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1. Introduction

The interrelation between charge, spin and orbital angular momentum in nanostruc-
tured systems will significantly shape future technologies [1]. When spin and orbital
degrees of freedom interact, a variety of fascinating phenomena occur. From the con-
version of spin into charge currents [2, 3, 4], as well as spin accumulations, generated
by an electric currents [5], to topological insulators [6], the coupling of spin and or-
bital moments is subject of much interest and abundant research activities [7, 8, 9].
Excitations of spin waves by means of spin-orbit torques [10, 11, 12] can be used to
achieve switching of the magnetization in ferromagnets [13] and antiferromagnets [14]
in ultrafast speeds.
Even though these advanced investigations are pushing the field forward, funda-

mental questions regarding ordinary magnetization dynamics are still debated. The
relaxation of magnetic moments, for example, has been studied for decades [15, 16,
17, 18], but still generated controversial results [19, 20, 21]. Since the ability to tune
the energy dissipation of a precessing magnet would permit the optimization of mag-
netic switching times and the propagation of spin currents, a quantum-mechanical
material-dependent description of the relaxation process from first principles is indis-
pensible
From the arguments above, one can understand that a full quantum-mechanical

investigation of dynamical effects is important to explore possible use cases of all these
phenomena. This work introduces TITAN, an efficient simulation program, made
with the purpose of investigating such intriguing effects. It uses a multi-orbital tight-
binding model as basis to build a powerful, highly parallelized tool for the exploration
of time-dependent transport and angular momentum properties in nanostructures.

1Mitglied der Helmholtz-Gemeinschaft Slide

Figure 1.1.: Logo of TITAN, representing an itinerant electron and its connection to
spin and orbital degrees of freedom.

The intend of this thesis lies in presenting the basic theoretical concepts used as
foundations of the code and to discuss the numerical aspects that are used to perform
the calculations in a optimized way. This framework is examined by means of ground
state properties for ferromagnetic bulk transtion metals, and then applied to the
calculation of the Gilbert damping, an important aspect of magnetization dynamics.
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1. Introduction

This thesis is structured as follows:
Chapter 2 sets up the theoretical framework that builds the foundation of TITAN.

The model Hamiltonian that is used to describe the electronic structure is carefully
examinated. A parametrized multi-orbital tight-binding approximation is used to
describe the crystal structure of the system, which is extended by an effective Coulomb
interaction, the spin-orbit interaction as well as interactions with external magnetic
fields. This is followed by discussions about how the ground state properties of the
system are accessed and how dynamical effects can be studied using linear response
formalism.
The third chapter will display important core components of TITAN. New imple-

mentations are highlighted, in particular, the generalization of the code that enables
the investigation of a broad set of materials. Additionally, it discusses how the code
is optimized to allow more efficient calculations.
In chapter 4, the program is evaluated in terms of quality and performance. By

calculations of electronic structure and magnetic ground state properties, the validity
of the model will be tested. The efficiency of TITAN will be investigated by means
of convergence and performance measurements.
As an application to TITAN, the fifth chapter investigates the Gilbert damping

[16], a parameter of profound influence for magnetization dynamics. Several different
methods for the description of these relaxation processes from a microscopical point-
of-view are introduced. Using TITAN, these methods are thereupon compared to
determine their similarities and differences.
In the last chapter, the work is concluded, summarizing the results and providing

a short outlook on future research perspectives.
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2. Theory
One of the most powerful and used approaches to obtain information about a system,
without the use of phenomenological parameters, is density functional theory (DFT).
Theoretically, the ground state properties of a system can be calculated from first
principles. By describing the full Hilbert space of a quantum system, insight into the
electronic and magnetic properties of materials is gained by application of quantum
mechanics while only using fundamental constants. However, computation and stor-
age costs for DFT-based methods increase drastically with the number of inequivalent
atoms, making the treatment of complex systems from ab initio very time consuming
and computationally intensive. In comparison, tight-binding methods are simplified
models that are still based on quantum mechanics and capture the essential physics
of the studied systems. In this thesis, a parametrized tight-binding model, using in-
put obtained from DFT calculations for elemental bulk materials, is used to simulate
the ground state properties of several bulk systems. The parameters for paramag-
netic elemental bulk materials are obtained from Handbook of the Band Structure of
Elemental Solid [22]. The model is extended to magnetic properties by introducing
Hubbard two-body terms, Zeeman and spin-orbit interaction.

In the ground state of a system, observables can be obtained from the Green func-
tion formalism. They are essential to describe the system under investigation and
can also be used to quantify the accuracy of the model compared to experimental
results and other available ab initio simulations. Additionally, the study of dynamical
behaviours in the system requires knowledge about the observables in their ground
state. Dynamical properties of the system are obtained by calculation of linear re-
sponse functions using the Kubo formalism [23].
Throughout this thesis atomic units are used, such that h̵ = e = me = 1

4πε0 = 1 and
energies are given in Rydberg and length in Bohr units.

2.1. Hamiltonian
The Schrödinger equation can be used to describe quantum mechanical systems in
condensed matter theory. Its time-independent version

Ĥ∣Ψ⟩ = E∣Ψ⟩ (2.1.1)

describes stationary systems whose properties remain unchanged over time, where
Ĥ is the Hamiltonian of the system, E is an eigenergy associated to the many-body
eigenstate ∣Ψ⟩.
For a complete description of the electrons in a crystal, the Hamiltonian includes

the kinetic energy T̂, the interaction between electrons Ĥe-e, the interaction between
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2. Theory

ions Ĥi-i as well as the interaction between electrons and ions Ĥe-i and with external
fields Ĥext:

Ĥ = T̂ + Ĥe-e + Ĥi-i + Ĥe-i + Ĥext . (2.1.2)
In a crystal, the motion of ions is much slower than those of the electrons due

to their higher mass. As such, one considers them to be frozen and the degrees of
freedom for electrons and ions can be separated by means of the Born-Oppenheimer
approximation [24]. For the description of the electrons in the system, the ion-ion
interaction can be neglected as it only leads to a shift of the total energy. The electron-
ion interaction is treated as a positive charged background in which the electrons are
moving around.
In principle, the description of the many-body problem in condensed matter needs

to be solved using the relativistic Dirac equation. As an approximation, one can treat
relativistic effects by adding the spin-orbit interaction arising from the approxima-
tion of the Dirac equation to low velocities to the Hamiltonian in the Schrödinger
equation. This spin-orbit interaction term is of fundamental importance to describe
certain properties of the system, such as magnetic anisotropies, and phenomena such
as magnetoresistances, the anomalous Hall effect and the spin Hall effect [25]. These
effects offer a novel and promising way of reading and writing information in spintronic
devices [9].
Taking all this into account, the full model Hamiltonian that will be used here, can

be summarized as
Ĥ = ĤCrystal + Ĥe-e + Ĥext + ĤSO . (2.1.3)

Each of these terms will be explored in one of the following sections.

2.1.1. Crystal Hamiltonian
The Coulomb interaction of electrons at position r⃗ with a positively-charged periodic
potential created by the ions at position R⃗I + r⃗i, where R⃗I describes the center of an
unit cell and r⃗i the position of an atomic site inside this unit cell, is given by

Ĥe-i(r⃗) =∑
Ii

Ĥion, i(r⃗ − R⃗I − r⃗i) =∑
Ii

Zi

∣r⃗ − R⃗I − r⃗i∣
. (2.1.4)

The interaction between electrons will be treated separately in the next section. The
crystal potential is written as a superposition of atomic ion potentials with charges
Zi. A system without any further interactions can therefore be written as

ĤCrystal =
p⃗2

2
+ Ĥe-i(r⃗) , (2.1.5)

where the first term, containing the linear momentum p⃗ of an electron, describes its
kinetic energy.
In second quantization, this model can be written as

ĤCrystal =∑
IJ

∑
ij
∑
µν
∑
σ

tµν(R⃗I + r⃗i, R⃗J + r⃗j)c†
IiµσcJjνσ , (2.1.6)

4



2.1. Hamiltonian

where an orthogonal basis of spin-dependent localized atomic orbitals has been used.
Here, a system of periodic unit cells is assumed. The electron spin, σ, is given with
respect to the quantization axis. The operator c†

Iiµσ (cIiµσ) creates (annihilates) an
electron at lattice position R⃗I + r⃗i with orbital moment µ and spin σ. These operators
fulfill the commutation relations

{c†
Iiµσ, c

†
Jjνσ′} = 0 ,

{cIiµσ, cJjνσ′} = 0 , and
{c†
Iiµσ, cJjνσ′} = δIJδijδµνδσσ′ .

(2.1.7)

The parameters tµν(R⃗I + r⃗i, R⃗J + r⃗j) are the matrix elements of Equation 2.1.5 in this
basis,

tµν(R⃗I+r⃗i, R⃗J+r⃗j) = ∫ dr⃗ φ∗µ(r⃗−R⃗I−r⃗i)(
p⃗2

2
+∑
Kk

Ĥion, k(∣r⃗ − R⃗K − r⃗k∣))φν(r⃗−R⃗J−r⃗j) ,

(2.1.8)
where φµ(r⃗ − R⃗I − r⃗i) is the atomic wavefunction for orbital µ at atomic site R⃗I + r⃗i.
They are usually called hopping integrals as they are related to the probability of an
electron moving from one site to another [26].
For periodic systems, the hopping integrals depend solely on the relative distance

between the unit cells. Bloch’s theorem states that in systems with a perfectly periodic
potential the wavefunctions can be written as

Ψn,k⃗(r⃗) = u(r⃗)e
ik⃗⋅r⃗ (2.1.9)

where u(r⃗) is a function with the same periodicity as the potential. The wave-like
vector k⃗ is confined to the first Brillouin Zone. Therefore, it is practical to transform
the hopping integrals into reciprocal space where one has an integral over a compact
region in contrast to an infinite sum. The transformation is achieved by rewriting the
creation and annihilation operators in terms of their Fourier transformed counterparts.

cIiµσ = ∫
BZ

dk⃗ eik⃗⋅R⃗I ck⃗iµσ

c†
Iiµσ = ∫

BZ

dk⃗ e−ik⃗⋅R⃗I ck⃗iµσ ,
(2.1.10)

where the operator c†
k⃗iµσ

(ck⃗iµσ) is the creation (annihilation) operator in reciprocal
space that fullfills the commutation relations

{c†
p⃗iµσ, c

†
q⃗′jνσ′} = 0 ,

{cp⃗iµσ, cq⃗′jνσ′} = 0 , and
{c†
p⃗iµσ, cq⃗jνσ′} = δ(p⃗ − q⃗)δ(r⃗i − r⃗j)δµνδσσ′ .

(2.1.11)
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2. Theory

With this the Hamiltonian can be written as

ĤCrystal =∑
ij
∑
µν
∑
σ
∫
BZ

dk⃗ tµνij (k⃗)c†
k⃗iµσ

ck⃗jνσ (2.1.12)

with
tµνij (k⃗) =∑

J

tµν(r⃗i, R⃗J + r⃗j)eik⃗⋅R⃗J . (2.1.13)

2.1.2. Tight-binding approximation
In the tight-binding approximation, the wavefunctions are described by a set of lo-
calized atomic-like functions that are limited to a small set of orbitals close to the
Fermi level. This is in contrast to DFT calculations, where one usually tries to de-
scribe the full Hilbert space of an effectie single particle system and thus has a large
amount of basis functions. The tight-binding model is best suited to systems with
well-localized wavefunctions that do not overlap too much with neighboring atoms.
There exist several tight-binding models that differ in the amount of approximations
made. However, they all have in common that they use a minimal local basis of
atomic orbitals. Throughout this thesis, nine orbitals, µ, per atomic site will be used,
i.e. real spherical harmonics with orbital moments s, px, py, pz, dxy, dyz, dzx, dx2−y2

and d3z2−r2 , Figure 2.1 shows their visual representation.

Figure 2.1.: Visual representation of real spherical harmonics for the orbitals: s (top),
px, pz, py (middle) and dxy, dzx, d3z2−r2 , dyz, dx2−y2 (bottom). Image
obtained from Ref. [27].

The hopping integrals, introduced in the previous section, can be grouped into three
different types.

• On-site terms are obtained when both wavefunctions are at the same atomic
site:

tµν(r⃗i, r⃗i) = ∫ dr⃗ φ∗µ(r⃗ − r⃗i)
⎛
⎝
p⃗2

2
+∑

j

Ĥion, j(∣r⃗ − r⃗j ∣)
⎞
⎠
φν(r⃗ − r⃗i) (2.1.14)

6



2.1. Hamiltonian

The vector R⃗I has been omitted for simplicity.

• Two-center integrals are obtained for wavefunctions with i ≠ j and the ion
potential located on the same site as one of the wavefunctions:

tµν(r⃗i, r⃗j) = ∫ dr⃗ φ∗µ(r⃗ − r⃗i)(
p⃗2

2
+ Ĥion, i(∣r⃗ − r⃗i∣) + Ĥion, j(∣r⃗ − r⃗j ∣))φν(r⃗ − r⃗j)

(2.1.15)

• Three-center integrals are obtained for wavefunctions at different atomic sites
and the ion potential at a third atomic site:

tµν(r⃗i, r⃗j) = ∫ dr⃗ φ∗µ(r⃗ − r⃗i)
⎛
⎝
p⃗2

2
+ ∑
k≠i,k≠j

Ĥion, k(∣r⃗ − r⃗k∣)
⎞
⎠
φν(r⃗ − r⃗j) (2.1.16)

Since the wavefunctions are orthogonal and the Coulomb interaction decays as 1/∣r⃗∣,
the three-center integrals are much smaller than the on-site and two-center integrals.
From Equation 2.1.4, it is obvious that the hopping integrals will also become

smaller with increasing distance ∣r⃗i − r⃗j ∣. Therefore, in tight-binding approximations
only the first few nearest neighbors are taken into account and hopping integrals for
distances larger than a certain cutoff are neglected [28].

