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INTRODUCTION

Since the industrial revolution, the advent of computer technology was
indubitably one of the most radical changes in modern history. Within
laptops, smartphones, integrated control circuits in washing machines, mi-
crowaves and other devices, the Internet and countless other applications:
computers and computing technology are nearly everywhere in our mod-
ern day life. One central component of every computing system is mem-
ory. The need for saving data is universal and has different characteristic
demands like storage capacity, read and write speeds, latency, energy con-
sumption, physical size and persistence time.

One prominent form of memory of persistent bulk memory is magnetic
storage as found in a hard disk drive (HDD) or magnetic tapes. Being eas-
ily scalable, having huge storage capacities and a long lifetime, magnetic
memory is especially suited for large amounts of data that do not have
taxing requirements on access speed. Physically these mediums consist of
a material with a high magneto-crystalline anisotropy. While the ground
state is ferromagnetic, orientating the magnetic moments into the opposite
direction is a local energetic minimum as well. Being protected by the
strong uniaxial anisotropy and respective energy barriers, domains of both
spin orientations (ground state and opposite direction) are extremely sta-
ble and have a very long lifetime even at room temperature. Utilising this,
the memory devices employ these domains as single bits. A read/write
head traverses the medium and writes information by applying a strong
magnetic field, reorientating the current domain. Read-out of information
is facilitated by giant magneto resistance effect, resulting in a resistance
changing measurably depending on the domain orientation [1][2].

This approach has the advantage of easy scalability and relative simplicity.
The surface area of the magnetic medium divided by the domain size is
proportional to storage capacity, this can easily be expanded on tapes or
multiple rotating coated glass disks as in HDDs and shown in figure I.1.
While facilitating fast realisation into commercial products, this approach
also has significant drawbacks. Firstly the information is saved inherently
two dimensional and while multiple layers can be realised, as is common
in HDDs, this still principally decreases or limits storage density in com-
parison to a three dimensional approach. Furthermore either the head or
the storage medium has to be mechanically moved to facilitate addressing
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I N T R O D U C T I O N

every domain, which in turn, has several limitations attached to it. Adding
significant latency to accessing distant sectors, wear of mechanical parts
or even accidental high-speed contact of the head with the medium are
all substantial drawbacks. Furthermore, miniaturisation of nearly all elec-
tronic devices progresses further and therefore the demand of devices with
high storage density and little power consumption continues to increase
in importance. These two key requirements can not be fulfilled by current
HDDs. As can be seen in figure I.1 only a very small fraction of the device
volume is actual data storage. While this can be increased incrementally

red/write hedmotor

control circits

coted glss discs

mgnets

indction coil

FIGURE I .1 – Conventional hard disk drive (HDD)

Seagate ST33232A HDD with 6 magnetic plates on 3 coated glass
discs. The motor spins the discs and the read/write head is moved
in/outward by inducing a current into the induction coil surrounded
by magnets. As is apparent from the picture the actual data storage
is only a fraction of the physical space, resulting in a very low
storage density. Original image from [3]

with thinner discs and heads, the general layout is fixed, which severely
limits the storage density, since a lot of the physical space is occupied
by non-information storing parts like motors, coils and magnets, needed
to move the head into different positions. Furthermore the energy con-
sumption can only be reduced marginally due to the fact that the need
for rotation of the discs and movement of the head can not be eliminated.
This results in an overwhelming amount of power dedicated to operating
the physically movable parts, while the actual reading/writing processes
only use a tiny fraction of the total power consumption.

The need for alternative solutions for persistent high capacity storage de-
vices is apparent and therefore different technologies have been proposed
and researched, including flash memory as utilised in USB sticks and solid
state drives, magnetic random access memory, bubble domain memory and
racetrack memory. Bubble domain memory was conceptualised as a series
of circular magnetic domains, being nucleated and moved on a stationary

2



I N T R O D U C T I O N

chip [4]. While having no movable parts, moving domains with magnetic
fields proved to be impractical, due to the high required fields and there-
fore joule heating problems of coils. With racetrack memory, a similar
idea was later conceptualised by Parkin [5][6, 7] in 2004 and offers the-
oretically unrivalled storage densities and access speeds. Qualitatively it
is similar to the classical concept of magnetic storage as described above.
However, in this case nanowires are employed to hold the domains which

FIGURE I .2 – Shematic of domain wall racetrack memory

In racetrack memory, magnetic domains in nanowires are utilised to
store information. The domains can be discretely moved forwards
or backwards along the wire by applying a current and therefore
read/written by the stationary head, similar to classical HDDs, but
without moving parts. Image taken from [6]

are then moved along the wires by a current. In contrast to manipulation
with a magnetic field, this current can move all domains while passing
through the wire. The read and write units are identical to HDDs, but
since being stationary, effectively eliminating the disadvantages described
above. A schematic of this domain wall memory is depicted in figure I.2.
In the course of time this idea was refined three times [7] and a proof
of concept was demonstrated by Hayashi et al. [8] in 2008. Despite all
the described advantages, research and proof of concept, up to this day
no functional prototype has been introduced.

In practice impurities in the described nanowires pose a significant prob-
lem. The moving domain walls can be pinned by these impurities, requir-
ing large amounts of current to dislodge and therefore extensively reducing
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the domain wall propagation speed by orders of magnitude. This could
be remedied by employing higher drive currents, but Joule heating of the
nanowires and Walker breakdown of the domain wall motion [9, 10, 11]
impose considerable limits to this solution. One of the approaches of cir-
cumventing this problem is to employ skyrmions or other non-trivial chiral
magnetic structures instead of domains as bits.

Magnetic skyrmions are vortex-like structures as depicted in figure I.3,
which may appear in chiral magnetic materials. They correspond to lo-

FIGURE I .3 – Magnetic skyrmions of Neel and Bloch type

In the Neel type skyrmion (left) the spins reorient within the radial
plane. This type of skyrmion was predicted in magnetic crystals
[12, 13] with a Cn symmetry and recently found in GV4S8[14]. In
the Bloch type skyrmion (right) the reorientation happens perpen-
dicular to the radial plane. This skyrmion type was amongst others
observed in chiral magnets such as Fe1−CoSi[15], Mn1−FeGe[16],
C2OSeO3[17], FeGe[18], MSi[19]. Pictures taken with Spirit.

cal energy minima protected by their topology related energy barrier. In
practice they may appear as isolated objects in a metastable state or as
the ground state of a system in which case they condense into skyrmion
lattices. For a certain range of system parameters, in particular exchange
stiffness and strength of Dzyaloshinskii-Moriya interaction (DMI), these
skyrmions can be extraordinarily stable, while retaining a very small size
down to just a few nanometres.

This is a major advantage of skyrmions over domain walls concerning race-
track memory or information storage in general, since domains can not
easily be reduced to less than 30 − 40nm [20]. Skyrmions are therefore
able to represent discrete bits of information on a considerably smaller
volume. Applying the racetrack concept to skyrmions as conceptualised by
Fert et al. [20] is depicted in figure I.4 and an active topic of research
[21, 22, 23].
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FIGURE I .4 – Shematic of skyrmion racetrack memory

In this version of racetrack memory, skyrmions in nanostripes are
utilised to store information. The skyrmions can be moved forwards
or backwards along the stripe by applying e.g. a spin polarised
current and that way every bit read by the stationary head depicted
in orange/blue here. Image taken from [23]

Using skyrmions instead of domain walls as bits significantly reduces the
minimum physical space needed to encode a data bit, which in turn in-
creases write, read and access times assuming the same propagation speed
per current density. Due to the smaller size of skyrmions and the fact that
they are also constrained in a second dimension and do not simply span
the whole nanowire, they are also significantly less likely to be pinned
by impurities. Because of their small size the chance of encountering an
impurity is significantly lower. Additionally, given well chosen parameters,
it is in principal possible for the skyrmion to be repelled by the impurity
and move around it, literally circumnavigating the problem.

In summary, skyrmions, due to their small size and good stability, are
promising candidates for racetrack memory and the ever growing demand
of small, low powered data storage. While still being far from adaptation
in daily devices, the fundamental research is well underway.

Well explored is e.g. the thermodynamic stability as done in [12, 24,
25, 26, 27] in mainly the micromagnetic model which is outlined in
section 2.1. Transport properties are a less explored facet of research
investigating skyrmions. Developing theoretical models describing the im-
pact of their topological characteristics and characterising the skyrmion
hall effect was amongst others done by Yin et al. [28] and Hamamoto
et al. [29][30, 31] and recently confirmed experimentally by Jiang et al.
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[32] and Litzius et al. [33].

The topic of skyrmion dynamics, especially the interactions with spin po-
larised currents, is another important and actively developing direction of
research [34, 35, 36, 37, 38]. Addressing important questions about the
behaviour of skyrmions in varying fields and currents and trying to reli-
ably manipulate skyrmions with those tools is important knowledge that
ultimately decides the feasibility of application in skyrmion data storage.

This thesis will focus on the development of the comprehensive simulation
framework Spirit [39]. In order to create a tool which enables high pro-
ductivity and rapid investigations of new phenomena, the existing juSpinX
[40] is rewritten from scratch and extended by including spin transfer
torque. Besides a new python scripting interface, a graphic user interface
is added, featuring in situ control of simulation parameters and real time
visualisation.

In chapter 1 the approach of modelling chiral magnetic structures is de-
scribed. The extended Heisenberg model is introduced with energy terms
for the common interactions.
After the model is laid out, chapter 2 characterises the employed numeri-
cal model. For differentiation the Micromagnetic Model is introduced and
contrasted with the atomistic spin dynamics (ASD) approach, used in this
work. The Landau-Lifshitz-Gilbert (LLG) equation is presented as an ap-
proach to describe the physical dynamics of spin systems. The equation is
then extended to include spin transfer torque caused by spin polarised cur-
rents into the simulation. A few approximations are discussed to simulate
the effect of spin transfer torque onto magnetic moments. Subsequently
the widely used semi-implicit method B (SIB)[41], a specialised solver for
the LLG equation, is explained and extended to include the effects of spin
transfer torque onto the system.
In chapter 3 the simulation framework Spirit is introduced by explaining
some of the design principles, employed in writing this code. Subsequently
the live control, visualisation and python scripting interface are described.
The section finishes by giving an outlook on features in current develop-
ment and the direction, in which Spirit will move in the future.
In chapter 4 the code is time calibrated with help of the Lamor precession
of a single spin. Furthermore easy simulations are done to demonstrate
and test the correct behaviour of the simulation framework with non-
trivial examples. In order to do that, domain walls are moved with both:
magnetic fields and spin polarised currents. After this simpler test case,
skyrmion motion under spin polarised current is investigated. Moreover
the interaction between skyrmions and open boundaries is observed quali-
tatively.

