⟨Φλ ∣Φλ⟩=n

⟨Φλ ∣T + λVee∣Φλ⟩ , (2.29)

so that we recover the physical system (Eq. (2.10)) for λ = 1 and the equation con-
verts to the kinetic energy of the Kohn-Sham system (Eq. (2.13)) for λ = 0.72 In this
mapping the density n(r) is independent of λ, so that the physical electron-electron
interaction Vee(r, r′) is replaced by an effective electron-electron interaction Veff.

ee (r)
as illustrated by Fig. 2.2. e latter potential is a single particle potential, as required
in the Kohn-Sham formalism.

Employing the Hellmann-Feynman theorem (Eq. (2.28)), we ĕnd that the uni-
versal functional is given as

F[n] = ⟨Φλ=0 ∣T∣Φλ=0⟩ + ∫
1

0
dλ ⟨Φλ ∣Vee∣Φλ⟩

= Ts[n] + ∫
1

0
dλ ⟨Φλ ∣Vee∣Φλ⟩ .

(2.30)
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Comparing the total energy of the physical system Eq. (2.9) and the Kohn-Sham
system Eq. (2.20), we work out the following expression for the exchange-correlation
energy

Exc[n] = ∫
1

0
dλ ⟨Φλ ∣Vee∣Φλ⟩ −UH[n]. (2.31)

Obviously, the Hartree energy depends linearly on the strength of the electron-elec-
tron interaction UH,λ[n] = λUH[n], so that it is straightforward to rewrite this equa-
tion as

Exc[n] = ∫
1

0
dλ(⟨Φλ ∣Vee∣Φλ⟩ −UH,λ[n]/λ) =∶ ∫

1

0
dλ Exc,λ[n]. (2.32)

is is the so called adiabatic connection formula.72 e exchange-correlation energy
is expressed in terms of the Coulomb potential only. In practice this formula is not
evaluated, but it is important for functional development. We will come back to this
formula later in Chap. 4, when we introduce hybrid exchange-correlation function-
als.

2.4 Local exchange-correlation functionals
In numerical DFT calculations the exchange-correlation energy is an approximated
functional of the density, as an exact evaluation is not feasible. In this section, we
introduce the most commonly used conventional exchange-correlation functionals.
e simplest possible solution, the so-called local density approximation (LDA) is
derived from the homogeneous electron gas, where the eigenstates are plane waves.
Hence, the exchange energy is74,75

Ex = − ∫
∣k∣<kF

d3k
(2π)3 ∫

∣k′∣<kF

d3k′
(2π)3 ∫

d3r∫ d3r′ e
−ikr e−ik′r′ eikr′ eik′r

∣r − r′∣ , (2.33)

where kF = (3π2nunif)1/3 is the Fermi wave vector corresponding to the uniform den-
sity nunif.. Employing the symmetry of k and k′ and substituting u = r− r′, we obtain

Ex = −∫ d3r∫ d3u 1
u
⎛
⎝ ∫
∣k∣<kF

d3k
(2π)3

eiku⎞
⎠

2

=∶ 1
2 ∫ d3r nunif.∫ d3u nx(u)

u
, (2.34)

which deĕnes the exchange hole density74

nx(u) = − 2
nunif.

⎛
⎝ ∫
∣k∣<kF

d3k
(2π)3

eiku⎞
⎠

2

= − 2
nunif.

[
k3
F

2π2
j1(kFu)

kFu
]
2

, (2.35)
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Figure 2.3: We show the LDA exchange hole nx normalized to the uniform density
nunif. as function of the dimensionless product of Fermi wave vector kF and distance
of two points u.

where j1(x) is a spherical Bessel function. As straightforward consequence of the
Pauli exclusion principle, the exchange hole density repels exactly half of the density
for small values of kFu (see Fig. 2.3). For large values of kFu the exchange density has
hardly any impact on the energy. Solving the integral in Eq. (2.34) with the exchange
hole density of Eq. (2.35), one ĕnds72,74

Ex[nunif.] = −∫ d3r 3kF

4π
nunif. = −3

4
( 3
π
)

1
3

∫ d3r n
4
3
unif. =∶ Ax∫ d3r n

4
3
unif.. (2.36)

In the LDA, we apply these equations to non uniform densities n(r)

Ex =
1
2 ∬ d3rd3u n(r)nLDA

x (r,u)
u = Ax∫ d3r n 4

3 (r). (2.37)

is equation is formally similar to the Hartree energy Eq. (2.18). us, a natu-
ral interpretation of the exchange energy corresponding to the charge density is its
Coulomb interaction with the surrounding exchange hole.72

e derivation of the correlation energy is more sophisticated than the exchange
energy. Furthermore several LDA correlation functionals exist75, which are based on
the random phase approximation (RPA),7,8 Quantum Monte Carlo (QMC) calcula-
tions,9 or a parametrization of theseQMCresults.10–12 Hence, we restrict ourselves to
the description of the exchange and refer the interested reader to the literature.72,74,75
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Next we turn to the generalized gradient approximation (GGA)86 in which the
reduced density gradient

s = ∣∇n∣ 2kFn (2.38)

is taken into account. For solids typical values for s are between 0 and 1.74 Consid-
eration of the behavior of the exchange energy Ex under density scaling reveals, that
the leading correction is quadratic in s

Ex[n] = Ax∫ d3r n 4
3 (1 + μs2 + . . .) =∶ Ax∫ d3r n 4

3 Fx(n, s), (2.39)

where we introduced the enhancement factor Fx which has a different shape for dif-
ferent exchange functionals. Antoniewicz and Kleinman 87 demonstrated that the
value of μ should be 10/81 for the limit of small s. In this work, we limit ourselves
to the PBE GGA exchange functional,14 which employs a roughly 1.8 times larger
value of μ to reproduce the properties of the PW91 GGA exchange functional.15 In
contrast tomore empiricallymotivated functionals, such as the BLYP functional,16,17
the emphasis in the construction of the PBE exchange functional was the recovery
of the uniform electron gas limit for small values of s which is satisĕed by the LDA.
Lieb and Oxford 88 established an upper limit for the local exchange-correlation en-
ergy. is limit was incorporated in the construction of the enhancement factor of
the PBE exchange functional

Fx(n, s) = 1 + κ − κ
1 + μs2

, (2.40)

where κ = 0.804 satisĕes the Lieb-Oxford bound and recovers the functional behav-
ior of the PW91 functional.15 A comparison of Eq. (2.37) and Eq. (2.39) reveals a
useful expression for the enhancement factor Fx in terms of the exchange hole

Fx(n, s) =
1

Axn
1
3
∫ d3u nx(r,u)

u . (2.41)

We introduce dimensionless variables y = kFu and Jx = nx/n. Furthermore, we em-
ploy a spherical and a system average to obtain

Fx(n, s) = −8
9

∞

∫
0

dy yJx(n, s). (2.42)

Ernzerhof and Perdew 89 derived a numerical expression for the dimensionless ex-
change hole Jx for the PBE functional, which is the starting point for the local con-
tribution of screened hybrid functionals (see Chap. 5).
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2.5 Self-interaction error
Albeit local exchange-correlation functionals are extremely successful describing a
variety of materials with high accuracy, they fail for some materials.90 For heavy ele-
ments the GGA functionals tend to underperform the LDA functionals. While LDA
yields accurate cohesive energies and lattice constants, GGA overestimate the lattice
constant and underestimate the cohesive energy. A further problem is the qualita-
tively wrong description of the asymptotic behavior of the potential for large dis-
tances.90 e local functionals exhibit an exponential decay, whereas the exact solu-
tion should decay as 1/r. e third problem of local exchange correlation functionals
is the neglect of van der Waals forces,90 hence systems where the dispersion forces
are responsible for the bonding are not described by local DFT. Moreover, local
exchange-correlation functionals have difficulties describing systems with strongly
localized electrons, e.g., the transition metal oxides.90

In this thesis, we focus in particular on the latter problem, which is attributed to
the self-interaction error (SIE). e SIE ismost obvious in a one-electron system, e.g.
the H+

2 molecule. It is straightforward, that there should be the correlation energy
should vanish and the exchange energy should cancel the Hartree energy

Ec = 0, Ex = −UH. (2.43)

However, the LDA and GGA functionals do not fulĕll these relations for the one-
electron system. For the simple case of one electron the SIE would be easy to correct,
however this qualitative error persists in many-electron systems where no unique
way to remove the SIE exists.91 Perdew and Zunger 11 proposed an explicit removal
of the one-electron SIE, which is referred to as self-interaction correction. However, in
solids, removing the SIE self consistently is computationally very demanding. Filip-
petti and Spaldin 92 developed a faster implementation based on the approximation
of the potential by a nonlocal, pseudopotentiallike projector.

Within the Hartree-Fock (HF) method,93 the exact treatment of the exchange
potential cancels the Hartree energy and correlation effects are neglected, so that
both conditions of Eq. (2.43) are fulĕlled. However, for systems with more than one
electron correlations screen the bare Coulomb interaction, so that the HF method
strongly overestimates its value.94 e GW approximation95 includes screening of
the Coulomb potential resulting in accurate band energies. e disadvantages of
the GW scheme are the high computational cost and the difficulties in achieving
a self-consistent solution.95 Due to these problems one commonly applies a non-
self-consistent one-shot G0W0, which is thence starting point dependent. Within
DFT we can go beyond the HF method including only a fraction of the nonlocal ex-
change in the exchange-correlation functionals, whichwill be extensively introduced
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in Chap. 4 and Chap. 5. Recently, realizations of exact exchange and a treatment of
the correlations within the RPA have been successfully applied to solids.96 A dif-
ferent approach is the DFT+U method,94 where an on-site Hubbard-like97 term is
incorporated to describe the exchange and correlation effects. is approach shares
advantages and disadvantages of model Hamiltonian calculations. On the one hand,
the impact on physical properties of a certain contribution is easily assessable, on
the other hand, the appropriate size of the parameter – in this case value of the Hub-
bard U – is hard to determine. Although several techniques to determine the value
of U consistently from ĕrst principles have been suggested,98–100 in practice, U is of-
ten chosen to reproduce certain experimental observations, e.g., the band gap or the
lattice constant.
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3.1 Practical DFT – introduction of a basis

In the chap:d, we have introduced the different contributions to the total energy
in density functional theory (DFT). For the evaluation of the kinetic energy (cf.
Eq. (2.13))

Ts[n] =
occ.
∑
n
⟨ϕKS

n [n] ∣T∣ϕKS
n [n]⟩ . (3.1)

the Kohn-Sham wave functions ϕKS
n [n] have to be known. However, the functional

dependence of the Kohn-Sham wave function on the density is non trivial and only
implicitly deĕned by the Kohn-Sham equation (2.12). We simplify this differential
equation by introducing a basis χi(r)

∑
j
⟨χi ∣H

KS∣ χj⟩ ⟨ χj∣ϕ
KS
n ⟩ = εKS

n ⟨ χi∣ϕ
KS
n ⟩ . (3.2)

With this ansatz, the problem is reduced to a matrix diagonalization for which fast
numerical techniques have been developed. Nevertheless, in typical DFT realiza-
tions, the diagonalization of the Kohn-Sham Hamiltonian and hence, the evalua-
tion of the kinetic energy, is the most time-consuming part of the calculation. In
practice, we do not employ Eq. (3.1) to determine the kinetic energy, because the
kinetic-energy operator is associated to a derivation of the wave functions. As for
the numerical stable evaluation of derivatives larger values for the cutoff parameters


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are necessary, it is more efficient to express the kinetic energy as

Ts[n] =
occ.
∑
n
⟨ϕKS

n [n] ∣HKS −Veff.
s ∣ϕKS

n [n]⟩ (3.3)

=
occ.
∑
n

εKS
n − ∫ d3r n(r)Veff.

s (r). (3.4)

Extensive effort was spent in developing sophisticated implementations, whichmake
practical DFT calculations feasible. Nowadays, in condensed matter physics the two
most common techniques are pseudopotential methods101,102 and all-electronmeth-
ods.103 For the sake of completeness, we mention that different approaches to solve
the Kohn-Sham equation beside the introduction of a basis exist. In particular, in
the KKR method104,105 the Green’s function of the crystal is calculated from Green’s
functions of isolated atoms via a Dyson equation. e details are discussed else-
where.106

In the pseudopotential method only the valence electrons are treated with DFT.
e effect of the core electrons and the nucleus is condensed in a pseudopotential,
which is constructed using all-electron schemes.107–110 Employing pseudopotentials
permits the use of a plane-wave basis set with a moderate cutoff as the divergence of
the potential near the nucleus disappears. In principle, the pseudopotential should
be constructed for each investigated material separately. In practice, it turns out
that the pseudopotential for a speciĕc atom can be used for a wide range of mate-
rials. However, the pseudopotential method with a plane-wave basis set is not so
well suited for materials with localized d- or especially f-electrons close to the Fermi
energy.111 For these materials atomic basis functions and the projector augmented
wave (PAW) method111 are more reliable.

In the all-electron methods one solves an atomic Schrödinger or Dirac equation
to construct the radial part of the basis functions. e angular part is given by the
spherical harmonics Ylm(̂r). ese basis functions are deĕnedwithin spheres around
the atoms, which are referred to as muffin-tin (MT) spheres.103 e methods differ
in the choice of overlapping112 or non overlapping MT spheres. In the latter case,
the basis functions within the MT spheres are augmented in the interstitial region
(IR) in between.103,113 Furthermore the basis set is either ĕxed for speciĕc atoms,
constructed once for the speciĕc material or updated to the current potential aer
each self consistency iteration. In this work, we employ mostly the full-potential
linearized augmented-plane-wave (FLAPW) method, which is described in detail
below. A more extensive discussion is found in Ref. 114,115.

is chapter is organized as follows: In Sec. 3.2, we describe the construction of
atomic basis functions common tomost all-electron schemes. We focus in particular
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on the augmentationwith planewaves in the interstitial region (Sec. 3.3). A common
extension of the basis to improve the description of semicore states are the so called
local orbitals, which are introduced in Sec. 3.4.

3.2 Atomic basis functions
e divergence of the Coulomb potential at the nucleus constitutes a severe conver-
gence problem for basis functions not speciĕcally tailored to this potential. Hence,
the basis in all-electron methods is ususally constructed from solution of the atomic
Schrödinger equation

[−p2

2
+Veff.

a (r)]Ψa(r) = EΨa(r) (3.5)

or atomic Dirac equation

[cα ⋅ p + (β − 1)c2 +Veff.
a (r)]Ψa(r) = EΨa(r). (3.6)

In these equations p is themomentumoperator,Veff.
a (r) the local effective potential at

the atom a, E the energy eigenvalue, c the speed of light, α and β the Dirac matrices,
and Ψa(r) the wave function. In general, the wave function is a four component
vector, but in the nonrelativistic case two components vanish and the spin-up and
spin-down component are independent. For the remainder of this chapter, we will
restrict the discussion to a scalar Ψa(r) in the atomic Schrödinger equation. A more
extensive discussion of the relativistic part can be found elsewhere.114

We make the ansatz Ψa(r) = Ralm(r)Ylm(̂r). Inserting this in Eq. (3.5) yields

[− 1
2r2

d
dr

(r2 d
dr

) + l(l + 1)
2r2

+∑
l′m′

Veff.
al′m′(r)Yl′m′ (̂r)]Ralm Ylm(̂r)

= ElmRalm Ylm(̂r), (3.7)

where we inserted the spherical harmonic expansion of the effective potential. Near
the atom, the potential is almost spherical, so that we can neglect all contributions
Veff.

a,l>0,m, so that the m dependence of the radial part disappears. If we deĕne ual(r) =
rRal(r), Eq. (3.7) simpliĕes to

[−1
2

d2

dr2
+ l(l + 1)

2r2
+Veff.

a,00(r)]ual(r) = Elual(r). (3.8)

For a description of the entire crystal two possible techniques are common. Ei-
ther one employs the atomic basis functions within overlapping spheres, so that the
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atomic solutions describe the full wave functions, or the basis functions are com-
binations of atomic functions in the MT spheres and different functions in the IR.
As the potential in the IR region is very smooth, plane waves will provide a precise
description. In the next section, we illustrate how one combines these functions.

3.3 Augmented plane waves

Slater 103 introduced the simplest combination of a plane wave and atomic functions
centered at the nuclei

χk+G(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1√
Ω

ei(k+G)⋅r r ∈ IR and

∑
lm

ak+Galm ual(ra)Ylm(̂ra) r ∈ MT(a),
(3.9)

where Ω is the volume of the unit cell, ra = r − Ra, and Ra is the position of atom
a. As a single plane wave is connected to multiple atomic functions, this basis is
referred to as the augmented-plane-wave (APW) basis. e expansion coefficients
ak+Galm ensure that the basis function is continuous at the boundary of the MT sphere.
We determine these coefficients by expansion of the plane wave in terms of spherical
harmonics

eik⋅r =∑
lm

4πil jl(kr)Ylm(̂r)Y∗
lm(k̂) (3.10)

and comparison of coefficients of the same spherical harmonic. Employing the APW
basis, Eq. (3.2) is rewritten as

∑
GG′

[⟨χk+G ∣H
KS∣ χk+G′⟩ − εKS

nk ⟨ χk+G∣ χk+G′⟩] ⟨ χk+G∣ϕ
KS
nk ⟩ = 0, (3.11)

wherewe inserted the overlapmatrix ⟨ χk+G∣ χk+G′⟩, because the basis is not orthonor-
mal. As it turns out, only if the energy El of the atomic solution coincides with the
band energy εKS

nk , the APWmethodwill be accurate enough.114 Hence, one employs a
self-consistency scheme inserting the resulting band energy as constraint into the de-
termination of the atomic radial functions (Eq. (3.8)). Compared to a basis, which is
independent of the parameter El, the additional self-consistency increases the com-
putational demand of the APW method. Furthermore, if the function ual(r) has a
very small value at the MT boundary, this may lead to numerical instabilities in the
determination of the expansion coefficients ak+Galm .
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To improve the variational freedom, Andersen 116 suggested to include a second
radial function inside the MT spheres

χk+G(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1√
Ω

ei(k+G)⋅r r ∈ IR and

2
∑
p=1

∑
lm

ap,k+G
alm up

al(ra)Ylm(̂ra) r ∈ MT(a).
(3.12)

With these two radial functions theMT function can bematched to value and slope of
the plane wave in the IR, so that we refer to this method as the linearized augmented-
plane-wave (LAPW) technique. A suitable choice for the second radial function is
the energy derivative of ual(r), i.e.

up=1
al (r) = ual(r) and up=2

al (r) = u̇al(r). (3.13)

We obtain the energy derivative u̇al(r) as the solution of the inhomogeneous differ-
ential equation which results from an energy derivative of Eq. (3.8)

[−1
2

d2

dr2
+ l(l + 1)

2r2
+Veff.

a,00(r)] u̇al(r) = Elu̇al(r) + ual(r). (3.14)

e advantage of this particular choice is that the radial functions ual(r) and u̇al(r)
are orthogonal. Historically, the LAPW method was applied ĕrst to a constant in-
terstitial potential. is limitation is not systematic, so that we incorporate the full
potential in the IR. To distinguish between both methods, the latter is referred to
as the full-potential LAPW (FLAPW) technique. e FLAPW method provides a
highly accurate all-electron basis,31,32,117 which has been successfully applied to a
large variety of materials.

3.4 Local orbitals

In the FLAPW method, core and valence states are not orthogonal. Hence, for ill-
suited systems the LAPW functions may incorrectly describe the high-lying core
state instead of the envisaged valence states,114 resulting in so called ghost bands that
prevent a convergence of the self-consistency ĕeld cycle. An inclusion of these core
states into the valence window is not possible, because the particular LAPW func-
tions are necessary for the description of valence states with the same orbital mo-
ment.115 However, it is possible to extend the basis by additional local orbitals (lo)
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that are conĕned to a certain MT sphere118

χlo(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 r ∈ IR and
3
∑
p=1

∑
lm

ap,lo
almup

al(ra)Ylm(̂ra) r ∈ MT(a).
(3.15)

In order that the basis function is nontrivial and vanishes at theMTboundary, a third
radial function up=3

al (r) = ulo
al(r) is required, which is obtained in the same fashion as

the ual(r), but employing a different energy parameter Elo
l . As additional constraint,

we set ap=3,lo
alm to zero and match the basis function to a “virtual” plane wave

ei(k+Glo)⋅r . (3.16)

With this construction the expansion coefficients satisfy the periodic boundary con-
ditions. en, we adjust ap=3,lo

alm such that the basis function vanishes at the boundary
of MT sphere. As a consequence of the matching to a plane wave the basis function
can be expressed in terms of a factor containing all k-point dependence

MGlo,m(k) = ei(k+Glo)⋅Ra Y∗
lm(k̂+Glo) (3.17)

and a radial function flom(r)

χk+Glo
(r) =

l
∑
m=−l

MGlo,m(k)flom(r). (3.18)

Michalicek et al. 119 discuss an improvement of the Ęexibility of the FLAPW ba-
sis by local orbitals with energy parameters of unoccupied states120 or associated to
higher energy derivatives. eyĕnd that in particular for systemswith largeMT radii
or insulators with large band gaps a careful convergence of the basis by additional
local orbitals may alter the outcome of the calculations signiĕcantly. In this thesis, if
additional local orbitals are necessary to converge the results, we will employ unoc-
cupied local orbitals where restrictions to the logarithmic derivative ensure that the
constructed functions are orthogonal and the energy parameters increase with the
number of nodes (for details see Ref. 121).
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4.1 Hybrid functionals

According to the Hohenberg and Kohn,4 the density n(r) of the system is suffi-
cient to describe the properties of a system completely, so that the calculation of
the ground state in density functional theory (DFT) is a three-dimensional problem
whereas examining anN-particle systemwith a wave-function based scheme is a 3N-
dimensional one. Hence, DFT has become the most commonly applied technique
to investigate ground-state properties of molecules and solids from ĕrst principles.72
e accuracy of DFT originates in the fact that the largest contributions to the total
energy can be calculated exactly. Only for the exchange-correlation energy, an ana-
lytical expression is unknown, but simple approximations, such as the local density
approximation (LDA) and the generalized gradient approximation (GGA), provide
an accurate prediction of electronic and structural ground-state properties. Albeit
these local functionals have been successfully applied for wide range of materials,
they systematically fail in some particular systems that we outlined in Sec. 2.5. e
most prominent Ęaws of the local functionals that are the presence of a spurious self
interaction90 and the systematic underestimation of the band gap.122,123

Describing the exchange-correlation energy with an LDA or a GGA functional,
even in a single-electron system the exchange-correlation and the Hartree contri-
bution to the total energy do not cancel each other. As a consequence, these local
functionals incorporate an unphysical self-interaction error (SIE),90 which leads to
a delocalization and is in particular important for localized d and f states. For more
details see Sec. 2.5.

A common misconception is that the band gap, which is associated to excitation
of the system, cannot be calculated by means of DFT. However, we can express the


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band gap as
Egap = EN+1 − EN

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ionization energy

− EN − EN−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
electron affinity

, (4.1)

for which only the ground-state energies of the (N − 1)-, the N-, and the (N + 1)-
particle are necessary.122,124 ese can be evaluated in DFT, hence, the band gap is
an accessible ground-state property of the system. Denoting the band gap obtained
as differences of Kohn-Sham eigenvalues in the N-particle system by εgap,122 we can
express the band gap as

Egap = εgap + Δxc (4.2)

with the exchange-correlation discontinuity

Δxc =
δE
δn

∣
N+δ

− δE
δn

∣
N−δ

, (4.3)

which is associated to a tiny change δ in the number of particles.123 However, for the
local functionals the exchange discontinuity is zero, so that they underestimate the
band gap of the system.

In contrast, the Hartree-Fock (HF) theory93 provides a very accurate description
of single atoms and ions, because it explicitly accounts for the self interaction, treats
the exchange part exactly, and includes a derivative discontinuity. However, the HF
theory is limited to atomic systems, because correlation effects, which are not in-
cluded in the HF method, are important in larger molecules and solids, so that the
chemical bonding is not accurately described.20 As these correlation effects are cap-
tured well within the local exchange-correlation functionals, a combination of these
techniques suggests itself. Becke 20 rationalized a intermixture of local exchange-
correlation functionals with HF exchange considering the adiabatic connection be-
tween a noninteracting system and the fully interacting one (see Sec. 2.3) at a con-
stant density

Exc[n] = ∫
1

0
dλ Exc,λ[n], (4.4)

where Exc[n] is the exchange-correlation energy, Exc,λ[n] contains all exchange and
correlation effects for a particular value of λ (see Eq. (2.32)), and λ determines the
strength of the electron-electron interaction. On the one hand, the HF theory is
exact in the noninteracting system, because all correlations effects are expressed by
an effective potential. On the other hand, the local exchange-correlation function-
als provide an accurate description of the fully interacting system. Hence, Becke 20

suggested the following linear approximation

Exc,λ[n] = (1 − λ)EHF
x [n] + λELDA

xc [n], (4.5)
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whereEHF
x [n] is the exchange energy of theHFmethoda andELDA

xc [n] is the exchange-
correlation energy of the LDA functional. Solving the integral in Eq. (4.4) with this
approximation yields the half-and-half hybrid functional20

Exc[n] =
1
2
EHF

x [n] + 1
2
ELDA

xc [n]. (4.6)

Becke later improved the accuracy of hybrid functionals by a semi-empirical ap-
proach, in which the mixture of local and nonlocal contribution was optimized for
a benchmark set of molecules. Depending on the number of parameters in the opti-
mization, these functionals are nowadays referred to as the B3X23

EB3X
xc = ELDA

xc + a(EHF
x − ELDA

x ) + ax(EX
x − ELDA

x ) + ac(EX
c − ELDA

c ) (4.7)

and B1X22

EB1X
xc = EX

xc + a(EHF
x − EX

x ) (4.8)

functional, where the X denotes the particular GGA functional.
Perdew et al. 24 motivated a particular choice of a = 1/4 in the B1X functional with

X = PBE, which is referred to as the PBE0 functional. Assuming that the adiabatic
connection integrand (Eq. (4.4)) can be expressed as

EPBE0
xc,λ [n] = EPBE

xc,λ[n] + (EHF
x − EPBE

x )(1 − λ)m, (4.9)

we obtain the exchange-correlation energy

EPBE0
xc [n] = EPBE

xc + 1
m
(EHF

x − EPBE
x ). (4.10)

Hence, the functional is identical to a B1X functional, if we choose a = 1/m. e
advantage of this ansatz is that the expansion of Eq. (4.9) can be directly related to a
Møller-Plesset pertubation expansion. For most materials, the fourth order Møller-
Plesset pertubation, which corresponds to m = 4, yields very accurate atomization
energies,25 resulting in the value of a = 1/4.24

is chapter is organized as follows: In Sec. 4.2, we present the general approach
to realize a nonlocal potential in DFT. We introduce an auxiliary basis particularly
suited for the calculation of wave function products in the full-potential linearized
augmented-plane-wave (FLAPW) method in Sec. 4.3. In Sec. 4.4, we outline the
implementation of the HF exchange in the FLAPW method.33,121

ae correlation energy of the HF method is 0.
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4.2 A generalized Kohn-Sham scheme
As discussed in Sec. 2.2, if a density n(r) minimizes the total energy (Eq. (2.9)),
then any many-body wave function ∣Φ⟩ that minimizes the universal functional (cf.
Eq. (2.10))

F[n] = min
⟨Φ∣Φ⟩=n

⟨Φ ∣T +Vee∣Φ⟩ (4.11)

is a ground-state wave function of the system.79 Here, Vee is the electron-electron
interaction. In a Kohn-Sham scheme, this complicated many-body interaction is
expressed via the adiabatic connection (see Sec. 2.3) as an effective single-particle
potential Veff.

s (r). Hence, the universal functional F[n] reduces to the single-particle
kinetic energy

Ts[n] = min
⟨ΦKS∣ΦKS⟩=n

⟨ΦKS ∣T∣ΦKS⟩ , (4.12)

where ∣ΦKS⟩ is the many-body Kohn-Shamwave function. As the electrons are inde-
pendent in a Kohn-Sham scheme, the many-body wave function can be expressed as
product of single-particle wave functions ∣ϕKS

n ⟩ that solve the Kohn-Sham equation
(2.12).

In hybrid functionals, the electron-electron exchange is not expressed in terms
of an effective potential, but rather calculated exactly. Hence, we introduce a gener-
alized Kohn-Sham (gKS) scheme, where the universal functional (Eq. (4.11)) retains
part of the exchange

F[n] = min
⟨ΦgKS∣ΦgKS⟩=n

⟨ΦgKS ∣T + aVHF
x ∣ΦgKS⟩ (4.13)

with the factor a = 1/4 for the hybrid functionals employed in this thesis. In principle,
for interacting electrons, the many-body wavefunction ∣ΦgKS⟩ cannot be written as a
product state. To overcome this problem, one commonly approximates

∣ΦgKS⟩ ≈ ∣ΦKS⟩ . (4.14)

With this approximation, the hybrid functionals can be calculated by small modiĕ-
cation to the Kohn-Sham equation

HgKS ∣ϕn⟩ = HKS ∣ϕn⟩ − a(
occ.
∑
m
⟨ϕm ∣v∣ϕmϕn⟩ +VPBE

x ∣ϕn⟩) = εgKS
n ∣ϕn⟩ , (4.15)

where HKS is the Kohn-Sham Hamiltonian (Eq. (2.11)), v is the Coulomb potential,
and the nonlocal matrix element is calculated as

⟨ϕm∣v∣ϕmϕn⟩ = ϕm(r)∫ d3r′
ϕ∗

m(r′)ϕn(r′)
∣r − r′∣ . (4.16)
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We draw attention to the change of sign in Eq. (4.15), which originates in the ex-
change, i.e.

VHF
x ∝ − 1

∣r − r′∣ . (4.17)

4.3 Themixed product basis
In practice, we calculate the Hamiltonian (Eq. (4.15)) expanding the wave functions
in the FLAPW basis (cf. Chap. 3). For the evaluation of the nonlocal potential, we
employ an auxiliary basis to represent products of wave functions.33,125 We construct
this basis so that the accuracy of the FLAPW basis is retained. In the calculation of
products of the FLAPW basis functions, the angular part of the muffin-tin (MT)
contribution is analytically given as

Y∗
lm(̂r)Yl′m′ (̂r) =∑

LM
Glm,l′m′,LM YLM(̂r) (4.18)

with the Gaunt coefficient

Glm,l′m′,LM = ∫ dΩY∗
lm(̂r)Yl′m′ (̂r)Y∗

LM(̂r). (4.19)

We point out that only Gaunt coefficients with ∣l − l′∣ ≤ L ≤ l + l′ and M = m′ −m are
nonzero. Nevertheless, we obtain several radial functions to any particular combina-
tion of L and M. ese radial functions exhibit a high degree of linear dependence,
which allows us to reduce the number of basis functions signiĕcantly.121 Finally, we
obtain

MMT
qI (r) = MI(∣r − RI∣)YI(r̂−RI) eiq⋅RI , (4.20)

where MI(r) is a radial function, RI is the center of the MT sphere, and q a reciprocal
vector in the Brillouin zone (BZ). e index I is summarizing the atom a, the angular
momentum quantum number L, and the magnetic quantum number M.

In the interstitial region (IR), the product of two plane waves can be expressed as

e−i(k+G)⋅r ei(k′+G′)⋅r = ei(q+G)⋅r, (4.21)

where G = G − G and q = k′ − k. Hence, the construction of basis functions for the
IR is straightforward

MIR
qI(r) =

1√
Ω

ei(q+GI)⋅r (4.22)

with the volume of the unit cell Ω. We refer to the basis {MqI(r)}, which combines
the MT basis {MMT

qI (r)} and the IR {MIR
qI(r)} one, as the mixed product basis (MPB).
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4.4 Hybrid functionals in FLAPW

Analogous to the local functionals (cf. Chap. 3), we transform the generalized Kohn-
Sham equation (Eq. (4.15) from a differential equation to a linear one by introducing
the FLAPW basis

∑
G′

⟨χσ
k+G ∣H

gKS∣ χσ
k+G′⟩ ⟨ χσ

k+G′ ∣ϕσ
nk⟩ = εσ

nk ⟨ χσ
k+G∣ϕ

σ
nk⟩ . (4.23)

Note, that we explicitly included indices for spin σ and wave vector k for the wave
and basis functions. Furthermore, theHamiltonian is diagonal in spin space, because
we exclude spin-orbit coupling. We limit the discussion to the consideration of the
additional nonlocal contribution in hybrid functionals

Vσ,NL
x,GG′(k) = −

occ.
∑
m

BZ
∑
q
⟨χσ

k+Gϕ
σ
mq∣v∣ϕ

σ
mqχ

σ
k+G′⟩, (4.24)

which is the most complex and computationally most expensive term, because it
involves the calculation of N2

G×Nq×Nσ
occ. six-dimensional integrals for every k point

and spin channel. Here, NG is the number of basis functions, Nq is the number of
k points in the BZ, and Nσ

occ. is the number of occupied states in the spin channel
σ. To reduce the computational demand, it is advantageous to evaluate the nonlocal
potential in terms of the wave functionsb

Vσ,NL
x,nn′(k) = −

occ.
∑
m

BZ
∑
q
⟨ϕσ

nkϕ
σ
mq∣v∣ϕ

σ
mqϕ

σ
n′k⟩, (4.25)

because we can introduce a cutoff for the number of bands Nb ≤ NG. An accurate
convergence of the employed number of bands is themost important additional con-
vergence parameter introduced by hybrid functionals. Next, we introduce the MPB
described in the sec:mixbas

Vσ,NL
x,nn′(k) = −∑

mq
∑
IJ
⟨ϕσ

nk∣ϕ
σ
mk−qMqI⟩vIJ(q)⟨MqJϕσ

mk−q∣ϕ
σ
n′k⟩ (4.26)

with the Coulomb matrix

vIJ(q) =∬ d3rd3r′ M̃∗
qI(r)v(r, r′)M̃qJ(r′). (4.27)

bWave and basis functions are related to each other via the eigenvectors of the generalized Kohn-
Sham equation.121
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Figure4.1: Flowchart of a PBE0 calculationwithinFleur. edetailed description
is given in the text.
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Equation (4.26) corresponds to a vector-matrix-vectormultiplication, for which effi-
cient numerical algorithms have been developed. One advantage of this approach is
that the same MPB can be employed over the full self-consistent ĕeld run so that the
Coulomb matrix has to be calculated only once at the beginning of the self consis-
tency. Betzinger et al. 33 optimized the Coulombmatrix by choosing linear combina-
tions ofMPB functions, such that themultipolemoment of all but one basis function
per combination of L and M disappears. If the multipole moment vanishes, only on-
site terms in Eq. (4.26) contribute to the nonlocal potential so that a sparse-matrix
technique becomes feasible.

e necessary computation time to achieve self consistency is further improved
by separating evaluation of nonlocal and local potential. Compared to the contri-
butions of electrostatic and kinetic energy, the nonlocal potential Vσ,NL

x,nn′ is a small
quantity. Hence, we converge the large contributions ĕrst before we reevaluate the
nonlocal potential. Betzinger et al. 33 showed that this scheme leads to a reduction of
the required number of self-consistency cycles by a factor of three to four. In Fig. 4.1,
we illustrate schematically the order of events in a typical PBE0 calculation as imple-
mented in Fleur.126 We start the calculation from a converged calculation (typi-
cally PBE), because we need the wave functions to create an accurateMPB. With this
MPB, we evaluate the Coulomb matrix according to Eq. (4.27). en, we evaluate
the local parts of the Hamiltonian as in a PBE calculation. If the density is converged
with respect to the local potential, we switch to the calculation of the nonlocal poten-
tial. As we start from a converged calculation, this requirement is fulĕlled in the ĕrst
iteration. To evaluate the nonlocal potential, we employ the Kohn-Sham wave func-
tions of the last iteration. en, we project products of these wave functions onto
the MPB. Equation (4.26) deĕnes the vector-matrix-vector multiplication, which be
perform to obtain the nonlocal potential. e summation over all occupied states
in Eq. (4.25) includes the core states, which are evaluated as on-site integrals of the
form

∬
MT

d3rd3r′
ϕσ,∗

nk ϕ∗
coreϕcoreϕ

σ
n′k

∣r − r′∣ . (4.28)

We transform from the wave functions to the FLAPW basis and add the nonlocal
potential to the Hamiltonian. We subtract a = 1/4 of the PBE exchange and diago-
nalize the Hamiltonian to obtain the wave functions and the new density. en, we
iterate this scheme until self consistency is achieved.
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5.1 Motivation for a screened exchange potential

In the chap:pbe0, we introduced hybrid functionals, which incorporate a certain
fraction of bare Hartree-Fock (HF) exchange in the exchange-correlation functional
(Eq. (2.32)). Becke 20 motivated this inclusion of nonlocal exchange by the adiabatic
connection (see Sec. 2.3). Perdew et al. 24 argued that a fraction of 1/4 is the opti-
mum choice of HF exchange. Since then, hybrid functionals have been successfully
applied to describe the electronic and structural properties of a rather large number
of materials.127–130 However, the computational effort of these functionals is signiĕ-
cantly larger than the one necessary for conventional local functionals, in particular,
because of the long-range nature of the Coulomb potential in calculation the HF ex-
change. To facilitate the calculation of materials withmore than a few atoms per unit
cell, a need for computationally less expensive realizations arose.

In real system, polarization effects screen the interactions between distant elec-
trons, so that the contribution of the long-range (LR) exchange disappears. is
prompted Heyd et al. 26 to separate the PBE0 hybrid functional24 into long-range
and short-range contributions. As approximation to the correlation effects, which
screen the long-range interactions, only the short-range (SR) component of the HF
exchange is incorporated in the exchange-correlation energy

Exc = EPBE
xc + a (EHF,SR

x − EPBE,SR
x ) . (5.1)

In comparison to Eq. (4.10), the same mixing parameter a = 1/4 is adopted, whereas
the modiĕcation to the exchange-correlation energy of the PBE functional14 is only


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applied to the SR component, effectively reducing the computational effortwithin the
basis of localized Gaussian functions. Heyd et al. 26 used the error function erf(x)
and its complement erfc(x) = 1−erf(x) to decompose the Coulomb interaction v(r)
into a long-range (LR) and a short-range (SR) part

v(r) = 1
r
= erf(ωr)

r
+ erfc(ωr)

r
= vLR(r) + vSR(r), (5.2)

where ω is an adjustable screening parameter. A screened hybrid functional with
this particular range separation is nowadays referred to as Heyd-Scuseria-Ernzerhof
(HSE) functional. e screening parameter was optimized26 with respect to a bench-
mark data set ofmolecules, which yieldedω = 0.15. Krukau et al. 131 later reĕned this
value for solids to a value of ω = 0.11. To differentiate between the different screen-
ing parameters, the corresponding functionals are labeled HSE03 and HSE06 for
ω = 0.15 and ω = 0.11, respectively. roughout this work, we have employed only
the HSE06 realization. e HSE functional was implemented within Gaussian26,132

and plane-wave27 basis sets and in the following, we present our approach its im-
plementation within the full-potential linearized augmented-plane-wave (FLAPW)
method.29

A screened exchange functional based on the Yukawa potential was recently im-
plemented in FLAPW by Tran and Blaha.133 Our approach is more general, as it is
suited to treat any nonlocal potential v(r), which is a pure function of the distance
r. Hence, we could employ our method to implement the LC-ωPBE134 functional,
where the HF exchange is included only for the LR part, or the HISS135 functional,
in which the nonlocal potential is employed for intermediate distances.

