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Abstract

The practical importance of friction cannot be underestimated: from the creation of fires
by rubbing sticks together, to the current efforts to build nano devices, friction has played
an important role in the whole history of technology of mankind. Friction is a complex
multiscale phenomenon that depends both on the atomic interactions inside the contacts,
on the macroscopic elastic and plastic behavior of the solids in contact, and on the unavoid-
able, stochastic roughness characterizing real surfaces. Tribology, the science of friction,
has developed much in recent years, but many questions are still open.

This thesis addresses the role of surface roughness in tribology from atomic to macro-
scopic scale with the aid of numerical calculations. We have studied several features of
the contact between rough surfaces, such as the area of contact, the interfacial separation,
the adhesive and frictional properties, and leakage of sealed fluids. We have also studied
the wetting behavior of nanodroplets on randomly rough surfaces.

In order to study contact mechanics accurately it is necessary to consider an elastic
solid whose thickness is comparable to the largest wavelength of the surface roughness.
In principle, one should simulate a system with a very large amount of atoms, even for a
relatively small system. A fully atomistic model is impracticable, and we have developed
a multiscale molecular dynamics approach: the atomistic description is employed where
necessary, at the nanocontacts and on the surfaces, while a coarse-grained picture allows
us to simulate the correct long-range elastic response.

The area of contact between rough surfaces and the interfacial separation, with and
without adhesion, have been analyzed. The real area of contact plays a crucial role in the
friction, adhesion and wear. The interfacial separation is relevant to capillarity, leak-rate
of seals and optical interference. Numerical simulations showed that at small squeezing
pressure in the absence of adhesion, the area of contact depends linearly on the squeezing
pressure, and the interfacial separation depends logarithmically on squeezing pressure.

The sliding of elastic solids in contact with both flat and the rough surfaces, has been
studied. We found a strong dependence of sliding friction on the elastic modulus of solids,
and this is one of the main origins of the instability while sliding. For elastically hard
solids with planar surfaces with incommensurate surface structures, extremely low friction
(superlubricity) has been observed, which increases very abruptly as the elastic modulus
of the solids decreases. Even a relatively small surface roughness or a low concentration
of adsorbates can eliminate the superlubricity.

The wetting behavior of nanodroplets on rough hydrophilic and hydrophobic surfaces
has been studied. The problem is relevant for the fields of nano-electro-mechanics and
of nano fluid dynamics, both of which are of great current interest. No contact angle
hysteresis has been detected for nano-droplets on hydrophobic surfaces due to thermal
fluctuations. The contact angle increases with the root-mean-square roughness of the
surface and is almost independent of the fractal dimension of the surface. We have found
that thermal fluctuation are very important at the nanoscale. On hydrophilic surfaces,
however, thermal fluctuations do not remove the hysteresis of the contact angle.
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Kurzfassung

Die Bedeutung der Reibung in unserem Alltag ist nicht zu unterschätzen. Vom Entfachen
eines Feuers durch Aneinanderreiben von Stöckchen bis hin zu den heutigen Bemühungen,
nanoelektromechanische Systeme herzustellen, hat die Reibung eine zentrale Rolle in der
Technologieentwicklung der Menschheitsgeschichte gespielt. Reibung ist ein komplexes
Phänomen, das sich auf vielen verschiedenen Längenskalen abspielt. Es hängt stark
von den atomaren Wechselwirkungen innerhalb der Kontaktflächen, den makroskopischen
elastischen und inelastischen Eigenschaften der Materialien sowie der unvermeidbaren
stochastischen Rauigkeit realer Oberflächen ab. Trotz großer Fortschritte in der Tribologie
– der Reibungswissenschaft – sind noch viele interessante Fragen offen.

Diese Arbeit befasst sich unter Zuhilfenahme numerischer Methoden mit der Rolle der
Oberflächenrauigkeit in der Tribologie auf den verschiedenen Längenskalen, von der atom-
aren bis zur makroskopischen Größenordnung. Wir haben verschiedene Aspekte der Kon-
takte rauer Oberflächen untersucht, zum Beispiel Adhäsions- und Reibungseigenschaften
sowie die Leckströmungen von Flüssigkeiten an einer Dichtung. Außerdem haben wir
wir das Benetzungsverhalten von Nanotröpfchen auf stochastisch rauen Oberflächen be-
trachtet.

Für eine aussagekräftige Untersuchung der Mechanik des Kontaktes ist es notwendig,
die Dicke des elastischen Materials vergleichbar mit der größten Wellenlänge der Ober-
flächenrauigkeit zu wählen. Obwohl man prinzipiell eine atomistische Beschreibung ver-
wenden sollte, ist der numerische Aufwand bereits bei kleinen Systemen zu hoch. Deshalb
haben wir eine Multiskalen-Molekulardynamik-Methode entwickelt, bei der wir eine atom-
istische Beschreibung nur in den kritischen Regionen, nämlich in den Nanokontakten und
an der Oberfläche, verwenden; in den übrigen Gebiete wird die Physik der langreichweiti-
gen elastischen Response durch ein gröberes Modell wiedergegeben.

Die Kontaktfläche und die Grenzflächenseparation werden als Funktion des auf das
System ausgeübten Drucks ohne und mit Adhäsion analysiert. Die tatsächliche Kontakt-
fläche beeinflusst die Reibungs- und Hafteigenschaften und die Abnutzung entscheidend.
Die Grenzflächenseparation ist dagegen verantwortlich für Effekte wie die Kapilarität, op-
tische Interferenz und die Leckrate einer Abdichtung. Durch numerische Simulationen
konnten wir zeigen, dass bei kleinem Druck und ohne anziehende Wechselwirkung die
effektive Kontaktfläche linear vom angewandten Druck abhängt, während die Grenz-
flächenseparation logarithmisch von diesem abhängt.

Ferner haben wir das Gleiten von elastischen Materialien mit adhäsivem Kontakt bei
glatten und rauen Oberflächen untersucht. Dabei haben wir eine starke Abhängigkeit
der Gleitreibung vom Elastizitätsmodul festgestellt; dies ist eine der Hauptursachen der
Gleitinstabilität. Bei elastisch harten Materialien mit glatten Oberflächen und inkommen-
surablen Gitterstrukturen beobachteten wir eine extrem niedrige Reibung (superlubricity),
die bei sinkendem Elastizitätsmodul des Festkörpers abrupt ansteigt. Dieser Effekt wird
allerdings schon durch eine kleine Oberflächenrauigkeit oder durch eine geringe Konzen-
tration eines Adsorbats zerstört.
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Des weiteren haben wir das Benetzungsverhalten von Nanotröpfchen auf rauen hydro-
philen wie hydrophoben Oberflächen untersucht. Dieses Problem ist relevant in der Nano-
elektromechanik und der Nanofluiddynamik, die beide von großem aktuellen Interesse
sind. Aufgrund thermischer Fluktuationen wurde für Nanotröpfchen auf hydrophoben
Oberflächen keine Berührungswinkel-Hysterese gefunden. Der Kontaktwinkel steigt mit
der mittleren quadratische Abweichung der Rauigkeit der Oberfläche und ist nahezu un-
abhängig von ihrer fraktalen Dimension. Wir konnten feststellen, dass thermische Fluk-
tuationen auf der Nanoebene sehr wichtig sind. Auf hydrophilen Oberflächen ist die ther-
mische Fluktuation allerdings nicht ausreichend, um die Hysterese des Kontaktwinkels zu
beseitigen.
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Chapter 1

Introduction

If we put two solid objects with flat surfaces into contact we should expect a large adhesive
energy due to the formation of chemical bonds between the atoms of the two surfaces. Even
when the surfaces are chemically inert, the relatively weak van der Waals interaction,
typically ∼ 10 − 100 meV per atom, is enough to give rise to a large separation force. In
addition, at least for commensurate surfaces, the friction preventing lateral sliding should
be very large, all this without any glue, and without any external normal load, since the
adhesive interaction of the surfaces in contact acts as a large normal load. Furthermore
we should expect a perfect seal: the contact between flat surfaces allows no space for fluid
to flow at the interface.

On the other hand we know from everyday’s experience that apparently flat surfaces
in contact usually behave in a completely different way, with negligible adhesion, a friction
force proportional to the normal load, and weak sealing properties.

So, why do apparently flat surfaces not behave as expected? The explanation is sim-
ple: “flat” surfaces are not flat! Although they may seem flat macroscopically, a careful
examination at smaller length-scale reveals a rough, random microscopic profile [1]. The
real contact area can be many orders of magnitude smaller than the nominal one, and our
arguments based on the adhesive energy per atom does not hold.

Recently much theoretical effort has been devoted to the study of the influence by
roughness on contact mechanics adhesion, friction, wetting, and sealing [2–4]. Many ques-
tions remain unanswered and the available theories can derive large benefit from compar-
isons with numerical simulations, both in term of validation and of tuning and adjustment
of the theory. It is of no surprise that several research groups have tackled these problems
with various numerical techniques [5–7].

We have developed a novel approach to numerical simulations of contact mechanics
problems for rough surfaces. Our method is based on Molecular Dynamics and allows us
to simulate systems at atomic resolution. To manage large enough systems without having
to deal with the huge number of atoms involved, we have designed a multiscale scheme
borrowed from the finite element analysis techniques [5]. The smartblock model — this is
the colloquial name that we use for our multiscale model — is described in Chapter 2. The
subsequent chapters, from (3 to 9), show studies and simulations of five different topics
involving randomly rough surfaces. Chapter 10 reports the final remarks and conclusions
of my work. But before going into more details, let me introduce this fascinating topic
with some hints about the role of roughness in tribology and in nature.
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2 Chapter 1. Introduction

Figure 1.1: Egyptians using lubricant to reduce friction, and aid the movement of colossus.
Adapted from Ref. [11].

1.1 Overview of tribology

Tribology is a multidisciplinary science dealing with friction, wear and lubrication. It
affects many aspects of everyday life and has played a central role in technology. The
word tribology, which is based upon the Greek word tribos (rubbing), appeared in 1966.
The literal translation would be the “science of rubbing”. Tribological phenomena occur
whenever two material bodies are brought together and translated with respect to each
other. The goals of exploration of these phenomena, dating back from the the creation of
fire by rubbing sticks together to current efforts to make nanodevices, are to understand
their physical and chemical origins, and to design ways and means for minimizing losses,
e.g. energy dissipation and material degradation, which can cause huge economic loss [8,9].

Tribological phenomena occur in systems encompassing a broad spectrum of length
scales, from common machine, instrument and tool elements, such as a ball bearing
and its race groove, a pair of spur gear involute teeth, cams and shafts, components
of polishing, machining and patterning instruments, to high density data storage devices,
micro-machines and bio-tribological system, such as synovial joints and total joint replace-
ments [10]. Common to all tribological systems is the importance of interfacial configu-
ration. Thus, studies of the basic origins of tribological phenomena should focus on the
investigation of contact mechanisms and on properties of interfaces between solids (both
static and dynamic), interfacial structure and adhesion, flow, and rheology of confined
liquid under shearing.

Our ancestors already knew how to reduce friction. Here is an example: In order
to build monuments or stone blocks, they had to transport large stones. It is amazing
that in 3500 BC they already knew that adding lubricants reduced friction, during the
transportation of these heavy stones. Painting shown in Fig. 1.1 illustrates the use of
sledge to transport heavy statues in Egypt (circa 1880 BC). In this transportation 172
slaves are being used to drag a large statue weighing about 60,000 kg along a wooden track.
One man, standing on the sledge supporting the statue, can be seen pouring a liquid into
the path of motion. He could be viewed as one of the earliest lubrication engineers [10].
Dowson has estimated that each man exerted a pull of about 80 kg. On this basis the
total effort, which must at least equal the friction force, becomes 172x800 N. Thus, the
coefficient of friction is about 0.23 [11]. A tomb in Egypt, dated several thousands of years
BC, provides the evidence of the use of lubricants. A chariot in this tomb still contains
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some of the original animal-fat lubricant in its wheel bearing.

Several thousand years ago our ancestors used a practical way to reduce friction. But
there were no clear friction laws available at that time. The two basic laws of friction, that
the frictional resistance is proportional to load and that it is independent of the area of the
sliding surfaces, have been known since the work of Leonardo da Vinci (1452-1519). The
two laws had been verified experimentally and were later rediscovered in 1699 by the French
engineer Amontons [12]. These observations were verified by Coulomb in 1781, who made
clear distinction between static friction, the force required to start sliding, and kinetic
friction, the force required to maintain friction. The latter is usually appreciably lower
than the former. Coulomb observed that the kinetic friction is often nearly independent of
the speed of sliding. He also concluded that the friction was due to the interlocking of the
surface asperities and represented in the main work of lifting the load over the summits
of these asperities.

In reality, friction is a complex multiscale phenomenon that depends both on the
atomic interactions inside the contacts and on the macroscopic elastic and plastic de-
formation that determine the morphology and stress distribution within these contacts.
Understanding the atomistic mechanisms underlying tribological processes is fundamental
to many basic and applied problems, such as wetting, capillarity, adhesion, lubrication,
sealing, hardness, micro/nano indentation, atomic-scale probing, surface modification and
manipulation [13, 14]. Exploring these phenomena in the nanoscale regime often requires
both experimental probes and theoretical approaches. Sometimes it may be difficult or im-
possible to carry out useful experiments under extreme temperatures and pressures. But,
a computer simulation of a material in, say, a shock wave, a high-temperature plasma, a
nuclear reactor, a planetary core, could be perfectly feasible. Thus computer simulation
provides a direct route from the microscopic details of a system, such as the masses of
the atoms, the interactions between them, the molecular geometry, up to macroscopic
properties of experimental interest, such as the equation of state, transport coefficients,
structure parameters. In general it opens new avenues of investigation of the microscopic
origins of material phenomena. This thesis will address some recent computational studies
that are helping to unravel this complex interplay underlying tribology.

1.2 Surface roughness

Normally it is very difficult to prepare surfaces really flat. Even on carefully polished
surfaces, hills and valleys are large compared with the size of a molecule. If two solids are
placed in contact, the upper surface will be supported on the summits of the irregularities,
and large areas of the surfaces will be separated by a distance which is great compared with
the molecular range of action [9, 12]. Although the techniques of grinding and polishing
have advanced recently, it remains difficult to prepare surfaces of appreciable size that
are flat on the scale of order 100 Å, and most surfaces used in engineering practice have
surface irregularities which are much greater.

1.2.1 Lessons from Nature

Some biological systems have anti-adhesive surfaces. Firstly, many plant leaves (such as
the lotus leaf) are covered by a hydrophobic cuticle, which is composed of a mixture of large
hydrocarbon molecules [16,17]. Secondly, the surface has a unique roughness distribution.
It has been reported that for some leaf surfaces, the roughness of the hydrophobic leaf
surface decrease wettability, which is reflected in a larger contact angle of water droplets
on such surfaces (see Fig. 1.2 and 1.3).
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Figure 1.2: A droplet on a superhydrophobic surface: The droplet touch the leaf only at
a few points and forms a ball. It completely rolls off at the slightest declination. Adapted
from Ref. [15] with permission.

Figure 1.3: A leaf surface with roughness on several length scales optimized via nature se-
lection for hydrophobicity and self-cleaning. Through the combination of micro-structure
(cells) and nanostructure (wax crystals) the macroscopic water contact angle θ0 is maxi-
mized. Adapted from Ref. [15] with permission.
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Figure 1.4: A gecko climbing on a vertical glass wall.

Geckos are known for their amazing climbing ability. They can run up any wall, run
across the ceiling, and stick to ceilings (see Fig. 1.4). They rely on the extreme miniatur-
ization and multiplication of contact elements, and the soles of their feet are covered by
about half a million sub-micrometer keratin hairs, called spatula. These spatulas make
their feet, known as “gecko feet”, so sticky. Each hair is 30− 130 µm long and is only one
tenth the diameter of a human hair and contains hundreds of projections terminating in
0.2−0.5 µm plate-like structures. The foot typically has about 5000 hairs/mm2. Each hair
produces a tiny force (≈ 100 nN), primarily due to van der Waals attraction and possibly
capillary interactions (meniscus contribution), and millions of hairs acting together create
a large adhesive force of the order of 10 nN with a pad area of approximately 100 mm2,
sufficient to keep geckos firmly on their feet, even when upside down on a glass ceiling [18].
The bond between hair and surface can be easily broken by “peeling” in the same way
one removes a strip of adhesive tape, allowing geckos to run across ceilings.

1.2.2 Modern applications

Surface roughness has a huge influence on many important physical phenomena such as
contact mechanics, sealing, adhesion and friction. Thus, for example, experiments have
shown that a substrate with a root-mean-square(rms) roughness of the order ∼ 1 µm can
completely remove the adhesion between a rubber ball and a substrate, while nanoscale
roughness will remove the adhesion between most hard solids, e.g., metals and minerals;
this is the reason why adhesion is usually not observed in most macroscopic phenomena [1].
Similarly, rubber friction on most surfaces of practical interest, e.g., road surfaces, is mainly
due to the pulsating forces that act on the rubber surface as it slides over the substrate
asperities.

There is an ever increasing trend toward device miniaturization and micro or nano-
electromechanical (MEMS/NEMS) devices [19]. The central problems are bonding and
sticking between the contacting surfaces [20], and the production of these has always been
a tricky and risky task to bond parts of two wafer surfaces, while preventing another
predefined area of the same wafer surfaces from sticking. However, in many MEMS fabri-
cation processes, the wafer bonding and anti-sticking must be achieved at the same time in
one processing step. Let us illustrate the importance of surface roughness on two modern
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applications.

The first deals with surface roughness effects on direct wafer bonding1. At room
temperature the wafer bonding is due to relatively weak inter-atomic attraction forces,
e.g., van der Waals interaction or hydrogen bonding, giving (for perfectly flat surfaces)
an interfacial binding energy of order 6 meV/Å2. The surface roughness of the wafer is
the most critical parameter determining the strength of the wafer bonding. In particular,
when the surface roughness exceeds a critical value, the wafers will not bind at all, and
this is in good agreement with the theory presented in Ref. [21]. Primary grade polished
silicon wafer surfaces have rms roughness of order ∼ 0.1 nm when they are measured over
a surface area with 10µm× 10µm , and such surfaces bind spontaneously. However, when
the surface roughness amplitude is of order ∼ 1 nm , the surfaces either bind weakly when
they are squeezed together, or they do not bind at all, depending on the detailed nature
of the surface roughness power spectrum.

The second application is anti-sticking via the formation of hydrophobic coatings on
surfaces by creating the appropriate type of surface roughness. It involves copying Nature
where many plant surfaces are highly hydrophobic as a result of the formation of special
types of surface roughness. The surface roughness allows air to be trapped between the
liquid and the substrate, while the liquid is suspended on the asperities. Since the area of
real liquid-substrate contact is highly reduced, the contact angle of the drop is determined
almost solely by the liquid surface tension, leading to a very large contact angle. New
commercial products based on “Lotus effect”, such as self-cleaning paints, glass windows
and car windshields, have been produced.

1.3 Surface roughness enters tribology

Computer simulations can provide essentially exact results for problems in statistical me-
chanics that would otherwise be soluble only by approximate methods. Computer simu-
lation can be used to test theories, and these results compared with experiments. In the
first place, it is a test of the underlying model used in computer simulation. If the model is
a good one, one hopes to offer insights to experimentalist and assists in the interpretation
of the results. Computer simulation has a dual role as a bridge that connects models and
theoretical predictions on one hand, and which connects models and experimental results
on the other. It can be also termed as “computer experiments” due to its connecting
role [22,23].

The scope of this thesis is to use theoretical and computational tools to study the role
of surface roughness in tribology, including the area of real contact, interfacial separation,
adhesion, friction, sealing and superhydrophobicity. The thesis is divided into ten chapters.
In the first I give an overview of tribology and surface roughness and Chapter 2 describes
multiscale molecular dynamics model we use. Chapters 3-5 deal with contact mechanics.
The first two chapters consider contact mechanics without adhesion. The area of contact
between two randomly rough surfaces is considered in the third chapter. At small load the
real contact area varies linearly with the load, and at high load the contact area approaches
approximately full contact, in good agreement with theories.

When two randomly rough surfaces are brought into contact, what is the distribution
of interfacial separations? How does the interfacial separation depend on the load? This
topic will be discussed in chapter 4, and in chapter 5 I will discuss what happens to the
area of contact and interfacial separation when adhesion is included.

1Wafer bonding is a convenient method to combine different materials. If the surfaces of applied wafers
are sufficiently flat and clean, it is possible to bring them so close together that bonds will be formed.
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Based on the contact mechanics theory developed in chapter 4, a theory of leak-rate
seals will be presented in chapter 6. Molecular dynamics results will be presented, show-
ing that when two elastic solids with randomly rough surfaces are squeezed together with
increasing magnification or decreasing squeezing pressure, a non-contact channel will per-
colate when the relative projected contact area A/A0, is of order 0.4, in accordance with
the percolation theory.

Everyday life tells us that liquids play an important role in sliding friction and adhesion.
They behave as lubricants in human bodies, particularly in the joints. However, in many
biological attachment systems, they act like adhesives, e.g. facilitating insects to move
on ceilings or vertical walls. From previous chapters, we know how the real contact area
and interfacial separation change with load, when two surfaces are brought into contact.
The force required to separate these two surfaces, is usually called pull-off force. What
happens if we put liquid in between? How does the amount of liquid influence adhesion?
These questions will be addressed in chapter 7.

The sliding of elastic solids, in adhesive contact with flat and rough surfaces, is stud-
ied in chapter 8, where the dependence of the sliding friction on the elastic modulus is
considered. For elastically hard solids, with planar surface and incommensurate surface
structures, we observe extremely low friction (superlubricity), which increases abruptly as
the elastic modulus decreases. We show that even a relatively small surface roughness, or
a low concentration of adsorbates, may completely kill the superlubric state.

The wetting property of the lubricants is essential to lubrication. The behavior of liq-
uid nanodroplets, on a rough hydrophobic and hydrophilic solid surface, will be studied in
chapter 9. On hydrophobic surfaces, the contact angle of nanodroplets depends strongly
on the root-mean-square (rms) roughness amplitude of the substrate, but is nearly in-
dependent of the fractal dimension of the surface, and there is negligible contact angle
hysteresis. On hydrophilic surfaces, however, there is strong contact angle hysteresis, due
to a higher energy barrier. These findings may be very important for the development of
artificially bio-mimetic superhydrophobic surfaces.

Chapter 10 reports the final remarks and conclusions of my work.
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face roughness and adsorbates on superlubricity, Chapter 8, Superlubricity, Ed. A.
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Chapter 2

Multiscale Molecular Dynamics

In present chapter I will present a detailed description of the main features of Molecular
Dynamics(MD): molecular dynamics time integration algorithm, interatomic potential,
potential truncation and periodic boundary condition. Section 2.2 describes the system
without multiscale coarse-graining. Section 2.3 discusses its elastic properties, and section
2.4 shows the technical details to implement the multiscale description. In the next section
I will introduce the basic ideas that drive the development of the model.

The need to simulate large elastic bodies in the contest of friction and adhesion brought
our group to implement what we named “Smartblock” model. The description of the body
is atomistic, and the atoms are treated within the conventional Molecular Dynamics. Only
the outermost atoms can interact with external atoms, such as lubricant molecules or
surfaces of other bodies.

The “Smartblock” correctly implements the elastic response of the system to external
forces, over the widest range of wavelength compatible with the discrete structure of the
atomistic description and the finite size of the sample.

The model is quite simple to understand and to implement. Moreover, the internal
lattice structure of the block avoids the need of the list of neighbors and allows an efficient
pipe lining of the computer instructions, thus the calculation is much less computationally
demanding than the analogous one with the typical realistic potentials. The model allows
an easy tuning of the elastic parameters of the medium. Furthermore a coarse-grained
multiscale description is trivially implemented, allowing the simulations of quite thick
bodies.

On the other hand there is no attempt to describe other properties such as plastic
deformation, dislocations, cracks, atomistic diffusion, structural changes and phase tran-
sitions.

2.1 Simulation method

2.1.1 Numerical integration algorithm

Nowadays one of the most attractive, simple and numerically stable integration schemes for
Newton’s equation of motion is the velocity Verlet algorithm. Based on Taylor expansion
of the coordinates r(t), we can calculate the position r(t+ δt) at time t+ δt:

r(t+ δt) = r(t) +
∑

n

(δt)n

n!

dnr(t)

dtn

If we add the corresponding equation for r(t− δt) and neglect the terms of order (δt)4

and higher, a simple expression for the calculation of the particle position after a single

9
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time step is obtained:

r(t+ δt) = 2r(t) − r(t− δt) + (δt)2
f(t)

m

where m is an atomic mass and f(t) is the force experienced by this atom at time t. The
velocities can be calculated at time t from the following expression:

ṙ(t) =
1

2δt
(r(t+ δt) − r(t− δt))

The described integration scheme is known as Verlet algorithm. A slight modification is
the velocity scheme Verlet which calculates the velocities at time t+δt using the velocities
obtained at time t+ δt

2 :

v(t+
δt

2
) = v(t) +

δt

2

f(t)

m

r(t+ δt) = r(t) + δtv(t) +
(δt)2

2

f(t)

m
+O(δt4)

Finally new velocities at time t+ δt are estimated as:

v(t+ δt) = v(t) +
δt

2m
[f(t+ δt) + f(t)] +O(δt3)

The modified velocity Verlet for Langevin and damping dynamics was developed by
Ermak [23]. In his approximation the forces f(t) remain almost constant over the time
step δt. The algorithm for zero stochastic forces was implemented by Ref. [24]:

r(t+ δt) = r(t) + c1δtv(t) + c2δt
2 f(t)

m
+O(δt4)

v(t+ δt) = c0v(t) + c1δt
f(t)

m
+O(δt3)

where c0 = e−γδt, c1 = (γδt)−1(1− c0), c2 = (γδt)−1(1− c1) and γ is a friction coefficient.
The structure relaxation near the minimum of the potential energy is performed by “smart
minimization“, i.e. if v(t) · f(t) < 0 the velocity is set zero.

2.1.2 Interatomic potential and potential truncation

The atoms at the interface between block and substrate interact with potential

U(r) = 4ǫ

[

(

r0
r

)12

− α

(

r0
r

)6
]

(2.1)

where r is the distance between a pair of atoms. When α = 1, Eq. 2.1 becomes the
standard Lennard-Jones potential. In this case the parameter ǫ is the binding energy
between two atoms at the separation r = 21/6r0. We can estimate the interfacial binding
energy (when α = 1) per unit area with ∆γ = 4ǫ/a2. For example, if r0 = 3.28 Å and
ǫ = 18.6 meV, the interfacial binding energy per unit area is ∆γ ≈ 11 meV/Å2. When we
study contact mechanics without adhesion we put α = 0.

The potential in Eq. 2.1 has an infinite range. In practical applications, it is customary
to establish a cutoff radius Rc and disregard the interactions between atoms separated
by more than Rc. This results in simpler programs and enormous savings of computer
resources, because the number of atomic pairs separated by a distance r grows as r2 and
becomes quickly huge. A simple truncation of the potential creates a new problem though:
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whenever a particle pair crosses the cutoff distance, the energy makes a little jump. A
large number of these events is likely to spoil energy conservation in a simulation. To avoid
this problem, the potential is often shifted in order to vanish at the cutoff radius [25]. In
our simulations, we apply the LJ potential when r < Rc, where Rc = 3.5r0. When
Rc < r < Rc + r0/2, we use an interpolated third order of polynomial equation to connect
it to zero. The two functions have the same value and the first derivative in Rc, in order
to make the potential have a smooth transition from the cutoff distance to where the
potential becomes zero.

When we study lubrication and liquid droplets property, we include the octane molecules
C8H18 between block and substrate. The octane molecules are treated with the united
atom model: every molecule comprises eight particles corresponding to the groups CH2

and CH3. The optimized potential for liquid simulation (OPLS) [26,27] is employed. The
atoms of the two walls interact through Lennard-Jones potential with r0 = 3.28 Å.

2.1.3 Periodic boundary condition

No matter how large the simulated system is, its number of atoms N would be negligible
compared with the number of atoms contained in a macroscopic piece of matter (of the
order of 1023), and the ratio between the number of surface atoms and the total number
of atoms would be much larger than in reality, causing surface effects to be much more
important than what they should.

A solution to this problem is to use periodic boundary conditions(PBC). When using
PBC, particles are enclosed in a box, and we can imagine that this box is replicated to
infinity by rigid translation in all three Cartesian directions, completely filling the space.
In other words, if one of our particles is located at position r in the box, we assume that
this particle really represents an infinite set of particles located at

r + la +mb + nc, (l,m, n = −∞,∞)

where l,m, n are integers, we have indicated with a,b, c the vectors corresponding to the
edges of the box. All these “image“ particles move together, and in fact only one of them
is represented in the computer program.

The key point is that now each particle i in the box should be thought as interacting
not only with other particles j in the box, but also with their images in nearby boxes.
That is, interactions can go through box boundaries. In fact, one can easily see that (a) we
have virtually eliminated surface effects from our system, and (b) the position of the box
boundaries has no effect. Apparently, the number of interacting pairs increases enormously
as an effect of PBC. In practice, this is not true because potentials usually have a short
interaction range. The minimum image criterion discussed in Ref. [28] simplifies things
further, minimizing the additional complexity introduced in a program by PBC.

2.2 The ancestor of the “smartblock”

In 2000 Persson and Ballone published a paper [29] where they introduced a simple and
effective model to study the boundary lubrication between elastic walls. For each wall only
the outermost layer of atoms was considered. These atoms were able to interact with the
lubricant or with the atoms of the other wall with Lennard-Jones potentials. The walls’
atoms were connected to a rigid surface through special springs which exert an elastic
reaction not only to elongation, but also to lateral bending. The walls’ atoms are coupled
with their in-plane neighbors with similar springs.
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Figure 2.1: The model of Persson and Ballone with long range elasticity. Side view.

The simple model of Persson and Ballone catches two essential features: Firstly the
walls are not rigid, differently from previous models adopted for simulations on boundary
lubrication [30], but they take into account properly the elastic energy stored during
compression or stretching, which is an essential ingredient for the study of the squeeze-out
process. Secondly the shear rigidity is also properly described. Both the Young modulus
and the shear modulus can be independently tuned via the choice of the elastic constants
of the springs.

2.2.1 A lattice of atoms connected through springs

The model of Persson and Ballone works well when long range elastic deformation is
considered, i.e., when the field of displacements varies gently at the interface. When there
are abrupt changes of the profile, for instance when the displacement at the interface
comprises short wavelength Fourier components, then the model reveals its limitations.
The lack of internal degrees of freedom does not allow a proper description of the elastic
fields inside the bulk. In particular the elastic lateral coupling within the bulk, responsible
of the exponential damping of the short wavelengths strain fields, here is absent.

The solution to overcome this limitation is straightforward: we explicitly introduce
many layers of atoms, placed on the points of a simple cubic lattice, and coupled with
springs to their nearest neighbors.

2.2.2 The springs

The “springs”, as in the previous model, are special, since they can resist to lateral bending.
The force due to a vertical spring connecting two consecutive atoms 1 and 2 along the z
axis is given by the formulas below, where a is the lattice spacing, that is the equilibrium
length of the spring.