Slater-Koster parametrization

Instead of explicitly calculating the hopping integrals, they are parametrized and can
be fitted to known results of a system, e.g. from more sophisticated first principles
calculations. At first glance, for a nine orbital basis set this would mean fitting 81
parameters for each pair of atoms. Slater and Koster [29] introduced a method on
how they can be obtained from known band structures and how to significantly reduce
the amount of independent parameters. This was done by first removing the three-
center integrals of the problem, which are significantly smaller than the on-site and
two-center integrals and using the symmetries of the system, they arrive at a form
which has just enough arbitrary constants to fit them to the high symmetry points of
the band structure obtained with a given ab initio calculation.
Assuming a quantization axis that coincides with the vector r⃗i − r⃗j between two

atomic sites, one can write an atomic orbital in terms of orbital functions with respect
to that axis. For example, one could write an atomic d orbital as linear combination
of dσ, dπ and dδ where σ, π and δ describe different types of covalent bonding with
respect to the quantization axis. A σ bond has a single overlapping lobe, a π bond two
overlapping lobes and a δ bond four overlapping lobes (see Figure 2.2). In the case
of p orbitals, given the quantization axis is along the z-axis, this means that pz—pz
has a σ bond, py—py and px—px have π bonds. As the wavefunctions for different
angular momenta along the quantization axis are orthogonal, in Equation 2.1.15 only
those integrals with covalent bonds will be non-zero. Only ten two-center integrals

7



2. Theory

Figure 2.2.: This shows various s,p and d orbitals joined along a bond. Radial sym-
metry along the bond axis defines the type of bond as σ, π or δ.

remain: (ssσ), (ppσ), (ppπ), (ddσ), (ddπ), (ddδ), (spσ), (sdσ), (pdσ), (pdπ). The
notation has to be read in the following way:

(spσ) = ∫ dr⃗ φ∗sσ(r⃗ − r⃗i)(
p⃗2

2
+ Ĥion, i(∣r⃗ − r⃗i∣) + Ĥion, j(∣r⃗ − r⃗j ∣))φpσ(r⃗ − r⃗j) (2.1.17)

Rotating back to the global cartesian coordinate system yields a general formula
for the hopping matrix elements. As an example, the hopping between pz and dxy
orbitals is given by

tpzdxy = lmn (
√

3(pdσ) − 2(pdπ)) . (2.1.18)
Here, l,m and n denote the elements of the directional cosine of r⃗i − r⃗j . A full table
containing all the elements for the hopping matrices is given in the publication of
Slater and Koster [29].

Mixing Scheme

Although the method proposed by Slater and Koster minimizes the amount of tight-
binding parameters, they still increase quadratically with the amount of inequivalent
atoms in the unit cell. Parameter sets for elemental bulk systems are smaller, easier
and most importantly more available in the literature [22]. It is significantly harder to
find parameters for compound materials with two or more inequivalent atoms in the
unit cell. Here, an approximation for hopping between inequivalent atoms is proposed
based on just elemental parameter sets. This basically consists in taking the geometric
average of the hopping parameter for the two participating atoms. As an example,
the averaged (ssσ) parameter for hopping between atom of element A and an atom
of element B is calculated as the geometric average

(ssσ) = sign [(ssσ)A + (ssσ)B] ⋅
√

∣(ssσ)A∣ ⋅ ∣(ssσ)B ∣ (2.1.19)

8



2.1. Hamiltonian

which is preferable to the arithmetic average that could result in a vanishing hopping
term.

Andersen Scaling law

When computing structures for which the distance between atomic sites differs when
compared to the original distances used for the calculation of the Slater-Koster pa-
rameters, the two-center integrals in Equation 2.1.15 and therefore the corresponding
parameters will change. Following Andersen et al. [30], the distance dependence of
Slater-Koster parameters for each pair of atomic sites can be written as

(l, l′,m) = Cll′md−(l+l
′+1) (2.1.20)

where d is the distance between the pair of atomic sites and Cll′m is a material de-
pendent constant which is independent of the volume. The indices l, l′ describe again
the orbital quantum number and m the type of bond (σ,π,δ). The new parameters
can be obtained as

(l, l′,m) = Cll′md−(l+l
′+1) =

⎡⎢⎢⎢⎢⎣

(l, l′,m)0

d
−(l+l′+1)
0

⎤⎥⎥⎥⎥⎦
d−(l+l

′+1) (2.1.21)

where (l, l′,m)0 is the original Slater-Koster parameter obtained for atomic distance
d0 and (l, l′,m) is the scaled parameter for the new atomic distance. One can now
identify an orbital dependent scaling factor κ as

κll′ = ( d
d0

)
−(l+l′+1)

. (2.1.22)

Shore and Papaconstantopoulos [31] showed that for lattice constant variations of up
to 3% this kind of scaling is in very good agreement with first principles augmented
plane-wave calculations.

2.1.3. Coulomb interaction
The Coulomb interaction is a two particle operator, correlating all electrons of the
system. In second quantization it can be written as

Ĥe-e =
1
2 ∑αβγδ

Uαβδγc
†
αc

†
βcγcδ (2.1.23)

where the matrix elements Uαβδγ are given as

Uαβδγ = ∫ dr⃗∫ dr⃗′φ∗α(r⃗)φ∗β(r⃗
′) 1
∣r⃗ − r⃗′∣

φδ(r⃗′)φγ(r⃗) . (2.1.24)

The strength of this interaction depends on the relative distance, r⃗ − r⃗′, between the
pair of electrons. Thus, the strongest interactions are those between electrons on the

9



2. Theory

same atomic site. In the Hubbard model, one considers only the on-site interactions,
neglecting the interaction of electrons on different atomic sites. Hubbard estimates
that for 3d-transistion metals the strength of the interaction between electrons on
next nearest neighbors is already an order of magnitude smaller than for electrons on
the same site [32]. Additionally, for 3d-transistion metals, the d-orbitals are strongly
localized and the s and p orbitals are strongly delocalized. It is thus a reasonable
approximation to only consider interactions between electrons in the d-orbitals. An-
other reasonable approximation is parametrizing the matrix elements of the Coulomb
interaction as U iαβδγ = U iδαγδβδ as has been done implicitly by Löwde and Windsor in
their study of the spin dynamics of nickel [33]. Using these, the contribution becomes

Ĥe-e =
1
2∑i
∑
µν
∑
σσ′

U ic†
iµσc

†
iνσ′ciµσ′ciνσ . (2.1.25)

The many-body problem is not exactly solvable, since the properties of each elec-
tron depend on all other electrons in the system. During the 1950s, it was shown
that it is possible to describe the interaction of real particles through non-interacting
quasiparticles moving in an effective field caused by the surrounding particles. When
a real particle moves through the system it will repel its neighbors, thus dragging a
cloud of electron holes with it. This cloud will screen the particle, weakening its inter-
action with other particles. These complex many-body interactions are substituted
by an average field created by the other particles in the Hartree-Fock approximation,
reducing the two-body operator to the one-body operator

c†
αc

†
βcγcζ → ⟨c†

αcζ⟩c
†
βcγ + ⟨c†

βcγ⟩c
†
αcζ − ⟨c†

αcγ⟩c
†
βcζ − ⟨c†

βcζ⟩c
†
αcγ . (2.1.26)

In this approximation, the Coulomb interaction given in Equation 2.1.25 can be writ-
ten as

Ĥe-e =∑
i
∑
σσ′
∑
µν

U i (⟨c†
iµσciνσ⟩c

†
iνσ′ciµσ′ − ⟨c†

iµσciµσ′⟩c
†
iνσ′ciνσ) (2.1.27)

Reordering of the indices results in

Ĥe-e =∑
i
∑
γζ

U i (∑
σ′

[∑
σ

⟨c†
iζσciγσ⟩ − n

i
σ′δγζ] c

†
iγσ′ciζσ′ −m

+
i c

†
iγ↓ciζ↑δγζ −m

−
i c

†
iγ↑ciζ↓δγζ)

(2.1.28)
where niσ = ∑µ⟨c

†
iµσciµσ⟩ is the electronic occupation of site i with spin σ, and m+ is

the circular component of the magnetization, related to the expectation value of the
spin raising operator Ŝ+ as

m+
i = 2⟨S+i ⟩ = 2∑

µ

⟨c†
iµ↑ciµ↓⟩ (2.1.29)

with S+ = Sx + iSy in cartesian coordinates. It is convenient to rewrite this equation
in term of charge and magnetization densities as

Ĥe-e =∑
ij
∑
γζ

∑
σσ′

W σσ′

ij,γζc
†
iγσciζσ′ (2.1.30)
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2.1. Hamiltonian

with

W σσ′

ij,γζ =
U i

2
δij([2∑

σ′′
⟨c†
iζσ′′ciγσ′′⟩ − n

iδγζ ∓mi
zδγζ] δσσ′

−m+
i δσ↓δσ′↑δγζ −m−

i δσ↑δσ′↓δγζ)
(2.1.31)

where the sign − (+) is taken for σ =↑ (↓).
The hopping parameters, described in the previous section, are obtained by fitting

band structures of DFT calculations. Therefore, the Coulomb interaction will already
be imprinted into these parameters. However, a change to the system can change its
ground state and will subsequently change the Coulomb contribution from the value
that is imprinted on the hopping parameters. This can be accounted for by self-
consistent calculations of the spin and charge densities (see section 3.5).

2.1.4. Zeeman interaction
An external magnetic field, B⃗, can be used to not only alter magnetic states, but in
the presence of spin-orbit interaction also to manipulate currents through the magne-
toresistance and Hall effects [25]. It couples to both spin, S⃗, and orbital, L⃗, degrees
of freedom as

ĤZS =∑
iµ
∑
σ1σ2

µBgS(S⃗σ1σ2 ⋅ B⃗)c†
iµσ1

ciµσ2

ĤZL =∑
iσ
∑
µν

µBgL(L⃗µν ⋅ B⃗)c†
iµσciνσ

(2.1.32)

where µB is the Bohr magneton, gS and gL are the Landé factors for spin and orbital
angular momentum, respectively.

2.1.5. Spin-orbit interaction
The spin-orbit interaction is a relativistic correction to the non-relativistic Schrödinger
equation, obtained from the relativstic Dirac equation in the low velocity limit, cou-
pling spin and orbital degrees of freedom

ĤSO =∑
i
∑
µν
∑
σ1σ2

λiS⃗σ1σ2 ⋅ L⃗µνc
†
iµσ1

ciνσ2 . (2.1.33)

Here, the spin-orbit coupling parameters λi can be obtained from first principles
calculations [34] by taking the expectation value of

ξ(r⃗) = ⟨n, l∣ 1
2m2c2

1
r

dV
dr

∣n, l⟩ (2.1.34)

where λi,n,l = ⟨i, n, l∣ξ(r⃗)∣i, n, l⟩ is only taken for the d orbitals (l = 2) in the so-far
investigated systems within this thesis. The spin-orbit coupling of the remaining
orbitals is neglected.

11



2. Theory

One effect, that arises due to the spin-orbit interaction is the magnetic anisotropy.
Under influence of an external magnetic field, the spin moments will try to re-orient
themselves towards the field. But, the orbital moments are fixed in their orientation
as they are strongly coupled to the crystal lattice and will resist attempts to re-orient
towards the field. As the spin-orbit interaction connects their degrees of freedom, there
will be a resistance to re-orient the spin moments. The energy needed to overcome
this barrier is called the magnetic anisotropy energy (MAE) and depends on the
orientation of the field with respect to the orbital moments. Certain orientation
will minimize the MAE and are usually called easy axes, whereas orientiations that
maximize the MAE are called hard axes.
Other effects caused by spin-orbit interaction are the spin Hall and inverse spin

Hall effect, which arises due to coupling of charge and spin currents of the system.
The spin Hall effect describes the accumulation of opposing spin moments at opposing
surfaces of the system due to an applied current. The manipulation of charge currents
through magnetic fields is described by the inverse spin Hall effect.
There are more effects caused by the spin-orbit interaction, such as dissipative

effects described in chapter 5.

2.2. Ground state properties
Observables are measurable quantities of a system. They can be used to compare the
model described in the previous section with experimental results and other, more
elaborate theoretical models which makes it possible to quantify the accuracy of the
model.
These observables can be obtained by making use of mathematical objects called

Green functions. In general, Green functions can be defined as solutions of inhomo-
geneous differential equations of the type

(z −L(r⃗))G(r⃗, r⃗′, z) = δ(r⃗ − r⃗′) . (2.2.1)

Therefore, for the Schrödinger equation, the Green function can be written in matrix
notation as

G(E) = (E − Ĥ)−1 (2.2.2)
In the second quantization formalism, the Green function can be written as

Gαβ(t, t′) = ⟨T cα(t)c†
β(t

′)⟩ (2.2.3)

with T being the time-ordering operator. For a time-independent Hamiltonian the
Green function only depends on the time difference τ = t − t′

Gαβ(τ) = ⟨T cα(τ)c†
β(0)⟩ . (2.2.4)

Thus one can define the retarded and advanced Green functions as

Grαβ(t) = −iΘ(t)⟨{cα(t), c†
β}⟩

Gaαβ(t) = iΘ(−t)⟨{c†
α(t), cβ}⟩

(2.2.5)
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2.2. Ground state properties

which play an important role in the calculation of observables. In the frequency
domain, they can be written in matrix notation as [35]

Gr/a(E) = lim
η→0+

(E − Ĥ ± iη)−1 (2.2.6)

where the positive (negative) sign is used for the retarded (advanced) Green func-
tion. The parameter η is neccessary for the function to be integrable. This artificial
broadening will later be used to mimic disorder of the system through temperature.

The spectral representation of the retarded (advanced) Green function is given as

Gr/a(E) = lim
η→0+

∑
n

∣n⟩⟨n∣
E − εn ± iη

, (2.2.7)

where ∣n⟩ are the eigenstates of the Hamiltonian Ĥ. The expectation value of an
observable in the ground state is given as

⟨Â⟩ = − 1
π

Im
∞

∫
−∞

dEfF (E)Tr [Gr(E)Â] (2.2.8)

where fF is the Fermi-Dirac distribution, which at zero temperature is the Heaviside
step function Θ(εF −E).

2.2.1. Band structure
From the band structure one can obtain insight about the available energy states,
εk⃗µσ, of an electronic system in the form of continuous bands in reciprocal space.
At zero temperature, all states with energy smaller than the Fermi level, εF , are
occupied. The band energies are obtained by calculating the eigenvalue problem for
the k⃗-dependent Hamiltonian.

Ĥ(k⃗)∣φµσ(k⃗)⟩ = εk⃗µσ ∣φµσ(k⃗)⟩ . (2.2.9)

When a band crosses the Fermi level, it means that there are available states with
very small energy above the ground state. Therefore, it is easy to accelerate and
transport the electrons, as is in the case of metals. When there are no partially filled
bands and the gap between the lowest band above and the highest band below the
Fermi level is large, the system is insulating. For cases where there is no crossing of
the Fermi level but the band gap is so small that it allows thermal excitations, the
system is called a semiconductor.

2.2.2. Density of states
The density of states is a measure for the amount of electronic states present for
a given energy. One can define an energy dependent operator by summing over all
states with the given energy,

D̂(E) =∑
n

∣n⟩δ(E − εn)⟨n∣ . (2.2.10)
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2. Theory

The local density of states is then given as the trace over spin and orbital space of
this operator,

D(E) = TrD̂(E) . (2.2.11)

The total electron occupation is obtained by integrating the density of states weighted
by the Fermi-Dirac distribution fF .

N =
∞

∫
−∞

dEfF(E)D(E) (2.2.12)

Using Dirac’s identity,

δ(E − εn) = −
1
π

lim
η→0+

Im 1
E − εn + iη

(2.2.13)

the density of states operator becomes

D̂(E) = − 1
π

lim
η→0+

Im∑
n

∣n⟩⟨n∣
E − εn + iη

. (2.2.14)

This can be written in terms of Green functions by identifying its spectral represen-
tation given by Equation 2.2.7 as

D̂(E) = − 1
π

lim
η→0+

ImĜr(E + iη) . (2.2.15)

As a generalization, the local density of states can be obtained by taking the site-
dependent Green function Gii

D̂i(E) = − 1
π

lim
η→0+

ImĜr
ii(E + iη) (2.2.16)

which besides giving information on the local electronic structure, is useful for example
to understand charge or spin accumulations due to the spin Hall effect.