5.2 Implementation
In Chap. 4, we discussed the implementation of the PBE0 functional within the
FLAPWmethod byBetzinger et al..33 eyused an auxiliary product basis {MqI(r)},
which consists of two types of functions, namely

MMT
qI (r) = RI(∣r − rI∣)YI(r̂−rI) eiqrI (5.3)

within the muffin-tin sphere centered at rI and

MIR
qI(r) =

1√
Ω

ei(q+GI)r (5.4)

in the interstitial region (IR). Here the Bloch vector q and the index I label the basis
function, where I indicates the atom, the angularmomentum quantumnumber l and
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the magnetic quantum number m within the MT sphere and the reciprocal lattice
vectorG in the IR. Ω is the volume of the unit cell of the crystal. RI(r) is a numerical
radial function that is built from FLAPW basis functions. For further details refer
to Sec. 4.3 or the articles of Friedrich et al. 125 and Betzinger et al..33 We refer to this
auxiliary basis as the mixed product basis (MPB).

With the introduction of the MPB the nonlocal exchange potential is given by
(see Eq. (4.26))

Vσ,NL
x,nn′(k) = −

occ.
∑
m

BZ
∑
q
∑
IJ
⟨ϕσ

nk∣ϕ
σ
mk−qMq,I⟩vIJ(q)⟨Mq,Jϕσ

mk−q∣ϕ
σ
n′k⟩ (5.5)

with the wavefunction ϕσ
nk, the spin index σ, the band indices m and n, and the

Coulomb matrix

vIJ(q) =∬ d3rd3r′
M̃∗

q,I(r)M̃q,J(r′)
∣r − r′∣ . (5.6)

It seems to be straightforward to replace the Coulomb potential in Eq. (5.6) with
the screened Coulomb potential as deĕned in Eq. (5.2). However, the computational
cost of this ansatz is much larger than the evaluation of the Coulomb potential in
the PBE0 functional, as we can construct the MPB such that the matrix Eq. (5.6)
is sparse. is construction is an intrinsic property of the Coulomb potential and
cannot be transferred to screened interactions. Furthermore, the direct evaluation
of Eq. (5.6) is cumbersome for potentials which have more complex expansions in
Legendre polynomials than the Coulomb potential.

Hence, we chose a different approach to calculate the SR nonlocal exchange po-
tential. Figure 5.1 compares the bare and the screened Coulomb potential, v(r) and
vSR(r), which occur in the nonlocal exchange integral in the PBE0 and theHSE func-
tional, respectively. e distance r is measured in units of Bohr radii a0. Both po-
tentials show a divergent behavior for r → 0, however the difference vLR(r) remains
ĕnite. As the description of the divergence near the origin requires a large cutoff to
be accurately described by a Fourier transformation, we expect a faster convergence
of the LR potential, where this divergence is not present.

To utilize the faster convergence of the LR potential, we calculate the HSE ex-
change potential as

VHSE
xc = VPBE

xc − aVPBE,SR
x + a (VNL

x −VNL,LR
x ) , (5.7)

with the local exchange-correlation potentials VPBE
xc and VPBE,SR

x , which are the func-
tional derivative of the corresponding local exchange-correlation energies EPBE

xc and
EPBE,SR

x , and the nonlocal exchange potential in parentheses, which consists of the
bare Coulomb potential VNL

x and the LR component VNL,LR
x .
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Figure5.1: ebare (red) and the screened (blue)Coulombpotential show the same
divergent behavior near the origin, whereas their difference (green) is a smooth func-
tion and has a ĕnite limit. To describe the divergence near the origin requires a large
reciprocal cutoff. Without this divergence, the Fourier transform of the difference
converges much faster.29

e local exchange-correlation energies are functionals of the density14,89 (cf.
Eq. (2.39))

Ex = ∫ d3r n(r)εLDA
x (n)Fx(s) (5.8)

with the reduced density gradienta s, the LDA exchange energy density εLDA
x , and the

enhancement factor Fx. Ernzerhof and Perdew 89 derived the enhancement factor
Fx(s)PBE for the PBE functional as integral over the PBE exchange hole JPBE(s, y)

Fx(s)PBE = −8
9 ∫ dy y JPBE(s, y). (5.9)

We follow the idea of Heyd et al. 26 and implement the SR local exchange energy by
screening the exchange hole in the calculation of the enhancement factor

Fx(s)PBE,SR = −8
9 ∫ dy y JPBE(s, y) × erfc(ωy

kF
) (5.10)

with the local Fermi wavevectorb kF. e details of the implementation can be found
areduced density gradient s = ∣∇n∣

2kFn
blocal Fermi wavevector kF = (3π2n)1/3
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Figure 5.2: a) Long-range (LR) potential vLR(q) (cf. Eq. (5.12)), which is the Fourier
transform of the difference of bare Coulomb and screened Coulomb potential, as
function of q = ∣q +G∣. b) Convergence of the root-mean-square (rms) deviation of
the eigenvalues of Eq. (5.11) with respect to the number of plane waves used for the
Fourier transformation. Illustrated using the example of cubic silicon (eight atoms
per unit cell).

elsewhere.132
In Eq. (5.7), we separated the nonlocal exchange potential into the bare Coulomb

potentialVNL
x and the LR componentVNL,LR

x . eĕrst term is identical to Eq. (4.26) in
the calculation of the PBE0 functional and evaluated efficiently employing the MPB.
For the latter term, we utilize the quick convergence of the LR potential in reciprocal
space

VNL,LR
x,nn′ (k) =

occ
∑
m

BZ
∑
q
∑
G
⟨ϕσ

nk ∣ϕ
σ
mk−qζq+G ⟩

× ⟨ζq+G ∣vLR∣ ζq+G⟩ ⟨ζq+Gϕσ
mk−q∣ϕ

σ
n′k⟩ , (5.11)

where ζq+G(r) = ei(q+G)⋅r /
√

Ω is a plane wave normalized to the volumeΩ of the unit
cell. We employed additionally, the diagonality of the potential in the basis of plane
waves

⟨ζq+G ∣vLR∣ ζq+G′⟩ = 4π
∣q +G∣2

e−∣q+G∣
2/4ω2 δG,G′ . (5.12)

We show that this potential falls of quickly as a function of q = ∣q +G∣ in Fig. 5.2a.
Hence, the expression in Eq. (5.11) converges at small numbers of reciprocal lattice
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vectors. We illustrate the convergence behavior of the root-mean-square (rms) devi-
ation of the eigenvalues of VNL,LR

x,nn′ (k) in Fig. 5.2b using the example system of a cubic
silicon unit cell (four primitive unit cells). Machine precision is achieved with as few
as 40 plane waves which would translate to ten for a primitive unit cell containing
two atoms. is behavior is essentially independent of the q point.29

To evaluate the Fourier transform of the wavefunction products, we introduce
the MPB

⟨ϕσ
nk ∣ϕ

σ
mk−qζq+G ⟩ =∑

I
⟨ϕσ

nk∣ϕ
σ
mk−qMqI⟩⟨M̃qI∣ζq+G⟩. (5.13)

is is advantageous as the ĕrst integrals on the right hand side are evaluated to cal-
culate the bare Coulomb interaction (cf. Eq. (5.5)), hence, there is no computational
overhead involved. Furthermore, in the calculation of the latter integrals the IR el-
ements are trivial, as the biorthogonal set to these MPB functions are orthogonal to
plane waves. As a consequence, we calculate the latter integrals only within the MT
spheres

⟨M̃MT
qI ∣ζq+G⟩ =

1√
Ω ∫

MTI

d3rRI(∣r − rI∣)Y∗
I (r̂−rI) e−iq⋅rI ei(q+G)⋅r

= 4πil√
Ω

Y∗
I (q̂+G) eiG⋅rI

RMT
I

∫
0

dr r2RI(r) jl(∣q +G∣), (5.14)

where l is the angular moment of the MPB function with index I.
We note that Eq. (5.12) is divergent in the limit q +G→ 0.29 Hence, we treat the

G = 0 part at the Γ point differently from the other reciprocal lattice vectors. e
bare Coulomb potential contains an analogous divergent behavior,33,125 which has to
be treated separately as well (cf. Sec. 4.1). We can combine these two terms and, as
it turns out, the result has a ĕnite limit

lim
q+G→0

4π
∣q +G∣2

(1 − e−∣q+G∣
2/4ω2) = π

ω2 . (5.15)

We show a Ęowchart of a HSE calculation in Fleur126 in Fig. 5.3. is ĕgure is
analogous to the earlier Ęowchart for the PBE0 calculation (cf. Fig. 4.1), where the
red boxes indicate the changes. Aer the calculation of the nonlocal potential, we
subtract the contribution of the LR potential according to Eq. (5.11). e divergence
is not treated speciĕcally anymore, as the divergent behavior of SR and LR contri-
bution cancel each other (cf. Eq. (5.15)). For the core electrons, we replace the bare
Coulomb exchange with the screened one. We correct the local potential employing
the screened exchange hole (Eq. (5.10)) to calculate the enhancement factor and the
corresponding local potential via the functional derivative of the energy (Eq. (5.8)).
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Figure 5.3: Flowchart of an HSE calculation within Fleur. e red boxes indicate
changes with respect to a PBE0 calculation (cf. Fig. 4.1).
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5.3 Total energy in hybrid functionals
In the evaluation of the total energy in hybrid functional calculations, we have to ac-
count for two contributions. Straightword is that a hybrid functional20,24,26 modiĕes
the exchange-correlation energy of the PBE functional EPBE

x by addition of a nonlocal
contribution ENL

x and removal of a local part EL
x (see Sec. 4.1)

Ehyb
xc = EPBE

xc + a (ENL
x − EL

x) . (5.16)

For the PBE0 functional the nonlocal term ENL
x is evaluated with the bare Coulomb

potential and the local energy EL
x is given by the PBE functional. In the HSE func-

tional, the screened Coulomb potential as deĕned in Eq. (5.2) determines the nonlo-
cal contribution ENL

x and the local energy EL
x is calculated according to Eq. (5.8) with

the screened exchange hole (cf. Eq. (5.10)).26,89
A secondmodiĕcation in the calculation of the total energy in hybrid functionals

arises in the evaluation of the kinetic energy T. To improve the numerical stability of
the implementation, it is not evaluated directly, because for the accurate calculation
of the Laplace operator △ the wave functions have to be smooth up to the second
derivative. Instead, we evaluate the kinetic energy as difference of the sum of the
eigenvalues and the expectation value of the potential (cf. Sec. 3.1)

T =∑
σ
∑
nk

⎡⎢⎢⎢⎢⎣
εσ
nk − ⟨ϕσ

nk ∣(Veff. − aVL
x)∣ϕσ

nk⟩ + a∑
mq

⟨ϕσ
nkϕ

σ
mq ∣v

NL∣ϕσ
mqϕ

σ
nk⟩

⎤⎥⎥⎥⎥⎦
. (5.17)

We note that in this expression, the core states require a special treatment. In local
exchange correlation functionals, the core wave functions are the solution of a radial
Dirac equation (see Sec. 3.2). Hence, a necessary requirement for the construction
of the core states is the availability of a local potential in the MT spheres. However,
in hybrid functionals the key ingredient is the nonlocal HF exchange, so that such a
local potential is not available andwe cannot calculate the core wave functions. us,
we treat the core states in the frozen core approximation, i.e., we ĕx the core wave
functions to the result of a converged PBE calculation. As a consequence, the core
states are no eigenfunctions of the hybrid functional Hamiltonian. Nevertheless, we
incorporate the nonlocal exchange in the calculation of the total energy for all states,
so that we get a consistent energy for the hybrid functional. On that account, we
have to modify the calculation of the kinetic energy by limiting the contribution of
the hybrid functional to valence states

T =∑
σ
∑
nk

⎡⎢⎢⎢⎢⎣
εσ
nk − ⟨ϕσ

nk ∣(Veff. − anVL
x)∣ϕσ

nk⟩ + an ∑
mq

⟨ϕσ
nkϕ

σ
mq ∣v

NL∣ϕσ
mqϕ

σ
nk⟩

⎤⎥⎥⎥⎥⎦
, (5.18)



.. P  

where

an = {a = 1/4 for valence states and
0 for core states.

(5.19)

5.4 Parallelization scheme

e evaluation of the nonlocal potential (Eq. (5.5)) is by far the most expensive part
of the calculation. It consumes usually more than 90 percent of the computation
time. Hence, calculations using hybrid functionals are typically one to two orders of
magnitude more expensive than density functional theory (DFT) calculations em-
ploying local functionals. We easily identify the relevant part of the code, which we
accelerate by parallelization. Nevertheless, the parallelization of hybrid functionals
is not as straightforward as for local functionals. We note that Eq. (5.5) contains two
separate loops over the k and q points within the Brillouin zone (BZ). To reduce the
computational effort, we applied the spatial and time-reversal symmetries to restrict
these summations to the irreducible BZ. However, there are less allowed symmetry
operations in the inner loop, because the selection of one speciĕc k point in the outer
loop, distinguishes certain directions in the crystal. Consider for example a simple
cubic unit cell, where the k vectors k x̂, k ŷ, and k ẑ are equivalent by symmetry. How-
ever, if we have speciĕed k = k x̂ in the outer k point summation, the q vector q x̂ is
not equivalent to k ŷ and k ẑ. For this reason the number of terms, which have to be
evaluated, are different for all q points in the outer loop, and a simple parallelization
over this loop is not possible.

..
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Figure 5.4: Example of task distribution over six processes (CPU I–VI) of eight
irreducible k points (ki) which correspond to a Γ centered 4×4×4 k-point mesh
within a cubic unit cell. e number of q points within the inner loop in Eq. (5.5) is
not the same for all k points. Hence, if the evaluation of the nonlocal potential takes
longer at a certain k point it will be shared by several processes. is illustrates the
complications in the communication pattern if synchronous communication is used
as, for instance, process II will ĕnish its share of k point 2 before process I arrives at
the communication point.



 . S H F

...

..

1

.

2

.

4

.

8

.

16

.

32

.

64

.

102

.

103

.

104

.

number of processes

.

tim
ep

er
ite

ra
tio

n
(s
)

Figure5.5: Improvement in execution time per nonlocal iteration by parallelization.
We calculate bulk silicon with a 12×12×12 k-point mesh increasing the number of
processes on the local cluster (red) and on JuRoPA (blue). e code is slightly slower
on JuRoPA and scales well with the number of processes. For comparison an ideal
scaling (gray) is shown extrapolating from the time consumed by a single process
calculation.

We circumvent this problem by sharing an equal amount of tasks to all processes.
e total number Nt of tasks is

Nt =
BZ
∑
k

Nq(k), (5.20)

where Nq(k) is the symmetry-reduced number of q points necessary at a speciĕc
k point. If the number of tasks is no integral multiple of the number of processes,
we assign one additional task to some processes to compensate for this. e conse-
quence of this algorithm is an unequal amount of processes for the k points in the
outer loop. e complications of this ansatz are illustrated in Fig. 5.4. Several pro-
cesses have to evaluate only a small part of a speciĕc k point. ese processes would
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have to wait for other ones which calculate a larger share. Hence, we arrange an asyn-
chronous communication pattern. As the process with the smallest rank will be the
last to complete the calculation of a speciĕc k, we collect all necessary data on this
process.

In addition to the nonlocal potential further computations are necessary at every
k point. As pointed out in Fig. 5.3, this includes the core contribution, the transfor-
mation to the FLAPW basis, the subtraction of the local potential and the diago-
nalization of the Hamiltonian. In the current realization all these steps are done by
only one process per k point. To reduce the communication overhead, we select the
process with the smallest rank which received already all necessary information.

Figure 5.5 shows the time needed for a single iteration in which the nonlocal ex-
change potential is updated as function of the number of processes used for the cal-
culation. We converged bulk silicon with the HSE hybrid functional on a 12×12×12
k-point mesh which translate to 72 points in the irreducible BZ. e computation
on the local cluster is slightly faster than on the JuRoPA supercomputer.c We ĕnd a
great improvement in the execution speed up to 64 processes, which is close to the
optimal behavior. In principle, in the theoretical limit of our parallelization method,
the calculation of the nonlocal potential can be shared bymore than 60000 processes.
A reasonable practical constraint will be signiĕcantly lower. However, it turns out
we cannot reach this limit as Fleur126 is not suitable to treat more than one pro-
cess per k point without the use of eigenvector parallelization, which is currently not
integrated into our parallelization scheme.

5.5 Analysis of prototypical materials

We compare our results for the prototypical semiconductors (C in diamond struc-
ture, Si, and GaAs) and insulators (MgO, NaCl, and Ar) with previous works using
plane wave27 or Gaussian131 basis sets in order to establish the correctness of our
method and its implementation. In particular, we investigate the lattice constant,
bulk moduli, and band transitions of these materials. e band transitions were cal-
culated at the experimental lattice constant, which we took from Heyd and Scuse-
ria.136 We employ the common approximation of using the differences of Kohn-
Sham eigenvalues at the respective k points to calculate the band-gap energies.

For all materials an 8×8×8 k point mesh is sufficient to give an accurate descrip-
tion of the band transitions. In Fig. 5.6, we illustrate, as an example, the convergence

cJülich Research on PetaĘop Architectures: 2208 compute nodes with two Intel Xeon X5570
(Nehalem-EP) quad-core processors each.
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Figure 5.6: Convergence of the indirect Γ → X transition Ex in silicon with respect
to the size of the k-pointmesh n×n×n. e bare Coulomb potential in the PBE0 func-
tional (green, dotted) requires a ĕner sampling to accurately describe the divergence
near the Γ point. e screening of the Coulomb potential in HSE (red, solid) over-
comes this problem, so that the overall convergence is similar to the PBE functional
(blue, dashed).

of the indirect Γ → X transition in bulk silicon. HSE has a similar k-point con-
vergence as the local PBE functional, whereas a signiĕcantly larger k-point mesh is
necessary for the PBE0 functional. is behavior was also observed with other recip-
rocal space methods.27 We attribute this to the nondivergent representation of the
screened exchange potential (cf. Eq. (5.15)).29 In methods employing a basis in the
reciprocal space the favorable k-point convergence of the HSE functional leads to a
shorter computation time with respect to PBE0.

In Table 5.1, we compare our results for the Γ → Γ, Γ → X, and Γ → L band
transitions with experimental data and the implementationwithin the projector aug-
mented wave (PAW) method.27 We note a signiĕcant increase of the band-transition
energies within the HSE functional. Local functionals systematically underestimate
the band gap. Hence, as compared to PBE, the opening of the band gap within the
HSE functional yields an improved agreement with experimental results. Especially
the narrow gap semiconductors are accurately described with the HSE functional,
whereas the larger band gaps are still underestimated. e values of the band tran-
sitions show only slight differences between the different applied methods. e de-
viations are somewhat larger in HSE than in PBE, though of the same order of mag-
nitude.
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Table 5.1: Kohn-Sham transition energies in eV obtained with the function-
als PBE and HSE at experimental lattice constants compared with values from
PAW calculations and experiment. An 8×8×8 k-point mesh was employed in
our calculations.a

is work PAWb Expt.
Functional PBE HSE PBE HSE

GaAs Γ → Γ 0.54 1.43 0.56 1.45 1.52,c 1.63d

Γ → X 1.47 2.06 1.46 2.02 1.90,c 2.01,d 2.18d

Γ → L 1.01 1.78 1.02 1.76 1.74,c 1.84,d 1.85d

Si Γ → Γ 2.56 3.32 2.57 3.32 3.05,e 3.34–3.36f , 3.4d

Γ → X 0.71 1.29 0.71 1.29 1.13,f 1.25e

Γ → L 1.54 2.24 1.54 2.24 2.06,g 2.40d

C Γ → Γ 5.60 6.98 5.59 6.97 7.3c

Γ → X 4.75 5.90 4.76 5.91 —
Γ → L 8.46 10.02 8.46 10.02 —

MgO Γ → Γ 4.77 6.49 4.75 6.50 7.7h

Γ → X 9.14 10.86 9.15 10.92 —
Γ → L 7.93 9.69 7.91 9.64 —

NaCl Γ → Γ 5.20 6.57 5.20 6.55 8.5i

Γ → X 7.58 9.05 7.60 8.95 —
Γ → L 7.30 8.66 7.32 8.67 —

Ar Γ → Γ 8.70 10.36 8.68 10.34 14.2j

a Reference 29. b Reference 27. c Reference 137. d Reference 138. e Reference 139.
f Reference 140. g Reference 141. h Reference 142. i Reference 143. j Reference 144.

In Table 5.2 and Table 5.3, we present the equilibrium lattice constant and the
bulk modulus, respectively. We employ a ĕt to the Murnaghan equation145 to eval-
uate these properties. We compare the results obtained with our implementation of
theHSE functional29 with experimental data and implementations using plane-wave
(PAW)27 and Gaussian basis sets.131 We ĕnd a ĕne agreement between the three dif-
ferent methods. e deviations in the equilibrium lattice constant are smaller than
5pm. e HSE functional improves the lattice constant and the bulk modulus for all
materials but diamond with respect to the semilocal PBE functional.
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Table 5.2: Optimized lattice constants in Å obtained with the PBE and the HSE
functional.a In our work, an 8×8×8 k-pointmeshwas employed. Results are com-
pared to experimental results and calculations using the HSE functional within
a PAWb and a Gaussianc method.

is work PAWb Gaussianc Expt.d
Functional PBE HSE HSE HSE —

GaAs 5.743 5.660 5.687 5.710 5.648
Si 5.472 5.441 5.435 5.451 5.430
C 3.571 3.549 3.549 3.557 3.567

MgO 4.265 4.217 4.210 4.222 4.207
NaCl 5.703 5.627 5.659 5.645 5.595

a Reference 29. b Reference 27. c Reference 131.
d Experimental data taken from Ref. 136.

Table 5.3: Bulk moduli in GPa obtained with the PBE and the HSE functional.a
An 8×8×8 k-point mesh was employed in our calculations. Results are compared
to experimental results and calculations using the HSE functional within a PAW
method.b

is work PAWb Expt.c
Functional PBE HSE HSE —

GaAs 64.5 79.2 70.9 75.6
Si 88.9 98.0 97.7 99.2
C 433 467 467 443

MgO 153 177 169 165
NaCl 21.3 28.8 24.5 26.6

a Reference 29. b Reference 27.
c Experimental data taken from Ref. 136.
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6.1 Computational effort
In recent years, hybrid functionals has been the subject of continuous scientiĕc in-
terest (cf. Fig. 6.1). In the 1990’s, Becke 20 established the theoretical foundations,
which motivate the intermixing of a certain fraction of nonlocal Hartree-Fock (HF)
exchange with a local exchange correlation functional. With the advent of more
powerful computers, hybrid functional calculations became feasible in periodic sys-
tems. ey were successfully employed to describe the properties of molecules127

and solids128 Furthermore, they overcome128–130 the band gap problem122,123 of den-
sity functional theory (DFT). ese successes animated the ĕeld, which is evidenced
by the drastic increase of the number of publications since the early 2000’s (see
Fig. 6.1). By now, hybrid functionals are routinely applied to systems with correlated
electrons using Gaussian,127 plane wave146, or full-potential linearized augmented-
plane-wave (FLAPW)33 basis sets. For details of the implementation in the FLAPW
method, we refer to Chap. 3.

e evaluation of the nonlocal exchange potential is so expensive, that the use of
these functionals is effectively restricted to a small number of atoms in the unit cell,
despite of the increase of the computational power during the last decade. Several
schemes to reduce the numerical demand have been described in the literature. A re-
striction of the Coulomb interaction to a certain range leads to screened exchange in-
teraction and ĕnally to an effectively screened potential as proposed byHeyd et al..26
Physically this corresponds to correlation effects within the electronic system, which
screen the electron-electron interaction at large distances. e authors evaluated the
necessary integrals in real space,26 where they beneĕted from the ĕnite length scale


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Figure 6.1: Citation analysis using SciVerse Scopus for four representative pub-
lications dealing with hybrid functionals. e citations of the seminal paper by
Becke 23 (. ) is scaled to 10% to ĕt on the same axis. e citations for the
newer hybrid functionals—the PBE0 functional24 (. ), its implementation127 in
G (. ), and the screened HSE26 hybrid functional (. )—have increased
strongly in the last ĕve years.

of the interaction. Since then it has been shown27,29 that the screening is beneĕcial
for reciprocal-space methods as well, as, in comparison to the PBE0 functional, a
smaller k-point sampling of the Brillouin zone (BZ) is sufficient. We have presented
the implementation of the screened exchange in the FLAPW basis in Chap. 5.

An approach particularly suited for reciprocal-space methods was realized by
Paier et al..27 e dispersion of the total energy mainly arises from the kinetic and
theHartree energy, whereas the exchange energy, which is by comparison small, has a
smaller dispersion across the BZ. Within a basis set (in reciprocal space) the nonlocal
exchange is given by two k-point summations over the BZ

EHF
x = −1

2

occ.
∑
n,m

BZ
∑
k,q

⟨ϕnkϕmq ∣V
NL∣ϕmqϕnk⟩ , (6.1)

where ϕnk and ϕmq are Kohn-Sham wave functions with band indices n and m, re-
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spectively. In this chapter, we suppress the spin indices, but a generalization to mag-
netic systems is straightforward. VNL is the nonlocal interaction – the bare Coulomb
interaction for the PBE0 functional24 and the screened Coulomb interaction for the
HSE functional.26 Analogously, we ĕnd a second k-point summation in the calcu-
lation of the nonlocal exchange potential (cf. Eq. (4.26)). Paier et al. 27 proposed
to restrict the inner q-point loop to a smaller mesh of points in the BZ and refer to
this technique as downsampling of the nonlocal exchange. ey demonstrate that in
particular for the screened HSE26 hybrid functional even an up to four times sparser
q mesh yields accurate results. e same technique is not efficiently applicable to
the PBE024 functional, where the accurate evaluation of the bare Coulomb potential
requires a ĕne k-point sampling.

e most commonly used technique to treat correlated materials in DFT is the
LDA+U method.94 In this scheme an on-site Hubbard-like97 term is included for
the localized states (see reference 94 for more details). Although the Hubbard pa-
rameter U can be extracted from ĕrst principles methods by a constrained LDA98,147

or a constrained random phase approximation (RPA)100,148,149 calculation, one oen
chooses an appropriateU according to experimental observations. Rohrbach et al. 150
showed for the transition metal sulĕdes that a unique optimal value of U does not
exist. Novák et al. 151 proposed an exchange functional that shares properties of the
LDA+U method and the HF exchange. ey approximate the nonlocal HF exchange
of the correlated electrons by their on-site contributions

EHF
x ≈ −1

2 ∑
i,j,k,l

ni,lnj,k ⟨φiφj ∣V
NL∣φkφl⟩ , (6.2)

where in contrast to Eq. (6.1) the bare Coulomb potential is restricted to two points
in the same atomic sphere, the φi are localized auxiliary orbitals centered at a speciĕc
atom, and the ni,l is the density-matrix element of the localized orbitals i and l

ni,l =
occ.
∑
m

BZ
∑
k
⟨ϕmk∣φi⟩ ⟨φl∣ϕmk⟩ . (6.3)

As a double-counting correction Edc, the exchange-correlation contribution of the
correlated electrons is removed from the local density approximation (LDA) ex-
change-correlation energy. e total exchange-correlation energy has then the fol-
lowing form

Eon-site
xc = ELDA

xc + EHF,on-site
x − ELDA

xc [ncorr.] (6.4)
with the density of the correlated states

ncorr.(r) =∑
i,l

ni,lφ∗
i (r)φl(r). (6.5)
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Tran et al. 28 generalized this idea to the hybrid functionals replacing the terms in
Eq. (6.4) with the corresponding ones of the hybrid functional. For instance, the
approximated on-site PBE0 functional is calculated as

EPBE0,on-site
xc = EPBE

xc + a (EHF,on-site
x − EPBE

x [ncorr.]) , (6.6)
where the double-counting term is given as the exchange contribution of the corre-
lated electrons in the PBE functional and themixing parameter a = 1/4 is employed as
in the full PBE0 functional.24 Although a formal similarity with the nonlocal func-
tionals exists, the on-site approximation to these functionals can produce drastically
different results. For example, while the PBE0 functional predicts152 a lattice con-
stant of 4.40Å and the fundamental band gap of 4.02 eV, the on-site approximation
to the PBE0 functional yields28 a signiĕcantly larger lattice constant of 4.51Å and a
drastically smaller band gap of 1.3 eV.

In spite of the fact that hybrid functionals have been investigated for almost 20
years, a detailed analysis of the importance of different contributions has not been
done so far. In this chapter, we present a study based on the FLAPWmethod particu-
larly suited for such an approach. e separation of the crystal into muffin-tin (MT)
spheres centered at the atoms and the interstitial region (IR) in between leads directly
to an evaluation of on-site, off-site, and interstitial contributions. In Sec. 6.2, we in-
troduce different levels of approximations, where we successively replace nonlocal
exchange terms by their local counterpart. We compare the effect of these approx-
imations for two prototypical ionic materials (MnO and NiO) and covalent-bound
materials (Si and GaAs) in Sec. 6.3. We draw our conclusions of this comparison in
Sec. 6.5.

6.2 Discussion of different approximations
In Chap. 4, we introduced the evaluation of the nonlocal exchange potentialVNL

x,nn′(k)
by the resolution of the identity with the mixed product basis (MPB)

VNL
x,nn′(k) = −

occ.
∑
m

BZ
∑
q
∑
IJ
⟨ϕnk∣ϕmk−qMqI⟩ vIJ(q) ⟨MqJϕmk−q∣ϕn′k⟩ , (6.7)

where vIJ(q) is the Coulomb matrix
vIJ(q) = ⟨MqI ∣VCoul∣MqJ⟩ , (6.8)

the ϕnk are Kohn-Sham wave functions, the MqI are MPB functions, n, n′, and m are
band indices, k and q are Bloch wavevectors, and

VCoul(r, r′) =
1

∣r − r′∣ (6.9)
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is the bare Coulomb potential. e nonlocal exchange energy is given by the sum of
the diagonal elements and over the whole BZ

ENL
x = −1

2

occ.
∑
n

BZ
∑
k

VNL
x,nn(k). (6.10)

In the PBE0 hybrid functional,24 a fraction of a = 1/4 of the nonlocal exchange en-
ergy is added to the local PBE exchange-correlation functional.14 To correct for dou-
ble counting correction the same fraction a of semi-local PBE exchange14 is removed
(cf. Sec. 4.1).

EPBE0
xc = EPBE

xc + a (ENL
x − EPBE

x ) . (6.11)

Within the FLAPW method,31,32,117 we employ basis functions of atomic functions
in the MT spheres which are matched to plane waves in the IR (see Chap. 3), so
that the resulting basis function is differentiable at the MT boundary. e MPB is
constructed to represent products of FLAPW basis functions33,125,153 and consists
of basis functions deĕned within the MT spheres and the IR. e strict separation
of atomic centered parts and interstitial contributions allows us to investigate the
importance of different terms in detail. e nonlocal energy is separated into four
terms

ENL
x = ENL

x,MT-MT + ENL
x,MT-IR + ENL

x,IR-IR + ENL
x,Γ ∶ (6.12)

e MT-MT term considers only the MT spheres and can be further separated into
on-site and off-site contributions. e MT-IR term describes the interaction be-
tween the spheres and the IR. e IR-IR term is limited to IR basis functions. Fi-
nally, the Γ-point correction incorporates the analytical treatment of the divergence
of theCoulombpotential in reciprocal space (cf. Chap. 4). e local exchange energy
consists of MT and IR contribution

EPBE
x = EPBE

x,MT + EPBE
x,IR. (6.13)

In the following, we will introduce several tiers, in which the energy difference of the
PBE and PBE0 functional

ΔEx = EPBE0
xc − EPBE

xc = a (ENL
x − EPBE

x ) (6.14)

is replaced by approximations that are successively easier to evaluate. We estimate
the computational cost of the different approximations comparing to them to con-
ventional hybrid functional calculations. In these, almost the entire computation
time is spent for the evaluation of the nonlocal exchange term. In our implementa-
tion, the evaluation of the overlap between the wave functions and theMPB accounts
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Figure 6.2: Computation-time distribution of several tasks in examplary EuO and
SrTiO3 hybrid-functional calculations. Roughly two thirds of the time are consumed
by the calculation of the overlap integrals in the muffin-tin (MT) spheres, in the
interstitial region (IR) and reading the wavefunctions from the harddisk. e vector-
matrix-vector (VMV)multiplication accounts for another third of the time. e load
imbalance in the MPI parallelization is responsible for a large part of the remainder.
e rest of the time is spent for the common DFT calculation.

for roughly more expensive than the IR region overlap integrals. e sparse-matrix-
vector multiplication accounts for another third. Everything else is considerably be-
low 5% of the total time.

..1 As a ĕrst approximation, we remove the IR-IR contribution of the nonlocal term
and simultaneously the IR term in the local contribution. e exchange energy
correction to the PBE functional is then given as

ΔEI
x = a (ENL

x,MT-MT + ENL
x,MT-IR + ENL

x,Γ − EPBE
x,MT) . (6.15)

ephysicalmotivation for this approximation is the small amount of the electric
density that resides in the IR. Hence, we assume that the energy and eigenvalues
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of the PBE0 functional will be accurately reproduced. e computational advan-
tage of this approach amounts to approximately 15% of the total time, because
we halve the time necessary to evaluate the sparse-matrix-vector multiplication
by removing the IR-IR part.

..2 In the second tier, we remove the IR contribution altogether

ΔEII
x = a (ENL

x,MT-MT + ENL
x,Γ − EPBE

x,MT) . (6.16)

is approximation is more rigorous than the ĕrst one, as it removes the non-
local interaction between the MT spheres and the IR region. If we employ this
approximation, we could reduce the cost of the hybrid functional calculations by
up to 40%. is results from a speed up in the matrix multiplication, where the
neglect of the rectangular MT-IR part is advantageous, and we do not have to
calculate the overlap integrals for the IR.

..3 Within the third approximation, we restrict theMT contribution to on-site terms

ΔEIII
x = a (ENL,on-site

x,MT-MT − EPBE
x,MT) . (6.17)

We note that with this restriction, the divergence of the Coulomb potential in re-
ciprocal space disappears so that this energy contribution is not evaluated. While
this has no effect in the computation time of the local part, the evaluation of
the nonlocal part is drastically accelerated. We estimate that this approxima-
tion would reduce the computation time to same order of magnitude as typical
LDA+U calculations.

..4 Within the fourth tier, we focus only on speciĕc localized orbitals φi. Resembling
the work of Novák et al. 151 and Tran et al.,28 we limit the description to localized
d states

ΔEIII
x = a (ENL,on-site,d

x,MT-MT − EPBE,d
x,MT ) . (6.18)

In contrast to their work, we employ the MPB to evaluate the overlap integrals.
e construction of the MPB ensures that these overlap integrals contain all d-
state contributions in the wave functions. For the local exchange, we evaluate
the PBE exchange energy for the density of the d electrons. An efficient imple-
mentation of this approximation would be as fast as the LDA+U method. e
time difference to the third tier is hard to assess from our implementation of
the hybrid functionals, as both methods would be approximately two orders of
magnitude faster than the PBE0 functional.
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A general problem of all these approximations is that nonlocal and local exchange
are not treated on equal footing. In the local potential, the long-range nature of the
Coulomb interaction is only included implicitly. In the LDA, the assumption of a
homogeneous density allows for an analytical integration of theCoulomb interaction
(cf. Eq. (2.37))

Ex =
1
2 ∬ d3rd3u n(r)nx(r,u)

u , (6.19)

where n is the electronic density, nx is the exchange hole, and u = r − r′. In contrast,
in the hybrid functionals the Coulomb interaction is evaluated explicitly for the HF
exchange. If we impose restrictions to the region, where the HF exchange is evalu-
ated, this would translate to a change in the strength of the local potential. However,
it is not straightforward to translate the restriction imposed to the nonlocal Coulomb
interaction to the local potential, because the analytical solution of the exchange in-
tegral in the local part is a direct consequence of the bare Coulomb potential. If a
different nonlocal interaction, as introduced in the aforementioned approximations,
is combined with an unsuitable local park, this will lead to a double-counting or a
neglect of parts of the exchange interaction. To counteract these problems, one could
reĕne the local energy imposing the same restrictions to the integrals in Eq. (6.19)
as for the nonlocal part. However, then the six-dimensional integral would have to
be calculated numerically, which would increase the computational cost drastically.
Here, we limit ourselves to the simple approximations for the local contribution and
reveal the resulting mismatch to the pure hybrid functional.

6.3 Application to prototypical materials

In the following, we analyze the two semiconductors Si and GaAs, which possess a
diamond and a zincblende structure, respectively, and the two antiferromagnetic ox-
idesMnO andNiO, which crystallize in a rock-salt unit cell. e antiferromagnetism
of the latter two compounds is predicted by the Goodenough-Kanamori rules,154,155
indicating that the magnetic moments in neighboring atoms with ĕlled orbitals have
an opposite alignment. is gives rise to a three -dimensional checkerboard- like
arrangement of moments, the AFM-II structure. We perform all calculations at the
experimental lattice constant and analyze different band transitions, magnetic mo-
ments where appropriate, and the orbital-resolved charge within the MT spheres.
We calculate all band transition energies as differences of the respective Kohn-Sham
eigenvalues. We deĕne the magnetic moment as the difference of the two spin den-
sities within a MT sphere, i.e., we neglect all contributions from the IR.
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Table 6.1: We present the data for MnO: e smallest fundamental band gap
Δfund, the smallest direct band gapΔopt, themagneticmoment perMn atommMn,
and the number of d electrons of majority spin character within the MT spheres
Nd is compared to theoretical and experimental results from the literature.