Fx = −kb∆x = −kb(x2 − x1) (2.2)

Fy = −kb∆y = −kb(y2 − y1) (2.3)

Fz = −k(∆z − a) = −k[z2 − (z1 + a)] (2.4)

Analogous formulas hold for the springs parallel to the x and to the y axes. The two
elastic constants of the spring, namely k and kb, are related to the Young modulus Y and
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Figure 2.2: Side view of the block. The system is replaced by a simple cubic grid of
atoms connected through springs, to take care of the internal degrees of freedom. Periodic
boundary conditions are used along the x and y directions.

the shear modulus G respectively:

k = Y a

kb = Ga

We observe that in the special case kb = k the force acting on particle 2 due to
the spring connecting 1 with 2 becomes the one of a usual spring with length 0 and
with equilibrium position coinciding with the equilibrium position of particle 2 relative
to particle 1. While the force exerted by particle 2 onto particle 1 is centered on the
equilibrium position of particle 1 with relative to particle 2. We observe also that a true
spring connecting the particles 1 and 2 would have a completely different behavior, giving
rise to forces along the line between the two particles.

The “springs” introduced in the model do not conserve the total angular momentum,
since the forces are not in the direction of the springs. This is of no surprise: each spring
predicts its own orientation parallel to one of the three Cartesian axes, thus the system is
not invariant for rotation.

2.3 Elastic properties of a medium with cubic symmetry

The Smartblock is made of simple cubic lattice, thus it has the symmetric properties of a
cubic system. In particular the system is not isotropic and it is described by 3 independent
elastic constants, instead of 2 like for isotropic elastic media [31]. That means that we
can choose, for example, the Young modulus Y (along the axes), the Poisson ratio ν, and
the shear modulus G. In isotropic media the latter parameter follows from the first two
through the relation G = Y/[2(1 + ν)] [32]

Following [33] we can write the relations between stress and strain for the cubic system
in the following way:
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Figure 2.3: The grid of atoms under uniform strain along the diagonal AC {x = z, y = 0}.
There is no strain along the orthogonal directions, that is along the y axis and the BD
diagonal.
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(2.5)

The three elastic moduli c11, c12 and c44 are given by

c11 =
1 − ν

(1 + ν)(1 − 2ν)
Y

c12 =
ν

(1 + ν)(1 − 2ν)
Y

c44 = 2G

In many texts the matrix notation of equation 2.5 is often defined in a slightly different
way, using the shear strains γxy = 2ǫxy, γyz = 2ǫyz , and γzx = 2ǫzx in place of the off-
diagonal terms of the strain tensors. Thus the definition of c44 differs by a factor 0.5.

2.3.1 The Poisson ratio of the Smartblock is zero

The Smartblock always has vanishing Poisson ratio, no matter what are the choices of the
elastic constants k and kb. Indeed any compression parallel to one axis does not give rise
to lateral expansion or to compressive stress along the other axes.

2.3.2 Anisotropy of the Smartblock

To better understand the anisotropic behavior of the smartblock, let us consider an uni-
axial strain along a direction not parallel with the axes, such us the [101] crystalline
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Figure 2.4: Elastic block under shear strain. The strain tensor has component ǫxz =
∆x/2h ≈ θ/2

orientation as shown in figure 2.3. Let the strain along AC be ε and the strain along BD
be zero. We want to calculate the components of the stress tensor. The lattice spacing
a is the length of the relaxed cell: a = EB = BG. We have FC = (1 + ε)a/

√
2, thus

the deformations of the strings BC and DC are ∆x = ∆z = εa/2; ∆y = 0. The springs
parallel to the y axis, i.e., orthogonal to the plane of the figure, are not deformed.

The calculation of the stress between atomic planes orthogonal to AC is straightfor-
ward. The force on atom C due to atoms B and D is directed towards A and has modulus
(
√

2/2)εa(k + kb). The area per atom in the considered atomic planes is
√

2a2. Thus
the stress along AC is ε(k + kb)/(2a). The same strain applied along one of the main
axes would lead to the stress εk/a. In order to get the same stress along different

directions we must choose kb = k. It is easy to see that with this choice the stress
along BD vanishes, as it has to be for a system with Poisson ratio ν = 0.

The shear modulus of the smartblock is G = kb/a, thus in the case of the isotropic
smartblock (k = kb) it coincides with the Young modulus. This is puzzling, since isotropic
elastic materials must have the shear modulus G = Y/[2(1 + ν)], hence G must be half
of Y when the Poisson ratio is null. This discrepancy has to do with the broken rota-
tional invariance of the model. Consider the shear stress sketched in figure 2.4: the shear
θ ≈ ∆x/h is twice the off-diagonal component ǫxz of the strain tensor. Indeed only the
symmetric part of the gradient of the displacement 1

2(∂ux

∂z + ∂uz

∂x ) ≈ θ/2 contributes to the

strain. The antisymmetric part 1
2(∂ux

∂z − ∂uz

∂x ) corresponds to an average rotation of θ/2.
On the other hand the smartblock reacts to any attempt to rotate it in a similar way as
when a shear strain is applied. Therefore an isotropic smartblock should have a shear
modulus twice bigger than that of an isotropic elastic medium. Conversely, when the

smartblock has to behave as close as possible to isotropic elastic media, the

best choice of the shear modulus is anyway G = Y/[2(1 + ν)] = Y/2, so that the

proper force field is obtained for small deformations.
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2.4 Going multiscale

In some circumstances [5,6] it is useful to simulate quite large and thick samples. Moreover
high resolution up to the atomic level is needed in part of the sample, typically at the
interface. The solution to avoid excessive computational times is a multiscale approach:
high resolution is achieved where it is needed, but a coarse grained description is employed
when it is feasible. The coarse graining can happen more times, and to various degrees of
resolution, so that a multilevel description of the system comprising many hierarchies is
implemented.

The grid structure of the smartblock allows a simple procedure to achieve a multiscale
description: groups of atoms can be replaced by single, bigger atoms, and the elastic
constants of the springs are redefined to guarantee the same elastic response. In many
calculations performed by our group we used to replace a cube of 2× 2× 2 particles with
a single particle, repeating this merging procedure every two layers. More generally any
change of resolution involves merging together a box made of mx × my × mz particles.
The three numbers mx, my and mz are called merging factors along the three axes.

The equilibrium position of the new particle is in the center of mass of the group of
particles merged together. Its mass is mxmymz times the mass of the original particles,
so that the density does not change. In fact the masses are only important to study the
kinetic, but they do not influence the static equilibrium configuration.

The three merging factors can be chosen independently. The easiest way to calculate
the new springs’ elastic constants is to consider the merging only along one of the axes.
Fig. 2.5 sketches the case mz = 2, mx = my = 1 (no change of lattice spacing along
x and y). Along the direction of merging the new spring constants for elongation and
bending are k′ = k/mz and k′b = kb/mz respectively. The longer springs get proportionally
smaller elastic constants, as it happens when springs are connected in series. In the two
directions orthogonal to each spring, mz (old) springs are replaced by a single one in
parallel configuration, so the elastic constants increase proportionally: k′ = mxk, k

′
b =

mxkb. Below is the general formula giving the new elastic constants of the springs along
the z axis, with arbitrary merging factors:

k′ =
mxmy

mz
k ; k′b =

mxmy

mz
kb (2.6)

Analogous formulas hold for the springs parallel to the x and y axes.
To get the whole picture we have to characterize the springs at the interface between

the two lattices, e.g., the ones crossing the dashed line in figure 2.5. When the merging is
in the direction z orthogonal to the interface, the answer is easy: both elastic constants
k and kb get multiplied by the factor 2/(1 +mz) Actually their length is 1

2(mz + 1)az, az

being the old lattice spacing along z. Each of these interface springs can be thought as
half a spring of the old grid connected with half a spring of the new grid.

When the merging is along a direction orthogonal to the interface between the two
grids, as sketched in figure 2.6, then the spring constants do not change, but the forces
between the particles are calculated taking into account the in-plane shift between the
atoms of the two grids. Each interface particle of the upper lattice interacts with mx×my

particles of the lower lattice. The equations (2.2) and (2.3) are modified: Fx = −kb(∆x+
x-shift), Fy = −kb(∆x + y-shift). The two in-plane shifts depend on the pair of particle
considered.
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Figure 2.5: The grid of particles is coarse grained by replacing two atoms with a single
one. Merging factors mx = my = 1, mz = 2. Masses, equilibrium positions and spring
constants are changed accordingly.

Figure 2.6: Change of lattice spacing along a direction parallel to the interface between
the two grids.
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Chapter 3

Area of Contact between

Randomly Rough Surfaces

It is very difficult to prepare surfaces which are really flat. Even on highly polished
surfaces, there are hills and valleys, which are large compared with the size of a molecule.
If two solids are placed in contact, the upper surface will be supported on the summits
of irregularities, and large areas of the surfaces will be separated by a distance which is
great compared with the molecular range of action.

In this chapter I will use our multiscale molecular dynamics approach to study contact
mechanics, which can be used also when the surfaces have roughness on many different
length scales, e.g. for self-affine fractal surfaces. As an illustration, the contact between
randomly rough surfaces is considered. Results show that the contact area varies linearly
with the load for small load. The contact morphology and the pressure distribution, at
different magnifications, are shown both with and without adhesion. The calculations are
compared with analytical contact mechanics models based on continuum mechanics. All
the numerical calculations in this chapter are based on the condition of small load, that
is, the real contact area is much smaller than the nominal contact area.

3.1 Introduction

Adhesion and friction between solid surfaces are common phenomena in nature and of
extreme importance in biology and technology. Most surfaces of solids have roughness on
many different length scales [34,35], and it is usually necessary to consider many decades
in length scale when describing the contact between solids [1]. This makes it very hard
to describe accurately the contact mechanics between macroscopic solids using computer
simulation methods, e.g., atomistic molecular dynamics, or finite element calculations
based on continuum mechanics.

Consider a solid with a nominally flat surface. Let x, y, z be a coordinate system with
the x, y plane parallel to the surface plane. Assume that z = h(x) describes the surface
height profile, where x = (x, y) is the position vector within the surface plane. The most
important property characterizing a randomly rough surface is the surface roughness power
spectrum C(q) defined by [1,2]

C(q) =
1

(2π)2

∫

d2x 〈h(x)h(0)〉eiq·x. (3.1)

Here 〈...〉 stands for ensemble average and we have assumed that h(x) is measured from
the average surface plane so that 〈h〉 = 0. In what follows we will assume that the
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log q
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Figure 3.1: Surface roughness power spectrum of a surface which is self affine fractal for
q0 < q < q1. The long-distance roll-off wave vector q0 and the short distance cut-off wave
vector q1 depends on the system under consideration. The slope of the logC− logq relation
for q > q0 determines the fractal exponent of the surface. The lateral size L of the surface
(or of the studied surface region) determines the smallest possible wave vector qL = 2π/L.

statistical properties of the surface are isotropic, in which case C(q) will only depend on
the magnitude q = |q| of the wave vector q.

Many surfaces tend to be nearly self-affine fractal. A self-affine fractal surface has the
property that if part of the surface is magnified, with a magnification which in general is
appropriately different in the perpendicular direction to the surface as compared to the
lateral directions, then the surface “looks the same”, i.e., the statistical properties of the
surface are invariant under the scale transformation [1]. For a self-affine surface the power
spectrum has the power-law behavior

C(q) ∼ q−2(H+1),

where the Hurst exponent H is related to the fractal dimension Df of the surface via
H = 3−Df . Of course, for real surfaces this relation only holds in some finite wave vector
region q0 < q < q1, and in a typical case C(q) has the form shown in Fig. 3.1. Note that in
many cases there is a roll-off wave-vector q0 below which C(q) is approximately constant.

Let us consider the contact between an elastic solid with a flat surface and a hard
randomly rough substrate. Fig. 3.1 shows the contact between the solids at increasing
magnification ζ. At low magnification (ζ = 1) it looks as if complete contact occurs
between the solids at the caps of many macro asperities. but when the magnification is
increased, smaller length scale roughness is detected, and it is observed that only partial
contact occurs at the asperity caps. In fact, if there were no short distance cut-off, the true
contact area would vanish. In reality, however, a short distance cut-off will always exist
since the shortest possible length is an atomic distance. In many cases, the local pressure
at asperity contact regions at high magnification becomes so high that the material yields
plastically before reaching the atomic dimension. In these cases the size of the real contact
area will be determined mainly by the yield stress of the solid.

The magnification ζ refers to some (arbitrary) chosen reference length scale. This
could be, e.g., the lateral size L of the nominal contact area in which case ζ = L/λ, where
λ is the shortest wavelength roughness which can be resolved at magnification ζ. In this
chapter I will instead use the roll-off wavelength λ0 = 2π/q0 as the reference length so
that ζ = λ0/λ.
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Recently, a very general contact mechanics theory has been developed in order to
describe rubber friction on rough substrate. It can be applied to both stationary and
sliding contact for viscoelastic solids (which includes elastic solids as a special case) [2].
For elastic solids the theory can also be applied when the adhesive interaction is taken
into account [4]. In contrast to earlier contact mechanics theories, the theory presented
in Ref. [2, 4] is particularly accurate close to complete contact, as would be the case for,
e.g., rubber on smooth surfaces. The basic idea behind the theory is to study the contact
at different magnification (more details can be found in Appendix A). In particular,
the theory describes the change in the stress distribution P (σ, ζ) as the magnifications ζ
increases. Here

P (σ, ζ) = 〈δ(σ − σ(x, ζ))〉 (3.2)

is the stress distribution at the interface when the surface roughness with wavelength
smaller than λ = λ0/ζ has been removed. In (3.2), 〈. . .〉 stands for ensemble average, and
σ(x, ζ) is the stress orthogonal to the interface smeared over a distance λ = λ0/ζ. It is
clear that as the magnification ζ increases, the distribution P (σ, ζ) will be broader and
broader and the theory describes this in detail. The (normalized) area of real contact
(projected on the xy-plane) at the magnification ζ can be written as

A(ζ)

A0
=

∫

∞

0+

dσ P (σ, ζ). (3.3)

where the lower integration limit 0+ indicates that the delta function at the origin σ = 0
(arising from the non-contact area) should be excluded from the integral. The rubber
friction theory described in Ref. [2] depends on the function A(ζ)/A0 for all magnifications.
This just reflects the fact that the friction force results from the viscoelastic deformations
of the rubber on all length scales, and when evaluating the contribution to the friction
from the viscoelastic deformations on the length scale λ, it is necessary to know the contact
between the rubber and the substrate at the magnification ζ = λ0/λ. Thus, not only the
area of real (atomic) contact is of great interest, but also many important applications
require the whole function A(ζ), and the pressure distribution P (σ, ζ).

In order to accurately reproduce the contact mechanics between elastic solids, it is in
general necessary to consider solid blocks which extend a similar distance in the direction
normal to the nominal contact area as the linear size of the contact area. This leads to an
enormous number of atoms or dynamical variables already for relatively small systems. In
this chapter we develop a multiscale approach to contact mechanics where the number of
dynamical variables scales like ∼ N2 rather than as ∼ N3, where N ×N is the number of
atoms in the nominal contact area. As an application we consider the contact mechanics
between randomly rough surfaces both with and without adhesion, and compare the results
with analytical contact mechanics theories.

3.2 Multiscale molecular dynamics

3.2.1 Why use multiscale molecular dynamics?

Let us discuss the minimum block-size necessary in a computer simulation for an accurate
description of the contact mechanics between two semi-infinite elastic solids with nominal
flat surfaces. Assume that the surface roughness power spectrum has a roll-off wave-vector
q = q0 corresponding to the roll-off wavelength λ0 = 2π/q0. In this case the minimum
block must extend Lx ≈ λ0 and Ly ≈ λ0 along the x and y-directions. Furthermore,
the block must extend at least a distance Lz ≈ λ0 in the direction perpendicular to the
nominal contact area. The latter follows from the fact that a periodic stress distribution
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ζ=1

ζ=10
ζ=100

Figure 3.2: A rubber block (dotted area) in adhesive contact with a hard rough substrate
(dashed area). The substrate has roughness on many different length scales and the
rubber makes partial contact with the substrate on all length scales. When a contact
area is studied at low magnification (ζ = 1) it appears as if complete contact occurs in
the macro asperity contact regions, but when the magnification is increased it is observed
that in reality only partial contact occurs.

with wavelength λ, acting on the surface of a semi-infinite elastic solid, gives rise to a
deformation field which extends a distance ∼ λ into the solid. Thus, the minimum block
is a cube with the side L = λ0.

As an example, if λ0 corresponds to 1000 atomic spacings, one must at least consider
a block with 1000× 1000 atoms within the xy-contact plane, i.e., one would need to study
the elastic deformation in a cubic block with at least 109 atoms. However, it is possible to
drastically reduce the number of dynamical variables without loss of accuracy if one notes
that an interfacial roughness with wavelength λ will give rise to a deformation field in the
block which extends a distance λ into the solid, and which varies spatially over a typical
length scale λ. Thus when we study the deformation a distance z into the block we do
not need to describe the solid on the atomistic level, but we can coarse-grain the solid by
replacing groups of atoms with bigger “atoms” as indicated schematically in Fig. 3.3. If
there are N × N atoms in the nominal contact area one need n ≈ lnN “atomic” layers
in the z-direction. Moreover the number of atoms in each layer decreases in a geometric
progression every time the coarse graining procedure is applied, so that the total number of
particles is of order N2 instead of N3. This results in a huge reduction in the computation
time for large systems. This multiscale approach may be implemented in various ways,
and in chapter 2 we have outlined the procedure we have used in this chapter which we
refer to as the smartblock. Another implementation similar to our approach can be found
in Ref. [36].

The smartblock model should accurately describe the deformations in the solids as
long as the deformations vary slowly enough with time. However, the model cannot
accurately describe the propagation of short wavelength phonons. This is, in fact, true
with all forms of Hamiltonian multiscale descriptions of solids, because of the energy
conservation together and the unavoidable loss of information in the coarse grained region.
In principle it should be possible to prevent the back reflection of short wavelength phonons
by describing the coarse grained region as a continuum, where the numerical calculation
can be carried on through a Finite Element scheme. [37–40] This indeed would require no
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(a) (b)

Figure 3.3: Schematic structure of the model. (a) The fully atomistic model. (b) The
multiscale smartblock model, where the solid in (a) is coarse grained by replacing groups
of atoms with bigger “atoms”.

coarse graining at all in the region treated with molecular dynamics, and a proper choice
of the matching conditions between the atomistic and the continuum region. However,
with respect to contact mechanics and adhesion the back reflection of short wavelength
phonons is not an important limitation. With respect to sliding friction it may be a more
severe limitation in some cases.

Fig. 3.3 illustrates a case where the block is in the form of a cube with atomically flat
surfaces. It is possible to obtain curved surfaces of nearly arbitrary shape by “gluing”
the upper surface of the block to a hard curved surface profile. This was described in
detail in Ref. [2]. The elastic modulus and the shear modulus of the solid can be fixed at
any value by proper choice of the elongation and bending spring constants for the springs
between the atoms (see Ref. [2] and chapter 2). The upper surface of the smartblock
can be moved with arbitrary velocity in any direction, or an external force of arbitrary
magnitude can be applied to the upper surface of the smartblock. The sliding friction
problems are studied in chapter 8, where the upper surface of the smartblock is connected
to a spring which is pulled in some prescribed way. The computer code also allows for
various lubricant fluids between the solid surfaces of the block and the substrate. Thus the
present model is extremely flexible and can be used to study many interesting adhesion
and friction phenomena (see the following chapters).

3.2.2 Parameters and potential

Note that with respect to contact mechanics, when the slopes of the surfaces are small, i.e.
when the surfaces are almost horizontal, one of the two surfaces can be considered flat,
while the profile of the other surface has to be replaced by the difference of the two original
profiles [41]. Thus, if the substrate has the profile z = h1(x) and the block has the profile
z = h2(x), then one can replace the actual system with a fictive one where the block has
a smooth surface while the substrate profile is h(x) = h2(x) − h1(x). Furthermore, if the
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original solids have the elastic modulus E1 and E2, and the Poisson ratio ν1 and ν2, then
the substrate in the fictive system can be treated as rigid and the block as elastic with the
elastic modulus E and Poisson ratio ν chosen so that (1−ν2)/E = (1−ν2

1 )/E1+(1−ν2
2)/E2.

The results presented below have been obtained for a rigid and rough substrate. The
atoms in the bottom layer of the block form a simple square lattice with lattice constant
a. The lateral dimensions Lx = Nxa and Ly = Nya. For the block, Nx = 400 and
Ny = 400. Periodic boundary conditions are applied in the xy plane. The lateral size of
the block is equal to that of substrate, but we use a different lattice constant b ≈ a/φ,
where φ = (1+

√
5)/2 is the golden mean, in order to avoid the formation of commensurate

structures at the interface. The mass of a block atom is 197 a.m.u. and the lattice constant
of the block is a = 2.6 Å. We consider solid blocks with two different Young’s moduli: a
hard solid with E = 77.2 GPa, like in gold, and a soft one with 0.5 GPa. The corresponding
shear moduli were G = 27 GPa and 0.18 GPa, respectively.

The atoms at the interface between the block and the substrate interact with the
potential

U(r) = 4ǫ

[

(

r0
r

)12

− α

(

r0
r

)6
]

(3.4)

where r is the distance between a pair of atoms. When α = 1, Eq. 3.4 is the standard
Lennard-Jones potential. The parameter ǫ is the binding energy between two atoms at
the separation r = 21/6r0. When we study contact mechanics without adhesion we put
α = 0. In the calculations presented below we have used r0 = 3.28 Å and ǫ = 18.6 meV,
which (when α = 1) gives an interfacial binding energy (per unit area) [42] ∆γ ≈ 4ǫ/a2 ≈
11 meV/Å

2
.

3.2.3 Self affine fractal surfaces

Self affine fractal surfaces, generated as outlined in Ref. [1], have been used in the following
calculations. Thus, the surface height is written as

h(x) =
∑

q

B(q)ei[q·x+φ(q)] (3.5)

where, since h(x) is real, B(−q) = B(q) and φ(−q) = −φ(q). If φ(q) are independent
random variables, uniformly distributed in the interval [0, 2π[, then one can easily show
that higher order correlation functions involving h(x) can be decomposed into a product
of pair correlations, which implies that the height probability distribution Ph = 〈δ(h −
h(x))〉 is Gaussian [1]. However, such surfaces can have arbitrary surface roughness power
spectrum. To prove this, substitute (3.5) into (3.1) and use that

〈eiφ(q′)eiφ(q′′)〉 = δq′,−q′′

gives

C(q) =
1

(2π)2

∫

d2x
∑

q′

|B(q′)|2ei(q−q
′)·x

=
∑

q′

|B(q′)|2δ(q − q′)

Replacing
∑

q

→ A0

(2π)2

∫

d2q,
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(a)

(b)

Figure 3.4: (a) Fractal surface with the large wave-vector cut-off q1 = 2π/b ≈ 216 q0.
(b) The same surface as in (a) but at lower resolution with q1 = 4q0. For a square
1040 Å × 1040 Å surface area. The fractal dimension Df = 2.2 and the root-mean-square
roughness amplitude is 10 Å.

where A0 is the nominal surface area, gives

C(q) =
A0

(2π)2
|B(q)|2.

Thus, if we choose

B(q) = (2π/L)[C(q)]1/2 , (3.6)

where L = A
1/2
0 , then the surface roughness profile (3.5) has the surface roughness power

density C(q). If we assume that the statistical properties of the rough surface are isotropic,
then C(q) = C(q) is a function of the magnitude q = |q|, but not of the direction of q.
The following numerical calculations use randomly rough surfaces as substrates generated
using (3.5) and (3.6) and assuming that the surface roughness power spectra have the
form shown in Fig. 3.1, with the fractal dimension Df = 2.2 and the roll-off wave-vector
q0 = 3qL, where qL = 2π/Lx. We have chosen q0 = 3qL rather than q0 = qL since the
former value gives some self-averaging and less noisy numerical results. We also used
q1 = 2π/b ≈ 216q0 (topography (a) in Fig. 3.4) and some surfaces with several smaller
values for q1 (Fig. 3.4 (b) shows the topography when q1 = 4q0), corresponding to lower
magnification (see Sec. 3.3).

3.3 Numerical results

In this section I illustrate our multiscale molecular dynamics (MD) approach by some
applications. The MD results are compared with two known contact mechanics results
from continuum mechanics. Next I discuss contact mechanics for randomly rough surfaces
both with and without adhesion.
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3.3.1 Test cases: Hertz contact and complete contact

In 1881 Hertz presented an exact solution for the contact between two perfectly elastic
solids with local quadratic profiles. The results were derived using the elastic continuum
model and neglecting the adhesion between the solids. In addition, Hertz assumed that the
interfacial friction vanishes so that no shear stress can develop at the interface between the
solids. When a spherical asperity is squeezed against a flat surface a circular contact area
(radius rH) is formed, where the pressure decreases continuously from the center r = 0 to
the periphery r = rH of the contact according to

σ = σH

[

1 −
(

r

rH

)2
]1/2

. (3.7)

Let us compare the prediction of our atomistic model with the Hertz theory. We use
the Lennard-Jones potential with α = 0, i.e. without the attractive term. In Fig. 3.5
we compare the Hertz contact pressure (green line) with our numerical data (red data
points). The numerical data were obtained for a rigid spherical tip squeezed against a flat
elastic surface. Note that the pressure obtained from the MD calculation has a tail beyond
the Hertz contact radius rH. Similar “pressure tails” were recently observed in molecular
dynamics simulations by Luan and Robbins [43]. The tail reflects the non-zero extent
of the atom-atom interaction potential. The deviation between the molecular dynamics
results and the continuum mechanics results should decrease continuously as the size of
the system increases.

At the atomic level there is no unique way to define when two solids are in contact, and
one may use several different criteria. One method is based on the force acting between
the atoms at the interface and works best when the adhesive interaction is neglected.
Thus, when two surfaces approach each other, the repulsive force between the atoms
increases. We may define contact when the repulsive force is above some critical value.
When adhesion is included the interaction between the wall atoms becomes more long-
ranged and it is less obvious how to define contact based on a force criterion, and we find
it more convenient to use a criteria based on the nearest neighbor distance between atoms
on the two surfaces. Thus, when the separation between two opposing surface atoms is less
than some critical value, contact is defined to occur. However, we have found that neither
of these two criteria gives fully satisfactory results. The reason is that if the critical force
or the critical distance used to define when contact occurs is determined by fitting the
Hertz pressure profile (3.7) to the numerical data as in Fig. 3.5, then the resulting values
depend on the radius of curvature of the asperity. For example, for the Hertz contact in
Fig. 3.5 the contact area deduced from the atomistic MD calculation agrees with the Hertz
theory if we choose the cut-off pressure pc ≈ 0.7 GPa. However, if the radius of curvature
of the asperity is 10 times smaller (R = 104 Å) then, for the same penetration, the cut-off
would be pc ≈ 2.5 GPa, i.e., more than three times larger. On the other hand randomly
rough surfaces have a wide distribution of curvatures and it is not clear how to choose the
optimum cut-off distance or force. In this chapter we have therefore used another way of
determining the contact area which turned out to be more unique. We will now describe
this method.

Let us consider the pressure distribution P (σ, ζ) at the interface. For Hertz contact
we get the pressure distribution

P (σ) =
1

A0

∫

A0

d2x δ(σ − σ(x)) (3.8)
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Figure 3.5: The pressure in the contact region between a spherical tip and a flat elastic
surface. We show the simulation data and the theoretical Hertz result. The spherical tip
has the radius of curvature R = 1040 Å and the loading force 4.6 × 10−7 N.

Using σ(x) from (3.7) for r < rH and σ(x) = 0 for r > rH gives

P (σ) =

(

1 − A

A0

)

δ(σ) +
2σ

σ2
H

A

A0
(3.9)

where A = πr2H is the Hertz contact area. In Fig. 3.6 we show the pressure distribution in
the contact region between a hard spherical tip and an elastic solid with a flat surface. The
red curve shows the simulation data, while the green curve is the theoretical Hertz result
obtained by a suitable choice of A in Eq. 3.9. Note that while the Hertz solution and the
atomic MD simulation results agree very well for large pressure, there is a fundamental
difference for small pressure. Thus, for the Hertz solution, for small pressure σ → 0,
P (σ) ∼ σ, while in the atomistic model P (σ) increase monotonically as σ → 0. This
difference is due to the long-range interaction between the solid walls in the atomistic
model, which is absent in the Hertz model. When the long range wall-wall interaction is
taken into account the delta function at σ = 0 in the Hertz solution (3.9) will broaden,
resulting in a P (σ) which (for the small systems considered here) will decay monotonically
with increasing σ as observed for the atomistic model. Note that this effect is of exactly
the same origin as the “pressure tail” for r > rH in Fig. 3.5.

The fact that P (σ, ζ) vanishes linearly with σ as σ → 0 is an exact result in continuum
mechanics with contact interaction (no long range wall-wall interaction), and is valid not
only for the Hertz contact case, but also holds in general [44]. However, as explained
above, this effect will never be observed in the atomistic model if the wall-wall interaction
is long-ranged.

Note that the contact area A can be determined directly by fitting the analytical
expression for P (σ) for the Hertz contact (Eq. 3.9) to the numerical MD results for large
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Figure 3.6: The pressure distribution in the contact region between a spherical tip and a
flat surface. We show the simulation data (red curves) and the theoretical Hertz result
(green curves). Loading force in (a) is 4.6 × 10−7 N and in (b) 7.3 × 10−7 N.
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Figure 3.7: The normalized pressure distribution P (σ) at the interface between an elastic
block (elastic modulus E = 0.5 GPa) with a flat surface and a rigid randomly rough
substrate. Because of adhesion complete contact occurs at the interface. The red curve
is the simulation result and the green line is the Gaussian fit to the simulation data with
the root-mean-square width σrms = 0.229 GPa. The blue line is the theoretical Gaussian
distribution obtained using continuum mechanics (see Appendix B). The theoretical rms
width σrms = 0.164 GPa.

enough pressures (see Fig. 3.6). In the present case, for FN = 4.6×10−7 N (Fig. 3.6(a)) this
gives a contact area A = πr2H which is nearly identical to the one deduced from the fit in
Fig. 3.5. A similar procedure can be used to determine the contact area between randomly
rough surfaces using the following analytical expression derived from the contact mechanics
theory of Persson (see Eq. A.21 in Appendix A). Where σ0 is the nominal contact stress,
and where the fitting parameter G = G(ζ) can be related to the contact area using Eq. 3.3.
Thus, if A/A0 ≪ 1 we have G = (σ2

0/π)(A/A0)
−2. We have found (see below) that this

expression for P (σ, ζ) can fit the numerical MD data very well (lending support for the
accuracy of the Persson theory), and we have used this method to determine the contact
area as a function of the squeezing force for randomly rough substrates.

Let us consider the pressure distribution at the interface between a rigid randomly
rough substrate and a flat elastic surface when the solids are in complete contact. Complete
contact can result either by squeezing the solids together by high enough force, or if
the adhesive interaction between the solids is high enough (or the elastic modulus small
enough). However, when complete contact occurs the pressure distribution is the same.

For an elastic solid with a flat surface in perfect contact with a hard randomly rough
surface, continuum mechanics predicts a Gaussian pressure distribution of the form (see
Appendix B):

P (σ) =
1

(2π)1/2σrms
e−(σ−σ0)2/2σ2

rms
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Figure 3.8: Contact morphology for two different magnifications. The red color denotes
contact regions for the low magnification ζ = 4, while the blue color corresponds to the
contact regions for the high magnification ζ = 216.

where the root-mean-square width σrms is determined by the power spectrum [6]:

σ2
rms = 〈σ2〉 =

π

2

E2

(1 − ν2)2

∫ q1

q0

dq q3C(q)

In Fig. 3.7 we compare the theoretical pressure distribution (blue curve) with the pressure
distribution obtained from the atomistic model for the case where the complete contact
results from the adhesive interaction between the solids. The MD data are well fitted by
a Gaussian curve, but the width of the curve is slightly larger than expected from the
continuum mechanics theory σrms(MD) = 0.229 GPa while σrms(theory) = 0.164 GPa.
The randomly rough surface used in the MD calculation is self affine fractal the whole way
down to the atomic distance, and one can therefore not expect the continuum mechanics
result for P (σ), which assumes “smooth” surface roughness, to agree perfectly with the
MD result.