6
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The conclusion summarises the thesis, discusses the employed approxima-
tion of the spin polarised current and summarises the simulation capabil-
ities of the code. It then proceeds to provide an outlook, a summary of
problems that can be solved by the framework at this point and which
further techniques are needed in order to expand the simulation capabili-
ties even further. This is complemented by applications and examples of
where those additional features are useful or necessary.
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ENERGY TERMS OF THE EXTENDED HEISENBERG MODEL

1

This chapter introduces the extended Heisenberg model, briefly describing
the different energy terms and concludes by giving the respective effective
fields for all contributions.
While a complete quantum mechanical description of a solid state system
would be the most accurate, it simply impossible to consider systems with
multiple atoms efficiently. Therefore a semi classical description is utilised,
which tries to represent the quantum mechanical interactions in a classical
equation of motion. The basic premise of this model can thus be sum-
marised as treating the solid as an accumulation of independent magnetic
moments m*  = μs · n̂, pointing in arbitrary directions n̂, with n̂ being a
unit vector |n̂| = 1 and μs being the magnetic moment. Each of these mag-
netic moments has an energy associated with it’s interaction with other
moments and external fields. These energy contributions together form
the Hamiltonian of the extended Heisenberg model.

1 . 1 INTERACTION WITH AN EXTERNALLY APPLIED FIELD

Magnetic moments in an external fields will experience a torque pro-
portional to the angle between the field and the moment and the field
strength, as known from classical electrodynamics. Given a homogeneous,
time independent external magnetic field H

*

the spins will therefore interact
with this according to the Zeeman term:

Het = −μsH
NS
∑

=1

Ĥ · n̂ , 1.1

with the number of spins NS, the external magnetic field with respective
field strength H and unit vector Ĥ and the magnetic moment μs of a single
spin. This term generally favours parallel alignment of the spins along the

9



E N E R GY T E R M S O F T H E E X T E N D E D H E I S E N B E R G M O D E L

external magnetic field, influencing the system towards a ferromagnetic
state, with increasing field H.

1 . 2 UNIAXIAL MAGNETO -CRYSTALLINE ANISOTROPY

Magneto-crystalline anisotropy is the property of a crystal lattice to favour
or impede certain axis of magnetisation. Spin orbit coupling is the primary
cause of this interaction. The electron motion around the nucleus results in
an interaction between the electron spin and the magnetic field caused by
its motion, favouring certain spin orientations. Coupled with the structure
and symmetry of a lattice, this leads to a anisotropy, here described
uniaxial in first order:

Hn = −K
NS
∑

=1

�

K̂ · n̂
�2
, 1.2

with respective magnitude K and unit vector K̂. In this convention a
positive anisotropy magnitude K > 0 describes a preferred axis and a
negative K < 0 discourages magnetisation along the specified axis K̂.

1 . 3 CUBIC MAGNETO -CRYSTALLINE ANISOTROPY

In contrast to the uniaxial case, the anisotropy energy density can also
have a cubic symmetry. In this case, the contribution to the hamiltonian
is given by

Hn,cbc = −K1
N
∑

=1

�

n̂2
,
n̂2
,y
+ n̂2

,y
n̂2
,z
+ n̂2

,z
n̂2
,

�

− K2
N
∑

=1

n̂2
,
n̂2
,y
n̂2
,z
, 1.3

with n̂,, n̂,y and n̂,z being the , y and z−component of spin n̂, respec-
tively. This term is dependent on K1, where a positive constant favours
alignment along the 8 diagonals, and K2 favouring alignment along the 6
coordinate directions. Depending on the concrete material and it’s symme-
tries, both cubic and uniaxial anisotropy may be required simultaneously
to get a good approximation of the anisotropy energy contribution.

1 . 4 EXCHANGE INTERACTION

As two identical particles are localised close to each other, their wave-
functions can overlap, yielding the exchange interaction. This interaction
between two magnetic moments is described by the Heisenberg exchange

10
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term:
He = −

∑

〈j〉
J1n̂ · n̂j −

∑

〈〈j〉〉
J2n̂ · n̂j − · · · −

∑

〈〈〈j〉〉〉
JNn̂ · n̂j , 1.4

with 〈j〉 denoting all nearest neighbour pairs and 〈〈j〉〉 all next nearest
neighbour pairs with corresponding interaction constants J1, J2 until JN
for the different shells. Assuming a crystal lattice and isotropic exchange
interaction, the exchange constants typically only depend on the distance
between two spins and vanish either exponentially or according to a power
law with increasing distance, depending on the material properties. This
term favours a homogeneous spin orientation with slow changes, pushing
the system away from sharp transitions with growing interaction constants.

1 . 5 DZYALOSHINSKI I -MORIYA INTERACTION



j

D
*

B,j







FIGURE 1.1 – Schematic of bulk DMI in a cubic lattice

For every atom  (red) in the bulk of the simple cubic lattice has 6
nearest neighbours (blue). The bulk Dzyaloshinskii-Moriya interac-
tion vectors are visualised in green, pointing along the connection
r*j to the nearest neighbours. Visualisation adapted from [42]

Originally proposed as a phenomenological model by Dzyaloshinsky [43],
the antisymmetric exchange was also traced back to the spin-orbit coupling
by Moriya [44] in conjunction with a broken inversion symmetry. The
contribution of this interaction to the overall Hamiltonian can be denoted
as:

HDM = −
∑

〈j〉
D
*

j ·
�

n̂ × n̂j
�

, 1.5

with the DMI vector D
*

j. Due to the cross product between neighbouring
spins, it favours orthogonal spin orientation. The competition of Heisen-
berg exchange interaction with DMI can stabilise spin spirals with con-
served chirality and handedness or skyrmions, where neighbouring spins

11
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are always slightly turned. The utilised vector can be chosen between
"bulk" and "surface" DMI in the implementation.

D̂B,j = r̂j =
r* − r*j
|r* − r*j|

nd D̂S,j = D̂B,j × êz . 1.6

A visualisation of the bulk and surface DMI in a cubic lattice can be found
in figures 1.1 and 1.2 repsectively.

FIGURE 1.2 – Schematic of surface induced DMI in a cubic
lattice

Every atom  (blue) in a 2 dimensional surface has 4 nearest
neighbours. The surface Dzyaloshinskii-Moriya interaction vectors
are visualised in green, pointing perpendicular to the connection r*j
to the nearest neighbours. This interaction is transmitted via the
heavy atoms of the material substrate. Image taken from [45]

From here on isotropic, bulk DMI is assumed, resulting in simplification
of the DMI vector D

*

j = Dr̂j with the DMI constant D. Like the exchange
interaction, DMI couples spins in different shells and the constant D decays
either exponentially or according to a power law with increasing distance,
depending on the material properties. While generally the interaction
can be treated with multiple shells of neighbours, only nearest neighbour
DMI is assumed in this case. Increasing the DMI constant D, favouring of
rotating spin orientations is enhanced. Vortex-like structures like skyrmions
can be stabilised with this interaction.

12
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1 . 6 DIPOLE-DIPOLE INTERACTION OF MAGNETIC SPINS

Very intuitive and demonstrated in every basic electromagnetism class
with two bar magnets, the magnetic dipole-dipole interaction (DDI) is
another way, in which two magnetic moments interact with each other.
The Hamiltonian contribution is given by

HDD = −
μ0

4π

N
∑

,j=1, 6=j

1

|r*j|3
�

3(m*  · r̂j)(m* j · r̂j) −m*  ·m* j

�

, 1.7

with r̂j being the normal vector pointing from spin  to spin j as in
equation 1.6, μ0 the magnetic constant and m, m the magnetic moments
of the spins. Substituting those in with m*  = −μsμBn̂ one gets:

HDD = −
μ0μ2B
4π

N
∑

,j=1, 6=j

μ,sμj,s

|r*j|3
�

3(n̂ · r̂j)(n̂j · r̂j) − n̂ · n̂j
�

, 1.8

thus conforming to the notation of all other terms above.

While exchange interaction and DMI are quantum mechanical effects, de-
crease either exponentially or according to a power law and are often
considered to be short ranged, the DDI is an electromagnetic interac-
tion, decreasing only proportional to r*3

j
. Considered as therefore having

a medium to long ranged effect, the DDI is somewhat problematic in an
ASD simulation: A total calculation of the interaction of every possible
spin pair would scale quadratically with the number of spins n for ev-
ery iteration. To control the trade-off between accuracy of the DDI and
computation time, only spins j within a certain radius

�

�r*j
�

� < rDD around
spin  are considered for the DDI. The contributions of all others are
assumed to be small and therefore neglected. Giving the user control over
this process, a parameter ’dd_radius’ was introduced to control this radius
from the config or during runtime.

The DDI generally can favour either ferromagnetic or anti-ferromagnetic
states depending on the concrete geometry.

1 . 7 HIGHER ORDER EXCHANGE TERMS

In section 1.4 the first order term of wavefunction overlap was introduced
and the effect onto the magnetic moments discussed. Expanding this to
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higher order terms, one gets the biquadratic exchange interaction

HBQE = −
N
∑

<j>

Bj

�

n̂ · n̂j
�2
, 1.9

with the biquadratic exchange constant Bj and the four-spin interaction

H4SE = −
N
∑

<jk>

Kjk

�

(n̂ · n̂j)(n̂k · n̂) + (n̂ · n̂)(n̂j · n̂k) − (n̂ · n̂k)(n̂j · n̂)
�

, 1.10

with the four-spin exchange constant Kjk and the quadruplet < jk > of
neighbouring spins. While these higher order terms of the exchange inter-
actions are important in some special cases like metamagnetism in FeRh
[46], generally both Bj and Kjk are small and therefore these interactions
are commonly omitted.

Summing equations 1.1, 1.2, 1.3, 1.4, 1.5, 1.8, 1.9 and 1.10 yields the
full Hamiltonian of the extended Heisenberg model, which can be used in
atomistic spin dynamics simulations, which were developed and used in
this work.