Δfund (eV) Δopt (eV) mMn (μB) Nd

PBE0 3.73 4.37 4.63 4.92
Level I 3.78 4.39 4.62 4.91
Level II 3.01 3.72 4.61 4.92
Level III 1.98 2.66 4.64 4.93
Level IV 1.70 2.16 4.65 4.96
PBE 0.92 1.57 4.43 4.84
HSE 2.98 3.61 4.63 4.92
LDA + U 2.17 2.65 4.70 4.94
PBE + U 2.36 2.80 4.75 4.95
PBE0a 4.02 4.52
HSE03b 2.8 4.52
EXXc 3.80 4.21 4.60
EXXcc 3.96 4.37 4.60
B3LYPd 3.92 4.73
on-sitee 1.3 1.9 4.40
LDA + Ue 1.9 2.5 4.50
Expt. 3.9f 2.0g 4.58,h 4.79i

a Reference 152. b Reference 156. c Reference 121. d Reference 157. e Reference 28.
f Reference 158. g Reference 159. h Reference 160. i Reference 161.

e numerical convergence parameters are chosen to efficient values focusing
more on the general trends in the different approximations and less on the exact val-
ues. ese might change slightly with an increase of the numerical cutoffs, whereas
the qualitative picture is well reproduced. We compare results for the PBE14 and the
PBE024 functional as well as for the different approximations introduced in the last
section. We contrast these calculations to theoretical results from the literature. For
comparison, we report experimental values where available.

Manganese Oxide (MnO)

For MnO, we present our results for the band transition energies, the magnetic mo-
ment per Mn atom, and the charge accumulated in d orbitals within the MT sphere
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in Table 6.1. Within the PBE0 functional, direct and indirect band gap are drasti-
cally increased with respect to the corresponding PBE results. With the PBE0 (PBE)
functional, we obtain a value of 3.73 eV (0.92 eV) for the fundamental band gap and
a value of 4.37 eV (1.57 eV) for the smallest direct band gap which is accessible by
optical experiments. e d electrons become more strongly localized in the PBE0
calculations, which is manifested in the increase of the magnetic moment per Mn
atom from 4.43 μB to 4.63 μB and the charge accumulated in the d orbitals from 4.84
electrons to 4.92 electrons per spin channel. We get a somewhat smaller fundamen-
tal band gap than Franchini et al.,152 which is a measure for size of the deviations
induced by the reduced values of the numerical convergence parameter. e dif-
ference in the magnetic moment is probably related to a different size of the MT
sphere. With the B3LYP hybrid functional a similar opening of the band gap is ob-
served.157 Employing the screened HSE hybrid functional yields an indirect band
gap of 2.98 eV and a direct one of 3.61 eV. e same size of the magnetic moment
and the same number of d electrons indicate that the charge localization is similar
to the one obtained with the PBE0 functional. Employing the older HSE03 imple-
mentation, Marsman et al. 156 ĕnd a smaller band gap of 2.8 eV. e EXX func-
tional,121 where the nonlocal exchange is converted into an optimized local poten-
tial, results in similar band gaps and magnetic moments as our PBE0 results. We
compare the hybrid functionals to DFT+U calculations, where the U and J values
were determined by constrained RPA.100 Adding the Hubbard-like term to the LDA
calculation (U = 7.52 eV, J = 0.68 eV), we ĕnd an increased fundamental band gap of
2.17 eV and optical band gap of 2.65 eV. e charge is localized more strongly than
in the hybrid functionals resulting in a higher magnetic moment. Starting from the
PBE functional (U = 8.01 eV, J = 0.69 eV), the values increase to 2.36 eV and 2.80 eV
for indirect and direct band gap, respectively, which is still somewhat smaller than
the transitions predicted with hybrid functionals. e experimental results are in-
consistent, because the optical band gap159 of 2.0 eV is signiĕcantly smaller than the
fundamental band gap158 of 3.9 eV. e latter is best reproduced by the PBE0 func-
tional, the former is closer to the PBE results.

Approximating the PBE0 functional with the expressions introduced in Sec. 6.2,
we ĕnd that the ĕrst level reproduces the band transitions, the magnetic moment,
and the number of electrons in the d states accurately. ough the second tier fea-
tures a similar charge within the MT spheres, the band transitions are signiĕcantly
reduces by ∼ 0.7 eV. ForMnO the band transitions within the second approximation
are surprisingly close to the results with the HSE functional. If we reduce the nonlo-
cal exchange to on-site contributions (Level III), the band gap is further reduced to
1.98 eV and 2.66 eV for the fundamental and optical transition, respectively. How-
ever, this does not go along with a reduction of the charge at the atomic sites, which
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Figure 6.3: Comparison of l-projected density of states (DOS) for the spin-up chan-
nel in MnO using different approximations to the PBE0 functional. e blue contri-
bution originates from the majority d orbitals of the Mn atom, the cyan contribution
originates from the ones with the opposite spin direction. e red fraction is as-
sociated with the p orbitals of oxygen and the remainder to the total DOS consists
mainly of charge in the interstitial region. e transparent purple area shows the
region where no electronic states exist. e tails in the gap result from the Gaussian
broadening.
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is (albeit slightly) increased. As fourth tier, we limit the nonlocal exchange to the d
states. e transitions shrink further to 1.70 eV (2.16 eV) for the fundamental (op-
tical) band gap. e d electrons tend towards stronger localization. In comparison
to the related DFT+U scheme, we observe band transitions that are similar or a bit
smaller depending on the particular choice of the local functional and the values for
the parameters U and J. e method of Tran et al.,28 which employs a different kind
of on-site projection functions but is otherwise identical to our fourth level, yields
the smallest band transitions of all investigated techniques which go beyond the LDA
and generalized gradient approximation (GGA) functionals.

Figure 6.3 visualizes the effect of the different approximations comparing the
electronic density of states (DOS) of one spin channel. e area where no states ap-
pear becomes smaller the further we approximate the hybrid functional. Only the
ĕrst level reproduces the band gap accurately. eDOS reveals that not only the sizes
of the band transitions are modiĕed. Starting from the second level of approxima-
tion the physics of the occupied states changes. e bandwidth of the p-d-hybridized
states becomes narrower and the peaks more pronounced. In the fourth approxima-
tion the hybridization is almost lied, and we identify separate O p and Mn d peaks.
e hybridization disappears within the PBE functional as well, although the order
of the peaks is different than in the fourth tier.

Nickel Oxide (NiO)

In Table 6.2, we compare the band transitions, number of occupied d states, and the
magnetic moment of NiO obtained with the different approximations to the PBE0
functional with results from the literature. e bare PBE0 functional increases the
direct and indirect band gap with respect to the PBE functional from 1.13 eV and
0.97 eV to 5.94 eV and 5.34 eV, respectively. is goes along with a growth of the
magnetic moment from 1.38 μB to 1.67 μB, which is mainly driven by the decrease
of the minority d charge from 3.49 to 3.29 electrons. In the B3LYP hybrid func-
tional,128,157 the fundamental band gap is signiĕcantly larger than in the local PBE
functional, though not as large as in our PBE0 calculation. e magnetic moment
predicted from B3LYP is identical to our results. In the LDA+U method the band
gap opens as well.28 e predicted value for the optical band gap of 4.0 eV is consid-
erably smaller than our hybrid functional result. e magnetic moments of 1.64 μB
and 1.90 μB measured in experiments,160,165 matcheswell with themoments obtained
in all the methods that go beyond PBE. e band transitions are inconsistent as the
reported values of 4.0 eV162 and 4.3 eV163 for the fundamental band gap are larger
than the optical band gap of 3.1 eV.164 e PBE0 functional seems to overestimate
the band gap by at least 1 eV.
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Table 6.2: We present the data for NiO: e smallest fundamental band gap
Δfund, the smallest direct band gap Δopt, the magnetic moment per Ni atom mNi,
and the number of d electrons of minority spin character within the MT spheres
Nd is compared to theoretical and experimental results from the literature.

Δfund (eV) Δopt (eV) mNi (μB) Nd

PBE0 5.34 5.94 1.67 3.29
Level I 5.50 6.07 1.69 3.28
Level II 4.48 5.38 1.64 3.32
Level III 3.10 4.05 1.66 3.32
PBE 0.97 1.13 1.38 3.49
HSE03a 4.2 1.65
B3LYPb 4.1 1.67
B3LYPc 4.2 1.67
on-sited 2.8 3.4 1.73
LDA + Ud 3.2 4.0 1.72
Expt. 4.0,e 4.3f 3.1g 1.64,i 1.90j

a Reference 156. b Reference 128. c Reference 157. d Reference 28. e Reference 162.
f Reference 163. g Reference 164. i Reference 165. j Reference 160.

We turn now to the effect of the approximations introduced in Sec. 6.2. For NiO,
already the simplest approximation changes the band gap and the magnetic moment
towards slightly larger values. e second level decreases the fundamental band gap
to 4.48 eV and the direct one to 5.38 eV. e magnetic moment evaluated within
the MT sphere shrinks due to a larger occupation of the minority d states. is ef-
fect on the magnetic moment is reversed in the third approximation although the
occupation of the minority d states remains unchanged. Within the third tier, we
obtain a signiĕcant reduction of the direct band gap to 4.05 eV and the indirect band
gap to 3.10 eV. For the fourth approximation no self-consistent solution was found.
Within the LDA+U method also only on-site contributions are considered, which
are in addition limited to d electrons. e values obtained with the third approxi-
mation compare nicely to the LDA+U results of 4.0 eV and 3.2 eV, respectively. e
on-site approximation of Tran et al.,28 which incorporates nonlocal exchange only
for d states predicts a fundamental band gap of 2.8 eV and an optical one of 3.4 eV,
somewhat smaller than the band gap in the third tier. is differencemight originate
from the restriction to d levels in the on-site approximation of Tran et al..28

In Fig. 6.4, we present the DOS of NiO obtained with different approximations to
the PBE0 functional in comparison to the hybrid PBE0 functional and the local PBE



 . A  H F

0

2

4

PBE0

D
O

S

0

2

4

Level I

D
O

S

0

2

4

Level II

D
O

S

0

2

4

Level III

D
O

S

-6 -4 -2 0 2 4 6
0

2

4

PBE

E − EF (eV)

D
O

S

Figure 6.4: Comparison of l-projected density of states (DOS) for the spin-up chan-
nel in NiO using different approximations to the PBE0 functional. e blue contri-
bution originates from the majority d orbitals of the Ni atom, the cyan contribution
originates from the ones with the opposite spin direction. e red fraction is as-
sociated with the p orbitals of oxygen and the remainder to the total DOS consists
mainly of charge in the interstitial region. e transparent purple area shows the
region where no electronic states exist. e tails in the gap result from the Gaussian
broadening.
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functional. Within the PBE0 functional, we ĕnd a hybridization of the O 2p states
with the Ni d states. e crystal ĕeld splits the d levels into t2g and eg. In the majority
spin all d states are occupied, whereas only the t2g ones are ĕlled in the minority spin
channel. e minority and majority states are separated by the exchange splitting so
that the states close to the Fermi energy have mostly minority character. e minor-
ity eg are separated from the t2g states by a robust band gap of 5.34 eV. In the ĕrst
level, this is reproduced accurately. All peaks in the conduction band are at the same
positions as in the pure PBE0 functional. e major difference to the PBE0 func-
tional is an increased band gap due to the shi of the unoccupied eg peak towards
higher energies. e second tier introduces more signiĕcant changes. e minor-
ity t2g states acquire a broader band width, the peak of the majority eg states is less
pronounced, and the fundamental band gap shrinks by roughly 1 eV. Introducing
the on-site approximation (Level III), the d states become stronger bound, hence the
main contribution close to the Fermi energy comes from the O p states. All peaks as-
sociated to d states shrink in magnitude and move towards lower energies. e band
gap is reduced to 3.10 eV. In the PBE functional only a very small hybridization of
theO p andNi d states is predicted. e oxygen levels aremainly distributed between
−7 eV and −3 eV (relative to EF), whereas the d levels reside between −2.5 eV and the
Fermi energy. e band gap is reduced to roughly 1 eV, considerably smaller than
calculated with any nonlocal functional.

Silicon (Si)

Table 6.3 collects the results for different band transitions, the lattice constant, and
the bulk modulus of the silicon in the diamond structure. e application of the hy-
brid functionals PBE0 and HSE yields a signiĕcant increase in all band transitions
with respect to the local PBE functional. e lattice constant is reduced, whereas the
bulk modulus becomes larger. We attribute the small discrepancies with respect to
results from the literature27,29,33 to the slightly smaller values of the numerical cutoffs
employed here. We ĕnd that theHSE functional accurately describes the experimen-
tal band transitions,138–140 whereas the PBE0 functional yields a better agreement for
the lattice constant and the bulk modulus.

We turn now to the approximations to the PBE0 functional. As for the oxides,
the ĕrst approximation reproduces the band transitions of the PBE0 functional quite
well. However, there is no systematic trend. While the Γ → X transition remains
almost constant, the Γ → Γ transition decreases by 0.15 eV, and the Γ → L transition
increases by 0.06 eV. Even though the band structure is close to the PBE0 functional,
the structural properties are not reproduced. e lattice constant is increased almost
to the value of the PBE functional and the bulk modulus is signiĕcantly overesti-
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Table 6.3: Comparison of the theoretical and experimental results for different
band transitions, the lattice constant a, and the bulk modulus B of silicon.

Γ→Γ(eV) Γ→X(eV) Γ→L(eV) a (Å) B (GPa)

PBE0 4.00 1.96 2.92 5.439 99.3
Level I 3.85 1.95 2.98 5.460 115.8
Level II 3.30 1.19 2.15 5.455 80.1
Level III 2.49 0.37 1.14 > 1.02aexp
Level IV 2.53 0.70 1.52 > 1.02aexp
PBE 2.56 0.71 1.54 5.472 89.0
HSE 3.32 1.28 2.24 5.443 98.2
PBE0a 3.96 1.93 2.87
PBE0b 3.97 1.93 2.88 5.433 99.0
HSEc 3.32 1.29 2.24 5.441 98.0
HSEb 3.32 1.29 2.24 5.451 97.7
Expt. 3.05,d

3.34–3.36,e
3.4,f

1.13,e
1.25d

2.06,g
2.40f

5.430h 99.2h

a Reference 33. b Reference 27. c Reference 29 (cf. Sec. 5.5).
d Reference 139. e Reference 140. f Reference 138. g Reference 141.
h Experimental data taken from Ref. 136.

mated. In the second tier, the band gaps shrink to values approximately equal to the
ones obtained with the HSE functional. However, the lattice constant is larger than
the hybrid-functional prediction and the bulk modulus is even smaller than one ob-
tainedwith the PBE functional. e on-site approximation (level III) performsworse
than the PBE functional, the band transitions are underestimated, whereas the lat-
tice constant resides above the investigated interval. In the fourth step, we restrict
the exchange to the d states and recover the band transitions of the PBE functional.
e lattice constant is still strongly overestimated, indicating that the ansatz for the
total energy of this approach is not consistent (the nonlocal contribution of the d
states does not compensate the local one).

In Fig. 6.5 theDOSof Si obtainedwith theHSE, the PBE0, and the PBE functional
as well as all approximations is shown. We recognize that the valenceDOS calculated
with the PBE0 and the HSE functional are almost identical. e main difference
lies in the gap, which is larger in the PBE0 functional. In hybrid functionals, the
band width of the valence band is increased with respect to the band width obtained
with the conventional PBE functional. roughout the series of approximations in
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Figure 6.5: e densities of states (DOS) for bulk silicon calculated with the HSE,
PBE0, and PBE exchange correlation functional is compared to the different approx-
imations to the hybrid functionals. e purple area indicates the band gap region
within which no electronic states exists. Any existing part within is an artifact of the
Gaussian broadening used to construct the DOS.
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Table 6.4: Comparison of the theoretical and experimental results for different
band transitions and the position of the d states of Ga Δd,Ga with respect to the
Fermi energy in GaAs.

Γ → Γ (eV) Γ → X (eV) Γ → L (eV) Δd,Ga (eV)

PBE0 1.95 2.72 2.35 -18.0
Level I 2.15 2.73 2.44 -17.7
Level II 1.24 1.84 1.62 -18.5
Level III 0.12 1.16 0.75 -19.1
Level IV 0.60 1.04 1.42 -22.0
PBE 0.47 1.47 0.75 -15.1
HSE 1.33 2.06 1.70 -18.0
PBE0a 2.02 2.69 2.38
PBE0b 2.01 2.67 2.37
HSEc 1.43 2.06 1.78
HSEb 1.45 2.02 1.76
Expt.d 1.63 2.01, 2.18 1.84, 1.85 -16.9
Expt.e 1.52 1.90 1.74

a Reference 33. b Reference 27. c Reference 29 (cf. Sec. 5.5).
d Reference 138. e Reference 137.

particular the band gap and the bandwidth decrease. e behavior is notmonotonic,
e.g., the band gap of the third tier is smaller than the one of the fourth approximation.
Wenote that although the band transitions of theHSE functional arewell reproduced
by the second level, the band width is smaller.

Gallium Arsenide (GaAs)

We present the results for different band transitions of GaAs and the position of the
d states of Ga in Table 6.4. e band gaps obtained with the PBE0 functional are
approximately 1.5 eV larger than with the ones calculated with the PBE functional
and are close to results from the literature obtained with the same functional.27,33
e d orbitals of Ga are more strongly bound at −18.0 eV compared to the PBE func-
tional (−15.1 eV). In the HSE functional, we ĕnd the d states at the same position
as in the PBE0 functional. e band gap is considerably (∼ 0.6 eV) smaller than the
band gap obtained with PBE0. Nevertheless, it is still signiĕcantly larger than the
PBE counterpart. e HSE results for these band transitions from the literature27

and our results from Sec. 5.5 are somewhat larger, hence indicating the error associ-
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ated to the reduced values of the numerical parameters. Comparing to experimental
results,137,138 we ĕnd that the HSE functional gives the best agreement of all the con-
sidered functionals.

We consider next the effect of the approximations. e ĕrst level yields band
transitions in good agreement with the results of the PBE0 functional with a small
increase in the absolute numbers. e d states of Ga are found at a somewhat higher
energy. e second tier reduces the band gaps signiĕcantly to values approximately
close to the ones obtained with the HSE functional. e binding energy of the d
states increases to 18.5 eV. Within the third approximation, the band transitions are
smaller than their PBE counterpart, while the d states of Ga are boundmore strongly.
Within the fourth level the order of the band transitions changes so that the Γ → X
is smaller than Γ → L, and the d states are even stronger bound.

In Fig. 6.6, we visualize the impact of the different approximations on the DOS of
GaAs in contrast with the local PBE and the nonlocal HSE and PBE0 functional. We
identify threemajor contributions to the valence band of GaAs in the selected energy
range. e As s peak is situated at a binding energy of around 12 eV. Above, at an
energy of ∼ −7 eV, we see the corresponding s peak of Ga. e rest of the states below
as well as above the Fermi energy have mainly p character from either of the atoms.
With the HSE and PBE0 functional, the s peaks of both atoms are shied downwards
by ∼ 1 eV and the band width of the p states below the Fermi energy is increased
with respect to the PBE functional. In the PBE0 functional, the band gap obtains
a large value of 1.95 eV, the HSE functional predicts a smaller band gap of 1.33 eV,
and the PBE functional reduces it to merely 0.47 eV. Turning to the approximations,
we recognize that the ĕrst level reproduces most properties of the PBE0 functional,
albeit the Ga s peak is found at a higher energy and the band gap is increased by
0.2 eV. In the second tier, the band gap is reduced to 1.24 eV close to that of the
HSE functional. Both s peaks are more loosely bound and the band width is slightly
reduced compared to the hybrid functionals. Employing the third approximation
(on-site HF only), the valence spectra is reproduced for the low lying As s states. e
position of the Ga s and the band width of the p states is similar to the second tier.
However, the band gap to the conduction band is signiĕcantly underestimated. In
the fourth level, we almost recover the results of the PBE functional, although the
details reveal a changed order in the band transitions (see Table 6.4).

6.4 k-point interpolation
An alternative approach to reduce the computational cost of hybrid functionals is
related to the downsampling of the exchange potential. is was introduced by Paier
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Figure 6.6: e densities of states (DOS) for bulk GaAs calculated with the HSE,
PBE0, and PBE exchange correlation functional is compared to the different ap-
proximations to the hybrid functionals. e blue part shows the density located at
Ga atoms, the cyan area represents the As atoms. e remainder to the total DOS
(black) is situated within the interstitial region. e purple area indicates the band
gap region within which no electronic states exists. e blue tails are related to the
Gaussian broadening.
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et al. 27 for the inner q-point mesh of the nonlocal exchange, and we will examine the
more rigorous downsampling of both k- and q-point mesh. e total contribution
of the hybrid functional to the Hamiltonian is given as (cf. Eq. (4.15))

Vhyb.
x,GG′(k) =

occ.
∑
m

BZ
∑
q
⟨χk+Gϕmq ∣V

NL∣ϕmqχk+G′⟩ − ⟨χk+G ∣V
L∣ χk+G′⟩ , (6.20)

where χk+G are FLAPW basis functions and VNL and VL correspond to the nonlocal
and local potential, respectively. If we restrict the evaluation of this term to a reduced
mesh of k points and evaluate the inner q summation on the same smaller mesh,
we will gain a tremendous speed up. For example, reducing the k-point mesh from
8×8×8 to 4×4×4 in SrTiO3 reduces the computation time by a factor of 34. e
physical motivation to restrict the evaluation of the exchange to a less precise mesh
is that the exchange energy is a small quantity compared to the contribution of the
kinetic energy and the electrostatic potential of the charge density. Nevertheless, we
need an interpolation technique to evaluate the exchange potential at intermediate
k points. We recall that two different types of basis functions exist (see Chap. 3):
LAPW functions and local orbitals. For the former, we choose a linear interpolation
technique. Let

kint = a1k1 + a2k2, (6.21)

where ki are k-points, for which the nonlocal exchange is evaluated directly, kint is
the interpolated k-point, and with the requirement that a1 + a2 = 1 and 0 ≤ ai ≤ 1.
en the interpolated potential is given by

Vhyb.
x,GG′(kint) =

2
∑
i=1

aiVhyb.
x,GG′(ki). (6.22)

Due to the criterion ∣k +G∣ ≤ Gmax, the set of G vectors is different at different k
points. erefore, we restrict ourselves to thoseG points that are present at k1, k2, and
the interpolated point kint. Furthermore, we include a shi by an reciprocal lattice
vector ΔGi to theG vectors if the path from ki to kint crosses the boundary of the BZ.
is corresponds to the requirement, that the length

∣ΔGi − (kint. − ki)∣ (6.23)

is minimized. is yields the following expression for the interpolated potential

Vhyb.
x,GG′(kint) =

2
∑
i=1

aiVhyb.
x,(G+ΔGi),(G′+ΔGi)(ki). (6.24)
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For the local orbitals, we use a different scheme, in which the k dependence of the
local orbitals is removed. In general, a local orbital can be written as

χk+Glo
(r) =

l
∑
m=−l

MGlo,m(k)flom(r), (6.25)

with a k-point independent radial function flom(r), the angular momentum l of the
local orbital and its magnetic quantum number m, and a matrix, which contains the
k-point dependence,

MGlo,m(k) = ei(k+Glo)⋅Ra Y∗
lm(k̂+Glo), (6.26)

with the position of the atomRa. MGlo,m(k) is a squarematrix, because exactly (2l+1)
different Glo vectors are selected. ese Glo vectors correspond to “virtual” plane
waves that are only employed in the construction of the local orbitals (see Sec. 3.4).
We identify two cases:

..1 We interpolate Vhyb.
x,GGlo

(kint), i.e., one basis function is an LAPW function associ-
ated with a plane wave of reciprocal lattice vectorG and the other is a local orbital
matched to a virtual plane wave characterized by Glo. en the interpolated ma-
trix is calculated as

Vhyb.
x,GGlo

(kint) =
2
∑
i=1

ai

l
∑
m=−l

Vhyb.
x,(G+ΔGi),Glo

(ki)M−1
Glo,m(ki)MGlo,m(k

int.). (6.27)

e explicit k-point dependence of the basis functions χki+Glo
is removed by the

multiplication with the inverse of the matrix MGlo,m(ki). e resulting term is
then interpolated and the multiplication with the matrix MGlo,m(k

int.) produces
the correct k-point dependence for the local orbital.

..2 For Vhyb.
x,GloG′

lo
(kint) both basis functions are local orbitals characterized by Glo and

G′
lo, respectively. We remove the k-point dependence by multiplying the inverse

matrices from le (M−1
Glo,m(ki)) and right (M−1

G′
lo,m′(ki)), interpolate the result, and

transform to the intermediate k point aerwards

Vhyb.
x,GloG′

lo
(kint) =

2
∑
i=1

ai ∑
m,m′

MGlo,m(k
int.)M−1

Glo,m(ki)Vhyb.
x,GloG′

lo
(ki)M−1

G′
lo,m′(ki)MG′

lo,m′(kint.). (6.28)
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Figure 6.7: Electronic band structure of silicon generated by k-point interpolation
(red) between the results of the HSE hybrid functional (blue). For comparison, we
depict the results of a PBE calculation as a light-gray line.

As a ĕrst test of the accuracy of the k-point interpolation, we investigate the band
structure of silicon (cf. Fig. 6.7). e interpolated band structure shows a smooth
behavior for the points between the exactly evaluated k points. A comparison with
the PBE band structure shows that the interpolated HSE band structure displays the
correct physical band dispersion. In particular, we shall discuss a few details. An
important feature is the position of the conduction band mimimum, which is situ-
ated along the Γ-X direction and closer to X in the interpolated band structure and
in the band structure obtained with the PBE functional. Consider also the second
highest valence band state: Along the K-Γ direction (close to K) and along the L-W
direction (close toW) the band is curved such that itsminimum is below the exactely
evaluated data points. A similar behavior is found in the local PBE functional as well.
Hence, we attribute this curvature to the major energy contributions of the Hamil-
tonian (Coulomb potential, kinetic energy) and not to the interpolated one of the
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hybrid functional. is qualitative agreement with the PBE band structure indicates
that the linear interpolation of the nonlocal HSE potential is a viable ansatz.

Next, we try the same scheme for ZnO in the zincblende structure. Figure 6.8a)
shows that the oxygen p bands directly below the Fermi energy display a smooth be-
havior whereas the zinc d states situated roughly 6 eV below the Fermi energy exhibit
some unphysical irregularities. e interpolation of the LAPW basis functions fails
for the localized states, because the expansion coefficients of the Kohn-Sham wave
functions strongly differ at different k points. For more delocalized states, such as
the s and p bands, the representation by LAPW at different k points is more similar,
so that the interpolation scheme is applicable. As possible solution to this prob-
lem, we investigate a description of the localized states by local-orbital basis func-
tions. ese are interpolated by an explicit accounting of the k point dependence
(see above). However, we note that this approach will cause problems in the elec-
tronic self consistency if the LAPW basis function and the local orbital one become
linearly dependent. To avoid such problems, we choose a very large energy param-
eter for the LAPW basis functions. In Fig. 6.8b, we demonstrate that this avoids the
unphysical irregularities in the d states of ZnO. e direct band gap at the Γ point
is accurately reproduced, whereas the indirect L → Γ gap shrinks by 0.35 eV. e
reduction of the band gap is caused by the decreased Ęexibility of the basis by the
radical shi of the d energy parameter to high energies. Improving the Ęexibility by
additional local orbitals restores the size of the band gap to the original value (see
Fig. 6.8c).

Motivated by the accurate description of intermediate k points in the band struc-
ture, we apply the same scheme to a self-consistent calculation. As reference, we
evaluate the eigenvalues of SrTiO3 in a large 8×8×8 k-point mesh. en, we em-
ploy a small 4×4×4 k-point mesh and interpolate the nonlocal potential for all k
points that are present in the large mesh. We iterate the calculation in small mesh
and subsequent interpolation of the nonlocal potential until a self consistent solution
is reached. We note that for a general kint several possible combinations of k1 and k2
that fulĕll Eq. (6.21) exist. We restrict ourselves to one particular choice, where

k1,x ≤ kint
x ≤ k2,x, (6.29a)

k1,y ≤ kint
y ≤ k2,y, (6.29b)

k1,z ≤ kint
z ≤ k2,z, (6.29c)

and the length ∣k1 − k2∣ is minimized. In Table 6.5, we show the differences in the
eigenvalues between the small and the large k-point mesh. For the occupied states,
we ĕnd an average deviation of 0.038 eV, which is almost constant for all k points in
the BZ. For the k points, that are already present in the smaller mesh, the eigenval-
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Figure 6.8: Electronic band structure of ZnO generated by k-point interpolation
(red) between the results of theHSE hybrid functional (blue). e three ĕgures differ
by the basis functions employed to describe the Zn d states: (a) LAPW functions, (b)
local orbitals for 3d states, and (c) local orbitals for 3d and 4d states.
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Table 6.5: Interpolation for cubic SrTiO3 from a 4×4×4 to an 8×8×8 k-point
mesh – e ĕrst 10 k points are present in both meshes, whereas the latter 25
ones are only present in the 8×8×8 mesh. We show the mean error (ME) and
the mean absolute error (MAE) of the eigenvalues of occupied and unoccupied
states (relative to the Fermi energy). We compare the results of the interpolation
with a full self-consistent result in the larger mesh. All k vectors are given in
internal coordinates of the Brillouin zone.

occupied states unoccupied states
k-point ME (eV) MAE (eV) ME (eV) MAE (eV)

0 0 0 −0.000 0.038 −0.059 0.059
0 0 1/4 −0.006 0.036 −0.056 0.057
0 0 1/2 −0.010 0.039 −0.053 0.054
0 1/4 1/4 −0.009 0.036 −0.056 0.058
0 1/4 1/2 −0.012 0.039 −0.053 0.055
0 1/2 1/2 −0.013 0.041 −0.052 0.055
1/4 1/4 1/4 −0.011 0.038 −0.053 0.056
1/4 1/4 1/2 −0.013 0.039 −0.052 0.054
1/4 1/2 1/2 −0.014 0.040 −0.050 0.054
1/2 1/2 1/2 −0.014 0.040 −0.050 0.057

0 0 1/8 0.009 0.041 −0.072 0.072
0 0 3/8 0.002 0.035 −0.069 0.069
0 1/8 1/8 0.019 0.044 −0.079 0.079
0 1/8 1/4 0.053 0.062 −0.112 0.112
0 1/8 3/8 0.015 0.038 −0.075 0.075
0 1/8 1/2 0.000 0.037 −0.062 0.062
0 1/4 3/8 0.002 0.034 −0.064 0.064
0 3/8 3/8 0.013 0.035 −0.073 0.073
0 3/8 1/2 −0.001 0.036 −0.063 0.063
1/8 1/8 1/8 0.027 0.047 −0.090 0.090
1/8 1/8 1/4 0.012 0.038 −0.076 0.076
1/8 1/8 3/8 0.027 0.043 −0.083 0.083
1/8 1/8 1/2 0.012 0.036 −0.071 0.071
1/8 1/4 1/4 −0.000 0.035 −0.064 0.065
1/8 1/4 3/8 0.013 0.036 −0.073 0.073
1/8 1/4 1/2 −0.001 0.035 −0.062 0.063
1/8 3/8 3/8 0.025 0.040 −0.081 0.081
1/8 3/8 1/2 0.010 0.035 −0.071 0.071
1/8 1/2 1/2 −0.002 0.038 −0.059 0.059
1/4 1/4 3/8 −0.000 0.034 −0.063 0.064
1/4 3/8 3/8 0.012 0.035 −0.072 0.072
1/4 3/8 1/2 −0.001 0.034 −0.061 0.061
3/8 3/8 3/8 0.024 0.039 −0.081 0.081
3/8 3/8 1/2 0.011 0.035 −0.070 0.070
3/8 1/2 1/2 −0.001 0.036 −0.059 0.062

∑BZ
k . . . 0.005 0.038 −0.067 0.068
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ues are decreased on average, whereas the eigenvalues are rather overestimated for k
points that are only present in the larger mesh. For the unoccupied states, we ĕnd a
systematic decrease in the eigenvalues of averaged 0.067meV with some larger vari-
ations across the BZ than for the occupied states. e eigenvalues at k points of the
4×4×4 mesh should not show differences to the reference calculation if we would
calculate in a one-shot approach. Hence, the observed deviations are a consequence
of the self-consistency cycle. ey are smaller than the differences of the eigenvalues
obtained at the interpolated k points. e systematic decrease of the eigenvalues of
the unoccupied states leads to a decrease of the band gap from 3.33 eV in the ref-
erence calculation to 3.23 eV in the interpolated scheme. Hence, this scheme is no
improvement over the smaller k-point mesh, where the band gap is 3.31 eV close to
the one obtained with the large k-point mesh.

As perspective, we propose to improve the outlined k-point interpolation em-
ploying anmore sophisticated scheme. A possible techniquemay be the employment
of Wannier functions. Our implementation of the nonlocal exchange potential uses
the wave functions in reciprocal space. A suitable alternative is the Wannier basis.
Wannier functions are localized at speciĕc sites R

ϕW
nR(r) =

1√
N

BZ
∑
k

e−ik⋅R ϕnk(r), (6.30)

where N is the number of unit cells. Employing Wannier functions may be advan-
tageous, because they contain the information of all k points in the BZ, whereas the
direct interpolation considers only the k points closest to the intermediate one.

6.5 Conclusion
Wehave introduced four tiers as possible computationally less expensive alternatives
to the nonlocal hybrid functionals. However, we ĕnd that no approximation is suited
to reproduce the energies of the hybrid functionals, e.g., leading to amismatch in the
lattice constant of silicon. e error is more severe the more drastically we approxi-
mate the hybrid functionals. e band structure of the PBE0 functional could be ap-
proximated by the neglect of the pure IR contribution in nonlocal and local potential
(ĕrst level). Surprisingly close agreement was found between the band transitions of
the second tier (complete neglect of IR contribution) and theHSE functional, though
deviations in details exist such as the position of low lying states and the band width.
Although parts of the nonlocal exchange are included, the third approximation only
occasionally provides an improvement over the local PBE functional, whereas it un-
derperforms for the semiconductors. We have found no material where the fourth
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level was useful. In conclusion, we ĕnd that the neglect of the IR-IR is an efficient
approximation if one is only interested in the improvement of the band gap by hybrid
functionals. e complete neglect of IR contributions may provide a faster imple-
mentation of a screened hybrid functional, though further investigation is necessary
to reveal if the coincidence of the band transitions with the HSE functional is sys-
tematic or just a fortuitious case appearing in the selected materials. However, both
approximations need to be reĕned if one is interested in total energies of hybrid func-
tionals. e challenging task is the development of a consistent approximation to the
local and nonlocal potential that avoids double counting and the neglect of relevant
contributions.

We have demonstrated a technique to calculate the potential associated with the
hybrid functional on a coarser mesh than the contributions of the kinetic energy and
the electrostatic potential. is method is based on a linear interpolation of the ma-
trix elements of the hybrid functional. It is particulary suitable for the evaluation
of the electronic band structure of materials without localized states. Including ad-
ditional local orbitals allows the interpolation scheme in compounds with localized
d and f electrons. However, a signiĕcant effort of the user is required to make the
calculation numerically stable, efficient, and accurate. Furthermore, the procedure
is applicable in a self-consistent scheme, though in particular the eigenvalues of the
unoccupied states are systematically underestimated. We encourage the community
to reĕne the interpolation scheme, for example, by means of Wannier functions.
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7.1 Introduction

In this chapter, we present our results several rare earth compounds with a rock-salt
structure. Our interest speciĕcally focuses on the description of the 4f states of the
rare earth atoms within these compounds. An accurate description of the position
of these states is impossible with the conventional exchange-correlation function-
als – the local density approximation (LDA) and the semilocal generalized gradient
approximation (GGA). is failure is typically attributed to the spurious self inter-
action which is present in all local functionals (cf. Sec. 2.5). Hence, one typically
employs the DFT+U scheme,94 where an on-site Hubbard-like term U is added to
the Hamiltonian to correct the eigenvalue of the localized states. Although schemes
to calculate this parameter have been established,98–100 oen its value is chosen to
reproduce certain experimental observations, such as the lattice constant, the band
gap, or the position of the localized states. However, Rohrbach et al. 150 showed at the
example of the transition-metal monosulĕdes, that there is no unique choice of U,
which reproduces all experimental values accurately. us, the predictive power of
density functional theory (DFT) is limited as the quantitative and for somematerials
also the qualitative picture strongly depends on the chosen value of U. In this work,
we demonstrate that hybrid functionals surmount these difficulties and provide an


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accurate description of structural, magnetic, and electronic properties of rare earth
materials.

We focus in particular on gadolinium nitride (GdN) and the europium chalco-
genides (EuX, X = O, S, Se, or Te). e discovery of the europium chalcogenides
dates back to the early 60s.166–168 ey crystallize in a rock-salt structure where the
Eu atom has a half-ĕlled 4f shell leading to a large magnetic moment of 7 μB. All
europium chalcogenides are semiconducting and the band gap increases from EuO
(1.12 eV) to EuTe (2.0 eV).49 As the 4f states are strongly localized themagnetic inter-
action between neighboring Eu atoms is of indirect kind.169,170 e interaction with
the nearest neighbors (nn) is ferromagnetic whereas the coupling to the next nearest
neighbors (nnn) is of antiferromagnetic nature.171 e nn interaction J1 becomes 20
times weaker from EuO to EuTe and the nnn one J2 increases slightly by an factor
of two.171 As a consequence, only EuO and EuS are strictly ferromagnetic below the
Curie temperature, EuSe orders ferromagnetic or antiferromagnetic depending on
the temperature, and EuTe is antiferromagnetic up to its Néel temperature.171 First
principles calculations based on an LSDA+U scheme172 predict a decrease of both
coupling constants J1 and J2 under isotropic stress.

Of special interest is EuO which can be grown epitaxially on Si,43,44 GaN,44,
yttria-stabilized zirconia (YSZ)45 and GaAs.46 EuO and EuS show a large resistivity
anomaly near the Curie temperature TC,173–178 which is attributed to the presence of
“trap” states induced by oxygen vacancies. ese trap states donate their electrons to
the exchange split conduction band belowTC,173,177 yielding a high spin-polarization
perfectly suitable for efficient spin-ĕlters in semiconductor devices.47,48 Above the
Curie temperature the exchange splitting vanishes and the trap states become oc-
cupied. Hence, the resistivity grows by several orders of magnitude. However, the
highest Curie temperature TC of 69K for EuO49 is too small for practical application.
Fortunately, doping the sample with Gd increases the TC up to 170K.51–54 A similar
effect could be achieved by oxygen defects50,51 or doping with La55 or Ce.56 Recently,
Mairoser et al. 179 suggested a close connection of the TC on the carrier density and
showed that only a part of the dopants were activated.179,180 In a theoretical analysis,
Takahashi 181 proposed a model which conĕrms the growth of the Curie temper-
ature upon the increase of the number of carriers in the conduction band. It was
demonstrated182 that the TC of EuS can be increased by Gd doping, too. eoret-
ical calculations based on model calculations reproduced183–186 the metal-insulator
transition at the Curie temperature.