2.2.3. Magnetization and Stoner criterion
The spin magnetic moment for an atomic site is defined as the expectation value of
the spin operator. The magnetic moments m⃗ as well as the charge density n can be
obtained from the Green function as

(ni
m⃗i

) = ⟨( ρi2S⃗i
)⟩ = − 1

π
lim
η→0+

Im
εF

∫
−∞

dE ∫
BZ

dk⃗Tr [(σ0
σ⃗
) Ĝii(E + iη, k⃗)] (2.2.17)

where σ0 is the 2 × 2 identity matrix and σ⃗ are the Pauli matrices

σ0 = (1 0
0 1) , σx = (0 1

1 0) , σy = (0 −i
i 0 ) , σz = (1 0

0 −1) . (2.2.18)
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2.3. Dynamical properties

In 1938, Stoner [36] derived a simple criterion for bulk systems to determine whether
a material has a paramagnetic unstable ground state or not. In the Hubbard model,
this Stoner criterion is given by

D(εF )U > 1 (2.2.19)

where U is as given in Equation 2.1.25 and D(εF ) the local density of states at the
Fermi level.

2.3. Dynamical properties
There exist countless situations where one is interested in how an electronic system
responds to external time-dependent perturbations. Especially the case of small per-
turbations, such as external electromagnetic fields that usually have energies much
smaller than the energy difference between two bands, is used to experimentally probe
a system without changing its state. A counter example to this are high fluence lasers
which have much higher energies than can cause non-linear excitations, and effects
beyond the adiabatic regime, such as ultrafast demagnetization. The time-evolution
of observables for small perturbations are obtained through linear response functions
[23].

2.3.1. Linear response formalism
For a system described by the time-independent Hamiltonian Ĥ, which is acted upon
by an external field f(r⃗, t) that couples to a physical quantity described by the oper-
ator B̂, the Hamiltonian can be written as

Ĥf(t) = Ĥ + ∫ dr⃗ B̂(r⃗, t)f(r⃗, t) (2.3.1)

At some time t0 the external field is turned on. Before that, the system is at the
equilibrium ground state ∣ψ0⟩

Ĥ∣ψ0⟩ = E0∣ψ0⟩ . (2.3.2)

After turning on the field, the time evolution of the system is determined by the
time-dependent Schrödinger equation

i ∂
∂t

∣ψ(t)⟩ = Ĥf(t)∣ψ(t)⟩ (2.3.3)

with the eigenstates of the system evolving as

∣ψ(t)⟩ = Û(t, t0)∣ψ0⟩ . (2.3.4)

as given by the time evolution operator

Û(t, t′) = exp
⎛
⎜
⎝
−i

t

∫
t′

dτ Ĥf(τ)
⎞
⎟
⎠

(2.3.5)
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2. Theory

which describes the change of the eigenstates from time t′ to t. It can be split into
the time-independent part of the Hamiltonian

Û0(t, t′) = e−iĤ(t−t′) (2.3.6)

and the time-dependent part which expanded up to first order in the perturbation
field can be written as

Ûf(t, t′) ≈ 1̂ − i
t

∫
t′

dτ ∫ dr⃗ B̂(r⃗, τ − t′)f(r⃗, τ) (2.3.7)

With this, the change in the expectation value due to the time-dependent field is
given by

δ⟨A(r⃗, t)⟩ = ⟨Â(r⃗, t)⟩ − ⟨Â(r⃗)⟩0 = −i
t

∫
t0

dt′ ∫ dr⃗′ ⟨[Â(r⃗, t), B̂(r⃗′, t′)]⟩0f(r⃗′, t′) (2.3.8)

where ⟨...⟩0 is the equilibrium expecation value. Using the time-independence and
translational symmetry of the unperturbed Hamiltonian, one can write

δ⟨Â(r⃗, t)⟩ = −i
t

∫
t0

dt′ ∫ dr⃗′ ⟨[Â(r⃗ − r⃗′, t − t′), B̂]⟩0f(r⃗′, t′) (2.3.9)

Here, one can define the general response of an observable Â induced by a perturbation
which couples to the observable B̂ as

χÂB̂(r⃗, t) = ⟨⟨Â(r⃗, t), B̂⟩⟩ = −iΘ(t)⟨[Â(r⃗, t), B̂]⟩0 . (2.3.10)

Using this, the change in the expectation value of an observable can be written as

δ⟨A(r⃗, t)⟩ = ∫ dt′ ∫ dr⃗′ χÂB̂(r⃗ − r⃗′, t − t′)f(r⃗′, t′) . (2.3.11)

Taking the Fourier transform, this equation takes on a linear form

δ⟨A(q⃗, ω)⟩ = χÂB̂(q⃗, ω)f(q⃗, ω) (2.3.12)

which shows that, in linear response, there is no mixing between frequencies or mo-
menta. In this thesis, only uniform fields will be considered, i.e., f(q⃗ = 0, ω).

Equation 2.3.10 describes the after effect of turning on a perturbation, it is usually
called the retarded response function. The causality is ensured by use of the Heaviside
step function Θ(t).
One can write the response function in second quantization as

χÂB̂(t) = ∑
αβγδ

Aαβ(t)χαβγδ(t)Bγδ (2.3.13)
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2.3. Dynamical properties

where the simplified notation α = {i, I, µ, σ1} was used. χαβγδ(t) is the general func-
tion that can be used to build the response of a given operator to any type of field
and is given by

χαβγδ(t) = −iΘ(t)⟨[c†
α(t)cβ(t), c†

γcδ]⟩ . (2.3.14)
This general response has the advantage that, once calculated, can be used for a
multitude of different operator responses, such as spin–spin or spin–orbital momentum
responses.

2.3.2. Mean field approximation
The calculation of the response function for the full Hamiltonian, including the two-
body Coulomb interaction, is not possible. Starting from the single-particle picture
with the Coulomb interaction in the Hartree-Fock approximation, it is possible to
write the response function in terms of single-particle non-interacting Green functions.
Using Wick’s theorem [37] on Equation 2.3.14, one obtains

χαβγδ(t) = −iΘ(t) [⟨c†
α(t)cδ⟩⟨cβ(t)c†

γ⟩ − ⟨c†
γcβ(t)⟩⟨cδc†

α(t)⟩] (2.3.15)

Reordering of the terms results in

χαβγδ(t) = −iΘ(t) [⟨c†
α(t)cδ⟩⟨{cβ(t), c†

γ}⟩ − ⟨c†
γcβ(t)⟩⟨{c†

α(t), cδ}⟩] (2.3.16)

where one can identify the retarded and advanced Green functions (see Equation 2.2.5)

χαβγδ(t) = Grβγ(t)⟨c
†
α(t)cδ⟩ −Gaαδ(t)⟨c

†
γcβ(t)⟩ . (2.3.17)

The remaining expectation values can be written in terms of the retarded and ad-
vanced Green function [38] as

⟨c†
α(t)cδ⟩ = −

i
2π ∫

dω′ fF(ω)eiω′t[Grδα(ω
′) −Gaδα(ω

′)]

⟨c†
γcβ(t)⟩ =

i
2π ∫

dω′ fF(ω)e−iω′t[Grβγ(ω
′) −Gaβγ(ω

′)]
(2.3.18)

The Fourier transform of the response function is then given as

χαβγδ(ω) =
i

2π ∫
dt ∫ dω′ fF(ω′)Grβγ(t)e

i(ω+ω′)t[Gaδα(ω
′) −Grδα(ω

′)]

−Gaαδ(t)e
i(ω−ω′)t[Grβγ(ω

′) −Gaβγ(ω
′)] .

= i
2π ∫

dω′ fF(ω′)Grβγ(ω + ω
′)[Grδα(ω

′) −Gaδα(ω
′)]

+Gaαδ(ω
′ − ω)[Grβγ(ω

′) −Gaβγ(ω
′)]

(2.3.19)

which using the Fermi-Dirac distribution for T = 0 K can be written as

χαβγδ(ω) =
i

2π

εF

∫
−∞

dω′ [Grβγ(ω + ω
′)Grδα(ω

′) −Gaαδ(ω
′)Gaβγ(ω

′ + ω)]

− i

2π

εF

∫
εF−ω

dω′Gaαδ(ω
′)[Grβγ(ω + ω

′) −Gaβγ(ω
′ + ω)] .

(2.3.20)
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With the relation Gaαβ(ω) = [Grβα(ω)]
∗ the integrals can be written as

χαβγδ(ω) =
i

2π

εF

∫
−∞

dω′ (Grβγ(ω + ω
′)Grδα(ω

′) − [Grδα(ω
′)Grγβ(ω

′ + ω)]∗)

− i

2π

εF

∫
εF−ω

dω′ [Grδα(ω
′)]∗(Grβγ(ω + ω

′) − [Grγβ(ω
′ + ω)]∗)

(2.3.21)

For extended systems, one can Fourier transform the unit cell index I to reciprocal
space to obtain

χαβγδ(ω, q⃗) =
i

2π ∫
BZ

dk⃗

εF

∫
−∞

dω′ (Grβγ(ω + ω
′, q⃗ + k⃗)Grδα(ω

′, k⃗)

− [Grδα(ω
′, k⃗)Grγβ(ω

′ + ω, q⃗ + k⃗)]∗)

− i
2π ∫

BZ

dk⃗

εF

∫
εF−ω

dω′ [Grδα(ω
′, k⃗)]∗(Grβγ(ω + ω

′, q⃗ + k⃗)

− [Grγβ(ω
′ + ω, q⃗ + k⃗)]∗)

(2.3.22)

Thus, the response function within the mean-field approximation is given by a
product of two single-particle retarded Green functions.

2.3.3. Random phase approximation
The mean-field response describes the response of each electron as an independent
particle moving in an average field generated by all other electrons. Even though the
electrons feel the potential generated by the others, there is no correlation between
the electrons in the system. It describes only the one-electron dynamics, where there
are only electron-hole excitations (spin-flip).
Most physical systems also have long-lived collective excitations that do not change

the number of particles, such as spin waves [39], which are much lower in energy than
single particle excitations, such as spin flips [40]. To describe such collective modes
the particles must be correlated, since they are not captured by a mean-field single
particle picture.
One of the best known approximation to include correlations is the random phase

approximation (RPA) [41]. The correlations due to the Coulomb interaction are added
as a self-energy term to the mean-field response by use of the Dyson equation [42]

χ = χ0 + χ0Uχ (2.3.23)

where χ0 is the mean-field response function, χ the interacting response function in
RPA and U is as given in Equation 2.1.25. The mean-field as well as the RPA response
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2.3. Dynamical properties

function, as well as the Coulomb interaction are given as matrices in site, spin and
orbital spaces. Care has to be taken for the repulsive Coulomb interaction, as the
matrix U is only non-zero for the d-orbital block.
The RPA response function is calculated by first setting up the tight-binding Hamil-

tonian, Equation 2.1.3, afterwards one obtains the Green function, Equation 2.2.6, by
inversion of the Hamiltonian, then one calculates the mean-field response function,
Equation 2.3.22, and lastly from Equation 2.3.23 the final result is obtained.

2.3.4. Magnetic perturbations
Now that the framework is laid out, it will now be particularized to the case of
magnetic excitations. Here, this is done by using a circular polarized magnetic field,
b⃗(t) = b0[cos(ωt)e⃗′x − sin(ωt)e⃗′y], transversal to the quantization directions of the spin
moments, e⃗z. The time-dependent perturbation that couples to spin and orbital
degrees of freedom can be written in real space as

Ĥint =µB(gSS⃗ + gLL⃗) ⋅ b⃗(t)

=µBb0
2 ∑

ij
∑
µν
∑
σσ′

(gSδµν[eiωtS+
σσ′ + e−iωtS−

σσ′]

+ gLδσσ′[eiωtL′+µν + e−iωtL′−µν])δijc†
iµσcjνσ′

=Hint,S +Hint,L

(2.3.24)

where L′µ represents the orbital momenta along the spin quantization axis, and its
circular components are given by

L′− = Lx[cos(θ) cos(φ) + i sin(φ)] +Ly[cos(θ) sin(φ) − i sin(φ)] −Lz sin(θ)
L′+ = Lx[cos(θ) cos(φ) − i sin(φ)] +Ly[cos(θ) sin(φ) + i cos(φ)] −Lz sin(θ)

(2.3.25)

with θ and φ being the spherical polar and azimuthal angles of the equilibrium spin
moments, respectively.

The change in m-th component of the spin density at site i due to the external
magnetic field coupled to the spin of all atomic sites is given by Equation 2.3.11 as

δ⟨Smi ⟩(t) = −i∫ dt′Θ(t − t′)⟨[Smi (t), Ĥint,S(t′)]⟩

= µBb0gS
2 ∑

l

∑
µγ
∑
σ1σ2
σ3σ4

∫ dt′ Smσ1σ2[eiωt′S+
σ3σ4 + e−iωt′S−

σ3σ4]χσ1σ2σ3σ4
iill,µµγγ (t − t′)

= µBb0gS
2 ∑

l,µγ

∑
σ1σ2

Smσ1σ2[eiωtχσ1σ2↑↓
iill,µµγγ(−ω) + e

−iωtχσ1σ2↓↑
iill,µµγγ(ω)]

(2.3.26)

Using that [χαβγδ(ω)]∗ = χβαδγ(−ω), one can write

δ⟨Smi ⟩(t) = µBb0gS
2 ∑

l,µγ

∑
σ1σ2

Smσ1σ2[eiωt[χσ2σ1↓↑
iill,µµγγ(ω)]

∗ + e−iωtχσ1σ2↓↑
iill,µµγγ(ω)] (2.3.27)
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The change in the x-component of the spin operator is given by

δ⟨Sxi ⟩(t) = −i∫ dt′Θ(t − t′)⟨[Sxi (t), Ĥint,S(t′)]⟩

= µBb0gS
4 ∑

l,µγ

∑
σ1σ2

(δσ1↑δσ2↓ + δσ1↓δσ2↑)[e
iωt[χσ2σ1↓↑

iill,µµγγ(ω)]
∗ + e−iωtχσ1σ2↓↑

iill,µµγγ(ω)]

= µBb0gS
4 ∑

l,µγ

eiωt([χ↓↑↓↑iill,µµγγ(ω)]
∗ + [χ↑↓↓↑iill,µµγγ(ω)]

∗)

+ e−iωt(χ↑↓↓↑iill,µµγγ(ω) + χ
↓↑↓↑

iill,µµγγ(ω))

= µBb0gS
2 ∑

l,µγ

Re[eiωt[χ↓↑↓↑iill,µµγγ(ω)]
∗ + e−iωtχ↑↓↓↑iill,µµγγ(ω)]

(2.3.28)
The change in the y-component is given by

δ⟨Syi ⟩(t) = −i∫ dt′Θ(t − t′)⟨[Syi (t), Ĥint,S(t′)]⟩

= µBb0gS
4 ∑

l,µγ

∑
σ1σ2

i(−δσ1↑δσ2↓ + δσ1↓δσ2↑)[e
iωt[χσ2σ1↓↑

iill,µµγγ(ω)]
∗ + e−iωtχσ1σ2↓↑

iill,µµγγ(ω)]