3.3.2 Contact mechanics without adhesion

Here we study contact mechanics without adhesion as obtained with α = 0 in Eq. 3.4,
corresponding to purely repulsive interaction between the walls. Fig. 3.8 shows the contact
morphologies at different magnifications ζ for the same load. The red and blue color
indicate the contact area at low (ζ = 4) and high (ζ = 216) magnification, respectively.
Note that with increasing magnification the contact area decreases, and the boundary
line of the contact islands becomes rougher. In Ref. [45] and [5] it has been shown that
the statistical properties of the contact regions exhibit power-law scaling behavior. At
low magnification (ζ = 4) it looks as if complete contact occurs between the solids at
asperity contact regions. However, when the magnification is increased, smaller length
scale roughness is detected and it is observed that only partial contact occurs at the
asperities. In fact, if there were no short distance cut-off in the surface roughness, the
true contact area would eventually vanish. But in reality a short distance cut-off always
exists, e.g. the interatomic distance.
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Figure 3.9: The pressure distribution in the contact area for two different magnifications.
The red line corresponds to the pressure distribution for low magnification ζ = 4, while
the green line is for high magnification ζ = 216.

Fig. 3.9 shows the pressure distribution in the contact area for two different magnifi-
cations. When we study contact on shorter and shorter length scale, which corresponds
to increasing magnification ζ, the pressure distribution becomes broader and broader.

Fig. 3.10 shows that the contact area varies (approximately) linearly with the load
for the small load at two different magnifications ζ = 4 and 32. The contact area was
determined as described in Sec. 3.3.1 by fitting the pressure distribution to a function of
the form (A.21). The pressure distributions and the fitting functions are shown in Fig. 3.11
and 3.12 for ζ = 4 and 32, respectively. The slope of the lines in Fig. 3.10 is only a factor
1.14 larger than predicted by the contact theory of Persson (see Sec. 3.4).

In Fig. 3.13 we show the variation of the contact area with the nominal squeezing
pressure for the highest magnification case ζ = 216. In this case we have defined contact
to occur when the separation between the surfaces is below some critical value rc =
4.3615 Å. In contrast to the definition used above, this definition does not give a strict
linear dependence of the contact area on the load for small load as found above when the
contact area is defined using the stress distribution.

3.3.3 Contact mechanics with adhesion

In this section we include the adhesive interaction i.e. we put α = 1 in Eq. 3.4. Fig. 3.14
presents the contact morphology both with and without the adhesion at the highest magni-
fication (ζ = 216). The regions with blue color denotes the contact area without adhesion.
The red color region denotes the additional contact area when adhesion is included. The
contact area with adhesion is, of course, larger than that without adhesion since the at-
tractive adhesional interaction will effectively increase the external load [46–48].

Fig. 3.15 shows the pressure distribution P (σ, ζ) at high magnification with and with-
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Figure 3.10: The relative contact area A/A0, as a function of applied stress FN/A0. Results
are presented for two different magnifications ζ = λ0/λ = 4 and 32. The fractal dimension
is Df = 2.2.

out adhesion. When adhesion is neglected (corresponding to the α = 0 in 3.4), the pressure
is positive in the contact area and P (σ, ζ) = 0 for σ < 0. When the adhesive interaction is
included, the stress becomes tensile close to the edges of every contact region and P (σ, ζ)
is in general finite also for σ < 0.

3.4 Discussion

Several analytical theories [2,4,49], based on continuum mechanics, have been developed to
describe the contact between elastic bodies both with and without the adhesive interaction.
Here we will compare the results presented above with the predictions of some of these
theories (see Appendix A). For small squeezing pressure FN the Persson theory predicts a
linear dependence of the area of real contact on the load. For very high squeezing pressure
σ0 ≫ G1/2 complete contact will occur at the interface. In this case the second term on the
rhs in Eq. A.21 of Appendix A can be neglected, so the pressure distribution is a Gaussian
centered at σ0 and with the root-mean-square width σrms = (2G)1/2. This result is exact
(see Appendix B). Thus, the theory of Persson is expected to give a good description
of the contact mechanics for all squeezing pressure (see chapter 4). All other analytical
contact mechanics theories are only valid when the squeezing pressure is so small that the
area of real contact is (nearly) proportional to FN. But in many important applications,
e.g., in the context of rubber friction and rubber adhesion, the area of real contact for
smooth surfaces is often close to the nominal contact area.

The standard theory of Greenwood and Williamson [50] describes the contact between
rough surfaces (in the absence of adhesion), where the asperities are approximated by
spherical cups with equal radius of curvature but with Gaussian distributed heights. In
this theory the area of real contact depends (slightly) non-linearly on the load for small
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Figure 3.11: The stress distribution for ζ = 4 for three different nominal pressure.



34 Chapter 3. Area of Contact between Randomly Rough Surfaces

0 20 40 60
pressure (GPa)

lo
g 

P
 (

1/
P

a)

-13

-11

-9

-13

-11

-9

lo
g 

P
 (

1/
P

a)
lo

g 
P

 (
1/

P
a)

-13

-11

-9
σ0=0.37 GPa
A/A0=0.018

σ0=0.79 GPa
A/A0=0.038

σ0=1.29 GPa
A/A0=0.062

Figure 3.12: The stress distribution for ζ = 32 for three different nominal pressure.



3.4. Discussion 35

0 2 4 6 8
Load (GPa)

A
/A

0

0.2

0.4

0.6

0

Figure 3.13: The relative contact area A/A0, as a function of applied stress FN/A0. Results
are presented for the highest magnification ζ = 216. Contact is defined when the separa-
tion between the surfaces is below a critical value. The fractal dimension is Df = 2.2.

Figure 3.14: Contact morphology with adhesion and without adhesion. The blue color
region denotes the contact without adhesion. The red color region denote the additional
contact area when the adhesive interaction is included.
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Figure 3.15: The pressure distribution with and without adhesion. The red curve denotes
the pressure distribution with adhesion while the green curve is without adhesion.
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load, and can therefore not be directly compared with the Persson result (A.26). Bush
et al [49] developed a more general and accurate contact theory. They assumed that the
rough surface consists of a mean plane with hills and valleys randomly distributed on
it. The summits of these hills are approximated by paraboloids, whose distributions and
principal curvatures are obtained from the random precess theory. As a result of more
random nature of the surface, Bush et al found that at small load the area of contact
depends linearly on the load according to (A.26) but with κ = (2π)1/2. Thus the contact
area of Persson’s theory is a factor of 2/π smaller than that predicted by Bush. Both the
theory of Greenwood and Williamson and the theory of Bush et al assume that the asperity
contact regions are independent (no elastic coupling). However, as discussed in [44], for
real surfaces (which always have surface roughness on many different length scales) this
will never be the case even at a very low nominal contact pressure, which may be the
origin of difference of 2/π between Persson’s theory and Bush’s theory.

Hyun et al performed a finite-element analysis of contact between elastic self-affine
fractal surfaces [5]. The simulations were done for rough elastic surface contacting a
perfectly rigid flat surface. They found that the contact area varies linearly with the load
for small load. The factor κ was found to be between the results of the Bush and Persson
theories for all fractal dimensions Df . For Df = 2.2 (corresponding to H = 0.8) they found
that κ was only ∼ 13% larger than predicted by the Persson theory.

The red curves in Fig. 3.16 shows the pressure distribution from the simulations for
several different values of the magnification ζ = q1/q0 = 4, 8, 32 and 216, neglecting the
adhesion. In the simulations the nominal squeezing pressure σ0 = 800 MPa. The best fit
(green curves in Fig. 3.16) of the pressure distribution (A.21) to the numerical results is
obtained if G−1/2 is taken to be a factor 1.14 larger than predicted by the Persson theory
[Eq. A.21], corresponding to a contact area which is 14% larger than predicted by the
analytical theory, in good agreement with the results obtained by Hyun et al.

Our simulations show that the contact area varies linearly with the load for small load,
see Fig. 3.10. Figs. 3.10 and 3.16 show that the slope α(ζ) of the line A = α(ζ)F decreases
with increasing magnification ζ, as predicted by the analytical theory [44,45]. Thus, while
A/A0 = 0.072 for ζ = 4 we get A/A0 = 0.038 for ζ = 32, which both are 14% larger than
predicted by Eq. A.24.

3.5 Summary

In summary, I have studied the contact between surfaces which are rough on many different
length scales, i.e. self-affine fractal surface, the contact morphologies both at high and low
magnification, with and without adhesion. In atomistic models it is non-trivial on how to
define the area of real contact between two solids. Our study shows that the area of real
contact is best defined by studying the interfacial pressure distribution, and fitting it to
an analytical expression. The numerical results are consistent with the theoretical results
that the contact area varies linearly with the load for small load, where the proportionality
constant depends on the magnification L/λ. For randomly rough surfaces with the fractal
dimension Df = 2.2 (which is typical for many real surfaces, e.g., produced by fracture or
by blasting with small particles) we have found that for small load (where the contact area
is proportional to the load) this numerical study gives an area of atomic contact which is
about ∼ 14% larger than predicted by the analytical theory of Persson. Since the Persson’s
theory is exact in the limit of complete contact, it is likely that the Persson theory is even
better for higher squeezing pressure, which will be discussed in next chapter.
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Figure 3.16: The pressure distribution at four different magnifications ζ = q1/q0 = 4, 8,
32 and 216 for the squeezing pressure σ0 = 800 MPa. The red curves is the pressure
distribution obtained from the computer simulation, while the green curves is from the
analytical theory assuming that G−1/2, and hence the relative contact area, is a factor of
1.14 larger than predicted by the analytical theory, Eq. A.21.



Chapter 4

Interfacial Separation from Small

to Full Contact without adhesion

In this chapter I will present a molecular dynamics study of the contact between a rigid
solid with a randomly rough surface and an elastic block with a flat surface. The numerical
calculation has been mainly focused on the contact area and the interfacial separation
from small contact (low load) to full contact (high load). For small load the contact area
varies linearly with the load, and the interfacial separation depends logarithmically on the
load. For high load the contact area approaches the nominal contact area (i.e., complete
contact), and the interfacial separation approaches zero. The “correction factor” has been
introduced to describe the small difference between the analytical and numerical results.
The present results may be very important for soft solids, e.g., rubber, or for very smooth
surfaces, where complete contact can be reached at moderate high loads without plastic
deformation of the solids.

4.1 Introduction

What happens at the atomic and molecular level when surfaces come into contact with each
other? And how do these events relate to macroscopic properties and observations? These
questions, which center on the phenomena of adhesion and friction, pose challenges not
only in engineering but also in many areas of physical and biological sciences [51]. Finding
correlations and models that connect the atomic and macroscopic worlds usually is not
easy. However, recently I have surprisingly found that the pressure distribution obtained
from molecular dynamics calculations is in a good agreement with the prediction based
on continuum contact mechanics, and in particular with the analytical contact mechanics
theory of Persson [2,4, 52].

When two elastic solids with rough surfaces are squeezed together, the solids will in
general not make contact everywhere in the apparent contact area, but only on top of
asperities [45]. The separation u(x) between the surfaces will vary in a nearly random
way with the lateral coordinate x = (x, y) in the apparent contact area. When the applied
squeezing pressure increases, the contact area A will increase and the average surface
separation ū = 〈u(x)〉 will decrease, but in most situations it is not possible to squeeze
the solids into perfect contact corresponding to ū = 0. The area of real contact, and the
space between two solids has a tremendous influence on many important processes [52].

Most studies of contact mechanics have been focused on small load where the contact
area depends linearly on the load [7,49,50,53,54]. However, for soft solids, such as rubber
or gelatin, and for smooth surfaces nearly full contact may occur at the interface, and

39
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Figure 4.1: An elastic block squeezed against a rigid rough substrate. The separation
between the average plane of the substrate and the average plane of the lower surface
of the block is denoted by u. Elastic energy is stored in the block in the vicinity of the
asperity contact regions.

it is of great interest to study how the contact area, the interfacial surface separation
and stress distribution vary with the load from small load (where the contact area varies
linearly with the load), to high load (where the contact is (nearly) complete). Here I will
present such a study using molecular dynamics, and compare the numerical results with
the prediction of the analytical contact mechanics theory of Persson.

4.2 Interfacial separation without adhesion

The space between two solids has a tremendous influence on many important processes,
e.g., heat transfer [55], contact resistivity [56], lubrication [9], sealing [57] and optical in-
terference [58]. Persson has recently presented a simple theory for the (average) separation
ū as a function of the squeezing pressure p [52]. The theory shows that for randomly rough
surfaces at low squeezing pressures p ∼ exp(−ū/u0) where the reference length u0 depends
on the nature of the surface roughness but is independent of p, in good agreement with
experiments [58].

Consider an elastic block with a flat surface squeezed against a hard rough substrate
surface, see Fig. 4.1. The separation between the average surface plane of the block
and the average surface plane of the substrate is denoted by ū with ū ≥ 0. When the
applied squeezing force p increases, the separation between the surfaces at the interface
will decrease, and Now consider p = p(ū) as a function of ū. The elastic energy Uel(ū)
stored in the substrate asperity–elastic block contact regions must equal the work done by
the external pressure p in displacing the lower surface of the block towards the substrate,
i.e.,

∫

∞

ū
du′A0p(u

′) = Uel(ū) (4.1)

or

p(ū) = − 1

A0

dUel

dū
(4.2)
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where A0 is the nominal contact area. Eq. 4.2 is exact, and shows that if the dependence
of the surface separation u on the squeezing pressure p is known, e.g., from finite element
calculations or molecular dynamics, one can obtain the elastic energy Uel stored in the
asperity contact regions [6]. This is an important result as Uel(ū) is relevant for many
important applications.

Theory shows that for low squeezing pressure, the area of real contact A varies linearly
with the squeezing force pA0, and that the interfacial stress distribution, and the size-
distribution of contact spots, are independent of the squeezing pressure [59, 60]. That is,
with increasing p existing contact areas grow and new contact areas form in such a way
that in the thermodynamic limit (infinite-sized system) the quantities referred to above
remain unchanged. It follows immediately that for small load the elastic energy stored
in the asperity contact region will increase linearly with the load, i.e., Uel(ū) = u0A0p(ū),
where u0 is a characteristic length which depends on the surface roughness (see below)
but is independent of the squeezing pressure p. Thus, for small pressures Eq. 4.2 takes
the form

p(ū) = −u0
dp

dū
or

p(ū) ∼ e−ū/u0, (4.3)

in good agreement with experimental data for the contact between elastic solids when the
adhesive interaction between the solids can be neglected [58]. We note that the result (4.3)
differs drastically from the prediction of the Bush et al theory [49], and that of Greenwood
and Williamson theory (GW) [50], which for low squeezing pressures (for randomly rough
surfaces with Gaussian height distribution) predict p(ū) ∼ ū−aexp(−bū2), where a = 1
in the Bush et al theory and a = 5/2 in the GW theory. Thus these theories do not
correctly describe the interfacial spacing between contacting solids. This is not surprising
because these approaches assume a rigid substrate surface covered with flexible asperities.
In reality, the bulk of the solids whose surfaces are in contact is not rigid. Furthermore,
there exist a hierarchy of asperities on many length scales, all of which can distort.

The elastic energy Uel has been studied in Ref. [4] and [60]. Here let us use

Uel ≈ A0E
∗π

2

∫ q1

q0

dq q2W (q, p)C(q), (4.4)

where E∗ = E/(1 − ν2) and

W (q, p) = Pp(q)
[

γ + (1 − γ)Pp
2(q)

]

, (4.5)

where Pp(q) is given by Eq. A.24:

Pp(q) = erf

(

p

2G1/2(ζ)

)

(4.6)

For complete contact (infinite squeezing pressure) Pp = 1 and thus W (q, p) = 1 and in
this limit (4.4) is exact. For small squeezing pressureW (q, p) ≈ γPp. The parameter γ is of
order ≈ 0.4 (see below), and takes into account that the elastic energy stored in the contact
region (per unit surface area) in general is less than the average elastic energy (per unit
surface area) for perfect contact (see Ref. [60]). The particular way to interpolate between
the limits W (q, p) = 1 for complete contact and W (q, p) = γP for very small contact using
(4.5) was designed to give good agreement between the interfacial separation calculated
using (4.2), and the interfacial separation obtained from Molecular Dynamics (MD) and
Finite Element Method (FEM) (see Sec. /refchap4:numerical.separation and 4.5).
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Let us write (4.6) as [2, 44]

Pp(q) =
2√
π

∫ s(q)p

0
dx e−x2

, (4.7)

where s(q) = w(q)/E∗ with

w(q) =

(

π

∫ q

q0

dq′ q′3C(q′)

)−1/2

.

Using (4.7) gives
∂Pp

∂ū
=

2√
π
s
dp

dū
e−s2p2

, (4.8)

Substituting (4.4) and (4.5) in (4.2), and using (4.8) gives

p(ū) = −
√
π

∫ q1

q0

dq q2C(q)w(q)
[

γ + 3(1 − γ)Pp
2(q)

]

×e−[w(q)p/E∗]2 dp

dū
or

dū = −
√
π

∫ q1

q0

dq q2C(q)w(q)
[

γ + 3(1 − γ)Pp
2(q)

]

×e−[w(q)p/E∗]2 dp

p

Integrating this from ū = 0 (complete contact, corresponding to p = ∞) to ū gives

ū =
√
π

∫ q1

q0

dq q2C(q)w(q)

×
∫

∞

p
dp′

1

p′

[

γ + 3(1 − γ)P 2(q, p′)
]

e−[w(q)p′/E∗]2, (4.9)

Now consider the limiting case of very low squeezing pressure. If one introduces x =
w(q)p′/E∗ the last integral in (4.9) becomes

J =

∫

∞

pw(q)/E∗

dx
1

x

[

γ + 3(1 − γ)P 2(x)
]

e−x2

,

where

P (x) =
2√
π

∫ x

0
dx′ e−x′2

.

Performing a partial integration gives

J =
[

logx
[

γ + 3(1 − γ)P 2(x)
]

e−x2
]∞

pw(q)/E∗

−
∫

∞

pw(q)/E∗

dx logx
(

6(1 − γ)P (x)P ′(x)

+
[

γ + 3(1 − γ)P 2(x)
]

(−2x)
)

e−x2

.

The leading contributions to J as p→ 0 is

J = −γlog
(

pw(q)

E∗

)

−
∫

∞

0
dx logx

(

6(1 − γ)P (x)P ′(x)
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+
[

γ + 3(1 − γ)P 2(x)
]

(−2x)
)

e−x2

= −γlog
(

pw(q)

ǫE∗

)

. (4.10)

where

ǫ = exp

[

−
∫

∞

0
dx logx

(

6
1 − γ

γ
P (x)P ′(x)

+

[

1 + 3
1 − γ

γ
P 2(x)

]

(−2x)
)

e−x2

]

. (4.11)

Using (4.11) one gets ǫ = 4.047. Note that ǫ depends on Pp(q) for all pressures from
small relative contact area (P ≪ 1) to complete contact corresponding to P = 1. Thus,
although the slope of the linear relation between u and logp, which holds for very small p,
only depends on Pp(q) for very small p (where the relative contact area is proportional to
p), the lateral position of the line does depend on the whole function Pp(q) [or P (x)]. For
this reason it is important to accurately describe how Uel depends on Pp(q) for all p, even
if one is only interested in the relation between ū and p for very small p. The physical
reason for this is simple: even for arbitrarily small applied nominal stress p, the stress (at
high enough magnification) in the area of contact will be very high, which may result in
(nearly) complete contact in the asperity contact regions.

Substituting (4.10) in (4.9) gives [61]

ū = −
√
π

∫ q1

q0

dq q2C(q)w(q)γlog

(

pw(q)

ǫE∗

)

= −u0[logp− log(βE∗)]

or
p = βE∗e−ū/u0 (4.12)

where

u0 =
√
πγ

∫ q1

q0

dq q2C(q)w(q) (4.13)

and

β = ǫexp

[

−
∫ q1

q0
dq q2C(q)w(q)log[w(q)]
∫ q1

q0
dq q2C(q)w(q)

]

(4.14)

The relation (4.3) between p and ū for the special case of self-affine fractal surfaces
was studied in Ref. [52] using W (q, p) = γPp(q) in the expression for the elastic energy.

4.3 Molecular Dynamics

I have performed Molecular Dynamics(MD) to study the contact area and the interfacial
separation from small contact to full contact. We are interested in surfaces with random
roughness with wavelength components in some finite range λ1 < λ < λ0, where λ0

typically is similar to (but smaller than) the lateral size of the nominal contact area. In
order to accurately reproduce the contact mechanics between elastic blocks, it is necessary
to consider solid blocks which extends at least a distance ∼ λ0 in the direction normal to the
nominal contact area. (Note the lower part of the system has been called substrate while
the upper part is called block.) This leads to an enormous number of atoms or dynamical
variables even for a small system. In order to avoid this trouble we have developed a
multiscale MD approach (see chapter 2). This approach has been described in detail in
Ref. [6] and is only summarized here. The system has lateral dimension Lx = Nxa and
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Figure 4.2: Surface height profile of a mathematically generated self affine fractal surface
(104 × 104 nm2 square surface area) with the root mean square roughness 1 nm. (a) high
magnification (ζ = 216), (b) low magnification (ζ = 4)
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Figure 4.3: 3D images of contacting regions with both substrate and block, at low magnifi-
cation ζ = 4 under different load (a) σ0/E

∗ = 0.0129 and A/A0 = 0.1089, (b) σ0/E = 0.26
and A/A0 = 0.9527. Note E∗ = E/(1 − ν2) is an effective modulus.
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Figure 4.4: The probability distribution Ph of surface height h for the mathematically
generated surface shown in Fig. 4.2. For a square area 104×104 nm2 with lattice constant
a = 1.605 Å.
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Figure 4.5: Surface roughness power spectra C(q) of the mathematically generated sub-
strate surface studied in Ref. [1] and below. For a self affine fractal surface with the fractal
dimension Df = 2.2 and qL = 6.04×107 m−1, q0 = 1.81×108 m−1, and q1 = 3.9×1010 m−1,
and the root mean square roughness amplitude hrms = 1 nm.
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Ly = Nya, where a is the lattice space of the block. Periodic boundary condition has been
used in xy plane. For the block Nx = Ny = 400, while the lattice space of the substrate
b ≈ a/φ, where φ = (1 +

√
5)/2 is the golden mean, in order to avoid the formation of

commensurate structures at the interface. The mass of the block atoms is 197 a.m.u. and
the a = 2.6 Å. The elastic modulus and Poisson ratio of the block is E = 77.2 GPa and
ν = 0.42, respectively.

The atoms at the interface between the block and substrate interact with the repulsive
potential U(r) = ǫ (r0/r)

12, where r is the distance between a pair of atoms. We use
r0 = 3.28 Å and ǫ = 74.4 meV. In the MD-model calculations there is no unique way of
how to define the separation ū between the solid walls (see Ref. [6] for a discussion of this
point). We have used the same definition as in Ref. [6] ū = d−dc, where d is the separation
between the average z coordinate of the bottom layer of the block atoms and the average
plane of the substrate. dc is the critical atom-atom separation to define contact on atomic
scale. Thus, ū = 0 corresponds to the separation dc = 4.3615 Å between planes through
the center of mass of the interfacial atoms of the block and the substrate.

4.4 Numerical results

4.4.1 Contact area from small to full contact

From the molecular dynamics simulation one can calculate the interfacial stress distribu-
tion. In order to obtain the contact area I follow the procedure outlined in Ref. [6] and fit
the numerical results to the theoretically predicted stress distribution

P (σ, ζ) =
1

2(πG̃)1/2

(

e−(σ−p)2/4G̃ − e−(σ+p)2/4G̃
)

(4.15)

where G̃(p, ζ) depends on the nominal squeezing pressure p and the magnification ζ (but
which is independent of σ), and which has been chosen to get the best agreement with
numerical data. In Fig. 4.6 I have shown the good agreement between the numerical
pressure distribution and the analytical function (4.15) for ζ = 4 under three different
nominal pressure. When G̃ is known one can calculate the relative contact area using

A

A0
=

∫

∞

0
dσ P (σ, ζ) . (4.16)

In Fig. 4.7 the result for A/A0 has been shown as a function of normalized pressure p/E∗.

The fitted G̃(p, ζ) can now be compared to theory. Thus, the theory of Persson predicts
G̃ = G where

G =
π

4

(

E

1 − ν2

)2 ∫ ζq0

qL

dq q3C(q) . (4.17)

In Fig. 4.8 the ratio r = G̃/G has been shown which is referred to as the correction factor.
Note that r increases from ≈ 0.51 to 1 as the squeezing pressure p increases from zero
to infinity (i.e., the normalized contact area A/A0 increases from zero to 1). Since the
contact area for small load is proportional to ∼ 1/

√
G it follows that the MD simulation for

small load predicts a contact area which is about ∼ 30% larger than that predicted by the
theory. This is slightly larger than what has been found in earlier numerical simulations.
Thus, the finite element calculations of Hyun and Robbins [62] and the Green’s function
molecular dynamics study of Campana and Müser [7] gives r ≈ 0.64, corresponding to
a contact area which is about ∼ 20% larger than that predicted by the Persson theory.
Similarly, the study of Hönig [63] gives r ≈ 0.56 for small load. However, none of the
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Figure 4.6: The pressure distribution for ζ = 4 for three different nominal pressure.
Properly choosing the correction factor makes the calculation results in good agreement
with Persson’s contact mechanics theory.
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under the condition d = 1 − a − b − c (solid line). The corresponding coefficients a, b, c
are 0.51, 2.5, −3.3 respectively.
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Figure 4.9: An elastic block squeezed against a rigid rough substrate. The (natural) loga-
rithm of the normalized average pressure p/E∗, as a function of the normalized separation
between the average plane of the substrate and the average plane of the lower surface of
the block and the average plane of the lower surface of the block denoted by ū/hrms.

computer simulations can be considered as perfectly converged, and the difference between
theory and fully converged computer simulations may be smaller than that indicated by
the numbers given above. Thus, most of the numerical studies reported use rather few
grid points within the shortest wavelength roughness, which result in an overestimation
of the contact area [53]. In the simulations for ζ = 4 there are many atoms within the
shortest substrate roughness wavelength, but the surface roughness extends over less than
one decade in length scale.

Finally, I note that while the pressure distribution for low magnification (ζ = 4) is
in good agreement with Persson’s theory, for the highest magnification (ζ = 216) this is
not the case because only one atom (or of order one atom) occurs within the shortest
wavelength roughness of the substrate (which is roughly given by the substrate lattice
constant). In the latter case one observes that the stress probability distribution for high
normal stress falls of roughly exponentially rather than like a Gaussian. This has also
been observed in earlier (non-converged) finite element calculations [5]. It is clear that
this limiting case cannot be described by the elastic continuum model, which is the basis
for all analytical contact mechanics theories.

4.4.2 Interfacial surface separation from small to full contact

The (natural) logarithm of the normalized average pressure p/E, as a function of the
normalized separation ū/hrms between the average plane of the substrate and the average
plane of the lower surface of the block, has been shown in Fig. 4.9. It shows results
for the magnification ζ = 4 (open circles) and ζ = 216 (solid squares). In this figure
ū = 0 corresponds to the separation 4.3615 Å between the plane through the center of
the atoms of the top layer of substrate atoms and bottom layer of block atoms. Since the
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Figure 4.10: The relation between the (natural) logarithm of the squeezing pressure p
(normalized by E∗) and the interfacial separation ū (normalized by the root-mean-square
roughness amplitude hrms) for an elastic solid squeezed against a rigid surface with the
power spectra shown in Fig. 4.2. γ = 0.42 has been used in the calculations.

atoms interact with a long-range repulsive ∼ r−12 pair potential, it is possible to squeeze
the surfaces closer to each other than what corresponds to ū = 0. This explains why
simulation data points occur also for ū < 0. The theory described in Sec.4.2 assumes a
contact interaction potential so that ū ≥ 0, and therefore can not be compared with the
MD simulations for very small (and negative) ū.

The MD results from Fig. 4.9 (solid squares) have been compared with the theoretical
prediction calculated from (4.9) using the same surface roughness power spectra (and other
parameters) as in the MD-calculation (see Fig. 4.10). The theory is in good agreement
with the numerical data for 0.2 < ū/hrms < 2. For ū/hrms < 0.2 the two curves differ
because of the reason discussed above, i.e., the “soft” potential used in the MD simulation
allows the block and substrate atoms to approach each other beyond ū = 0, while in the
analytical theory a contact potential is assumed where the repulsive potential is infinite
for ū < 0 and zero for ū > 0. The difference between the theory and the MD results for
ū/hrms > 2 is due to a finite size effect. That is, since the MD calculations uses a very
small system, the highest asperities are only ∼ 3hrms above the average plane (see the
height distribution in Fig. 4.4), and for large ū very few contact spots will occur, and in
particular for ū > 3hrms no contact occurs and p must vanish. In the analytical theory
the system is assumed infinitely large so that even for a Gaussian distribution of asperity
height there will always be (infinitely) many infinitely high asperities and contact will
occur at arbitrary large separation ū, and the asymptotic relation ū ∼ logp will hold for
arbitrarily large ū (or small squeezing pressures p).
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Figure 4.11: Surface height profile of a polymer surface, with the root mean square rough-
ness 14 nm, measured over a 10 × 10 µm2 square surface area.
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Figure 4.12: The probability distribution Ph of surface height h for the polymer film in
Fig. 4.11. The two curves correspond to height profile data measured at two different
square surface areas, each 10 × 10 µm2.
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Figure 4.13: Surface roughness power spectra C(q) of the polymer film in Fig. 4.11. The
two curves correspond to height profile data measured at two different square surface
areas, each 10× 10 µm2. The height probability distribution for the same surface areas is
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Figure 4.14: The relation between the logarithm (with 10 as basis) of the squeezing pres-
sure p (normalized by E∗) and the interfacial separation ū (in nm) for an elastic solid
squeezed against a rigid surface with the power spectra shown in Fig. 4.11 (but multiplied
by a factor of two). The line a is the result of the Finite Element calculation of Pei et al,
while the line b is the prediction of the theory. γ = 0.38 has been used in the calculations.
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Figure 4.15: The relation between the relative contact area, A/A0, and the normalized
squeezing pressure, p/E∗, for an elastic solid squeezed against a rigid surface with the
power spectra shown in Fig. 4.14 (but multiplied by a factor of two). The line a is the
result of the Finite Element calculation of Pei et al, while the line b is the prediction of
the theory where A/A0 is scaled by a factor of 1.29, corresponding to the correction factor
r ≈ 0.6.

4.5 Contact mechanics for a measured surface

Pei et al [53] have performed a Finite Element Method (FEM) computer simulation of the
contact mechanics for a polymer surface, using the measured surface topography [58] as
input, squeezed against a flat surface. Here I would like to compare the FEM results with
the analytical results of Persson.

The surface height profile of a polymer surface studied in Ref. [58] with the root mean
square roughness 14 nm, has been shown in In Fig. 4.11. The probability distribution of
surface height Ph for two different square 10 × 10 µm2 surface areas on the polymer film
is shown in Fig. 4.12. These two surface areas was used in the FEM calculation by Pei et
al as the upper and lower surface. It is remarkable that in spite of the fact that the height
distributions are not perfect Gaussian (in particular one surface exhibits a “bump” in the
height distribution on the outer side of the height profile), Pei et al obtained a nearly
perfect linear relation between logp and ū. This result indicates that even in the present
case the area of real contact is proportional to the load (see below) and the statistical
properties of the contact regions do not change with the load for small load. The surface
roughness power spectra of the two surfaces are shown in Fig. 4.13, and are almost identical
in spite of the difference which occurs in the height distribution Ph.