GdN crystallizes in the same structure as the europium chalcogenides. e elec-
tron conĕguration is isovalent to EuO, though in contrast to EuO the highest oc-
cupied states are of 2p character. e band gap is signiĕcantly smaller and whether
there is one at all is still debated in the literature. ere is experimental evidence for
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semi-metallic single crystals39 and insulating thin ĕlms.187 Recent measurements
ĕnd thin ĕlm samples of GdN which are degenerately doped semiconducting36–38

or metallic38 at low temperatures. In ab initio calculations employing an LSDA+U
scheme, depending on the particular choice of the valueU, semiconducting34,35,188,189

as well as half-metallic40,41 ground states were found.
e high saturation magnetic moment per Gd atom of 6.88 μB

190 makes GdN
a promising material for future technological applications. e material is ferro-
magnetic with a Curie temperature of 58K.191 Recent measurements in thin ĕlms
indicate192 a slightly lower critical temperature of 37K. GdN exhibits an anomaly
in the resistivity close the phase transition191 although it is less pronounced than in
EuO.

In this chapter, we present our results for these rare earth compounds using the
hybrid functionals HSE and PBE0. First, we describe the computational setup used
for GdN as well as the EuX series in Sec. 7.2. In Sec. 7.3, the structural, electronic
andmagnetic ground state of GdN is examined. ese results are part of our paper.29
In the following sections, we compare the experimentally determined properties of
EuO (Sec. 7.4), EuS (Sec. 7.5), EuSe (Sec. 7.6), and EuTe (Sec. 7.7) with the results
of our DFT calculations. We analyze the systematical trends in the series in Sec. 7.8.
Finally, we conclude our investigation of the rare earth compounds in Sec. 7.9.

7.2 Computational setup

We calculate the rare earth compounds in the rock-salt structure, with the room-
temperature lattice constants of aGdN = 4.988Å,193 aEuO = 5.141Å, aEuS = 5.968Å,
aEuSe = 6.195Å, and aEuTe = 6.598Å.171 At low temperatures the magnetic moments
align, resulting in a ferromagnetic (FM) ground state (see Fig. 7.1) in all materi-
als with the only exception of EuTe, which has an antiferromagnetic (AFM) ground
state. In these materials, the following states are important: i) the 4f states of the
rare earth ion, which are occupied only in the majority spin channel, and give rise
to the large magnetic moment of 7 μB. ii) the s and p states for the nitrogen or the
chalcogenide atom, which form the valence band. iii) the conduction band, which
consist of the 5d and the 6s states of the rare earth ion. In addition to these states,
we describe the 5s and the 5p states as local orbitals to avoid problems with semicore
states.118 To reduce the linearization error of the FLAPW method,194,195 we increase
the Ęexibility of the basis within the muffin-tin (MT) spheres by adding unoccupied
local orbitals.120

We determined the numerical cutoff parameters by converging the energy dif-
ference between the experimental lattice constant and a 1% larger unit cell up to
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Figure 7.1: At low temperatures, GdN, EuO, EuS, and EuSe realize a ferromagnetic
ground state in the rock-salt structure.

Table 7.1: Numerical parameters employed in the calculation of gadolinium
nitride and the europium chalcogenides.

GdN EuO EuS EuSe EuTe

k-point mesh 8×8×8
muffin-tin radii
rare-earth cation (Gd, Eu) 2.33a0 2.60a0 3.08a0 2.85a0 2.80a0
anion (N, O, S, Se, Te) 1.95a0 2.16a0 2.41a0 2.85a0 2.80a0
plane-wave cutoffs
FLAPW basis 4.9a−1

0 4.3a−1
0 4.5a−1

0 4.7a−1
0 4.3a−1

0
mixed product basis (MPB) 3.6a−1

0 3.1a−1
0 3.6a−1

0 3.0a−1
0 3.4a−1

0
angular-momentum cutoffs
cation, FLAPW basis 12 14 12 14 14
anion, FLAPW basis 10 8 10 14 14
cation, MPB 6 6 6 6 6
anion, MPB 4 4 4 4 4
local orbitals, cation 5s, 5p, 7s, 7p, 6d, 5f
local orbitals, anion 3s, 3p,

4d, 5f
3s, 3p,
4d, 5f

4s, 4p,
4d, 5f

5s, 5p,
5d, 5f

6s, 6p,
6d, 5f

number of bands 200 240 270 260 240
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Figure 7.2: Schematic picture of the paramagnetic approximation:188 Below the
Curie temperature TC (le), the magnetic moments are aligned which yields a small
magnetic polarization of the p and t2g levels for the different spin channels. Increas-
ing the temperature above TC, the moments rotate randomly, so that in average the
polarization of the p and t2g states disappears.

1meV. In particular, we optimized the FLAPW basis set as well as the mixed prod-
uct basis (MPB) with respect to the size of the k-point mesh, the plane-wave and
angular-momentum cutoffs, the included unoccupied local orbitals and the number
of bands (cf. Chap. 4). We list the converged parameters for the primitive unit cell
consisting of two atoms in Table 7.1. For the larger unit cells involved in the anti-
ferromagnetic calculations, we adjusted the k-point mesh so that the k-point density
remains the same. In addition, we increased the number of bands according to the
increase in the number of electrons.

We ĕt total energies obtained for different lattice constants to aMurnaghan equa-
tion of state145 to determine the theoretically optimized lattice constant and the bulk
modulus. We approximate the real eigenvalues by their Kohn-Sham counterpart
(see Sec. 4.1). Hence, we calculate the direct and indirect band transitions as energy
difference of Kohn-Sham eigenvalues at the same, and at two different k points, re-
spectively. e paramagnetic conĕguration is more difficult to assess from ĕrst prin-
ciples, as the thermal Ęuctuations driving the ferromagnetic to paramagnetic transi-
tion are not included in the calculation. To compare to experimental results which
are obtained at room temperature, Larson et al. 188 developed a practical approxi-
mation to extract the paramagnetic state from DFT results. We illustrate the idea in
Fig. 7.2. Below the phase transition temperature TC the moments of the rare-earth
4f states are aligned. Each moment induces a small polarization on the d-t2g levels
and the p states. At temperatures above TC, the moments of the rare-earth atoms
Ęuctuate randomly which yields an overall vanishing magnetization. e magnetic
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Figure 7.3: Antiferromagnetic unit cells: On the le the AFM-I structure is shown,
where the magnetic moment alternates along the crystallographic [001] direction.
In the AFM-II structure (right), the magnetic moment Ęips in neighboring planes
orthogonal to the crystallographic [111] direction.

polarization induced on the other states disappears. us, the approximate eigen-
value of a particular state above the Curie temperature is given by the average of the
corresponding spin-up and spin-down energies in the ferromagnetic phase.29,188

From ĕrst principles, we determine the critical temperature by mapping total
energies onto a classical Heisenberg spin Hamiltonian

H = −1
2 ∑

i
Si
⎛
⎝
J1 ∑

j=nn
Sj + J2 ∑

j=nnn
Sj
⎞
⎠

(7.1)

with normalized spin vectors Si and Sj including nn and nnn interaction. e corre-
sponding coupling constants J1 (nn) and J2 (nnn) favor ferromagnetism, if they are
positive and antiferromagnetism otherwise.29 Following the work of Duan et al.,196
we evaluate the coupling constants by calculating the unit cells depicted in Fig. 7.3.
e energy difference between FM and AFM conĕguration is directly related to the
coupling constants. In the ĕrst structure (AFM-I), the magnetic moments are or-
dered ferromagnetically in planes orthogonal to the [001] direction, whereas neigh-
boring planes are coupled antiferromagnetically. e second structure (AFM-II) is
deĕned analogously by planes orthogonal to the [111] direction. We evaluate both
structures in their primitive unit cell, which has a twice as large volume as that of
the primitive unit cell of the FM structure. e energy of the FM state is addition-
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ally evaluated for the structure of the AFM conĕgurations, to ensure a reliable total
energy difference.

Employing the classical Heisenberg spin Hamiltonian (Eq. (7.1)) to these struc-
tures, we obtain the following expressions for the energy differences between FM
and AFM structure

ΔEI = EAFM,I − EFM,I = 8J1 and (7.2a)
ΔEII = EAFM,II − EFM,II = 6J1 + 6J2. (7.2b)

From these equations obtaining the coupling constants J1 and J2 is straightforward.
With these coupling constants, we have access to the determination of the critical
temperature TC by three different methods:

Mean ĕeld approximation (MFA) assumes that the effect on a single spin can be
condensed into an average ĕeld.154 e probability of obtaining a certain spin
state S is proportional to the Boltzmann factor exp[−E/kBT]. Without external
ĕeld, the energy is given as

E = 1
2
(J1Nnn + J2Nnnn)S ⋅ S, (7.3)

with the mean spin S, the number of nn Nnn, and the number of nnn Nnnn. For
a classical spin this leads to an implicit equation for the average spin S

S = L [ 1
2kBT

(J1Nnn + J2Nnnn)S] , (7.4)

with the Langevin function L.We expand the right-hand side to determine the
smallest temperature for which a non-zero solution for S exists and ĕnd

TMFA
C =

JMFA
eff.
3kB

, (7.5)

with an effective coupling constant JMFA
eff. = NnnJ1 +NnnnJ2

fcc= 12J1 + 6J2, which
subsumes the interaction of all other spins.

Random phase approximation Taking into account magnetic excitations, Bogoli-
ubov andTyablikov 197 developed the randomphase approximation (RPA) that
yields198 a Curie temperature of

TRPA
C =

JRPA
eff.
3kB

. (7.6)
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is equation is formally similar to the MFA (Eq. (7.5)) and the details of the
approximation are combined into a modiĕed effective coupling constant

JRPA
eff. =

⎡⎢⎢⎢⎢⎣
∫
BZ

d3q 1
J(0) − J(q)

⎤⎥⎥⎥⎥⎦

−1

, (7.7)

where the integral is evaluated on a discrete mesh of q points within the Bril-
louin zone (BZ),29,121 and J(q) is the Fourier transform of the exchange cou-
pling constants

J(q) =∑
nn

J1 eiq⋅Rnn +∑
nnn

J2 eiq⋅Rnnn , (7.8)

with the positions of nn Rnn and of nnn Rnnn.

Monte Carlo simulation e third employed method is a Monte-Carlo (MC) sim-
ulation,199 which we apply to a 20×20×20 supercell (Ntot = 8000 spins) initial-
ized with random magnetic moments. A sampling step consists of the succes-
sive random selection of Ntot spins (a spin may be selected more than once).
e selected spin will be changed to a different state, with a probability of
p = e−ΔE/kBT, where ΔE is the energy difference between the current and the
new state. Hence, if the new state is energetically favorable (ΔE < 0), the spin
will be modiĕed certainly. Aer 5000 of these sampling steps, we determine
the total magnetization M of the simulation box and the speciĕc heat C. We
repeat this procedure for different temperatures and determine the Curie tem-
perature by the disappearance of the magnetization and a peak in the speciĕc
heat in the M − T and C − T plots, respectively.

7.3 Gadolinium nitride
We turn to the results for bulk GdN. In Table 7.2, we show some of the available
experimental data189–191,193,202,203 and theoretical results obtained with the LSDA+U
method188,189,200 and the B3LYP functional42 in comparison to our HSE hybrid func-
tional calculations.29 e experimental lattice constant of 4.988Å is accurately pre-
dicted by the parameter-free HSE functional (4.967Å). e small discrepancymight
arise from thermal expansion, as the theoretical result corresponds to a temperature
of 0K. To our knowledge the linear expansion coefficient α of GdN is unknown. If
we employ the thermal expansion coefficient of related EuO (α = 13 ⋅ 10−13 K−1),
we obtain an estimate of 4.969Å at 0K in almost perfect agreement with our result
of 4.967Å. is highlights the advantage of the hybrid functional approach over
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Figure 7.4: Results for GdN obtained with the HSE functional at the experimental
lattice constant. e orbital- and spin-resolved density of states (DOS) shows the
Gd 4f and 5d states as purple and green lines, respectively. e cyan lines represent
the N 2p states. In the electronic band structure in the center features the majority
(black, solid) and the minority (gray, dotted) bands.

the LSDA+U method, in which a change of the parameter U strongly impacts the
predicted lattice constant. Depending on the choice of U an underestimation of the
lattice constant (4.92Å)41 or an overestimation (5.08Å)188 is observed. Within the
B3LYP hybrid functional, which does not improve the lattice constant of solids over
the PBE functional,204 three different states are observed.42 Two of the states are
semi-metallic in either majority or minority spin channel and close in energy. In
both cases the 4f states of Gd hybridize with the 2p states of N and the lattice con-
stant is signiĕcantly larger than in experiment. Only the third, insulating solution
is similar to our theoretical results. us, we compare only to this state in Table 7.2,
though it is considerably higher in energy (∼ 2.4 eV) in B3LYP.42

We focus now on the electronic properties of GdN. In Fig. 7.4, we present29 the
band structure of GdN calculated at the experimental lattice constant of 4.988Å.
e Ęat features at −6 eV and +6 eV illustrate the strong localization of the 4f states
in the majority and minority spin channel, respectively. e position of the 4f states
agrees well with available experimental data for the occupied states −7.8 eV191 and
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for the typical position of the unoccupied ones 5.5 − 6.1 eV in the Gd pnictides.203
is presents a signiĕcant improvement over the local PBE functional,14 where the
majority 4f state is found at −3.1 eV. In the B3LYP hybrid functional42 the positions
of the 4f states (−6.3 eV and 5.5 eV) are similar as in our calculations. A better agree-
ment can be obtained in LSDA+U schemes,188,189 where the position of this state is
directly controlled by the optimized choice of U (cf. Table 7.2).

An extensive discussion in the literature focuses on the electronic structure at low
temperatures. Figure 7.4 reveals an intriguing feature in the vicinity of the Fermi
level. e N occupied 2p states at the Γ point have almost the same energy as the
unoccupied Gd 5d states at the X point. Hence, tiny changes in the structure in-
duced by dopants or defects may turn the material either semiconducting or semi-
metallic, which explains the experimental evidence for both conĕgurations.36–39,187
Our results indicate a tiny indirect band gap of 0.01 eV in the majority spin chan-
nel at the experimental lattice constant. Employing the quasiparticle self-consistent
GW method, Chantis et al. 205 predict a similar band gap of 0.05 eV. We ĕnd that a
small decrease of the lattice constant, which is probably within the range of thermal
expansion, is sufficient to close this gap, so that the material becomes semi-metallic.
Formally deĕning the “band gap” as difference of the eigenvalue of the 5d states at
X and the 2p at Γ, we obtain a negative value. e gap in the minority spin chan-
nel amounts to 1.5 eV, so that we expect no qualitative change upon doping. Ex-
perimentally accessible by optical excitations are only the direct band transitions,
of which the smallest one appears at the X point. We predict a direct band gap of
0.90 eV and 0.85 eV in the majority channel at the experimental lattice constant and
the theoretically optimized one, respectively. Considering the systematic difficul-
ties of predicting band gaps with DFT,122,123 both values are in very good agreement
with the experimental observation189 of 0.90 eV. Comparing to previous theoretical
results in Table 7.2, we ĕnd a good agreement with the results where the U param-
eter was chosen to reproduce the experimental band gap.188,189 e indirect band
gap obtained with these schemes is, however, larger than the one we obtain. Duan
et al. 41 ĕnd a half-metallic solution, which undergoes subsequent phase transitions
to semi-metallic and semiconducting under isotropic expansion. In contrast to our
results, where a small change of the lattice constant by 0.5% induced a transition,
Duan et al. 41 determine the boundary of the semi-metallic to semiconducting phase
transition at a 14% enlarged lattice constant. e hybrid B3LYP functional yields42

a non-ground-state solution with a related band structure, although all band transi-
tions are signiĕcantly larger than in our calculations.

At room temperature, the coupling between the 4f magnetic moments is over-
come by thermal Ęuctuations. We compare our results to the experiments conducted
at the room temperature using the paramagnetic approximation (see above). All
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Table 7.3: Energy differences ΔE (meV) between FM and AFM conĕguration
according to Eq. (7.2), magnetic coupling constants J1 and J2 (meV), and Curie
temperature TC (K) for bulk GdN. e Curie temperature is determined with
the mean-ĕeld approximation (MFA), the random-phase approximation (RPA),
and a Monte-Carlo (MC) simulation.

ΔEI ΔEII J1 J2 TMFA
C TRPA

C TMC
C

is work 8.8 7.6 1.09 0.17 55 42 45
Duan et al.a 6.7 4.2 0.84 −0.14 36 26 28
Mitra et al.b 3.4 0.4 0.42 −0.36 11 5 6

a Reference 196. b Reference 206.

band transitions in the paramagnetic phase shi towards larger values. e magni-
tude of the shi for the direct band gap ∼ 0.27 eV is comparable to the experimentally
observed one of 0.41 eV. e deviation is overestimated, as we do not account for the
effect of thermal expansion of the lattice in DFT. Comparing the band transitions
at the theoretically optimized lattice constant with the ones obtained in the experi-
mental structure, we can estimate the magnitude of the thermal effects to enlarge the
shi by ∼ 0.06 eV. We stress that this accurate description of the experimental val-
ues is achieved without a tunable parameter. In contrast, the LSDA+U calculations
either show a signiĕcantly larger deviation41,200 or choose the parameter U such that
the experimental band gap is reproduced.188,189

Next, we consider the magnetic properties of GdN. In particular, we focus on
the Curie temperature, which is experimentally found at TC = 58K.193 Below this
temperature the magnetic moments of the Gd atoms align ferromagnetically. e
magnetic moment per Gd atom amounts to 6.88 μB determined from the saturation
magnetic moment.190 We obtain a total magnetic moment of 7 μB which originates
mainly in theGd f states. Comparing theHSE to the PBE functional,29 we observe an
increase of the Gd 4fmoment by 90mμB from 6.78 μB to 6.87 μB, a decrease of the Gd
5d moment by 20mμB from 90mμB to 70mμB, and an increase of the N 2p moment,
which is aligned antiparallel to the Gd 4f moment, by 20mμB, from −100mμB to
−120mμB. We conclude that the magnetic moment of Gd is in good agreement with
the experimental observation (see Table 7.2).

In Table 7.3, we compare our results for the energy differences, the coupling
constants, and the Curie temperature with results from the literature.196,206 We ĕnd
that the HSE hybrid functional increases the energy differences between FM and
AFMconĕguration by roughly 2meV compared to the LSDA+U calculation of Duan
et al..196 e differences are even larger comparing our results to the ones obtained
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by Mitra and Lambrecht.206 ese larger values give a stronger calculated nn cou-
pling and a qualitative difference in the nnn coupling. While we ĕnd a coupling
favoring an FM alignment, the nnn interaction favors an AFM conĕguration in the
LSDA+U results. e larger coupling constants in hybrid functionals lead to a higher
Curie temperature in closer agreement to experimental observations. We obtain a
Curie temperature of 55K in the MFA, which is reduced to 42K or 45K employ-
ing the RPA or a MC simulation, respectively. ere are several possible sources
os errors:29 (i) e convergence of the total energy up to 1meV translates to a dif-
ference in the Curie temperature of 3K. (ii) e neglect of third nearest neighbor
interactions amounts to a change in the Curie temperature of below 1K. We base
this estimation employing the coupling constants of Duan et al..196 e comparison
of the MC result incorporating or neglecting third nearest neighbor exchange gives
rise to the same Curie temperature of 28K. (iii) e systematic error due to the se-
lection of a speciĕc exchange-correlation functional is difficult to assess, because the
exact solution is computationally too expensive for systems containing more than a
few electrons. Experimental observations of the Curie temperature report values of
37K,192 58K,191,193 68K,36 and 69K,207 where the absolute value varies depending on
ĕlm thickness, strain, grain size, stoichiometry, and N vacancies.208,209 Considering
the range of experimental observations and the small error bars associated with the
theoretical results, we conclude that our results29 are in very good agreement with
the experimental situation.

7.4 Europium oxide

In this section, we present our results for bulk EuO. In Table 7.4, we compare the
results of our hybrid-functional calculations with theoretical172,210 and experimen-
tal171,211,212 ones from the literature. We obtain a lattice constant of 5.120Å, which
matches accurately the experimental one of 5.127Å211 obtained at 4.2K. Within the
LSDA+U approach the lattice constants (5.14Å210 and 5.1578Å172) are closer to the
room-temperature lattice constant of 5.141Å.171 Our prediction for the bulk modu-
lus matches the experimental values (considering their variations).

Next, we turn to the electronic structure. In Fig. 7.5, we depict the electronic
band structure of EuO obtained with Wannier interpolation213–215 of the screened
HSE functional at the theoretically optimized lattice constant of 5.120Å. In the ma-
jority spin channel the smallest band gap is of indirect nature between the Γ and
the X point. e transition occurs between the occupied 4f and the unoccupied 5d
states. In the minority spin channel the 4f levels are unoccupied, so that the band
gap is a direct one between the ĕlled oxygen 2p and empty europium 5d band. e
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Table 7.4: Comparison of our results with the PBE0 and HSE hybrid functional
for EuO with those from LSDA+U calculations and experiment. e theoreti-
cal results are evaluated at the room temperature lattice constant, except for the
optimized lattice constant and the bulk modulus.

this work Expt.
PBE0 HSE LSDA+U

lattice constant (Å) 5.120 5.120 5.14,a 5.1578b 5.141,c,d 5.127e

bulk modulus (GPa) 95.8 93.0 91 to 110e

f → CB (eV) 0.7b,f 1.12c,f

Γ → Γ 2.13 1.42 0.64a

Γ → X 0.91 0.23 0.98a

X → X 1.17 0.36 1.17a

p → CB (eV) 4.71 4.02 3.8,a 3.5b 3.9 to 4.1e

bandwidth p (eV) 2.26 2.23 2.0,a 1.9b 3.0c

magnetic moment (μB) 6.90 6.90 6.80f

J1 (meV) 2.37 2.52 1.95,a 1.79b 1.44 to 2.04e

J2 (meV) 0.80 0.89 0.60,a 0.52b −0.30 to +0.70e

TC (K) 107 115 85,h 78i 64.2d, 69.1 to 70.3e

a Reference 210. b Reference 172. c Reference 171. d At room temperature. e Reference 211
and references therein. f Position in reciprocal space not speciĕed. g Reference 212. h Monte-
Carlo simulation based on coupling constants of Ref. 210. i Monte-Carlo simulation based on
coupling constants of Ref. 172.

exchange splitting, which averages to 0.9 eV for the 5d and 0.1 eV for the 2p states,
is induced by the magnetic moment of the 4f electrons. e band structure obtained
with the PBE0 functional shares the features of the HSE-functional one, except that
the conduction band in PBE0 is shied upwards by 0.7 eV. e smallest direct band
transition, which is comparable to optical experiments, is found at the X points and
amounts to 1.02 eV and 0.36 eV for PBE0 and HSE, respectively. Hence, the experi-
mental band gap of 1.12 eV171 is underestimated. If we account for the disappearance
of the magnetic polarization above the Curie temperature (see Fig. 7.2), the param-
agnetic direct band gaps amount to 1.56 eV (PBE0) and 0.88 eV (HSE). Within the
LSDA+U scheme incorporating a Hubbard U for f and d states, a qualitatively differ-
ent behavior is found: Larson and Lambrecht 210 ĕnd that the smallest band gap is of
direct nature and resides at the Γ point. Both calculations agree that themain contri-
bution of the conduction band edge near the Γ-point is of 6s character, whereas the 5d
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Figure 7.5: Electronic band structure of EuO at the theoretically optimized lattice
constant for the HSE hybrid functional. e red lines show the spectrum of the ma-
jority states, whereas the minority states are shown in blue.

character is dominant at the X point. Experimental observations171 suggest, that the
transition occurs between 4f and 5d states, and hence, support our calculations. e
energy of the 2p-to-conduction-band transition is signiĕcantly larger with hybrid
functionals than with the LSDA+U method. Although the larger value, in particular
with the HSE functional of 4.02 eV is in agreement with experimental observations
of 3.9 to 4.1 eV,193 the removal of the magnetic polarization at room temperature
would increase our values further, overestimating the experimental situation. In-
vestigating the bandwidth of the 2p states, which is experimentally 3.0 eV, we ĕnd
that all DFT results provide underestimating results. Within the hybrid functional
calculations, we obtain slightly larger values of 2.26 eV (PBE0) and 2.23 eV (HSE)
than in the LSDA+U method.

Finally, we consider the magnetic properties of EuO. e total magnetic moment
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inside the MT sphere of Eu is 6.9 μB close to experimental saturation magnetization
of 6.8 μB per Eu atom. As discussed in Sec. 7.2, the coupling constants J1 and J2 are
determined from energy differences of FM and two AFM conĕgurations. e ob-
tained values of J1 = 2.37meV (PBE0) and J1 = 2.52meV (HSE) are larger than in
the LSDA+U method and in experiment (1.44meV to 2.04meV).193 We observe an
analogous overestimation of the second coupling constant J2, where the experimental
range (−0.30meV to+0.70meV)193 is exceeded by the hybrid functional calculations
(0.80meV and 0.89meV for PBE0 and HSE, respectively). e LSDA+U method
predicts a coupling constant at the upper end of the experimental range. e larger
coupling constants give rise to an overestimation of the Curie temperature. Within
the MC simulation, we ĕnd a transition at 107K (PBE0) and 115K (HSE), whereas
the experimental value is close to 70K.193 If we employ the coupling constants ob-
tained in the LSDA+U scheme,172,210 we ĕnd a Curie temperature of 74K to 85K
depending on the speciĕc value of U.

We conclude that the hybrid functionals provide an accurate description of the
electronic, structural and magnetic properties of EuO. In contrast to the LSDA+U
method no tunable parameter is optimized to achieve this agreement.

7.5 Europium sulöde

e next compound in the europium chalcogenide series is EuS. In Table 7.5, we list
the experimental171,211,212 and numerical210 results from the literature and compare
to the values we obtain with the hybrid functionals PBE0 and HSE. Our DFT cal-
culations as well as the ones of Larson and Lambrecht 210 obtain very similar lattice
constants of 5.97Å close to the room-temperature lattice constant of 5.968Å.171 e
bulk modulus of 52.6GPa and 52.3GPa for PBE0 and HSE, respectively, is situated
within the interval of experimental observations between 50GPa and 61GPa.211

Turning to the electronic structure, we ĕnd a fundamental indirect Γ → X band
gap of 1.43 eV (PBE0) and 0.74 eV (HSE), in contrast to the LSDA+U results,210 in
which the fundamental gap is of direct nature. In experiment,171 an optical gap of
1.65 eV is observed, which is a transition between 4f and 5d states. In the numer-
ical results, the direct transition between states of this orbital character is found at
the X point. In the ferromagnetic phase, it amounts to 1.68 eV (0.99 eV) with the
PBE0 (HSE) functional. e LSDA+U result210 for the direct X → X transition of
2.89 eV is signiĕcantly larger than the experimental gap. In the paramagnetic phase,
themagnetic polarization of the d states is removed, so that the band gap is increased
to 1.99 eV and 1.29 eV in the PBE0 and HSE functional, respectively. All in all, the
hybrid functionals improve the agreement with the experimental gap of 1.65 eV in
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Table 7.5: Comparison of our results with the PBE0 and HSE hybrid functional
for EuS with those from LSDA+U calculations and experiment. e theoreti-
cal results are evaluated at the room temperature lattice constant, except for the
optimized lattice constant and the bulk modulus.

this work Expt.
PBE0 HSE LSDA+Ua

lattice constant (Å) 5.969 5.970 5.97 5.968,b,c 5.951d

bulk modulus (GPa) 52.6 52.3 50 to 61d

f → CB (eV) 1.65b,e

Γ → Γ 3.22 2.52 1.75
Γ → X 1.43 0.74 2.49
X → X 1.68 0.99 2.89
p → 5d/6s (eV) 4.17 3.47 3.3 2.3d

bandwidth p (eV) 2.30 2.25 1.7 2.3b

magnetic moment (μB) 6.97 6.97 6.87f

J1 (meV) 0.86 0.91 0.62 0.54 to 0.64d

J2 (meV) −0.16 −0.11 −0.68 −0.16 to −0.34d

TC (K) 28 31 8g 16.3 to 16.6d

a Reference 210. b Reference 171. c At room temperature. d Reference 211 and references
therein. e Position in reciprocal space not speciĕed. f Reference 212. g Néel temperature
based on Monte-Carlo simulation employing the coupling constants of Ref. 210.

the paramagnetic phase. e transition from the lower lying 3p states to the conduc-
tion band is signiĕcantly overestimated by all theoretical methods. An inclusion of
the paramagnetic approximation would increase this mismatch further. e exper-
imental bandwidth of 2.3 eV is quite accurately described by the hybrid functional
approach. e LSDA+U method estimates210 a smaller bandwidth of 1.7 eV.

Next, we focus on the magnetic structure of EuS. e theoretical magnetic mo-
ment of EuS is 7 μB. Almost all of this originates in the spin polarization of 6.97 μB
within the Eu-MT sphere. e experimental magnetic moment212 of 6.87 μB is close
to the theoretical estimate. e experimental coupling constant between nn J1, which
lies in the range of 0.54meV to 0.64meV, is overestimated by approximately 0.3meV
in hybrid functionals. e LSDA+U result210 of 0.62meV is within the experimental
range. e nnn interaction J2 favors antiferromagnetism and amounts to −0.16meV
(PBE0) and −0.11meV (HSE), which is close to the experimental observations of
−0.16meV to −0.34meV.211 eby-far larger value of J2 = −0.68meV obtained with
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Table 7.6: Comparison of our results with the PBE0 and HSE hybrid functional
for EuSe with those from LSDA+U calculations and experiment. e theoreti-
cal results are evaluated at the room temperature lattice constant, except for the
optimized lattice constant and the bulk modulus.

this work Expt.
PBE0 HSE LSDA+Ua

lattice constant (Å) 6.194 6.195 6.20 6.195,b,c 6.176d

bulk modulus (GPa) 47.1 46.7 48 to 53d

f → CB (eV) 1.80b,e

Γ → Γ 2.92 2.25 1.50
Γ → X 1.58 0.91 2.71
X → X 1.90 1.22 3.14
p → CB (eV) 3.98 3.30 2.4 2.1b

bandwidth p (eV) 2.33 2.28 2.3 2.2b

magnetic moment (μB) 6.95 6.95 6.70f

J1 (meV) 0.57 0.50 0.30 0.35b, 0.30d

J2 (meV) −0.35 −0.50 −0.92 −0.30,b −0.24d

TC (K) 12 4g 2.8b

TN (K) 4g 15h 4.6b

a Reference 210. b Reference 171. c At room temperature. d Reference 211 and references
therein. e Position in reciprocal space not speciĕed. f Reference 212. g Starting point will
determine, if system relaxes to FM or AFM conĕguration. h Monte-Carlo simulation based on
coupling constants of Ref. 210.

the LSDA+U approach210 leads to the incorrect prediction of an AFM ground state
with a Néel temperature of 8K. In hybrid functionals, the FM ground state is real-
ized. However, the large estimated nn coupling gives rise to an overestimation of the
experimental Curie temperature of 16.3K to 16.6K.211 In a MC simulation, we ĕnd
a transition at 28K and 31K with the PBE0 and the HSE functional, respectively.

7.6 Europium selenide

Now, we consider the results for EuSe. In Table 7.6, we compare our hybrid func-
tional calculations with the LSDA+U ones by Larson and Lambrecht 210 and exper-
imental results from the literature.171,211,212 We ĕnd a small overestimation of the
experimental liquid-helium lattice constant of 6.176Å by all numerical works. All
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theoretical values are in a very close range to each other and reproduce the room-
temperature lattice constant. e obtained bulk modulus of 47.1GPa (PBE0) and
46.7GPa is slightly below the range of 48GPa to 53GPa observed in experiment.211

Next, we focus on the electronic structure of EuSe, in particular the magnitude
and nature of the band gap. In optical emission experiments only direct transitions
are observable. Wachter 171 suggest that the onset of the absorption corresponds to
a transition from the occupied 4f states to the unoccupied 5d ones. In the LSDA+U
method employing a U for f and d states, the smallest band gap occurs at the Γ point,
between 4f and 6s niveaus. In hybrid functional calculations the fundamental band
gap is an indirect transition between Γ and X. e lowest-energy optical transition
is found at the X point and the character of the states matches the experimental ob-
servations. e size of the optical band gap in the PBE0 and the HSE functional
amounts to 1.90 eV and 1.22 eV, respectively. To compare to the room-temperature
experiments, we include the paramagnetic approximation (see Sec. 7.2). e random
alignment of the magnetic moments removes the magnetic polarization of the states
increasing the optical band gap to 2.18 eV (1.49 eV) for PBE0 (HSE).e experimen-
tal band gap of 1.80 eV171 is reproduced approximately by both hybrid functionals.
e lower lying 4p states are separated by 3.98 eV (PBE0) and 3.30 eV. us, they are
bound much stronger than in the LSDA+U scheme210 (2.4 eV) and in experiment171
(2.1 eV). is overestimation increases further if we incorporate the paramagnetic
approximation to simulate the room-temperature experiments. e band width of
the p states is close to the experimental value of 2.2 eV in all numerical calculations.

e magnetic properties of EuSe are listed in Table 7.6. e experimental mag-
netic moment of 6.7 μB

212 is close to the theoretical moment of 7 μB of which 6.95 μB
resides inside the Eu-MT sphere. Experimentally the coupling between nn (J1) and
nnn (J2) is approximately of the same size but of opposite sign, i.e., the nn favor a
FM environment whereas the nnn prefer an AFM alignment. is balance is only
predicted by the screened HSE hybrid functional, although the coupling strength
of 0.50meV is larger than the experimental one of roughly 0.3meV. Within the
PBE0 functional the absolute value of J2 = −0.35meV is smaller than the one of
J1 = 0.57meV. In the LSDA+U method the AFM coupling is strongly preferred,
because the size of J2 = −0.92meV is approximately three times larger than the nn
coupling J1 = 0.30meV. In a MC simulation, this leads to a FM arrangement in
PBE0 with an ordering temperature of TC = 12K and an AFM structure in LSDA+U
ordering at TN = 15K. In experiment as well as in the HSE calculations two stable
solutions are found. In HSE the ordering appears at 4K and the random starting
point of the MC simulation determines if the system becomes FM or AFM. Experi-
mentally, two successive orderings take place: At the Néel temperature of 4.6K EuSe
adopts an AFM structure that is supplanted by a FM ordering below TC = 2.8K.
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Table 7.7: Comparison of our results with the PBE0 and HSE hybrid functional
for EuTe with those from LSDA+U calculations and experiment. e theoreti-
cal results are evaluated at the room temperature lattice constant, except for the
optimized lattice constant and the bulk modulus.

this work Expt.
PBE0 HSE LSDA+Ua

lattice constant (Å) 6.592 6.600 6.60 6.598,b,c 6.576d

bulk modulus (GPa) 78.5 78.6 36 to 40d

f → CB (eV) 2.00b,e

Γ → Γ 3.40 2.70 1.96
Γ → X 1.67 1.01 2.92
X → X 2.19 1.49 3.58
p → CB (eV) 3.64 2.96 2.4 2.3b

bandwidth p (eV) 2.30 2.30 2.1 2.3b

magnetic moment (μB) 6.95 6.97
J1 (meV) 0.32 0.34 −0.008 0.08 to 0.27d

J2 (meV) −0.57 −0.56 −1.06 −0.41 to 0.58d

TN (K) 8 8 17f 9.6b

a Reference 210. b Reference 171. c At room temperature. d Reference 211 and references
therein. e Position in reciprocal space not speciĕed. f Monte-Carlo simulation based on cou-
pling constants of Ref. 210.

Concluding, we emphasize the improvement of the results obtained with hybrid
functionals over previous LSDA+U results. e band transitions adopt a qualitative
different nature in agreement with experimental results and the obtained magnetic
interactions explain the experimental competition of FM and AFM conĕguration.
e lattice constants are accurately reproduced with overall slightly smaller devia-
tions than the ones obtained in the LSDA+U approach.

7.7 Europium telluride
eEuX compoundwith the largest chalcogenide atom is EuTe. We present its struc-
tural, electronic, andmagnetic properties obtained with the hybrid functional calcu-
lations in Table 7.7. We compare to LSDA+U210 and experimental171,211 results from
the literature. e lattice constant of EuTe is experimentally 6.576Å at 4.2K and
6.598Å at room temperature and the numerical results are close to the latter one.
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e PBE0 lattice constant of 6.592Å is slightly smaller than the value of 6.600Å ob-
tained with the LSDA+U method210 and the HSE functional. e bulk modulus is
strongly overestimated by hybrid functionals. It amounts to 78.5GPa (78.6GPa) in
PBE0 (HSE), whereas experimentally values between 36GPa and 40GPa have been
reported.211

We turn now to the electronic structure of EuTe. In hybrid functionals, the fun-
damental band gap is an indirect transition between Γ and X, which amounts to
1.67 eV and 1.01 eV with the PBE0 and HSE functional, respectively. EuTe exhibits
the smallest direct band gap of 2.19 eV (PBE0) and 1.49 eV (HSE) at the X point. In
contrast to these results, in an LSDA+U approach210 the fundamental band gap is
a direct one of 1.96 eV at the Γ point. In experiments the optical transition occurs
between the 4f and the 5d states of Eu. Investigating the orbital character of the dif-
ferent bands, we ĕnd that the lowest lying band at the Γ point is formed by 6s orbitals,
whereas the 5d contribution dominates at the X point. us, we conclude that the
hybrid-functional description surpasses the LSDA+U one. To compare to the abso-
lute value of the experimental band gap, we employ the paramagnetic approximation
(see Sec. 7.2). e exchange splitting, which amounts to roughly 0.4 eV, is removed
by the randomly oriented magnetic moments of the Eu atoms, thus, increasing the
direct band gap to 2.42 eV (PBE0) and 1.71 eV (HSE). e experimental observa-
tion171 of 2.0 eV is close to the HSE result. e transition from the 5d niveaus to the
conduction band is overestimated by hybrid-functional calculations. Experiments
report a value of 2.3 eV, whereas a PBE0 (HSE) calculation results in a transition of
3.64 eV (2.96 eV). is overestimation would increase further, if we incorporate the
paramagnetic approximation. e experimental bandwidth of the Telluride 5p levels
of 2.3 eV is reproduced by our calculations.