1 . 8 EFFECTIVE FIELD

Being able to calculate the total energy of a given system, with help
of the above described Hamiltonian, the next step is to calculate the
time dependent effective motion of interacting spins. To achieve that, the
effective field has to be calculated by taking the negative energy gradient:

H,eƒ ƒ = −(∇Etot) = −
∂H
∂n

. 1.11

Summing the effective field terms (in that order) for interaction with
external field, uniaxial anisotropy, exchange interaction and Dzyaloshinskii-
Moriya interaction

H,eƒ ƒ = −μsH
* − 2K* �K̂ · n̂

�− 1
2
Jjn̂j −

1

2
D
*

j × n̂j 1.12

of equations 1.1, 1.2, 1.4 and 1.5.
The total effective field summarises the effects of all interactions onto the
considered spin. Together with the methods introduced in the following
chapter this field vector is employed to calculate the force acting upon
every spin and therefore iterating the system.
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ATOMISTIC SPIN DYNAMICS 2

This chapter lays out the basic approximations and techniques, employed
to solve the extended Heisenberg model of chapter 1. It starts by giving
the basic assumptions of the micromagnetic model, the atomistic model
is introduced as a more accurate description, especially on smaller scales.
The applicability and differences of both approaches are discussed shortly
and the atomistic spin dynamic approach explained in more detail. Sub-
sequently the Landau-Lifshitz-Gilbert (LLG) equation is introduced as an
approach to simulated the time dependent movement of the magnetic mo-
ments. Finally the semi-implicit method B integration scheme is discussed
as a specialised solver for the LLG equation.

2 . 1 MICROMAGNETIC MODEL VS ATOMISTIC HEISENBERG
MODEL

The micromagnetic model is a commonly used approximation to investigate
magnetic phenomena on a scale between a few nm up to a few microns
μm. At the core is the assumption that effects on the size of a few
atoms or molecules can be neglected and averaged over by considering
a continuous unit vector field m* instead of the discrete set of atoms
and their respective magnetic moments n*. This vector field assumed to
behave smoothly and well defined, excepting singularities like Block points.
Taking this continuum approximation and applying it to the Hamiltonian,
one ends up with

HMM =
∫

V

Fet + Fn + Fe + FDM dr
* , 2.1

where
∫

Ω

dn* denotes integration over the whole considered space or sample

and ƒ(n
*) are the different energy terms, corresponding to the Hamiltonian

terms as described in chapter 1, specifically

Fet = MsH
* ·m* , Fn = K

�

K̂m*
�2
, 2.2
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with the applied magnetic field H
*

, the magnetisation Ms, the constants of
uniaxial anisotropy K in the micromagnetic model. Furthermore

Fe = A
�

∇m*
�2
, FDM = D

�

m* · �∇ ×m* �� , 2.3

with the micromagnetic constants D of Dzyaloshinskii-Moriya interaction
and A for the Heisenberg exchange, to specify only the most important
terms.

While the above introduced functionals are easier to evaluate and simulate
due to their smoothness and integratability, they are somewhat imprecise
when describing small systems. Particularly for phenomena of the size
between a few nm and a few atom sizes, this description is not applicable
at all, since the assumption, that the vector field m* varies slowly and
smoothly is violated in that case.

The atomistic spin dynamics approach, utilised in this work, on the other
hand, does not rely on the continuum approximation, but simulates every
molecule/atom as a single magnetic moment. While being more compu-
tationally expensive, small non-trivial magnetic structures like skyrmions
can be resolved more accurately and materials with random impurities
or other anisotropic interactions can be treated. It is even possible to
define the interactions between any two particles, or between a particle
and the anisotropy or magnetic field independently, enabling simulation of
arbitrarily complicated systems or materials.

2 . 2 LANDAU-LIFSHITZ-GILBERT EQUATION OF SPIN MOTION

The problem of simulating the single magnetic moments as described in
the above section is usually tackled by finding the equation of motion
for the magnetic moments. This is done by calculating for every spin
the reaction in respect to the current effective field which is evaluated as
shown in section 1.8.

The starting point to motivate this semi classical equation of motion is the
quantum mechanical equation of motion of an arbitrary operator O given
by the commutator:

ℏ
∂O
∂t
= [O,H] , 2.4

one can then introduce the Lie-Poisson bracket as the classic equivalent to
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a commutator. For a spin system this is given by:

{F,G} =
Ns
∑

=1

εαβγ
∂F

∂n,α

∂G

∂n,β
n,γ , 2.5

with a set of vectors
�

n*
	

and the function F,G operating on this set
of vectors. Now substituting these functions with F = nα


and G = nβj ,

immediately results in:

¦

nα

, nβ

j

©

= εαβγδjnγ . 2.6

To get the equation of motion, this classical commutator equivalent can
be utilised in conjunction with the above described Hamiltonian:

¦

nα

,H
©

= ℏ
∂nα



∂t
=

N
∑

j=1

εαβγδj
∂H

∂nβj
nγ
j
=
�

∂H
∂n̂
× n̂

�α

. 2.7

Applicable for all vector components α, one can employ the definition of
the effective field in equation 1.11 to receive

ℏ
∂n̂

∂t
= − ∂H

∂n̂
× n̂ = −n̂ × H,eƒ ƒ . 2.8

This term describes the so-called Lamor precession of the magnetic mo-
ment around the effective field which is depicted in figure 2.1 with a

H
*

eff

n*
F
*

P

FIGURE 2.1 – Lamor spin precession

The spin n̂ precesses around the effect field H
*

,eƒ ƒ acting onto the
same spin according to the Lamor precession specified in equa-
tion 2.8. Being orthogonal to the effective field H

*

,eƒ ƒ and the mag-
netic moments n̂ conserves the energy and the magnetic moment’s
strength respectively. Image taken from [42]

force perpendicular to both spin unit vector n̂ and effective field H
*

,eƒ ƒ this
precession conserves the magnetic moment as well as the spin’s energy.

Aiming to relax the system to the minimum energy, Landau and Lifschitz.
[47] introduced a damping term in 1935, yielding the Landau-Lifschitz
equation

∂n̂

∂t
= − 1

ℏ
(n̂ × H* ,eƒ ƒ ) − λn̂ × (n̂ × H* ,eƒ ƒ ) , 2.9
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with the phenomenological damping parameter λ, which is in this con-
vention assumed to be positive, in order to damp the system in direction
of the nearest local energy minimum, represented by the effective field
H
*

,eƒ ƒ . This damping term is visualised in figure 2.2 Twenty years later,

H
*

eff

n*

F
*

D

F
*

P

FIGURE 2.2 – Lamor precession with damping

Adding the damping term to the Lamor precession, the magnetic
moment n̂ slowly converges to the effective field H

*

,eƒ ƒ while ex-
hibiting Lamor precession. This damping relaxes the system towards
the nearest local energy minimum while still conserving magnetic
moment strength |m* |, since both damping and precession forces are
orientated perpendicular to it. Image taken from [42]

Gilbert [48][49] proposed a similar damping term, yielding the commonly
employed LLG equation

∂n̂

∂t
= − 1

ℏ
(n̂ × H* ,eƒ ƒ ) −

α

ℏ
n̂ ×

�

∂n̂

∂t

�

, 2.10

with the damping parameter α. The LLG equation 2.10 can be transformed
into equation 2.9 by taking the cross product of equation 2.10 with n̂,
followed by some simple calculation as shown in [50]. While being prac-
tically identical for low damping values, the two different formulations
only differ significantly for damping values above λ > 0.1. In that case,
the Gilbert damping is generally preferred, since its behaviour in the high
damping limit is analogous to classic mechanical damping terms and it is
able to model real ferromagnets with higher accuracy with high damping
values [51]. From here on, the Gilbert version of damping is meant and
implemented, whenever damping or damping parameters are referred to.

2 . 2 . 1 Temperature dependent extension

So far completely neglecting temperature influences onto the system, one
can extend the described model to non-zero temperatures in a few ways.
In this work, a Langevin approach is chosen over alternative Monte Carlo
methods or a coupling of the spin system to the heat bath of the lattice.
Motivated by the intuitive Brownian motion, a fluctuation term ƒ

*

 is added.
Assuming directional, spatial and time isotropy for these fluctuations yields
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the average of fluctuations

< ƒ,α >= 0 2.11

and the correlations

< ƒ,α, ƒj,β >= δjδαβδ(t − t′)ε2. 2.12

Employing the fluctuation-dissipation theorem

ε2 = 2λkBT , 2.13

it is possible to relate these fluctuation correlations to the well known
Boltzmann distribution

p(E) ∝ exp
� −E
kBT

�

, 2.14

with probability p(E) of encountering a particle at energy E and the
temperature T. Knowing that the equilibrium energy distribution of a
single particle has to follow equation 2.14, 2.13 can then be used to pick
an appropriate fluctuation amplitude ε. The effect of the LLG equation

H
*

eff

n*

FIGURE 2.3 – Stochastic damped precession in LLG

Adding a stochastical damping term to the LLG equation, yields
a fluctuating, damped Lamor precession (c.f. figure 2.2). As with
all other terms above, the the magnetic moment strength |m* | is
conserved, since the fluctuation term is also applied perpendicular
to it. Image taken from [42]

extended by a fluctuation term

∂n̂

∂t
= − 1

ℏ
(n̂ × H* ,eƒ ƒ ) −

α

ℏ
n̂ ×

�

∂n̂

∂t

�

− n̂ × ƒ
*

 , 2.15

is visualised in figure 2.3. This facilitates the simulation of systems held
at finite temperatures by heat baths and completes the discussion of the
LLG equation, it’s different terms and their effects onto a single spin.
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2 . 3 SPIN TRANSFER TORQUE

This section starts by explaining the origin of spin polarised currents
in ferromagnetic materials and subsequently using this to introduce the
phenomenon of spin transfer torque. Finally the utilised approximation is
explained by outlining the assumption, applications and restrictions.

2 . 3 . 1 Spin polarisation of electric current in ferromagnets

In an ordinary current the electron spins are randomly distributed in all
directions. Therefore interactions between the electrons spins and e.g. a
ferromagnet’s particles average out over the large amount of particles and
are therefore statistically irrelevant. However, ferromagnets can act as spin
polarisers. Following the Stoner model of ferromagnetism, electron bands
in a ferromagnet can split up, due to exchange interaction

ε↑(k) = ε0(k) −  ·
n↑ − n↓
n

, ε↓(k) = ε0(k) +  ·
n↑ − n↓
n

, 2.16

with ε↑, ε↓ being the energies of the spin up and down, k the wave vec-
tor, e0(k) the energy before exchange effects,  the Stoner parameter and
n↓
n
, n↑
n

the spin densities for the up and down electrons respectively. The
so-called exchange splitting ΔEe of the d-band is depicted in figure 2.4
with the density of states D(E) and the Fermi energy level EF.

When an electron enters the ferromagnet from a nonmagnetic material,
the electron enters approximately at the Fermi energy EF. Being a "spin
up" ↑ (red) electron it can only occupy the s − p band as shown in fig-
ure 2.4. The states in the d band are completely occupied, due to the
exchange splitting and therefore the only possibility is the s− p band. For
an "spin down" ↓ (blue) electron, however, both the s − p band, as well
as the d band are available. Therefore a significant portion of the "spin
down" electrons occupy the d band.