Fig. 4.14 shows the relation between the logarithm (with 10 as basis) of the squeezing
pressure p (normalized by E∗) and the interfacial separation ū (in nm) for an elastic solid
squeezed against a rigid surface with the power spectra given by the sum of the two power
spectra shown in Fig. 4.11. The line a is the result of the FEM calculation of Pei et al,
and shows that for large separation p ∼ exp(−ū/γhrms) with γ ≈ 0.4, which is consistent
with our analytical results (see line b in Fig. 4.14).

Fig. 4.15 shows the relation between the relative contact area, A/A0, and the normal-
ized squeezing pressure, p/E∗, for an elastic solid squeezed against a rigid surface with
the power spectra shown in Fig. 4.11 (but multiplied by a factor of two). The line a is the
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Figure 4.16: An asperity contact region observed at the magnification ζ. It appears that
complete contact occur in the asperity contact region, but upon increasing the magnifica-
tion it is observed that the solids are separated by the average distance ū(ζ).

result of the FEM calculation of Pei et al, while the line b is the prediction of the theory
where A/A0 is scaled by a factor of 1.29.

The good agreement between the FEM calculations and the analytical theory found
above indicates that the contact mechanics results are robust and not very sensitive to
many details such as the assumption of perfectly random surfaces, which is unlikely to be
exactly obeyed for the polymer surfaces, the surface topography of which was used in the
FEM calculations. (In order to address to what extent a measured surface is randomly
rough one would need to calculate higher order correlation functions, and show that odd
order functions in the height coordinate vanish (or are very small), and that even order
height correlation functions can be decomposed into a sum of pair correlation functions.
No such study for “real” measured surface profiles has yet been found.)

Note that the observation of an effective exponential repulsion has important impli-
cations for tribology, colloid science, powder technology, and materials science [58]. For
example, the density or volume of granular materials has long been known to have a log-
arithmic dependence on the externally applied isotropic pressure or stress, as found, for
example, in the compression stage during processing of ceramic materials [64]. Recent
work on the confinement of nanoparticles have also indicated an exponential force upon
compression [65], suggesting that this relationship could be prevalent among quite different
types of heterogeneous surfaces.

Finally, let us consider the distribution of interfacial separations [66]
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Pu = 〈δ(u − u(x))〉 (4.18)

where 〈..〉 stands for ensemble average (which often is equivalent to average over the
surface area). This function is shown in Fig. 4.17 for three different loads and two different
magnifications. Note that the distributions of interfacial separations observed at low and
high magnifications are similar for u > 5 Å. This result is expected since mainly the long-
wavelength, large amplitude roughness will determine the separation between the surfaces
when the separation is large. The quantity Pu has many important applications. For
example, for lubricated contact at low sliding velocity, one may estimate the contribution
from shearing the liquid film to the (nominal) frictional stress using

τ ≈ ηv

∫

∞

uc

du
Pu

u

where η is the viscosity and v the sliding velocity, and where uc is a cut-off separation of
order nanometer (continuum fluid dynamics is not valid for liquid films thinner than a few
nanometers). Another important application is for estimating the fluid leaking through
sealing.

Another distribution P̄ (u) of interfacial separations, which differs from (4.18), by using
instead of u(x) another function which involves some average over the spatial coordinate,
has been defined as follows: The probability to find the surface separation u < u1(ζ) is

Ψ(u) = A(ζ)/A0 = P (ζ)

where ζ = ζ(u) is the solution to u = u1(ζ) [note that u1(ζ) is a monotonically decreasing
function of ζ so there exist a unique solution ζ = ζ(u) to u = u1(ζ)]. The probability
distribution

P̄u =
dΨ(u)

du
=
P ′(ζ)

u′1(ζ)
|ζ=ζ(u)

We can also write

P̄u = −
∫

dζ
A′(ζ)

A0
δ [u− u1(ζ)] (4.19)

It is convenient to change integration variable to µ defined by ζ = exp(−µ) and consider
A and u1 as function of µ. This gives

P̄u = −
∫

dµ
A′(µ)

A0
δ [u− u1(µ)] (4.20)

In Fig. 4.18, Pu and P̄u have been shown for the surface shown in Fig. 4.2, and for the
squeezing pressure 1.3 GPa. The result for Pu was obtained from the MD-simulations,
while P̄u was obtained from the analytical theory presented above. As expected the
distribution P̄u is more narrow than Pu [since it involves u1 which is already an average
of u(x)], but it is easy to show that average of u is the same for both P and P̄ and equal
to the average separation between the surfaces. Thus

∫

du uP̄u = −
∫

dζ
A′(ζ)

A0
u1(ζ)

Substituting (25) in this equation gives

∫

du uP̄u = − 1

A0

∫ ζ1

ζ0
dζ

d

dζ
[A(ζ)ū(ζ)] = ū(ζ0)
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Figure 4.17: Probability distribution of interfacial separation under different pressure (a)
p/E∗ ≈ 0.002, (b) p/E∗ ≈ 0.013, (c) p/E∗ ≈ 0.113, at low and high magnifications
respectively. For low pressure, the interfacial separation probability distribution on low
and high magnification is similar for u > 5 Å. This result is expected since mainly the
long-wavelength, large amplitude roughness will determine the separation between the
surfaces when the separation is large.
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Figure 4.18: The probability distributions Pu and P̄u defined in the text, for the surface
shown in Fig. 4.2 and for the squeezing pressure 1.3 GPa. The distribution P̄u has a delta
function at u = 0 with the weight A(ζ1)/A0 ≈ 0.047.

where I have used that ū(ζ1) = 0 and that A(ζ0) = A0 (note: ζ0 is the lowest magnification
usually chosen as unity). Since ū(ζ0) equals the average separation between the surfaces
which has been proved by our statement. Note that P̄u has a delta function at u = 0 with
the weight A(ζ1)/A0. Using this fact it is easy to show that distribution P̄u has the zero
order moment equal to unity:

∫

du P̄u = 1

Thus, the zero order and first order moments of Pu and P̄u are the same, but higher order
moments will differ.

4.6 Summary

Our recently developed multiscale molecular dynamics approach [6], has been used to
study real contact area and interfacial separation from small contact to full contact. The
real contact area rises linearly with the load for small load. Here I have found that, at
low magnification where the atomistic nature of the solids becomes unimportant, the MD
results match very well with Persson’s theory, especially when the contact approaches full
contact. The “correction factor” r has been introduced to describe the deviation between
the Persson theory and the MD calculation.

The interfacial separation as a function of squeezing pressure has been derived theo-
retically. For non-adhesive interaction and small applied pressure, p ∼ e−ū/u0 is in good
agreement with experimental observation. This relation has been tested with MD simu-
lations and they match quite well with each other. As a conclusion, Persson theory can
be considered as a model connecting the atomic and macroscopic world, excluding the
extreme case when there is only one or a few atoms on the asperities. The present re-
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sults may be of great importance for soft solids, e.g. rubber-like material, or very smooth
surfaces.
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Chapter 5

Interfacial Separation and Contact

Area with Adhesion

Contact mechanics between solid surfaces is the basis for understanding many tribological
processes such as friction, wear and sealing. The two most important properties are the
area of real contact and the interfacial separation between the solid surfaces. The current
chapter studies the adhesive contact between rough surfaces. The molecular dynamics
calculations are compared with the theory, which turns out to be in good agreement with
each other.

For non-adhesive contact and small squeezing pressure, the average interfacial separa-
tion depends logarithmically on the squeezing pressure [61], and the (projected) contact
area depends linearly on the squeezing pressure. Based on the work in chapter 4, here
the relations between average interfacial separation and squeezing pressure, and between
contact area and squeezing pressure, are extended to the case with adhesion included.
This chapter has been organized as follows. Section 5.2 deals with theory with adhesion,
which is based on the theory in Ref. [61]. Section 5.3 deals with the Molecular Dynamics
(MD) model. The numerical results will be presented in section 5.4. The summary will
be given in section 5.5.

5.1 Background

With the rapid development of micro/nano electromechanical devices in last decade, sur-
face forces play more and more important role, due to the increase of ratio between the
number of atoms on the surface and that in the volume. When we bring two surfaces
together, there is much evidence that attractive forces act between them. Such forces ex-
plain qualitatively that a mechanical load is required to separate two solid bodies placed
in intimate contact [46]. This load, required to separate two surfaces, is referred to sepa-
ration force (or adhesion force). Everything in the world has two-sided effects. Of course
there is no exception for adhesion. On one hand, adhesion can help the Gecko walk on the
ceilings or run on the vertical wall. On the other hand, adhesion can lead to the failure
especially on micro or nano devices, e.g. the micro-sized cantilever beam. If it is too long
or too thin, the free energy minimum state makes the cantilever beam partly bound to the
flat substrate which leads to the failure of the device. However, if the surface roughness of
the substrate is increased, the micro-sized the cantilever will stabilize due to the decrease
of binding energy.

In reality most surfaces are not atomically flat. Even if a surface appears flat at low
magnification, when the surface at higher magnification is studied, one usually observes

61
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surface roughness. Similarly, when two solids with nominally smooth surfaces are brought
into contact they will in general not make contact everywhere, but at high enough mag-
nification there are many non-contact regions. The study of the interfacial separation is
essential for describing, e.g., sealing or optical interference.

5.2 Interfacial separation with adhesion

Consider the (average) interfacial separation ū as a function of the squeezing pressure
p = FN/A0. Note that as p increases, ū will decrease and consider p = p(ū) as a function
of ū. Energy conservation gives [1]

∫

∞

ū
du p(u)A0 = U (5.1)

where U = Uel + Uad is the sum of the elastic energy Uel stored at the interface and the
adhesional energy Uad = −∆γA∗(ζ1) (see Appendix A). For the elastic energy Uel we
use [61]

Uel ≈ A0E
∗π

2

∫ q1

q0

dq q2W (q, p)C(q), (5.2)

where q0 and q1 are the smallest and the largest surface roughness wave vectors, and [61]

W (q, p) = Pp(q)
[

β + (1 − β)P 2
p (q)

]

,

where β = 0.4. The equations given above are solved as described in Ref. [4].
From (5.1) one gets

p(ū) = − 1

A0

dU(ū)

dū

Now consider U as a function of p and write

p(ū) = − 1

A0

dU

dp

dp

dū

or

dū = − 1

A0p

dU

dp
dp

Integrating from u = 0 (corresponding to p = ∞) to u (corresponding to the pressure p)
gives

ū =
1

A0

∫

∞

p
dp

1

p

dU

dp

which is very convenient for numerical calculations.

5.3 Molecular dynamics

The MD system has lateral dimension Lx = Nxa and Ly = Nya, where a is the lattice
spacing of the block. In order to accurately study contact mechanics between elastic
solids, it is necessary to consider that the thickness of the block is of the same order
of the lateral size of the longest wavelength roughness on the substrate. Thus, we have
developed a multiscale MD approach to study contact mechanics [6]. Periodic boundary
condition has been used in xy plane. For the block Nx = Ny = 400, while the lattice
space of the substrate b ≈ a/φ, where φ = (1 +

√
5)/2 is the golden mean, in order to

avoid the formation of commensurate structures at the interface. The mass of the block
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atoms is 197 a.m.u. and the a = 2.6 Å. The elastic modulus and Poisson ratio of the
block is E = 77.2 GPa and ν = 0.42, respectively. The effective elastic modulus has
been defined E∗ = E/(1 − ν2). For self-affine fractal surfaces, the power spectrum has
power-law behavior C(q) ∼ q−2(H+1), where the Hurst exponent H is related to the fractal
dimension Df of the surface via H = 3−Df . For real surfaces this relation holds only for
a finite wave vector region q0 < q < q1, where qL = 2π/L, q0 = 3qL, q1 = ζq0 and ζ. Note
that in many cases, there is a roll-off wave vector q0 below which C(q) is approximately
constant. In MD simulations, the substrate is fractal with fractal dimension Df = 2.2 and
root-mean-square roughness hrms = 10 Å.

The atoms at the interface between block and substrate interact with the potential

U(r) = 4ǫ

[

(

r0
r

)12

−
(

r0
r

)6
]

(5.3)

where r is the distance between the pair of atoms. The parameter ǫ is the binding energy
between two atoms at separation r = 21/6r0. In the calculations presented below I have
used the r0 = 3.28 Å and ǫ = ǫ0 = 18.6 meV, ǫ = 4ǫ0 and ǫ = 8ǫ0. By comparing the
total energy for the surfaces separated with the case where the surfaces are in contact at
equilibrium (at zero external load) I obtain ∆γ = 0.69 J/m2 for the case ǫ = ǫ0, and 4
and 8 times higher interfacial binding energy for the other two cases.

Now let us discuss how to define contact on the atomic scale, when adhesion is included.
In the absence of adhesion I have found that studying the interfacial stress distribution
gives the most accurate way of deducing the area of real contact [6]. When adhesion is
included a cut-off length rc has been used to define contact. It is clear from the force-
distance curve that the only distinctive point is the maximum tensile stress [67]. We regard
the solids as in contact when the stress increases with separation, and separated when the
stress decreases with separation (see Fig. 5.1). In our case, the critical wall-wall distance
is rc = 3.68 Å.

5.4 Numerical results

5.4.1 Interfacial separation u vs. squeezing pressure p with adhesion

The (natural) logarithm of the squeezing pressure p (in units of E∗ = E/(1 − ν2)), as a
function of the interfacial separation ū in units of the root-mean-square roughness ampli-
tude hrms, has been shown in Fig. 5.2. The most right-hand curve is for the case of no
adhesion, which has been discussed in chapter 4. Now let us introduce adhesion. ǫ0 is
the strength of adhesion. One can easily see from Fig. 5.2 that for the same squeezing
pressure, the stronger the adhesion, the smaller interfacial separation. As is well known,
that the adhesion can bring two surfaces closer. E.g, if one continues the curve for 8ǫ0, it
may become vertical. Thus, when adhesion is included, the logarithmic relation, between
interfacial separation and squeezing pressure, does not hold. The theoretical result (solid
lines) agrees very well with the molecular dynamics calculations (square symbols).

5.4.2 Probability distribution of u and p

In Fig. 5.3 the probability distribution of perpendicular stress at the interface has been
shown for several values of the adhesion (a), and for ǫ = 8ǫ0 for three different applied
stress (b). Note that when the adhesion increases, the maximum of the tensile stress
increases roughly proportional to ǫ. In fact, one expects σc ∼ ǫ/a, where a is of order
a bond length. At the same time the maximum repulsive pressure increases but weaker
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Figure 5.1: Lennard-Jones potential as a function of distance r in (a). From force-distance
curve (b), one can see that the only distinctive point is the maximum tensile stress at r2.
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Figure 5.2: Molecular dynamics (square symbols) and theoretical (solid lines) results for
the (natural) logarithm of the squeezing pressure p (in units of E∗ = E/(1−ν2)) as a func-
tion of the interfacial separation ū in units of the root-mean-square roughness amplitude
hrms.
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Figure 5.3: The logarithm (with 10 as basis) of the probability distribution of normal stress
σ (where σ is in unit of E∗) for (a) three different adhesion parameters ǫ = 8ǫ0, 4ǫ0, ǫ0
referred to as a,b,c respectively, and (b) with 8ǫ0 for three different pressure p/E∗ =
−0.00532, 0.00832, 0.06265 denoted as a,b, and c respectively.

than linear. The increase in repulsive stress is, of course, due to the additional load which
acts on the block.

The probability distribution of interfacial separations are shown in Fig. 5.4. When
the adhesion increases, the surfaces are pulled closer together and the distribution of
separations becomes more narrow. Similarly, when the applied pressure decreases, the
separation between the walls decreases.

5.4.3 Contact area comparison between MD and Theory

The molecular dynamics simulations (square symbols) have been compared with the theory
(solid lines) in Fig. 5.5, for the relative contact area A/A0 as a function of the squeezing
pressure. The result above shows that the theory gives a good description of adhesive
contact mechanics between randomly rough surfaces, although the contact area from MD
simulation is slightly bigger than that predicted by the theory.

5.5 Summary

The relation, between the interfacial separation and the squeezing pressure, both without
and with adhesion, has been studied. For non-adhesive contact, the theory is in good
agreement with MD simulations and FEM calculations. For adhesive contact, both theory
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Figure 5.4: The logarithm (with 10 as basis) of the probability distribution of interfacial
separations u (where u is in units of the root-mean-square roughness amplitude hrms)
for (a) three different adhesion parameters ǫ = 8ǫ0, 4ǫ0 and ǫ0, referred to as a, b and
c respectively, and (b) with 8ǫ0 for three different pressures p/E∗ = −0.00532, 0.00832,
0.06265 denoted by a,b, and c respectively.
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Figure 5.5: Molecular dynamics (square symbols) and theoretical (solid lines) results for
the relative contact area A/A0 as a function of the squeezing pressure (in GPa) In the
calculation (solid lines) ∆γ = 0.7, 2.8 and 5.6 J/m2 have been used for the curves indicated
by ǫ0, 4ǫ0 and 8ǫ0, respectively.
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and experiment predict absolute slope bigger, between the interfacial separation and the
log-scale pressure, than the one for non-adhesive contact. In adhesive contact, however, the
absolute slope that the theory predicts is smaller than the one observed in the experiment
by Benz et al. [58]. This discrepancy might be due to plastic yield occurring in the real
experiments, but further investigations are still needed.
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Chapter 6

Theory of the Leak-rate of Seals

Seals are extremely useful tools to prevent fluid leakage. However, the exact mechanism
of roughness induced leakage is not well understood. A theory of the leak-rate of seals
has been presented in this chapter, which is based on percolation theory and a recently
developed contact mechanics theory. Both static and dynamics seals have been studied.
I also present molecular dynamics results which show that when two elastic solids with
randomly rough surfaces are squeezed together, as a function of increasing magnification
or decreasing squeezing pressure, a non-contact channel will percolate when the (relative)
projected contact area, A/A0, is of order 0.4, in accordance with percolation theory. A
simple experiment has been suggested, which can be used to test the theory.

6.1 Introduction

A seal is a tool for closing a gap or making a joint fluid tight [68]. Seals play a crucial role
in many modern engineering devices, and the failure of seals may result in catastrophic
events, such as the Challenger disaster. In spite of its apparent simplicity, it is still not
possible to predict theoretically the leak-rate and (for dynamic seals) the friction forces [69]
for seals. The main problem is the influence of surface roughness on the contact mechanics
at the seal-substrate interface. Most surfaces of engineering interest have surface roughness
on a wide range of length scales [1], e.g, from cm to nm, which will influence the leak rate
and friction of seals, and accounting for the whole range of surface roughness is impossible
using standard numerical methods, such as the Finite Element Method.

In this chapter, the role of surface roughness on seals is analyzed. I will use a recently
developed contact mechanics theory [2, 4, 44, 52, 60, 61] to calculate the leak-rate of static
seals. We assume that purely elastic deformation occurs in the solids, which is the case
for rubber seals. For metal seals, strong plastic deformation often occurs in the contact
region.

The theory developed below is based on studying the interface between the rubber and
the hard counter surface (usually a metal) at different magnifications ζ. At low magnifi-
cation the surfaces appear flat and the contact between them appears to be complete (i.e.,
no leak channels can be observed). However, when the magnification is increased, surface
roughness will be observed at the interface, and, in general, non-contact regions. As the
magnification increases, more and more (short-wavelength) roughness will be observed,
and the (apparent) contact area A(ζ) between the solids will decrease. At high enough
magnification, for ζ = ζc, a non-contact (percolation) channel will appear, through which
fluid will flow, from the high pressure side (pressure Pa) to the low pressure side (pressure
Pb), see Fig. 6.1. We denote the most narrow passage between the two surfaces along the
percolation path as the critical constriction. When the magnification increases further,

69
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rubber
fluid

P0

Pa

Pb

Figure 6.1: Rubber seal (schematic). The liquid on the left-hand-side is under the hydro-
static pressure Pa and the liquid to the right under the pressure Pb (usually, Pb is the
atmospheric pressure). The pressure difference ∆P = Pa −Pb results in liquid flow at the
interface between the rubber seal and the rough substrate surface. The volume of liquid
flow per unit time is denoted by Q̇, and depends on the squeezing pressure P0 acting on
the rubber seal.

more percolation channels will be observed, but these channels will have more narrow
constrictions than those for the first channel which appears at the percolation threshold
(ζ = ζc).

The picture described above for the leakage of seals has already been presented by
Persson [1,70]. However, recent development in contact mechanics now allows us to present
a more accurate analysis of the leakage process. In this chapter the theory of Ref. [70]
has been extended, and numerical results have been presented for the size of the critical
constriction and for the leak-rate.

Sec. 6.2 describes the basic picture used to calculate the leak-rate of static seals. Sec.
6.3 presents numerical results for the size of the critical constriction and for the leak-
rate, and Molecular Dynamics results which illustrate how the contact between the two
solids changes as the magnification ζ increases. I find that the percolation channel is
formed when ζ = ζc, where A(ζc)/A0 ≈ 0.4, in accordance with percolation theory [71].
Sec. 6.4 deals with improvement of the theoretical picture of how to understand static
seals. The theory has been compared with experimental data in Sec. 6.5. Some comments
related to the non-uniform seal are presented in Sec. 6.6. pressure distribution, the role
of adhesion and rubber viscoelasticity. Dynamical (linear reciprocal motion) seals at low
sliding velocities is discussed in Sec. 6.7. In Sec. 6.8 a simple experiment is suggested to
test the theory. The summary is in sec. 6.9.

6.2 Basic picture of leak-rate

We first briefly review the basic picture on which our calculations of the leak-rate are
based [70]. Assume that the nominal contact region between the rubber and the hard
countersurface is rectangular with area Lx × Ly, see Fig. 6.2. We assume that the high
pressure fluid region is for x < 0 and the low pressure region for x > Lx. We now divide the
contact region into squares with the side Lx = L and the area A0 = L2 (this assumes that
N = Ly/Lx is an integer, but this restriction does not affect the final result). Now, let us
study the contact between the two solids within one of the squares as the magnification ζ
changes. Define ζ = L/λ, where λ is the resolution. I study how the apparent contact area
(projected on the xy-plane), A(ζ), between the two solids depends on the magnification ζ.
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Ly

Lx

Lx

Figure 6.2: The rubber-countersurface apparent contact area is rectangular Lx × Ly. We
“divide” it into N = Ly/Lx square areas with side L = Lx and area A0 = L2.

ζ = 1 ζ = 5

ζ = 10 ζ = ζc

L

critical
constriction

Figure 6.3: The contact region at different magnifications (schematic). Note that at the
point where the non-contact area (white area) percolate A(ζc) ≈ 0.4A0, while there appear
to be complete contact between the surfaces at the lowest magnification ζ = 1: A(1) = A0.



72 Chapter 6. Theory of the Leak-rate of Seals

At the lowest magnification one can not observe any surface roughness, and the contact
between the solids appears to be complete i.e., A(1) = A0. As the magnification increases,
some interfacial roughness will be observed, and the (apparent) contact area will decrease,
see Fig. 6.3. At high enough magnification, say ζ = ζc, a percolating path of non-contact
area will be observed for the first time, see Fig. 6.3. The most narrow constriction along the
percolation path will have the lateral size λc = L/ζc and the surface separation at this point
is denoted by uc = u1(ζc) and is given by a recently developed contact mechanics theory
(see below). As the magnification continues increasing, we will find more percolating
channels between the surfaces, but these will have more narrow constrictions than the
first channel which appears at ζ = ζc, and for the moment the contribution to the leak-
rate from these channels (see also Sec. 6.4) will be neglected. Thus, in this chapter we will
assume that the leak-rate is determined by the critical constriction.

A first rough estimate of the leak-rate is obtained by assuming that all the leakage
occurs through the critical percolation channel, and that the whole pressure drop ∆P =
Pa − Pb (where Pa and Pb is the pressure to the left and right of the seal) occurs over
the critical constriction [of width and length λc ≈ L/ζc and height uc = u1(ζc)]. Thus
for an incompressible Newtonian fluid, the volume-flow per unit time through the critical
constriction will be

Q̇ = M∆P (6.1)

where

M = α
u3

1(ζc)

12η
(6.2)

where η is the fluid viscosity. Laminar flow and uc ≪ λc have been assumed in deriving
(6.1), which are always satisfied in practice. No-slip boundary condition is assumed on
the solid walls. This assumption is not always satisfied at the micro or nano scale, yet it is
likely to be a good approximation in the present case owing to surface roughness occurring
at length-scale shorter than the size of the critical constriction. In deriving 6.2 a factor
α has been introduced, which depends on the exact shape of the critical constriction, but
which is expected to be of order unity. Since there are N = Ly/Lx square areas in the
rubber-countersurface (apparent) contact area, we get the total leak-rate

Q̇ =
Ly

Lx
M∆P. (6.3)

To complete the theory one has to calculate the separation uc = u1(ζc) of the surfaces
at the critical constriction. We first determine the critical magnification ζc by assuming
that the apparent relative contact area at this point is given by site percolation theory.
Thus, the relative contact area A(ζ)/A0 ≈ 1−pc, where pc is the so called site percolation
threshold [71]. For an infinite-sized systems pc ≈ 0.696 for a hexagonal lattice and 0.593
for a square lattice [71]. For finite sized systems the percolation will, on the average, occur
for (slightly) smaller values of p, and fluctuations in the percolation threshold will occur
between different realization of the same physical system. This problem will be addressed
later (see Sec. 6.3) but for now let us take pc ≈ 0.6 so that A(ζc)/A0 ≈ 0.4 will determine
the critical magnification ζ = ζc.

Let us define u1(ζ) to be the (average) height separating the surfaces which appear to
come into contact when the magnification decreases from ζ to ζ−∆ζ, where ∆ζ is a small
(infinitesimal) change in the magnification. u1(ζ) is a monotonically decreasing function
of ζ, and can be calculated from the average interfacial separation ū(ζ) and A(ζ) using
(see Ref. [61])

u1(ζ) = ū(ζ) + ū′(ζ)A(ζ)/A′(ζ).
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The quantity ū(ζ) is the average separation between the surfaces in the apparent contact
regions observed at the magnification ζ, see Fig. 4.16. It can be calculated from [61]

ū(ζ) =
√
π

∫ q1

ζq0

dq q2C(q)w(q)

×
∫

∞

p(ζ)
dp′

1

p′

[

γ + 3(1 − γ)P 2(q, p′, ζ)
]

e−[w(q,ζ)p′/E∗]2 ,

where γ ≈ 0.4 and where
p(ζ) = P0A0/A(ζ)

and

w(q, ζ) =

(

π

∫ q

ζq0

dq′ q′3C(q′)

)−1/2

.

The function P (q, p, ζ) is given by

P (q, p, ζ) =
2√
π

∫ s(q,ζ)p

0
dx e−x2

,

where s(q, ζ) = w(q, ζ)/E∗.
The contact has been studied between the solids at increasing magnification. In an

apparent contact area observed at the magnification ζ, the substrate has the root mean
square roughness amplitude [2, 70]

h2
rms(ζ) = 2π

∫ q1

ζq0

dq qC(q). (6.4)

When the apparent contact area has been studied at increasing magnification, the contact
pressure p(ζ) will increase and the surface roughness amplitude hrms(ζ) will decrease.
Thus, the average separation ū(ζ), between the surfaces in the (apparent) contact regions
observed at the magnification ζ, will decrease with increasing magnification.

6.3 Results

6.3.1 Numerical results

The numerical results have been presented to illustrate the theory developed above. As-
sume a rubber block with a flat surface, squeezed by the nominal pressure P0 against a
hard solid with a randomly rough surface which self affine fractal has been assumed. Thus
the surface roughness power spectrum for q0 < q < q1:

C(q) = C0q
−2(1+H)

where

C0 =
H

π
〈h2〉

[

q−2H
0 − q−2H

1

]−1
≈ H

π
〈h2〉q−2H

0

where q0 and q1 are the long-distance and short-distance cut-off wavevectors, respectively.
The rubber has the Young’s modulus E = 10 MPa (as is typical for the low-frequency

modulus of rubber used for seals) and Poisson ratio ν = 0.5. The pressure difference in
the fluid between the two sides of the seals is assumed to be ∆P = 0.01 MPa, as long
as ∆P is small compared to the pressure in the rubber-substrate nominal contact area,
the leak-rate for other sealed pressure can be obtained using direct scaling (see Eq. 6.3).
If this condition is not satisfied, i.e. ∆P ≤ P0, it is necessary to account for the fluid
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pressure in solving the contact mechanics problem. This can be done in an (approximate)
mean-field type of approach by assuming that the rubber-contact area is determined by
the squeezing pressure P0 − pfluid(x), where pfluid(x) is the average local fluid pressure
in the nominal rubber-substrate contact area. In the numerical calculations Ly/Lx = 1
and the leak-rate for other values of Ly/Lx can be obtained by using direct scaling (see
Eq. 6.3). The fluid is assumed to be an incompressible Newtonian fluid with the viscosity
η = 0.001 Ns/m2. We will study how the lateral size λc and the height uc of the critical
constriction depends on the fractal dimension Df = 3 − H and on the root-mean-square
roughness amplitude hrms of the rough surface. We also present results on how the volume
flow of fluid through the seals depends on Df and hrms. The randomly rough surfaces have
the cut-off wavevectors q0 = 1.0 × 104 m−1 and q1 = 7.8 × 109 m−1. We vary the applied
squeezing pressure P0 from 0.05 MPa to 1 MPa.

Let us first vary the rms roughness amplitude. In Fig. 6.4 we show the lateral size
λc = λ(ζc) and in Fig. 6.5 the height (interfacial separation) uc of the critical constriction,
as a function of the applied normal (or squeezing) pressure P0. Results are shown for self
affine fractal surfaces with the Hurst exponent H = 0.8 (or fractal dimension Df = 2.2),
and for surfaces with the root-mean-square roughness (rms) 1, 2, 4 and 6 µm. As expected,
the size of the critical constriction increases when the roughness increases. In Fig. 6.6, the
volume per unit time of fluid leaking through the seals has been shown as a function of
the applied normal (or squeezing) pressure P0. Note the extremely strong decrease in Q̇
with increasing squeezing pressure and also its strong dependence on the rms roughness
amplitude.

In Figs. 6.7, 6.8 and 6.9 we show the analogous results while varying the Hurst exponent
H = 0.9, 0.8, 0.7 and 0.6 for hrms = 2 µm. Note that when H decreases for a fixed hrms,
the short wavelength roughness increases while the long wavelength roughness is almost
unchanged.

In Fig. 6.10, the interfacial separation u1(ζc) and the rms-roughness hrms(ζc) in the
critical constriction, have been shown as a function of the applied normal (or squeezing)
pressure P0. Results are shown for a self affine fractal surface with the Hurst exponent
H = 0.8 (or fractal dimension Df = 2.2), and with the root-mean-square roughness (rms)
6 µm. Note that the difference between hrms(ζc) and u1(ζc) is relatively small. We have
found that this is the case also for the other parameters used in the study above.