Experimentally, EuTe realizes an AFM-II ground state with a Néel temperature
of 9.6K.171 is order is driven by a nnn coupling constant, which favors an an-
tiparallel alignment and stronger than the nn coupling. e nn coupling constant
of 0.32meV (PBE0) and 0.34meV (HSE) is larger than the experimentally observed
one of 0.08meV to 0.27meV. e nnn interaction is at the upper end of the ex-
perimental range of −0.41meV to −0.58meV. A different picture emerges from the
LSDA+U approach:210 e nn coupling vanishes almost completely and favors an
AFM conĕguration and the nnn coupling is almost twice as large as the one obtained
with hybrid functionals. As a consequence, the Néel temperature is overestimated
in an MC simulation. In contrast, if we employ the results of the hybrid-functional
calculations, we ĕnd a Néel temperature of 8K. e precision of 1meV in the energy
differences corresponds to a possible error of 3K. Hence, the mismatch between our
ĕrst principles calculation and experiment is below the numerical and experimental
errors.
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7.8 Trends in the series

Of technological interest are systematic changes in material properties upon substi-
tuting one chalcogenide atom for another. Understanding these trends facilitates the
design of desired functionalities by selective choice of the anion. Employing a mix-
ture of different chalcogenides increases the possible phase space. In this section, we
will illustrate the experimental trends that are captured by hybrid-functional DFT.
is provides a comprehensive review ofwhere these novel functionals supplant con-
ventional DFT+U approaches and where these approaches are complementing each
other.

In Table 7.8, we collect the results we obtained with the hybrid functionals for
the europium chalcogenides and compare to available experimental data.171,211 In-
creasing the size of the anion gives rise to larger lattice constants. is trend in sign
and magnitude is accurately captured by DFT. Except for EuO the numerical re-
sults overestimate the experimental lattice constant slightly by an amount similar to
the thermal expansion from 4.2K to room-temperature. roughout the series the
experimental bulk modulus decreases from (101 ± 10)GPa in EuO to (38 ± 2)GPa
in EuTe. For the ĕrst three compounds, the bulk modulus obtained with PBE0 and
HSE is in good agreement with the experiment data, though systematically towards
the bottom of the experimental range. However, hybrid functionals exhibit a strong
overestimation of the bulk modulus for EuTe.

Next, we focus on the electronic structure and realize two experimental trends.
eĕrst one is illustrated in Fig. 7.6: eoptical gap to the conduction band increases
from 1.12 eV in EuO to 2.00 eV in EuTe. e FMgap predicted by PBE0 functional is
close to the experimental results. Incorporating the paramagnetic approximation in-
creases the gap to overestimating values. e HSE functional provides smaller band
gaps, which approach the experimental value in the paramagnetic approximation.
For all materials, hybrid functionals predict a transition from f to d levels, in agree-
ment with experimental observations and in contrast to LSDA+U calculations.210
e second trend (cf. Table 7.8) is the reduction of the gap between the valence p
electrons and the conduction band from the value of 4.0 eV in EuO to 2.3 eV in EuS
and to 2.1 eV in EuSe. For EuTe, a the band gap enlarges to 2.3 eV. In Fig. 7.6, we
depict the position of the p state relative to the 4f band. In both hybrid functional, the
position of the p is almost identical. Compared to the experiment, both function-
als underestimate the loosening of the binding of these states across the series. We
note, that DFT yields an almost constant bandwidth of the p states, which amounts
to roughly 2.3 eV. In contrast, EuO exhibits a larger bandwidth of 3.0 eV in experi-
ments.171

roughout the series, the magnetic coupling between the nn Eu 4f moments
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Figure 7.6: Comparison of the Kohn-Sham eigenvalues of the top of the p states
(below 0), the top of the valence band (black line), and the bottom of the 5d states
(above 0) at the X point with experimental results (gray line). e eigenvalues ob-
tained with PBE0 (blue) and HSE (red) are shown on the le side. Including the
paramagnetic approximation yields the picture on the right side. e experiments
are performed at room temperature (right side). On the le side, we show the same
data as dashed line, because the experimental paramagnetic conĕguration does not
directly correspond to the ferromagnetic conĕguration in the DFT calculations.

weakens. e nnn coupling changes from favoring FM in EuO to favoring AFM in
EuS and increases in strength for EuSe and EuTe. ough the absolute value of the
coupling is overestimated except for the nnn coupling in EuS, this qualitative trend
is well captured by hybrid functionals. Hence, we reproduce the experimental tran-
sition from a FM ground state for EuO and EuS, to an ambiguous one in EuSe, and
to an AFM one in EuTe. In contrast, LSDA+U calculations predict210 an AFM state
for EuS and overestimate the Néel temperature for EuSe and EuTe. Comparing the
different techniques, we ĕnd that the MFA to the critical temperature overestimates
the more precise value of theMC simulation. However for EuSe, several MC simula-
tions are necessary to reveal whether FMorAFMare stable, as the obtainedmagnetic
state is dependent on the seeding of the random number generator.

7.9 Summary

In this chapter, we applied our implementation of the nonlocal hybrid functionals in
the full-potential linearized augmented-plane-wave (FLAPW) method to GdN and
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the EuX (X = O, S, Se, and Te) series. For GdN, we ĕnd29 a ground state close to a
phase transition: Depending on small changes in the lattice constant, a semi-metallic
or semiconducting state is observed. Taking into account the effect of thermal ex-
pansion, the theoretically optimized lattice constant ĕts exactly to the experimen-
tal value. We obtained an electronic structure that reproduces the experimentally
known band transitions. e magnetic interactions were accurately described as in-
dicated by the good agreement of the theoretical Curie temperature of 45K (MC
simulation) and the experimental value of 58K.

e investigation of the europium chalcogenides revealed that hybrid function-
als successfully predict lattice constants, band transitions and magnetic interactions
of these compounds, at least to the accuracy of the LSDA+U method, however with-
out the adjustable U-parameter. For several properties, in particular the nature of
the direct band gap and the magnetic interactions, the hybrid functionals provide a
better agreement with experimental results.

We emphasize that the employment of hybrid functionals removes an important
obstacle in the calculation of the properties of rare-earth materials – the determi-
nation of the optimal value for U in a DFT+U scheme. Hence, hybrid functionals
facilitate genuine ab initio calculations of compounds with strongly localized states.
We anticipate their application to the investigation of the subtle dependence of the
physical properties of rare-earth compounds on strain, on dopants, on defect con-
centration, and on the composition of heterostructures.29
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8.1 Introduction

For several years, perovskites are investigated as exemplary oxides in which the sub-
tle differences in the composition and lattice parameters can strongly impact the
material properties. Historically, the mineral CaTiO3 was named perovskite aer the
Russian mineralogist Perovski. As many materials exhibit the same chemical com-

Figure 8.1: Ideal simple ABO3 cubic perovskite structure. e A-site atoms are
shown in blue, the B-site ones in green, and the oxygen atoms in red. e oxygen
atom are connected to emphasize the oxygen octahedron.
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position ABX3 as CaTiO3, the name was generalized to all of these materials. Two
classes of perovskites can be identiĕed: i) e A and B site are occupied by anion
and the X site is occupied by large cations. ii) e A and the B site are occupied by
a large cation and the X site by small anions (O, Fl, Cl). Here, we will restrict us to
those materials, where the X site is occupied by oxygen atoms. e ideal perovskite
structure, which is depicted in Fig. 8.1, exhibits a simple cubic unit cell, where the
corners are occupied by A atoms, the center by a B atom, and the face centers by
oxygen atoms. Most perovskites show deviations from the perfect cubic unit cell at
low temperatures.a Frequently these distortions inĘuence the shape or position of
the oxygen octahedra.

Perovskites provide a wide variety of material properties, which is driven by the
huge number of possible combinations of A- and B-site ions. e potential of inter-
mixture of different perovskites, doping of the A and B site, and the combination to
heterostructures increases the variation possibilities further. is rich phase-space
provides an intriguing area of research motivated by fundamental as well as techno-
logical interests. For example, thin ĕlms of LaxCa1−xMnO3 show a colossal magneto
resistance,216 which holds out the prospect of more accurate magnetic sensors. e
phase diagram of this material shows a metal-to-insulator transition at half mix-
ing,217 from which fundamental insight in the physics of this transition is obtained.
At the same mixture the compound changes from an antiferromagnetic (AFM) to a
ferromagnetic (FM) arrangement indicating the delicate competition of super and
double exchange in doped perovskites. e rare-earth nickelates (RNiO3) exhibit a
metal-insulator transition, which is determined by the strength of the coupling of
neighboring Ni atoms.218,219 e bond angle of the Ni-O-Ni bond increases with the
size of the rare-earth ion. As a consequence, the coupling between neighboring Ni
atoms strengthens, which gives rise to a higher critical temperature for the metal-
insulator transition. At low temperatures neighboring Ni ions become nonequiva-
lent, which is driven by charge or orbital order.219 If both order patterns are present,
this may give rise to multiferroicity.220

In multiferroic materials, a permanent magnetic moment and a permanent elec-
tric polarization coexist.1 A magneto-electric coupling of these orders would enable
the electric control of the magnetic ground-state and vice versa the magnetic control
of the electric polarization.2 Even if both orders are present, the coupling between
themmay be vanishing by symmetry.221 One distinguishes proper and improper mul-
tiferroicity.220 In proper multiferroics, both ferroelectric and ferromagnetic order
are stable independent of each other so that the coupling between both orders is

aNaturally, low temperature is only a relative expression. For some systems low might be as large
as several hundreds of K.



.. I 

usually weak. In improper multiferroics, the presence of order allows the establish-
ment of the other one so that both critical temperatures coincide. ese materials
are characterized by the strong coupling between both orders, however, their criti-
cal temperature is usually very low. Perovskite materials play an important role in
this area of research, because several of the model ferroelectrics such as BaTiO3 and
KNbO3 have a perovskite structure. However, in these materials, the emptiness of
all d orbitals at the B-site atom, the so-called d0-ness, is important for the ferroelec-
tric distortion.222 Hence, either the magnetic moment has to originate from the A
site or a different mechanism has to drive ferroelectricity. e latter is present in the
famous BiFeO3 compound, in which the lone-pair electrons of Bi yield the ferroelec-
tric polarization and the magnetic moment originates from the Fe atoms.57 Ležaić
and Spaldin 223 predicted that the combination of the lone-pair-driven ferroelectric-
ity with a mixture of 3d and 5d materials on the B site gives rise to higher critical
temperatures. An example for a material, in which the magnetism originates from
the A site, is EuTiO3. Fennie and Rabe 59 suggested that a AFM to FM transition is
induced by switching the polarization in strained samples. An important concept
for tuning the material properties of perovskites is the so called strain engineering.
By growing SrTiO3 on DyScO3, Haeni et al. 58 induced a strain in the sample turning
the material ferroelectric.

e inĘuence of external strain is one of the ĕelds, in which density functional
theory (DFT) may direct experiments to the right combination of materials. “Grow-
ing” the sample with a different lattice constant is trivial in the numerical meth-
ods, whereas it requires cumbersome ĕne tuning in experiment. However, common
exchange-correlation functionals underestimate (LDA) or overestimate (GGA) the
lattice constant. us, the various theoretically-predicted strain-dependent transi-
tions may appear at a different strain value in experiments. is is a signiĕcant lim-
itation of the predictive power of DFT, because the range of possible misĕt strains
in experiment is limited to roughly three per cent. Furthermore, if one is interested
in the optical properties of perovskites, local exchange-correlation functionals do
not include a derivative discontinuity122,123 and underestimate the band transitions
drastically. e source of these discrepancies includes the spurious self interaction
(see Sec. 2.5) present in local exchange correlation functionals. As hybrid function-
als23,24,26 partly correct for the self interaction via the inclusion of Hartree-Fock (HF)
exchange, we expect an improved description of perovskites.

In fact, Heifets et al. 224 found an improved description of the termination of
the SrTiO3 surface employing the hybrid functionals B3LYP and B3PW. Piskunov
et al. 225 successfully employed the same hybrid functionals to determine the bulk
properties of cubic unit cells of the prototypical titanates SrTiO3, BaTiO3, andPbTiO3.
In particular, the lattice constant, elastic constants, and the optical band gap could be
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accurately reproduced. e surface termination of these compounds was explored
later,226 providing a good agreement with experimentally determined lattice and op-
tical properties. e B3PW hybrid functional yields an accurate characterization of
the antiferrodistortive phase of bulk SrTiO3 in particular the c/a ratio and the ro-
tation of the oxygen octahedra.227 Investigating LaMnO3, Muñoz et al. 228 found a
strong dependence of band gap on amount of HF exchange, where the B3LYP func-
tional and the 35% Fock exchange provided a quantitative good agreement to the
experimental values. Bilc et al. 229 sound a word of caution as in their investigation
of BaTiO3 and PbTiO3 the hybrid functionals B3LYP and B1 underperform the local
Wu-Cohen (WC) functional,230 which is optimized for perovskites. Furthermore,
the tetragonality is overestimated with nonlocal functionals, which is directly re-
lated to the ferroelectric polarization. ey suggest the construction of the B1-WC
functional,229 which provides accurate lattice constants for several perovskite mate-
rials. Wahl et al. 231 found a very accurate description of SrTiO3 and BaTiO3 by the
HSE and this B1-WC hybrid functional. In particular the latter yields “exception-
ally good ferroelectric displacements and polarizations.”231 Recently, the HSE hy-
brid functional has been applied to BiFeO3 andHoMnO3.232 eobtained structural
properties agree well with the experimental results and the band transition could re-
produce the precise results of the GW method. Evarestov 233 examined the BaBO3
series (B = Ti, Zr, Hf) with the parameter-free PBE0 functional and was able to re-
produce the experimental lattice constant, cohesive energy, and band gap accurately.

In this chapter, we systematically investigate the performance of the HSE hybrid
functional for a series of cubic perovskites and compare to the results of the local
PBE functional. Speciĕcally, we have calculated the theoretically optimized lattice
constant and the fundamental and optical band gap for KNbO3, KTaO3, NaNbO3,
BaHfO3, BaSnO3, BaTiO3, BaZrO3, CaSnO3, CaTiO3, CaZrO3, CdTiO3, SrHfO3,
SrSnO3, SrTiO3, SrZrO3, PbSnO3, PbTiO3, PbZrO3, and LaAlO3. We describe the
general procedure to set up these structures in Sec. 8.2. Overall, we ĕnd that the
HSE functional improves the lattice constant with respect to results of local exchange
correlation functionals. We illustrate this in Sec. 8.3. We discuss the compensation
of the underestimation of the band gap in PBE functional by the inclusion of HF
exchange in Sec. 8.4. Finally, we conclude this chapter in Sec. 8.5.

8.2 Computational setup

In this section, we describe the computational setup common to all investigated per-
ovskites. We calculate the ground state of all perovskite bymeans ofDFT. We employ
the precise all-electron full-potential linearized augmented-plane-wave (FLAPW)
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basis set31,32,117 as realized in the Fleur code.126 We describe the Kohn-Sham wave
functions by a Γ-point-centered 6×6×6 k-point mesh and add one additional un-
occupied local orbital120 for each l channel from s to f to improve the description
of the conduction band by reducing the linearization error of the FLAPW basis.119
For somematerials, further local orbitals are included to describe semicore states. In
these cases, we increase the number of bands employed in the calculation of the hy-
brid functionals, so that 10 bands per electron are considered. e material-speciĕc
numerical parameters, such as the muffin-tin (MT) radius, are listed in the appendix
(see Sec. B).

With these parameters, we evaluate the total energy of unit cells at different lattice
constants close to the theoretically optimized lattice constant. For each investigated
lattice constant, we converge a calculation with the local generalized gradient ap-
proximation (GGA) functional PBE.14 en, we start the convergence of the nonlo-
cal screened Heyd-Scuseria-Ernzerhof (HSE) hybrid functional26 from the resulting
density and wave functions. e energies E obtained with both functionals are ĕtted
to a Murnaghan equation of state145

E(V) = E0 +
B0V
B′

0
((V0/V)B′

0

B′
0 − 1

+ 1) − B0V0

B′
0 − 1

, (8.1)

where E0 is the ground state energy, V is the volume of the unit cell, V0 is the vol-
ume of the ground-state unit cell, B0 is the bulk modulus, and B′

0 is the derivative of
the bulk modulus with respect to the external pressure. e four quantities E0, V0,
B0, and B′

0 are ĕtted to the obtained energies, and in the cubic symmetry of these
perovskites the determination of the theoretically optimized lattice constant a0 is
straightforward

a0 = 3
√

V0. (8.2)
For the calculation of the band gap, we consider the differences of Kohn-Sham eigen-
values. We note that in principle only the fundamental band gap is well deĕned
quantity in the realm of DFT (see Sec. 4.1). Nevertheless, to compare to experimen-
tal results obtained with optical excitations, we determine the direct band gap by the
differences at speciĕc k-points as well. is corresponds to the neglect of excitonic
effects.

8.3 Lattice optimization
In Table 8.1, we present our results for the lattice constants of the investigated cubic
perovskites in comparison to theoretical and experimental works from the litera-
ture. We visualize our data in Fig. 8.2. First, we focus on our GGA calculations
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Table 8.1: Lattice constant (Å) obtained with the local PBE and the nonlocal
HSE functional in comparison to experimental and theoretical results from the
literature.

is work Literature
PBE HSE LDA GGA Expt.

I–V compounds
KNbO3 4.013 3.992 3.956a 4.028a 4.016a

KTaO3 4.032 4.007 3.938a 4.033a 3.983a

NaNbO3 3.975 3.940 3.914a 3.952b 3.937a

II–IV compounds
BaHfO3 4.201 4.168 4.12c 4.20c 4.172d

BaSnO3 4.176 4.127 4.059e 4.192e 4.124f

BaTiO3 4.011 3.979 3.947a 4.028a 4.000a

BaZrO3 4.221 4.193 4.152a 4.207a 4.193a

CaSnO3 4.038 4.005 3.965g 3.947h,†

CaTiO3 3.874 3.848 3.809a 3.88i 3.836a

CaZrO3 4.139 4.111 4.138j 4.012k

CdTiO3 3.873 3.840 3.809l 3.888l 3.800a

SrHfO3 4.139 4.109 4.069a 4.157m 4.087n,†

SrSnO3 4.106 4.051 4.111o 4.025p

SrTiO3 3.931 3.900 3.862a 3.941a 3.905a

SrZrO3 4.169 4.151 4.10q 4.18q 4.101a

PbSnO3 4.123 4.070 4.070r

PbTiO3 3.968 3.930 3.888a 3.965a 3.969a

PbZrO3 4.187 4.155 4.115a 4.18s 4.133a

III–III compounds
LaAlO3 3.811 3.782 3.739t 3.810t 3.791u

MEv 0.049 0.015 −0.033 0.049
MAEw 0.049 0.025 0.037 0.050
rmsx 0.058 0.036 0.050 0.059

† Experimentally noncubic structure.
a Reference 60 and references therein. b Reference 234. c Reference 235. d Reference 236.
e Reference 237. f Reference 238. g Reference 239. h Reference 240. i Reference 241.
j Reference 242. k Reference 243. l Reference 244. m Reference 245. n Reference 246.
o Reference 247. p Reference 248. q Reference 249. r Reference 250. s Reference 251.
t Reference 252. u Reference 253.
v Mean error. w Mean absolute error. x Root mean square.
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Figure 8.2: Comparison of experimental and theoretically optimized lattice con-
stant for a series of cubic perovskites. e results obtained with the local PBE and
the nonlocal HSE functional are shown in blue and red, respectively. e black di-
agonal line indicates the ideal prediction, where theory and experiment coincide.
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employing the PBE14 functional. Overall, the obtained lattice constants are in good
agreement with the experimental ones with the largest overestimation of roughly 3%
for CaZrO3. We ĕnd similar lattice constants as in other numerical works from the
literature, which employ a GGA functional as well. As a trend, PBE overestimates
the lattice constant of perovskites by 0.05Å on average, which results in the mean
error (ME) being almost identical to the mean absolute error (MAE). In contrast
to this the local density approximation (LDA) with the exceptions of CaSnO3 and
CdTiO3 underestimates the lattice constant of the selected materials. e MAE is
smaller than the one associated with the GGA functionals.

Next, we turn to the results of our hybrid functional calculations. For most
materials the lattice constants are most accurately predicted with the HSE func-
tional. Considering only our data, the PBE functional yields a lattice constant in bet-
ter agreement with experimental observations only for three (KNbO3, BaTiO3, and
PbTiO3) out of 19 materials. If we include the LDA and GGA results from the litera-
ture, the HSE functional predicts the most accurate lattice constant for the majority
of the materials. We ĕnd a reduction of the MAE and the root-mean-square (rms)
from0.049Å (0.037Å) and 0.058Å (0.050Å) in the PBE (LDA) functional to 0.025Å
and 0.036Å, respectively. e positive sign of the ME indicates, that in average the
HSE functional overestimates the lattice constant, though this trend is not as sys-
tematic as for the LDA and GGA functionals. Comparing the results for the II-IV
compounds, we ĕnd that the lattice constant difference between PBE and HSE is al-
ways the smallest for the Zr cation and the largest for Sn one. e change associated
with the Ti and Hf cation is comparable. We extract a similar order from the lattice
constants considering different A site ions. In the majority of the cases the difference
of the lattice constant between the PBE and the HSE functional exhibits the largest
value for a Pb cation. For Ca and Sr ions, we ĕnd a signiĕcantly smaller impact of
the hybrid functional. e Ba cation is in between these extrem cases. e notable
exception to this rule is SrSnO3, for which the reduction of the lattice constant in
hybrid functionals is the largest of all investigated materials.

From the differences in the lattice constants, we extract the relative size of the
ions for the A site rA

rK > rNb and rBa > rPb > rSr > rCa > rCd (8.3)

and for the B site rB

rTa > rNb and rZr > rHf > rSn > rTi, (8.4)

which matches the experimental descending order of these ionic radii.254 Assuming
a hard-spheremodel, the ionic radius of the B-site ion rB and the radius of the oxygen
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ion rO determine the lattice constant

aB
0 = 2rB + 2rO. (8.5)

Replacing one B-site ion with another one, the lattice constant changes by

aB′

0 − aB
0 = 2(rB′ − rB). (8.6)

Hence, we can evaluate the ion size relative to one speciĕc B-site cation (Zr) and
compare to experimental results. In principle, this value should be independent of
the A-site ion. With the HSE functional, we ĕnd that the Hf, Sn, and Ti ion are (1.7±
0.6)pm, (4.5 ± 0.9)pm, and (12.5 ± 2.1)pm smaller than the Zr ion, respectively.
e respective experimental differences254 of 1 pm, 3pm, and 11.5pm compare well
to our data.

e determination of the lattice constants of the perovskites is subject to sev-
eral approximations. A fundamental one is related to the selection of a speciĕc
exchange-correlation functional. As the true functional is unknown, the deviation to
the precise result associated to the exchange-correlation functional is not assessable.
Furthermore, many of these perovskites realize distortions from the cubic structure
which is the ground state at high temperatures. In general, if we include distortions
from the perfect cubic symmetry, the crystal will reduce its volume. e most com-
mon displacements in the perovskite structure are Jahn–Teller (JT) deformations or
rotations of the oxygen octahedra. Additionally, temperature effects and in particu-
lar the movement of the ions is neglected in DFT. Employing the thermal expansion
coefficient of SrTiO3, which is between 2.16 ⋅ 10−5 K−1 and 2.82 ⋅ 10−5 K−1,255 we ĕnd
that neglect of thermal expansion leads to the underestimation of the experimental
room-temperature lattice constant by less than 0.01Å. Even in low-temperature ex-
periments, zero-point Ęuctuations will take place, which are removed via the Born-
Oppenheimer approximation76 in DFT. ese Ęuctuations tend to increase the lat-
tice constant due to the inharmonicity of the potential.

8.4 Band transitions in perovskites
e electronic band structures of the investigated perovskite materials share many
common features. In Fig. 8.3, we illustrate prototypically the band structure for
SrTiO3 and PbTiO3. All materials in this study have either a completely empty or
a completely ĕlled d shell, so that the valence states consist of the oxygen p levels.
e top of the valence band is extremely Ęat in particular between the M and the R
point with an energy difference of only 0.09 eV in SrTiO3. In most compounds, the
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Figure 8.3: Electronic band structure obtained with the HSE hybrid functional for
the two prototypical perovskites SrTiO3 (a) and PbTiO3 (b).
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Table 8.2: Direct and indirect band gap obtained with the local PBE and the non-
local HSE functional in comparison to optical absorption experiments.

Fundamental gap Optical gap
PBE HSE transition† PBE HSE k point† Expt.

I–V compounds
NaNbO3 1.69 2.95 R → Γ 2.48 3.83 Γ 3.4a

KNbO3 1.51 2.72 R → Γ 2.17 3.44 Γ 3.3a

KTaO3 2.23 3.57 R → Γ 2.84 4.22 Γ 3.79a

II–IV compounds
BaHfO3 3.66 5.17 R → Γ 3.78 5.35 Γ 4.8b

BaSnO3 0.99 2.67 R → Γ 1.47 3.11 Γ 3.4c

BaTiO3 1.78 3.14 R → Γ 1.93 3.27 Γ 3.2a

BaZrO3 3.22 4.67 R → Γ 3.46 4.99 Γ 5.3d

CaSnO3 2.61 4.37 R → Γ 3.68 5.46 Γ 4.4e

CaTiO3 1.99 3.46 R → Γ 2.43 3.97 Γ 3.57f

CaZrO3 3.46 5.00 R → Γ 3.64 5.36 Γ 5.2g

CdTiO3 0.16 1.61 M → Γ 0.81 2.36 Γ 2.7h

SrHfO3 3.87 5.42 R → Γ 4.01 5.67 Γ 6.07i

SrSnO3 1.79 3.53 R → Γ 2.65 4.38 Γ 4.1j

SrTiO3 1.87 3.29 R → Γ 2.24 3.69 Γ 3.43a

SrZrO3 3.44 4.93 R → Γ 3.68 5.29 Γ 5.6k

PbSnO3 1.51 3.17 M → Γ, X → Γ 2.61 4.14 Γ, X 2.8l

PbTiO3 1.64 2.72 X → Γ 1.65 2.73 X 3.4d

PbZrO3 2.45 3.47 M → X, X → X 2.45 3.47 X 3.7d

III–III compounds
LaAlO3 3.51 4.84 R → Γ 3.66 5.03 Γ 5.6m

MEn −1.38 0.10
MAEo 1.38 0.43
rmsp 1.46 0.53

† If more than one transition or k-point are present, the ĕrst item corresponds to the PBE result and
the second on the HSE functional.
a Reference 256. b Reference 257. c Reference 258. d Reference 259. e Reference 260.
f Reference 261. g Reference 262. h Reference 263. i Reference 264. j Reference 265.
k Reference 266. l Reference 267. m Reference 268.
n Mean error. o Mean absolute error. p Root mean square.
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eigenvalue close to R point constitutes the absolutemaximumof the valence band. In
the compounds that contain Pb, the p states exhibit a higher value near the X point.
e bottom of the conduction band consists of the t2g states of the transition metal
ion, if the d states are empty. e edge of the conduction band is found as Ęat feature
between the Γ and the X point. For all materials except for PbZrO3, the absolute
minimum resides at the Γ point. For materials, where the d shell of the B-site ion is
ĕlled, the lowest unoccupied state has s character and exhibits an almost parabolic
behavior near the Γ point.

In Table 8.2, we list the obtained direct and indirect band gaps for the 19 in-
vestigated perovskites. In average, the direct (indirect) band gap obtained with the
nonlocal HSE functional is [1.48 ± 0.21] eV ([1.44 ± 0.21] eV) larger than the PBE
one. Particularly interesting are the Pb based compounds, where the application of
the hybrid functionals changes the position of the fundamental band gap. Neglecting
excitonic effects, the direct band gap can be related to optical absorption measure-
ments. Overall, we ĕnd a drastic improvement of the predicted band transition en-
ergies. In the PBE functional, the MAE and the rms amount to 1.38 eV and 1.46 eV,
respectively. e ME has the same absolute value as the MAE and a negative sign
indicating that the PBE functional underestimates the band gap for all compounds.
In the HSE functional the MAE (rms) is 0.43 eV (0.53 eV), which represents an im-
provement by roughly a factor of three compared to the PBE results. For the HSE
functional the ME is much smaller than the MAE. is indicates that the sign of the
error between predicted and experimental value is not the same for all materials.

e prediction of band transitions in DFT is limited by the following approxima-
tions: i) Although the fundamental band gap is in principle an observable quantity
(see Sec. 4.1), local functionals suffer from the lack of a derivative discontinuity.122,123
is leads to the systematic underestimation of the band gap by local functionals. ii)
DFT is an effective one-particle theory, so that themany-body effects associated with
the optical excitation, in particular, the binding of the electron and hole to an exci-
ton, are not captured. Hence, the experimentally measured transition is lowered by
the binding energy, so that DFT will overestimate the optical transition. iii) We did
not account for the optical matrix element between valence and conduction band.
Some transitions will be strongly suppressed, if the dipole operator between initial
and ĕnal state vanishes. us, the experimentally observed lowest transition may
be not between the band edges. iv) Finally, the noncubic ground-state structure at
low temperatures, the neglect of thermal expansion, and the omission of zero-point
Ęuctuations has an indirect effect on the band transitions caused by the relaxation of
the lattice.
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8.5 Conclusion
We demonstrated that the application of the HSE hybrid functional improves the
structural as well as the electronic properties of a benchmark set of 19 cubic per-
ovskites. e lattice constants are improved by roughly a factor of two compared to
the local exchange correlation functional. While the PBE (LDA) functional provide
systematically too large (small) lattice constants, the HSE functional predicts lattice
constants smaller than the PBE functional and larger than the LDA one. ere is no
systematic trend in the HSE lattice constant, though, in average, a small overestima-
tion is found, which may be associated to thermal expansion or other relaxations.
Employing hybrid functionals for the calculation of the band transitions, we ĕnd a
systematic opening of the optical band gaps by (1.48±0.21) eV, which compensates
for the systematic underestimation of 1.38 eV in PBE. As a consequence, the MAE
is more than three times smaller in the HSE functional as compared to the PBE one.
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9.1 Introduction
PbCrO3 (PCO) was synthesized for the ĕrst time by DeVries and Roth 62 . ey re-
ported a cubic perovskite structure with a lattice constant of 4.0Å and a G-type
antiferromagnetic (AFM) order of the Cr ions.61 Later, Chamberland and Moeller 63

examined the conductivity of PCO and found a semiconducting state with an activa-
tion energy of 0.27 eV. From an anomaly in the conductivity at 100K, they suggest
a possible phase transition at that temperature. e Néel temperature is difficult to
determine as the magnetism cannot be easily ĕtted to a Brillouin function.63 De-
pending on the method used the Néel temperature is found to be either 160K63 or
240K.61 e magnetic moment of the Cr ions is estimated to be either 1.9 μB

61 or
2.5 μB.66 ese measurements suggested a Pb2+Cr4+O2-

3 valence.
Only in the last years, PCO gained a renewed interest and several interesting

properties were found. Arévalo-López and Alario-Franco 64 found that in off-stoi-
chiometric Pb1-xCrO3-x the lead ions move by approximately 0.29Å from their high
symmetry position. By using electron energy loss spectroscopy (EELS) in this com-
pound, the valence of the Cr ion was ĕrst determined269 to be 4+ and later reĕned65

to 3.5+. A recent study of the magnetic structure66 found the Néel temperature at
245K. ey proposed a non-collinear state superposed to the G-type AFM state
leading to weak ferromagnetism. Between 185K and 62K a spin-reorientation ap-
pears. Xiao et al. 67 investigated the effect of pressure on PCO and found a phase


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transition at a compressive pressure of 1.2 − 1.6GPa. e high-pressure phase is
cubic, too, and has a roughly 10% smaller volume than the low pressure phase. Ko-
marek et al. 270 point out that PCO is very different to the CaCrO3 and SrCrO3 com-
pounds despite their similar chemical composition. PCO is insulating and exhibits
a G-type AFM order, whereas CaCrO3 and SrCrO3 are metallic and order in a C-
type AFM order. Furthermore, they investigated the thermal expansion of PCO and
found an almost linear behavior down to 0K, where the extrapolated lattice constant
amounts to 3.995Å. Arévalo-López and Alario-Franco 271 found a strong preference
for a cubic arrangement in mixed compounds of PbB1−xCrxO3 (B = Ti or V). At an
amount of x = 30−−40%Cr ions, the space group P4mm of bulk PbTiO3 and PbVO3
is replaced with the cubic Pm3̄m one.

PCO was considered in several density functional theory (DFT) studies. How-
ever, none of them were able to get the semiconducting ground state. e earliest
work by Jaya et al. 68 was based on a linearized muffin-tin orbital (LMTO) basis set.
ey found a good agreement with the experimental magnetic moment and a strong
hybridization of the Cr-3d and O-2p states. Recently, Wang et al. 69 considered the
effect of intermixing of Pb and Cr ions using a projector augmented wave (PAW)
method. ey used a DFT+U approach with values for U between 0 and 6 eV. Inde-
pendent of the used exchange-correlation functional and the value ofU, the obtained
lattice constant is much smaller than in experiment. e ground-state is metallic for
reasonable values of U. Ganesh and Cohen 70 investigated a displacement of the Pb
ions using a PAW method and a DFT+U approach, too. ey found a favorable
polar shi along the crystallographic (001)-direction which disappears upon reduc-
tion of the volume by 20%. ey associate these two phases with the high pressure
and low pressure phase predicted by Xiao et al..67 Both phases are metallic inde-
pendent of the value of U. e low pressure phase is tetragonal with a gigantic dis-
tortion of c/a ∼ 0.88. Yıldırım et al. 272 investigated surfaces of PCO employing a
GGA+U scheme. ey found a strong dependence of the equilibrium properties on
the Hubbard-parameter U and could not reproduce the insulating ground state.

A simple consideration of the energy diagram in Fig. 9.1 reveals, that the exper-
imentally suggested perfect cubic perovskite structure in combination with the 4+
oxidation state of Cr cannot yield an insulating ground state. In a perfect cubic per-
ovskite structure, the three t2g levels are degenerate. Hence, the two electrons of the
Cr4+ ion would only result in a two-third ĕlling of this band. e symmetry of the
crystal must allow for a splitting of the t2g levels, so that the resulting state can be
semiconducting. Roth and DeVries noted small discrepancies in the observed scat-
tering amplitude compared to the expected value for a perfectly cubic perovskite,
“which may be due to small deformations of the oxygen octahedron sufficient to li
the orbital degeneracy.”61
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Figure 9.1: Energy diagram of PbCrO3: e ĕve 3d states split under the inĘuence
of the octahedral crystal ĕeld into two eg states and three t2g. For the Cr4+ ion the
latter ones are occupied by two electrons. As experimentally a semiconducting state
is observed, the symmetry has to be lowered (e.g. by a Jahn-Teller distortion) so that
the three t2g levels split.

In this chapter, we will investigate the effect of deformations of the oxygen oc-
tahedra. A combination of Jahn–Teller (JT) distortions and tilting of the oxygen
octahedra allows by symmetry for 44 different space groups.273 We evaluate the total
energy for PCO in every one of these space groups and determine the ground-state
structure. In the isovalent BiFeO3, the lone-pair electrons of Bi drive a ferroelectric
distortion.57 To account for this possibility, we include a polar displacement in all
of the examined structures. Depending on the size of the Hubbard parameter U,
we ĕnd two different deformations, which minimize the energy of the system. At
small values of U, JT distortions are the dominating mechanism whereas a rotation
of the octahedra leads to lower energies for large values of U. Both structures exhibit
a small band gap reproducing thereby the experimentally observed semiconducting
nature of this material for the ĕrst time in DFT calculations. We examine both types
of distortions closely to determine the origin of the gap. e JT distortions split the
Cr t2g states as depicted in Fig. 9.1 giving rise to an orbitally ordered state. e in-
clusion of oxygen octahedra rotation leads to a charge order on the Pb site and a +3
oxidation state on Cr with completely ĕlled t2g states. e results of these DFT+U
calculations depends strongly on the choice of the Hubbard-parameter U. Hence,
we perform hybrid-functional calculations on the obtained ground-state structures
to motivate an optimized choice for the value of U.

is chapter is structured as follows: In Sec. 9.2, we introduce the considered lat-
tice distortions. We describe the setup of the unit cell and the computational details
in Sec. 9.3. e results of these calculations are presented in Sec. 9.4. We focus on the
two insulating states in the next two sections. In Sec. 9.5, we describe the state driven
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Figure 9.2: Common distortions of the oxygen octahedra in perovskite materials.
Each distortionmode is labeled by the irreducible representation it belongs to. Jahn–
Teller deformations and oxygen cage rotations are shown in the ĕrst and second row,
respectively. In plane, neighboring octahedra have opposite deformations. Out of
plane, the octahedra ordering pattern is either “in-phase” (M+

2 and M+
3 mode) or

“out-of-phase” (R+
3 and R+

4 mode).

by JT distortions. In Sec. 9.6, we focus on the effect of oxygen rotations. We illustrate
the U dependence of these two structures in Sec. 9.7 and discuss the consequences
of hybrid-functional calculations. Finally, we draw our conclusions in Sec. 9.8.
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9.2 Octahedral tilting and Jahn–Teller distortions
Adistortion of the oxygen cage in PCOwas already suggested byRoth andDeVries,61
yet neither experimentally nor theoretically investigated so far. e Cr4+ ion is JT ac-
tive, so we expect an elongation of some of the Cr-O bonds and a subsequent shrink-
ing of several of the other ones. All these distortions can be decomposed into three
modes which belong to the irreducible representations Γ+

3 , M+
2 , and R+

3 . e Γ+
3 mode

is two dimensional where these degrees of freedom correspond to the c/a and b/a
ratio different from 1. Hence, in a cubic crystal the amplitude of the Γ+

3 mode is zero,
so that we do not include it in our study.

e other two modes can exist in a cubic crystal with nonzero amplitude. We vi-
sualize a one dimensional representative of these modes in the upper part of Fig. 9.2.
In plane, a selected oxygen octahedron is elongated along one axis deĕning conse-
quently the shrinking of its neighbors along this axis. is leads to a checkerboard-
like arrangement of the octahedra. Out of plane, the stacking in the M+

2 mode is
in-phase (neighboring cages have the same distortion), whereas the R+

3 mode shows
an out-of-phase pattern (neighboring cages have the opposite distortion). A single
oxygen octahedron can be elongated along three axes, so that these JT modes are
three dimensional. Hence, any possible M+

2 mode can be represented in a combina-
tion of elongations along the three coordinate axes. However, in the case of the R+

3
mode this representation is reducible to a two dimensional one, because the elonga-
tion along one particular axis can be expressed by elongations along the other two
axes.