= iµBb0gS
4 ∑

l,µγ

eiωt( − [χ↓↑↓↑iill,µµγγ(ω)]
∗ + [χ↑↓↓↑iill,µµγγ(ω)]

∗)

+ e−iωt( − χ↑↓↓↑iill,µµγγ(ω) + χ
↓↑↓↑

iill,µµγγ(ω))

= µBb0gS
2 ∑

l,µγ

Im[eiωt[χ↓↑↓↑iill,µµγγ(ω)]
∗ + e−iωtχ↑↓↓↑iill,µµγγ(ω)]

(2.3.29)
It is convenient to introduce the notation ↑↓= +, ↑↑=↑, ↓↓=↓ and ↓↑= − for the spin

indices and write the summed up response as
χ++i (ω) = ∑

l,µγ

χ↑↓↑↓iill,µµγγ(ω) (2.3.30)

and analogous for all other spin combinations.
Using this notation, the change in the circular spin components S± = Sx ± iSy can

be written as

(δ⟨S
+
i ⟩(t)

δ⟨S−i ⟩(t)
) = µBgS

2
([χ

−−
i (ω)]∗ χ+−i (ω)

[χ+−i (ω)]∗ χ−−i (ω))(b
+(t)
b−(t)) (2.3.31)

The interest in this thesis lies in the responses for extended systems, which are
obtained by the Fourier transform of Equation 2.3.31. For uniform fields such as the
ones considered here, it is given by Equation 2.3.22 for q⃗ = 0, which requires just
one integral over the Brillouin Zone with the Green functions calculated at each wave
vector k⃗.
In the same fashion, further dynamic properties of the system can be obtained,

such as disturbances of orbital angular momenta, δ⟨L⟩(t), spin-orbit and exchange
torques, ⟨τ⟩(t), and spin and charge currents, ⟨I⃗⟩, flowing through the system.
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3. Computational Methods

The simulation program for time-dependent transport and angular momentum prop-
erties in nanostructures, TITAN, already existed before this thesis. However, it has
been originally written for a very specific use case: multilayers composed of transi-
tion metals with either a bcc surface along the [11̄0] or a fcc surface along the [001]
direction. For this thesis, the program was generalized and extended for a broader
range of use cases.
This chapter details the key points of the numerical procedures done to obtain the

ground state and dynamical properties described in the previous chapter. It discusses
the generation of the Bravais lattice for general systems and the set up of the Brillouin
zone in reciprocal space. Furthermore, it explains the discretizations used to integrate
over energy and wave vectors, and how the Green functions, that may have extremely
sharp peaks, are handled. At the end of this chapter, the new parallelization scheme
is explained, together with its influence on the performance of the code.

3.1. Lattice setup

Initially, TITAN was limited to specific 2D multilayered systems, i.e. fcc Pt and CoPt
(001) as well as bcc W and FeW (11̄0) systems. The first task of this thesis was to
generalize the code to accept any kind of 2D or 3D bravais lattice. In combination
with this task, the Slater-Koster parametrization was introduced, replacing the fixed
DFT parameters that were available for the four original systems.
The new routine requires the user to give the Bravais lattice vectors, lattice constant

and positions and types of atoms in the unit cell via an input file called ‘basis’. The
unit cell is then setup and repeated a few times along the first two or all three
lattice vectors, depending on whether one wishes to calculate a 2D or a 3D system,
to determine the neighboring sites. The distance between the atoms in the unit cell
and all atoms in this neighbor cloud is determined and sorted (see Figure 3.1). In the
input file, the user can choose to give the amount of next nearest neighbor distances
to be considered in the hopping integrals (up to second nearest neighbors by default).
The hoppings for all neighbors with larger distances are neglected.
For an efficient treatment of the general unit cell, data structures for all atoms in

the nearest neighbor cluster have been defined, containing information about their
position, the distance to each atom in the unit cell, as well as the hopping matrix in
real space for each atom in the unit cell that they are neighbored to.
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3. Computational Methods

(a) Cloud of atoms (b) Neighbors of a single
atom

(c) All neighbors

Figure 3.1.: Determination of first and second nearest neighbors for a 2D unit cell. (a)
The unit cell is set up from the information in the input file and repeated
along all dimensions. (b) The neighboring atoms for each atom in the
unit cell are determined. (c) All atoms that are considered a neighbor to
at least a single unit cell atom, are stored, discarding all unused atoms
in the surrounding.

3.2. Brillouin zone generation
To discretize the Brillouin zone (BZ), it is necessary to first determine the reciprocal
lattice vectors b⃗i, which relate to the real space lattice vectors a⃗i through:

a⃗i ⋅ b⃗j = 2πδij . (3.2.1)

For a three dimensional lattice they are defined as

b⃗1 = 2π a⃗2 × a⃗3
a⃗1 ⋅ (a⃗2 × a⃗3)

b⃗2 = 2π a⃗3 × a⃗1
a⃗1 ⋅ (a⃗2 × a⃗3)

b⃗3 = 2π a⃗1 × a⃗2
a⃗1 ⋅ (a⃗2 × a⃗3)

,

(3.2.2)

as for the two dimensional case the Brillouin zone is defined by

b⃗1 = 2π a⃗2 × e⃗z
e⃗z ⋅ (a⃗1 × a⃗2)

b⃗2 = 2π e⃗z × a⃗1
e⃗z ⋅ (a⃗1 × a⃗2)

,
(3.2.3)
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3.2. Brillouin zone generation

with e⃗z being the unit vector along z-direction.
With these vectors one can span and discretize a parallelpiped/parallelogram, re-
spectively. The discretized points are then transformed into the Brillouin zone by
subtracting the closest vertex of the parallpiped/parallelogram (see Figure 3.2). A
pseudocode example for this process can be found in Code 3.1.

(a) Parallelogram

(b) Brillouin Zone

Figure 3.2.: Discretization of Brillouin zone. (a) The parallelogram with vertices 0⃗,
b⃗1, b⃗2 and b⃗1 + b⃗2 is setup and discretized. (b) The points are separated
into groups by the vertex that is closest to them. Then, they are shifted
by this vertex, moving their position to the actual BZ.

Points where more than one closest vertex exist will be duplicated and their weights
will be adjusted. These points will, after the transformation, be at opposing borders
of the Brillouin zone. The actual number of points will therefore be larger than the
amount given by the user.
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3. Computational Methods

Code 3.1: Pseudocode of a simplified algorithm for BZ mesh generation in 3D.
def generate_3D_BZ( a1 , a2 , a3 , nkpt ) :

b1 , b2 , b3 = r e c i p r o c a l_ l a t t i c e ( a1 , a2 , a3 )
v e r t i c e s = de f i n e_ve r t i c e s (b1 , b2 , b3 )
kpx = kpy = kpz = nkpt ∗∗(1/3)
bz = [ ]
weight = [ ]
for i in range ( kpx ) :

for j in range ( kpy ) :
for k in range ( kpz ) :

p = get_point_in_paral le logram ( v e r t i c e s , i , j , k )
v = f i nd_c l o s e s t_ve r t i c e s ( v e r t i c e s , p )
for ver tex in v :

bz . append (p − ver tex )
weight . append (1/ len ( v ) )

weight = weight / nkpt
return bz , weight

The actual implementation of the BZ mesh generation contains an additional feature
to generate only a fraction of the BZ. This is necessary to achieve a balanced work
parallelization for the energy dependent BZ mesh, which will be explained in the
following sections.

3.3. Complex continuation

For the calculation of ground state properties and response functions in terms of
Green functions, an integration over a half-infinite frequency domain is necessary.
Even though the introduction of the broadening, η, makes the Green functions nu-
merically integratable, it can still be demanding and problematic. From the spectral
representation

Gr(E) = lim
η→0
∑
m

∣m⟩⟨m∣
E − εm + iη

, (3.3.1)

one can see that integration over energies still involves many peaks with sharp
linewidth and thus may need a particularly fine discretization. One way around this
problem is by complex continuation: Using the fact that the retarded Green function
has no poles in the upper half of the complex plane, a closed contour with a path
along the real axis Ir, followed by a path along the imaginary axis Ii at a fixed real
energy εF and closed by a quarter-circle IC , should be zero (Ir+Ii+IC = 0). Therefore,
the integration over the real axis can be substituted by one along the imaginary axis,
where the Green functions get smoother with the larger imaginary part of the energy
(see Figure 3.3). For the integration along the quarter-circle IC , one can use the polar
representation z → limr→∞ re

iφ and integrate from π/2 to π. The expectation values
in ground state involve the integral over a single Green function. As G(z →∞) ∼ 1

∣z∣ ,
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3.3. Complex continuation

the semi-circle integral can be written as

∫
C

dz
1
z
= lim
r→∞

π

∫
π/2

dφ
1
reiφ ireiφ = iπ

2
. (3.3.2)

Therefore, the expectation value of an observable in ground state, given by Equa-
tion 2.2.8, can be rewritten as

⟨Â⟩ = 1
π

Im[
∞

∫
η

dyTr[G(εF + iy)Â] + iπ
2

TrÂ]

= 1
2

ReTrÂ + 1
π

Im
∞

∫
η

dyTr[G(εF + iy)Â] .
(3.3.3)

The first integral of the mean-field response function (Equation 2.3.22 is also semi-
infinite, but involves the product of two retarded and two advanced Green functions.
Thus the integral over the semi-circle can be rewritten as

∫
C

dz
1
z2 = lim

r→∞

1
r

π

∫
π/2

dφ ie−iφ = 0 (3.3.4)

and therefore the first integral of the mean-field response can be rewritten as

χαβγδ(ω, k⃗) =
1

2πi

∞

∫
η

dy [Gβγ(ω + εF + iy, k⃗)Gδα(εF + iy, k⃗)

−[Gδα(εF + iy, k⃗)Gγβ(ω + εF + iy, k⃗)]∗] .

(3.3.5)

This technique is not suitable to the integral in the limits εF − ω to εF , as it involves
products of retarded and advanced Green functions, i.e., with poles on both sides of
the complex plane. Therefore, the integration has to be done along the real axis in this
range. As the Green functions are usually very sharp in that region (see Figure 3.3),
a particularly fine discretization is needed there, causing most of the integration time
to be spent on this term.
The integral along the imaginary axis is then mapped from [η,∞) to [0,1) using

the transformation
∞

∫
η

dy f(y) =
1

∫
0

dx
1 + η

(1 − x)2 f (x + η
1 − x

) . (3.3.6)

The integral is then discretized using Gauss-Legendre quadrature

b

∫
a

dxf(x) = b − a
2

n

∑
i=1
wif (b − a

2
xi +

b + a
2

) , (3.3.7)
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3. Computational Methods

where the points xi are the n roots of the Legendre polynomial Pn(x) and the weights
are given by

wi = −
2

(1 − x2
i )[P ′

n(xi)]2 . (3.3.8)

The integral can be further split up into different parts to allow a finer discretization,
e.g. when split into two parts, the Gauss-Legendre points are generated in the intervals
[0,10−2) and [10−2,1). Figure 3.3 shows how the points will be distributed using two
parts with 64 points each.

3.4. Energy-dependent Brillouin zone mesh
Most of the calculations are obtained through integrations along the imaginary energy
axis and over the Brillouin zone. The Green functions have sharp peaks for energies
close to the real axis. These peaks smoothen the further one is away from it. Figure 3.3
shows schematically how the Green functions change from sharp peaks (lower solid
curve) to broadened curves (upper dashed curve) as the imaginary part of the energy
increases. One can see why a cruder discretization of the Brillouin Zone suffices to
achieve a convergent integration at larger imaginary parts of the energy.
To optimize the code, an energy dependent BZ mesh was implemented, reducing

the total amount of calculations. For a given energy argument z = E + iy, the number
of points used for the generation of the BZ is given by

NBZ(y) = (y
η
)

1/d
NBZ(η) , (3.4.1)

where d is the dimensionality of the system, NBZ(y) is the number of points given
to subroutine setting up the BZ and NBZ(η) and η are the number of points and the
broadening given by the user in the input file (see Figure 3.4). This relation uses the
rule of thumb that when the imaginary part of the energy decreases by an order of
magnitude, approximately 10 times as many points per dimension are necessary to
resolve the Lorentzian peak. A minimum of 1000 points is set, which is a conservative
amount to have precise calculations.
Although this approach speeds up the code considerably, it also increases drastically

the memory usage (a factor of ∼11 using the default amount of energy points). The
increase in memory has been countered by a change in the parallelization, distributing
the generation of points amoung all nodes (more details on that in section 3.6). By
first summing the number of points in all Brillouin zones, each node can calculate
how many and which points need to be generated locally.
As a positive side effect of this distributed approach, extremely fine meshes (e.g.

10 billion points) can be used when enough nodes are present to fulfill the memory
requirements. Such meshes are necessary for calculations of metallic bulk systems
with an extremely small broadening parameter (e.g. η < 10−4 Ry ≈ 16 K). Special
care has to be taken for such fine meshes, as one reaches the limitations of 4-byte
integers (∼ 2.14 billion), such that a special compilation option has been added for
these cases.
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3.5. Self-consistency
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Figure 3.3.: Sketch of how larger imaginary parts of the energy affects the form of
the Green function. The left side of the picture shows the distribution
of energy points along the imaginary axis, in logarithmic scale, using
TITAN’s default settings of two parts (blue and orange) with each 64
points, while the right side depicts a Lorentzian distribution representing
one of the Green function peaks.

3.5. Self-consistency

The Slater-Koster parameters used in TITAN are obtained for paramagnetic bulk
configurations without any other interactions, such as external fields or spin-orbit
interaction. For a correct description of the magnetic excitations of a system, it is
necessary to start from a ground state that is compatible with these parameters, after
the approximations are done and the additional terms are added. A self-consistent
calculation is then performed to obtain the correct ground state expectation values
for charge and spin densities that appear in the effective Coulomb interaction (Equa-
tion 2.1.31), as well as the Fermi level. These quantities are all bound to change
upon the inclusion of the effective Coulomb interaction within the Hubbard model,
external fields, and spin-orbit interaction. Other factors that can affect these values
are modifications in the lattice configuration, such as varying the lattice constant or
changing the dimensionality (e.g. multilayer structures) of the system.
From the Hohenberg-Kohn theorems [43] it is known that the Hamiltonian can be

written as functional of the charge and spin densities and that there exist a unique set
of charge and spin densities that minimize the energy of the system. In practice, the
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Figure 3.4.: Reduction of the amount of points in the BZ given by the user, with
respect to the imaginary part of the energy. Starting from 100 million
points for 2D and 3D systems.

many-body system is substituted by an effective single particle system that has the
same ground state density as the original. The quantities that minimizes the energy
functional of the system can be obtained by iteratively calculating Equation 2.2.17
and updating the Hamiltonian, until self-consistency is reached [44].
The self-consistent calculations are done for the charge density and the magnetiza-

tion of the d-orbitals under the contraints

nout, di (nin, d, m⃗in, d, εF ) − nin, di = 0 , and
m⃗out, d
i (nin, d, m⃗in, d, εF ) − m⃗in, d

i = 0 ,
(3.5.1)

where the superscript ‘in’ describes the results of the previous iteration, and the
superscript ‘out’ the results of the current iteration. The constraint is limited to the
d orbitals, as these are the only ones that appear in the effective Coulomb interaction
(Equation 2.1.31).
The charge density for an atomic site is allowed to change, but the total charge

inside a unit cell has to conserved (as the systems under consideration are periodic).
To impose this, it is additionally imposed that the total number of electrons has to
be constant

∑
i

nouti (nin, m⃗in, εF ) −Nel = 0 . (3.5.2)

These minimizations are done using the non-linear equation solver ‘C05RCF’ of
the NAG Fortran library [45] which is based on the Powell hybrid solver. In every
iteration, the routine returns new guesses for the charge density and magnetization
of d orbitals as well as the Fermi level that are used to calculate the left hand side
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of the constraints. When the convergence slows down, the Jacobian for the system of
equations is calculated, determining the gradient and improving the convergence.