Since the s − d band is the overlap integral between s and p band of
neighbouring atoms, the incident electron traverses the ferromagnet ac-
cording to its initial momentum while occupying this band. The d band
on the other side is a localised to every atom and therefore prohibits
further propagation of the electrons through the material. Those get ab-
sorbed by the d band of the corresponding atom, later re-emitted into a
random direction and reabsorbed, effectively negating their participation
in the currently altogether.
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D(E)

E

ΔEe

D(E)

E

EF

s − p band d band

FIGURE 2.4 – Shematic band model plot for majority and
minority electrons in a ferromagnet

Only the "spin down" ↓ (blue) electrons of the s − p band can
transition easily into the free states of the d band. The "spin up"
↑ (red) electrons can not transition into the d band since there are
no free states due to the exchange splitting. This results in majority
electrons (red) staying in the s−p band and more minority electrons
(blue) scattering into the d band.

Summarising, the "spin up" or majority electrons (how they will be called
from now) can only join the s − p band and therefore propagate nicely
through the ferromagnet. The "spin down" or minority electrons, however,
can scatter into the d band at every atom of the ferromagnet, effectively
annihilating their contribution to the net current (in an ideal material).
This leads to a spin polarisation along the magnetisation direction of a
current traversing a ferromagnetic material. For a realistic material, the
polarisation is not perfect, but one still ends up with spin dependent
conductances, significantly favouring the majority polarisation.
These different conductances of the different polarisation direction of the
current, lead to a different scattering behaviour: While the majority elec-
trons are mostly transmitted through the ferromagnetic material, the mi-
nority electrons are more often reflected.
In a quantum mechanical picture, an electron with random polarisation
can be expressed as the superposition of a majority and a minority spin:

P [↑] = 2 + cosθ
2

nd P [↓] = 2 − cosθ
2

, 2.17

with θ being the angle between spin and majority spin-state, here taken
as spin up [↑].
At the interface, the majority polarised part of the wave function can easily
propagate into the ferromagnetic material, while the minority polarised
part is mostly reflected and if transmitted, decays exponentially in the
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material. As a consequence only the majority part of the spin superposition
is easily transmitted and therefore arbitrary incoming conduction electrons
are spin polarised by the ferromagnetic material.

2 . 3 . 2 Effects of spin transfer torque

In section 2.3.1 we assumed for simplicity, that this process has no ef-
fect on the ferromagnet itself. However, considering Newton’s third law,
one has to take into account the reaction of the above described spin
polarisation. The torque needed to rotate the electron’s spin, results in a
back-torque acting onto the spins of the material itself, the so-called spin
transfer torque (STT). First predicted simultaneously by both Slonczewski
[52][53] and Berger [54][55] in 1996, it was later confirmed experimen-
tally by Myers et al. [56], Katine et al. [57] and Grollier et al. [58]
and was added to the LLG equation 2.10 by Slonczewski [52] in 1996,
resulting in the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation:

∂n̂

∂t
= − 1

ℏ
(n̂ × H* ,eƒ ƒ ) −

α

ℏ
n̂ ×

�

∂n̂

∂t

�

+ τ‖
n̂ × (p̂ × n̂)
|p̂ × n̂|

+ τ⊥
p̂ × n̂
|p̂ × n̂|

, 2.18

with the driving torques τ‖ and τ⊥ and the polarisation direction p̂ of the
spin polarised current.
A visualisation of how additional term affects the motion of a single spin
in an effective field can be found in figure 2.5. As shown the current can

H
*

eff

n*

F
*

D

F
*

P

F
*

STT

FIGURE 2.5 – STT in LGG equation of motion

Additional to the above described forces of the LLG equation (c.f.
figure 2.2), here the spin transfer torque is added. The correspond-
ing force term is pointed anti parallel in respect to the damping
term. Therefore the system can, depending on the size of those com-
peting terms, either be damped towards the effective field or pushed
in the opposite direction by the STT. Since F

*

STT is perpendicular to
n̂, the length of the magnetic moment |m* | is conserved.

have two different effects on a single spin:

In the small current limit, the damping term of the material is dominating
the interactions. This damping cancels out the spin torque, resulting in a
stable system which relaxes to the nearest local minimum with an effec-
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tive damping term that is the difference between the original and the STT.

However, if the damping is sufficiently small or the STT significant enough,
the STT-term can start dominating equation 2.18 and therefore can excite
the system out of an energy minimum and pushing it into different states.
The energy gain associated with this term of the LLGS equation is therefore
not necessarily always suited to relax a system towards minimum energy.

2 . 3 . 3 Spin dynamics simulation for spin transfer torque

This work simulates the effects and influence of the above described spin
transfer torque on non-trivial spin structures like magnetic skyrmion in
chiral magnets. As mentioned in the Introduction, so far only magnetic in-
teraction is used in memory devices to read and write information. While
also able to move domain walls, external magnetic fields are not suited for
the domain wall pushing required in racetrack memory, since the just ex-
pand the domains aligned parallel to them and shrink the antiparallel ones.
Furthermore application of a current instead of a magnetic field drastically
reduces the required energy and therefore significantly improves upon the
problem of Joule heating. For this application spin polarised current (SPC)
and the associated STT is valuable.

When applying a spin polarised current onto a series of domains, it is
possible to move all those domains simultaneously into the same direction.
Being the basic principle of racetrack memory, as described above, this
can also be applied to skyrmions. To investigate these interactions further,
it is of great importance to add STT to the Atomistic Spin Dynamics
Simulation.

2 . 3 . 3 . 1 Complete Spin Transfer Torque treatment

The intuitive approach to including STT into an ASD simulation, would
be to replace the LLG equation of equation 2.10 with the LLGS equation
of equation 2.18. For that to work, the simulation would be required
to track every single electron, the current consists of, with its respective
polarisation. While this would then allow for a very detailed and accurate
simulation of arbitrary materials and interfaces with a complete treatment
of STT, it is impractical due to the computational limitation of modern
computers. Therefore several approximations can be made to reduce and
simplify the otherwise impossible amount of data and calculations.

2 . 3 . 3 . 2 Calculation via gradient

One commonly used approximation to implement STT into ASD simulation
with achievable memory and calculation requirements, is the calculation
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via gradient. In a bulk material the current direction is specified and the
polarisation at the material interface specified. For every spin position r*
in the lattice the spin polarisation of the current is then calculated as
following.

With the direction of the current, the trail of spins that the current had
to pass to get to r* can be calculated. Assuming these spins act as the
above described ferromagnet (c.f. section 2.3.1) polarising the SPC in their
direction, one can calculate the polarisation direction of the current at a
given point r* by taking the gradient of the spin vector field.

While still taxing on the calculation side of the simulation, this approach
facilitates the simulation of arbitrary SPC with definable accuracy and
details. Parameters can be introduced to give fine-grained control over
weighting of the current trail according to known material parameters
like mean free path and therefore enabling a very detailed and accurate
simulation.

2 . 3 . 3 . 3 Perpendicular to thin layer approximation

If one is only concerned with reasonably thin layers of materials (nanos-
tripes) and is willing to limit the current flow direction along the axis
perpendicular to the stripe, one can simplify the calculations significantly.
By assuming the average interaction of a current electron as low within
the thin stripe it traverses, the spin of the current’s electrons can be as-
sumed to be fixed in their initial polarisation direction.

This approximation is somewhat limited in it’s generality since one cur-
rent direction is simulated and for systems with many z− layers, the
gradient approximation would be preferred. On the other hand, for thin
systems with perpendicular current, it does not need to keep calculating
or saving different spin polarisations for every lattice point. This results
in an enormously simplified calculation and significant speed advantage in
comparison to a calculation via gradient. The concrete quantification for
how many layers of a given material this approximation is valid for can
be made, employing tools like the mean free path and material constants
describing the strength of the spin polarisation by the material. However,
since only one-atoms layers are considered by this work, the assumption
is indubitably accurate and applicable.

Adding the a Spin torque effect motivated by a spin polarised current to
the LLG equation 2.10 as shown by Li and Zhang [59] results in:

∂n̂

∂t
= − 1

ℏ
(n̂ × H,eƒ ƒ ) +

α

ℏ
n̂ ×

∂n̂

∂t
+
j

ℏ
n̂ ×

�

n̂ × Ŝp
�

, 2.19
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where Ŝp is unit vector describing the polarisation direction of the spin
polarised current. While j has the units of an effective field, it is propor-
tional and can be related to the current density as shown by Slonczewski
[52]. Evaluating the cross product in the damping term, his can be
phrased in the explicit Gilbert form as shown by Chureemart et al. [60]:

∂n̂

∂t
= − γ

(1 + α2)

�

n̂ × Heƒ ƒ

�− γα

(1 + α2)

�

n̂ ×
�

n̂ × Heƒ ƒ

��

− γαj

(1 + α2)

�

n̂ × Ŝp
�

+
γj

(1 + α2)

�

n̂ ×
�

n̂ × Ŝp
��

.
2.20

This thin layer approach was implemented into the code as described in
section 2.4.1 where the SIB method is extended to model this modified
LLG equation.

2 . 4 SEMI IMPLICIT INTEGRATION OF THE LANDAU-LIFSHITZ-
GILBERT EQUATION

With the equation of motion layed out in equations 2.10 and 2.15, the
integration method is discussed in this section. Generally there are multi-
ple ways of solving a partial differential equation like the LLG equation of
the previous sections. An analytic solution is the most elegant way: When
found, it is applicable universally and provides every desired concrete so-
lution very little further computations. While being theoretically desirable,
in complicated N−body problems it is, however, not generally possible to
find an explicit closed analytic form. Therefore most complex differential
equations like the LLG are solved numerically.

Starting with the simple Euler method [61] in 1755, a whole set of differ-
ent numerical integration methods have been devised. The most important
characteristics to measure these methods are stability and speed. While it
is advantageous to have a small algorithm which needs less calculations
for an iteration, the trade-off with stability is important. A more precise
or more stable algorithm can utilise bigger time steps τ and therefore
need less iterations. Generally there is a distinction between explicit and
implicit integration. While explicit integration methods are usually fast
and easily implemented, their implicit counterparts are slower, but usually
more stable. Since they require solving a system of coupled equations at
every iteration step, the implicit methods are often employed for special
symmetries or small systems, where these solutions are easily computable
and result in a fast and stable iteration.
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Of high importance for atomistic spin dynamics with the LLG equation
are especially the Heun method [62][63] and the semi-implicit method
B (SIB) introduced by Mentink et al. [41] in 2010. The first is an explicit
numerical integration algorithm, that can be described as a second order
extension of the Euler method. Given a starting point (t0) = 0 of a one
dimensional function (t), it iterates the time step τ by performing the
simple Euler approximation to get an estimated value

̃k+1 = k + τ
dk

dt
, 2.21

with k denoting the number of iteration and then uses this prediction
to get the final approximation by again employing the Euler method and
averaging both values:

k+1 = k +
τ

2

�

dk

dt
+
d̃k+1

dt

�

. 2.22

Extending this to 3N dimensions for the ASD model, one gets a fast ex-
plicit iterator, which is easily implementable and commonly used. However
it is severely limited concerning its stability and therefore applicable time
steps, usually requiring time steps between 0.01 and 1fs [41].