In addition to these JT modes, we consider rotations of the oxygen octahedra,
because they are the most common distortion in perovskite materials and possibly
inĘuence the JT distortion.274 All possible rotations can be realized as a combination
of two modes which correspond to the irreducible representations M+

3 and R+
4 . We

show two simple representatives of these modes in the lower part of Fig. 9.2. e
ordering is analogous to the JT distortions. In plane, we see a checkerboard-like
setup, as the rotation of one oxygen octahedron is directly linked to its neighbors.
Out of plane, the M+

3 mode describes an in-phase ordering, while an out-of-phase
arrangement is found in the R+

4 mode.
In the following, we will consider all possible combinations of JTmodes and oxy-

gen cage tilting. is was investigated in much detail by Carpenter and Howard.273
ey found that a combination of thesemodes leads to 44 space groups. In our study,
we considered the 42 space groups depicted in Table 9.1. We will describe in the next
section, how we generated the primitive unit cell and which numerical parameters
were chosen for the calculation.
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Table 9.1: Carpenter and Howard 273 found 44 space groups accessible by a per-
ovskite system in which a tilting of the oxygen octahedra (M+

3 and R+
4 mode) is

combined with a JT distortion (Γ+
3 , M+

2 and R+
3 mode). We do not depict the two

space groups, which differ from the simple cubic one only by a c/a or a b/a ratio
different from 1.

Mode no JT M+
2 R+

3

no tilt 221Pm3̄m 127P4/mbm 140 I4/mcm
139 I4/mmm 139 I4/mmm
204 Im3̄ 69Fmmm
71 Immm

M+
3 127P4/mbm 55Pbam 135P42/mbc

139 I4/mmm 74 Imma 126P4/nnc
204 Im3̄ 87 I4/m 48Pnnn
71 Immm 12C2/m

R+
4 140 I4/mcm 135P42/mbc 72 Ibam

74 Imma 63Cmcm
167R3̄c 15C2/c
12C2/m 14P21/c
2P1̄ 2P1̄

M+
3 , R+

4 63Cmcm 52Pnna 15C2/c
62Pnma 62Pnma 14P21/c
11P21/m 86P42/n 2P1̄
137P42/nmc 68Ccca

9.3 Computational setup

We generate the unit cells according to the spacegroups in Table 9.1. In several cases
the symmetry of the space group allows for additional shis of the other atoms. To
investigate all possiblemodes at these sites, wemake use of the program I.275
Figure 9.3 shows the input and output of this investigation. In this case we will as-
sume that in the simple perovskite unit cell, Pb occupies the Wyckoff position b, Cr
the Wyckoff position a, and O the Wyckoff position d. With this assignment, we ĕnd
six modes for Pb (Γ−

4 , R+
5 , X+

1 , X+
5 , M−

2 , and M−
5 ) as well as six modes for Cr (Γ−

4 , R−
4 ,

X−
3 , X−

5 , M−
3 , and M−

5 ). In addition, we ĕnd the displacements of the atoms when the
mode is present in the crystal.
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*value parent 221
*value wyckoff a b
*value kdegree 0
*show irrep
*show subgroup
*show microscopic vector
*display distortions
Irrep (ML) Point Projected Vectors
GM4- (0,0,0) (1,0,0), (0,1,0), (0,0,1)
GM4- (1/2,1/2,1/2) (1,0,0), (0,1,0), (0,0,1)
R5+ (1/2,1/2,1/2) (0,0,1), (1,0,0), (0,1,0)

(3/2,3/2,3/2) (0,0,-1), (-1,0,0), (0,-1,0)
R4- (0,0,0) (0,0,1), (1,0,0), (0,1,0)

(1,1,1) (0,0,-1), (-1,0,0), (0,-1,0)
X1+ (1/2,1/2,1/2) (0,1,0), (0,0,1), (1,0,0)

(1/2,1/2,3/2) (0,1,0), (0,0,-1), (1,0,0)
(1/2,3/2,1/2) (0,-1,0), (0,0,1), (1,0,0)
(1/2,3/2,3/2) (0,-1,0), (0,0,-1), (1,0,0)
(3/2,1/2,1/2) (0,1,0), (0,0,1), (-1,0,0)
(3/2,1/2,3/2) (0,1,0), (0,0,-1), (-1,0,0)
(3/2,3/2,1/2) (0,-1,0), (0,0,1), (-1,0,0)
(3/2,3/2,3/2) (0,-1,0), (0,0,-1), (-1,0,0)

X5+ (1/2,1/2,1/2) (1,0,-1), (-1,0,-1), (-1,1,0), (-1,-1,0), (0,-1,1), (0,-1,-1)
(1/2,1/2,3/2) (1,0,-1), (-1,0,-1), (1,-1,0), (1,1,0), (0,-1,1), (0,-1,-1)
(1/2,3/2,1/2) (-1,0,1), (1,0,1), (-1,1,0), (-1,-1,0), (0,-1,1), (0,-1,-1)
(1/2,3/2,3/2) (-1,0,1), (1,0,1), (1,-1,0), (1,1,0), (0,-1,1), (0,-1,-1)
(3/2,1/2,1/2) (1,0,-1), (-1,0,-1), (-1,1,0), (-1,-1,0), (0,1,-1), (0,1,1)
(3/2,1/2,3/2) (1,0,-1), (-1,0,-1), (1,-1,0), (1,1,0), (0,1,-1), (0,1,1)
(3/2,3/2,1/2) (-1,0,1), (1,0,1), (-1,1,0), (-1,-1,0), (0,1,-1), (0,1,1)
(3/2,3/2,3/2) (-1,0,1), (1,0,1), (1,-1,0), (1,1,0), (0,1,-1), (0,1,1)

X3- (0,0,0) (0,1,0), (0,0,1), (1,0,0)
(0,0,1) (0,1,0), (0,0,-1), (1,0,0)
(0,1,0) (0,-1,0), (0,0,1), (1,0,0)
(0,1,1) (0,-1,0), (0,0,-1), (1,0,0)
(1,0,0) (0,1,0), (0,0,1), (-1,0,0)
(1,0,1) (0,1,0), (0,0,-1), (-1,0,0)
(1,1,0) (0,-1,0), (0,0,1), (-1,0,0)
(1,1,1) (0,-1,0), (0,0,-1), (-1,0,0)

X5- (0,0,0) (1,0,-1), (1,0,1), (-1,1,0), (1,1,0), (0,-1,1), (0,1,1)
(0,0,1) (1,0,-1), (1,0,1), (1,-1,0), (-1,-1,0), (0,-1,1), (0,1,1)
(0,1,0) (-1,0,1), (-1,0,-1), (-1,1,0), (1,1,0), (0,-1,1), (0,1,1)
(0,1,1) (-1,0,1), (-1,0,-1), (1,-1,0), (-1,-1,0), (0,-1,1), (0,1,1)
(1,0,0) (1,0,-1), (1,0,1), (-1,1,0), (1,1,0), (0,1,-1), (0,-1,-1)
(1,0,1) (1,0,-1), (1,0,1), (1,-1,0), (-1,-1,0), (0,1,-1), (0,-1,-1)
(1,1,0) (-1,0,1), (-1,0,-1), (-1,1,0), (1,1,0), (0,1,-1), (0,-1,-1)
(1,1,1) (-1,0,1), (-1,0,-1), (1,-1,0), (-1,-1,0), (0,1,-1), (0,-1,-1)

M2- (1/2,1/2,1/2) (0,0,1), (1,0,0), (0,1,0)
(3/2,1/2,1/2) (0,0,-1), (1,0,0), (0,-1,0)
(1/2,3/2,1/2) (0,0,-1), (-1,0,0), (0,1,0)
(1/2,1/2,3/2) (0,0,1), (-1,0,0), (0,-1,0)

M3- (0,0,0) (0,0,1), (1,0,0), (0,1,0)
(1,0,0) (0,0,-1), (1,0,0), (0,-1,0)
(0,1,0) (0,0,-1), (-1,0,0), (0,1,0)
(0,0,1) (0,0,1), (-1,0,0), (0,-1,0)

M5- (0,0,0) (1,0,1), (1,0,-1), (1,1,0), (-1,1,0), (0,1,1), (0,-1,1)
(1,0,0) (-1,0,-1), (-1,0,1), (-1,-1,0), (1,-1,0), (0,1,1), (0,-1,1)
(0,1,0) (1,0,1), (1,0,-1), (-1,-1,0), (1,-1,0), (0,-1,-1), (0,1,-1)
(0,0,1) (-1,0,-1), (-1,0,1), (1,1,0), (-1,1,0), (0,-1,-1), (0,1,-1)

M5- (1/2,1/2,1/2) (1,0,1), (-1,0,1), (1,1,0), (1,-1,0), (0,1,1), (0,1,-1)
(3/2,1/2,1/2) (-1,0,-1), (1,0,-1), (-1,-1,0), (-1,1,0), (0,1,1), (0,1,-1)
(1/2,3/2,1/2) (1,0,1), (-1,0,1), (-1,-1,0), (-1,1,0), (0,-1,-1), (0,-1,1)
(1/2,1/2,3/2) (-1,0,-1), (1,0,-1), (1,1,0), (1,-1,0), (0,-1,-1), (0,-1,1)

Figure 9.3: Excerpt of input and output of I.275
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*value parent 221
*value wyckoff d
*value irrep m2+
*show irrep
*show subgroup
*show microscopic vector
*display distortions
Irrep (ML) Point Projected Vectors
M2+ (1/2,0,0) (1,0,0), (0,0,0), (-1,0,0)

(3/2,0,0) (-1,0,0), (0,0,0), (1,0,0)
(1/2,1,0) (-1,0,0), (0,0,0), (-1,0,0)
(1/2,0,1) (1,0,0), (0,0,0), (1,0,0)
(0,0,1/2) (0,0,0), (0,0,-1), (0,0,1)
(1,0,1/2) (0,0,0), (0,0,-1), (0,0,-1)
(0,1,1/2) (0,0,0), (0,0,1), (0,0,1)
(0,0,3/2) (0,0,0), (0,0,1), (0,0,-1)
(0,1/2,0) (0,-1,0), (0,1,0), (0,0,0)
(1,1/2,0) (0,1,0), (0,1,0), (0,0,0)
(0,3/2,0) (0,1,0), (0,-1,0), (0,0,0)
(0,1/2,1) (0,-1,0), (0,-1,0), (0,0,0)

Figure 9.4: Excerpt of input and output of I.275

In a similar fashion, we determine the displacements of the oxygen atoms in the
crystal. In Fig. 9.4, we show for example the determination of the shis of the oxygen
atoms in the M+

2 mode. Analogously, we ĕnd the distortions in the R+
3 , in the M+

3 ,
and in the R+

4 mode. It is noteworthy, that we limited ourselves to modes which can
be represented within a unit cell of 2×2×2 primitive cubic unit cells.

To analyze which modes are allowed in a speciĕc subgroup, we use another tool
of the I275 soware. Figure 9.5 illustrates, using the example of the space
group 68Ccca, how we determine the allowed deformations. For this, we need only
the basis and the origin of the subgroup relative to the parent space group. ese are
given in the work of Carpenter and Howard.273 Of all these possible deformations,
we consider those that yield a microscopic displacement of the Pb or the Cr atoms.
Hence, in the speciĕc example depicted in Fig. 9.5, we consider only the X+

5 mode
with an order parameter (a,a, 0, 0,−a,a). Examining all the spacegroups listed in
Table 9.1, we ĕnd that the only modes which may be present for the Pb ions are R+

5 ,
X+

1 , and X+
5 , though not all of these modes are allowed for all spacegroups. Further-
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*value parent 221
*value subgroup 68
*value basis 2,2,0 -2,2,0 0,0,2
*value origin 0,0,0
*display directions
Irrep (ML) Dir Subgroup Size
GM1+ (a) 221 Pm-3m 1
GM3+ (a,0) 123 P4/mmm 1
GM5+ (a,0,0) 65 Cmmm 1
R2+ (a) 226 Fm-3c 2
R3+ (0,a) 140 I4/mcm 2
R4+ (a,0,0) 140 I4/mcm 2
X2+ (0,a,0) 131 P4_2/mmc 2
X3+ (a,b,a) 126 P4/nnc 8
X4+ (a,0,a) 125 P4/nbm 4
X5+ (a,a,0,0,-a,a) 129 P4/nmm 4
M1+ (a,0,0) 123 P4/mmm 2
M3+ (0,a,a) 139 I4/mmm 4
M4+ (a,b,-b) 139 I4/mmm 4
M5+ (0,0,0,a,0,0) 140 I4/mcm 4

Figure 9.5: Excerpt of input and output of I.275

more, in none of these structures amovement of the Cr atom is allowed by symmetry.
To ensure that the latter constraint is not too restrictive, we repeated the above pro-
cedure taking into account an explicit symmetry breaking by a polar Γ−

4 distortion at
the Cr site. is distortion may be induced by the lone-pair electrons of the Pb ion.

e unit cells given by Carpenter andHoward 273 which correspond to the space-
groups in Table 9.1 are generally not the primitive unit cell of the respective structure.
In addition, PCO is a G-type antiferromagnet,61 hence the magnetic unit cell might
be larger than the crystallographic one. To ĕnd the primitive unit cell, we use this
algorithm:
..1 We select a trial lattice vector at that is a linear combination of the lattice vec-

tors of the simple cubic perovskite unit cell. We start using the smallest possible
vectors and proceed to larger ones. If one or more lattice vectors were already
found, we require that the new one is linearly independent.

..2 We calculate the displacement caused by all modes allowed in the crystal for the
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ĕve reference atoms in the simple perovskite unit cell. In order to achieve this,
we multiply the speciĕc order parameter of the mode with the displacements as
found in Fig. 9.3 and Fig. 9.4.

..3 We repeat the calculation of the displacement for test unit cell that is translated
by at with respect to the reference unit cell. If the magnetic moment and the dis-
placement are identical for the corrsponding atoms in the test and the reference
unit cell, then at is a valid lattice vector of the primitive unit cell.

..4 If we have found three lattice vectors, we are done with the determination of the
primitive cell, otherwise we proceed with step 1.

..5 As a ĕnal step, we analyze which atoms are present within the primitive unit cell.
We invert the matrix built by the three lattice vectors and calculate the internal
coordinates for all 40 atoms of the 2×2×2 unit cell. Removing the duplicates, we
have the positions of the atoms for the space group.

Once the primitive unit cell is initialized with some small distortions, we perform
ĕrst-principles DFT calculations to establish the ground state of all these different
structures employing a multi-code approach. e most time-consuming part of the
calculation is the relaxation of the shape of the unit cell and the atoms within. For
this step, we apply the PAW method,111,276 which is faster than all-electron meth-
ods at the cost of being less precise. During the relaxation, we employ a plane-wave
cutoff of 600 eV. e Pb 5d as well as the Cr 3p states are treated as valence states.
For the exchange-correlation functional, we chose the local PBE functional and add
an on-site Hubbard-like term94 to describe the localized nature of the Cr d states.
We vary the U value between 2 eV and 4 eV and selected a value of J = 1 eV. We
analyze all relaxed structures with the tools provided by the Bilbao Crystallographic
Server,277,278 in particular Amplimodes,279 to investigate which modes remain aer
relaxation. e speciĕc value of U changes which structure has the lowest energy of
all investigated structures. We examine the U dependence of these two structures in
more detail.

e relaxed structures are further processed in the precise all-electron full-poten-
tial linearized augmented-plane-wave (FLAPW) method31,32,117 as realized in the
Fleur code.126 Wecross-check the energy differences obtainedwith the PAWmeth-
od, investigate the origin of the insulating state, and determine the ferroelectric po-
larization if present. For this study, we make use of the Wannier90 interface,215,280
which allows us to constructWannier functions from the obtainedKohn-Shamwave-
functions. Furthermore, we investigate the resulting structures in more detail using
the HSE06 functional,26,131 from which we extract a trend for the value of the Hub-
bard U.
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9.4 Ground state investigation

In this section, we analyze the results of the relaxation. We calculated the 42 different
structures depicted in Table 9.1 and determine the total energy and the relaxed struc-
ture. In Fig. 9.6, we illustrate the stable (black) and unstable (gray) spacegroups. A
space group can not be stable, if a stable subgroup exists, so that a symmetry breaking
would lower the total energy. Furthermore, we investigate the symmetry of the re-
laxed structure with I275 and Amplimodes.279 If the symmetry has increased
during the relaxation, we indicate this by a green arrow pointing to the appropriate
supergroup. In this case the structure with the higher symmetry yields the same total
energy at a reduced computational time, so that we limit ourselves to this more sym-
metric space groups in the remainder of this chapter. A lot of subgroups with JT dis-
tortions (illustrated by the red and blue area in Fig. 9.6) relax to supergroups without
JT distortion, so that in general the JT distortions are suppressed by the presence of a
tilting of the oxygen octahedra. e three notable exceptions are the Imma (a0b0c+),
the I4/m (a+a+c0), and theC2/c (a+b−c0) structure. e rest of the stable spacegroups
includes either only JT distortions (I4/mmm, Im3̄, I4/mcm, and I4/mmm) or only
tilting of the oxygen octahedra (P42/nmc, C2/c, and P21/m). e energetic order of
these structures depends on the value of the Hubbard U. e pure JT distortion is
favored for small values of U, whereas the rotation of the oxygen octahedra is more
stable at larger values of U. Common to all these structures is the signiĕcant energy
decrease of > 100meV compared to the simple cubic arrangement. Furthermore,
we determine a stabilization of a polar Γ−

4 mode at the Cr site, if we allow for the
corresponding symmetry breaking. Next, we focus on the electronic properties of
the stable structures and ĕnd that the inclusion of a JT mode as well as the rotation
of the oxygen octahedra gives rise to the opening of a band gap at a certain value of
U. To emphasize this in more detail, we concentrate on two prototypical structures
for these relaxations. In Sec. 9.5, we illustrate the structure P4/mbm in which the JT
distortions are responsible for the transition to the insulating state. is structure
exhibits the lowest total energy at small values of the Hubbard U. In the P42/nmc
structure, which has the lowest energy at large values of U, the oxygen octahedra ro-
tate about all three axes and a charge order of the Pb ions drives the transition. We
will discuss this in Sec. 9.6.

9.5 Splitting of t2g levels by Jahn-Teller distortion

Keeping the volume of the unit cell ĕxed to the experimental value during the relax-
ation, we ĕnd the energetic minimum of the P4/mbm structure (space group 127,
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Figure 9.6: Relaxation of PbCrO3 with a Hubbard U = 4 eV: e structures are la-
beled in Glazer notation281 and the Hermann-Mauguin notation of the space group.
All possible group-subgroup connections are visualized by gray lines or green ar-
rows. A purple frame (a gray color of the label) indicates the structure is (not) stable.
A structure is not stable, if either a stable subgroup exists or the structure relaxes
along the green arrows to a supergroup. e red and blue area illustrate the presence
of the respective Jahn-Teller mode. In the area in between only tilts of the oxygen
octahedra are present.
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Figure 9.7: Relaxed P4bm structure with experimental unit-cell volume.

Glazer notation281 a0a0c0). Allowing for a polar displacement breaks the symmetry
of the crystal further so that the relaxed compound exhibits a P4bm (space group
100) structure as depicted in Fig. 9.7. is structure differs from the simple cubic
unit cell by three distortions: e Γ−

4 mode shis the positive ions Pb and Cr with
respect to the negative oxygen ions in z direction and gives rise to an electric po-
larization. In planes orthogonal to the z axis, the R+

3 JT mode elongates the oxygen
octahedra in a checkerboard pattern. Both modes break the symmetry as the z axis
is distinguishable from the other axes. As a consequence the structure exhibits a c/a
ratio, which amounts to a value larger than 110%. e absolute amount depends
on the size of the Hubbard-U parameter (see Sec. 9.7). If we relax the volume of
the unit cell, the experimental volume of 64Å3 is overestimated by 7%. Although
an overestimation of the volume is a typical feature of the generalized gradient ap-
proximation (GGA) functionals (see Sec. 8.3), we would expect a better description
by the PBE functional. More important is the large c/a ratio which does not agree
at all with the cubic structure observed in experiment. We point out that Ganesh
and Cohen 70 found a strong length difference of the three crystal axes, too, however
with a c/a ratio of 88%. e coherent movement of the cations, which is associated
to the polar Γ−

4 mode, is experimentally not observed. While the displacement of the
Pb ion appears to be oriented randomly in experiment,64,66 the Cr ion resides in the
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Figure 9.8: Electronic DOS of one spin channel in the P4bm structure. e valence
band consists of Pb s (gray) and a hybridization of O p (red) and Cr t2g states (blue).
e unoccupied band is built by a single t2g, the eg (cyan) and the minority d states.

center of the oxygen octahedron.61,62
We turn to the analysis of the electronic properties of this structure. e orbital-

decomposed electronic density of states (DOS) for one spin channela is depicted in
Fig. 9.8. e Pb s orbitals are situated approximately 7.7 eV below the Fermi energy.
e band between −6 eV and the Fermi energy is built by a hybridization of Cr d and
O p states. Above the Fermi energy the lowest unoccupied state has t2g character. At
even higher energies reside the eg states and the unoccupied d states of the spin-down
Cr ion. Investigating the unoccupied state more closely, we ĕnd an orbital order of
the the hole state. We evaluate the Wannier functions280 for the lowest unoccupied
state, which provide a prominent illustration of this orbital order. In Fig. 9.9, we rec-
ognize that the empty orbital alternates in plane between dxz and dyz. Out of plane the
stacking is in phase. e origin of this particular orbital order is the following: e
large off-centering of the Cr ion in combination with the large c/a ratio favors the
occupation of the dxy orbital over the other two t2g ones similar as in PbVO3.282,283
e – in comparison – smaller JT distortion in plane, splits the energy of the re-
maining d orbitals. Hence, the occupation of the orbitals follows the checkerboard

aDue to the AFM arrangement both spin channels are equivalent.
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....

Figure 9.9: Wannier functions for the unoccupied levels directly above the Fermi
energy reveal a checkerboard orbital order in the structure.

pattern established by the R+
3 JT mode. A construction of the Wannier functions for

all occupied states allows the calculation of the electric polarization of this structure.
e sum of electronic (11.2 μC/cm2) and ionic (42.8 μC/cm2) polarization yields a
total polarization of 54.0 μC/cm2.

Finally, we considered the effect of oxygen defects, which are commonly present
in perovskites. Removing a single oxygen out of the 40 atoms unit cell corresponds
to a defect concentration of 4.2%. is defect causes a symmetry break, so that all
axes are nonequivalent. e corresponding c/a and c/b ratio amount to 1.09 and
1.06, respectively, in better agreement with experiments. e volume of the struc-
ture shrinks by roughly 7%, which corresponds roughly to the overestimation of the
defect-free structure. Furthermore, we obtain amixed valency of Cr3+ andCr4+ ions,
which was also observed in recent experiments.65 However, the inclusion of a single
defect introduces a magnetic moment on the Cr ions, because the AFM order does
not follow the local charge order induced by the defect. From the investigation of a
2×2×2 unit cell, we can not conclude whether this problem would persist in a real
crystal, where the defects are randomly distributed or if it is an artifact originating
in the small size of the calculational unit cell.

9.6 Chargeorder inoxygen-octahedra tilt structure
e P42/nmc structure (space group 137) incorporating only oxygen tilts relaxes into
the P42mc (space group 105) structure (see Fig. 9.10), if we allow for polar displace-
ments. e Glazer notation281 a+a+c− of this structure reveals the distortions asso-
ciated to tilting of the oxygen octahedra. e octahedra rotate by an equal amount
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Figure 9.10: Relaxed P42mc structure with experimental unit-cell volume.

about x and y axis with an in-phase ordering perpendicular to these axes. e ro-
tation about the z axis is slightly smaller and the neighboring layers have an out-
of-phase stacking. In addition to these rotations and the polar displacement, the
reduced symmetry allows for further modes (M−

5 , M−
2 , M+

4 , X+
5 , X−

4 , and X−
3 ) to be

established. e amplitude of these distortions is a factor 5 to 20 smaller than the
amplitude of the tilting modes R+

4 and M+
3 . e amplitude of the polar displacement

is larger than any of those additionalmodes but of the same order ofmagnitude. is
structure exhibits a c/a ratio of 0.998, which is almost identical to the value of the
cubic structure. is value decreases with the increase of the value of the Hubbard
U, what will be discussed in more detail in Sec. 9.7. e volume of the unit cell is sig-
niĕcantly smaller (6%) than the experimentally observed one, which is astonishing
as GGA functionals tend to overestimate the lattice constant. e same behavior was
found in other numerical calculations for the simple cubic unit cell.69,70 A detailed
investigation of the distortion with Amplimodes279 reveals that the polar Γ−

4 mode
mainly shis the Pb atoms with respect to the oxygens, whereas the Cr atoms hardly
shi at all. As several of the modes with smaller amplitude act on the Pb ions as well
(X+

5 , M−
2 , and M−

5 ), this may explain why experimentally a random displacement of
the Pb ions is seen,64 in particular taking into account that phase boundaries and
defects destroy the long-range order.
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Figure 9.12: Wannier functions for the unoccupied levels directly above the Fermi
energy localized at particular Pb4+ sites. e dashed arrows indictate that the func-
tions are centered at the rear Pb ions, whereas solid lines are associated with the front
Pb ions.
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e electronic properties of this structure are illustrated by the DOS in Fig. 9.11.
We recognize that the symmetry of the crystal makes two types of Pb atoms distin-
guishable, which gives rise to two separate 6s peaks at 8 eV and 7.2 eV below the
Fermi energy. e valence band consists mainly of a hybridization of O 2p and Cr
t2g states, however the edge of the valence band has a notable contribution of Pb s
character. A hybridized band of Pb s and O p states, which includes contribution of
one particular Pb type, forms a band approximately 0.5 eV above the Fermi energy.
At a higher energy of roughly 2 eV the unoccupied eg and theminority d states reside.
We realize that this electronic arrangement is incompatible with the simple energy
diagram as proposed in Fig. 9.1. Instead it corresponds to a charge order of the Pb
atoms, where a hybridized 6s2p state donates the electrons to completely ĕll the Cr
t2g levels of the majority spin. A nice visualization of this gap state is provided by
the calculation of the Wannier functions for the ĕrst unoccupied bands depicted in
Fig. 9.12. e Pb ions form columns of Pb4+ and Pb2+, so that the Wannier functions
are localized in these columns. Even the Pb4+ ions differ from each other, which is
revealed by the hybridization of the Wannier functions. Two of the Pb ions shi up-
wards strongly from their high symmetry position and as a consequence the s state
only hybridizes with the in-plane oxygens and two of the ones above. For the second
type of Pb4+ ions, the rotation of the oxygen octahedra moves the in-plane oxygens
away from the Pb ions, so that its s state hybridizes with all of the out-of-plane oxy-
gens. is electronic arrangement is incompatible with the experimental observa-
tions. e measurement of the magnetic moment61,66 and the EELS spectrum64,65

suggest a formal charge of the Cr ion of 4+ or 3.5+. Hence, the Pb ion should exhibit
a formal charge of 2+ or 2.5+ to compensate the formal charge of 2− of the three
oxygen ions. We emphasize the difficulty to determine the charge attributed to a
speciĕc atom in a real material. As illustrated by the DOS, the s state of “Pb4+” is
mostly ĕlled, which would not be the case if the real charge on the Pb4+ ion would
correspond to the formal one. e Wannier functions and the DOS indicate that the
lowest conduction band state is rather a combination of Pb s and O p states, which
is not modeled by the simple ionic picture of formal charges. Finally, we employ
a Wannier construction to all occupied states to evaluate the contributions of elec-
tronic (3.1 μC/cm2) and ionic (17.7 μC/cm2) polarization, which amount to a total
polarization of 20.8 μC/cm2.

e inclusion of an oxygen defect per 40 atoms unit-cell yields an increase of vol-
ume by roughly 1%, so that it agrees better with the experimental volume. e three
lattice vectors remain at almost cubic (a ∶ b ∶ c = 1.001 ∶ 0.995 ∶ 1.003) although the
deviations are slightly larger than in the defect-free structure. e excess electrons
induced by the defect move to one of the Pb4+ ions resulting in a formal 2+ charge,
the formal charge of the Cr ions remains unchanged.



.. C DFT+U    

...

..

2

.

2.5

.

3

.

3.5

.

4

.

4.5

.

5

.

5.5

.

6

.−700 .

−600

.

−500

.

−400

.

−300

.

−200

.

−100

.

0

.

MIT

.

1.160
1.014

.

1.141
1.000

.

1.134
0.998

.

1.106
0.997

.

1.026
0.996

.

c/a

.

Hubbard U (eV)

.

en
er
gy

di
ffe
re
nc
eΔ

E
(m

eV
)

.

. ..P42mc

. ..P4bm I

. ..P4bm II

Figure9.13: Energy differenceΔE of distorted structurewith respect to simple cubic
one as function of theHubbardU applied in theDFT+U scheme. eP4bm structure
exhibits a phase transition to a different structural arrangement at U = 5.2 eV. e
P42mc structure shows a metal-insulator transition (MIT) at U = 3.3 eV. Above the
plot, the c/a ratio of the structures at different values of U is shown.

9.7 Comparison DFT+U and hybrid functionals
e properties of the relaxed solutions vary strongly with the chosen value of the
Hubbard U. In this section, we analyze trends for the two prototypical structures
discussed in the last two sections. In Fig. 9.13, we depict the energetic competition
between the two structures in comparison to the simple cubic structure. At small
values of U the strongly tetragonal P4bm structure is roughly 260meV per formula
unit (f.u.) more favorable than an undistorted arrangement. Increasing the value of
U lead to a decrease of the c/a ratio and the energy difference to the cubic structure.
At a value of U = 5 eV a metastable metallic structure exist, which has a signiĕcantly
smaller c/a ratio. For even larger values of U the metallic structure becomes more
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Figure 9.14: Comparison of the U dependence of the volume in the simple cubic
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of U. As reference the experimental unit-cell volume is depicted as black line.

stable than the insulating one. is new structure is characterized by a single Γ−
4

mode, i.e., the JT distortion disappears during the relaxation. We recall that the polar
displacement in addition to the large c/a ratio were responsible for the opening of the
band gap, so that it is straightforward that the disappearance of these features yields
a metallic solution. At a U of 2 eV, the P42mc structure is only slightly favorable
compared to the simple cubic state. Increasing the value of U yields a stabilization of
this structure which results in a transition from the P4mb structure to the P42mc one
at U > 3 eV. In parallel to the lowering in energy the structure becomes continuously
closer to an insulating state until a metal-insulator transition occurs. For all values
of U ≥ 3.5 eV a band gap is found.

Next, we focus on the change of the volume with the chosen value of U (see
Fig. 9.14). e volume of the P4bm structure is almost independent of U and sig-
niĕcantly larger than the experimental volume. At large values of U the transition to
the metallic solution occurs with a smaller volume than the experimental one. e
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unit cell of the P42mc structure increases monotonically with the applied value of
U. At small values of U the obtained volume is roughly 8% smaller than the exper-
imental volume, whereas the difference is only 5% at the largest investigated value
of U. We note that the large volume underestimation is also observed in the sim-
ple cubic arrangement (see Fig. 9.14 and Ref. 69). Ganesh and Cohen 70 proposed
that a similar transition between the large tetragonal unit cell and the cubic unit cell
corresponds to the experimental observation of a volume collapse under pressure.67
However, in their calculation both solutions are metallic, whereas our distortions
reproduce the experimental observation of a semiconducting ground state.

Figure 9.15 illustrates the impact of the Hubbard U on the electronic DOS. In
the P42mc structure, increasing the value of U the t2g states move downwards. As a
consequence, they are closer in energy to the oxygen p levels leading to a stronger
hybridization. Furthermore, the unoccupied d states shi towards higher energy.
e 6s2p-hybrid peak has a small hybridization with the t2g states that weakens as
these states are pushed downwards by a larger value of U, which leads to the opening
of a small band gap. We realize a second 6s2p-hybrid peak directly below the Fermi
energy, which is separated more clearly at a larger value of U. e effect of the Hub-
bard U on the d electrons is similar in the P4bm structure. At small values of U the
average of the t2g states is above the average of the p states. Increasing the U shis
the occupied t2g states downwards. e hybridization is maximized, when the aver-
age position of t2g and p band coincide. e empty t2g state directly above the Fermi
energy does not shi signiĕcantly with the applied U, yet, its width decreases. e
unoccupied d states are moved to higher energies by the increase of the value of U.
Common to both structures is that the position of the remaining peaks, in particular
the Pb s one, are hardly inĘuenced by the change ofU. is is a direct consequence of
the construction of the DFT+U method.94 As the Hubbard U is only applied to states
of a particular orbital character, the rest of the spectrum is altered only via indirect
effects.

e strong dependence of the relative stability and the volume of the structures
on the speciĕc value of theHubbardU limits the predictive power of DFT. Hence, we
investigated both structures with the Heyd-Scuseria-Ernzerhof (HSE) hybrid func-
tional,26 which yields parameter-free results. However, the computational expense
of hybrid functionals effectively limits such an investigation to an electronic self con-
sistency, so that we have to start from the relaxed structures of a DFT+U calculation.
In Fig. 9.15, we compare the electronic DOS obtained with the hybrid functional to
the results of the DFT+U scheme. We ĕnd the occupied p − d hybridized states in
the P42mc structure between 6.5 eV and 1 eV below the Fermi energy. Hence, the
position of the bands is best described by a large value of U. However, if we consider
the position of the centers of the peaks, a smaller U agrees better, because the max-
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Figure9.15: Illustration of changes in the orbital resolved electronicDOS associated
to the Hubbard U parameter for 40 atoms unit cell of PbCrO3 in the prototypical
P42mc (le) and P4bm (right) structure. For comparison, we depict the result of a
HSE hybrid functional calculation. We show the contribution of the Pb s (gray), the
Cr eg (blue), the Cr eg (cyan), and the O p (red) states. e latter is scaled by 1/2 to
make the scale of all states more similar.
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imum of the d states is above the maximum of the p states. e states closest to the
Fermi energy are of hybrid O p and Pb s nature, where the band gap is signiĕcantly
increased compared to all DFT+U results. e unoccupied d states are shied to
roughly 1 eV higher energies and their localization is drastically reduced, which is
illustrated by the decrease of the peak height. Next, we turn to the P4bm structure.
e part of the valence band built from Cr d and O p states is situated at energies be-
tween −7 eV and the Fermi energy. e position of the peaks is best described by an
intermediate U of roughly 4 eV. e unoccupied t2g states are shied to an approx-
imately 1 eV higher energy increasing the band gap above all of the DFT+U results.
e unoccupied eg states are affected more than the minority t2g states. Similar to
the P42mc structure, the binding of the Pb s state increases by 0.5 eV.

No unique value of U is sufficient to describe the results of the hybrid function-
als. To reproduce the hybridization of Cr d and O p electrons a value of U between
3 and 4 eV would be optimal, whereas the reproduction of the band gap requires a
signiĕcantly larger value of U. We encourage the development of more efficient im-
plementations of the hybrid functionals that allow for a consistent investigation of
PCO.

9.8 Summary

In this chapter, we have analyzed the properties of the perovskite PbCrO3 within
a DFT+U approach and have compared the results for the relaxed structures with
the ones obtained with the HSE hybrid functional. We have investigated 42 possible
combinations of tilts and JT distortions of the oxygen octahedra. Of all considered
structures only a few turn out to be stable. We have chosen two prototypical rep-
resentatives that exhibit the lowest total energy at small and large values of U, re-
spectively, and have determined their properties in detail. Most importantly, both
structures allow for the insulating ground state that is experimentally observed, but
could not be reproduced by previous DFT calculations from the literature.68–70 e
opening of the band gap is driven by different mechanisms in the two structures.
In the P4bm structure, which consist of a polar displacement of the Pb and Cr ions
and JT distortions, the symmetry is broken such that the t2g levels split in three dif-
ferent states. is results in an orbitally-ordered structure. e P42mc structure is
characterized by rotations of the oxygen octahedra around all three axes and an off-
centering of the Pb atoms. e charge in this structure is redistributed such that
the t2g states are completely ĕlled and an empty 6s2p hybridized state is unoccu-
pied. Both structures show some discrepancies to the experimental results, most
notably the large c/a ratio and the volume overestimation in the P4bm structure and
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the magnetic moment and the volume underestimation in the P42mc structure. We
have shown that the inclusion of oxygen defects partially overcomes this discrepan-
cies. e properties as well as the stability of both structures is subject to signiĕcant
changes under the applied value of the Hubbard U. We have outlined that although
the hybrid functional approach yields the same qualitative electronic structure, there
are prominent changes in the quantitative properties such as the position of peaks,
the charge localization, and the strength of the hybridization. No unique choice of U
is appropriate to reproduce the results of the hybrid functional calculation. Hence,
we propose improving the speed of the hybrid functionals to allow for a parameter-
free investigation of PbCrO3.

Concluding, we ĕnd an insulating ground state, if the simple cubic symmetry is
broken and DFT reveals that such a symmetry breaking can be realized by tilting
and JT distortion of the oxygen octahedra and polar displacements. We note that
the presence of polar distortions has not been experimentally observed and encour-
age the community to conĕrm our prediction of a microscopically noncubic polar
structure.
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Conclusion
iswork ismotivated by investigating andpushing the limits of the predictive power
of density functional theory (DFT) in the design of new functional materials. e
only approximation in DFT is the choice of the appropriate exchange-correlation
functional. We have discussed and have investigated some of the limitations of con-
ventional local exchange correlation functionals. e most commonly used alterna-
tive – theDFT+Umethod94 – relies on adjustable parameters that are oen chosen to
reproduce experimental results. In this thesis, we have implemented and investigated
theHeyd-Scuseria-Ernzerhof (HSE) functional26 that incorporates a certain fraction
of screened nonlocal exchange. e speciĕcations of the HSE functional are mate-
rial independent, hence, the predictive power surpasses the DFT+U approach. We
have employed the precise all-electron full-potential linearized augmented-plane-
wave (FLAPW) method as realized in the Fleur code,126 in which the wave func-
tions are represented in a basis of numerical radial function times a spherical har-
monic in muffin-tin (MT) spheres surrounding the nuclei and plane waves in the
interstitial region (IR). e product of two wave functions, which is evaluated for
the nonlocal exchange, is evaluated via the resolution of the identity with an auxiliary
basis.33 In this thesis, we have extended the implementation of Betzinger et al. 33 suit-
able for the Coulomb potential to any arbitrary potential, which is a pure function of
the distance, in particular the screened Coulomb potential. e screened interaction
is separated into the bare Coulomb potential and a long-range part, where the for-
mer is evaluatedwith a sparse-matrix technique similar to the PBE0 functional33 and
for the latter we have exploited the fast converging Fourier series.29 e reduction
of the k-point summations to the symmetry-irreducible parts gives rise to different
computational cost for the individual k points. is is taken into account explic-
itly in our parallelization scheme of the nonlocal potential so that we can achieve
parallelization efficiencies of more than 99%.