3.6. Parallelization

The parallelization of TITAN is done in three layers. After initialization and reading
of all input files, the code enters the loop over different magnetic fields. The work
done inside of each iteration is completely independent of the other iterations. The
first layer of parallelization is to split up the available amount of MPI nodes into
‘parField’ groups. The variable ‘parField’ can be given by the user and defaults to
one, which means this loop is done sequentially.
The first step in each iteration is to calculate the ground state charge density

and magnetization self-consistently. The integrals over energy and Brillouin zone are
flattened into a single sum over points (E, k⃗). This sum is split into equally sized
part and each node in the group allocates its part of the work. The local workload is
further split with OpenMP and the flattened integral is summed up locally using the
OpenMP reduction clause. After the work is done locally, the results of all nodes in the
group are summed up using the collective communication routine ‘MPI_Allreduce’.
Thus, all nodes obtain the final result of the self-consistency as they are necessary for
further calculations.
In the same way, other ground state expectation values are computed. The only

difference here is that the reduction routine ‘MPI_Reduce’ is used: only the first node
obtains the summed up result and writes them to a file.
The dynamic properties are obtained by looping over a set of given frequencies ω.

The iterations of this loop are again completely independent. The nodes available
for a given value of the magnetic field are now further split up into ‘parFreq’ groups.
Here, the variable ‘parFreq’ can again be given by the user and defaults to one.
The integrals in Equation 2.3.22 are now split up in the same manner as for the

ground state properties, only with fewer nodes available (when split up among frequen-
cies), thus increasing the workload of each node. The last integral in Equation 2.3.22
can not be solved using the complex continuation, as explained in section 3.3. Thus,
this integration is performed close to the real axis, from εF −ω to εF , and its workload
is split up in the same way, except without using the energy-dependent mesh. Instead,
since all the points have the same imaginary part, they use the largest BZ mesh for
all energy points.
In the original parallelization, the distribution of the points for the integrals over

energy and BZ was done differently. As the energy dependent mesh was not present
before, the integral was distributed by energy points. This means that each node
integrated a full BZ and it was not possible to use more MPI nodes than energy points
for a given frequency and magnetic field. Aside from performing many unnecessary
calculations for energy points far from the real axis, the original parallelization also
limited the size of the BZ through the memory available for a single node. Thus the
program was limited in the amount of nodes that could be used.
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The only remaining similarity between the original and the new parallelization of
the code is that the distribution of the field and frequency loops are done in the same
way.

3.7. Full list of implementations
This chapter introduced a few aspects of the code, old and new, to give an introduction
into the most challenging parts of the program. To finish this chapter, all major (and
a few minor, but important) changes that have been done to the code as part of this
thesis will be listed. Those changes, that have not been discussed before will receive
a comment on their motivation in this section.

• Simplified reading of input parameters
In the initial version of the program, adding a new parameter required pars-
ing the input file anew. The changed version reads the complete input file
and prepares the input variables for reading. Now, adding a new parameter
can be done by calling an overloaded subroutine. It has been bundled into a
standalone library that can be used for other projects as well (more details at:
https://github.com/JRSuckert/FInput).

• Generalized lattice setup (see section 3.1)

• Implementation of the Slater-Koster parametrization (see section 2.1.2)

• Changed algorithm for BZ generation (see section 3.2)

• Energy dependent BZ mesh (see section 3.4)

• Generalized band structure calculations
As the high symmetry points are not known anymore before compilation, the
routine had to be changed. Now the user has to define points in the Brillouin
zone in a file called ‘kbands’ and define a path by giving a list of these points
in the ‘input’ file.

• Optimized parallelization (see section 3.6)

• Implementation of Gilbert damping calculation (see chapter 5)

• Using CMake for compilation, since TITAN is used on many different super-
computers (currently CLAIX, JURECA and JUQUEEN)
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4. Numerical aspects

This chapter investigates general quality and performance aspects of TITAN. The
model employed in the code, discussed in section 2.1, is evaluated through the calcu-
lation of the electronic structure and the magnetic ground state properties for bulk
systems, as these are further investigated in the next chapter. To put the results into
perspective, they are compared to results for the same systems obtained within the
ab initio code SP-KKR [46, 47].
Then, convergence measurements are analyzed to understand how the the dis-

cretization for the calculations in the next chapter needs to be chosen.
Finally, to get a better understanding of the possible scale of calculations, the

parallelization with MPI and OpenMP of TITAN is reviewed in terms of speedup
measurements with respect to sequential executions of the code.

4.1. Quality of ground state properties

As an initial quality check of the tight-binding model, ground state properties for bcc
Fe, fcc Co, and fcc Ni will be investigated. The studied properties are the magneti-
zation, the local density of states as well as the band structures. For comparison, all
three of this properties are also obtained within the SP-KKR code, a Green function
DFT software package, based in the Korringa-Kohn-Rostocker (KKR) approach [47].
In TITAN, all calculations are obtained with η = 10−4 Ry, using the default value,
U = 1 eV, for the repulsive Coulomb interaction of U = 1 eV and 100 million points
in the largest BZ. The material dependent parameters can be found in Appendix A.
Using SP-KKR, these values are obtained within local density (LDA), and atomic
sphere approximations (ASA), a broadening of η = 5 ⋅ 10−3 Ry and 117.649 points in
the BZ are used.
The LDOS for bcc Fe obtained in TITAN, as shown in Figure 4.1, is in very good

agreement with the results obtained with SP-KKR. The splitting of the bands in
TITAN is slightly larger, which may be caused due to the U parameter being too
large [48]. In the band structure, one can see that some bands are shifted with respect
to the SP-KKR bands. The strongest deviation are found for the bands furthest
from the Fermi-level, where the SP-KKR bands are not reproduced faithfully. The
magnetization obtained for bcc Fe is 2.2µB, which is in very good agreement with
results obtained SP-KKR and with experimental results [49].
For fcc Co, a shift of the Fermi-level can be recognized in the LDOS (Figure 4.2).

This can also be seen from the band structure, where most bands are shifted down-
wards in energy with respect to the SP-KKR results. The d bands are split further
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Figure 4.1.: LDOS and band structure of bcc Fe.
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apart compared to the SP-KKR results, and the s bands below the Fermi-level are
not well reproduced, even when accounting for the energy shift. The values for the
magnetization obtained in TITAN (1.7µB), SP-KKR (1.6µB) and the experimentally
(1.8µB [49]) are in reasonable agreement. The larger splitting of the d bands is the
cause of the larger magnetization compared to the SP-KKR results. The origin of this
discrepancy with the SP-KKR results may not only come from a larger U parameter,
but also from missing inter-atomic interactions [50].
Finally, from the LDOS and the band structure of fcc Ni shown in Figure 4.3, one

can see that the results obtained from TITAN are in very good agreement with the
SP-KKR ones. The peaks of the d bands close to the Fermi level are larger in TITAN
which is caused by the smaller broadening and the resulting stronger localization of
states. There might also be some hybridization effects, as the density of s states is too
small. The magnetic moments for fcc Ni obtained from SP-KKR and experimentally
are 0.6µB [49], while the value obtained in TITAN is 0.7µB. Although the relative
error is high (17%), the absolute error is small.

4.2. Convergence of dynamic calculations
For the discussion of applications of TITAN, it is indispensible to understand how
fine a discretization is needed for significant results. As has already been discussed in
section 3.4, the value of the artificial broadening η, defining the minimal distance of
the integration to the real axis, is a siginificant factor determining how fine the BZ
meshes need to be. Here, convergence measurements for the Gilbert damping of bcc
Fe, obtained from the spin-correlation model (see section 5.4), are done to determine
the optimal amount of points in the Brillouin zone. The calculations are done for
three different values for the broadening, ranging from η = 10−5 to η = 10−3.
As one can see in Figure 4.4, converged values for η ≥ 10−4 are reached for about

100 million points. For η = 10−5, one can observe that above 100.000 points, the value
drastically starts to change. For less points, the value does look flat and actually
almost converged. This is most likely due to the fact that peaks of the Green functions
lie between the points of the discretization in the BZ. For this broadening, one should
use at least 1 billion points, which demonstrates the difficulty in the investigation of
the Gilbert damping for clean systems at low temperatures.

4.3. Performance
To address difficult calculations, as the one in the previous section, large amounts of
computing ressources must be used. This requires an efficient parallelization scheme
that is able to scale to a large number of computing nodes.
The performance of the MPI parallelization scheme for each part of the code, self-

consistentency (SC) and response function, as well as the full calculation are shown
in Figure 4.5. The speedup measurements were done using a BZ mesh with 8 million
points in the largest BZ (the one generated for the energy point closest to the real
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Figure 4.2.: LDOS and band structure of fcc Co.
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Figure 4.3.: LDOS and band structure of fcc Ni.
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Figure 4.4.: Convergence with respect to the size of the largest BZ for the Gilbert
damping obtained from the inverse transversal susceptibility in RPA.

axis). Along the imaginary axis, 128 energy points have been used, while 64 points
were used for the real axis integration in the response functions. In Figure 4.5, one
can see that the speedup follows closely the ideal curve. For 64 MPI nodes, the
parallelization achieves a speedup of 59, which represents a deviation of approximately
8% from the theoretical optimal speedup. The speedup of just the calculation of the
response function is slightly higher, at 61, less than 5% below the theoretical optimal
speedup. One can observe that for the self-consistency calculation, the speedup is
significantly lower for 32 and 64 MPI nodes. This is caused by the communication
overhead, which gains importance as the amount of actual work per node is reduced.
For the energy dependent mesh with 8 million points in the largest BZ, the amount
of integration points per thread for the self-consistency calculation is approximately
150.000. For the response function, each thread has approximately 8 times as many
iterations, which is why the speedup is still close to the theoretical optimum.
The OpenMP parallelization achieves a speedup of 20 for 24 OpenMP threads using

a BZ mesh with one million points in the largest mesh (see Figure 4.6). Here, the
same argument applies as for the MPI speedup of the self-consistency calculation. A
better speedup can be expected when more points are used, increasing the workload
per thread.
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Figure 4.5.: MPI speedup for calculation of self-consistency and response function for
a single frequency point, using 8 million k⃗-points for Fe bcc. Using 24
OpenMP threads on each node.

In both cases, the use of more points has been avoided to be conservative with the
available computational ressources. The speedup measurements were done using the
JURECA supercomputer. The results shown in the next chapter were obtained using
the supercomputers JURECA, CLAIX, and JUQUEEN.

4.4. Summary
In this chapter, the validity and performance of TITAN were investigated.
It could be seen, that the electronic and magnetic ground state properties are

already quite well approximated. For fcc Co, there were still large differences in the
LDOS and the band structure compared to the results obtained in SP-KKR. The self-
consistent calculation of the ground state properties needs to be reevaluated, taking
into account the orbital dependent densities. In this case, better agreements are
expected.
From the convergence measurements, it became obvious that massive amounts of

points may be necessary for the discretization of the BZ to obtain converged results
for dynamical properties. This holds true especially for cases were the broadening, η,
is taken to very small values.
Fortunately, the performance measurements demonstrate that TITAN is exception-

ally well parallelized and can be used with vast amounts of CPU cores to account for
such extremely fine discretizations.
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Figure 4.6.: OpenMP speedup for calculation of self-consistency and response function
for a single frequency point, using one million k⃗-points for Fe bcc. Using
8 MPI nodes, each with the given number of OpenMP threads.
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5. Gilbert Damping

To describe the dynamics of the magnetic moments, it is imperative to determine their
equation of motion. As a semi-classical picture, in which the magnetic moments are
assumed to be three dimensional vectors of constant length, the equation of motion
is given by the Landau-Lifshitz-Gilbert equation [16, 15]

d
dt
m⃗i(t) = −γm⃗i(t) × B⃗eff, i + αm⃗i ×

d
dt
m⃗i(t) . (5.0.1)

This equation describes the time evolution of the unitary magnetic moments m⃗i = M⃗i

Mi

at an atomic site i under the influence of an effective field B⃗eff, i. The effective field
is given as the change of the total energy with respect to the magnetization,

B⃗eff, i = −
∂E

∂M⃗i

. (5.0.2)

The first term in Equation 5.0.1 describes a torque that sets the magnetic moment into
a precessional mode around the equilibrium position (see red vector in Figure 5.1).
The parameter γ is the gyromagnetic ratio. With just this term, the moments would
precess indefinitely, never aligning with the effective field, even in the absence of an
external time-dependent driving force.

The second term was introduced to describe relaxation of the magnetic moments,
i.e. a torque that that is oriented towards the effective field (see green vector in Fig-
ure 5.1). It quantifies the amount of angular momentum and energy that is dissipated
out of the magnetic system.

Figure 5.1.: Time evolution of a magnetic moment (blue arrow) in a static effective
field (black arrow). The red arrow visualizes the precession torque and
the green arrow the relaxation torque in Equation 5.0.1
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Originally, this damping term was introduced as a phenomenological contribution
[15], but later reformulated by Gilbert starting from a dissipative contribution in the
Lagrangian [16]. This is why the parameter α is commonly known as Gilbert damping.
Numerous factors influence the strength of the damping parameter, such as intrinsic
material properties, defects, and temperature. For magnetization dynamics in 3D, the
parameter should be written as a 3 × 3 tensor. In linear response, it reduces to 2 × 2
tensor with components transverse to the magnetization direction. It can be further
simplified to a scalar value for isotropic systems. Many efforts have been made to
describe the nature of the Gilbert damping from first principles (see, for example,
Refs. [17, 18, 51, 52, 53]) but the microscopic processes responsible for the observed
relaxations in real materials are still not fully understood [19].