6.3.2 Molecular dynamics results

The multiscale molecular dynamics model has been described in Ref. [6], but I review it
briefly here. In what follows I denote the lower solid as substrate, the upper solid as block.
We are concerned with the contact between a randomly rough and rigid substrate, and an
elastic block, without adhesion. We are interested in surfaces with random roughness with
wave-vector components in the finite range q1 > q > qL (see Fig. 6.11), where qL = 2π/L,
L is the lateral size of the system. In order to accurately study contact mechanics between
elastic solids, it is necessary to consider a solid block which extends a distance ∼ L in
the direction normal to the nominal contact area. This requires huge number of atoms
or dynamical variables even for small systems. Therefore, we have developed a multiscale
molecular dynamics approach to study contact mechanics, to avoid this trouble [6]. The
lateral size of the system is L = 1040 Å. Lx = Nxa and Ly = Nya, where a = 2.6 Å is the
lattice space of the block, Nx = Ny = 400 for the block. The elastic modulus and Poisson
ratio are E = 77.2 GPa and ν = 0.42. The lattice space of the substrate is b ≈ a/φ,

where φ =
(

1 +
√

5
)

/2 is the golden mean, in order to achieve (nearly) incommensurate

structures at the interface.
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Figure 6.4: The lateral size λc = λ(ζc) of the critical constriction of the percolation channel,
as a function of the applied normal (or squeezing) pressure P0. Results are shown for self
affine fractal surfaces with the Hurst exponent H = 0.8 (or fractal dimension Df = 2.2),
and for surfaces with the root-mean-square roughness (rms) 1, 2, 4 and 6 µm.
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Figure 6.5: The interfacial separation uc = u1(ζc) at the critical constriction of the perco-
lation channel, as a function of the applied normal (or squeezing) pressure P0. Results are
shown for self affine fractal surfaces with the Hurst exponent H = 0.8 (or fractal dimension
Df = 2.2), and for surfaces with the root-mean-square roughness (rms) 1, 2, 4 and 6 µm.
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Figure 6.6: The volume per unit time, Q̇, of fluid leaking through the seals as a function
of the applied normal (or squeezing) pressure P0. Results are shown for self affine fractal
surfaces with the Hurst exponent H = 0.8 (or fractal dimensionDf = 2.2), and for surfaces
with the root-mean-square roughness (rms) 1, 2, 4 and 6 µm. The fluid pressure difference
between the two sides is ∆P = 0.01 MPa and the fluid viscosity µ = 10−3 Ns/m2 (water).
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Figure 6.7: The lateral size λc = λ(ζc) of the critical constriction of the percolation channel,
as a function of the applied normal (or squeezing) pressure P0. Results are shown for self
affine fractal surfaces with the root-mean-square roughness (rms) 2 µm and for the Hurst
exponent H = 0.9, 0.8, 0.7 and 0.6.
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Figure 6.8: The interfacial separation uc = u1(ζc) at the critical constriction of the per-
colation channel, as a function of the applied normal (or squeezing) pressure P0. Results
are shown for self affine fractal surfaces with the root-mean-square roughness (rms) 2 µm
and for the Hurst exponents H = 0.9, 0.8, 0.7 and 0.6.
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Figure 6.9: The volume per unit time, Q̇, of fluid leaking through the seal as a function
of the applied normal (or squeezing) pressure P0. Results are shown for self affine fractal
surfaces with the root-mean-square roughness (rms) 2 µm and for the Hurst exponent
H = 0.9, 0.8, 0.7 and 0.6. The fluid pressure difference between the two sides is ∆P =
0.01 MPa and the fluid viscosity µ = 10−3 Ns/m2 (water).
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Figure 6.10: The interfacial separation uc = u1(ζc) and the rms-roughness hrms(ζc) in
the critical constriction of the percolation channel, as a function of the applied normal
(or squeezing) pressure P0. Results are shown for self a affine fractal surfaces with the
Hurst exponent H = 0.8 (or fractal dimension Df = 2.2), and with the root-mean-square
roughness (rms) 6 µm.
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Figure 6.11: Surface roughness power spectrum of a surface which is self-affine fractal for
q1 > q > 3qL. The slope logC − logq relation for q > 3qL determines the fractal exponent
of the surface. The lateral size L of the surface determines the smallest wave-vector
qL = 2π/L.
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(b) ζ=3, A/A0=0.778

(c) ζ=6, A/A0=0.498 (d) ζ=9, A/A0=0.434

(e) ζ=12, A/A0=0.405 (f) ζ=648, A/A0=0.323

(a) ζ=1, A/A0=1

Figure 6.12: The contact regions at different magnifications ζ = 1, 3, 6, 9, 12, 648, are
shown in (a)-(f) respectively. The pressure is p ≈ 4.1 GPa. When the magnification is
increased from 9 to 12, the non-contact region percolate.
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For self-affine fractal surfaces, the power spectrum has power-law behavior C(q) ∼
q−2(H+1), where the Hurst exponent H is related to fractal dimension Df of the surface
viaH = 3−Df . For real surfaces this relation holds only for a finite wave vector region q1 <
q < q0, where q1 = 2π/b, q0 is roll-off wave-vector q0 = 3qL (see Fig. 6.11). The randomly
rough surfaces have been generated as described in Ref. [1,6], which have root-mean-square
roughness hrms = 10 Å and fractal dimension Df = 2.2. The roll-off wave-vector q0 = 3qL,
where qL = 2π/L and L = 1040 Å. In this section I define the magnification ζ = q/qL.

The atoms at the interface between block and substrate interact with repulsive poten-
tial U(r) = ǫ(r0/r)

12, where r is the distance between a pair of atoms, r0 = 3.28 Å and
ǫ = 74.4 meV. In molecular dynamics simulations there is no unique definition of contact
(see Ref. [6]). Here the critical distance dc has been used to define contact. If the sep-
aration between two atoms is smaller than dc, it has been denoted as contact, otherwise
non-contact. Here dc = 4.36 Å.

Fig. 6.12 shows the block-substrate contact region at different magnifications ζ =
1, 3, 6, 9, 12, 648. Note that when the magnification is increased from 9 to 12, the non-
contact region percolates. The percolation occurs when the normalized projected contact
area A/A0 ≈ 0.4, in good agreement with percolation theory [71].

6.4 Improved analytical description

In Sec. 6.2 we have assumed that all the fluid flow occurs through a single constriction
referred to as the critical constriction. In reality, fluid flow will also occur in other flow
channels even if they have more narrow constrictions. In this section let us assume that
there are a finite concentration of critical or near critical constrictions, which correspond
to all constrictions which appear when the magnification changes in some narrow interval
around the critical value ζc, e.g., in such a way that A(ζ)/A0 changes by, say, ±0.03. Since
it is very close to the percolation threshold, assumption has been made that the size of
all the (nearly critical) constrictions remains the same. In a more accurate treatment one
would instead introduce a distribution of sizes of constrictions. In Fig. 6.13(a) the dots
correspond to the critical or near critical constrictions along percolation channels (solid
lines). One expects the (nearly critical) constrictions to be nearly randomly distributed
in the apparent contact area, and that the channels, of which they are part, to have all
possible directions as indicated by the lines in Fig. 6.13(a). Here let us consider a simplified
version of (a) where the (nearly critical) constrictions form a more ordered arrangement as
in Fig. 6.13(b). In reality, the dots and the lines should be (nearly) randomly distributed
as in 6.13(a), but this is likely to have only minor effects on what follows.

On the average fluid will only flow in the x-direction. Thus, in a first approximation
one may assume that no fluid flows along the (transverse) channels pointing (mainly) in
the y-direction in Fig. 6.13(b). Let a be the (average) distance between two nearby critical
constrictions. Thus we expect n = Lx/a constrictions along a percolation channel (in the
figure n = 3). If Q̇1 denotes the fluid volume per unit time flowing along one percolation
channel, then one has

Q̇1 = M(Pa − P1) = M(P1 − P2) = ... = M(Pn − Pb). (6.5)

From (6.5) one gets

Q̇1 =
M

n
(Pa − Pb)

As expected, the amount of fluid flowing in the channel is reduced when the number of
constriction increases. However, there will be roughly Ly/a percolation channels so the
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Figure 6.13: The solid lines denote non-contact channels and the dots critical or near criti-
cal constrictions. In reality the constrictions and channels are nearly randomly distributed
as in (a) [see also Fig. 6.12(e)] but in the model calculation the more ordered structure
has been shown in (b).

total fluid flow will be

Q̇ =
Ly

Lx
M(Pa − Pb) (6.6)

which is identical to the result obtained in Sec. 6.2. This analysis is very rough, and a
more detailed analysis will result in some modifications of the leak-rate, but (6.6) should
be very useful as a first rough estimate of the leak-rate. Note that the present treatment
will result in a more gradual changes in the liquid pressure in the apparent contact region,
from the initial high pressure value Pa (entrance side) to the low pressure value Pb (exit
side).

6.5 Comparison with experiment

We have not found any results in the literature about leak-rates of seals for well charac-
terized systems. However, we have found some results which are in qualitative agreement
with our theory. For example, leak-rates observed for both rubber and steel seals tend to
decrease very fast (roughly exponentially) with increasing contact force. Thus, in Ref. [72]
the leak-rate for a rubber seal decreased by 6 order of magnitude as the load increased
by a factor of 10. A similar sharp drop in the leak-rate with increasing contact force has
been observed for seals made from steel [73]. However, in the latter case some plastic
deformation is likely to occur in the contact region. In both cases the nominal pressure
may change less than the change in the load, due to an increase in the nominal contact
area with increasing load. A detailed analysis of the experimental data is not possible as
the surface topography was not studied in detail. In Sec. 6.8 a simple experiment has been
proposed which can be used to test the theory.
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Figure 6.14: Nominal contact pressure distribution P0(x) (curve bounding the dotted
area) for (a) O-ring seal and (b) lip seal. In (a) the curve denoted by “approx” is an
approximation to the continuous Hertz-like curve.

The present theory implies that most of the fluid leakage occurs through the critical
or nearly critical constrictions in the percolating channels at the interface between the
two solids. Since the constrictions are very small they can be easily clogged up by dirt
particles in the fluid. This results in leak-rates which decreases with increasing time as
the microscopic gaps get clogged up. This has recently been observed for metal seals
[73]. In fact, by using specially prepared fluids with immersed particles having a narrow
distribution of particle diameters, it should be possible to determine (approximately) the
size (or rather the height) of the critical constriction.

6.6 Comment on the role of non-uniform pressure, rubber

viscoelasticity and adhesion

In the study above assumption has been made that the normal (squeezing) pressure is
constant in the nominal rubber-countersurface contact region. In reality, this is (almost)
never the case. Thus, in rubber O-ring applications one expects a pressure distribution
which is Herzian-like, as indicated in Fig. 6.14(a). In (dynamical) rubber seals for linear
reciprocal motion, the pressure distribution is asymmetric, with a much steeper increase
in the pressure when going from the high-pressure (Pa) fluid side towards the center of
the seal, as compared going from the low-pressure (Pb) fluid side toward the center of
the seal, see Fig. 6.14(b). (The reason for this asymmetry does not interest us here.)
The theory developed above can be applied approximately to these cases too. Thus in
case (a) (e.g., rubber O-ring seals) one may approximate the actual Herzian-like pressure
profile with a sum of step functions as indicated in Fig. 6.14(a). Since the seal-action is
so strongly dependent on the squeezing pressure (see Figs. 6.6 and 6.9), it is enough to
include the central step region (with width L) in the analysis. Since there is no unique
way to determine the width L there will be some (small) uncertainty in the analysis,
but this is not important in most practical cases. Similarly, for the lip-seal [Fig. 6.14(b)]
during stationary condition it is enough to include the region (width L) where the normal
pressure is maximal.

In the study above assumption has been made that the rubber behaves as a purely
elastic solid. In reality, rubber-materials are viscoelastic. One consequence of this is stress
relaxation. For example, after a rubber O-ring has been deformed to fit into the “cavity”
where it is placed, the stress exerted on the solid walls will decrease with increasing time.
Since rubber materials have a very wide distribution of relaxation times, the stress can
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continue to decrease even one year after installation. Thus, after very long time the
pressure in the rubber-countersurface contact region may be so low that the seal fails
(note: we found earlier that the leak-rate depends extremely sensitively on the normal
pressure). Stress relaxation can be easily taken into account in the analysis above by
using the relaxation modulus E(t) (where t is time) measured in the laboratory using
standard methods.

Now let us comment on the role of adhesion in rubber seals. Note that if the fluid is an
oil, the effective adhesion between the rubber and the hard countersurface may vanish or
nearly vanish, as observed in some experiments [74]. If the fluid is not an oil (e.g., water)
some effective adhesive interaction may remain. In particular, if the fluid is a gas then
the effective adhesion may be similar to that in the normal atmosphere. However, even
in this case the adhesive interaction between the solids may have a negligible influence
on the leak-rate. The reason for this is that adhesion mainly operates at very short
length scales, corresponding to high magnification ζ > ζad, while the leak-rate is mainly
determined by the contact mechanics at the point where the first percolation channel
appears, corresponding to the magnification ζc. If ζc ≪ ζad the adhesive interaction will
have a negligible influence on the leak-rate. This is illustrated in Fig. 6.15 by a numerical
calculation with the theory of Ref. [4].

Fig. 6.15 shows the relative contact area A(ζ)/A0 as a function of the logarithm of
the magnification ζ. Note that at the magnification ζc, where the non-contact area first
percolates, the adhesional interaction has no influence on the contact area. The adhesional
interaction will manifest itself only for ζ > ζad, where the adhesional interaction increases
the contact area as compared to the case without the adhesional interaction included. The
results in Fig. 6.15 is for rubber block in contact with a hard solid with a self-affine fractal
surface with the root-mean-square roughness hrms = 6 µm, the Hurst exponent H = 0.8,
and for the squeezing pressure P0 = 0.2 MPa.

Finally I note that if there is very little fluid at the interface strong capillary adhesion
may occur between the surfaces. This is known to be of great importance in, e.g., the
context of rubber wiper blades. This topic has been discussed in detail in Ref. [75,76]

6.7 Dynamical seals

The theory presented above is for static seals. Here we give some comments related to
dynamical seals [77]. The leak-rate for linear reciprocal seals at very low sliding velocity
has been estimated. Assumption has been made that the roughness mainly occurs on the
rubber surface and the hard countersurface has been treated as perfectly flat. Thus, as
the rubber slides along the countersurface the contact mechanics does not change, e.g.,
the percolation channel will be time-independent in the reference frame moving with the
rubber. Consider the system in the reference frame where the rubber is stationary while
the hard countersurface moves from left to right with the velocity v0. The rubber is
assumed to be below the countersurface, see Fig. 6.16. The high pressure fluid region
(pressure Pa) occupies x < 0 while the low pressure region (pressure Pb) occupies x > L.

Assume a Newtonian fluid and stationary and laminar flow. The basic equations for
the fluid flow are

∇p = η∇2v, ∇ · v = 0,

where p(x) and v(x) are the fluid pressure and the fluid flow velocity, respectively. Now
consider the fluid flows in the percolation channel. Let s be the length-coordinate along
the percolation channel. Since in general the λ(s) ≫ u(s), where λ(s) is the width and
u(s) the height of the channel at the point s along the channel, one can write the velocity
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Figure 6.15: The relative contact area A(ζ)/A0 as a function of the logarithm of the
magnification ζ. Note that at the magnification ζc, where the non-contact area first
percolate, the adhesional interaction has no influence on the contact area. The adhesional
interaction will manifest itself only for ζ > ζad, where the adhesional interaction increases
the contact area as compared to the case without the adhesional interaction included.
For rubber block in contact with a hard solid with a self-affine fractal surface with the
root-mean-square roughness hrms = 6 µm, the Hurst exponent H = 0.8. The squeezing
pressure P0 = 0.2 MPa and, for the curve “with adhesion”, with the interfacial binding
energy per unit area ∆γ = 0.05 J/m2.

as v(x) = ŝv(s, z) where

v(s, z) ≈ 1

2η

dp

ds
z(z − u(s)) + v0x̂ · ŝ z

u(s)

The volume flow per unit time through any cross section of the channel is assumed to be
the same, and equal to Q̇ which gives

Q̇ = λ(s)

∫ u(s)

0
dz v(s) =

λ(s)

(

−u
3(s)

12η

dp

ds
+ v0x̂ · ŝu(s)

2

)

or
dp

ds
=

6η

u2(s)
v0x̂ · ŝ− 12ηQ̇

λ(s)u3(s)

Integrating this equation gives

p(la) = Pa +

∫ la

0
ds

[

6η

u2(s)
v0x̂ · ŝ− 12ηQ̇

λ(s)u3(s)

]

(6.7)

where la is the length of the percolation channel. Let P̃ (u) be the probability to find
the surfaces separated by the height u along the percolation channel. Note that λ(s)
also can (at least locally) be considered as a function of u, which is denoted by λ(u) for
simplicity. Thus one can write (6.7) as
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p(la) = Pa + 6Laηv0

∫

∞

uc

du
P̃ (u)

u2
− 12laηQ̇

∫

∞

uc

du
P̃ (u)

λ(u)u3
(6.8)

where La is the length of the percolation path projected on the x-axis. In Ref. [61] we
have shown how it is possible to calculate the distribution P̄u of heights u between two
surfaces in elastic contact. Let us assume that (note: u > uc)

P̃ (u) ≈ P̄u
∫

∞

uc
du′ P̄u′

Let us write (6.8) as

p(la) = P ′
a = Pa +Bav0 − CaQ̇ (6.9)

where

Ba = 6Laη

∫

∞

uc

du
P̃ (u)

u2
(6.10)

and

Ca = 12laη

∫

∞

uc

du
P̃ (u)

λ(u)u3
(6.11)

Similarly, one gets1

p(lb) = P ′
b = Pb −Bbv0 − CbQ̇ (6.12)

Thus in this case (6.1) takes the form

Q̇ = M(P ′
a − P ′

b) =

M(Pa − Pb) +M(Ba +Bb)v0 −M(Ca − Cb)Q̇

or

Q̇ = M
∆P + (Ba +Bb)v0
1 −M(Ca − Cb)

(6.13)

The factor M(Ca −Cb) in the denominator of this expression is independent of v0 and
assumption has been made that it is negligible compared to unity, and neglect it. One
interesting application of (6.13) is to wiper blade. Here ∆P = 0 so that (6.13) takes the
form

Q̇ = M(Ba +Bb)v0 (6.14)

Substituting (6.2) and (6.10) (and a similar expression for Bb) in (6.14) gives

1Assume that no cavitation occurs at the exit of the critical constriction. Cavitation may occur if
the local pressure at the exit of the critical constriction is negative, but in this chapter let us assume
so low sliding velocity v0 that this is not the case. If cavitation occurs p(lb) ≈ 0, or, more accurately,
p(lb) is equal or close to the vapor pressure of the fluid or of gases dissolved in the fluid. Note that the
transition from boundary or mixed lubrication to hydrodynamic lubrication probably involves cavitation
at the exit of many narrow constrictions, since otherwise the total load supported by the fluid film will
be very small. It would be very interesting to study this problem theoretically, since the transition from
boundary lubrication to hydrodynamic lubrication is not well understood.
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Q̇ = Lyu
3
cv0

α

2

∫

∞

uc

du
P̃ (u)

u2
(6.15)

where the extra factor Ly/Lx has been included to take into account the number of
square seal units. During the time t the leak-volume is Q̇t. Define the average thickness
d of the leak-film as d = Q̇t/(Lyv0t). From (6.15) one gets

d = βuc (6.16)

β =
α

2

∫

∞

uc

du u2
c

P̃ (u)

u2
(6.17)

The integral I in β has been calculated for some typical cases2, and found that I ≈
0.1 − 0.2 so we expect β ≈ 0.1.

In the treatment above assumption has been made that the contact between the rubber
and the hard countersurface does not depend on the pressure in the fluid, which is a
good approximation as long as the fluid pressure p(x) ≪ P0. However, as the sliding
velocity increases, the fluid pressure in some regions at the interface will increase which
will tend to increase the separation between the two surfaces. At very high sliding velocity,
hydrodynamic lubrication will prevail and the surfaces are completely separated by a thin
fluid film. However, even at much lower sliding velocity the hydrodynamic pressure buildup
may strongly increase the leak rate. In particular, the pressure at the critical constriction
will tend to increase the separation between the surfaces and hence increase the leak-rate.
We will not study this effect here but just estimate when this effect becomes important.
Let pc be the pressure at the critical constriction. If pc acts over the area λ2

c it will locally
increase the separation between the surfaces by the amount 3 ∆u ≈ λcpc/E. Thus, the
pressure at the critical constriction must be much smaller than Euc/λc in order for the
pressure-induced effect to be negligible. Note that

pc ≈ 6Lηv0

∫

∞

uc

du
P̃ (u)

u2

so the present study is limited to sliding velocities

v0 ≪ Eu3
c

6Lηλc

(

∫

∞

uc

du u2
c

P̃ (u)

u2

)−1

≈ Eu3
c

Lηλc
(6.18)

where the integral typically is of order ∼ 0.15. Thus, for example, if in a wiper blade
application, after some use the rubber blades typically develop (because of wear) a surface
roughness with a rms amplitude of several micrometer. If the rms roughness is 2 µm (and
the Hurst exponent H = 0.8), the nominal pressure ∼ 0.2 MPa, and if E ≈ 10 MPa one
gets from Fig. 6.5 and 6.4 uc ≈ 0.1 µm and λc ≈ 10 µm. If L ≈ 0.1 mm and (for water)
η ≈ 10−3Pa · s we get that the slip velocity must be at most ∼ 1 cm/s in order for (6.18)
to be valid. According to (6.16) the (average) film thickness of the water layer would be
of order 0.01 µm.

2Two calculations have been done: For a self affine fractal surface with the rms roughness of hrms = 2 µm
and the squeezing pressure P0 = 0.18 MPa we got B ≈ 0.11 (and uc ≈ 0.1 µm and λc ≈ 16 µm) and for
hrms = 4 µm and P0 = 0.2 MPa we got B ≈ 0.21 (and uc ≈ 1 µm and λc ≈ 109 µm).

3The fluid pressure along the percolation channel increases towards the critical constriction. Thus, the
elastic deformation of the rubber at the critical constriction is determined not just by the pressure at the
constriction but also by the pressure acting on the rubber along the percolation path. If one assumes a
strait percolation path and that the pressure along the percolation path p(x) = pcx/L then one can easily
show that ∆u ≈ ln(L/λc)λcpc/E but the additional logarithmic factor is never very large and does not
change our qualitative conclusion.
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Figure 6.16: A rubber block with a rough surface in contact with a hard smooth counter-
surface (upper block) which moves relative to the rubber block with the velocity v0.

6.8 A new experiment

Very few studies of leak rates of seals with well characterized surfaces have been published.
Here let us suggest a very simple experiment which could be used to test the theory
presented in Sec. 6.2. A set-up for measuring the leak-rate of seals has been shown in
Fig. 6.17. A glass (or PMMA) cylinder with a rubber ring (with rectangular cross-section)
glued to one end is squeezed against a hard substrate with well-defined surface roughness.
The cylinder is filled with a fluid, e.g., water, and the leak-rate of the fluid at the rubber-
countersurface is detected by the change in the height of the fluid in the cylinder. In this
case the pressure difference ∆P = Pa − Pb = ρgH, where g is the gravitation constant, ρ
the fluid density and H the height of the fluid column. With H ≈ 1 m we get typically
∆P ≈ 0.01 MPa. With the diameter of the glass cylinder of order a few cm, the condition
P0 ≫ ∆P (which is necessary in order to be able to neglect the influence on the contact
mechanics from the fluid pressure at the rubber-countersurface) is satisfied already for
loads (at the upper surface of the cylinder) of order kg.

6.9 Summary

A theory of the leak-rate of seals, based on percolation theory and a recently developed
contact mechanics theory, has been presented. Both static and dynamics seals have been
studied. Numerical results are presented for the leak-rate Q̇, and for the lateral size λc

and the height uc of the critical constriction. Results with self-affine fractal surfaces are
presented on how Q̇, λc and uc depend on the root-mean-square roughness amplitude and
the fractal dimension Df = 3−H (where H is the Hurst exponent), and on the squeezing
pressure P0 with which the rubber is squeezed against the rough countersurface.

I have also presented molecular dynamics results which show that when two elastic
solids with randomly rough surfaces are squeezed together, as a function of increasing
magnification or decreasing squeezing pressure, a non-contact channel will percolate when
relative projected contact area, A/A0, is about 0.4, in accordance with percolation theory.
Finally, a simple experiment has been suggested which can be used to test the theory.

The theory presented in this chapter is very rough, but I believe that it captures the
most important physics, and that the presented approach can be improved and extended
in various ways.
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Figure 6.17: A simple experimental set-up for measuring the leak-rate of seals. A glass (or
PMMA) cylinder with a rubber ring glued to one end is squeezed against a hard substrate
with well-defined surface roughness. The cylinder is filled with a fluid, e.g., water, and the
leak-rate of the fluid at the rubber-countersurface is detected by the change in the height
of the fluid in the cylinder. In this case the pressure difference ∆P = Pa − Pb = ρgH,
where g is the gravitation constant, ρ the fluid density and H the height of the fluid
column. With H ≈ 1 m we get typically ∆P ≈ 0.01 MPa.
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Chapter 7

How do Liquids Confined at the

Nanoscale Influence Adhesion?

Liquids play an important role in adhesion and sliding friction. They behave as lubricants
in human bodies especially in the joints. However, in many biological attachment systems
they act like adhesives, e.g. facilitating insects to move on ceilings or vertical walls. In
this chapter I will use molecular dynamics to study how liquids confined at the nanoscale
influence the adhesion between solid bodies with smooth and rough surfaces. It turns out
that a monolayer of liquid may strongly affect the adhesion.

7.1 Motivation

Knowing the behavior of liquids confined to small volumes between contacting surfaces
is essential for the understanding a vast array of common problems in science, such as
biological interactions [2,78,79], crack propagation [80], molecular tribology and adhesion
[9, 42, 81, 82]. Ultra-thin confined films can have two completely opposite effects. On one
hand, the confined liquid may behave like a lubricant to reduce adhesion and friction. For
instance, when bones meet at a joint, they need a liquid in-between to prevent scraping
against each other. The liquid is called a synovial liquid [83], which is made mainly of
water and water-based long chain polymers. Many internal organs in humans and other
animals are separated by thin lubricant films. Examples include the cerebrospinal liquid
in the brain [84], the pleural liquid in lungs [85] and water based liquid in eyes. On the
other hand, in some applications liquids behave like adhesives, e.g. in some biological
attachment systems. Thus, for example, insects can secret a liquid to enhance adhesion
in order to walk on ceilings or vertical walls [78]. Geckos can also walk on the ceilings due
to their hierarchical hair structure which makes their adhesion pads elastically soft on all
relevant length scales [18]. Recently scientists found that water monolayer-films, which
always occur on hydrophilic (water-loving) surfaces in the normal atmosphere, enhance
Gecko adhesion [86,87] to hydrophilic surfaces.

The influence of thin liquid layers on the effective adhesion between solids is well-
known to most of us from our every-day experience, e.g., when separating two (slightly
wet) microscopy cover glass surfaces, or two gauge blocks (steel blocks with very smooth
surfaces). At the micro or nano-scale the increased adhesion resulting from the formation
of water capillary bridges is one of the most severe problem in the production of micro-
electro-mechanical systems (MEMS) [88]. In general, wetting liquids tend to increase the
adhesion between solids with surface roughness, but at present it is not known exactly for
which liquid coverage the pull-off force is maximal [42,89]. There are also many unsolved
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questions related to the influence of liquids on adhesion in biological systems, e.g., how is
it possible for a Gecko to move on a vertical stone wall during raining, and how do cells
(in liquids) adhere to solids walls?

In this chapter I show that small amounts of confined liquid between smooth and
randomly rough surfaces can influence adhesion. Using liquids that interact weakly and
strongly with the walls (hydrophobic [90] and hydrophilic walls), I demonstrate that some-
times the liquid acts like a lubricant, as in some biological systems, such as in the eyes,
and sometimes it behaves like a glue, as the insects’ secretions when they walk on ceilings
or vertical walls.

7.2 Preparing the initial configuration

Consider an elastic block approaching a hard substrate covered with alkane molecules. The
surfaces of the two walls are described as a square grid of atoms, with lattice constants
a = 2.6 Å for the elastic block and b = 1.6 Å for the rigid substrate. The difference in the
lattice constant is to avoid the pinning due to a perfect match of the crystal structures. A
recently developed Multiscale Molecular Dynamics [6] description let us properly describe
the elastic response of the block without simulating too many atoms in the bulk. The
Young modulus of the block is E = 100 GPa and the Poisson ratio is ν = 0.3.

Both atomically flat and rough substrates have been studied. The profile of the rough
substrate is self affine fractal with root-mean-square (rms) amplitude 3 Å and fractal
dimension Df = 2.2; it is prepared following the recipe in Refs. [1, 6].

The liquid between the walls is octane C8H18 and the simulations are carried out at
room temperature, T = 300 K, well above the melting point of octane Tm = 216 K. The
octane molecules are treated with the United Atom model: every molecule comprises 8
particles corresponding to the groups CH2 and CH3. The Optimized Potential for Liquid
Simulation (OPLS) [26,27] is employed. The atoms of the two walls interact through the
Lennard-Jones potential, with parameters σ = 3.28 Å and ǫ = 40 meV. The interaction
between the walls’ atoms and the groups CH2 and CH3 of the octane molecules are also
given by the Lennard-Jones potential with σ = 3.28 Å, but two different interaction
energies are considered: the strong adsorbate interaction with ǫ = 40 meV, and the weak
adsorbate interaction with ǫ = 5 meV.

7.3 Numerical results

7.3.1 Confined liquid on flat surfaces

In the simulations I first bring the elastic block into contact with the substrate, and then
pull up the block slowly until the two surfaces separate. In the process of detachment
the interaction between the lubricated walls is attractive, and the adhesive force reaches
a maximum at a given distance, which depends on the amount of liquid, and then it
decreases. Fig. 7.1(a) shows the maximum pulling force per unit area (pull-off stress), as
a function of liquid coverage θ, for the case of two flat walls. The corresponding distance
between the walls when the pulling force is maximum is plotted in figure 7.1(b).

Note that the direct interaction between the block and the substrate is negligible when
the surfaces are separated by one adsorbate monolayer. The pull-off stress is maximum
for clean and smooth surfaces since there is strong interaction between the wall atoms
(Lennard-Jones parameter ǫ = 40 meV). The pull-off stress rapidly decreases with in-
creasing amount of liquid between the surfaces. For θ < 1, the boundary line of an island
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Figure 7.1: Pull-off on a flat substrate for strong adsorbate interaction (curve 1) and for
weak adsorbate interaction (curve 2). (a): the maximum pull-off stress as a function of
the liquid coverage θ. (b): the separation between the walls where the stress is maximum
as a function of θ. Continuous lines: fit with smoothing cubic splines.
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of lubricant molecules can be considered as a crack edge, as shown in Fig. 7.2. During pull-
off high stress concentration occurs at the crack tip, and the interfacial crack propagation
starts at the crack edge, resulting in the strong decrease in the pull-off force observed in
the simulations for θ < 1.

Fig. 7.2 shows the side view of the system before and after detachment when the
coverage is θ = 1/4. For the strong interaction between liquid and walls [(a) and (b)]
not all molecules are trapped in one island. For the weak adsorbate interaction [(c) and
(d)] the liquid molecules experience smaller lateral energy barriers, and for θ < 1 they get
squeezed into a single large island, thus less elastic energy is stored at the block-substrate
interface in this case, resulting, at low liquid coverage, in a (slightly) stronger adhesion
(or pull-off force) for the weak adsorbate interaction as compared to the case of strong
interaction. This is of course a kinetic effect, and for an infinitely large system the liquid
will always form finite clusters, whose size depends on the squeezing procedure. But as
a general rule the stronger interaction will give rise to smaller islands, so that for the
same preparation the stronger adsorbate interaction will lead to a slightly lower adhesion.
Notice that after the detachment of the two walls the liquid sticks all to the substrate:
indeed its adhesion energy to the substrate is larger because of the larger substrate atom
density compared to that of the upper block.

For the weak adsorbate interaction the pull-off stress decreases monotonically with
increasing C8H18 coverage. On the other hand the strong adhesive interaction causes an
increase of the pull-off stress up to a maximum for the coverage θ = 1 corresponding to
a complete monolayer. The physical reason for this phenomenon is that at θ = 1 the
liquid completely covers the atomically smooth surface and no crack-like defects occur at
the interface; moreover the stored elastic energy at the interface is minimal. Thus the
adhesion reaches a local maximum.