We have investigated possible approximations to develop faster implementation
of hybrid functionals. e FLAPW naturally separates the contributions of the non-
local functional into IR-IR, IR-MT, and MT-MT part. e MT-MT part can be fur-
ther divided into on-site and off-site terms. A systematic removal of the smaller
contributions to the hybrid functionals yields four tiers between the nonlocal PBE0
functional24 and the local PBE functional.14 In the ĕrst tier, the nonlocal functional


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is not incorporated for the IR-IR part. is approximation yields accurate band gaps
almost identical to the PBE0 functional. Removing the IR-MT contribution (second
tier) from the nonlocal functional, we ĕnd band transitions that are surprisingly close
to HSE functional. e stronger approximations, in which only on-site MT contri-
butions are considered, produce no reasonable results for the band gaps in particular
for the semiconductors Si and GaAs. ough the ĕrst two tiers yield acceptable band
transitions, the total energy of the PBE0 functional is not reproduced. e construc-
tion of the PBE0 hybrid functional ensures that local and nonlocal part are treated
on an equal footing. By approximating the hybrid functional, the violation of this
delicate balance gives rise to the mismatch in the total energy. Additionally, we have
considered the possibility of reducing the k-point summations in the calculation of
the nonlocal potential through an interpolation scheme. is technique is suited in
particular to evaluate the electronic band structure of materials, where the assign-
ment of the intermediate k points to the ones in the coarse mesh is straightforward.
Applying this method also to the self-consistent ĕeld cycle currently demands ĕne
tuning of the user. We propose the implementation of aWannier-interpolation tech-
nique to ease these requirements.

We have employed our implementation to investigate rare earth compounds, in
particular the europium chalcogenides (EuX; X = O, S, Se, and Te) and gadolinium
nitride (GdN). e lattice constant of all these materials is accurately predicted by
hybrid functionals. For the ground state of GdN contradictory experimental evi-
dence for semiconducting36–38,187 as well as semi-metallic38,39 properties has been
reported. Our investigation reveals a transition between these two states induced by
small changes in the lattice constant, which may explain the variety of the experi-
mental observations. e magnetic coupling between neighboring Gd atoms is of
ferromagnetic nature. Fitting our results to a classical Heisenberg model, we have
obtained a Curie temperature of 45K in a Monte-Carlo simulation in good agree-
ment to the experimental one of 58K.191 In the EuX series, the PBE0 and the HSE
hybrid functional overestimate and underestimate the experimental band gap, re-
spectively. Nevertheless, in contrast to a DFT+U scheme, the qualitative nature of
the experimental band transition is reproduced. Hybrid functionals yield a slightly
stronger magnetic coupling between neighboring Eu atoms resulting in higher crit-
ical temperatures in particular for EuO and EuS. ey capture the transition from
a ferromagnetic to an antiferromagnetic conĕguration across the series. In all the
investigated rare earth compounds, the particular choice of the Hubbard parameter
U strongly impacts the results of a DFT+U calculation. We have shown that hybrid
functionals present a parameter-free alternative with at least the same accuracy as
sophisticated DFT+U calculations.

As second application, we have systematically analyzed the performance of the
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HSE hybrid functional for simple perovskite oxides. e common local exchange-
correlation functionals, namely the local density approximation (LDA) and the gener-
alized gradient approximation (GGA), tend to underestimate and overestimate the
lattice constants of perovskites, respectively. Generally, the lattice constant obtained
with the HSE functional is between those values. us, this screened nonlocal func-
tional provides the smallest mean average error of all the investigated functionals.
Local functionals lack the derivative discontinuity associated with small changes of
the number of particles. As a consequence, all PBE results for the direct and indirect
band transitions are too small. Including the small fraction of Hartree-Fock (HF)
exchange opens the band gap so that the HSE functional yields a much better agree-
ment with the experimental observations.

Finally, we have performed a detailed investigation of PbCrO3 (PCO). e ex-
periments suggest that PCO is a semiconducting perovskite crystallizing in the ideal
simple cubic structure.61–63 However, we have argued that by simple symmetry con-
sideration these two features are incompatible. In a simple cubic perovskite, the three
t2g states are degenerate, hence, the occupation of these states with two d electrons
of Cr cannot result in a semiconducting state. Many perovskites exhibit a structural
distortion by tilting or Jahn–Teller (JT) deformation of the oxygen octahedra. Car-
penter andHoward 273 point out that a construction including combinations of these
distortions leads to 42 different space groups. In addition, we have included a polar
distortion along the z axis, which frequently occurs driven by the lone-pair 6s elec-
trons at the Pb site. Relaxing all these structures in a DFT+U scheme, we have found
several possible stable structures. For the ĕrst time, we have achieved an agreement
of the experimental semiconductivity and ab initio results. We have identiĕed two
mechanisms that result in the opening of a band gap. PCO in the P4bm space group
is characterized by a large c/a ratio and an off-centering of the Cr ions along the z
axis similar to PbVO3.282,283 An additional JT deformation of the octahedra in the xy
plane splits the t2g states in three distinct levels. e dxy orbital is occupied at all sites
and the dyz and dzx orbitals realize a checkerboard orbital order in the xy plane. e
volume of this structure is larger than the experimentally observed one and the large
c/a ratio does not match the experimental cubic structure. e second mechanism
occurs in a structure that exhibits the P42mc space group and is dominated by large
tilts of the oxygen octahedra. As a consequence, the Pb atoms are nonequivalent with
respect to symmetry so that a charge order is allowed. We have found that a hybrid
state of Pb 6s and O 2p electrons is unoccupied in half of the Pb ions. e excess
electrons ĕll the t2g states in the majority spin channel giving rise to an overall in-
sulating structure. Although a c/a ratio is allowed in this structure, the actual value
of 0.998 is close to the one of a cubic structure. However, the obtained volume is
signiĕcantly smaller than the experimental one and the magnetic moment at the Cr
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site is too large. e disadvantage of the DFT+U approach is the strong dependence
of energetic order, structural and electronic properties on the speciĕc choice of the
value of U. Unfortunately, a thorough investigation employing hybrid functionals is
computationally too demanding. Hence, we have evaluated properties of the relaxed
structures using the HSE hybrid functional and have compared them to results with
different choices for U. Common to both structures is the opening of the band gap
with respect to theDFT+U results and a stronger binding of the Pb s states. However,
the hybridization of the d-p valence band and the position of the unoccupied d states
cannot be described by a single optimal value of U. As future work, we propose to
develop a faster implementation of the hybrid functionals to examine all structures
independent of an adjustable parameter. Although the ultimate ground state is not
unambiguously identiĕed, our investigations of PCO strongly suggest the presence
of microscopic distortion of the simple cubic arrangement. In our calculations, a
polar distortion is stable, which leads to a multiferroic ground state. Analyzing the
microscopic properties of PCO experimentally especially in single crystals, would
bring valuable insights into which of the outlined mechanisms is adapted in prac-
tice. We hope that our ĕndings will stimulate such studies in the future.
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A Atomic Units

Atomic unitswere introduced byHartree 78 and provide a convenient formulation for
the Schrödinger equation, the Coulomb potential, andmany other equations in con-
densedmatter physics.77 e idea of atomic units is tomeasure physical quantities in
terms of fundamental constants, so that these fundamental constants become equal
to unity. In particular the mass me and charge e of an electron, Planck’s constant
h̵ the Coulomb constant 1/4πε0 and the Boltzmann constant kB deĕne the length,

Table A.1: In this thesis, we express all quantities in atomic units unless stated
otherwise. Here, we present the conversion factors for the ĕve fundamental
physical dimensions and the energy.

Dimension Atomic units SI units other units

length a0 =
4πε0h̵2

mee2
5.292 ⋅ 10−11 m 0.5292Å

time (4πε0)2h̵3

mee4
2.419 ⋅ 10−17 s

mass me 9.109 ⋅ 10−31 kg

charge e 1.602 ⋅ 10−19 C

temperature mee4
(4πε0h̵)2kB

3.158 ⋅ 105 K

energy htr = mee4
(4πε0h̵)2

4.360 ⋅ 10−18 J 27.211 eV


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time, mass, charge, and temperature dimension and thus all the derived units (cf.
Table A.1).

B Numerical parameters for perovskite calculation
In Table A.2, we present the numerical settings employed in the calculation of the
simple cubic perovskites (Chap. 8). Common to all materials is the 6×6×6 k-point
mesh and the lmax = 4 for the mixed product basis (MPB) and all atoms. For different
ABO3 compounds, the local orbitals employed at a particular site (A or B) are usually
independent of the atom at the other site, e.g. for all B = Ti 5s, 3p, 5p, 4d, and 5f local
orbitals are included. e only exception to this rule is CaSnO3, where the 4p states
of Sn are described as core states in contrast to the other Sn perovskites.



B. N     
Ta

bl
e
A
.2
:N

um
er

ic
al

co
nĕ

gu
ra

tio
n

of
th

ep
er

ov
sk

ite
ca

lc
ul

at
io

ns
.

m
at
er

ia
l

nu
m

er
ic
al

pa
ra

m
et
er

s
AB

O
3

RM
T
(a

0)
G m

ax
(a

−1 0
)

lc
ut

off
lo

ca
lo

rb
ita

lsa
N

ba
nd

s
A

B
O

χ G
M

G
A

B
O

A
B

I–
V

co
m

po
un

ds
N
aN

bO
3

2.
80

2.
31

1.
30

4.
5

4.
0

10
8

6
4s
,2

p,
4p
,4

d,
5f

6s
,4

p,
6p
,5

d,
5f

36
0

KN
bO

3
2.
80

2.
36

1.
33

4.
7

3.
9

10
8

6
3s
,5

s,
3p
,5

p,
4d
,5

f
6s
,4

p,
6p
,5

d,
5f

38
0

KT
aO

3
2.
80

2.
34

1.
32

4.
8

4.
0

10
8

6
3s
,5

s,
3p
,5

p,
4d
,5

f
7s
,5

p,
7p
,6

d,
6f

38
0

II
–I

V
co

m
po

un
ds

Ba
H
fO

3
2.
80

2.
45

1.
38

4.
3

3.
8

10
10

6
5s
,7

s,
5p
,7

p,
6d
,5

f
5s
,7

s,
5p
,7

p,
6d
,5

f
48

0
Ba

Sn
O

3
2.
80

2.
42

1.
36

4.
7

3.
8

10
10

6
5s
,7

s,
5p
,7

p,
6d
,5

f
6s
,6

p,
4d
,6

d,
5f

42
0

Ba
Ti

O
3

2.
80

2.
35

1.
33

4.
4

3.
9

10
8

6
5s
,7

s,
5p
,7

p,
6d
,5

f
5s
,3

p,
5p
,4

d,
5f

38
0

Ba
Zr

O
3

2.
80

2.
47

1.
39

4.
2

3.
7

10
10

6
5s
,7

s,
5p
,7

p,
6d
,5

f
6s
,4

p,
6p
,5

d,
5f

38
0

Ca
Sn

O
3

2.
80

2.
23

1.
26

4.
7

4.
2

10
10

6
3s
,5

s,
3p
,5

p,
4d
,5

f
6s
,6

p,
5d
,5

f
42

0
Ca

Ti
O

3
2.
80

2.
23

1.
26

4.
7

4.
2

10
8

6
3s
,5

s,
3p
,5

p,
4d
,5

f
5s
,3

p,
5p
,4

d,
5f

38
0

Ca
Zr

O
3

2.
80

2.
36

1.
33

4.
7

3.
9

10
8

6
3s
,5

s,
3p
,5

p,
4d
,5

f
6s
,4

p,
6p
,5

d,
5f

38
0

C
dT

iO
3

2.
80

2.
23

1.
26

4.
7

4.
2

10
8

6
6s
,6

p,
5d
,5

f
5s
,3

p,
5p
,4

d,
5f

40
0

Sr
H
fO

3
2.
80

2.
39

1.
35

4.
4

3.
9

10
8

6
4s
,6

s,
4p
,6

p,
5d
,5

f
5s
,7

s,
5p
,7

p,
6d
,5

f
54

0
Sr

Sn
O

3
2.
80

2.
16

1.
53

4.
4

3.
9

10
8

6
4s
,6

s,
4p
,6

p,
5d
,5

f
6s
,6

p,
4d
,6

d,
5f

42
0

Sr
Ti

O
3

2.
80

2.
29

1.
29

4.
6

4.
1

10
8

6
4s
,6

s,
4p
,6

p,
5d
,5

f
5s
,3

p,
5p
,4

d,
5f

38
0

Sr
Zr

O
3

2.
80

2.
40

1.
36

4.
6

3.
9

10
10

6
4s
,6

s,
4p
,6

p,
5d
,5

f
6s
,4

p,
6p
,5

d,
5f

38
0

Pb
Sn

O
3

2.
80

2.
39

1.
35

4.
7

3.
9

10
8

6
7s
,7

p,
5p
,7

d,
6f

6s
,6

p,
4d
,6

d,
5f

46
0

Pb
Ti

O
3

2.
80

2.
33

1.
32

4.
5

4.
0

10
8

6
7s
,7

p,
5d
,7

d,
6f

5s
,3

p,
5p
,4

d,
5f

42
0

Pb
Zr

O
3

2.
80

2.
43

1.
37

4.
3

3.
8

10
10

6
7s
,7

p,
5d
,7

d,
6f

6s
,4

p,
6p
,5

d,
5f

42
0

II
I–

II
Ic

om
po

un
ds

La
A
lO

3
2.
80

2.
23

1.
26

4.
7

4.
2

10
8

6
5s
,7

s,
5p
,7

p,
6d
,5

f
4s
,4

p,
4d
,5

f
32

0
a
In

al
lc

om
po

un
ds

3s
,3

p,
4d
,5

fl
oc

al
or

bi
ta
ls

ar
ee

m
pl

oy
ed

fo
ro

xy
ge

n.





Bibliography
[1] H. Schmid. Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317 (1994).

[2] N. A. Spaldin and M. Fiebig. e Renaissance of Magnetoelectric Multiferroics.
Science 309, 391 (2005).

[3] N. A. Spaldin and W. E. Pickett. Computational design of multifunctional ma-
terials. J. Solid State Chem. 176, 615 (2003).

[4] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Phys. Rev. 136,
B864 (1964).

[5] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and
Correlation Effects. Phys. Rev. 140, A1133 (1965).

[6] J. P. Perdew and K. Schmidt. Jacob’s ladder of density functional approxima-
tions for the exchange-correlation energy. AIP Conference Proceedings 577, 1
(2001).

[7] U. von Barth and L. Hedin. A local exchange-correlation potential for the spin
polarized case. J. Phys. C: Solid State Phys. 5, 1629 (1972).

[8] O. Gunnarsson and B. I. Lundqvist. Exchange and correlation in atoms,
molecules, and solids by the spin-density-functional formalism. Phys. Rev. B
13, 4274 (1976).

[9] D.M. Ceperley and B. J. Alder. Ground State of the Electron Gas by a Stochastic
Method. Phys. Rev. Lett. 45, 566 (1980).

[10] S. H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron liquid
correlation energies for local spin density calculations: a critical analysis. Can.
J. Phys. 58, 1200 (1980).

[11] J. P. Perdew and A. Zunger. Self-interaction correction to density-functional
approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981).





 B

[12] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the
electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).

[13] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J.
Singh, and C. Fiolhais. Atoms, molecules, solids, and surfaces: Applications of
the generalized gradient approximation for exchange and correlation. Phys. Rev.
B 46, 6671 (1992).

[14] J. P. Perdew, K. Burke, andM. Ernzerhof. Generalized Gradient Approximation
Made Simple. Phys. Rev. Lett. 77, 3865 (1996).

[15] Y. Wang and J. P. Perdew. Spin scaling of the electron-gas correlation energy in
the high-density limit. Phys. Rev. B 43, 8911 (1991).

[16] A. D. Becke. Density-functional exchange-energy approximation with correct
asymptotic behavior. Phys. Rev. A 38, 3098 (1988).

[17] C. Lee, W. Yang, and R. G. Parr. Development of the Colle-Salvetti correlation-
energy formula into a functional of the electron density. Phys. Rev. B 37, 785
(1988).

[18] S. Kümmel and L. Kronik. Orbital-dependent density functionals: eory and
applications. Rev. Mod. Phys. 80, 3 (2008).

[19] J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria. Climbing the Density
Functional Ladder: Nonempirical Meta�Generalized Gradient Approximation
Designed for Molecules and Solids. Phys. Rev. Lett. 91, 146401 (2003).

[20] A. D. Becke. A new mixing of Hartree–Fock and local density-functional theo-
ries. J. Chem. Phys. 98, 1372 (1993).

[21] A. Heßelmann and A. Görling. Random phase approximation correlation en-
ergies with exact Kohn-Sham exchange. Mol. Phys. 108, 359 (2010).

[22] A. D. Becke. Density-functional thermochemistry. IV. A new dynamical corre-
lation functional and implications for exact-exchange mixing. J. Chem. Phys.
104, 1040 (1996).

[23] A. D. Becke. Density-functional thermochemistry. III. e role of exact ex-
change. J. Chem. Phys. 98, 5648 (1993).

[24] J. P. Perdew, M. Ernzerhof, and K. Burke. Rationale for mixing exact exchange
with density functional approximations. J. Chem. Phys. 105, 9982 (1996).



B 

[25] J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, and L. A. Curtiss.
Gaussian-1 theory: A general procedure for prediction of molecular energies. J.
Chem. Phys. 90, 5622 (1989).

[26] J. Heyd, G. E. Scuseria, and M. Ernzerhof. Hybrid functionals based on a
screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).

[27] J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Ángyán.
Screened hybrid density functionals applied to solids. J. Chem. Phys. 124,
154709 (2006). ibid. 124, 249901 (2006).

[28] F. Tran, P. Blaha, K. Schwarz, and P. Novák. Hybrid exchange-correlation
energy functionals for strongly correlated electrons: Applications to transition-
metal monoxides. Phys. Rev. B 74, 155108 (2006).

[29] M. Schlipf, M. Betzinger, C. Friedrich, M. Ležaić, and S. Blügel. HSE hybrid
functional within the FLAPW method and its application to GdN. Phys. Rev. B
84, 125142 (2011).

[30] M. Weinert. Solution of Poisson’s equation: Beyond Ewald-type methods. J.
Math. Phys. 22, 2433 (1981).

[31] M. Weinert, E. Wimmer, and A. J. Freeman. Total-energy all-electron density
functional method for bulk solids and surfaces. Phys. Rev. B 26, 4571 (1982).

[32] H. J. F. Jansen and A. J. Freeman. Total-energy full-potential linearized
augmented-plane-wave method for bulk solids: Electronic and structural prop-
erties of tungsten. Phys. Rev. B 30, 561 (1984).

[33] M. Betzinger, C. Friedrich, and S. Blügel. Hybrid functionals within the all-
electron FLAPW method: Implementation and applications of PBE0. Phys. Rev.
B 81, 195117 (2010).

[34] W. R. L. Lambrecht. Electronic structure and optical spectra of the semimetal
ScAs and of the indirect-band-gap semiconductors ScN and GdN. Phys. Rev. B
62, 13538 (2000).

[35] D. B. Ghosh, M. De, and S. K. De. Electronic, magnetic, and optical properties
of Gd monopnictides: An LDA+U study. Phys. Rev. B 72, 045140 (2005).

[36] S. Granville, B. J. Ruck, F. Budde, A. Koo, D. J. Pringle, F. Kuchler, A. R. H.
Preston, D. H. Housden, N. Lund, A. Bittar, G. V. M. Williams, and H. J. Tro-
dahl. Semiconducting ground state of GdN thin ĕlms. Phys. Rev. B 73, 235335
(2006).



 B

[37] B. M. Ludbrook, I. L. Farrell, M. Kuebel, B. J. Ruck, A. R. H. Preston, H. J.
Trodahl, L. Ranno, R. J. Reeves, and S. M. Durbin. Growth and properties of
epitaxial GdN. J. Appl. Phys. 106, 063910 (2009).

[38] M. Scarpulla, C. Gallinat, S. Mack, J. Speck, and A. Gossard. GdN (111) het-
eroepitaxy on GaN (0001) by N2 plasma and NH3 molecular beam epitaxy. J.
Cryst. Growth 311, 1239 (2009).

[39] P. Wachter and E. Kaldis. Magnetic interaction and carrier concentration in
GdN and GdN1−xOx. Solid State Commun. 34, 241 (1980).

[40] C. M. Aerts, P. Strange, M. Horne, W. M. Temmerman, Z. Szotek, and
A. Svane. Half-metallic to insulating behavior of rare-earth nitrides. Phys. Rev.
B 69, 045115 (2004).

[41] C.-G. Duan, R. F. Sabiryanov, J. Liu, W. N. Mei, P. A. Dowben, and J. R. Hardy.
Strain InducedHalf-Metal to Semiconductor Transition inGdN. Phys. Rev. Lett.
94, 237201 (2005).

[42] K. Doll. Electronic structure of GdN, and the inĘuence of exact exchange. J.
Phys.: Condens. Matter 20, 075214 (2008).

[43] T. J. Konno, N. Ogawa, K. Wakoh, K. Sumiyama, and K. Suzuki. Synthesis and
Magnetic Properties of Non-Equilibrium Eu-Rich EuO in Films. Japanese
Journal of Applied Physics 35, 6052 (1996).

[44] A. Schmehl, V. Vaithyanathan, A. Herrnberger, S. iel, C. Richter,
M. Liberati, T. Heeg, M. Rockerath, L. F. Kourkoutis, S. Muhlbauer, P. Boni,
D. A. Muller, Y. Barash, J. Schubert, Y. Idzerda, J. Mannhart, and D. G.
Schlom. Epitaxial integration of the highly spin-polarized ferromagnetic semi-
conductor EuO with silicon and GaN. Nat. Mater. 6, 882 (2007).

[45] R. Sutarto, S. G. Altendorf, B. Coloru, M. Moretti Sala, T. Haupricht, C. F.
Chang, Z. Hu, C. Schüßler-Langeheine, N. Hollmann, H. Kierspel, J. A. My-
dosh, H. H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng. Epitaxy, stoichiom-
etry, and magnetic properties of Gd-doped EuO ĕlms on YSZ (001). Phys. Rev.
B 80, 085308 (2009).

[46] A. G. Swartz, J. Ciraldo, J. J. I.Wong, Y. Li, W. Han, T. Lin, S. Mack, J. Shi, D. D.
Awschalom, and R. K. Kawakami. Epitaxial EuO thin ĕlms on GaAs. Appl.
Phys. Lett. 97, 112509 (2010).



B 

[47] X. Hao, J. S. Moodera, and R. Meservey. Spin-ĕlter effect of ferromagnetic eu-
ropium sulĕde tunnel barriers. Phys. Rev. B 42, 8235 (1990).

[48] T. S. Santos and J. S.Moodera. Observation of spin ĕlteringwith a ferromagnetic
EuO tunnel barrier. Phys. Rev. B 69, 241203 (2004).

[49] A. Mauger and C. Godart. e magnetic, optical, and transport properties of
representatives of a class of magnetic semiconductors: e europium chalco-
genides. Phys. Rep. 141, 51 (1986).

[50] O. Massenet, Y. Capiomont, and N. V. Dang. Effects of high nonstoichiometry
on EuO properties. J. Appl. Phys. 45, 3593 (1974).

[51] T. Matsumoto, K. Yamaguchi, M. Yuri, K. Kawaguchi, N. Koshizaki, and
K. Yamada. Preparation of Gd-doped EuO1−x thin ĕlms and the magnetic and
magneto-transport properties. J. Phys.: Condens. Matter 16, 6017 (2004).

[52] M. W. Shafer and T. R. McGuire. Studies of Curie-Point Increases in EuO. J.
Appl. Phys. 39, 588 (1968).

[53] K. Y. Ahn and T. R. McGuire. Magnetic and Magneto-optic Properties of EuO
Films Doped with Trivalent Rare-Earth Oxide. J. Appl. Phys. 39, 5061 (1968).

[54] H. Ott, S. J. Heise, R. Sutarto, Z. Hu, C. F. Chang, H. H. Hsieh, H.-J. Lin, C. T.
Chen, and L. H. Tjeng. So x-ray magnetic circular dichroism study on Gd-
doped EuO thin ĕlms. Phys. Rev. B 73, 094407 (2006).

[55] H. Miyazaki, H. J. Im, K. Terashima, S. Yagi, M. Kato, K. Soda, T. Ito, and
S. Kimura. La-doped EuO: A rare earth ferromagnetic semiconductor with the
highest Curie temperature. Appl. Phys. Lett. 96, 232503 (2010).

[56] P. Liu, J. Tang, J. A. C. Santana, K. D. Belashchenko, and P. A. Dowben. Ce-
doped EuO: Magnetic properties and the indirect band gap. J. Appl. Phys. 109,
07C311 (2011).

[57] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland,
V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe,
M. Wuttig, and R. Ramesh. Epitaxial BiFeO3 Multiferroic in Film Het-
erostructures. Science 299, 1719 (2003).

[58] J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury,
W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer,



 B

L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom. Room-temperature
ferroelectricity in strained SrTiO3. Nature 430, 758 (2004).

[59] C. J. Fennie and K. M. Rabe. Magnetic and Electric Phase Control in Epitaxial
EuTiO3 from First Principles. Phys. Rev. Lett. 97, 267602 (2006).

[60] K. M. Rabe and P. Ghosez. First-Principles Studies of Ferroelectric Oxides. In
Physics of Ferroelectrics, edited by K. M. Rabe, C. H. Ahn, and J.-M. Triscone
(Springer, Berlin, 2007).

[61] W. L. Roth and R. C. DeVries. Crystal and Magnetic Structure of PbCrO3. J.
Appl. Phys. 38, 951 (1967).

[62] R. C. DeVries and W. L. Roth. High-pressure Synthesis of PbCrO3. J. Am.
Ceram. Soc. 51, 72 (1968).

[63] B. L. Chamberland and C. W. Moeller. A study on the PbCrO3 perovskite. J.
Solid State Chem. 5, 39 (1972).

[64] A. M. Arévalo-López and M. A. Alario-Franco. On the structure and mi-
crostructure of PbCrO3. Journal of Solid State Chemistry 180, 3271 (2007).

[65] A.M. Arévalo-López andM. A. Alario-Franco. Reliable Method for Determin-
ing the Oxidation State in Chromium Oxides. Inorg. Chem. 48, 11843 (2009).
PMID: 19928981.

[66] A. M. Arévalo-López, A. J. Dos santos Garíca, and M. A. Alario-Franco. An-
tiferromagnetism and Spin Reorientation in PbCrO3. Inorg. Chem. 48, 5434
(2009).

[67] W. Xiao, D. Tan, X. Xiong, J. Liu, and J. Xu. Large volume collapse observed
in the phase transition in cubic PbCrO3 perovskite. Proc. Nat. Acad. Sci. USA
107, 14026 (2010).

[68] S. Jaya, R. Jagadish, R. Rao, and R. Asokamani. Electronic structure of the
perovskite oxides SrCrO3 and PbCrO3. Mod. Phys. Lett. B 6, 103 (1992).

[69] B.-T. Wang, W. Yin, W.-D. Li, and F. Wang. First-principles DFT+U study
of structural and electronic properties of PbCrO3. arXiv:1012.0143v1 [cond-
mat.str-el] (2011).

[70] P. Ganesh and R. E. Cohen. Orbital ordering, ferroelasticity, and the large
pressure-induced volume collapse in PbCrO3. Phys. Rev. B 83, 172102 (2011).



B 

[71] P. A. M. Dirac. Quantum mechanics of many-electron systems. Proc. R. Soc.
Lond. A 123, 714 (1929).

[72] K. Burke and friends. e ABC of DFT (2011). http://dft.uci.edu/
materials/bookABCDFT/gamma/g1.pdf.

[73] W. Kohn. Nobel Lecture: Electronic Structure of Matter - Wave Functions and
Density Functionals (2011). http://www.nobelprize.org/nobel_
prizes/chemistry/laureates/1998/kohn-lecture.html.

[74] J. P. Perdew and S. Kurth. Density Functionals for Non-relativistic Coulomb
Systems in the New Century. In A Primer in Density Functional eory, edited
by C. Fiolhais, M. A. L. Marques, and F. Nogueira, chapter 1, 1–55 (Springer,
Berlin, 2003).

[75] K. Capelle. A bird’s-eye view of density-functional theory (2006). arXiv:cond-
mat/0211443v5 [cond-mat.mtrl-sci].

[76] M. Born and R. Oppenheimer. Zur Quantentheorie der Molekeln. Ann. d.
Phys. 389, 457 (1927).

[77] wikipedia.org. Atomic units (2011). http://en.wikipedia.org/
wiki/Atomic_units.

[78] D. R. Hartree. e Wave Mechanics of an Atom with a Non-Coulomb Central
Field. Part I. eory and Methods. Mathematical Proceedings of the Cam-
bridge Philosophical Society 24, 89 (1928).

[79] M. Levy. Electron densities in search of Hamiltonians. Phys. Rev. A 26, 1200
(1982).

[80] J. Harris and R. O. Jones. e surface energy of a bounded electron gas. Journal
of Physics F: Metal Physics 4, 1170 (1974).

[81] D. C. Langreth and J. P. Perdew. Exchange-correlation energy of a metallic
surface: Wave-vector analysis. Phys. Rev. B 15, 2884 (1977).

[82] J. Harris. Adiabatic-connection approach to Kohn-Sham theory. Phys. Rev. A
29, 1648 (1984).

[83] P. Güttinger. Das Verhalten von Atomen im magnetischen Drehfeld. Z. Phys.
73, 169 (1932).



 B

[84] H. Hellmann. Einführung in die Quantenchemie (Franz Deuticke, Leipzig,
1937).

[85] R. P. Feynman. Forces in Molecules. Phys. Rev. 56, 340 (1939).

[86] J. P. Perdew and Y. Wang. Accurate and simple density functional for the elec-
tronic exchange energy: Generalized gradient approximation. Phys. Rev. B 33,
8800 (1986).

[87] P. R. Antoniewicz and L. Kleinman. Kohn-Sham exchange potential exact to
ĕrst order in ρ(K)/ρ0. Phys. Rev. B 31, 6779 (1985).

[88] E. H. Lieb and S. Oxford. Improved lower bound on the indirect Coulomb en-
ergy. International Journal of Quantum Chemistry 19, 427 (1981).

[89] M. Ernzerhof and J. P. Perdew. Generalized gradient approximation to the
angle- and system-averaged exchange hole. J. Chem. Phys. 109, 3313 (1998).

[90] E. Engel. Orbital-Dependent Functionals for the Exchange-Correlation Energy:
A ird Generation of Density Functionals. In A Primer in Density Functional
eory, edited by C. Fiolhais, M. A. L. Marques, and F. Nogueira, chapter 2,
56–143 (Springer, Berlin, 2003).

[91] A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A. Vydrov, and G. E. Scuseria.
Spurious fractional charge on dissociated atoms: Pervasive and resilient self-
interaction error of common density functionals. J. Chem. Phys. 125, 194112
(2006).

[92] A. Filippetti and N. A. Spaldin. Self-interaction-corrected pseudopotential
scheme for magnetic and strongly-correlated systems. Phys. Rev. B 67, 125109
(2003).

[93] J. C. Slater. A Simpliĕcation of the Hartree-Fock Method. Phys. Rev. 81, 385
(1951).

[94] V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein. First-principles calcu-
lations of the electronic structure and spectra of strongly correlated systems: the
LDA+U method. J. Phys.: Condens. Matter 9, 767 (1997).

[95] F. Aryasetiawan and O. Gunnarsson. e GW method. Rep. Prog. Phys. 61,
237 (1998).



B 

[96] J. Harl and G. Kresse. Accurate Bulk Properties from Approximate Many-Body
Techniques. Phys. Rev. Lett. 103, 056401 (2009).

[97] J. Hubbard. Electron Correlations in Narrow Energy Bands. Proc. R. Soc. Lond.
A 276, 238 (1963).

[98] P. H. Dederichs, S. Blügel, R. Zeller, andH. Akai. Ground States of Constrained
Systems: Application to Cerium Impurities. Phys. Rev. Lett. 53, 2512 (1984).

[99] M. Cococcioni and S. de Gironcoli. Linear response approach to the calculation
of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71,
035105 (2005).

[100] E. Şaşıoğlu, C. Friedrich, and S. Blügel. Effective Coulomb interaction in tran-
sition metals from constrained random-phase approximation. Phys. Rev. B 83,
121101 (2011).

[101] H.Hellmann. ANewApproximationMethod in the Problem ofMany Electrons.
J. Chem. Phys. 3, 61 (1935).

[102] E. Fermi. Motion of neutrons in hydrogenous substances. Ricerca Scientiĕca 7,
13 (1936).

[103] J. C. Slater. Wave Functions in a Periodic Potential. Phys. Rev. 51, 846 (1937).

[104] J. Korringa. On the calculation of the energy of a Bloch wave in a metal. Physica
13, 392 (1947).

[105] W. Kohn and N. Rostoker. Solution of the Schrödinger Equation in Periodic
Lattices with an Application to Metallic Lithium. Phys. Rev. 94, 1111 (1954).

[106] P. Mavropoulos and N. Papanikolaou. e Korringa-Kohn-Rostoker (KKR)
Green Function Method I. Electronic Structure of Periodic Systems. In Compu-
tational Nanoscience: Do It Yourself!, edited by J. Grotendorst, S. Blügel, and
D. Marx, volume 31 of NIC Series, 85–129 (Forschungszentrum Jülich, Jülich,
2006).

[107] D. R. Hamann, M. Schlüter, and C. Chiang. Norm-Conserving Pseudopoten-
tials. Phys. Rev. Lett. 43, 1494 (1979).

[108] A. Zunger and M. L. Cohen. First-principles nonlocal-pseudopotential ap-
proach in the density-functional formalism: Development and application to
atoms. Phys. Rev. B 18, 5449 (1978).



 B

[109] G. P. Kerker. Non-singular atomic pseudopotentials for solid state applications.
J. Phys. C 13, L189 (1980).

[110] D. Vanderbilt. So self-consistent pseudopotentials in a generalized eigenvalue
formalism. Phys. Rev. B 41, 7892 (1990).

[111] P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

[112] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and
M. Scheffler. Ab initio molecular simulations with numeric atom-centered or-
bitals. Comput. Phys. Commun. 180, 2175 (2009).

[113] J. C. Slater. An Augmented Plane Wave Method for the Periodic Potential Prob-
lem. Phys. Rev. 92, 603 (1953).

[114] P. Kurz. Non-Collinear Magnetism at Surfaces and in Ultrathin Films. Ph.D.
thesis, RWTH Aachen, Institut für Festkörperphysik, Forschungszentrum
Jülich (2000).

[115] S. Blügel and G. Bihlmayer. e Full-Potential Linearized Augmented Plane
Wave Method. In Computational Nanoscience: Do It Yourself!, edited by
J. Grotendorst, S. Blügel, and D. Marx, volume 31 of NIC Series, 85–129
(Forschungszentrum Jülich, Jülich, 2006).

[116] O. K. Andersen. Linear methods in band theory. Phys. Rev. B 12, 3060 (1975).

[117] E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman. Full-potential self-
consistent linearized-augmented-plane-wave method for calculating the elec-
tronic structure of molecules and surfaces: O2 molecule. Phys. Rev. B 24, 864
(1981).

[118] D. Singh. Ground-state properties of lanthanum: Treatment of extended-core
states. Phys. Rev. B 43, 6388 (1991).

[119] G.Michalicek,M. Betzinger, C. Friedrich, and S. Blügel. in preparation (2012).

[120] M. Betzinger, C. Friedrich, S. Blügel, and A. Görling. Local exact exchange
potentials within the all-electron FLAPW method and a comparison with pseu-
dopotential results. Phys. Rev. B 83, 045105 (2011).

[121] M. Betzinger. Orbital-dependent exchange-correlation functionals in density-
functional theory realized by the FLAPWmethod. Ph.D. thesis, RWTHAachen
(2011).



B 

[122] L. J. Sham andM. Schlüter. Density-Functionaleory of the Energy Gap. Phys.
Rev. Lett. 51, 1888 (1983).

[123] J. P. Perdew and M. Levy. Physical Content of the Exact Kohn-Sham Orbital
Energies: Band Gaps and Derivative Discontinuities. Phys. Rev. Lett. 51, 1884
(1983).

[124] B. G. Janesko, T. M. Henderson, and G. E. Scuseria. Screened hybrid density
functionals for solid-state chemistry and physics. Phys. Chem. Chem. Phys. 11,
443 (2009).

[125] C. Friedrich, A. Schindlmayr, and S. Blügel. Efficient calculation of the
Coulomb matrix and its expansion around k = 0 within the FLAPW method.
Comput. Phys. Commun. 180, 347 (2009).

[126] http://www.flapw.de (????).

[127] C. Adamo and V. Barone. Toward reliable density functional methods without
adjustable parameters: e PBE0 model. J. Chem. Phys. 110, 6158 (1999).

[128] T. Bredow and A. R. Gerson. Effect of exchange and correlation on bulk prop-
erties of MgO, NiO, and CoO. Phys. Rev. B 61, 5194 (2000).

[129] J. Muscat, A. Wander, and N. Harrison. On the prediction of band gaps from
hybrid functional theory. Chemical Physics Letters 342, 397 (2001).

[130] W. Perger. Calculation of band gaps in molecular crystals using hybrid func-
tional theory. Chem. Phys. Lett. 368, 319 (2003).

[131] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria. InĘuence of
the exchange screening parameter on the performance of screened hybrid func-
tionals. J. Chem. Phys. 125, 224106 (2006).

[132] J. Heyd and G. E. Scuseria. Assessment and validation of a screened Coulomb
hybrid density functional. J. Chem. Phys. 120, 7274 (2004).

[133] F. Tran andP. Blaha. Implementation of screened hybrid functionals based on the
Yukawa potential within the LAPW basis set. Phys. Rev. B 83, 235118 (2011).

[134] O. A. Vydrov and G. E. Scuseria. Assessment of a long-range corrected hybrid
functional. J. Chem. Phys. 125, 234109 (2006).