5.1. Overview

There exist numerous different approaches to obtain the Gilbert damping from first
principles. The many different energy scales involved in the relaxation process, e.g.
the ferromagnetic resonance frequency, intrinsic spin-orbit interaction, disorder and
impurity scattering rate, led different authors to make qualitatively different predic-
tions for the Gilbert damping. Experimentally, it can be obtained as relaxation of
resonant processes through the linewidth of the ferromagnetic resonance peak (FMR)
[54, 55], the inverse of which gives the lifetime of the excitation. The adimensional
damping parameter is analogous to the quality factor of an oscillator [56], and is ob-
tained by the ratio of the linewidth over the resonant frequency. It represents the
number of oscillations it completes before being significantly damped. The first the-
oretical approach, to obtain a microscopic description of the Gilbert damping was
made by Kambersky in 1970 [17], who considered that a change in magnetic moments
forces a non-equilibrium population of electronic states that leads to a deformation
of the Fermi surface. A few years later, in 1976, Kambersky proceeded to develop a
new method to calculate the damping, known as torque correlation method (TCM).
It became widespread due to its simplicity and low computational demand. More
recent approaches, such as the one made by Garate and MacDonald [20], rely on a
mapping of the inverse of the transverse susceptibility obtained from first principles
to the LLG equation in Equation 5.0.1.
In many of these approaches, the relaxation process originates in the spin-flip scat-

tering, and the electron-electron interaction is taken into account within the mean-
field approximation [57], i.e. neglecting the influence of the collective modes. The
existence of this many different methods is founded in the fact that the nature of the
Gilbert damping is not yet completely explored and there are still open questions.
A key question is the behaviour of the damping at low temperatures. Kambersky

already observed that in his model, for bulk crystals, the damping has two separate
behaviours with respect to broadening of the Green functions [18]. At low tempera-
tures the damping shows conductivity-like behaviour, increasing with η−1 as T → 0.
At high temperatures the damping behaves in a resistivity-like fashion, increasing
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with η for larger temperatures. Together, these effects form a characteristic minimum
of the damping. However, some authors claim that the damping should remain finite
[19, 58, 59, 60], or even vanish [51, 61] for bulk materials without disorder at T = 0 K.
In experiments [62, 70], an increase in the damping was measured, but it was

material dependent and it was not clear if it would keep increasing until T → 0. The
role of impurities in these experiments is not clear and the observed behaviour at low
temperature could be caused by them.
The role of the intrinsic spin-orbit interaction is still debated. It is not clear whether

spin-orbit interaction should be included in the ground state or only as a perturbation
[19, 34, 63]. Edwards [19] has shown that Kambersky’s TCM formula is obtained
using a perturbative approach for low SOC intensities λ. For that reason, he argues
that the ground states should be obtained without spin-orbit interaction, otherwise
inconsistent results would be generated that could lead to the divergence. Tserkovnyak
[61] argued that the divergence occurs because the limits for the frequency and the
broadening are taken in the wrong order, and taking the limit of vanishing broadening
for a finite frequency would result in a vanishing damping.
In the quest of shedding some light on the evident controversies and to get a better

general understanding of the different approaches for the damping, the next sections
will explore a subset of the existing methods. Each of these methods will be applied
for the cases of bulk transistion metals: bcc Fe, fcc Co and fcc Ni.

5.2. Breathing Fermi surface model (BFS)
The first proposed method of calculating the Gilbert damping from first principles
was the breathing Fermi surface (BFS) model introduced by Kambersky [17]. It is
detailed here for completeness, but it will not be explored in this thesis.
This approach investigates how a change in the magnetic moment, δm⃗, affects the

total energy of the system
E =∑

j,k⃗

εj,k⃗nj,k⃗ , (5.2.1)

where εj,k⃗ and nj,k⃗ are the eigenenergies and occupations of band j with wavevector k⃗.
Without spin-orbit coupling the total energy of the system is invariant under rotation
of the magnetization. However, in presence of spin-orbit coupling, δm⃗ will cause a
change in the total energy given by

δE =∑
j,k⃗

δnj,k⃗εj,k⃗ +∑
j,k⃗

nj,k⃗δεj,k⃗ . (5.2.2)

This is caused by a change in the occupation numbers, δnj,k⃗, and by a change in the
single particle energies, δεj,k⃗. For relatively small spin-orbit coupling, one can assume
it only acts as a small perturbation and the change in occupation only occurs close
to the Fermi level,

∑
j,k⃗

δnj,k⃗εj,k⃗ ∼ εF∑
j,k⃗

δnj,k⃗ = 0 , (5.2.3)
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5. Gilbert Damping

due to conservation of the total number of electrons in the system. Therefore the
variation of the total energy is given by

δE =∑
j,k⃗

nj,k⃗δεj,k⃗ (5.2.4)

A precession of the magnetic moment will cause a continuous and oscillatory redis-
tribution of both electronic states and occupations numbers which changes the single
particle energies. This will distort the Fermi surface of the system making it “breath”.
A key factor here is that a change in occupation numbers is related to a change in

the Fermi-Dirac distribution fj,k⃗. As the BFS model does not contain a microscopic
description of the scattering processes which cause these changes, they are instead
introduced by a relaxation time parameter τ as

nj,k⃗(t) = fj,k⃗(t) − τ
dfj,k⃗

dt
. (5.2.5)

The relaxation time is usually in the range of femtoseconds. Using this approach, as
shown by Fähnle [52], the damping tensor can be calculated as

αlm = −γτ∑
j,k⃗

∂fj,k⃗

∂εj,k⃗

∂εj,k⃗

∂Ml
∣
M⃗

∂εj,k⃗

∂Mm
∣
M⃗

. (5.2.6)

As the predicted damping rate is proportional to the scattering time, the damping
can not be calculated more accurately than the scattering time is known. Therefore,
it is not possible to make quantitative comparisons between calculations of the BFS
and experiments [53]. Kambersky later derived a more general formalism [18] which
will be explored in section 5.6.

5.3. Ferromagnetic Resonance (FMR)

Ferromagnetic resonance (FMR) arises when the energy levels are split due to a static
Zeeman or anisotropy field and the system absorbs energy from an oscillating magnetic
field at sharply defined frequencies. Classically, this occurs for oscillatory fields at the
Larmor frequency.
For a system subjected to a static magnetic field B⃗0 = B0e⃗z in the local frame of

reference, determined by the magnetization direction, m⃗ = e⃗z, a small perturbation in
the form of an oscillatory magnetic field b⃗(t) = bx(t)e⃗x + by(t)e⃗y acting on the ground
state of a system, will cause the magnetization to precess with a small cone angle
around its equilibrium position, m⃗(t) = e⃗z + δm⃗(t). The change of the z-component
will be small δmz(t) ∼ 0 and it is reasonable to assume it to be constant. Thus,
for the simple case of bulk systems, we assume the effective field, B⃗eff, is given as
sum of an external field B⃗ext(t) = B⃗0 + b⃗(t) and a general biaxial anisotropy B⃗ani(t) =
1
M (Kxmx(t)e⃗x+Kymy(t)e⃗y+Kz e⃗z). The transversal components of the LLG equation
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(Equation 5.0.1) are then given as

(
B0 + 1

M (Kz −Kx) + αx

γ
d
dt − 1

γ
d
dt

1
γ

d
dt B0 + 1

M (Kz −Ky) + αy

γ
d
dt
)(m

x(t)
my(t)) = (b

x(t)
by(t)) (5.3.1)

The Fourier transform into frequency domain gives

(
B0 + 1

M (Kz −Kx) − iαxω
γ iωγ

−iωγ B0 + 1
M (Kz −Ky) − iαyω

γ

)(m
x(ω)

my(ω)) = (b
x(ω)
by(ω)) (5.3.2)

Transformation into circular components m± =mx ± imy gives

⎛
⎝
B̃ + ω

γ (1 − iαx+αy

2 ) Ky−Kx

2M + iωγ
αy−αx

2
Ky−Kx

2M + iωγ
αy−αx

2 B̃ − ω
γ (1 + iαx+αy

2 )
⎞
⎠
(m

+(ω)
m−(ω)) = (b

+(ω)
b−(ω)) (5.3.3)

with B̃ = B0 + 1
M (Kz − Kx+Ky

2 ).
In linear response theory, the response of magnetic moments to an oscillating mag-

netic field is given by
Mm−(ω) = χM−M+(ω)b−(ω) (5.3.4)

where χM−M+ gives the response of the magnetic moment M− to an external field
which couples to M+ since M⃗ ⋅ b⃗ =Mxbx +Myby = 1

2(M
+b− +M−b+).

Finally, for bulk materials with uniaxial anisotropy, Kx =Ky, the damping will also
be isotropic (αx = αy) and Equation 5.3.3 becomes diagonal. One can then identify
the response function χ−+(ω) as

χM−M+(ω) = γM

(ω − γB̃) − iωα
(5.3.5)

or
ImχM−M+(ω) = γMωα

(ω − γB̃)2 + ω2α2 . (5.3.6)

This quantity is related to the energy absorption and dissipation of the system through
the fluctuation-dissipation theorem [41], which is the quantity measured in FMR ex-
periments [64]. The form of Equation 5.3.6 is a Lorentzian distribution when keeping
the frequency fixed, ω = ω0, and varying the intensity of the magnetic field B⃗0. In this
case, the resonance is located at Bres = ω0

γ and the linewidth is ∆B = αω0. Varying
the frequency ω and keeping the magnetic field B⃗0 fixed, Equation 5.3.6 takes the
form of a skewed Lorentzian, where the damping can be obtained from the linewidth
through ∆ω/ω0 ≈ α +O(α3). The higher order terms could generate deviations from
the correct behaviour, which can be avoided by fitting the curve.
Using TITAN, the FMR curve can be calculated from the spin–spin response, by

using the mapping χM−M+ = −γ2⟨⟨Ŝ−, Ŝ+⟩⟩, both as a function of the frequency or as
function of the magnetic field. As only uniform fields (q⃗ = 0) are considered in this
thesis, the index q⃗ of the response function has been dropped. Since the ground state
changes when a magnetic field is applied, a new self-consistency calculation would
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have to be done for each step. This is not the case when varying the frequency, so we
choose this alternative to calculate α.

The FMR curves for bcc Fe, fcc Co and fcc Ni are given in Figure 5.2. They are cal-
culated for three different values of the broadening η, including spin-orbit interaction
in the ground state Hamiltonian and without external fields. As no external fields
are applied, the resonance frequency is determined by the anisotropy of the system
that arises due to the spin-orbit interaction. The values of broadening were chosen
at the minimum damping for η = η0, one value for smaller broadening, η<, in the
conductivity-like region, and another for larger broadening, η>, in the resistivity-like
region.
The minimal value of the damping at η0 increases with decreasing magnetization,

with the damping of elemental Ni being almost a magnitude larger than that of
elemental Fe.

Table 5.1.: Magnetization, M/γ, Gilbert damping, α, and anisotropy field γB̃, ob-
tained by fitting −ImχM−M+(ω)/γ2 (Equation 5.3.6) to the curves in Fig-
ure 5.2.

η [Ry] M/γ α γB̃ [Ry]
bcc Fe
η< = 10−4 2.558 2.381 ⋅ 10−3 2.514 ⋅ 10−5

η0 = 1.75 ⋅ 10−4 2.531 2.217 ⋅ 10−3 2.481 ⋅ 10−5

η> = 10−3 2.396 6.741 ⋅ 10−3 2.292 ⋅ 10−5

fcc Co
η< = 10−4 1.717 8.202 ⋅ 10−3 5.268 ⋅ 10−5

η0 = 3.75 ⋅ 10−4 1.616 5.197 ⋅ 10−3 4.862 ⋅ 10−5

η> = 10−3 1.604 1.027 ⋅ 10−2 4.717 ⋅ 10−5

fcc Ni
η< = 10−4 7.884 ⋅ 10−1 2.325 ⋅ 10−2 4.433 ⋅ 10−5

η0 = 2.5 ⋅ 10−4 7.884 ⋅ 10−1 1.881 ⋅ 10−2 4.494 ⋅ 10−5

η> = 10−3 7.310 ⋅ 10−1 4.506 ⋅ 10−2 4.204 ⋅ 10−5

Obtaining the FMR curve is the most straightforward approach to calculate the
Gilbert damping, since it mimics experimental setups. Unfortunately, this approach
involves the calculation of the response function over a wide range of frequencies to
find and resolve the resonance peak. A simpler method that yields similar results will
be introduced in the next section.

5.4. Spin-correlation method (SCM)

It might not be feasible to calculate the damping from the theoretical FMR curve,
but exploring the analytical form of the phenomenological response, an alternative
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Figure 5.2.: Ferromagnetic resonance for three different materials, each of them cal-
culated for three different broadenings, η. The points are obtained by
calculation via TITAN and the solid lines are obtained by fitting the
points to −ImχM−M+(ω)/γ2 (Equation 5.3.6).
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approach emerges. By inspection of Equation 5.3.5, one can obtain the damping
parameter as the imaginary part of the inverse response function [20] as

α = M
γ

lim
ω→0

Im[χ−1(ω)]−+

ω
(5.4.1)

where [χ−1]−+(ω) is the inverse of the microscopic spin–spin response function that
is related to the magnetization response through the mapping

χM−M+(ω) = −γ2⟨⟨Ŝ−(ω), Ŝ+⟩⟩ = −γ2χ−+(ω) . (5.4.2)

Here, the static limit is taken to minimize the effect of higher order terms in the
derivatives of the magnetic moments which were not considered in Equation 5.0.1
[65]. This approach will be referred to as spin-correlation method (SCM).
In Figure 5.3 one can see that the characteristic form described by Kambersky [18]

can be recovered. For comparison, the damping obtained from fitting the FMR curves
has been included as well. Equation 5.4.1 is general and should give the same result
as the linewidth described in section 5.3, apart from the higher order terms mentioned
above. It can be seen, that the agreement is striking, especially for Ni, showing that
the higher order corrections are small in this range of frequencies and broadenings
[66].
It is also possible to calculate the damping in terms of the mean-field response using

Equation 2.3.23. Since U is real, and considering sums over d-orbitals only, α can be
written as

α = M
γ

lim
ω→0

Im[χ−1
0 (ω)]−+

ω
(5.4.3)

When the system has uniaxial symmetry (i.e., χ++ = χ−− = 0 and the matrix is
diagonal) [67], the functional form for the transverse magnetic susceptibility can be
used. In the limit of ω → 0, the real part is approximately constant whereas the
imaginary part shows a linear behaviour with frequency [68], i.e.,

χ−+0 (ω) ≈ Reχ−+0 (0) + iωIm d
dω

χ−+0 (ω)∣
ω=0

(5.4.4)

One can write the inverse of Equation 5.4.4 as

[χ−1
0 (ω)]−+ =

⎧⎪⎪⎨⎪⎪⎩
[Reχ−+0 (0)]2 + [ωIm d

dω
χ−+0 (ω)∣

ω=0
]

2⎫⎪⎪⎬⎪⎪⎭

−1

× {Reχ−+0 (0) − iωIm d
dω

χ−+0 (ω)∣
ω=0

} .