On the other hand, while having high stability, implicit integrations like
implicit midpoint are not practical due to the dimensionality of 3N and
the solution of a 3N set of coupled equations is simply too slow. However,
still retaining some of the stability advantage, are semi-implicit integration
methods. Conserving the length of the individual spins intrinsically, these
semi implicit only require the solution of 3 linear coupled equations per
spin every iteration. The semi-implicit method B (SIB) method of Mentink
et al. [41] is a specific semi implicit solver for the LLG equation. It
works with a predictor followed by a correction step. Similar to the Heun
method, the predictor is leaned on the Euler method, but here modified
to conserve spin length naturally:

s̃k = s
*

k
+ τ

s*
k
+ s̃

k

2
× (s*k) , 2.23

with k denoting the number of iterations as above, s*
k

and s̃
k

being three
dimensional unit vectors, denoting the magnetisation direction of spin  at
iteration k and (s

*

k) being the effect of the LLG equation onto spin  at
iteration k, in this case without temperature fluctuations:

(s
*

k
) = −H

eƒ ƒ
(s*k) − αs*k × H

eƒ ƒ
(s*k) , 2.24

with H
eƒ ƒ
(s*k) being the effective field acting on spin  on behalf of equa-
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tions 1.12 and α being the damping parameter of the LLG equation 2.10.
The corrector step replaces the effect (s

*

k) of the LLG equation with the
average between the previous s*k and the predicted s̃k:

s*
k+1
= s*

k
+ τ

s*
k
+ s*

k+1

2
× 

�

s*k + s̃k
2

�

. 2.25

As the predictor, this corrector step implicitly conserves spin length and
requires the solution of only 3 coupled equations for the three spatial
directions. Solvable with a 3 × 3 matrix, this semi implicit method gains
a significant stability advantage while still nearly retaining the speed of a
completely explicit iterator.

2 . 4 . 1 SIB with perpendicular Spin Transfer Torque

To incorporate the perpendicular thin layer approximation of spin transfer
torque (STT) as discussed above in section 2.3.3.3 to the SIB optimiser,
one starts with the (s

*

k) utilised in equations 2.23 and 2.25. Instead of
employing equation 2.24, as described above, one now proceeds analogous
to equation 2.20, yielding

(s
*

k
) = −H

eƒ ƒ
(s*k) −αs*k × H

eƒ ƒ
(s*k)

−jαŜp +js
*

k
× Ŝp .

2.26

This extends the effect  of the LLG equation onto spin  by the two
bottom terms, describing the effect of the chosen approximation for spin
transfer torque. With the approximation of a constant polarisation direction
of the spin polarised current Ŝp constant, the computational cost of these
additions is linear with the number of spins and therefore negligible.
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SIMULATION FRAMEWORK SPIRIT 3

In this chapter framework for atomistic spin dynamics, Spirit is introduced.
Starting by outlining the design principles and general structure, the chap-
ter continues to explain the provided visualisation options and the GUI.
The live options to control simulation parameters on the fly are described
and the python interface to script a simulation run is covered. The section
finishes with an summary of features which are under construction or
planned in the future.

The starting point for Spirit was juSpinX [40], a Fortran implementation
of atomistic spin dynamics, written by David Bauer, Nikolai Kiselev and
Gideon Müller at the Quantum Theory of materials institute of the FZ
Jülich. In the scope of this work that code was translated and adapted to
C++, forming the basis for the core library and extended with the above
described spin transfer torque into the SIB iteration method by the author.
The code was then completely restructured, modularised and extended in
collaboration with Gideon Müller. Subsequently the QT GUI was drafted
by Gideon Müller and implemented in a joint effort with the author. The
initial visualisation was written by Gideon Müller and Ingo Heimbach
(PGI/JCNS at FZ-Jülich) and then replaced by the gl library implemented
by Florian Rhiem (PGI/JCNS at FZ-Jülich) who also realised the Web UI
and the WebGL code. The Python UI was implemented by Gideon Müller
and extended by the author.
Currently the code is Open Source under the MIT License and can be
found on github [39].

The main goal of Spirit is offering unrivalled modularity, flexibility and
operating system independence while still retaining very good performance
for atomistic spin dynamics. This is achieved by separating the simulation
problem into different and nearly independent parts as in this document,
providing clean interfaces for their interaction.
The main part of the code is the core library which can be directly con-
trolled with a GUI based on the QT application framework [64] or by a
classical main file at build time, or alternatively can be compiled into a
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library, which in turn can be accessed by e.g. Python.

The first step, in the GUI done implicitly, is initialising the first spin system.
This spin system class is a container holding all the information about the
physical system. It contains the following notable members:

• Geometry class, describing the positions of the different spins in
relation to each other.

• Spins vector, holding the current orientations of the magnetic mo-
ments.

• Hamiltonian class describing the energy and effective field calculation
rules as described in chapter 1.

• Present value of Energy and effective field vectors.

• LLG parameter class containing the LLG parameters like damping,
temperature or timestep.

After generating this data either from reading a configuration file, user
input or by default values, usually an optimiser is initialised. Utilising SIB
for this work, the optimiser knows how to iterate the system e.g. accord-
ing to the predictor, corrector scheme of the SIB described in section 2.4.

The optimiser in turn creates a method class, representing the iteration
method which is going to be applied. For this work this is generally the
atomistic spin dynamic LLG equation as introduced and motivated in sec-
tion 2.2, but also geodesic nudged elastic band (GNEB) and under current
development minimum mode following (MMF) are possible choices. This
method can either depend on one system alone like the SIB or have inter-
system forces to simulate transitions between two different states, as is
commonly the case with GNEB.

The framework can hold multiple spin systems simultaneously with their
respective methods and optimisers. This enables the user to simulate dif-
ferent parameter sets in parallel or calculate energy transitions with the
GNEB method. Copy constructors are provided, which facilitate the simple
and fast copying of existing systems as opposed to initialising them anew
from file.

Summing up the core library, figure 3.1 is a helpful visualisation, depict-
ing how the frameworks iterates a given system. Assuming initialisation is
completed, the control flow (depicted in red) calls the "Iterate" function of
the optimiser. The optimiser picks the requested method, which continues
by referring to the spin system and it’s Hamiltonian to get the effective
field. Subsequently the method modifies this effective field according to
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Optimiser (SIB, Heun)

Optimiser.Iterate

Method (LLG, GNEB, MMF)

- calc_Force

- vec<system*>

vec<system*>

Spin System

Spins

Hamiltonian

E, Heƒ ƒ

Hamiltonian

calc_E

calc_Eff_Field

calc_Hessian

Member

Fuction

Script/GUI

FIGURE 3.1 – Call structure of iterations in the core library

After initialisation and setup, the script or GUI calls the iterate
function of the optimiser, which then uses the respective method to
get an effective field or energy and then iterate the system according
to e.g. the SIB method described in section 2.4.

the method specification and returns it to the optimiser. The optimiser in
turn performs the iteration and subsequently updates the spins array of
the spin system.

While this does sound convoluted and slow, a very fast implementation can
be achieved. Avoiding copying of data with references and pointers and
employing techniques like C++11’s perfect forwarding, a very high effi-
ciency is achieved with only a minimal amount of computational overhead.
The huge advantage of this structure, however is exactly the modularity. If
a different Method is required to simulate certain problems or investigate
a specific system, the code can be extended simply by adding another
method class. Originally only containing LLG and GNEB this process is
momentarily happening with the MMF method, which is currently being
developed and implemented.
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Analogous is the addition of different optimisers and Hamiltonians. In this
work the "isotropic Hamiltonian" was employed, exploiting the symmetry
of the simulated lattice and therefore utilising equations 1.1, 1.2, 1.3, 1.4,
1.5, 1.8, 1.9 and 1.10, quantifying the interactions. However utilising the
"anisotropic Hamiltonian", one can also abolish the notion of a symmetric,
regular lattice and define interactions between particles and with external
fields completely arbitrarily. Giving flexibility in this regard, Spirit is easily
expandable by further Hamiltonians.

In a nutshell the library is completely modularised and extendable in
a very simple way. Together with an open source code, this gives the
opportunity to collaborate with many people with fixed interfaces where
everybody can attach onto and extend by writing their own Hamiltonian,
methods or optimiser.

After describing the functionality and building blocks of the core library
the following segment is concerned with the control flow of the code.
This can be done in different ways as described above, the following two
sections, however, will focus on the QT GUI variant where live control of
the simulation parameters and the visualisation are described.

3 . 1 LIVE CONTROL OF SIMULATION PARAMETERS

Aiming for flexible and different control flows, governing the same set of
high-performance calculations, the core of Spirit is in the form of a library.
An application programming interface (API) is implemented and currently
polished, which exposes the important public functions in a comprehensi-
ble, easy-to-use fashion. This splits the computational effort into control
on the one hand which does not have to be high-performing and can also
be localised to specific platforms or infrastructure and core on the other
hand. The core as described above is a closed set of code, which can be
compiled for every major operating system, does not require any runtime
overhead and is highly performance optimised. This gives the flexibility
of using the same set of functions and performing the exact same calcula-
tions, independent of the platform or the Interface.

The GUI version of the code gives the user the most options to control
the simulation in real time. The main window is depicted in figure 3.2,
featuring a big visualisation pane showing the current state of the selected
spin system. Furthermore a control bar is at the bottom, enabling the start
and stop of simulations, control over which method and optimiser are em-
ployed, options to save current system energy and reset the camera along
the main axes. The right hand side is by default home of the control and
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FIGURE 3.2 – Spirit’s GUI developed with QT

The main window of the code shows a visualisation of the current
spin system while providing numerous control settings and plotting
capabilities on the right hand side. Giving the option to pick the
employed method and optimiser, the control bar at the bottom
also enables the user to reset camera angles, start and stop the
simulation and switch between different spin systems.

plot widgets, which can be resized, moved and undocked in an intuitive
fashion.