7.3.2 Confined liquid on rough surfaces

For the rough (self-affine fractal) substrate, the pull-off stress as a function of θ is showed
in Fig. 7.3. In this case the monolayer coverage corresponds to θ ≈ 1.3 i.e., the roughness
increases the substrate surface area by about 30%. For the strong adsorbate interaction,
the adhesion decreases with increasing liquid coverage up to θ ≈ 0.2 due to molecules
trapped in the asperity contact regions, which effectively enhances the substrate surface
roughness. For θ > 0.2 the pull-off force increases due to the formation of capillary
bridges (see Fig. 7.5 (c)). For the weak adsorbate interaction, due to the strong wall-wall
interaction and weak liquid-wall interaction, the liquid molecules are squeezed away from
the asperity contact regions into the valleys [see Fig. 7.4 (c),(d) and Fig. 7.7], which results
in nearly constant pull-off force for θ < 1 (see curve 2 in Fig. 7.3). Due to the hydrophobic
interaction between the liquid and the blocks, no capillary bridge forms, and as θ increases
beyond 1 the pull-off force decreases towards zero.

For the strong adsorbate interaction the lateral corrugation of the molecule-substrate
interaction potential is so high that liquid molecules are trapped in the asperity contact
regions. This is illustrated in Fig. 7.4 (a) and (b) (side-view snapshots). The trapped
molecules increase the elastic energy stored at the interface and reduce the effective wall-
wall binding energy. Thus, for θ < 0.67 the pull-off stress for the strong adsorbate inter-
action is smaller than that for the weak interaction, as it is shown in Fig. 7.3(a). For the
rough substrate with strong adsorbate interaction the pull-off stress reaches a maximum
at θ ≈ 1.3 (see curve 1 in Fig. 7.3). During pull-off some liquid molecules are pulled out
of the valleys (or cavities), and form nano-size capillary bridges in the asperity regions
of the rough substrate (see Fig. 7.5), which results in an effective wall-wall interaction
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Figure 7.2: Side view of the system with coverage θ ≈ 1/4 during the pull-off. The light
balls represent the CH2 and CH3 groups of the octane molecules. The dark balls are the
atoms of the walls’ surfaces. (a) Strong adsorbate interaction between the liquid and the
walls; the separation happens by crack propagation. (b) After the detachment the block
returns to its undeformed state. (c) and (d) during and after the detachment for the case
of weak adsorbate interaction. The behavior is the same as in the previous case.
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Figure 7.3: Pull-off on a rough substrate for strong adsorbate interaction (curve 1) and
for weak adsorbate interaction (curve 2). (a): the maximum pull-off stress as a function
of the liquid coverage θ. (b): the walls distance where the stress is maximum as a function
of θ. Continuous lines: fit with smoothing cubic splines.
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Figure 7.4: Side view of the contact for coverage θ = 1/4 on a rough substrate. The
pictures show only the atoms in a 29 Å thick slice including the highest asperity. (a) Strong
adsorbate interaction; initial state. (b) Strong adsorbate interaction; maximum pull-off
force. (c) Weak adsorbate interaction; initial state. (d) Weak adsorbate interaction;
maximum pull-off force.
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Figure 7.5: Side view of some atoms for the strong interacting adsorbate at coverage
θ = 1.3 on a rough substrate, including the highest asperity. The system evolves in time
from (a) to (b) and then to (c) during the pulling phase.

which is more long ranged than when the wall-liquid interaction is weak. For the weak
adsorbate interaction case (see Fig. 7.6) the liquid does not wet the surface of the block
(hydrophobic interaction) and no capillary bridges form, and for θ > 1 the pull-off stress
is much smaller than that for the strong adsorbate interaction.

7.4 Contact hysteresis

The force-distance curves for the rough substrate with θ ≈ 0.25 and θ ≈ 1.3, are shown
in Fig. 7.8 and 7.9 respectively, both for the strong (a) and weak (b) adsorbate interac-
tion. Note that for the weak adsorbate interaction there is nearly no hysteresis. For the
strong adsorbate interaction large hysteresis is observed, and several abrupt changes in
the pressure can be observed during squeezing, which correspond to the squeeze-out of
some lubricant molecules from some asperity contact regions.

The breaking of the bonds between two macroscopic solids during pull-off is usually
due to interfacial crack propagation, and the macroscopic pull-off force is determined by
the energy (per unit of created surface area) G(v) to propagate the crack at the velocity
v, or, equivalently the effective work of adhesion γeff(v). For very small solid objects
the bond-breaking may occur more uniformly over the contact area and the standard
picture described above no longer holds (see Ref. [91]). Thus, the results presented in this
study may be directly relevant for adhesion involving small (micro- or nano-) sized solid
objects, while the pull-off force for macroscopic objects may be more related to the work
of adhesion during retraction, which can be obtained from pressure-distance plots such as
those presented in Fig. 7.8 and 7.9 but not studied in detail in this chapter.
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Figure 7.6: Side view of some atoms for the weak interacting adsorbate at coverage θ = 1.3
on a rough substrate, including the highest asperity. The system evolves in time from (a)
to (b) and then to (c) during the pulling phase.

Figure 7.7: Top view snapshots of the liquid on a rough substrate for θ ≈ 1.3, with
(a) strong interaction and (b) weak interaction between liquid and walls. These images
correspond to the side views shown in Fig. 7.5(a) and Fig. 7.6(a) respectively.
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7.5 Discussion

Very recently Huber et al [86,87] have studied the influence of humidity on the nanoscale
adhesion of individual Gecko spatulae to smooth glass surfaces. The hierarchical gecko
foot structure consists of fiber or hair-like structures, and each fiber ends with a ∼ 100 nm
wide plate-like structure which is only a few nanometer thick at its thinnest place. The
plates can easily bend to make contact even to very rough substrates [92]. Huber et al ob-
served that the pull-off force on hydrophilic glass increased monotonically with increasing
humidity. At the highest humidity the water film was ∼ 0.2 nm thick which corresponds
roughly to a water monolayer. This is consistent with our numerical results for rough
surfaces and hydrophilic materials, which shows that the pull-off force increases with in-
creasing θ as θ increases from 0.2 to monolayer coverage (see Fig. 7.3). As the glass surface
used in the experiments by Huber et al was very smooth, the dominant surface roughness
may be that of the bottom surface of the plate-like structure of the spatula. When one
spatula is completely submerged under water the pull-off force decreases by a factor ∼ 6
as compared to humid condition.

7.6 Summary

In summary, I have studied how molecularly thin liquid layers affect the adhesion between
the solids both with smooth and rough surfaces. For strong interaction between the liquid
and walls, the pull-off force exhibits a local maximum at monolayer coverage. For the
weak interaction, the pull-off force decreases continuously with increasing liquid coverage,
especially when θ > 1 for rough substrate. It is clear that a fundamental understanding, of
the influence of liquid on adhesion at the micro- or nanoscale, is central to a large number
of biological and “high-tech” engineering applications.
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Chapter 8

Effect of Surface Roughness and

Adsorbates on Superlubricity

In this chapter I will address the sliding of elastic solids in adhesive contact with flat
and rough surfaces. The dependence of the sliding friction on the elastic modulus of the
solids has been considered. For elastically hard solids with planar surfaces with incom-
mensurate surface structures, extremely low friction (superlubricity) has been observed,
which very abruptly increases as the elastic modulus decreases. Results show that even a
relatively small surface roughness or a low concentration of adsorbates can eliminate the
superlubricity state.

8.1 Introduction

Friction between solid surfaces is a very important phenomenon for biology and technology
[9] and it is very common in nature. Static friction always involves the coexistence of
different metastable configurations at microscopic level. When one surface slides on the
other at low speed, first there is a loading phase during which the actual configuration
stores elastic energy. Then, when the stored energy is large enough, an instability arises
[93–95]: the system jumps abruptly to another configuration and releases elastic energy
into irregular heat motion. The exact way of how the energy is dissipated does not influence
the sliding friction force, provided that the dissipation is fast enough to happen before the
next sliding event.

There are many possible origins of elastic instabilities, e.g., they may involve individual
molecules or, more likely, groups of molecules or “patches” at the interface, which have
been named stress domains [96–99]. As a result the overall motion may not exhibit any
stick and slip behavior at macroscopic level, since the local rearrangements can occur
at different times in an incoherent manner. Moreover, at least at zero temperature, the
friction force does not vanish in the limit of sliding speed v → 0, but it tends to reach
some finite value which depends on the average energy stored during the loading events.

On the other hand, a system without instabilities cannot present a non-vanishing ki-
netic friction as v → 0: if for any sliding distance there exists only one stable configuration,
the energy stored at the interface is a single-valued function of the relative sliding distance.
Thus when sliding occurs slowly the process has to be reversible, i.e., with negligible fric-
tion.

If the structure of the two contacting surfaces does not match, the formation of pinned
states is hindered: when some groups of atoms are in registry with the other surface,
occupying a local energy minimum, some other groups of atoms cannot adjust to the local

103
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energy-minimum configuration without a deformation of the solids. In this case there is
a competition between two energies: the lateral corrugation of the interaction potential
between the walls, and the elastic energy to deform the solid so that every surface patch
adjusts into a local minimum. If the latter prevails, the system is pinned and static
friction appears. Otherwise, if the solid is sufficiently stiff, local domains do not show
any instability and can overcome reversibly the local barriers. The overall effect is a
motion with no static friction, since when some domains move uphill some other regions
move downhill, so that the total energy is constant. This absence of instabilities due to a
mismatch of the two surfaces’ structures has been named superlubricity [100], although a
more appropriate name would have been structural lubricity [101].

It is well known that elastically hard solids tend to exhibit smaller sliding friction than
(elastically) soft materials [102]. One extreme example is diamond which under normal
circumstances exhibits very low kinetic friction coefficient, of the order of 0.01, when
diamond is sliding on diamond. This can be explained by the nearly absence of elastic
instabilities because of the elastic hardness of the material.

Recently, superlubricity has been observed during sliding of graphite on graphite: in
the experiment described in Ref. [103] a tungsten tip with a graphite flake attached to
it is slid on an atomically flat graphite surface. When the flake is in registry with the
substrate stick-slip motion and large friction are observed. When the flake is rotated out
of registry, the forces felt by the different atoms start to cancel each other out, causing
the friction force to nearly vanish, and the contact to become superlubric.

Graphite and many other layered materials are excellently dry lubricants. The most
likely reason for this is that the solid walls of the sliding objects get coated by graphite
flakes or layers with different orientation so a large fraction of the graphite-graphite con-
tacts will be in the superlubric state. This will lead to a strong reduction in the average
friction. However, the coated solid walls are unlikely to be perfectly flat and clean, and
it is important to address how surface roughness and adsorbates influence the superlubric
state. Here I show that even a relatively small surface roughness or low adsorbate coverage
can eliminate the superlubric state [104].

8.2 Model

The results presented below have been obtained for an elastically flat block sliding on
a rigid substrate. Both flat and rough substrates are considered. The atoms in the
bottom layer of the block form a simple square lattice with lattice constant a. The lateral
dimensions Lx = Nxa and Ly = Nya. For the block, Nx = Ny = 48. Periodic boundary
conditions are applied in the xy plane. A recently developed multiscale molecular dynamics
model has been used, where the block extends in the vertical z-direction a similar distance
as along the x-direction [6] (see also [53]).

The lateral size of the block is equal to that of the substrate, but for the latter a
different lattice constant b ≈ a/φ is used, where φ = (1 +

√
5)/2 is the golden mean,

in order to hinder the formation of commensurate structures at the interface. For the
substrate, Nx = Ny = 78. The mass of a block atom is 197 a.m.u. and the lattice spacing
of the block is a = 2.6 Å. The lattice spacing of the substrate is b = 1.6 Å. Solid blocks
with different Young’s moduli from E = 0.2 GPa up to 1000 GPa are considered in this
chapter. The Poisson ratio of the block is ν = 0.3.

Many surfaces tend to be nearly self-affine fractal. A self-affine fractal surface has the
property that if part of the surface is magnified, with a magnification which in general is
appropriately different in the perpendicular direction to the surface as compared to the
lateral directions, then the surface “looks the same”, i.e., the statistical properties of the
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Figure 8.1: The contact between an elastic block with a flat surface and a rough rigid
substrate. Only the interfacial layers of atoms are shown. The elastic modulus of the
block is E = 100 GPa. The substrate is self-affine fractal with the root-mean-square
roughness 3 Å, fractal dimension Df = 2.2. The applied pressure p = 10 GPa.

surface are invariant under this scale transformation [1, 6]. For a self-affine surface the
power spectrum has the power-law behavior

C(q) ∼ q−2(H+1), (8.1)

where the Hurst exponent H is related to the fractal dimension Df of the surface via
H = 3−Df . Of course, for real surfaces this relation only holds in some finite wave vector
region q0 < q < q1, and in a typical case C(q) has a roll-off wavevector q0 below which
C(q) is approximately constant.

In these calculations I have used self-affine fractal surfaces generated as outlined in
Ref. [1], with the fractal dimension Df = 2.2 and the roll-off wavevector q0 = 3qL, where
qL = 2π/Lx. q0 = 3qL rather than q0 = qL has been chosen since the former value gives
some self-averaging and less noisy numerical results. Note q1 = 2π/b = 78q0.

The atoms at the interface between the block and the substrate interact with the
Lennard-Jones potential

U(r) = 4ǫ

[

(

r0
r

)12

−
(

r0
r

)6
]

, (8.2)

where r is the distance between a pair of atoms. In the calculations presented below I
have used r0 = 3.28 Å and ǫ = 40 meV, which gives an interfacial binding energy (per

unit area) ∆γ ≈ 4ǫ/a2 ≈ 24 meV/Å
2
.

As an illustration, the contact between a flatly elastic block (top) and a randomly
rough rigid substrate (bottom) has been shown in Fig. 8.1. Only the interfacial block and
substrate atoms are shown. Note the non-contact regions occur in the “deep” valleys of
the substrate.

In all results presented below the upper surface of the block moves with the velocity
v = 0.1 m/s, and the (nominal) squeezing pressure p, if not stated otherwise, is one tenth
of the elastic modulus E of the block, i.e., p = 0.1E. Some test calculations for v = 1 m/s
have been done (not shown), which show very similar results as for v = 0.1 m/s. In
fact, neglecting heating effects, one does not expect any strong dependence of the friction
force on the velocity, as long as it is much smaller than the sound velocity (typically
1000 m/s), and much higher than the velocities that thermally activated creep motion
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Figure 8.2: The shear stress at depinning (static friction) and during sliding (kinetic
friction) as a function of the elastic modulus E of the block, for the flat substrate. In the
calculation the squeezing pressure p = 0.1E and the sliding velocity v = 0.1 m/s.

becomes important (usually a few µm/s). Furthermore, the sliding direction does not
play a significant role since the commensurability ratio 8/13 is the same along the x and
y directions. For the (randomly) rough surfaces some test calculations have been done
that the sliding direction is reversed which shows that the friction force changes by at
most 20%. This is a finite-size effect: for an infinite system sliding along the positive or
negative x-axis cannot change the friction force.

The reason for choosing p proportional to E is twofold. Firstly, solids with elastic
modulus which varies over several orders of magnitude are considered, and it is not pos-
sible to use a constant p as this would result in unphysical large variations in the elastic
deformation of the block. Secondly, if two elastic solids are squeezed together with a given
load, then as long as the area of real contact is small compared to the nominal contact
area, the pressure in the contact areas will be proportional to the elastic modulus of the
solids [2].

The system is kept at low temperature by a viscous friction (a Langevin thermostat
at T = 0 K) applied only to the topmost layers of block atoms, which are far away from
the interface. On the time-scale of our simulations no significant variation in the frictional
shear force has been observed, which could be attributed to a (slow) heating up of the
system.

8.3 Numerical results

Firstly we study the sliding of clean smooth and rough surfaces for elastic solids with dif-
ferent elastic modulus and surface roughness. Secondly we study the influence of adsorbed
molecules on the sliding friction. Results show that already a small surface roughness or
less than a monolayer of adsorbed molecules may strongly increase the friction.
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Figure 8.3: The average displacement of the interface block atoms (in the sliding direction)
as a function of time, for the flat substrate. The elastic modulus of the block is E = 1, 1.1,
1.2 and 1.3 GPa. The transition from high friction (stick-slip) to superlubricity (steady
sliding) is demonstrated clearly.

8.3.1 Influence of surface roughness on friction

Let us first assume that both the block and the substrate have atomically smooth surfaces.
Fig. 8.2 shows the shear stress as a function of the elastic modulus E of the block. Note
the relatively abrupt decrease in the friction when the elastic modulus changes from E1 ≈
0.7 GPa to E2 ≈ 2 GPa. For E > E2 practically no instabilities occur and the friction
is extremely small, while for E < E1 relatively strong elastic instabilities occur at the
sliding interface, and the friction is high. For E = 0.2 GPa the static friction µs > 2. This
calculation illustrates that the transition from high friction to superlubricity can be very
abrupt; in the present case an increase in the elastic modulus by only a factor of 3 (from
0.7 to 2.1 GPa) decreases the kinetic friction by a factor of ∼ 105.

The variation of the shear stress as a function of time has been studied when the
elastic modulus of the block equals (a) E = 0.8 GPa and (b) E = 2 GPa. When the elastic
modulus of the solid is above the superlubric threshold as in case (b), no significantly elastic
instabilities occur; the stress is a periodic function of time, with the period corresponding
to the displacement 0.2 Å. For softer solids, when strong elastic instabilities occur during
sliding as in case (a), the shear stress is less regular (and the arrangement of the interfacial
block atoms more disordered) than for the stiffer solid, and the (average) period is longer
than 0.2 Å.

The remarkable abruptness of the superlubric transition is illustrated in Fig. 8.3, which
shows the average displacement of the interface block atoms (in the sliding direction) as a
function of time, for the flat substrate. Note that onset of stick-slip as the elastic modulus
of the block decreases from E = 1.3 GPa (upper curve) to 1 GPa (lower curve).

The regular pattern with period 0.2 Å has a simple geometrical explanation related
to the commensurability ratio 8/13 along the sliding direction: in the ground state each
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Figure 8.4: The shear stress for an elastic block sliding on rough substrates, as a function
of the elastic modulus E of the block. The curves from top to bottom correspond to the
root-mean-square roughness amplitudes of the fractal substrate 3, 1, 0.3, 0.1 Å and 0 (flat
substrate).

block’s atom has 8 allowed positions within the cell b of the substrate. Hence there are 8
equivalent configurations within a sliding distance b = 1.6 Å.

Let us now consider the influence of surface roughness on the sliding dynamics. The
average shear stress for an elastic block sliding on a rough substrate, as a function of
the elastic modulus E of the block, has been shown in Fig. 8.4. For the substrate with
the largest roughness, no superlubric state can be observed for any elastic modulus up to
E = 1012 Pa.

Our results are in agreement with the theoretical predictions of Sokoloff [105]: rough-
ness on multiple length scales can induce a transition from a weak pinning regime to a
strong pinning regime. The main difference between our model and that of Sokoloff is
that the latter assumes purely repulsive interactions between the atoms, while here the
attractive part of the Lennard-Jones potential gives rise to an adhesive pressure pad which
will contribute to the effective load. Since in our case pad ≈ 10 GPa, the shear stress is
almost independent of the external load.

The shear stress as a function of time for different elastic moduli has been shown in
Fig. 8.5. Note that in addition to major slip events, several small slip events occur in all
cases. These events correspond to local slip at some asperity contact regions before the
major slip involving the whole contact area. In all cases, the time dependence of the shear
stress remains periodic with the period 2.6 Å, which corresponds to the lattice spacing of
the block. At the current sliding speed v = 0.1 m/s the kinetic friction force is smaller
for the stiffer solid even if the load is larger: although the maximum shear stress achieved
before sliding is quite big in such case, the average shear stress is small and part of the
elastic energy stored in the loading phase is not dissipated, but it is given back to the
system. For the elastically softer blocks (E = 20 and 5 GPa), the stress-noise increases
after each major slip event; this is caused by the elastic waves (heat motion) excited during
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Figure 8.5: The shear stress as a function of time for the rough substrate with the root-
mean-square roughness amplitude 3 Å. The elastic modulus of the block is E = 100, 20
and 5 GPa.

Figure 8.6: The shear stress as a function of time for the rough substrate with the root-
mean-square roughness amplitudes 3, 1, 0.3 and 0.1 Å. The elastic modulus of the block is
E = 10 GPa. The transition from high friction to superlubricity is demonstrated clearly.
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Figure 8.7: The average displacement of the interface block atoms (in the sliding direc-
tion) as a function of time for the rough substrate with the root-mean-square roughness
amplitudes 3, 1, 0.3 and 0.1 Å. The elastic modulus of the block is E = 10 GPa. The
transition from high friction (stick-slip) to superlubricity (steady sliding) is demonstrated
clearly.
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the (major) rapid slip events and not completely adsorbed by the thermostat.

The effect of the substrate root-mean-square (rms) roughness amplitude on the shear
stress, as a function of time for the block with the elastic modulus E = 10 GPa, has been
shown in Fig. 8.6. The root-mean-square roughness amplitude is varied from 3 to 0.1 Å.
For the rms roughness amplitudes 0.3 and 0.1 Å the major slip is not as abrupt as for
higher roughness amplitudes. In all cases, the time dependence of the shear stress remains
periodic with the period 2.6 Å determined by the lattice spacing of the block. For the rms
roughness 3 Å two small and a major slip events can be observed in each period, and the
kinetic friction is high. For the case with the rms amplitudes 0.3 and 0.1 Å (almost) no
elastic instability occurs, and the kinetic friction is very small.

The average displacement of the interface block atoms (in the sliding direction), has
been shown in Fig. 8.7 as a function of time for the block with the elastic modulus E =
10 GPa, and for the rough substrate with various roughness amplitudes. The transition
from high (stick-slip) friction for the most rough surface to very low friction (smooth
sliding) for the surfaces with root-mean-square roughness 0.3 and 0.1 Å is demonstrated
clearly.

8.3.2 Dependence of the friction on the load

Now let us study the dependence of the friction force on the load. Both flat surfaces and
rough surfaces are considered. For flat surfaces the frictional shear stress is independent of
the squeezing pressure p as long as p is smaller than the adhesion pressure pad which is of
the order of 1010 Pa. For rough surfaces the situation is more complex and the frictional
shear stress will depend on the squeezing pressure p even for very small p unless at least
one of the solids is so compliant that the attractive interaction becomes important for the
contact mechanics.

Flat surface

During sliding, the atoms at the sliding interface will experience energetic barriers derived
from both the attractive interaction between the atoms on the two opposing surfaces,
and from the applied load. Thus, let us define an adhesion pressure pad, and as long as
pad ≫ p, where p is the pressure in the contact area derived from the external load, the
frictional shear stress will be nearly independent of the applied load. Let us first consider
the limiting case where the elastic modulus of the block is extremely small. In this case, in
the initial pinned state (before sliding) all the block atoms will occupy hollow sites on the
substrate, as indicated by atom A in Fig. 8.8. During sliding along the x-direction, the
atom A will move over the bridge position B and then “fall down” into the hollow position
C (over-damped motion has been assumed). The minimum energy for this process is given
by the energy barrier δǫ (the energy difference between the sites B and A) plus the work
pa2δh against the external load, where a is the block lattice constant and δh the change in
the height between sites B and A (which depends on p). Thus the frictional shear stress
σf is determined by σfa

2b = δǫ+ pa2δh, or

σf = δǫ/(ba2) + pδh/b = (pad + p)δh/b,

where the adhesion pressure has been defined pad = δǫ/(a2δh).

In our case δǫ ≈ 3 meV and δh ≈ 0.008 Å giving pad ≈ 1010 Pa. Thus, in the present
case, only when the local pressure in the contact regions becomes of the order of ∼ 10 GPa,
or more, it will start to influence the shear stress. This result is in accordance with our
simulation results. Thus, for smooth surfaces, the shear stress acting on the block with
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A

B

C

Figure 8.8: A block atom moving (or jumping) from the hollow site A over the bridge site
B to the hollow site C. The maximum energy position along the trajectory is at site B.

the elastic modulus E = 0.5 GPa, squeezed against the substrate with the pressure p = 50
and 150 MPa, is identical (≈ 1 MPa) within the accuracy of the simulations.

Rough surface

In the absence of adhesion, contact mechanics theories predict that the area of real contact
A between two elastic solids with randomly rough (but nominally flat) surfaces is propor-
tional to the squeezing force (or load) FN as long as A ≪ A0 (where A0 is the nominal
contact area). The law A = αFN holds strictly only if the roughness occurs on many
different length scales [60], but this is (almost) always the case for natural surfaces (e.g., a
stone surface) or surfaces of engineering interest. For an infinite system (thermodynamic
limit) not only A is proportional to FN, but also the distribution of sizes of the contact
regions and the stress distribution in the area of real contact, is independent of the squeez-
ing force if A ≪ A0. The physical picture behind these results is that as the squeezing
force increases, new contact regions are formed in such a way that the quantities referred
to above remain unchanged. However, for any finite sized system this picture cannot hold
exactly as it requires that some contact regions have infinite-size, which is possible only
for an infinite sized system.

When the attractive interaction cannot be neglected, the area of real contact is often
assumed [106] to be of the form A ≈ α(FN + Fad) where Fad represents an adhesive load,
but this relation is only approximate [4, 60]. If the friction force Ff is assumed to be
proportional to the area of real contact, then one expects Ff = σcA ≈ σcα(FN + Fad) so
that the nominal frictional shear stress

σf = Ff/A0 ≈ σcα(FN + Fad)/A0 = σcα(p + σa) (8.3)

where p = FN/A0 is the (nominal) squeezing pressure and where the so called detachment
stress [4, 60] σa gives a contribution to the frictional stress from the attractive wall-wall
interaction. From (8.3) it also follows that the friction coefficient µ = σcα(1 + σa/p) will
diverge as the squeezing pressure p goes to zero.

The dependence of the frictional shear stress on the squeezing pressure for the system
has been studied above, for the block elasticities E = 10 GPa and E = 100 GPa, and for
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Figure 8.9: The shear stress at depinning (static friction) and during sliding (kinetic
friction) (a) and the static and kinetic friction coefficients (b) as a function of the applied
pressure, for an elastic block sliding on a rough substrate. For the substrate with the root-
mean-square roughness amplitude 3 Å. The elastic modulus of the block is E = 10 GPa.

the rigid substrate with the rms roughness amplitude 3 Å. In Fig. 8.9 (a) the (nominal)
frictional shear stress and (b) the friction coefficient, have been shown as a function of the
squeezing pressure when E = 10 GPa. Note that, because of the attractive interaction, the
frictional shear stress is constant for low squeezing pressures, while the friction coefficient
diverges as p→ 0, in consistent with the theoretical analysis.

The adhesion contribution σcασa to the frictional shear stress becomes important only
when the elastic modulus of the block is small enough. The transition, with decreasing
elastic modulus, from the case where the adhesion can be neglected to the case where it
is important, is rather abrupt. To illustrate this, the interfacial atoms (the top atoms
of the substrate and the bottom atoms of the block) for blocks with the elastic modulus
E = 1000, 100, 10 and 5 GPa, and with the squeezing pressure p = 0.1E, have been
shown in Fig. 8.10. In the absence of adhesion all the systems would exhibit virtually
identical arrangement of atoms. Indeed the two stiffest solids exhibit very similar atom-
arrangements, but there is a clear change when E decreases from 100 to 10 GPa; in the
latter case the attractive interaction is able to pull the solids into intimate contact over
most of the nominal contact area. Thus the bottom surface of the block is able to bend
and fill out a substrate “cavity” with diameter D and height h if the gain in wall-wall
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Figure 8.10: The contact between an elastic block with a flat surface and a rough rigid
substrate. Only the interfacial layers of atoms are shown. The elastic modulus of the
block is E = 1000, 100, 10 and 5 GPa (from top to bottom). The substrate is self-affine
fractal with the root-mean-square roughness 3 Å. The applied pressure p = 0.1E. Note
the elastic deformation of the block, and that the real contact area is smaller than the
nominal contact area for high values of the elastic modulus of the block.
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Figure 8.11: The shear stress during sliding (kinetic friction) (a) and the kinetic friction
coefficient (b) as a function of the applied pressure, for an elastic block sliding on a rough
substrate. For the substrate with the root-mean-square roughness amplitude 3 Å. The
elastic modulus of the block is E = 100 GPa.

binding energy, which is of the order of D2∆γ (where ∆γ is the interfacial binding energy
per unit surface area for flat surfaces), is equal to (or larger than) the elastic energy stored
in the deformation field in the block, which is of the order of ED3(h/D)2. This gives the
“critical” elasticity Ec ≈ D∆γ/h2. In the present case we have a distribution of roughness
wavelength but one can obtain a rough estimate of Ec by taking h2 = 〈h2〉 = 9 Å2 as
the mean of the square of the roughness profile and D ≈ 100 Å as a typical roughness
wavelength. Using ∆γ ≈ 4ǫ/a2 ≈ 24 meV/Å2 this gives Ec ≈ 40 GPa which is between
100 and 10 GPa. This change in the contact mechanics has a large influence on the sliding
friction. Thus, as will be shown, for the block with elastic modulus E = 100 GPa there
will be a negligible contribution to the friction from the attractive interaction and σa ≈ 0.

Fig. 8.11 shows the frictional shear stress for the same system as in Fig. 8.9 except
that the elastic modulus of the block is ten times higher. In this case the influence of the
attractive interaction is negligible, and the frictional shear stress decreases continuously
as the squeezing pressure decreases. However, the friction coefficient is not constant as
expected from the arguments presented above related to the invariance of the pressure
distribution and contact size distribution with the squeezing force. This fact must be
related to the small size of the system used in our simulations. As the squeezing pressure
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Figure 8.12: The shear stress as a function of time for the rough substrate with the root-
mean-square roughness amplitude 3 Å. The elastic modulus of the block is E = 100 GPa
and the applied pressure p = 5 and 10 GPa.

increases the stress distribution at the interface and the average size of the contact regions
will change in such a way that when p increases from p = 5 to 10 GPa there is a very
rapid increase in asperity contact regions undergoing elastic instabilities during sliding.
This can be directly demonstrated by comparing the time-variation of the shear stress for
p = 5 and 10 GPa, see Fig. 8.12. Note that at the higher pressure some slip events take
place before the main slip event, i.e., new elastic instabilities appear and the frictional
shear stress increases much faster than linear with the nominal squeezing pressure as p
increases from 5 to 10 GPa.

To illustrate the small influence of the adhesion on the contact mechanics for the block
with the elastic modulus E = 100 GPa, the interfacial atoms for the squeezing pressures
p = 10, 3, 1 GPa and 0 have been shown in Fig. 8.13. When p = 0 only the adhesion
pressure is acting and the area of real contact almost vanishes.

8.3.3 Role of adsorbates

Extremely low sliding friction is possible only in the absence of elastic instabilities. As
shown above this is possible for stiff enough solids with incommensurate (or nearly in-
commensurate) surface structures. However, any types of imperfections may “lock” the
surfaces together and introduce elastic instabilities during sliding. One type of “defect”
discussed above is surface roughness. Another possibility is adsorbed molecules. Adsorbed
molecules may arrange themselves at the interface between the two solids in such a way
as to pin the solids together. A low concentration of (strongly bound) adsorbates is in
many ways similar to nanoscale roughness and it is clear that if the perfect system (flat
surfaces without adsorbates) were in a superlubric state, one would expect a strong in-
crease in the friction already at low adsorbate coverage. We have performed an extensive
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Figure 8.13: The contact between an elastic block with a flat surface and a rough rigid
substrate. Only the interfacial layers of atoms are shown. The elastic modulus of the block
is E = 100 GPa. The substrate is self-affine fractal with the root-mean-square roughness
3 Å. The applied pressure p = 10, 3, 1 GPa and 0 (from top to bottom). For the latter
case only the adhesion pressure is acting. Note the elastic deformation of the block, and
that the real contact area is smaller than the nominal contact area.