(5.4.5)

Therefore, one obtains for the Gilbert damping

α = −M
γ

1
[Reχ−+0 (0)]2 lim

ω→0

Im[χ−+0 (ω)]
ω

(5.4.6)
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Figure 5.3.: Gilbert damping, α, with respect to the broadening η obtained from the
inverse slope of the SCM in RPA, including spin-orbit interaction in the
ground state. For comparison, the results from section 5.3, i.e. FMR,
have been included as well.

where the imaginary part in the denominator is of order O(ω3) and thus vanishes
when taking the limit ω → 0.
The real part of the mean-field response at zero frequency can be approximated

using the sum rule for response function at zero frequency in the absence of spin-
orbit interaction. For bulk materials and considering only d-orbitals in the response
function, one can write [69]

Reχ−+0 (0) = 1
−U + µBgSBextM−1 . (5.4.7)

Finally, in absence of an external magnetic field, the damping can be written as

α = −MU2

γ
lim
ω→0

Im[χ−+0 ]
ω

(5.4.8)

Compared to Equation 5.4.1, this approximation has the advantage that it uses the
mean-field response, which is easier and cheaper to obtain not only using the tight-
binding framework, but also from DFT-based calculations.
As can be seen in Figure 5.4, the approximation, going from the RPA response

function to the mean-field response function, starts to break down when η gets smaller,
separating from the correct result close the the minimum of the damping. Although
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this approximation simplifies the calculation, it is only valid as long in a certain
range: The deviation is larger when the broadening, η, is small compared to the spin-
orbit interaction strength (the values used in the code are λFe = 0.004, λNi = 0.0055,
λCo = 0.005666). Further approximations done in Equation 5.4.5 and Equation 5.4.8
give values for the Gilbert damping that are in very good agreement with the results
obtained for Equation 5.4.3.

In the absence of spin-orbit interaction, no energy dissipation through the orbital
angular momentum is possible. From Figure 5.5, one can see that this results in
a linear behaviour of the damping, vanishing in the limit η → 0. Mankovsky et
al. showed that the linear behaviour for large η can be removed by taking vertex
corrections into account [70]. Here, a similar result can be achieved by taking the
difference between the damping including spin-orbit interaction and the one obtained
in its absence. Figure 5.6 shows no linear increase in the η →∞ limit anymore. These
results are in fairly good agreement with the experiments shown in Ref. [70]. As the
curves in Figure 5.5 contain all contributions in the Hamiltonian except the spin-orbit
interaction one, the difference can be understood as the pure spin-orbit contributions
to the damping.

5.5. Torque-torque method (TTM)
Arguing that the intrinsic Gilbert damping ultimately arises from dissipative torques
on the individual spins, Hankiewicz et al. [51] used a different perspective to obtain
the effects of relaxation. They start their argument by writing the equation of motion
for the spin–spin response function, χ−+(t) = ⟨⟨Ŝ−(t), Ŝ+⟩⟩, as

i d
dt

⟨⟨Ŝ−(t), Ŝ+⟩⟩ = δ(t)⟨[Ŝ−, Ŝ+]⟩ + i⟨⟨τ̂−(t), Ŝ+⟩⟩ (5.5.1)

where τ̂ = d
dt Ŝ is the total torque acting on the spin, which in the Heisenberg picture

can be written as
τ̂−(t) = d

dt
Ŝ−(t) = −i [Ŝ−(t), Ĥ] . (5.5.2)

The equation of motion for the torque–spin response, appearing in Equation 5.5.1,
can also be calculated, using d

dt⟨⟨τ̂(t), Ŝ⟩⟩ =
d
dt⟨⟨τ̂ , Ŝ(−t)⟩⟩, as

i d
dt

⟨⟨τ̂−, Ŝ+(−t)⟩⟩ = δ(t)⟨[τ̂−, Ŝ+]⟩ + i⟨⟨τ̂−, τ̂+(−t)⟩⟩ . (5.5.3)

The total torque can be split in an external component caused by a magnetic field
B⃗ext = Bexte⃗z and an intrinsic term that contains the contribution from spin-orbit
coupling and, depending on the system, can also contain contributions due to spin
pumping [71],

τ̂± = τ̂±ext + τ̂±int = ∓µBgSBextŜ
± + τ̂±int . (5.5.4)

Using [Ŝ−, Ŝ+] = 2Ŝz and [Ŝ±, Ŝz] = ∓Ŝ±, one can write the Fourier transformed
equation of motion for the spin–spin response function as

(ω − µBgSBext)⟨⟨Ŝ−, Ŝ+⟩⟩(ω) = 2⟨Ŝz⟩0 + i⟨⟨τ̂−int, Ŝ+⟩⟩(ω) . (5.5.5)
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Figure 5.4.: Gilbert damping obtained from the different approximation done within
the SCM over the broadening η.
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Figure 5.5.: Gilbert damping, α, with respect to the broadening η, obtained from the
inverse slope of the spin–spin response function in RPA, without spin-
orbit interaction in the ground state.

Analogously

(ω − µBgSBext)⟨⟨τ̂−int, Ŝ+⟩⟩(ω) = ⟨[τ̂−int, Ŝ+]⟩0 − i⟨⟨τ̂−int, τ̂+int⟩⟩(ω) (5.5.6)

For the systems of interest, i.e. bulk metals, the internal torque

τ̂±int = [Ŝ±, ĤSO] (5.5.7)

arises purely through spin-orbit interaction.
Inserting Equation 5.5.6 into Equation 5.5.5, one can write

⟨⟨Ŝ−, Ŝ+⟩⟩(ω) = L−+(ω) +L−+(ω)Γ−+(ω)L−+(ω) (5.5.8)

where L is the spin–spin response in absence of spin-orbit interaction

L−+(ω) = 2⟨Ŝz⟩0
ω − µBgSBext

, (5.5.9)

and
Γ−+(ω) = 1

4⟨Ŝz⟩2
0
[i⟨[τ̂+int, Ŝ−]⟩0 + ⟨⟨τ̂+int, τ̂−int⟩⟩(ω)] . (5.5.10)

Note that this approach does not take into account any additional broadening on
the energy levels, and the susceptibility L−+ is a purely real number. They can be
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Figure 5.6.: Difference of the curves in Figure 5.3 and Figure 5.5.

added later the same way as done before, when the response functions are calculated
in terms of Green functions.
To calculate the damping, given by Equation 5.4.1, the inverse of the transverse

spin–spin response is necessary. It can be obtained from Equation 5.5.8, taking into
account relatively low spin-orbit interaction, as

[⟨⟨Ŝ+, Ŝ−⟩⟩(ω)]−1 = [L−+(ω)]−1(1 +L−+(ω)Γ−+(ω))−1

≈ [L−+(ω)]−1(1 −L−+(ω)Γ−+(ω))
≈ [L−+(ω)]−1 − Γ−+(ω) .

(5.5.11)

As the spin–torque commutator in Γ is real, and taking into account temperature and
disorder effects through a broadening as before, the damping is given as

α = γ

M
lim
ω→0

Im[L−1]−+

ω
− 1
γM

lim
ω→0

Im⟨⟨τ̂+, τ̂−⟩⟩(ω)
ω

= αnoSO − 1
γM

lim
ω→0

Im⟨⟨τ̂+, τ̂−⟩⟩(ω)
ω

,
(5.5.12)

where M = 2⟨Ŝz⟩0. Equation 5.5.12 was also implemented directly in TITAN, where
the slope of ⟨⟨τ̂−, τ̂+⟩⟩ is calculated at ω → 0. This method will be called the torque–
torque method (TTM). There have been a few approximations made for this approach.
Equation 5.5.11 is only valid for low spin-orbit coupling as the geometric series is
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aborted after the linear term. According to Edwards, this is equivalent to second or-
der perturbation theory in the spin-orbit coupling parameter [19]. Since each torque
operator is already linear in the spin-orbit coupling, the Green functions should be
calculated without inclusion of the spin-orbit interaction, otherwise inconsistent re-
sults are generated. When this is done, the intraband contribution, responsible for the
conductivity-like behaviour of the damping [53], vanishes and the damping is finite in
the limit η → 0.

In Figure 5.7, one can see that the TTM in RPA without spin-orbit interaction in
the ground state, is in good agreement with the results obtained for the spin-orbit
contribution in SCM for the region where λ ≪ η. Interestingly, when adding the
spin-orbit interaction in the ground state, the TTM has the same behaviour as the
broadening contribution of SCM. The reasons for this must be further investigated.
Another result obtained by Edwards [19] is that without spin-orbit interaction in

the Green function, the torque–torque response obtained in Equation 5.5.12 can be
calculated within the mean-field approximation, i.e.,

α = αnoSO0 − 1
γM

lim
ω→0

Im⟨⟨τ̂−, τ̂+⟩⟩0(ω)
ω

. (5.5.13)

In absence of spin-orbit interaction, the mean-field TTM provides the same results
as the RPA one, with a small gap between the results that is proportional to the
spin-orbit coupling strength of the material. For large broadenings, the mean-field
responses with and without spin-orbit interaction in the ground state provide similar
results. Nevertheless, when η ≪ λ, the second-order approximation proposed by Ed-
wards is not good, and does not capture the diverging behaviours of α as expected
from the full susceptibility. Surprisingly, the mean-field response including spin-orbit
interaction in the ground state presents the same behaviour as the spin-orbit contri-
bution obtained in the SCM, and indicates that the analysis in terms of expanded
contributions in λ can be made more general, for the full range of η. This also reflects
in the results and discussions made in the next section, for the model of Kambersky.

5.6. Torque-correlation method (TCM)

For the methods presented in this section, a general result will be used. The mean-field
response, ⟨⟨Â, B̂⟩⟩0, can be written in the Lehmann representation [41] as

⟨⟨Â, B̂⟩⟩0(ω) =∑
mn

fF(εm)( ⟨m∣Â∣n⟩⟨n∣B̂∣m⟩
ω + (εm − εn) + iη

− ⟨m∣B̂∣n⟩⟨n∣Â∣m⟩
ω − (εm − εn) + iη

)

=∑
mn

[fF(εm) − fF(εn)]
⟨m∣Â∣n⟩⟨n∣B̂∣m⟩
ω + (εm − εn) + iη

.
(5.6.1)

52



5.6. Torque-correlation method (TCM)

10−4 10−3

10−3

10−2

Broadening η [Ry]

G
ilb

er
t
da

m
pi
ng

α RPA SOC
MF SOC
RPA no SOC
MF no SOC

(a) bcc Fe

10−4 10−3

10−3

10−2

10−1

Broadening η [Ry]

G
ilb

er
t
da

m
pi
ng

α RPA SOC
MF SOC
RPA no SOC
MF no SOC

(b) fcc Co

10−4 10−3

10−2

10−1

100

Broadening η [Ry]

G
ilb

er
t
da

m
pi
ng

α RPA SOC
MF SOC
RPA no SOC
MF no SOC

(c) fcc Ni

Figure 5.7.: Gilbert damping over broadening η obtained from the TTM, in RPA and
MF approximation, with and without spin-orbit interaction included in
the ground state.
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Using 1
x±iη = P(

1
x)∓ iπδ(x), where P gives the Cauchy principal value, the imaginary

part of the mean-field response is given as

Im⟨⟨Â, B̂⟩⟩0(ω) = π∑
mn

[fF(εn) − fF(εm)]⟨m∣Â∣n⟩⟨n∣B̂∣m⟩δ(ω + εm − εn)

= π∑
mn

[fF(εm + ω) − fF(εm)]⟨m∣Â∣n⟩⟨n∣B̂∣m⟩δ(ω + εm − εn)
(5.6.2)

The slope of Equation 5.6.2, can be calculated as

lim
ω→0

Im⟨⟨Â, B̂⟩⟩0(ω)
ω

= π∑
mn

lim
ω→0

fF(εm + ω) − fF(εm)
ω

⟨m∣Â∣n⟩⟨n∣B̂∣m⟩δ(ω + εm − εn)

= π∑
mn

dfF(εm)
dω

⟨m∣B̂∣n⟩⟨n∣B̂∣m⟩δ(εm − εn)

= −π∑
mn

δ(εm − εF)⟨m∣Â∣n⟩⟨n∣B̂∣m⟩δ(εm − εn) .

(5.6.3)

Adding a complete basis set ∑` ∣`⟩⟨`∣ = 1, the slope can be rewritten in terms of single
particle Green functions as

lim
ω→0

Im⟨⟨Â, B̂⟩⟩0(ω)
ω

= −π∑
mn

Tr[∣m⟩δ(εm − εF)⟨m∣Â∣n⟩δ(εn − εF)⟨n∣B̂]

= π
4

Tr[(Gr(εF) −Ga(εF ))Â(Gr(εF) −Ga(εF))B̂]

= − 1
π

Tr[ImG(εF)ÂImG(εF)B̂]

(5.6.4)

Here, it has been used that ImG(εF) = −π∑m ∣m⟩δ(εF−εm)⟨m∣ = − i
2[G

r(εF)−Ga(εF)].
Thus, the slope of a mean-field response can be written as a Fermi-level quantity,
reducing the amount of necessary calculations significantly.

5.6.1. Spin-orbit torque (TCM-SO)
Using the result obtained above for the TTM in Equation 5.5.13, one obtains

α = − γ

4Mπ
Tr[ImG(εF)τ̂−ImG(εF)τ̂+] , (5.6.5)

which is equivalent to the result obtained by Kamberskys in 1976 [18], and has been
used by many due to its simplicity, requiring only an integration of the Brillouin zone
[72, 73]. This approach is called the torque-correlation method (TCM), and for bulk
systems, it involves only the spin-orbit torque τ± = [Ŝ±, ĤSO]. This method will be
referenced as TCM-SO from here on, to differentiate from the method given in the
next section.
As can be seen from Figure 5.8, this approximation is in very good agreement

with the results obtained for the TTM in Equation 5.5.13, with and without spin-
orbit interaction included in the ground state. They demonstrate that TCM-SO
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without spin-orbit interaction in the ground state is only valid in the λ ≪ η regime,
but including spin-orbit interaction gives reasonable results for α, as will be seen in
section 5.7.

5.6.2. Exchange-correlation torque (TCM-XC)

Using now Equation 5.6.4 on Equation 5.4.8, the damping can also be obtained as

α = − 1
Mγπ

Tr[ImG(εF)τ−XCImG(εF)τ+XC] (5.6.6)

where
τ̂±XC = [Ŝ±, UMŜz] = ∓UMŜ± . (5.6.7)

This result will henceforth be referred to as TCM-XC, since it involves the exchange-
correlation torque. It was also derived using a different approach [74] and also appears
in the literature [21, 70].
As before, this approximation results in a simple formula that provides values in

very good agreement with the SCM method using mean-field approximation in Equa-
tion 5.4.8. The comparisons are shown in Figure 5.9.