The shown GUI accesses the API of the simulation core to modify values
and properties of the respective classes on the fly. While this is principally
also possible mid-iteration, a cleaner behaviour is generally achieved by
pausing the iteration first, changing variables and then restarting. Other-
wise the first half of the iteration is executed with different parameters
than the second one.

The Hamiltonian can be controlled with the respective tab in the settings
widget as depicted in figure 3.3 on the left side. All the interaction pa-
rameters of the extended Heisenberg model introduced in chapter 1 can
be changed live, given that the respective interaction is assumed to be
isotropic by the Hamiltonian. This offers the unique opportunity to rapidly
experiment with a huge parameter space extremely quickly. Both for re-
search and especially teaching this function is invaluable: Being able to
immediately observe the effect of a stronger external field or a different
anisotropy, an strong intuition can be developed quickly by observing how
the system reacts when different parameters are manipulated.

On the right side of the same figure 3.3 parameters tab is shown, which
give control over the parameters of both the LLG equation and the GNEB
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FIGURE 3.3 – Hamiltonian and LLG simulation settings

The left hand image shows the Hamiltonian tab. It enables the user
to control every aspect of their, in this case isotropic, hamiltonian
by allowing input for the constants of chapter 1. On the right
hand side, the simulation parameters of both GNEB and LLG are
controllable.

calculation method. Here the time step, damping, the number of iterations
executed per press of the "play" button and the frequency, how often logs
are dumped as files, can be controlled for the LLG method. For the GNEB
the currently viewed system (called "image" by the code) can be set to
behave as either normal, climbing or falling image, the spring constant
can be modified and the iteration numbers controlled.

Being able to control all the above mentioned parameters, still the spin
system is till now only modified by the iteration algorithms. The config-
uration tab depicted on the left in figure 3.4 gives the user to initialise
different structures in the system. Homogeneous alignment, randomisation,
creation of domain walls, spin spirals and skyrmions are facilitated by this
pane. With help of parameters the size, position and further characteris-
tics of these objects can be specified and upon execution the spin in the
affected region are aligned accordingly. It should be noted that changing
configuration of the system mid-iteration is inadvisable. While the code
will not throw exceptions or crash, the behaviour is undefined due to the
system being set into a different state while an iteration is running in
a seperate thread. A blocking call is not implemented at this point, so
whatever is written into memory last will stay there, sometimes resulting
in setting of only half the intended structure or having no effect at all.
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FIGURE 3.4 – Configuration and visualisation setting

The left hand image shows the configurations tab. It provides meth-
ods to orient the magnetic moments in a certain way. Homogeneous
orientations, domain walls, skyrmions or spin spirals are currently
supported and easily configurable. On the right side are the visu-
alisation controls. The spins can be depicted as either arrows or
a surface interpolation, a z−filter can be applied, different colour
schemes are selectable and projection modes and different inlays
are switchable.

3 . 2 VISUALISATION

This section briefly discusses the employed OpenGL visualisation of Spirit.
Having modularity, flexibility and in-situ control as important design princi-
ples, missing a live visualisation is not an option. Originally implemented
with the visualisation tool kit VTK [65], the visualisation was rewritten
completely in OpenGL.

From the computational side, it is independent from the core library, ex-
ecuted on a separate thread and on the graphics card if possible. While

35



S I M U L AT I O N F R A M E W O R K S P I R I T

accessing the same data as the iteration in real time can not be without
performance impact, this interaction between visualisation and iteration
was narrowed down to an irreducible minimum by only reading the same
memory block. Therefore the performance impact of the visualisation onto
the iteration speed is negligible.

FIGURE 3.5 – Visualisation with Red/Blue colormap and z−filter

The z−filter limits drawing of spins to the ones with a certain
range of z−values in this case utilising the red/blue colormap.
The bounding box of the system is activated to see the simulated
nanostripe, in which three skyrmions are easily visible.

As depicted in figure 3.4 there are various visualisation options. While
currently only able to visualise the spins and their respective magnetic
moments, effective field and force visualisation are planned. Being able
to chose between different backgrounds, projections and colour maps, one
can tune the contrast of the picture nicely to visualise structures in a fitting
way. Furthermore a z−filter is available as is shown in figures 3.5 and 3.6,
where only the spins with a certain z−value are drawn in the visualisation.

FIGURE 3.6 – Visualisation with surface interpolation

The surface interpolation does not visualise single spins as arrows,
but draws the complete plane, interpolating the value at every point
from the neighbouring spins and then applying a colour map. This
picture is taken from the web version of Spirit, depicting a 100×100
grid with a skyrmion lattice with open boundary conditions.
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Another feature is the surface interpolation. Especially useful for larger
two dimensional systems, this visualisation does not draw single spins, but
a continuous plane. This plane can be filtered by the above described z−
filter and is coloured by the chosen colour map. Surface points between
the spins are interpolated linearly between the neighbouring spins. This
results in a smooth easy-to-read visualisation of a planar system, where
structures like skyrmions or domain walls are immediately apparent.

FIGURE 3.7 – 3D skyrmion with isosurface visualisation

A 30× 30× 30 spin system with a skyrmion is used to demonstrate
the isosurface visualisation. The drawn cylinder is the z = 0 plane
of the skyrmion.

The latest addition to the different visualisation is the three dimensional
iso-surface. Depicted in figure 3.7 this visualisation option facilitates the
powerful visualisation of three dimensional objects. The inner working is
a mix between surface interpolation and the z−filter. It looks for a spe-
cific z− value of spins interpolates between nearest neighbours to find the
exact point where the z−value would be e.g. 0. This is repeated for all
spins and the interpolated points with a certain z−value are subsequently
used to triangulate a surface with a given colour map, depending on the
− and y−value.

As exemplified in figure 3.8 this is an invaluable asset to visualise, charac-
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FIGURE 3.8 – Hopfion in isosurface visualisation

A Hopfion with one rotation is visualised in a 30 × 30 × 30 spin
system. Depicting the z = 0 plane, the isosurface visualisation
especially shines in more complex situations like these, where it
can provide an intuitive understanding of the non-trivial magnetic
structure.

terise and investigate the three dimensional structure of non-trivial mag-
netic states. Especially for topologically complex objects this is essential,
since their structure might not easily be visible in a bulk arrow or surface
cut visualisation.

3 . 3 PYTHON SCRIPTING OF SIMULATIONS

While the GUI with nice visualisations is a powerful tool and very well
suited for exploratory or qualitative investigations, it is limited in terms of
repetitive quantitative measurements. This issue can be resolved by using
the Python scripting interface. The API of the core library is completely
usable in a python script, without having to recompile anything. The li-
brary is compiled once and then subsequently only this binary is accessed
by the python scripts, significantly reducing unnecessary compile time and
boosting productivity.
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Furthermore, utilising the exact same core as above, the user can first ex-
plore the system with a GUI and do some qualitative work, then the script
his quantitative experiment in python and extract hard data from there.
Adjusting the logging parameters of the core correctly, the initial state, the
final result and everything in between can be automatically written into
a configuration file, which is easily accessible with the provided GUI. By
simply importing the state of the system with the "File" menu, the user
can track progress of the system during the simulation, produce figures in
a very straightforward way and easily restart or change any point of the
simulation, where e.g. unexpected behaviour occurred.

3 . 4 CURRENT DEVELOPMENT AND VISION

While already being a valuable tool in it’s current state, Spirit is constantly
extended and improved. Some features in current development are the
addition of the MMF method in addition to the existing GNEB in order to
extend the capabilities of exploring energy landscapes not only in respect
to a predefined and sometimes very limiting guess. Furthermore the API is
currently finished to finalise the complete separation and independence of
the core simulation modules and the control flow of the GUI or scripting.
Another very interesting project is the web variant of Spirit: In order to
achieve this, the C only wrapped version of the core library was compiled
to LLVM bitcode and from there compiled into javascript with emscripten
[66]. While currently not having a complete integration for touch features,
the potential of running a simple atomistic spin dynamics simulation within
a browser and even on a mobile phone is enormous. While maybe not
suited for quantitative application, the potential to demonstrate results,
code capabilities and features can not be dismissed. Not limited to this,
features like such are also essential in scientific outreach and make the
code usable for teaching and learning. Being able to simply run it on the
fly without the need of installation or compilation, facilitates the use as a
teaching tool, enabling students to play with system parameters and gain
an intuitive understanding of the different interactions, their interplay and
the underlying physics.

Summarising, the atomistic spin dynamics simulation framework Spirit is
a comprehensive and modular code, which still retains a high performance
by separating control and simulation program flow. Changing the project’s
nature to open source, the hope for the future is, to increase the base
of active contributors and starting collaborations with people working on
similar problems in the same or neighbouring fields of physics. Being
completely modular and easily extendable, the current structure is specifi-
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cally designed to enable this process, encourage people to implement their
own ideas into the framework and therefore extend the capabilities and
usability of Spirit.
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NUMERICAL EXPERIMENTS 4

After describing the features and functionality of the simulation framework
Spirit, in this section the code’s SIB method is first checked in respect
to the time axis and then subsequently used to move a domain wall
and Skyrmion with help of an external magnetic field and spin polarised
current.

4 . 1 TIME TEST

The first step of using the code, is to prepare the code for quantitative
analysis of dynamics simulations. Until now it was only used for static
calculations like stability and energy calculations. Therefore it can be
assumed to be accurately calibrated for the different terms of the LLG
equation in effective field and energy calculations, both in absolute values
as well as in relation to each other. However, for investigating dynamic
scenarios, the time step τ of the SIB method which can be input in pi-
coseconds (see figure 3.3 on the right side) has to be tested to ensure the
code is working quantitatively correct in that regard.

In order to do this, a singular spin pointing along the −direction is
considered to be exposed to an orthogonal magnetic field along the z−axis
without damping. Simulating the system with the SIB method as described
in section 2.4, the electron spin precesses around the magnetic field as
expected according to classical electrodynamics and Lamor precession. The
frequency of this precession is called the Lamor frequency and is given by

ω = −γB , 4.1

where ω is the angular frequency, B the magnitude of the magnetic
field and γ the gyromagnetic ratio. Substituting in the free electron
gyromagnetic ratio γe and a magnetic field of B = 1T this yields

ω ≈ 1.7609 · 1011 rd
s

. 4.2
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FIGURE 4.1 – Simulated Lamor precession of a single spin

A single spin is precessing in a perpendicular magnetic field of
B = 1T fitted to a s(t) = cos(ω · t) with ω = 1.7609 · 10−4 rd

itertion

Using a time step of τ = 1fs per iteration, the SIB yields the expected
precession. The −component of the spin s is plotted in figure 4.1 and
fitted to s(t) = cos(ω · t), yielding

ω ≈ 1.7609 · 10−4 rd

itertion
= 1.7609 · 1011 rd

s
. 4.3

This reproduces the analytical result of the Lamor precision and therefore
validates the quantitative accuracy of the time step in the code.