118 Chapter 8. Effect of Surface Roughness and Adsorbates on Superlubricity

−10

−8

−6

−4

−2

 0

 0  0.5  1  1.5  2

lo
g 1

0 
µ k

θ 

r.m.s.=3 Å

smooth

Figure 8.14: The kinetic friction coefficients for elastic block (E = 100 GPa) sliding both on
smooth and on rough substrate, as a function of liquid coverage (octane, C8H18) θ confined
between two walls [107]. The substrate has the root-mean-square (rms) roughness 3 Å
and the fractal dimension Df = 2.2. The applied pressure p = 1 GPa.

set of computer simulations to illustrate this effect both for atomically smooth surfaces
and for rough surfaces. In Fig. 8.14, the kinetic friction coefficients for elastic block
(E = 100 GPa) sliding both on smooth and on rough substrate, have been shown as a
function of liquid (octane, C8H18) coverage θ confined between two walls, for the applied
pressure p = 0.01E [107]. Note that for flat surfaces there is a very abrupt increase in the
friction with increasing adsorbate coverage. In fact, the friction increases by a factor of
∼ 106 as the coverage increases from zero to 0.22 monolayer. For 0.22 < θ < 2 the friction
is nearly constant. For the rough surface the increase in the friction is much smaller. In
this case the (small) increase in the friction results from octane molecules trapped in the
asperity contact regions 1 – this results in an effectively increased surface roughness and
enhanced friction.

8.4 Summary

To summarize, the sliding of elastic solids in adhesive contact with flat and rough surfaces
has been studied. Firstly, the dependence of the sliding friction on the elastic modulus
of the solids is considered. For elastically hard solids with planar surfaces with incom-
mensurate surface structures extremely low friction (superlubricity) has been observed,
which very abruptly increases as the elastic modulus decreases. Thus, at the superlubric-
ity threshold, an increase in the elastic modulus by a factor of ∼ 3 results in the decrease
in the frictional shear stress by a factor ∼ 105. Secondly, the dependence of friction on
load has been studied both theoretically and numerically. Thirdly, even a relatively small
surface roughness, or a low concentration of adsorbates, can eliminate the superlubricity.

1In the simulations the C8H18 bed-units interact with the solid wall atoms via the Lennard-Jones
potential with the well-depth parameter ǫ = 40 meV. This relatively strong interaction leads to lubricant
molecules trapped in the asperity contact regions. Other studies (see Ref. [107]) with ǫ = 5 meV result in
the squeeze-out of the lubricant from the asperity contact regions into the “valleys” or “cavities” of the
substrate height profile. In this case, any adsorbate-induced increase in friction is not expected.



Chapter 9

Nanodroplets on Rough

Hydrophilic and Hydrophobic

Surfaces

The behavior of liquid nanodroplets on rough hydrophobic and hydrophilic solid sur-
faces has been studied in this chapter. On hydrophobic surfaces, the contact angle for
nanodroplets depends strongly on the root mean square roughness amplitude, but it is
nearly independent of the fractal dimension of the surface. Since increasing the fractal
dimension increases the short-wavelength roughness, while the long-wavelength roughness
is almost unchanged, I conclude that for hydrophobic interactions the short-wavelength
(atomistic) roughness is not very important. Results show that the nanodroplet is in a
Cassie-like state. For rough hydrophobic surfaces, there is no contact angle hysteresis due
to strong thermal fluctuations, which occur at the liquid-solid interface on the nanoscale.
On hydrophilic surfaces, however, there is strong contact angle hysteresis due to higher
energy barrier. These findings may be very important for the development of artificially
biomimetic superhydrophobic surfaces.

9.1 Introduction

In the year of 1805, Thomas Young and Pierre Simon de Laplace proposed that an inter-
face between two materials has specific energy, the so-called interfacial energy, which is
proportional to the interfacial surface area [108–110]. This concept is the basis for the field
of wetting, which has become an extremely hot topic in the last two decades [111, 112],
thanks to biological and high-tech applications, ranging from self-cleaning surfaces, micro-
electronics and thin film coatings, to image formation that involve the spreading of liquids
on solid surfaces.

Wetting describes the contact between a fluid and a solid surface. Liquids with high
surface tension (usually reflecting strong intra-molecular bonds), or liquids on low-energy
solid surfaces, usually form nearly (complete) spherical droplets, whereas liquids with low
surface tension, or liquids on high-energy surfaces, usually spread out on (or wet) the
surfaces. This phenomenon is a result of minimization of interfacial energy. Thus, if a
surface has a high free energy, most liquid will spread on the surface since this will usually
lower the free energy.

Wetting phenomena have been widely studied both theoretically [113,114] and experi-
mentally [115,116] in connection with the physics of surfaces and interfaces. The behavior
of liquids on smooth solid surfaces is rather well understood. However, for rough solid
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surfaces the situation is much less clear, even though roughness occurs on practically all
real surfaces of engineering or biological interest. Studies (and classification) of disordered
and inhomogeneous surfaces [117] should have significant impact on the problem of liquid
contact angle and wetting of rough substrates [90,107,118–120]

The fascinating water repellents of many biological surfaces, in particular plant leaves,
have recently attracted great interest for fundamental research as well as practical appli-
cations [15–17,121–125]. The ability of these surfaces to make water beads off completely
and thereby wash off contamination very effectively has been termed the “Lotus effect”,
although it is observed not only on the leaves of the Lotus plant (Fig. 1.2), but also on
many other plants such as strawberry, raspberry and so on. Water repellents are very
important in many industrial and biological processes, such as prevention of the adhe-
sion of snow, rain drops and fog to antennas, self-cleaning windows and traffic indicators,
low-friction surfaces and cell mobility [126–128].

Most leaves that exhibit strong hydrophobicity have hierarchical surface roughness
with micro- and nanostructures made of unwettable wax crystals, which maximize the
contact angle with water and most other liquids. Fig. 1.3 shows epidermal cells (microscale
roughness) covered with wax crystals (nanoscale roughness). The wax crystals exhibit a
relative high contact angle with water, which is enhanced by the surface roughness. Water
droplets on the rough wax surface tend to minimize the contact between the surface and
the droplet by forming nearly spherical droplets, as approximately described by the two
classical models due to Wenzel [129] and Cassie [130] (see below). As a result the leaves
have also a self-cleaning property: because of the small adhesion energy (and small contact
area) between contamination particles and the rough leaf [16], during raining water drops
roll away removing the contamination particles from the leaf surface.

The hydrophobicity of solid surfaces is determined by both the chemical composition
and the geometrical micro- or nanostructure of the surface [115,131,132]. Understanding
the wetting of corrugated and porous surfaces is a problem of long standing interest in
areas ranging from textile science [133] to catalytic reaction engineering [134]. Renewed
interest in this problem has been generated by the discoveries of surfaces with small scale
corrugations that exhibit very large contact angles for water and other liquids—in some
cases the contact angle is close to 180◦. Such surfaces are referred to as superhydrophobic
[135].

In this chapter I present results of Molecular Dynamics (MD) calculations on the be-
havior of liquid nanodroplets on rough hydrophilic and hydrophobic solid surfaces. We
find that for hydrophobic surfaces, the contact angle for nanodroplets depends strongly
on the root mean square surface roughness amplitude, but is nearly independent of the
fractal dimension Df of the surface. For hydrophobic rough surfaces I do not detect any
contact angle hysteresis. Both results can be explained by the strong thermal fluctuations
which occur at the liquid-solid interface on the nanoscale. On hydrophilic surfaces, how-
ever, strong contact angle hysteresis has been found due to the higher energy barrier for
interfacial liquid density fluctuations. These findings may be crucial for the development
of artificial biomimetic superhydrophobic surfaces.

9.2 Theoretical background

In this section I briefly describe some results from the theory of the liquid-solid contact
angle, which are necessary for the interpretation of the numerical results presented in
Sec. 9.4. The importance of thermal fluctuations for the contact dynamics at the nanoscale
is emphasized as compared to micrometer or macroscopic dimensions.
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θ
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hard solid

Figure 9.1: Liquid droplet on flat substrate. The contact angle θ is between 0 (complete
wetting) and π.

9.2.1 Flat surfaces

If gravitational effects can be neglected, a liquid droplet on a flat substrate forms a spher-
ical cup, see Fig. 9.1. The contact angle θ is determined by the minimization of the
free energy and depends on the interfacial free energies per unit area: solid/liquid γsl,
solid/vapor γsv and liquid/vapor γlv. Minimizing the surface free energy, with the con-
straint of fixed volume of the droplet, gives the Young’s equation, first proposed by Thomas
Young about two hundred years ago:

γsl + γlvcosθ = γsv (9.1)

Complete wetting corresponds to θ = 0, and typically happens for liquids with low
surface tension γlv, and on solids with high surface energy γsv. Liquids with high surface
tension on low energy surfaces tend to form droplets with high contact angle θ. Eq. 9.1 was
deduced for a substrate which is assumed to be perfectly smooth, homogeneous, and rigid.
However, in reality, structured or rough surfaces are quite common. So it is necessary to
know how the contact angle behaves on rough surfaces.

9.2.2 Rough surfaces: minimum free energy state

Most surfaces of practical interest have roughness on many different length scales. For
simple periodic surface profiles one may analytically develop accurate analytical treat-
ments of the liquid droplet contact angle (see e.g., Ref. [136]), but for randomly rough
surfaces the situation is much more complex. For surfaces with random roughness, e.g.,
self-affine fractal surfaces (see below), one may develop a general theory based on the
study of the system at different magnifications ζ, see Fig. 9.2. Here ζ = D/λ where D is
the diameter of the droplet-substrate (apparent) contact area and λ the resolution. One
can introduce interfacial liquid-solid and solid-vapor free energies (per unit area) γsl(ζ)
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Figure 9.2: Liquid droplet on a rough substrate. At the lowest magnification ζ the sur-
face appears flat and the liquid contact angle is θ0. At increasing magnification surface
roughness is observed and the liquid will in general only makes contact with the substrate
in some asperity contact regions.

and γsv(ζ) which depend on the magnification ζ1. At the highest magnification ζ1, corre-
sponding to nanoscale (or atomistic) resolution, these quantities reduce to those for the
flat surface2, γsl(ζ1) = γsl and γsv(ζ1) = γsv. Since the substrate appears flat at the lowest
magnification ζ = 1, the macroscopic contact angle (corresponding to ζ = 1) is obtained
using the Young’s equation with γsl and γsv replaced by γsl(1) and γsv(1), i.e.

γsl(1) + γlvcosθ0 = γsv(1) (9.2)

The change in the surface free energy (per unit area) when a liquid with a flat surface is
brought in contact with the substrate is

∆F/A0 = γsl(1) − γsv(1) − γlv = −γlv(1 + cosθ0)

where A0 is the (projected) surface area. Note that increasing contact angle θ0 corresponds
to a increasing interfacial free energy. Thus, if a liquid drop can occur in several metastable
states on a surface, the state with the smallest contact angle corresponds to the (stable)
minimal free-energy state.

Using Eq. 9.2 it is trivial to derive the results of the so called Wenzel [129] and Cassie
[130] models. In the Wenzel model it is assumed that complete contact occurs at the
liquid-solid interface. Thus

γsv(1) = rγsv(ζ1), γsl(1) = rγsl(ζ1), (9.3)

where r = A/A0 is the ratio between the surface area A of the rough substrate, and the
projected (or nominal) surface area A0. Substituting (9.3) in (9.2) gives the contact angle

1The surface energy of a liquid does, in fact, also depend on the magnification because of thermally
excited capillary waves which contribute to the surface energy of a liquid. However, the dependence of
γlv(ζ) on the magnification ζ is rather weak and this effect in the present study is neglected.

2Here let us assume that the surface free energy per unit area does not depend on the orientation of the
substrate surface, which may be a reasonable approximation for many amorphous materials, but which in
general fails for crystalline materials.
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θ0 on the rough surface in terms of the contact angle θ on the microscopically flat surface
of the same material (Wenzel equation):

cos θ0 = r cos θ. (9.4)

In the Cassie model [130] it is assumed that some air (or vapor) remains trapped
between the drop and the cavities of the rough surface. In this case the interface free
energy

γsv(1) = rγsv(ζ1), (9.5)

γsl(1) = φrγsl(ζ1) + (1 − φ)(rγsv(ζ1) + γlv), (9.6)

where φ is the fraction of the (projected) area where the liquid is in contact with the solid.
Substituting (9.5) and (9.6) in (9.2) gives

cos θ0 = r cos θ − (1 − φ)(1 + r cos θ) (9.7)

Note that for φ = 1, (9.7) reduces to (9.4). The Wenzel theory is exact if the liquid
is in contact with the substrate everywhere within the nominal liquid-substrate contact
area, the Cassie theory is always approximate and often not very accurate. This is easily
understood from Fig. 9.3 which shows the interface between a liquid and a solid. φ < 1
is the ratio between the projected liquid-solid contact area and the nominal (or apparent)
contact area A0. Because the solid surface is curved, the actual liquid-solid contact area
will be A0φs where s > 1. Similar, since in general the liquid-vapor interface is curved (in
spite of the fact that the total curvature 1/R1 + 1/R2 may vanish) and tilted (relative to
the average surface plane), the total liquid-vapor interface area is A0(1−φ)s′, with s′ > 1.
Similarly, the solid-vapor interface area equals A0(1 − φ)s′′ with s′′ > 1. In deriving (9.7)
it is assumed that s = s′′ = r and s′ = 1.

Comparing (9.4) and (9.7) shows that the Cassie state has the largest cosθ0, and hence
the lowest free (interfacial) energy if 1 + r cos θ < 0 or

cos θ < −1/r (9.8)

Since r is a measure of the magnitude of the surface roughness, I may qualitatively state
that only for hydrophobic surfaces (with cos θ < 0 or θ > 90◦) with large enough roughness
(i.e., large enough r = A/A0) will the Cassie state be the thermodynamically stable state.

The approach described above, where the interface is studied at different magnifica-
tions, is very general and a similar approach has recently been developed for the contact
mechanics between elastic solids with randomly rough surfaces [4] (see also Ref. [137]).

It is well known that the roughness of a hydrophobic solid (with θ > 90◦ on the flat
substrate) enhances its hydrophobicity. If the contact angle of water on such flat solids is
of the order of 100◦ to 120◦, on a rough or micro-textured surface it may be as high as
150◦ to 175◦ [128,137,138]. Both the Wenzel model and the Cassie model can explain this
effect.

Let us consider the most simple surface roughness consisting of a periodic rectangular
roughness profile as illustrated in Fig. 9.4 (a) (xz-plane). The free energy (per unit surface
area) for the Cassie state shown in the figure is

γC = [(a+ 2h)γsv + aγlv + bγsl] /(a+ b)

The free energy for the Wenzel state (complete contact) is

γW = (a+ b+ 2h)γsl/(a+ b)
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Figure 9.3: The interface between liquid and solid. φ < 1 is the ratio between the projected
liquid-solid contact area and the nominal (or apparent) contact area A0. Because the solid
surface is curved, the actual liquid-solid contact area will be A0φs where s > 1. Similar,
since in general the liquid-vapor interface is curved (in spite of the fact that the total
curvature 1/R1 + 1/R2 may vanish) and tilted (relative to the average surface plane) the
total liquid-vapor interface area is A0(1 − φ)s′, with s′ > 1. Similarly, the solid-vapor
interface area equals A0(1 − φ)s′′ with s′′ > 1.

Using (9.1) The difference in free energy can be written as

γC − γW = γlv[a(1 + cos θ) + 2hcos θ]/(a+ b)

Thus, the Cassie state has a lower free energy than the Wenzel state if

cos θ < −
(

1 +
2h

a

)−1

(9.9)

which is satisfied only if for the flat surface θ > 90◦, and if the ratio h/a is large enough.
Note that in this case r = A/A0 = (a+ b+ 2h)/(a+ b) so the (approximate) criteria (9.8)
reduces to

cos θ < −
(

1 +
2h

a+ b

)−1

which is of similar general form as (9.9). In Nature strongly hydrophobic surfaces are
often obtained by covering the surface with thin, long (so that h/a ≫ 1) hydrophobic
fibers. Thus, insects which move on top of water, e.g., water spiders (see Fig. 9.5) have
a high density of thin wax coated hair on their legs. In addition, the hair fibers have
nanoscale roughness which traps air and enhances the hydrophobicity [139]. In this case
the water-leg contact will be in the Cassie state even when the insect is squeezed towards
the water by the weight of the insect.

9.2.3 Rough surfaces: activation barriers and hysteresis

Consider a cylindrical cavity as in Fig. 9.4 (b) and assume first the Cassie state as in the
figure. Let us apply a pressure p to the droplet. In this case the liquid will bend inwards
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Figure 9.4: (a) Liquid drop (in the Cassie state) in contact with a surface with periodic
surface roughness. (b) Even if the Cassie state (incomplete liquid-solid contact) is the
ground state, with an applied pressure p one can squeeze the droplet into the Wenzel
state.
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Figure 9.5: Water spiders have thin hydrophobic (wax coated) hair with nanoscale rough-
ness which traps air and enhances hydrophobicity.

in the cavity and if the applied pressure is larger than a critical value pc, the liquid will
be squeezed into the cavity (let us assume that the air in the cavity can leave the cavity,
e.g., diffuse into the liquid). It is easy to show that the pressure

pc = −2γslcosθ/R (9.10)

where R is the radius of the cavity. To prove this relation, note that the pressure work
to squeeze the liquid a distance h′ into the cavity (see Fig. 9.4) is given by pcπR

2h′ and
this must be equal to the change in interfacial free energy which equals 2πRh′(γsl − γsv).
Using these equations and (9.1) gives (9.10).

From (9.10) it follows that if θ < 90◦ (hydrophilic interaction), pc < 0 and the liquid
will be spontaneously sucked into the cavity and will fill out the cavity. If θ > 90◦

(hydrophobic interaction), pc > 0 and for nanometer sized cavities, the pressure pc ∼
100 MPa, so very high pressure is necessary for squeezing the liquid into narrow cavities.
However, if the liquid is squeezed into the cavity and completely fills the cavity, then
the resulting Wenzel state is (at least) metastable. However, for nanometer sized cavities
thermal fluctuations may give rise to strong local fluctuations between the Cassie (empty
cavity) and Wenzel (filled cavity) states. This is easy to understand since the energetic
barrier (for a hydrophobic system) for going from the Cassie state to the Wenzel state will
be of order ε ∼ pcπR

2h ≈ −2πRhγsvcosθ and strong fluctuations (on macroscopic time
scales) will occur as long as ε ≈ 1 eV or less. In a typical case this condition is satisfied
as long as R and h are of order nanometer or less. In the computer simulations I do
indeed observe very strong thermal fluctuations at the liquid-solid interface, in particular
for rough hydrophobic surfaces, see Sec. 9.4.2.

The Wenzel droplets are highly pinned, and the transition from the Cassie to the
Wenzel state results in the loss of the anti-adhesive properties generally associated with
superhydrophobicity. However, for nanodroplets on rough hydrophobic surfaces, I find
that the Wenzel state is unstable: if the droplet is pressed into contact with the substrate
it quickly jumps back to the Cassie state due to strong thermal fluctuations. For a macro-
scopic droplet the energetic barrier towards flipping from the Wenzel to the Cassie state
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Figure 9.6: The fraction P of the surface area where the absolute value of the slope is
smaller than |tanθ| as a function of |tanθ|/ξ. See text for details.

may be so large that, even if the Cassie state is the minimum free energy configuration, the
system remains trapped in the (metastable) Wenzel state for all time periods of physical
relevance.

9.2.4 Cassie and Wenzel states for randomly rough surfaces

In this section I discuss under which condition one expects the Cassie state and the Wenzel
state to prevail. Consider a rough surface and let z = h(x) be the height of the surface at
the point x = (x, y). For randomly rough surfaces the normalized surface area r = A/A0

is given by (see Appendix C):

r =

∫

∞

0
dx

(

1 + xξ2
)1/2

e−x (11)

where

ξ2 =

∫

d2q q2C(q) = 2π

∫

∞

0
dq q3C(q) = 〈(∇h)2〉 (12)

is the square of the average slope. The surface roughness power spectrum

C(q) =
1

(2π)2

∫

d2x 〈h(x)h(0)〉eiq·x. (13)

Here h(x) is the surface height profile and 〈· · ·〉 stands for ensemble average. We have
assumed that 〈h(x)〉 = 0.

The fraction of the surface where the surface slope s < s0 is given by (see Appendix
C):

P (s0) = 1 − e−(s0/ξ)2 .

Note that as ξ → 0 (corresponding to a flat surface) P (s0) → 1 which is expected because
the slope of a flat surface is zero and hence smaller than any finite value s0. Assume that
a liquid exhibits the contact angle θ on the perfectly flat substrate. The fraction of the
surface where the slope |∇h(x)| < |tanθ| is given by

P (tanθ) = 1 − e−(tanθ/ξ)2 . (14)
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Figure 9.7: 3D side-view snapshot of a octane liquid droplet on a hydrophobic and rough
substrate. The rigid substrate comprises 200 × 30 atoms disposed on a square lattice
with lattice constant a = 2.53 Å. These atoms have been randomly displaced along the z
coordinate, orthogonal to the wall, so to reproduce the desired roughness. The Lennard-
Jones solid-liquid interaction potential V (r) = 4ǫ[(r0/r)

12 − (r0/r)
6] with r0 = 3.28 Å,

ǫ = 4 meV for hydrophobic substrate and ǫ = 8 meV for hydrophilic substrate.

This function is shown in Fig. 9.6. Note that more than 90% of the surface area will have
a slope below |tanθ| if |tanθ|/ξ > 1.5 and in this case the Wenzel state will tend to prevail,
while more than 90% of the surface will have a slope above |tanθ| if |tanθ|/ξ < 0.3 and
in this case the Cassie state will tend to prevail. For the system studied below ξ < 2 (see
Fig. 9.10) and for the hydrophobic system θ ≈ 103◦ one gets |tanθ|/ξ > 2.2. Thus, one
would expect the Wenzel state to prevail. However, the numerical data (see below) tend to
suggest that the system is in a Cassie-like state. We attribute this to the strong fluctuations
at the liquid-solid contact which occurs at the nanoscale, which are particularly important
for nanoscale droplets.

9.3 Simulation Method

I have used Molecular Dynamics (MD) to study the contact angle and contact angle
hysteresis. Here I briefly describe the system and how to generate the rough substrate
surfaces.

9.3.1 Molecular dynamics model

MD calculations have been used to study the influence of surface roughness on liquid
droplet contact angle and contact angle hysteresis. I have studied hydrocarbon liquid
droplets on different self-affine fractal surfaces. The nano-droplet contains 2364 octane
molecules C8H18 at T = 300 K, which is between the melting and boiling points of octane.
The fractal surfaces are generated as in Ref. [140]. Different fractal surfaces are obtained
by changing the root mean square (rms) roughness amplitude σ, and the fractal dimension
Df . The roll-off wave-vector for the rough surface is q0 = 2π/L with L = 38 Å, and the
magnitude of the short-distance cut-off wave vector q1 = π/a, where a = 2.53 Å is the
substrate lattice constant. The (non-contact) cylindrical droplet diameter is about 104
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Figure 9.8: Snapshots for different root mean square roughness. (a) the droplet is in
contact with the flat substrate. (b) and (c) are for rough substrates with the root mean
square amplitude σ = 2.3 Å and σ = 4.8 Å, respectively.

Å, and the size of the droplet-substrate contact area varies (for the hydrophobic system)
from ≈ 115 Å (case (a) in Fig. 9.8) to ≈ 60 Å (case (c)).

The lubricant molecules are described through the Optimized Potential for Liquid
Simulation (OPLS) [26, 27]; this potential is known to provide density and viscosity of
hydrocarbons close to the experimental one. We used the Lennard-Jones interaction po-
tential between droplet atoms and substrate atoms. The L.-J. parameters for a hydropho-
bic surface are chosen in such a way that the Young contact angle is about 100◦ when a
droplet sits on the flat surface. Because of the periodic boundary condition and the size of
our system, the liquid droplet forms a cylinder with the central line along the y-axis, see
Fig. 9.8. We fit the density profile of the droplet to a cylinder (see Fig. 9.9), and obtain
the contact angle θ = 103◦ for the droplet in contact with the flat hydrophobic substrate,
while for the flat hydrophilic substrate θ = 39 ± 3◦.
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Figure 9.9: Determination of the contact angle θ for the flat substrate. Side view.
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Figure 9.10: The average slope ξ and the ratio A/A0 between the actual A and the nominal
(or projected) A0 surface area, as a function of the root mean square roughness σ when
Hurst exponent H = 0.8, and as a function of Hurst exponent H for σ = 3 Å.
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Figure 9.11: The contact angle as a function of the root mean square roughness σ. The
circle points are numerical results from the simulations, while the square points are ob-
tained from the Cassie model (see Eq. 9.7). Each data point is an average over several
snap-shot configurations. The fractal dimension is Df = 2.2.

9.3.2 Multiscale rough surfaces

Many solid surfaces in nature, e.g., surfaces prepared by fracture (involving crack prop-
agation), tend to be nearly self-affine fractal. Self-affine fractal surfaces have multiscale
roughness, sometimes extending from the lateral size of the surface down to the atomic
scale. A self-affine fractal surface has the property that if part of the surface is magnified,
with a magnification which in general is appropriately different in the directory perpendic-
ular to the surface as compared to the lateral directions, the surface “looks the same” [1]
i.e., the statistical properties of the surface are invariant under this scale transformation.

The most important property of a randomly rough surface is the surface roughness
power spectrum defined C(q). We assume that the statistical properties of the surface
are translational invariant and isotropic so that C(q) depends only on the magnitude
q = |q| of the wave vector q. For a self-affine surface the power spectrum has the power-
law behavior C(q) ∼ q−2(H+1), where the Hurst exponent H is related to the fractal
dimension Df = 3 −H. Of course, for real surfaces this relation only holds in some finite
wave vector region q0 < q < q1. Note that in many cases there is roll-off wavevector q0
below which C(q) is approximately constant. The self-affine fractal surfaces are generated
by adding plane waves with random phases and appropriately chosen weights, as described
in detail in Ref. [1, 6].

The average slope ξ and the ratio A/A0 between the surface area A and the nominal
(or projected) A0 surface area, have been shown in Fig. 9.10 as a function of the root mean
square roughness σ when Hurst exponent H = 0.8, and as a function of Hurst exponent
H for σ = 3 Å.
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Figure 9.12: The contact angle θ as a function of Hurst exponent H for the rms roughness
σ = 3 Å. The circles and squares have the same meaning as that in Fig. 9.11 The fractal
dimension is Df = 3 −H.

9.4 Numerical results

We present numerical results for the contact angle and contact angle hysteresis for both
hydrophilic and hydrophobic systems. The substrate surfaces are assumed to be self-affine
fractal, but the fractal dimension and the root-mean-square roughness amplitude have
been varied.

9.4.1 Static contact angle on hydrophobic surface

The apparent contact angle, θ0, as a function of the root mean square roughness (rms), is
shown in Fig. 9.11 with the fractal dimension Df = 2.2. There is a strong increase in θ0
with increasing rms-roughness amplitude. Fig. 9.12 shows how θ0 depends on the Hurst
exponent H = 3 −Df . Note that θ0 is almost independent of H.

Accordingly to the Wenzel equation, the apparent contact angle θ0 depends only on the
surface roughness via the ratio r = A/A0. Fig. 9.10 shows that asH decreases from 1 to 0.4
(i.e., Df increases from 2 to 2.6), A/A0 increases by ∼ 50%. However, the MD-calculations
show that the apparent contact angle θ0 is almost independent of the fractal dimension,
see Fig. 9.12. Thus the Wenzel equation cannot be used in the present situation. This
is consistent with a visual inspection of the liquid-substrate interface which shows that
on the rough substrates, the droplet is “riding” on the asperity tops of the substrate,
i.e., the droplet is in the Cassie state. In order to quantitatively verify this, one need
to calculate the distances u(x, y) between the bottom surface of the liquid drop and the
rough substrate surface in the (apparent) contact area. From the distribution

P (u) = 〈δ[u− u(x, y)]〉

of these distances [see Fig. 9.13(a)] one obtains the fraction ψ of the (projected) surface
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Figure 9.13: (a) The height probability distribution for hydrophobic surface both flat
(squares) and rough (circles). (b) The height probability distribution for hydrophilic
surface both flat (squares) and rough (circles).
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area where contact occurs:

ψ =

∫ u1

0
du P (u),

where u1 is a cut-off distance to distinguish between contact and no-contact regions, which
has to be comparable to the typical bond distance (u1 = 4Å has been used). Note that
due to the thermal fluctuations ψ = ψ0 for flat surface is less than 1. Using the normalized
φ = ψ/ψ0, the Cassie model (with r = 1) predicts the variation of the contact angle with
σ and H given in Fig. 9.11 and 9.12 (square points).

Fig. 9.11 shows that the apparent contact angle θ0 increases strongly with increasing
rms-roughness amplitude, at fixed fractal dimension Df = 2.2, while it is nearly indepen-
dent of the fractal dimension Df (see Fig. 9.12). Since increasing the fractal dimension
at constant rms-roughness amplitude mainly increases the short-wavelength roughness, I
conclude that the nanoscale wave length roughness doesn’t matter so much in determining
the contact angle for hydrophobic surfaces, while the long wavelength roughness plays an
important role. We attribute this fact to the strong thermal fluctuations in the height
(or width) u of the liquid-solid interface which occur at the nanoscale even for the flat
substrate surface. Note also that in our model the wall-wall interaction is long-ranged,
decaying effectively as ∼ 1/u3, so there will be a contribution to the interfacial energy also
for non-contacting surfaces which, of course, is not rigorously included in the macroscopic
Cassie model.

9.4.2 Dynamic contact angle: Contact angle hysteresis

The advancing contact angle θa is measured when the solid/liquid contact area increases,
while the receding contact angle θr is measured when the contact area shrinks. If the
difference θa − θr is nonzero, the liquid-substrate system exhibits contact angle hysteresis.

Hydrophobic surfaces

Figs. 9.14 and 9.15 show the time-evolution of the advancing contact angle θa and receding
contact angle θr, respectively, for a nanodroplet on a rough, hydrophobic substrate. The
former has been obtained by placing the droplet close to the substrate, so that the drop
will spontaneously spread under the adhesive interaction with the substrate. The contact
angle evolves in time from θ = 180◦ (non-contact) in panel 9.14(a) to its asymptotic value
θa = 140◦, reached after 3ns in panel 9.14(h).

The receding contact angle was simulated by squeezing the droplet into pancake-like
shape with the upper wall. The interaction between the atoms of the upper wall and drop
atoms is given by the repulsive term of a Lennard-Jones potential, i.e. V (r) = 4ǫ0(r0/r)

12.
The lack of attraction with the top surface allows us to suddenly pull the wall up, leaving
the drop in the configuration of panel 9.15(a). Then the free drop increases the contact
angle up to the asymptotic value θr. Fig. 9.16 shows the time evolution of the contact angle
for these two cases: within spontaneous fluctuations of simulations, the two asymptotic
contact angles coincide.