5.7. Summary of methods
This chapter introduced many different methods to calculate the Gilbert damping.
Starting from the FMR experimental setup, the damping was obtained from the cal-
culations of the transverse susceptibility as a function of the frequency, in Figure 5.2.
The results presented a divergence for η → 0 (conductivity-like), as well as an increase
with η for larger broadenings (resistivity-like). It was shown that very similar results
are obtained by mapping the results to the inverse susceptibility obtained from LLG
in the static limit.
From the SCM results, one could see that the approximation, from the RPA to the

MF response results in a small deviation that gets larger when the broadening gets
small with respect to the spin-orbit interaction. This indicates that the approximation
is valid when the spin-orbit coupling strength is small compared to the energy scale of
broadening effects. This can be highlighted once more, looking at Figure 5.10, where
the damping of bcc Fe is calculated for scaled strengths of the spin-orbit interaction.
One can furthermore see that the strength of the damping scales significantly with the
spin-orbit interaction strength. But, for large broadenings, the curves with different λ
converge to the same asymptotic behaviour, which is the contribution to the damping
that is completely independent of the spin-orbit interaction, as could been seen in
Figure 5.5. This contribution can be decreased by adding vertex corrections [70, 21].
The results obtained from TTM are more peculiar. The damping obtained from

calculations without spin-orbit interaction in the ground state, result in non-diverging
damping, as predicted by Edwards [19]. In the large broadening limit it recovers the
behaviour of the spin-orbit contribution in SCM. On the other hand, if one includes
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Figure 5.8.: Comparison of Gilbert damping obtained from the TTM in mean-field
approximation and from the TCM-SO over broadening η.
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Figure 5.9.: Comparison of Gilbert damping obtained from Equation 5.4.8 and from
the TCM-SO over broadening η.
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Figure 5.10.: Gilbert damping, α, for bcc Fe with respect to the broadening η obtained
from the inverse slope of the spin–spin response function in RPA and
MF. Influence of the spin-orbit coupling strength on the validity of the
approximation.

the spin-orbit interaction in the ground state for these calculations, two completely
different behaviours from RPA and MF approximation are found (see Figure 5.7).
From the RPA result, one can the same resistivity-like linear behaviour as could
already be seen for SCM without spin-orbit interaction, whereas the MF one resembles
the pure spin-orbit contribution of SCM.
Both TCM approaches show that, for the investigated materials, they perfectly

approximate the results obtained for their respective mean field response. But as the
mean-field approximation deviates for regions where the spin-orbit interaction is large
with respect to the broadening, so is the TCM.
In Figure 5.11, a comparison of the main results for bcc Fe is shown. One can

see that the spin-orbit contribution of the SCM, obtained by the difference between
the calculations with and without spin-orbit interaction, are in good agreement with
the results obtained from TCM-SO when spin-orbit interaction is present. This is in
contradiction with Ref. [19], which claims that this method is equivalent to second
order perturbation theory and for that reason should not include spin-orbit interaction
in the ground state. The results obtained from TTM in RPA with SOC resemble the
linear behaviour obtained from SCM in RPA without SOC.
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It could be shown that the Gilbert damping can clearly be split into two indepen-
dent contributions, those that stem from the spin-orbit interaction and those that
appear even without. The contribution obtained without spin-orbit interaction in
SCM (and also from TCM-XC), shows a linear behaviour in the limit η →∞. Com-
paring with experimental and with first principles results that add temperature in a
more accurate prescription, it is clear that the broadening added to the energy levels
leads to an artificially large increase for large temperatures. Here, this contribution
is elliminated by taking the difference between the total damping and that without
spin-orbit interaction. This has a similar effect as the inclusion of vertex corrections.
The remaining contribution, which stems purely from spin-orbit interaction, still

shows an increase in the clean limit, η → 0. This becomes especially clear in the
analytical description of the TTM (Equation 5.5.13), where it shows this same result
in a perturbative manner. In fact, the divergence seems to be present even in the
most accurate methods, namely SCM in RPA and FMR. Additionally, it can be
shown analytically that the damping diverges in the mean-field regime for the clean
limit by making an analogy with torkance calculations [75], since this quantity is also
obtained as the slope of a response function with respect to the frequency. In the case
of the damping, only the odd contribution in Ref. [75] is present, which diverges as
η−1 in the η → 0 limit.

In conclusion, all methods are valid in the η ≫ λ regime. When the spin-orbit
interaction gets large, FMR and SCM in RPA (discounting effects of broadening) are
the most accurate methods. Although the former includes higher order contributions
in frequency, it can still be interpreted as the quality factor of the system.
In general, a diverging behaviour of the damping represents an instantaneous flow of

the energy out of the spin degree of freedom, immediately stopping any motion of the
magnetic system. The magnetization direction would never align with the effective
field, retaining its momentary position indefinitely.
Mahfouzi et al. [76] have shown that through treatment of the magnetic unit as a

quantum object, the damping is obtained from the transistion rates of excited states
to states with lower energy, and that the divergence thus does not occur.
Another possible approach to achieve finite results in the clean limit is the inclusion

of the response of the orbital degree of freedom Ĵ = Ŝ + L̂ [77]. Measuring only the
spin degrees of freedom (while still exciting both Ŝ and L̂), the divergence may be
cancelled and become finite. This must further be investigated.
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60
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The goal of this thesis was to introduce TITAN, the simulation program for time-
dependent transport and angular momentum properties in nanostructures, focusing
on the new implementations and on its power and capabilities to describe a key aspect
of spin excitations.
In chapter 2, the theoretical framework was introduced. The model Hamiltonian

was elaborated, followed by disccusions about how the ground state and dynamical
properties of the system are described.
Chapter 3 was devoted to discuss the relevant computational aspects of the pro-

gram. Before the start of this thesis, TITAN only existed to calculate dynamic
properties in two systems, fcc CoPt (001) and bcc FeW (11̄0). In the course of
this project, the program was generalized to allow for arbitrary 2D and 3D periodic
crystal lattices using Slater-Koster tight-binding approximation. This approximation
enables the study of dozens of different systems due to the availability of parameters
in databases such as Ref. [22]. The implemented scaling law and mixing scheme
further increase the range of potential systems, enabling a vast variety of compound
materials.
In chapter 4, the quality of the program has been analyzed by investigation of

the electronic structure and magnetic ground state properties, while the performance
has been evaluated by convergence and speedup measurements. On the one hand, the
electronic structure and ground state properties for bcc Fe and fcc Ni are in very good
agreement with calculations done using the ab initio code SP-KKR, while the match
between those codes had a reasonable agreement for fcc Co. On the other hand, the
obtained scaling plots, together with the distributed memory usage demonstrate that
the program is optimally prepared for the calculation of dynamical properties even for
broadening regimes that require extremely fine discretizations of the Brillouin zone.
TITAN is now able to process calculations for broadenings in the region 10−5 Ry ≤ η ≤
10−4 Ry, which requires up to a billion points in the Brillouin zone and therefore could
not be accessed before, even using novel sophisticated tricks as is done in Ref. [58].
Further improvements can be obtained by performing a self-consistency calculation
over orbital dependent densities, which is currently being introduced in the code.
As an application of TITAN, the Gilbert damping was then investigated in chap-

ter 5. Many of the different available methods of calculating the damping using
a microscopical theory have been implemented into the program and subsequently
compared to understand their similarities and differences. It has been seen that the
strength of the spin-orbit interaction plays an important role in the validity of many
of these methods. At least for uniaxial bulk systems, those methods that work within
the mean-field approximation of the response functions, seem to be only valid in the
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limit of low spin-orbit interaction strengths. Between the results obtained in RPA and
those obtained within the MF approximation, a gap is forming that scales with the
spin-orbit strength. For the investigated materials, the approximations are still rea-
sonable, but it may result in larger errors in multilayers [59], or in systems composed
by heavy metals such as Pt which have significantly larger spin-orbit interaction. This
again also affects the TCM methods, which are perfect approximations of the mean-
field methods, but therefore also share their flaw. Hence, this constitutes a problem,
since many people rely on TCM methods for their ease of use and because they are
numerically less demanding. The main area of interest for the Gilbert damping is in
spintronic applications, where the tuning of the relaxation can be used to manipulate
switching times and propagations of spin currents. As could be seen in chapter 5, the
damping scales with the spin-orbit interaction strength. Therefore, a large spin-orbit
coupling is preferential for shorter magnetic switching times. A still open question
is how the TTM in RPA with SOC can be understood. From Figure 5.11, it does
seem as if the spin-orbit interaction in the ground state is completely cancelled by the
spin-orbit torques in this approach.

Although the focus application of the code was in the spin excitations — especially
the damping parameter — many other quantities can be investigated. The previous
version of the code has been used to investigate the effect of dynamical spin orbit
torques in ferro- and antiferromagnetic multilayers [7] and transport properties of al-
ternating currents up to the THz regime [25]. Further features, that are still expected
to be added in the future, are pulsed perturbations and enabling the use of variable
numbers of atomic orbitals for calculations of larger unit cells (e.g. to investigate
topological spin textures such as Skyrmions).
All the recently implemented features, together with the upcoming ones discussed

above, constitute a powerful microscopic material-specific dynamical framework.
These developments open up new routes for the investigation of a multitude of phe-
nomena in the rising field of antiferromagnetic spintronics [78]. Possibly relevant
systems in this research field are Mn2Au [79], PtMn [8] and CuMnAs [14]. More ap-
plications for TITAN can be found in the study of transport properties of topological
magnetic textures [80], possibly in connection with dynamical properties of orbital
moments [81], and topological insulators [82].
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A. Parameters

In this appendix, the parameters for the investigated materials are given in the format,
as they are used in TITAN:

Name
La t t i c e parameter a0
λp λd
ρs ρp ρd
a1
a2
a3
s on− s i t e
p on− s i t e
t2g on− s i t e
eg on− s i t e
(ssσ) 1 s t nea r e s t ne ighbor
(ppσ) 1 s t nea r e s t ne ighbor
(ppπ) 1 s t nea r e s t ne ighbor
(ddσ) 1 s t nea r e s t ne ighbor
(ddπ) 1 s t nea r e s t ne ighbor
(ddδ) 1 s t nea r e s t ne ighbor
(spσ) 1 s t nea r e s t ne ighbor
(sdσ) 1 s t nea r e s t ne ighbor
(pdσ) 1 s t nea r e s t ne ighbor
(pdπ) 1 s t nea r e s t ne ighbor
(ssσ) 2nd nea r e s t ne ighbor
(ppσ) 2nd nea r e s t ne ighbor
(ppπ) 2nd nea r e s t ne ighbor
(ddσ) 2nd nea r e s t ne ighbor
(ddπ) 2nd nea r e s t ne ighbor
(ddδ) 2nd nea r e s t ne ighbor
(spσ) 2nd nea r e s t ne ighbor
(sdσ) 2nd nea r e s t ne ighbor
(pdσ) 2nd nea r e s t ne ighbor
(pdπ) 2nd nea r e s t ne ighbor

All parameters are obtained from [22].
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A. Parameters

A.1. bcc Fe

5 .30
0 .0 0 .004
0 .7415
0 .58 0 .37 7 .05
0 .5 0 .5 −0.5
0 .5 −0.5 0 .5
−0.5 0 .5 0 . 5
s on− s i t e 1.2017709017 1 Fe
p on− s i t e 1.8725119829 2 Fe
t2g on− s i t e 0.6881678104 3 Fe
eg on− s i t e 0.6643740535 4 Fe
s s s 1 s t nn −0.1394413859 5 Fe
pps 1 s t nn 0.2681021988 6 Fe
ppp 1 s t nn 0.0297146384 7 Fe
dds 1 s t nn −0.0508569255 8 Fe
ddp 1 s t nn 0.0309574008 9 Fe
ddd 1 s t nn −0.0030320531 10 Fe
sps 1 s t nn 0.1777951121 11 Fe
sds 1 s t nn −0.0678095073 12 Fe
pds 1 s t nn −0.0930757448 13 Fe
pdp 1 s t nn 0.0208929181 14 Fe
s s s 2nd nn −0.0314096436 15 Fe
pps 2nd nn 0.1884829849 16 Fe
ppp 2nd nn 0.0390681326 17 Fe
dds 2nd nn −0.0312470067 18 Fe
ddp 2nd nn 0.0061819027 19 Fe
ddd 2nd nn 0.0007075703 20 Fe
sps 2nd nn 0.0735426247 21 Fe
sds 2nd nn −0.0388437621 22 Fe
pds 2nd nn −0.0602805056 23 Fe
pdp 2nd nn −0.0038276755 24 Fe

A.2. fcc Co

6 .54
0 .0 0 .005666
0 .7010
0 .64 0 .34 8 .02
0 .5 0 .5 0 .0
0 .5 0 .0 0 .5
0 .0 0 .5 0 .5
s on− s i t e 1.1294561625 1 Co
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A.3. fcc Ni

p on− s i t e 1.7526212931 2 Co
t2g on− s i t e 0.6054722667 3 Co
eg on− s i t e 0.6044489145 4 Co

s s s 1 s t nn −0.0904335380 5 Co
pps 1 s t nn 0.2374771684 6 Co
ppp 1 s t nn −0.0014205084 7 Co
dds 1 s t nn −0.0421276167 8 Co
ddp 1 s t nn 0.0297612343 9 Co
ddd 1 s t nn −0.0068388805 10 Co
sps 1 s t nn 0.1364858747 11 Co
sds 1 s t nn −0.0380593911 12 Co
pds 1 s t nn −0.0406895205 13 Co
pdp 1 s t nn 0.0279652234 14 Co
s s s 2nd nn −0.0033726902 15 Co
pps 2nd nn 0.0284892824 16 Co
ppp 2nd nn 0.0109884273 17 Co
dds 2nd nn −0.0075941500 18 Co
ddp 2nd nn 0.0049518463 19 Co
ddd 2nd nn −0.0001581584 20 Co
sps 2nd nn 0.0013494873 21 Co
sds 2nd nn −0.0111941742 22 Co
pds 2nd nn −0.0106077287 23 Co
pdp 2nd nn 0.0113362744 24 Co

A.3. fcc Ni

6 .55
0 .0 0 .0055
0 .6410
0 .69 0 .34 8 .97
0 .5 0 .5 0 . 0
0 .5 0 .5 0 . 5
0 .0 0 .5 0 . 5
s on− s i t e 1.1552640200 1 Ni
p on− s i t e 1.6058666706 2 Ni
t2g on− s i t e 0.5606777072 3 Ni
eg on− s i t e 0.5575338006 4 Ni

s s s 1 s t nn −0.0952508897 5 Ni
pps 1 s t nn 0.2170848101 6 Ni
ppp 1 s t nn 0.0166009460 7 Ni
dds 1 s t nn −0.0371246748 8 Ni
ddp 1 s t nn 0.0262859277 9 Ni
ddd 1 s t nn −0.0060013193 10 Ni
sps 1 s t nn 0.1400250643 11 Ni
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A. Parameters

sds 1 s t nn −0.0388022438 12 Ni
pds 1 s t nn −0.0440008491 13 Ni
pdp 1 s t nn 0.0237692818 14 Ni
s s s 2nd nn −0.0006464904 15 Ni
pps 2nd nn 0.0621984713 16 Ni
ppp 2nd nn 0.0068240496 17 Ni
dds 2nd nn −0.0065054153 18 Ni
ddp 2nd nn 0.0034442015 19 Ni
ddd 2nd nn −0.0002681518 20 Ni
sps 2nd nn 0.0144056119 21 Ni
sds 2nd nn −0.0101546962 22 Ni
pds 2nd nn −0.0101174628 23 Ni
pdp 2nd nn 0.0051021385 24 Ni
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