4 . 2 EXAMPLE OF DOMAIN WALL MOTION

Before moving on to skyrmions, the somewhat simpler example of moving
a domain wall is studied. To this effect, a basic cubic lattice of 3 by
200 spins is initialised with open boundaries. Furthermore only a simple
approximation is considered in this case, resulting in a total Hamiltonian
which consists of equations 1.1, 1.2 and 1.4:

H = −μsH
NS
∑

=1

Ĥ · n̂ − K
NS
∑

=1

�

K̂ · n̂
�2 −

∑

〈j〉
Jjn̂ · n̂j , 4.4

only retaining (in this order) the terms for external magnetic field, uni-
axial anisotropy, nearest neighbour and next-nearest neighbour interaction.
The chosen parameters are displayed in table 4.1 with J1,j denoting the
nearest neighbours exchange constant and J2,j the constant for next-nearest
neighbours.
In the whole simulation, a time step of τ = 2fs and a damping of λ = 0.1
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Prmeter Vle Units

μS 1.0 μB

J1,j 10.0 meV

J2,j 6.0 meV

K 2.0 meV

nit vector direction

Ĥ (0,0,1)

K̂ (0,0,1)

TABLE 4.1 LLG Parameters for domain wall simulation

is used. To start off, the spins are initialised the following way

ŝ() =















(0,0,1) for  < 20

(1,0,0) for  = 20

(0,0,−1) for  > 20

, 4.5

with  being the −component of the spin position in atomic distances.
This yields the most basic variant of a Neel type domain wall, which is
subsequently relaxed with 104 iterations (corresponding to 20ps with the
above mentioned time step) as shown in figure 4.2

FIGURE 4.2 – Initial state and relaxed Neel type domain wall

The system is initialised according to equation 4.5 (top picture) and
then relaxed with SIB method to get the final starting point (bottom
picture) for the domain wall movement simulation.

4 . 2 . 1 Domain wall motion induced by an applied magnetic field

After the domain wall is relaxed, the system is saved and an external
magnetic field employed along the +z direction. This energetically favours
the upwards pointing spins, pushing the domain wall to the right hand side
(+ direction). While this happens, the spins undergo Lamor precession as
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described in the LLG equation 2.10 around the anisotropy and magnetic
field axis, yielding a precessing and forward moving domain wall. This is
depicted in figure 4.3



b

c

d

e

FIGURE 4.3 – Precessing steady motion of the domain wall
induced by an external magnetic field

The external magnetic field is pointing along +z. The system is
initialised at  with the above described Neel domain wall in a
field of B = 2T and between each step iterated 103 times with a
time step of 2fs from  till d. Between d and e there are a differing
5750 iterations to showcase the forward translation of the domain
wall, after one full Lamor precession rotation in comparison to the
initial state.

To investigate the forward motion of the domain wall, the same initial
domain wall is copied multiple times and simulated with different external
magnetic fields. After 5.5 · 105 iterations the domain wall positions were
evaluated and plotted against the magnetic field of the corresponding sys-
tem in figure 4.4

The resulting plot shows a linear dependence of domain wall speed to
external magnetic field. With the total iteration time of 1.1ns, one can
transfer the linear slope to a velocity depending on the external magnetic
field.

(Bext,z) = Bext,z[T] ·
43.345

1100

�



T · ps

�

, 4.6

with  being the lattice constant of the simulated simple cubic lattice.

Comparing this linear dependence to the results obtained by Mougin et al.
[10] or Glathe et al. [11], one might miss the described walker breakdown
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FIGURE 4.4 – Domain wall motion in an external magnetic field

The domain wall is initialised at  = 21 and then simulated for
different magnetic fields along +z. The position in lattice constants
after 5.5 ·105 iterations with τ = 2fs is plotted against the magnetic
field. The datapoints are fitted, yielding a slope of 43.345 ± 0.048
and an intercept of 20.98 ± 0.09

of the domain wall motion. This is due to the fact that they, additionally
employ a demagnetisation torque

Hd = 4πM
2
S









0

(Ny − N) sinθ sinφ cosφ

sinθ cosθ
�

Nz − Ny sin
2 φ − N cos2 φ

�









, 4.7

which models the demagnetisation field H
*

d within the domain wall (using
spherical coordinates), where N are the demagnetisation factors and MS

is the saturation magnetisation. In case the demagnetisation torque was
to be applied, two regimes would emerge:

• In a low field environment, the demagnetisation and damping term
dominate the movement, yielding a simple forward moving domain
wall that does not precess.

• Increasing the magnetic field to and above the walker field, the
Lamor precession term grows until it competes with the damping
and demagnetisation. While a forward motion with Lamor precession
can be observed in this case, unlike in this work, that motion is
characterised by deformations of the domain wall and an oscillatory
back-and-forth motion with a net forward effect.

An important notion is, that the measure velocity per Tesla of external
field of these two regimes differ significantly. A more in-depth discussion
of this phenomenon can be found in Mougin et al. [10] and experimental
data e.g. by Glathe et al. [11].
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However, since this work is not only concerned with domain walls, a
structure specific term like that was not implemented. Omitting this term
and the damping it provides, one expects a domain wall to exhibit Lamor
precession whilst being moved by a magnetic field with the velocity de-
pending linearly on the applied field, as was observed in the simulations.

4 . 2 . 2 Motion induced by a spin polarised current

After the simple case of movement induced by an external magnetic field,
in this section a spin polarised current will be employed as the driving
force for domain wall motion. As described in section section 4.2, the
domain wall was initialised as a Neel type wall and relaxed with the SIB
with only anisotropy and next-nearest next neighbour interaction present
(compare to equation 4.4 without the external magnetic term (H = 0)).
Time step, as well as number of iterations and all other parameters, except
the external magnetic field, are equal to the ones used in section 4.2.1
and found in table 4.1.



b

c

d

FIGURE 4.5 – Precessing movement of the domain wall pushed
by a spin polarised current

The system is started at  with the above described Neel domain
wall and then exposed to a current with j = 0.1 which is spin
polarised in the −z direction, showing propagation of the domain
wall in  direction with simultaneous Lamor precession around the
uniaxial anisotropy. The snapshots are taken 5 · 103 iterations apart
with a time step of τ = 2fs, starting at  through to d.

After relaxation the spin polarised current is applied, as described in sec-
tion 2.4.1, perpendicular to the thin stripe with spin polarisation (0,0,−1).
The resulting movement of the domain wall can be seen in figure 4.5 and
qualitatively behaves similar to the domain wall pushed by an external
magnetic field. While the wall is moving forward, it exhibits Lamor pre-
cession around the out of plane anisotropy.

Looking closer at this and comparing this to section 4.2.1 and especially
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figure 4.3, one notices two things:

• The Lamor precession is a much weaker effect, compared to the
domain wall moved by the external magnetic field.

• The spins precess clockwise here, while above they precess counter-
clockwise.

The first point is trivial, since the transition is here dominated by the spin
polarised current, which has no Lamor precession associated with it, while
the out-of-plane anisotropy only plays a minor role, causing the observed
weak precession (compare figure 4.5). However when moving the domain
wall with the external magnetic field, the spins start to precess around the
much stronger external magnetic field vector, therefore adding a Lamor
precession that grows linearly in strength as the field strength increases.
This leads to the second point: Since the anisotropy vector in the region
(+), where the domain wall is moving towards, is pointing to −z, the
Lamor precession observed while moving the domain wall is clockwise
(shown from above or from +z). However, when the precession around
the external magnetic field (pointing towards +z) dominates the effect as
shown in the previous section, then the observed Lamor precession will
inadvertently be counter-clockwise as seen in figure 4.3.
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FIGURE 4.6 – Domain wall motion induced by a spin polarised
current

The domain wall is initialised at  = 21 and then simulated for
different spin transfer torque parameters j with polarisation point-
ing towards the −z direction. The position in lattice constants after
5.5 ·104 iterations with τ = 2fs is plotted against j. The datapoints
are fitted, yielding a slope of 700.90 ± 0.93 and an intercept of
21.14 ± 0.09

Summarising the findings so far, Lamor precession around the dominating
static field vector (external or isotropic) was observed scaling with the
strength of the very same field, as expected. To take a closer look at the
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propagation speed of the domain wall, with respect to the current density
of the spin polarised current, multiple simulations were run with different
spin transfer torque parameters j. The result of these simulations are
depicted in figure 4.6.

Similarly to the observation for domain wall movement stimulated by
external magnetic field, the result here is a linear dependence of the wall’s
propagation speed in respect to the applied current density. Converting
the  position and slope of figure 4.6 into a velocity in terms of lattice
constants, this yields:

(j) = j ·
700.9

110

�



ps

�

, 4.8

with j being the spin torque parameter as described in section 2.4.1. As
in the external magnetic field induced movement, no Walker breakdown
can be observed due to the fact that the structure specific demagnetisation
term not being implemented in this structure-independent atomic spin dy-
namics simulation.

The expected linear behaviour was therefore reproduced in the experiment
and proves to be stable up to a spin torque parameter of j ≈ 0.465 for
the given system and parameters. Increasing the spin torque parameter
further invalidates the question about domain wall movement, since new
domains begin to nucleate due to the spin polarised current at that point.