 B

[135] T. M. Henderson, A. F. Izmaylov, G. E. Scuseria, and A. Savin. e impor-
tance of middle-range Hartree-Fock-journal article exchange for hybrid density
functionals. J. Chem. Phys. 127, 221103 (2007).

[136] J. Heyd and G. E. Scuseria. Efficient hybrid density functional calculations in
solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid
functional. J. Chem. Phys. 121, 1187 (2004).

[137] K.-H. Hellwege, O. Madelung, M. Schulz, and H. Weiss (editors). Numerical
Data and Functional Relationships in Science and Technology, volume 17 &
22 of Landolt-Börnstein - Group III Condensed Matter (Springer, New York,
1982).

[138] T. Chiang and F. J. Himpsel. Band structure and core levels of tetrahedrally-
bonded semiconductors. In Electronic Structure of Solids: Photoemission Spec-
tra and Related Data, edited by A. Goldmann and E.-E. Koch, volume 23a of
Landolt-Börnstein - Group III: Condensed Matter (Springer, Berlin, 1989).

[139] J. E. Ortega and F. J. Himpsel. Inverse-photoemission study of Ge(100), Si(100),
and GaAs(100): Bulk bands and surface states. Phys. Rev. B 47, 2130 (1993).

[140] M. Welkowsky and R. Braunstein. Interband Transitions and Exciton Effects in
Semiconductors. Phys. Rev. B 5, 497 (1972).

[141] R. Hulthén and N. G. Nilsson. Investigation of the second indirect transition of
silicon by means of photoconductivity measurements. Solid State Commun. 18,
1341 (1976).

[142] S. Adachi. Optical Properties of Crystalline and Amorphous Semiconductors:
Numerical Data and Graphical Information (Kluwer Academic, Dordrecht,
1999).

[143] R. T. Poole, J. Liesegang, R. C. G. Leckey, and J. G. Jenkin. Electronic band
structure of the alkali halides. II. Critical survey of theoretical calculations. Phys.
Rev. B 11, 5190 (1975).

[144] R. J. Magyar, A. Fleszar, and E. K. U. Gross. Exact-exchange density-functional
calculations for noble-gas solids. Phys. Rev. B 69, 045111 (2004).

[145] F. Murnaghan. e Compressibility of Media under Extreme Pressures. Proc.
Nat. Acad. Sci. USA 30, 244 (1944).



B 

[146] J. Paier, R. Hirschl, M. Marsman, and G. Kresse. e Perdew-Burke-Ernzerhof
exchange-correlation functional applied to the G2-1 test set using a plane-wave
basis set. J. Chem. Phys. 122, 1 (2005).

[147] V. I. Anisimov and O. Gunnarsson. Density-functional calculation of effective
Coulomb interactions in metals. Phys. Rev. B 43, 7570 (1991).

[148] F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, and A. I.
Lichtenstein. Frequency-dependent local interactions and low-energy effective
models from electronic structure calculations. Phys. Rev. B 70, 195104 (2004).

[149] F. Aryasetiawan, K. Karlsson, O. Jepsen, and U. Schönberger. Calculations of
Hubbard U from ĕrst-principles. Phys. Rev. B 74, 125106 (2006).

[150] A. Rohrbach, J. Hafner, and G. Kresse. Electronic correlation effects in
transition-metal sulĕdes. J. Phys.: Condens. Matter 15, 979 (2003).

[151] P. Novák, J. Kuneš, L. Chaput, and W. E. Pickett. Exact exchange for correlated
electrons. Phys. Status Solidi B 243, 563 (2006).

[152] C. Franchini, V. Bayer, R. Podloucky, J. Paier, andG. Kresse. Density functional
theory study of MnO by a hybrid functional approach. Phys. Rev. B 72, 045132
(2005).

[153] C. Friedrich, S. Blügel, and A. Schindlmayr. Efficient implementation of the
GW approximation within the all-electron FLAPW method. Phys. Rev. B 81,
125102 (2010).

[154] J. B. Goodenough. Magnetism And e Chemical Bond (Interscience-Wiley,
New York, 1963).

[155] J. B. Goodenough. Goodenough-Kanamori rule. Scholarpedia 3, 7382 (2008).

[156] M. Marsman, J. Paier, A. Stroppa, and G. Kresse. Hybrid functionals applied
to extended systems. J. Phys.: Condens. Matter 20, 064201 (2008).

[157] X. Feng. Electronic structure of MnO and CoO from the B3LYP hybrid density
functional method. Phys. Rev. B 69, 155107 (2004).

[158] J. van Elp, R. H. Potze, H. Eskes, R. Berger, and G. A. Sawatzky. Electronic
structure of MnO. Phys. Rev. B 44, 1530 (1991).

[159] D. R. Huffman, R. L. Wild, and M. Shinmei. Optical Absorption Spectra of
Crystal-Field Transitions in MnO. J. Chem. Phys. 50, 4092 (1969).



 B

[160] A. K. Cheetham and D. A. O. Hope. Magnetic ordering and exchange effects in
the antiferromagnetic solid solutions MnxNi1−xO. Phys. Rev. B 27, 6964 (1983).

[161] B. E. F. Fender, A. J. Jacobson, and F. A. Wedgwood. Covalency Parameters in
MnO, α-MnS, and NiO. J. Chem. Phys. 48, 990 (1968).

[162] S. Hüfner, J. Osterwalder, T. Riesterer, and F. Hulliger. Photoemission and in-
verse photoemission spectroscopy of NiO. Solid State Commun. 52, 793 (1984).

[163] G. A. Sawatzky and J.W. Allen. Magnitude and Origin of the Band Gap in NiO.
Phys. Rev. Lett. 53, 2339 (1984).

[164] R. J. Powell and W. E. Spicer. Optical Properties of NiO and CoO. Phys. Rev. B
2, 2182 (1970).

[165] H. A. Alperin. J. Phys. Soc. Japan Suppl. B 17, 12 (1962).

[166] B. T. Matthias, R. M. Bozorth, and J. H. Van Vleck. Ferromagnetic Interaction
in EuO. Phys. Rev. Lett. 7, 160 (1961).

[167] T. R. McGuire, B. E. Argyle, M. W. Shafer, and J. S. Smart. Ferromagnetism in
divalent europium salts. Appl. Phys. Lett. 1, 17 (1962).

[168] K. Ahn and J. Suits. Preparation and properties of EuO ĕlms. IEEE Trans.
Magn. 3, 453 (1967).

[169] T. Kasuya. s-f Exchange Interactions And Magnetic Semiconductors. Crit. Rev.
Solid State Sci. 3, 131 (1972).

[170] A. Mauger. Indirect exchange in europium chalcogenides. Phys. Status Solidi B
84, 761 (1977).

[171] P.Wachter. eOptical Electrical AndMagnetic Properties of EuropiumChalco-
genides and the Rare Earth Pnictides. Crit. Rev. Solid State Sci. 3, 189 (1972).

[172] N. J. C. Ingle and I. S. Elĕmov. InĘuence of epitaxial strain on the ferromag-
netic semiconductor EuO: First-principles calculations. Phys. Rev. B 77, 121202
(2008).

[173] M. R.Oliver, J. A. Kafalas, J. O. Dimmock, andT. B. Reed. Pressure Dependence
of the Electrical Resistivity of EuO. Phys. Rev. Lett. 24, 1064 (1970).

[174] M. R. Oliver, J. O. Dimmock, A. L. McWhorter, and T. B. Reed. Conductivity
Studies in Europium Oxide. Phys. Rev. B 5, 1078 (1972).



B 

[175] Y. Shapira and T. B. Reed. Resistivity and Hall Effect of EuS in Fields up to 140
kOe. Phys. Rev. B 5, 4877 (1972).

[176] J. B. Torrance, M. W. Shafer, and T. R. McGuire. Bound Magnetic Polarons and
the Insulator-Metal Transition in EuO. Phys. Rev. Lett. 29, 1168 (1972).

[177] Y. Shapira, S. Foner, and T. B. Reed. EuO. I. Resistivity and Hall Effect in Fields
up to 150 kOe. Phys. Rev. B 8, 2299 (1973).

[178] Y. Shapira, S. Foner, R. L. Aggarwal, and T. B. Reed. EuO. II. Dependence of
the Insulator-Metal Transition on Magnetic Order. Phys. Rev. B 8, 2316 (1973).

[179] T. Mairoser, A. Schmehl, A. Melville, T. Heeg, L. Canella, P. Böni, W. Zan-
der, J. Schubert, D. E. Shai, E. J. Monkman, K. M. Shen, D. G. Schlom, and
J. Mannhart. Is ere an Intrinsic Limit to the Charge-Carrier-Induced Increase
of the Curie Temperature of EuO? Phys. Rev. Lett. 105, 257206 (2010).

[180] T. Mairoser, A. Schmehl, A. Melville, T. Heeg, W. Zander, J. Schubert, D. E.
Shai, E. J. Monkman, K. M. Shen, T. Z. Regier, D. G. Schlom, and J. Mannhart.
InĘuence of the substrate temperature on the Curie temperature and charge car-
rier density of epitaxial Gd-doped EuO ĕlms. Appl. Phys. Lett. 98, 102110
(2011).

[181] M. Takahashi. Origin of Anomalous Magnetization Curve of Electron-Doped
EuO. J. Phys. Soc. Jpn. 80, 075001 (2011).

[182] S. Kar, W. L. Boncher, D. Olszewski, N. Dollahon, R. Ash, and S. L. Stoll.
Gadolinium Doped Europium Sulĕde. J. Am. Chem. Soc. 132, 13960 (2010).

[183] R. Schiller, W. Müller, and W. Nolting. Kondo lattice model: Application to the
temperature-dependent electronic structure of EuO(100) ĕlms. Phys. Rev. B 64,
134409 (2001).

[184] P. Sinjukow and W. Nolting. Metal-insulator transition in EuO. Phys. Rev. B
68, 125107 (2003).

[185] P. Sinjukow and W. Nolting. Fully self-consistent determination of transport
properties in Eu-rich EuO. Phys. Rev. B 69, 214432 (2004).

[186] M. Arnold and J. Kroha. Simultaneous Ferromagnetic Metal-Semiconductor
Transition in Electron-Doped EuO. Phys. Rev. Lett. 100, 046404 (2008).



 B

[187] J. Q. Xiao and C. L. Chien. Proximity Effects in Superconductor/Insulating-
Ferromagnet NbN/GdN Multilayers. Phys. Rev. Lett. 76, 1727 (1996).

[188] P. Larson, W. R. L. Lambrecht, A. Chantis, and M. van Schilfgaarde. Electronic
structure of rare-earth nitrides using the LSDA+U approach: Importance of al-
lowing 4f orbitals to break the cubic crystal symmetry. Phys. Rev. B 75, 045114
(2007).

[189] H. J. Trodahl, A. R. H. Preston, J. Zhong, B. J. Ruck, N.M. Strickland, C.Mitra,
andW. R. L. Lambrecht. Ferromagnetic redshi of the optical gap in GdN. Phys.
Rev. B 76, 085211 (2007).

[190] D. X. Li, Y. Haga, H. Shida, and T. Suzuki. Magnetic properties of ferromagnetic
GdN. Physica B: Condensed Matter 199-200, 631 (1994).

[191] F. Leuenberger, A. Parge, W. Felsch, K. Fauth, and M. Hessler. GdN thin ĕlms:
Bulk and local electronic and magnetic properties. Phys. Rev. B 72, 014427
(2005).

[192] H. Yoshitomi, S. Kitayama, T. Kita, O. Wada, M. Fujisawa, H. Ohta, and
T. Sakurai. Optical and magnetic properties in epitaxial GdN thin ĕlms. Phys.
Rev. B 83, 155202 (2011).

[193] U. Rössler and D. Strauch. Group IV Elements, IV-IV and III-V Compounds.
Part a - Lattice Properties, volume 41A1a of Landolt-Börnstein - Group III Con-
densed Matter (Springer, Berlin, 2001).

[194] C. Friedrich, A. Schindlmayr, S. Blügel, and T. Kotani. Elimination of the lin-
earization error in GW calculations based on the linearized augmented-plane-
wave method. Phys. Rev. B 74, 045104 (2006).

[195] E. E. Krasovskii. Accuracy and convergence properties of the extended linear
augmented-plane-wave method. Phys. Rev. B 56, 12866 (1997).

[196] C.-G. Duan, R. F. Sabiryanov, W. N. Mei, P. A. Dowben, S. S. Jaswal, and E. Y.
Tsymbal. Magnetic ordering in Gd monopnictides: Indirect exchange versus
superexchange interaction. Appl. Phys. Lett. 88, 182505 (2006).

[197] N. N. Bogoliubov and S. V. Tyablikov. Dokl. Akad. Nauk SSSR 126, 53 (1959).

[198] U. Nowak. Localized Moments: Finite Temperature. In Magnetism goes Nano,
edited by S. Blügel, T. Brückel, and C. M. Schneider, volume 26 of Matter and
Materials, A3.1 (Forschungszentrum Jülich, Jülich, 2005).



B 

[199] K. Binder and D. W. Heermann. Monte Carlo Simulation in Statistical Physics
An Introduction (Springer, Berlin, 2010).

[200] C.-G. Duan, R. F. Sabirianov, W. N. Mei, P. A. Dowben, S. S. Jaswal, and E. Y.
Tsymbal. Electronic, magnetic and transport properties of rare-earth monop-
nictides. J. Phys.: Condens. Matter 19, 315220 (2007).

[201] B. N. Harmon, V. P. Antropov, A. I. Liechtenstein, I. V. Solovyev, and V. I.
Anisimov. Calculation of magneto-optical properties for 4f systems: LSDA +
Hubbard U results. J. Phys. Chem. Solids 56, 1521 (1995). Proceedings of the
1994 Conference on Magneto-optic Materials.

[202] R. C. Brown and N. J. Clark. Composition limits and vaporization behaviour of
rare earth nitrides. J. Inorg. Nucl. Chem. 36, 2507 (1974).

[203] H. Yamada, T. Fukawa, T. Muro, Y. Tanaka, S. Imada, S. Suga, D.-X. Li, and
T. Suzuki. XPS and X-BIS Studies of Gd Monopnictides. J. Phys. Soc. Jpn. 65,
1000 (1996).

[204] J. Paier, M. Marsman, and G. Kresse. Why does the B3LYP hybrid functional
fail for metals? J. Chem. Phys. 127, 024103 (2007).

[205] A. N. Chantis, M. van Schilfgaarde, and T. Kotani. Quasiparticle self-consistent
GW method applied to localized 4f electron systems. Phys. Rev. B 76, 165126
(2007).

[206] C. Mitra and W. R. L. Lambrecht. Magnetic exchange interactions in the
gadolinium pnictides from ĕrst principles. Phys. Rev. B 78, 134421 (2008).

[207] K. Khazen, H. J. von Bardeleben, J. L. Cantin, A. Bittar, S. Granville, H. J. Tro-
dahl, and B. J. Ruck. Ferromagnetic resonance study of GdN thin ĕlms with
bulk and extended lattice constants. Phys. Rev. B 74, 245330 (2006).

[208] K. Senapati, T. Fix, M. E. Vickers, M. G. Blamire, and Z. H. Barber. Structural
evolution and competing magnetic orders in polycrystalline GdN ĕlms. Phys.
Rev. B 83, 014403 (2011).

[209] A. Punya, T. Cheiwchanchamnangij, A. iess, and W. R. L. Lambrecht.
First-principles Study of Nitrogen Vacancies in GdN. MRS Proceedings 1290,
mrsf10-1290-i04-04 (2011).



 B

[210] P. Larson and W. R. L. Lambrecht. Electronic structure and magnetism of eu-
ropium chalcogenides in comparison with gadolinium nitride. J. Phys.: Con-
dens. Matter 18, 11333 (2006).

[211] U. Köbler and C. Sauer. Rare earth compounds with elements of group VI
(O, S, Se, Te). In Magnetic and Other Properties of Oxides and Related Com-
pounds - Part C, volume 12 of Landolt-Börnstein - Group III Condensed Matter
(Springer, Berlin, 1982).

[212] T. R.McGuire andM.W. Shafer. Ferromagnetic EuropiumCompounds. J. Appl.
Phys. 35, 984 (1964).

[213] N. Marzari and D. Vanderbilt. Maximally localized generalized Wannier func-
tions for composite energy bands. Phys. Rev. B 56, 12847 (1997).

[214] J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza. Spectral and Fermi surface
properties from Wannier interpolation. Phys. Rev. B 75, 195121 (2007).

[215] F. Freimuth, Y.Mokrousov, D.Wortmann, S. Heinze, and S. Blügel. Maximally
localized Wannier functions within the FLAPW formalism. Phys. Rev. B 78,
035120 (2008).

[216] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H.
Chen. ousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O
Films. Science 264, 413 (1994).

[217] A.Moreo, S. Yunoki, and E. Dagotto. Phase Separation Scenario forManganese
Oxides and Related Materials. Science 283, 2034 (1999).

[218] M. L. Medarde. Structural, magnetic and electronic properties of RNiO3 per-
ovskites (R = rare earth). J. Phys.: Condens. Matter 9, 1679 (1997).

[219] G. Catalan. Progress in perovskite nickelate research. Phase Transitions 81, 729
(2008).

[220] S.-W. Cheong and M. Mostovoy. Multiferroics: a magnetic twist for ferroelec-
tricity. Nat. Mater. 6, 13 (2007).

[221] W. Eerenstein, N. D. Mathur, and J. F. Scott. Multiferroic and magnetoelectric
materials. Nature 442, 759 (2006).

[222] N. A. Hill. Why Are ere so Few Magnetic Ferroelectrics? J. Phys. Chem. B
104, 6694 (2000).



B 

[223] M. Ležaić andN. A. Spaldin. High-temperature multiferroicity and strong mag-
netocrystalline anisotropy in 3d-5d double perovskites. Phys. Rev. B 83, 024410
(2011).

[224] E. Heifets, R. I. Eglitis, E. A. Kotomin, J. Maier, and G. Borstel. Ab initio mod-
eling of surface structure for SrTiO3 perovskite crystals. Phys. Rev. B 64, 235417
(2001).

[225] S. Piskunov, E. Heifets, R. I. Eglitis, and G. Borstel. Bulk properties and elec-
tronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT
study. Comp. Mater. Sci. 29, 165 (2004).

[226] S. Piskunov, E. Kotomin, E. Heifets, J. Maier, R. Eglitis, and G. Borstel. Hy-
brid DFT calculations of the atomic and electronic structure for ABO3 perovskite
(0 0 1) surfaces. Surf. Sci. 575, 75 (2005).

[227] E. Heifets, E. Kotomin, and V. A. Trepakov. Calculations for antiferrodistortive
phase of SrTiO3 perovskite: hybrid density functional study. J. Phys.: Condens.
Matter 18, 4845 (2006).

[228] D. Muñoz, N. M. Harrison, and F. Illas. Electronic and magnetic structure
of LaMnO3 from hybrid periodic density-functional theory. Phys. Rev. B 69,
085115 (2004).

[229] D. I. Bilc, R. Orlando, R. Shaltaf, G.-M. Rignanese, J. Íñiguez, and P. Ghosez.
Hybrid exchange-correlation functional for accurate prediction of the electronic
and structural properties of ferroelectric oxides. Phys. Rev. B 77, 165107 (2008).

[230] Z. Wu and R. E. Cohen. More accurate generalized gradient approximation for
solids. Phys. Rev. B 73, 235116 (2006).

[231] R. Wahl, D. Vogtenhuber, and G. Kresse. SrTiO3 and BaTiO3 revisited using
the projector augmented wave method: Performance of hybrid and semilocal
functionals. Phys. Rev. B 78, 104116 (2008).

[232] A. Stroppa and S. Picozzi. Hybrid functional study of proper and improper
multiferroics. Phys. Chem. Chem. Phys. 12, 5405 (2010).

[233] R. A. Evarestov. Hybrid density functional theory LCAO calculations on
phonons in Ba(Ti,Zr,Hf)O3. Phys. Rev. B 83, 014105 (2011).



 B

[234] R. Machado, M. Sepliarsky, and M. G. Stachiotti. Relative phase stability and
lattice dynamics of NaNbO3 from ĕrst-principles calculations. Phys. Rev. B 84,
134107 (2011).

[235] N. Guang-Xin and W. Yuan-Xu. First-principles study of the (001) surface of
cubic PbHfO3 and BaHfO3. Chinese Phys. B 18, 1194 (2009).

[236] W. Pies andA.Weiss. e1468, XVII.3 Oxo-compounds of hafnium (oxohafnates).
In Crystallography, Structure and Morphology ⋅ Crystal Structure Data of Inor-
ganic Compounds ⋅ Key Elements: d9-, d10-, d1_d3-, f-Elements, edited by K.-
H. Hellwege and A. M. Hellwege, volume 7e of Landolt-Börnstein - Group III
CondensedMatter, chapter XVII.3Oxo-compounds of hafnium (oxohafnates)
(Springer, Berlin, 1977).

[237] A. Bouhemadou and K. Haddadi. Structural, elastic, electronic and thermal
properties of the cubic perovskite-type BaSnO3. Solid State Sci. 12, 630 (2010).

[238] Y. Hinatsu. Electron Paramagnetic Resonance Spectra of Pr4+ in BaCeO3,
BaZrO3, BaSnO3, and eir Solid Solutions. J. Solid State Chem. 122, 384
(1996).

[239] D. Cherrad, D. Maouche, M. Reffas, and A. Benamrani. Structural, elastic,
electronic and optical properties of the cubic perovskites CaXO3 (X = Hf and
Sn). Solid State Commun. 150, 350 (2010).

[240] J. Zhao, N. L. Ross, and R. J. Angel. Tilting and distortion of CaSnO3 perovskite
to 7 GPa determined from single-crystal X-ray diffraction. Phys. Chem. Miner.
31, 299 (2004).

[241] Y. X. Wang, M. Arai, T. Sasaki, and C. L. Wang. First-principles study of the
(001) surface of cubic CaTiO3. Phys. Rev. B 73, 035411 (2006).

[242] Z. Hou. Ab initio calculations of elastic modulus and electronic structures of
cubic. Physica B: Condensed Matter 403, 2624 (2008).

[243] A. Rabenau. Perowskit- und Fluoritphasen in den Systemen ZrO2-LaO1,5-MgO
und ZrO2-LaO1,5-CaO. Z. Anorg. Allg. Chem. 288, 221 (1956).

[244] H. Moriwake, A. Kuwabara, C. A. J. Fisher, H. Taniguchi, M. Itoh, and
I. Tanaka. First-principles calculations of lattice dynamics in CdTiO3 and
CaTiO3: Phase stability and ferroelectricity. Phys. Rev. B 84, 104114 (2011).



B 

[245] Z. Feng, H. Hu, S. Cui, C. Bai, and H. Li. First-principles study of electronic
structure, chemical bonding, and optical properties of cubic SrHfO3. J. Phys.
Chem. Solids 70, 412 (2009).

[246] J. Guevara, S. Cuffini, Y. Mascarenhas, R. Carbonio, J. A. Alonso, M. Fer-
nandez, P. de la Presa, A. Ayala-Morales, and A. L. Garcia. e Struc-
ture of Orthorhombic Hafniates by Neutron Powder Diffraction and Perturbed-
Angular-Correlation Spectroscopy (PAC). Materials Science Forum 278-281,
720 (1998).

[247] I. Shein, V. Kozhevnikov, and A. Ivanovskii. First-principles calculations of the
elastic and electronic properties of the cubic perovskites SrMO3 (M = Ti, V, Zr
and Nb) in comparison with SrSnO3. Solid State Sci. 10, 217 (2008).

[248] H. D. Megaw. Crystal structure of double oxides of the perovskite type. Proc.
Phys. Soc. 58, 133 (1946).

[249] Y. X. Wang and M. Arai. First-principles study of the (001) surface of cubic
SrZrO3. Surf. Sci. 601, 4092 (2007).

[250] W. Pies and A. Weiss. d3141, XII.1.1.1 Simple oxo-compounds of tin without
H2O (simple stannates). InCrystallography, Structure and Morphology ⋅Crystal
Structure Data of Inorganic Compounds ⋅ Key Elements: Ge, Sn, Pb, edited by
K.-H. Hellwege and A. M. Hellwege, volume 7e of Landolt-Börnstein - Group
III Condensed Matter, chapter XVII.3 Oxo-compounds of hafnium (oxohaf-
nates) (Springer, Berlin, 1986).

[251] J. Baedi, S. M. Hosseini, A. Kompany, and E. A. Kakhki. Structural, electronic
and optical properties of lead zirconate. Phys. Status Solidi B 245, 2572 (2008).

[252] B. Wu, M. Zinkevich, F. Aldinger, and W. Zhang. Ab initio structural and
energetic study of LaMO3 (M = Al, Ga) perovskites. J. Phys. Chem. Solids 68,
570 (2007).

[253] A.Nakatsuka, O.Ohtaka, H. Arima, N.Nakayama, andT.Mizota. Cubic phase
of single-crystal LaAlO3 perovskite synthesized at 4.5GPa and 1273K. Acta
Crystallog. E 61, i148 (2005).

[254] R.D. Shannon. Revised effective ionic radii and systematic studies of interatomic
distances in halides and chalcogenides. Acta Cryst. 32, 751 (1976).

[255] D. de Ligny and P. Richet. High-temperature heat capacity and thermal expan-
sion of SrTiO3 and SrZrO3 perovskites. Phys. Rev. B 53, 3013 (1996).



 B

[256] H. Dittrich, N. Karl, S. Kück, and H. Schock. I-V-VI3 compounds. In Ternary
Compounds and Organic Semiconductors, edited by O. Madelung, volume 41E
of Landolt-Börnstein: Numerical Data and Functional Relationships in Science
and Technology (Springer, Berlin, 2000).

[257] O. Fursenko, J. Bauer, G. Lupina, P. Dudek, M. Lukosius, C. Wenger, and
P. Zaumseil. Optical properties and band gap characterization of high dielec-
tric constant oxides. in Solid Films in press (2011).

[258] G. Larramona, C. Gutierrez, I. Pereira, M. R. Nunes, and F. M. A. da Costa.
Characterization of the mixed perovskite BaSn1−xSbxO3 by electrolyte electrore-
Ęectance, diffuse reĘectance, and X-ray photoelectron spectroscopy. J. Chem.
Soc., Faraday Trans. 1 85, 907 (1989).

[259] J. Robertson. Band offsets of wide-band-gap oxides and implications for fu-
ture electronic devices. In Papers from the international conference on silicon
dielectric interfaces, volume 18, 1785–1791 (AVS, 2000).

[260] H. Mizoguchi and P. M. Woodward. Electronic Structure Studies of Main
Group Oxides Possessing Edge-Sharing Octahedra: Implications for the Design
of Transparent Conducting Oxides. Chem. Mater. 16, 5233 (2004).

[261] K. Ueda, H. Yanagi, H. Hosono, and H. Kawazoe. Study on electronic structure
of CaTiO3 by spectroscopicmeasurements and energy band calculations. J. Phys.:
Condens. Matter 11, 3535 (1999).

[262] S. Yamaguchi, K. Kobayashi, T. Higuchi, S. Shin, and Y. Iguchi. Electronic
transport properties and electronic structure of InO1.5-doped CaZrO3. Solid
State Ionics 136-137, 305 (2000).

[263] O. I. Prokopalo, E. G. Fesenko, M. A. Malitskaya, Y. M. Popov, and V. G. Smo-
trakov. Photoelectric phenomena in single crystals of some perovskite oxides.
Ferroelectrics 18, 99 (1978).

[264] C. Rossel, M. Sousa, C. Marchiori, J. Fompeyrine, D. Webb, D. Caimi,
B. Mereu, A. Ispas, J. Locquet, H. Siegwart, R. Germann, A. Tapponnier, and
K. Babich. SrHfO3 as gate dielectric for future CMOS technology. Microelec-
tron. Eng. 84, 1869 (2007).

[265] W. Zhang, J. Tang, and J. Ye. Photoluminescence and photocatalytic properties
of SrSnO3 perovskite. Chem. Phys. Lett. 418, 174 (2006).



B 

[266] Y. S. Lee, J. S. Lee, T. W. Noh, D. Y. Byun, K. S. Yoo, K. Yamaura, and
E. Takayama-Muromachi. Systematic trends in the electronic structure param-
eters of the 4d transition-metal oxides SrMO3 (M = Zr, Mo, Ru, and Rh). Phys.
Rev. B 67, 113101 (2003).

[267] D. Chen, S. Ouyang, and J. Ye. Photocatalytic Degradation of Isopropanol Over
PbSnO3 Nanostructures Under Visible Light Irradiation. Nanoscale Research
Letters 4, 274 (2009).

[268] P. W. Peacock and J. Robertson. Band offsets and Schottky barrier heights of
high dielectric constant oxides. J. Appl. Phys. 92, 4712 (2002).

[269] A.M. Arévalo-López, E. Castillo-Martínez, andM. A. Alario-Franco. Electron
energy loss spectroscopy in ACrO3 (A = Ca, Sr and Pb) perovskites. J. Phys.:
Condens. Matter 20, 505207 (2008).

[270] A. C. Komarek, T. Möller, M. Isobe, Y. Drees, H. Ulbrich, M. Azuma, M. T.
Fernández-Díaz, A. Senyshyn, M. Hoelzel, G. André, Y. Ueda, M. Grüninger,
and M. Braden. Magnetic order, transport and infrared optical properties in the
ACrO3 system (A = Ca, Sr, and Pb). Phys. Rev. B 84, 125114 (2011).

[271] A. M. Arévalo-López and M. A. Alario-Franco. Structural Percolation in the
PbM1−xM′

xO3 (M, M′ = Ti, Cr, and V) Perovskites. Inorg. Chem. 50, 7136
(2011).

[272] H. Yıldırım, S. Ağduk, and G. Gökoğlu. Electronic structure of antiferromag-
netic PbCrO3 (0 0 1) surfaces. J. Alloys Compd. 509, 9284 (2011).

[273] M. A. Carpenter andC. J. Howard. Symmetry rules and strain/order-parameter
relationships for coupling between octahedral tilting and cooperative Jahn–Teller
transitions in ABX3 perovskites. I. eory. Acta Cryst. B 65, 134 (2009).

[274] T. Mizokawa, D. I. Khomskii, and G. A. Sawatzky. Interplay between orbital
ordering and lattice distortions in LaMnO3, YVO3,and YTiO3. Phys. Rev. B 60,
7309 (1999).

[275] H. T. Stokes, D. M. Hatch, and B. J. Campbell. I (2007). http:
//stokes.byu.edu/isotropy.html.

[276] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-
energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).



 B

[277] M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev,
G.Madariaga, A. Kirov, andH.Wondratschek. Bilbao Crystallographic Server:
I. Databases and crystallographic computing programs. Z. Kristallogr. 221, 15
(2006).

[278] M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato, and H. Wondratschek.
Bilbao Crystallographic Server. II. Representations of crystallographic point
groups and space groups. Acta Cryst. A 62, 115 (2006).

[279] D. Orobengoa, C. Capillas, M. I. Aroyo, and J. M. Perez-Mato. A:
symmetry-mode analysis on the Bilbao Crystallographic Server. J. Appl. Crys-
tallogr. 42, 820 (2009).

[280] A. A. Mostoĕ, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari.
wannier90: A tool for obtaining maximally-localised Wannier functions. Com-
puter Physics Communications 178, 685 (2008).

[281] A. M. Glazer. e classiĕcation of tilted octahedra in perovskites. Acta Cryst. B
28, 3384 (1972).

[282] R. V. Shpanchenko, V. V. Chernaya, A. A. Tsirlin, P. S. Chizhov, D. E.
Sklovsky, E. V. Antipov, E. P. Khlybov, V. Pomjakushin, A. M. Balagurov,
J. E. Medvedeva, E. E. Kaul, and C. Geibel. Synthesis, Structure, and Properties
of New Perovskite PbVO3. Chem. Mater. 16, 3267 (2004).

[283] K. Oka, I. Yamada, M. Azuma, S. Takeshita, K. H. Satoh, A. Koda, R. Kadono,
M. Takano, and Y. Shimakawa. Magnetic Ground-State of Perovskite PbVO3
with Large Tetragonal Distortion. Inorg. Chem. 47, 7355 (2008). PMID:
18642895.



Acknowlegdments
In the last three years, I have experienced a continous support by a great number of
people, for which I am deeply thankful.

First, I like to thank my supervisor Jun.-Prof. Dr. Marjana Ležaić for giving me
the oppurtunity to write this thesis in the Computational Nanoferronics Laboratory,
for introducing me to intriguing topic of multiferroic oxides, for her constructive
suggestions, for the interesting scientiĕc discussions, and for opening me many pos-
siblities. Without you this work would not have been possible.

I am very grateful to Prof. Dr. Carsten Honerkamp for being the second referee
of this thesis.

I would also like to thank Prof. Dr. Stefan Blügel, who has taken me into the
Peter-Grünberg institute, spured my work by his everlasting energy, and provided
insightful comments to the implementation and acceleration of the hybrid function-
als.

Next, I thank Dr. Christoph Friedrich and Dr. Markus Betzinger for their sup-
port in the implementation of the HSE hybrid functionals and for proof-reading my
thesis.

I express my gratidue to Prof. Dr. Silivia Picozzi for organizing the Aquifer pro-
gram, where I had the chance to meet and discuss with PhD students from all over
the world. I would also like to acknowledge my fellow Aquiferians, who made this
such a great time.

I thank Prof. Dr. Manuel Bibes and Prof. Dr. Frédéric Petroff for organizing the
ISOE at the lovely Cargése and the other attendees of the school in particular Greta,
Carmen, Paolo, Heberton, Wolfgang, Peiman, Roman, and Vikas.

My former and current office mates Ali, David, Andreas, Andreas, Gregor, and
Aaron, I would like to thank for the intersting discussion, their help in the small but
tedious details, and for proof-reading my thesis.

e rest of the institute, I thank for scientiĕc discussions, for the social events, and
thewarmwelcome in the institute. In particular, I would expressmy gratitude toAlex
and the IAS Allstars for the weekly soccer games and the board-game enthusiasts
Alex, Timo, Gregor, Aaron, Adam, Julian, andAndreas for the occasional board game
party.





 B

I am indebted to Ute Winkler, the soul of our institute, for the smooth organisa-
tion of all the necessary administration issues.

Finally, I thank with all my heart my family and my girlfriend for the moral sup-
port during the last years.



Schriften des Forschungszentrums Jülich 
Reihe Schlüsseltechnologien / Key Technologies 

 
Band / Volume 46 
German Neutron Scattering Conference 2012 
September 24 -26, 2012. Gustav-Stresemann-Institut, Bonn, Germany 
Th. Brückel (Ed.) (2012) 
ISBN: 978-3-89336-807-5 
 
Band / Volume 47 
STM beyond vacuum tunnelling: Scanning Tunnelling  
Hydrogen Microscopy as a route to ultra-high resolution 
C. Weiss (2012), II, 165 pp 
ISBN: 978-3-89336-813-6 
 
Band / Volume 48 
High Temperature Radio-Frequency Superconducting Quantum 
Interference Device System for Detection of Magnetic Nanoparticles 
A. Pretzell (2012), 122 pp 
ISBN: 978-3-89336-814-3 
 
Band / Volume 49 
Study of Molecule-Metal Interfaces by Means of the Normal Incidence  
X-ray Standing Wave Technique 
G. Mercurio (2012), XXII, 361 pp 
ISBN: 978-3-89336-816-7 
 
Band / Volume 50 
5th Georgian-German School and Workshop in Basic Science 
Tbilisi, Georgia/August 6 – 10, 2012. Batumi, Georgia/August 13 – 17, 2012. 
Org. Committee: E. Abrosimova, A. Bakuridze, A. Kacharava, A. Kvitashvili, A. 
Prangishvili, H. Ströher (2012); CD-ROM 
ISBN: 978-3-89336-818-1 
 
Band / Volume 51 
Exploring the electronic properties of novel spintronic materials  
by photoelectron spectroscopy 
A. Herdt (2012), ii, 126 pp 
ISBN: 978-3-89336-831-0 
 
Band / Volume 52 
Quantum Information Processing  
Lecture Notes of the 44th IFF Spring School 2013  
February 25  – March 8, 2013 Jülich, Germany 
D. DiVincenzo   (Ed.) ca. 1000 pp 
ISBN: 978-3-89336-833-4 



Schriften des Forschungszentrums Jülich 
Reihe Schlüsseltechnologien / Key Technologies 

Band / Volume 53 
Real-Space Finite-Difference PAW Method for Large-Scale Applications  
on Massively Parallel Computers 
P.F. Baumeister (2012), vi, 212 pp 
ISBN: 978-3-89336-836-5 
 
Band / Volume 54 
Einfluss unkonventioneller Medien auf die  
Selektivität ThDP-abhängiger Enzyme 
T. Gerhards (2013), XIV, 199 pp 
ISBN: 978-3-89336-846-4 
 
Band / Volume 55 
Aufbau einer Vierspitzen-
Rastertunnelmikroskop/Rasterelektronenmikroskop-Kombination  
und Leitfähigkeitsmessungen an Silizid Nanodrähten 
E. Zubkov (2013), 150 pp 
ISBN: 978-3-89336-848-8 

Band / Volume 56 
Interplay between magnetic and dielectric phenomena  
at transition metal oxide interfaces 
D. Schumacher (2013), IV, 128 pp 
ISBN: 978-3-89336-855-6 

Band / Volume 57  
Single NdPc2 Molecules on Surfaces: 
Adsorption, Interaction, and Molecular Magnetism 
S. Fahrendorf (2013), viii, 100 pp 
ISBN: 978-3-89336-856-3 

Band / Volume 58 
Heyd-Scuseria-Ernzerhof Screened-Exchange Hybrid Functional for 
Complex Materials: All-Electron Implementation and Application  
M. Schlipf (2013), XV, 170 pp 
ISBN: 978-3-89336-857-0 

 

Weitere Schriften des Verlags im Forschungszentrum Jülich unter 
http://wwwzb1.fz-juelich.de/verlagextern1/index.asp 



 



Sc
hl

üs
se

lt
ec

hn
ol

og
ie

n
K

ey
 T

ec
hn

ol
og

ie
s

58

Heyd-Scuseria-Ernzerhof Screened-Exchange 
Hybrid Functional for Complex Materials: 
All-Electron Implementation and Application

Martin Schlipf

M
em

be
r 

of
 th

e 
H

el
m

ho
ltz

 A
ss

oc
ia

tio
n

Schlüsseltechnologien / Key Technologies
Band / Volume 58
ISBN 978-3-89336-857-0

M
ar

tin
 S

ch
lip

f
H

SE
 fu

nc
tio

na
l –

 Im
pl

em
en

ta
tio

n 
an

d 
A

pp
lic

at
io

n