To be sure that in any system there is no contact angle hysteresis, the extensive
simulations have been performed on various substrates with different Hurst exponent H
(see Fig. 9.17(a)), and with different root-mean-square roughness amplitude(rms) (see
Fig. 9.17(b)). The receding contact angle reaches its asymptotic value within about 2 or
3 nanoseconds. As the receding contact angle is concerned in Fig. 9.17, the contact angle
variation at t = 2ns, as the rms increases from 0.3 Å to 4.8 Å, is much wider than that as
Hurst exponent H increases from 0.4 to 1.0. The root-mean-square roughness is mainly
determined by long wavelength roughness of the surface. Increasing the fractal dimension
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Figure 9.14: The advancing contact angle θa evolution for hydrophobic nanodroplet. θa is
measured when the solid/liquid contact area increases.

Figure 9.15: The receding contact angle θr evolution for hydrophobic nanodroplet. θr is
measured when the solid/liquid contact area shrinks.
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Figure 9.16: The advancing (circles) and receding (squares) contact angle θ, for hydropho-
bic substrate, as a function of time. The root-mean-square roughness of the substrate is
rms = 4.8 Å. ǫ = 4 meV and r0 = 3.28 Å. The thermal equilibrium contact angle has been
reached after a few nanoseconds, irrespective of whether the initial contact angle is larger
or smaller than the equilibrium angle.

Df signifies that the short wavelength roughness increases. Thus, one can see that the
contact angle is more sensitive to the long wavelength roughness of the substrate than to
the short wavelength roughness. This agrees with the results in Fig. 9.11 and Fig. 9.12.

A comparison of these results with those of the corresponding simulations for the
advancing contact angle, confirms that there is no hysteresis. The difference between
the data is unbiased due to the unavoidable thermal fluctuations on such a small scale
(nanoscale). Thus, on macroscopic time scales, for hydrophobic systems the nano-scale
roughness will not result in any hysteresis in the contact angle. This is in drastic contrast
to simulation studies I have performed for hydrophilic surfaces (see below), where surface
roughness results in strong pinning of the boundary line; for such surfaces it is therefore
impossible to study static droplet contact angles (as observed on macroscopic time scales)
using molecular dynamics.

Comparing the form of P (u) for the flat and the most rough surfaces shows that the
system is in the Cassie state, but at the nanoscale the difference between the Cassie state
and the Wenzel state is not so large due to the thermal fluctuations. This also explains
why no hysteresis is observed: The Wenzel state is probably the energy minimum state,
but squeezing the droplet into a pancake shape does not push the system permanently into
the Wenzel state because even if it would go into this state temporarily, the free energy
barrier separating the Cassie and Wenzel states is so small that thermal fluctuations would
quickly kick it back to the Cassie-like state.

Hydrophilic surfaces

Let us now consider the case where the liquid droplet contact angle on the flat surface
θ < 90◦ (hydrophilic system). We choose the energy parameter and the equilibrium
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Figure 9.17: The time evolution of the receding contact angle for the hydrophobic droplets,
on the substrates (a) with various values of root-mean-square (rms) roughness and fixed
Hurst exponent H = 0.8, and (b) with various values of Hurst exponents H and fixed
root-mean-square roughness rms = 3 Å.
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Figure 9.18: Advancing contact angle evolution for hydrophilic nanodroplet. The root-
mean-square roughness of the substrate is rms = 4.8 Å. The energy parameter and the
equilibrium distance in L.-J. potential are ǫ = 8 meV and r0 = 3.28 Å.

Figure 9.19: Receding contact angle evolution for hydrophilic nanodroplet. The root-
mean-square roughness of the substrate is rms = 4.8 Å. The energy parameter and equi-
librium parameter in L.-J. potential are ǫ = 8 meV and r0 = 3.28 Å.
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Figure 9.20: The advancing (circles) and receding (squares) contact angle θ, for the hy-
drophilic substrate, as a function of time. The root-mean-square roughness of the sub-
strate is rms = 3 Å, and the L.-J. substrate-liquid interaction parameters ǫ = 8 meV and
r0 = 3.28 Å.

distance in L.-J. potential, associated with the liquid-solid atom interaction, as ǫ = 8 meV,
r0 = 3.28 Å respectively. This gives θ ≈ 70◦. Figs. 9.18, 9.19 and 9.20 for hydrophilic
droplet, are analogous to Figs. 9.14, 9.15 and 9.16 respectively, for hydrophobic droplet.
The time dependence of the advancing contact angle for the hydrophilic nanodroplet has
been shown in Fig. 9.18. The root-mean-square roughness of the substrate is rms = 4.8
Å.

The time evolution of the receding contact angle for hydrophilic nanodroplet has been
shown in Fig. 9.19.

Fig. 9.20 shows the advancing (circles) and receding (squares) contact angle θ, for the
hydrophilic substrate, as a function of time, when the root-mean-square roughness of the
substrate is rms = 3 Å. Note that the thermal equilibrium contact angle cannot be reached
on the time-scale of the simulations.

Finally, the height probability distribution for the hydrophilic surface for both the flat
(squares) and rough (circles) hydrophilic surface, has been shown in Fig. 9.13(b). Note
that the fluctuations of liquid-solid separation at the interface are much smaller on the
hydrophilic surface than on the hydrophobic surface [9.13(a)].

9.5 Discussion

In most practical cases it is not possible to modify the surface roughness without simul-
taneously affecting the chemical nature of the surface. This is obvious for crystalline
materials, where surface roughening will result in the exposure of new lattice planes with
different intrinsic surface energy, it may also hold for amorphous-like materials, where
surface roughening may result in a more open atomic surface structure, with an increased
fraction of (weak) unsaturated bonds. In our model a similar effect occurs, and some frac-
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Figure 9.21: The natural separation between the molecules in a liquid is usually consid-
erably larger than the atom-atom separation on the substrate surface. This implies that
the fluid molecules cannot “follow” the atomic scale roughness so that the fluid molecules
will naturally be in a Cassie-like state with respect to the shortest substrate roughness
components determined by the substrate nearest neighbor atom-atom separation.

tion of the change in the contact angle with increasing root-mean-square amplitude may
be associated with this effect. However, the most important result of our study, namely
that the contact angle is mainly determined by the long-wavelength roughness, should not
be affected by this fact.

Another reason for why the short-wavelength (atomic) roughness may influence the
liquid contact state differently from long-wavelength roughness has to do with the fact
that the natural separation between the molecules in a liquid is usually considerably
larger than the atom-atom separation on the substrate surface. This implies that the
fluid molecules cannot “follow” the atomic scale roughness (see Fig. 9.21) so that the fluid
molecules will naturally be in a Cassie-like state with respect to the shortest substrate
roughness wavelength components, determined by the substrate nearest neighbor atom-
atom separation.

It is important to note that the discussion is also relevant for the contact between
macroscopic liquid drops and rough substrates. That is, if the solid-liquid interface is
studied with nanometer resolution λ, then the strong fluctuations (in time and space) at
the liquid-solid interface discussed above will also be observed for a macroscopic droplet,
and the interfacial energy γsl(ζ) for ζ = D/λ (where D is the diameter of the nominal
contact area between the (macroscopic) liquid droplet and the substrate) will be the same
as obtained above for nanodroplets at the same resolution λ.

9.6 Summary

In this chapter I have discussed under which condition the Wenzel or Cassie state is
favorable on randomly rough surfaces. The contact angle and the contact angle hysteresis,
on hydrophobic and hydrophilic surfaces, have been studied. We have found that thermal
fluctuations play an important role at the nanoscale. The contact angle on hydrophobic
surfaces depends strongly on the root-mean-square roughness of the substrate, but is
nearly independent of the fractal dimension. For hydrophobic surfaces, there is no contact
angle hysteresis due to the strong thermal fluctuations at the nanoscale. For hydrophilic
surfaces, the contact angle hysteresis has been observed due to the pinning effect. This
indicates that on randomly rough hydrophobic surfaces the Cassie-like state often prevails,
at least for nanoscale droplets.
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Concluding Remarks

I summarize now the main new results of this thesis and discuss the prospects for future
work.

I have been involved in developing a multiscale molecular dynamics (MD) approach
that can properly describe the bulk property of the elastic solid and save much computer
time.

I have used multiscale MD to study the contact between the elastic block and a rigid
randomly rough surface. For small loads, in the absence of adhesion, the real contact area
varies linearly with the load, in good agreement with the continuum contact mechanics
theories, i.e. the theories of Bush et al. [49] and of Persson [2]. These theories predict that
at small load, the real contact area is proportional to the load although the constants of
proportionality differing by a factor of 2/π. The real contact area from the MD calculation
lies in between the two theories.

I have also studied the intefacial separation between two randomly rough surfaces.
For small loads, the average interfacial separation depends logarithmically on the load or
squeezing pressure, which agrees very well with the elegant theory developed by Persson
[52] and with the finite element calculations of Robbins et al. [53] and with the experimental
results of Israelachvili et al [58].

When adhesion is included, the logarithmic relation between squeezing pressure and
the average interfacial separation no more holds. For the same squeezing pressure, the
stronger the adhesion, the smaller the interfacial separation. Eventually, the interfacial
separation will tend to a finite value, at least if the adhesion is strong enough, when the
squeezing pressure approaches zero.

I have also studied the probability distribution of the interfacial separation at different
squeezing pressures, which is very important for estimating the fluid leaking through
seals. While studying the interfacial separation, I have surprisingly found that the contact
mechanics theory of Persson can be applied to all ranges from small contact (small load)
to full contact (high load) by introducing the “correction factor”. Persson’s theory is
particularly accurate when full contact is reached.

A theory for leak-rate of seals, based on percolation theory and a recently developed
contact mechanics theory, has been developed to study both static and dynamic seals.
Molecular dynamics simulations show that when two elastic solids with randomly rough
surfaces are squeezed together, with increasing magnification or decreasing squeezing pres-
sure, a non-contact channel percolates when the relative projected contact area, A/A0, is
about 0.4, in accordance with percolation theory.

I have simulated the sliding of elastic solids in adhesive contact with flat and rough
interfaces. When the sliding material is hard, there is extremely low friction (superlubric-
ity). The friction increases abruptly as the elastic modulus decreases, and a relatively small
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surface roughness may kill the superlubric state. A small amount of lubricant molecules
trapped in the asperity contact regions leads to increased friction. Qualitatively, a low
concentration of adsorbates is equivalent to increased surface roughness and results in
more instabilities and enhanced friction.

I have studied the behavior of liquid nanodroplet on rough hydrophobic and hydrophilic
solid surfaces. On hydrophobic surfaces, the contact angle for nanodroplets strongly de-
pends on the root mean square roughness amplitude, but it is nearly independent of the
fractal dimension of the surface. For rough hydrophobic surfaces, there is no contact angle
hysteresis due to strong thermal fluctuations that occur at the liquid-solid interface on the
nanoscale. However, on hydrophilic surfaces, there is strong contact angle hysteresis due
to higher energy barriers. These findings may be very important for the development of
artificially bio-mimetic superhydrophobic surfaces.

I hope these “simulated experiments” will be followed by “real experiments” between
randomly rough surfaces.
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Appendix A

Contact Mechanics Theories

Here I briefly review the history of continuum models of contact mechanics. I first consider
the single asperity contact theories, dating back to the pioneering work of Hertz in 1881
[141]. Secondly I will review multi asperities contact theories, as used to describe the
contact between randomly rough surfaces.

A.1 Single asperity contact

A.1.1 Hertz theory

The simplest force law to approximate the actual sphere-sphere surface interaction was
chosen by Hertz. He neglected the attractive forces and modeled the repulsive part by a
hard wall. Hertz theory predicts for the contact radius r0 of the contact region

r0 =

(

RF

K

)1/3

(A.1)

where F is the external squeezing force, R = (1/R1 + 1/R2)
−1 the effective radius with

R1, R2 as the radii of curvature of upper sphere and lower sphere, respectively, K =
(4/3)

[(

1 − ν1
2
)

/E1 +
(

1 − ν2
2
)

/E2

]−1
the effective elastic modulus, with E1, E2 and ν1, ν2

as elastic moduli and Poisson ratios of upper sphere and lower sphere respectively. If the
lower surface is flat, then R2 = ∞, thus R = R1.

The vertical displacement h of the two bodies in contact

h =
r0

2

R
(A.2)

The pressure distribution in the contact area depends only on the distance r from the
center of the circular contact area

σ(r) = σ0

[

1 −
(

r

r0

)2
]1/2

(A.3)

where σ0 = 3
2 〈σ〉 = 3

2
F

πr0
2 , 〈σ〉 is the average pressure.

A.1.2 JKR theory

Johnson, Kendall and Roberts in 1971 extended the Hertz theory to adhesive contacts,
with the so called “JKR theory” [46]. The JKR theory introduces the attractive force
which acts only inside the contact area. FJKR denotes the effectively acting loading force
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Figure A.1: where F is normal squeezing load and γ be adhesive energy per unit area. An
elastic ball with radius R squeezed against a flat rigid substrate. Adapted from Ref. [3]
.

including the normal squeezing load F and the adhesive contribution inside the contact
area. Consider an elastic ball with radius R squeezed with a flat rigid substrate, see
Fig. A.1.

FJKR = F + 3πRγ +
(

6πRγF + ((3πRγ)2)
)1/2

(A.4)

Once the effective load is known, it is easy to get the radius of contact area rJKR,

rJKR =

(

RFJKR

K

)1/3

(A.5)

vertical displacement hJKR,

hJKR =
rJKR

2

R
(A.6)

and the pressure distribution of σJKR

σ(r) = σ0

[

1 −
(

r

rJKR

)2
]1/2

+ σ1

[

1 −
(

r

rJKR

)2
]−1/2

(A.7)
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for r < rJKR and zero otherwise [3, 41]. In Eq. A.7,

σ0 =
E∗

π

2rJKR

R
(A.8)

σ1 =
E∗

π

(

hJKR

rJKR
− rJKR

R

)

(A.9)

where 1/E∗ = (1−ν1
2)/E1 +(1−ν2

2)/E2. After minimizing the free energy of the system,
one can get the pull-off force Fs = −3/2πRγ.

Furthermore, Derjaguin, Muller and Toporov in 1975 also extended the Hertz theory
but this time they included adhesion outside the contact area by considering the long range
attractive forces [142–145]. There is no analytical solution in original DMT theory [146]. In
1992, Maugis proposed the effectively acting loading force FDMT including the normal load.
DMT theory gets the pull-off force Fs = −2πRγ. The discrepancy between JKR theory
and DMT theory was explained by Tabor by introducing a dimensionless number [147]

µ = (
Rγ

E∗2ǫ3
)1/3 (A.10)

where ǫ is the inter-atomic spacing. Tabor number µ can be explained as the ratio of
elastic displacement of the surfaces at the point of separation to the effective range of the
surface force [148]. When µ is quite large, JKR theory applies, e.g. large deformation
with soft material; When µ is quite small, DMT theory applies, e.g. small deformation
with hard material.

A.2 Multi asperities contact

In the previous section, I deal with the two simple models for a sphere in contact with a
perfectly flat surface. Now let us consider the models for rough surfaces.

A.2.1 Greenwood-Williamson theory

Consider a surface with roughness on a single length scale, and approximate the asperities
as spherical bumps with equal radius of curvature and with a Gaussian height distribution
[50]

Ph =
1

(2π)1/2 h∗rms

exp

(

− h2

2h∗rms
2

)

(A.11)

where h∗rms is the root-mean-square amplitude of the summit height fluctuations, which is
slightly smaller than the root-mean-square roughness amplitude hrms of the surface profile
h(x). Assume that one can neglect the (elastic) interaction between the asperity contact
regions. If the separation between the surfaces is denoted by d, an asperity with height
h > d will make contact with the plane and the penetration s = h − d. Thus, using the
Hertz contact theory with s = h− d the normalized area of real contact is

∆A

A0
= πn0R

∫

∞

d
dh(h− d)Ph (A.12)

where A0 is the nominal contact area and n0 the number of asperities per unit area. The
number of contacting asperities per unit area is

N

A0
= n0

∫

∞

d
dhPh (A.13)
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and the nominal squeezing stress is

σ0 =
FN

A0
=

4E

3(1 − ν2)
n0

∫

∞

d
dh(h− d)3/2R1/2Ph (A.14)

According to Ref. [60], the Greenwood-Williamson theory predicts that the contact
area depends weakly non-linearly on the squeezing pressure, and the average contact patch
area increases with squeezing pressure.

Fuller and Tabor have generalized the Greenwood-Williamson theory by introducing
the adhesive interaction between randomly rough surfaces [48]. They applied JKR asperity
contact model to each asperity contact area, instead of the Hertz model used in the original
theory.

A.2.2 Bush-Gibson-Thomas theory

Bush et al. generalized the theory of Greenwood and Williamson, removing the assumption
that all the asperities have to be spherical with the same radius [49,149]. The surface height
profile z(x, y) around the summit of an asperity can be expanded with a Taylor’s series, up
to the second order in Talor’s expansion. All the asperities look like paraboloids. So the
theory introduces the stochastic distribution of heights and curvature radii. This general
theory still suffers the same problem of the original one from Greenwood and Williamson:
All the asperities are treated as independent objects, while in reality they are elastically
coupled together through the bulk. This theory assumes that the asperity contact regions
are independent. For small load, the theory of Bush et al. predicts that the real contact
area is proportional to the load A = αF , where

α = κ
1 − ν2

E

(
∫

d2qq2C(q)

)−1/2

(A.15)

where κ = (2π)1/2.
Bush et al. have developed a more general and accurate contact mechanics theory,

where roughness is assumed to occur on many different length scales. It predicts that the
real contact area is proportional to the load for small load, and the stress distribution at
the interface and the average size a of an asperity contact region, are independent of the
applied load. That is, as the load increases (but with A ≪ A0), existing contact areas
grow and new contact regions form in such a way that the quantities referred to above
remain unchanged.

A.2.3 Persson theory

Recently, Persson has developed a contact mechanics theory where the linear size of the
system is studied at different magnification ζ = L/λ, where L is some reference length and
λ the shortest wavelength roughness which can be observed at the magnification ζ [2, 4].

Persson defines the stress distribution at the magnification ζ in the following way

P (σ, ζ) = 〈δ (σ − σ(x, ζ))〉 (A.16)

where σ(x, ζ) is the stress at the interface calculated when only the surface roughness
components with wave-vector q < ζqL is included. 〈· · ·〉 is ensemble average, which in
most cases is equivalent to the average over the surface area

P (σ, ζ) =
1

A0

∫

A
d2xδ (σ − σ(x, ζ)) (A.17)
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where A is area of contact. The real contact area, projected on the xy plane, can be
obtained directly from the stress distribution in Eq. A.17

A(ζ)

A0
=

∫

dσP (σ, ζ) (A.18)

In Persson theory at complete contact, the stress distribution P (σ, ζ) at the interface
between the block and substrate has been shown to obey a diffusion-like equation where
time is replaced by the magnification and the spacial coordinate by the stress σ:

∂P (σ, ζ)

∂ζ
= f(ζ)

∂2P (σ, ζ)

∂σ2
(A.19)

where

f(ζ) =
π

4

(

E

1 − ν2

)2

qLq
3C(q) (A.20)

where qL = 2π/L, q = ζqL. It is assumed that Eq. A.19 holds locally also when partial
contact occurs at the interface.

To solve Eq. A.19 one needs boundary conditions. If one assumes that, when studying
the system at the lowest magnification ζ = 1 (where no surface roughness can be observed,
i.e., the surfaces appear perfectly smooth), the stress at the interface is constant and equal
to p = FN/A0, where FN is the load and A0 the nominal contact area, then P (σ, 1) =
δ(σ − p). In addition to this “initial condition” one needs two boundary conditions along
the σ-axis. Since there can be no infinitely large stress at the interface one requires
P (σ, ζ) → 0 as σ → ∞.

For non-adhesive interaction (purely repulsive wall-wall interaction) there can be no
tensile stress at the interface and P (σ, ζ) must vanish for σ < 0. In fact, one can show [1]
that P (σ, ζ) vanishes continuously as σ → 0 so that P (0, ζ) = 0. Using this boundary
condition the solution to diffusion-like equation gives the pressure distribution at the
interface (σ > 0):

P (σ, ζ) =
1

2(πG)1/2

(

e−(σ−p)2/4G − e−(σ+p)2/4G
)

(A.21)

where p is the nominal squeezing pressure, and where

G =
π

4

(

E

1 − ν2

)2 ∫ ζq0

qL

dq q3C(q) . (A.22)

The surface roughness power spectrum [1]

C(q) =
1

(2π)2

∫

d2x〈h(xh(0)〉e−iq·x,

where 〈..〉 stands for ensemble average. The relative contact area

A

A0
=

∫

∞

0
dσ P (σ, ζ) . (A.23)

Substituting (A.21) into (A.23) gives after some simplifications

A

A0
=

1

(πG)1/2

∫ p

0
dσ e−σ2/4G = erf

(

p

2G1/2

)

. (A.24)
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Thus, for small nominal squeezing pressure p≪ G1/2 one obtains

A

A0
≈ p

(πG)1/2
. (A.25)

Persson theory predicts that the contact area depends linearly on the load at small
load, A = αF with

α = κ
1 − ν2

E

(∫

d2qq2C(q)

)−1/2

(A.26)

Persson theory predicts that κ = (8/π)1/2, instead of κ = (2π)1/2 predicted by Bush
theory. Both the theory of Greenwood-Williamson and the theory of Bush et al. assume
that the asperity contact regions are independent (no elastic coupling). This might be the
origin of 2/π difference between the theory of Bush and the theory of Persson.

For adhesive contact, tensile stress occurs at the interface close to the boundary lines of
the contact regions. In this case the correct boundary condition is instead P (−σa, ζ) = 0,
where σa > 0 is the largest tensile stress possible. The detachment stress σa(ζ) depends
on the magnification and can be related to the effective interfacial energy (per unit area)
γeff(ζ) using the theory of cracks

σa(ζ) ≈
(

γeff(ζ)Eq

1 − ν2

)1/2

, (A.27)

where
γeff(ζ)A∗(ζ) = ∆γA∗(ζ1) − Uel(ζ), (A.28)

where A∗(ζ) denotes the total contact area at the magnification ζ, which is larger than
the projected contact area A(ζ). Uel(ζ) is the elastic energy stored at the interface due to
the elastic deformation of the solids on length scale shorter than λ = L/ζ, necessary in
order to bring the solids into adhesive contact (see below).

From Eq. A.19 it follows that the area of apparent contact (projected on the xy-plane)
at the magnification ζ, A(ζ), normalized by the nominal contact area A0, can be obtained
from

A

A0
=

∫

∞

−σa(ζ)
dσ P (σ, ζ) (A.29)

We denote A(ζ)/A0 = Pp(q), where the index p indicates that A(ζ)/A0 depends on the
applied squeezing pressure p.

Persson theory is valid not only when the area of real contact is small compared to the
nominal contact area, but also when the squeezing force is so high that nearly complete
contact occurs within the nominal contact area. In Chapter 4, I have performed molecular
dynamics calculations to test Persson theory from small to full contact.



Appendix B

Pressure Distribution between

Randomly Rough Surfaces

Here the pressure distribution at the interface between two solids has been calculated in
complete contact [6]. Assume that one solid is rigid and randomly rough and the other
solid elastic with a flat surface. The pressure distribution

P (σ) = 〈δ(σ − σ(x))〉 =
1

2π

∫

∞

−∞

dα 〈eiα(σ−σ(x))〉

=
1

2π

∫

∞

−∞

dα eiασF (α) (B.1)

where
F (α) = 〈e−iασ(x))〉

where σ(x) is the fluctuating pressure at the interface. Next, writing

σ(x) =

∫

d2q σ(q)eiq·x

=

∫

d2q
Eq

2(1 − ν2)
h(q)eiq·x

where we have used the relation between σ(q) and the Fourier transform h(q) of the height
profile h(x) derived in Ref. [2], we get

F =

〈

exp

(

−iα
∫

d2q
Eq

2(1 − ν2)
h(q)eiq·x

)〉

Next, using that h(q) are independent random variables we get

F = e−α2ξ2/2 (B.2)

where

ξ2 =

∫

d2qd2q′
(

E

2(1 − ν2)

)2

qq′〈h(q)h(q′)〉ei(q+q
′)·x

However (see Ref. [2])
〈h(q)h(q′)〉 = C(q)δ(q + q′)

so that

ξ2 =

∫

d2q

(

Eq

2(1 − ν2)

)2

C(q) (B.3)
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Substituting (B.2) in (B.1) and performing the α-integral and using (B.3) gives

P (σ) =
1

(2π)1/2σrms
e−σ2/2σ2

rms

where the root-mean-square width σrms is determined by the power spectrum:

σ2
rms = 〈σ2〉 =

π

2

E2

(1 − ν2)2

∫ q1

q0

dq q3C(q)



Appendix C

Distribution of Surface Slopes for

Randomly Rough Surfaces

In this appendix the distribution of surface slopes for randomly rough surfaces has been
derived. We discuss under which conditions one expects the Wenzel and Cassie states to
prevail [140].

C.1 The surface area A and the average surface slope ξ

Consider a randomly rough surface and let h(x) denote the height profile measured from
the average plane so that 〈h(x)〉 = 0, where 〈..〉 stands for ensemble averaging, or (equiv-
alently) averaging over the surface area. We assume that h(x) is a Gaussian random
variable characterized by the power spectra

C(q) =
1

(2π)2

∫

d2x 〈h(x)h(0)〉e−iq·x.

Note that if we write

h(x) =

∫

d2q h(q)eiq·x

where

h(q) =
1

(2π)2

∫

d2x h(x)e−iq·x

then
〈h(q)h(q′)〉 = δ(q + q′)C(q). (C.1)

Sometimes it is also convenient to use

〈h(q)h(−q)〉 =
A0

(2π)2
C(q), (C.2)

where A0 is the surface area. In deriving (C.2) we have used that

δ(q − q) =
1

(2π)2

∫

d2x ei(q−q)·x =
A0

(2π)2
.

If the surface roughness amplitudes h(q) are assumed to be Gaussian random variables,
one can show that the (normalized) surface area [3]

r =
A

A0
=

∫

∞

0
dx

(

1 + xξ2
)1/2

e−x
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where

ξ2 =

∫

d2q q2C(q) = 2π

∫

∞

0
dq q3C(q)

Let us calculate the rms surface slope. We get

〈(∇h)2〉 =

∫

d2qd2q′ (iqα)(iq′α)〈h(q)h(q′)〉ei(q+q
′)·x

Using (C.1) this gives

〈(∇h)2〉 =

∫

d2q q2C(q) = ξ2

Thus, for a Gaussian random surface both the average slope and the increase in the surface
area is determined by the parameter ξ. For non-random surfaces this is no longer the case.

C.2 Surface slope probability distribution

Let h(x, ζ) denote the height profile after having smoothed out surface roughness with
wavelength shorter than λ = L/ζ. For example, we may define

h(x, ζ) =

∫

q<q1

d2q h(q)eiq·x,

where q1 = qLζ (where qL = 2π/L). We will refer to ζ as the magnification. Thus, when
we study the surface at the magnification ζ we will only detect surface roughness with
wavelength components larger than λ = L/ζ.

We will now derive an equation of motion for the surface slope probability distribution
function

P (s, ζ) = 〈δ(s −∇h(x, ζ))〉.

We assume that the surface roughness amplitudes h(q) are independent random variables.
In this case, if we write

h(x, ζ + δζ) = h(x, ζ) + δh,

we get

P (s, ζ + δζ) = 〈δ(s −∇h(x, ζ + δζ))〉

=

∫

d2s′〈δ(s′ −∇δh)〉〈δ(s − s′ −∇h(x, ζ))〉

=

∫

d2s′〈δ(s′ −∇δh)〉P (s − s′, ζ). (C.3)

But

〈δ(s′ −∇δh)〉 =
1

(2π)2

∫

d2q〈eiq·(s′−∇δh)〉

=
1

(2π)2

∫

d2q

(

1 − 1

2
〈(q · ∇δh)2〉

)

eiq·s
′

= δ(s′) +
1

2
〈(∇αδh) (∇βδh)〉

∂

∂s′α

∂

∂s′β
δ(s′).

Substituting this result into (C.3) and expanding the left-hand-side to linear order in δζ
gives

∂P

∂ζ
(s, ζ) =

1

2δζ
〈(∇αδh) (∇βδh)〉

∂

∂sα

∂

∂sβ
P (s, ζ). (C.4)
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But

〈(∇αδh) (∇βδh)〉 =

∫ qL(ζ+δζ)

qLζ
d2qd2q′

×(iqα)(iq′β)〈h(q)h(q′)〉e(q+q
′)·x

=

∫ qL(ζ+δζ)

qLζ
d2q qαqβC(q)

=
1

2
δαβ

∫ qL(ζ+δζ)

qLζ
d2q q2C(q)

= πδαβqLδζq
3C(q).

Thus
1

2δζ
〈(∇αδh) (∇βδh)〉 =

π

2
δαβqLq

3C(q)

Substituting this result in (C.4) gives the following diffusion-like equation for P (s, ζ):

∂P

∂ζ
= D(ζ)∇2

sP (C.5)

where

∇2
s =

∂

∂sα

∂

∂sα

where the “diffusivity”

D(ζ) =
π

2
qLq

3C(q), (C.6)

with q = qLζ.

C.3 Solution of the diffusion equation

The function P (s, ζ) describes the probability to observe a surface slope or gradient s =
∇h(x) when the system is studied at the magnification ζ. When the system is studied at
the lowest magnification ζ = 1 the surface appears flat and smooth so that the gradient
vanishes, i.e.,

P (s, 1) = 〈δ(s −∇h(x, 1))〉 = δ(s). (C.7)

We also require that there is no infinite high slopes, i.e.,

P (s, ζ) → 0 as |s| → ∞. (C.8)

Let us determine the solution to (C.5) which obeys the “initial” condition (C.7) and the
boundary condition (C.8). It is clear that the solution is given by

P (s, ζ) =
1

πs21
e−(s/s1)2 , (C.9)

where the width parameter s1(ζ) depends on the magnification:

s21 = 4

∫ ζ

1
dζ ′D(ζ ′) = 2π

∫ ζqL

qL

dqq3C(q) = ξ2(ζ).

Note that P is normalized,
∫

d2s P (s, ζ) = 1,

and that the width of the Gaussian distribution P increases with increasing resolution, i.e.,
when the surface is studied at higher and higher resolution, steeper and steeper surface
slopes will be detected.
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θ

z n
fluid

Figure C.1: A fluid in contact with a rough substrate. The contact angle θ is determined
by Young’s equation.

C.4 Distribution function P (s0, ζ)

In what follows we will need the fraction P (s0, ζ) of the total surface area where the slope
s < s0, where s0 is a fixed number between zero and infinite. Let A⊥(ζ) be the surface
area, projected on the xy-plane, where the surface slope s < s0. We then have

P (s0, ζ) = A⊥(ζ)/A0.

Using the definition
P (s, ζ) = 〈δ(s −∇h(x, ζ))〉

=
1

A0

∫

d2x δ(s −∇h(x, ζ))

we get

P (s0, ζ) =

∫

s<s0

d2s P (s, ζ).

Using (C.9) this gives

P (s0, ζ) = 1 − e−(s0/s1)2 . (C.10)

C.5 Surface area with slope below tanθ

Consider a liquid in contact with a rough substrate. The contact angle θ is determined
by Young’s equation:

cosθ =
γsv − γsl

γlv

where γsl, γsv and γlv are the solid-liquid, solid-vapor and liquid-vapor interfacial energies,
respectively. Note that if n is the normal to the solid surface and z the normal to the
liquid surface (see Fig. C.1) then cosθ = −z · n. Since

n =
(−∇h, 1)

(1 + (∇h)2)1/2

we get

cosθ = −
(

1 + (∇h)2
)−1/2

, |tanθ| = |∇h|.
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Thus, using (C.10) the fraction of the surface where the surface slope is below tanθ is

P (tanθ) = 1 − e−(tanθ/ξ)2 . (C.11)
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