4 . 3 SKYRMION MOTION INDUCED BY A SPIN POLARISED
CURRENT

After the experiments with 180◦ domain wall motion, now the dynamics of
moving a structurally more complex skyrmion via SPC are explored. The
first step towards this goal is choosing a parameter set, where skyrmions
can be stabilised easily. The parameters chosen here are based on the work
of Müller [42], adding next-nearest neighbour exchange interaction and
disregarding uniaxial anisotropy. The uniaxial anisotropy is disregarded
since a preferred axis is already given by the magnetic field and the
next-nearest neighbours are included to get a closer approximation with
the employed model. This results in a total Hamiltonian consisting of
equations 1.1, 1.4 and 1.5

H = −μsH
NS
∑

=1

Ĥ · n̂ −
∑

〈j〉
Jjn̂ · n̂j −

∑

〈j〉
Dj · r*j ·

�

n̂ × n̂j
�

, 4.9

with the corresponding parameters summarised in table 4.2.
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Prmeter Vle Units

μS 1.0 μB

H 25 T

J1,j 10.0 meV

J2,j 6.0 meV

Dj 6.0 meV

nit vector direction

Ĥ (0,0,1)

TABLE 4.2 LLG Parameters for skyrmion simulation

With these settings it should now be possible to stabilise a skyrmion as
a metastable state in a local energy minimum. To this end, the "create
skyrmion function" of the code is employed, which starts by calculating the
distance between the position r* of spin  and the center of the skyrmion
r*0 in − and y−direction:

r = |r* − r*0|,y . 4.10

Comparing this with the radius R of the skyrmion

θ = π
�

1 − r

R

�

, 4.11

yields the angle θ. The other angle needed is

ϕ = rccos

�

r*

− r*

0

R

�

+ φ 4.12

with the additional phase φ and the argument of the rccos limited to
[−1,1]. One can then set the spin  to

n* =









sin(θ) · cos(ξϕ)

sin(θ) · sin(ξϕ)

cos(θ) · d









, 4.13

where d ∈ {−1,1} is the direction up (down) of the skyrmion and ξ
the order parameter. With a radius of R = 10, order ξ = 1 and a phase
of φ = −90◦ this yields a skyrmion as depicted in figure 4.7 on the left side.

This initialisation is close to the local energy minimum, since the skyrmion
after SIB relaxation is only marginally different in profile, exhibiting the
same size and shape. The radius is approximately 10 atomic distances and
therefore for further investigations a strip of 200 · 25 atoms is simulated
with periodic boundary conditions on the y axis. If the skyrmion moves
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FIGURE 4.7 – Skyrmion initialisation

Skyrmion initialised by the code (left) and after SIB relaxation
(right). As is apparent from the near identical images, the skyrmion
initialisation is close to the local minimum.

out of the strip (e.g. on the top) it reenters the system on the bottom.
Aligning the skyrmion motion along the  axis then allows for easy visu-
alisation of the traversed distance.

Exposing this skyrmion to a spin polarised current, induces a spin torque
onto the skyrmion resulting in a linear motion. Choosing a current, po-
larised along (−1,1,0) yields a skyrmion motion nearly parallel to the
−axis. The simulation result of this motion for a spin torque parameter
of αj = 0.3 is shown in figure 4.8

After seeing the skyrmion motion in a qualitative way, now the influence of
the spin torque parameter αj is investigated quantitatively. In order to do
this, the skyrmion is initialised and relaxed without any current. Then the
system is copied, analogous to the domain wall experiments, and exposed
to spin polarised currents with different spin transfer torque parameters.
For this quantitative calculation a smaller timestep τ = 1fs is chosen for
better accuracy. The simulated time frame with n = 5.5 · 104 iterations
is therefore t = 55ps. The result of these simulations are depicted in
figure 4.9 with traversed distance plotted over utilised spin transfer torque
parameter αj.

The position of the skyrmion was defined as the spin with the smallest
z component and the travelled distance in  and y was projected onto a
single axis and subsequently plotted. As in the domain wall experiments,
here again a linear dependence of the skyrmion’s propagation speed in
respect to the spin torque parameter can be found. Converting the fitted
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FIGURE 4.8 – Skyrmion motion induced by spin polarised
current

The skyrmion is initialised as described by the skyrmion creation
function, relaxed by SIB and then exposed to a current with spin
polarisation direction (−1,1,0) and spin torque parameter αj = 0.3.
The images are taken (from top to bottom) with a timestep of
τ = 10fs and with an equal n = 500 iterations between them.

values into a velocity in terms of lattice constants, one ends up with:

(j) = j ·
507.9

55

�



ps

�

4.14

for the skyrmion motion.

In the simulated system, the skyrmion is definitely stable up to a spin
torque parameters of j = 1 with some static domain-wall-like artifacts
appearing on the − side of the sample. Above that skyrmion destabilises,
grows in size and the system overall does not stay in the ferromagnetic
state, but starts exhibiting fluctuations and nucleating structures like do-
main walls.
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FIGURE 4.9 – Skyrmion motion in respect to spin transfer
torque αj

The skyrmion is initialised at  = 21 and then simulated for different
spin transfer torque parameters with polarisation pointing towards
along (−1,1,0) direction. The distance in lattice constants after
5.5 ·104 iterations with τ = 1fs is plotted against the current density.
The datapoints are fitted, yielding a slope of 507.90± 1.24 and an
intercept of 21.63 ± 0.12

4 . 4 SKYRMIONS ON A TRACK-LIKE SAMPLE

After utilising spin polarised current to move a skyrmion in a periodic
and therefore practically infinite 2D system, now a true nano-stripe is em-
ployed. By picking open boundary conditions on every edge, the sample
is limited in size and the skyrmion can be pushed along this "track" as
depicted in figure 4.10. The employed parameters are otherwise equal to
those of section 4.3. Initialising a skyrmion in the beginning of the sample
as described above, the same simulation is executed. An interesting effect
is the interaction of the skyrmion with the open boundary on the far right
(+) side of the system. With the initial spin transfer torque parameter of
j = 0.3 the skyrmion is repelled, but still manages to be annihilated by
the boundary. With a smaller j = 0.2 this repulsion can not be overcome
and the skyrmion stays in the system. Excepting the interaction with the
right boundary, the translation of the skyrmion is linear as in section 4.3
and as expected.

52



4.4 S KY R M I O N S O N A T R A C K-L I K E S A M P L E



b

c

d

e

f

g

h

FIGURE 4.10 – Skyrmion on a track-like sample with open
boundaries

The skyrmion is initialised and stabilised in  with open boundary
conditions. Subsequently a spin transfer torque with j = 0.3 and
polarisation direction (−1,1,0) is employed like above. Images b
through to f are taken in equal intervals of 104 iterations with a
time step of τ = 10fs. As expected the skyrmion moves linearly
through the strip. In picture g one can see the skyrmion being
destroyed at the open boundary. In case of reducing the transfer
torque parameter to j = 0.2 in picture f, one ends up with image
h another 104 iterations later. One can see the repulsion of the
open boundary upon the skyrmion, which can with the lower spin
transfer torque not overcome.
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CONCLUSION 5

Starting with an introduction and a placement of the work into the cur-
rent technological challenges, the employed extended Heisenberg model
with respective effective field is described in chapter 1. In chapter 2 the
atomistic spin dynamic approach is introduced in contrast to the com-
monly employed micro magnetic model. For the simulation of skyrmions
or other magnetic states localised in a small volume, the continuous field
approximation of the micro magnetic model is questionable and therefore
the more precise atomistic approach, facilitated by modern day computing
power, is chosen. Introducing spin polarised current and the respective
effect of spin transfer torque, the chapter closes on the description of the
implementation of the method for numerical solution of the LLG equation
for magnetic spin motion.

The following chapter 3 introduces the simulation framework Spirit. The
development of the Spirit framework was one of the main objectives of
this work and has been carried out in collaboration with other develop-
ers (G. Müller and F. Rhiem) responsible for different aspects of the
code. The main contribution of this work was translating the core library
from Fortran to C++, implementing the spin transfer torque term into
the integration scheme for the stochastic LLG equation and improving and
extending the core library from its initial state onwards. Moreover, sig-
nificant contributions to debugging and testing of the code were made,
some of which are presented in chapter 4 with domain wall and skyrmion
motion.

The main goal of Spirit is providing a comprehensive simulation software
that works well across different platforms and provides easy and fast ways
of getting numerical insights into a variety of solid state problems via
atomistic spin dynamics. Spirit provides an advanced GUI with an intu-
itive in-situ control of simulation parameters and live visualisation. The
framework is written in a modular way, enabling the rapid addition of
specific features or extensions of the software to accommodate very spe-
cific physical problems. For quantitative and repetitive measurements, a
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Python scripting interface is provided. Good accessibility and portability is
offered by the web version, only requiring a browser to be installed.
This combined functional range is unparallelled in atomistic spin dynamics
and enables Spirit to also be used as an educational tool, e.g. enabling
students to gain an intuitive understanding of the extended Heisenberg
model, the different energy contributions and their respective effect onto
a given physical system.

In chapter 4 the accuracy of the time axis of the SIB is compared to
and confirmed with an analytically solvable one-spin system. Domain wall
propagation induced by external magnetic field and spin transfer torque
is demonstrated with a Neel type domain wall. The contrast to the
not-observed walker breakdown is discussed as the effect of the demag-
netisation term, which is domain wall specific and therefore not part of
this simulation.
Choosing a different parameter set, a magnetic skyrmion of Bloch type is
stabilised and subsequently exposed to a spin polarised current in a 2D
system. While retaining it’s structure and stability, it is translated linearly
with respect to the spin current density. This is done for periodic boundary
conditions and open boundaries. Furthermore the repulsion between the
edge of the sample and a skyrmion is shown.

With the functionality and capabilities of Spirit described in chapter 3
and showcased in a few examples in chapter 4, these are some of the
next questions, which can be investigated and answered with the current
version of Spirit:

• Skyrmion nucleation and annihilation at boundaries induced by STT,
investigation of the corresponding processes and comparison with
the results of calculations of the energy barries with the geodesic
nudged elastic band (GNEB) method.

• Thermodynamic stability of skyrmions at finite temperatures, lifetime
and attempt frequency of above mentioned processes.

• Confining a skyrmion in a racetrack-like strip, moving it back and
forth in a discretised fashion.

• Influences of system geometry and external factors onto Skyrmion-
Skyrmion interaction.

Extending upon the currently given simulation capabilities, the following
topics, amongst others, warrant further attention:

• Implementation of gradient STT method and investigation of Skyrmions
in thicker films.
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• Investigation of three dimensional magnetic structures like chiral bob-
bers [67] or hopfions (see figure 3.8) with respect to spin polarised
currents.

• Implementation and investigation of the effects of AC fields and
currents onto skyrmion and bobbers.

• Implementation and exploration of thermal gradient effects onto chi-
ral magnets.

Among the above mentioned research topics, the parallelisation of Spirit
is a topic of high importance. While it is currently platform independent
and features parallel calculation of multiple systems, this can be further
improved upon. A rewrite concerning utilisation of GPU features by the
core library is one important step into this direction. Furthermore large
systems could be split up into smaller, independently iterateable, sub-
systems which are regularly stitched back together, increasing the number
of independent threads dynamically with respect to the available CPU and
architecture. Coupling this with more extensive profiling and general code
optimisations, it should be possible to increase iteration speed significantly.

Increasing the efficiency, the influence of dipole-dipole interaction onto
the above described systems could be investigated and quantitatively char-
acterised with reasonable simulation times. Implementation of the DDI is
crucial in judging the accuracy of the model and employed methods and
verification, of when it is acceptable to neglect it and when it has to be
included.
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