Our experience with the IBM Quantum Experience

Hans De Raedt, Fengping Jin, Thomas Lippert, Kristel Michielsen, Madita Nocon, and <u>Dennis Willsch</u>

Institute for Advanced Simulation Jülich Supercomputing Centre Forschungszentrum Jülich

Nomenclature

Single-qubit state:

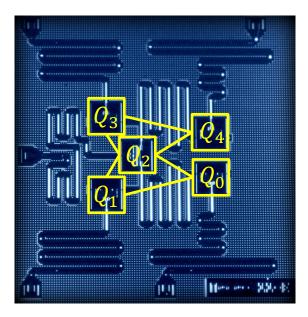
 $|\psi\rangle = a_0|0\rangle + a_1|1\rangle;$ $|a_0|^2 + |a_1|^2 = 1;$ $a_0, a_1 \in \mathbb{C}$

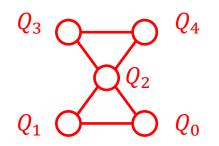
Singlet state = maximally entangled two-qubit state:

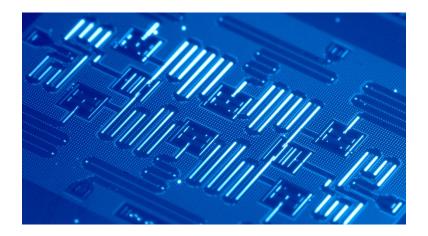
 $|\psi\rangle = (|01\rangle - |10\rangle)/\sqrt{2}$

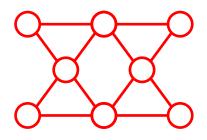
• State of a 5-qubit quantum computer:

 $|\psi\rangle = a_0|0_40_30_20_10_0\rangle + a_1|0_40_30_20_11_0\rangle + \dots + a_{31}|1_41_31_21_11_0\rangle$




Nomenclature

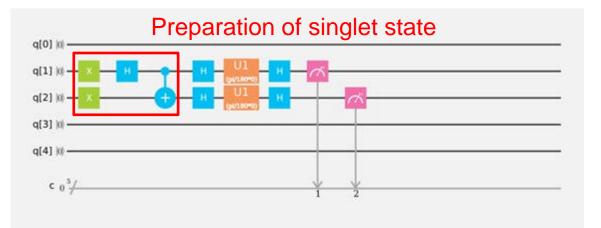

- X-gate $X|0\rangle = |1\rangle; X|1\rangle = |0\rangle$ ×
- Hadamard gate $H|0\rangle = (|0\rangle + |1\rangle)/\sqrt{2};$ $H|1\rangle = (|0\rangle - |1\rangle)/\sqrt{2}$ H
- CNOT gate $CNOT_{Control-Target} |Q_j Q_i\rangle \equiv C_{CT} |Q_j Q_i\rangle; \ j \neq i \in \{0, 1, 2, 3, 4\}$ $C_{01} |0_1 0_0\rangle = |0_1 0_0\rangle; C_{01} |0_1 1_0\rangle = |1_1 1_0\rangle$ $C_{01} |1_1 0_0\rangle = |1_1 0_0\rangle; C_{01} |1_1 1_0\rangle = |0_1 1_0\rangle$



Hardware

Device parameters

- Size: 7.5 mm x 9.5 mm
- Temperature: ≈ 15 mK
- Coherence time of a single qubit: \approx 100 µs
- Gate errors: 10⁻² 10⁻³
- Duration of gate operations:
 - X-gate: 130 ns
 - Hadamard: 130 ns
 - CNOT gate: 650 ns



The IBM Quantum Experience

Community User Guide	Composer Q	ASM Editor	My Scores				
New experiment	Real Quantum Pro	cessor	Expert User, Units: 50	Run New	Results	Simulate Save	Save as
<pre>1 include "qelib1.inc"; 2 qreg q[5]; 3 creg c[5]; 4 5 x q[1]; 6 x q[2]; 7 h q[1]; 8 cx q[1],q[2]; 9 u1(pi/4) q[1]; 10 u1(pi/4) q[2]; 11 h q[1]; 12 h q[2]; 13 measure q[1] -> c[1]; 14 measure q[2] -> c[2]; 15</pre>	$q[0]_{ 0}$ $q[1]_{ 0}$ x $q[2]_{ 0}$ x $q[3]_{ 0}$ $q[4]_{ 0}$ $c_{0}^{5}/$		2				

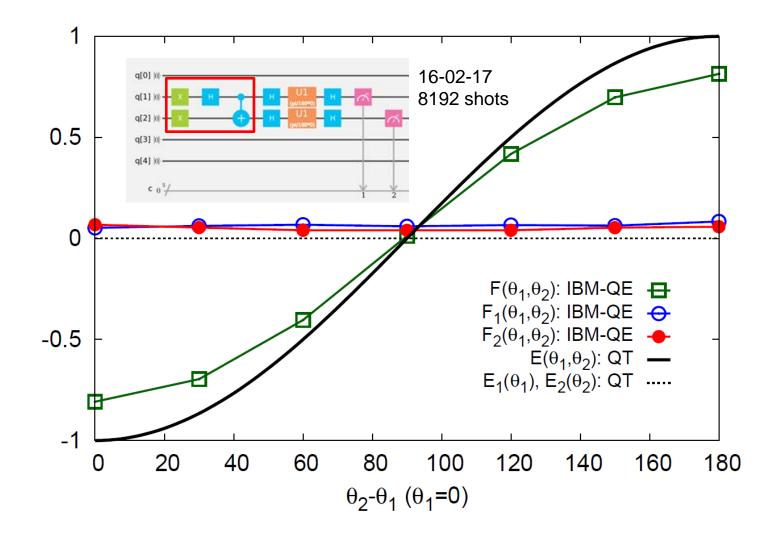
IBM 5Q	ACTIVE		000 4	Q0	Q1	Q2	Q3	Q4
			CR0_1 e_g^{01} : $3.44 imes 10^{-2}$	f: 5.27 GHz	$f: 5.21 \mathrm{~GHz}$	$f: 5.03 \mathrm{~GHz}$	$f: 5.30 \mathrm{~GHz}$	$f: 5.06 \mathrm{~GHz}$
[M\$		cro_2 e_g^{02} : $3.65 imes 10^{-2}$	T_1 : 53.3 $\mu { m s}$	T_1 : 63.3 $\mu { m s}$	T_1 : 47.2 $\mu { m s}$	$T_1:58.1~\mu{\rm s}$	T_1 : 67.1 $\mu { m s}$
	יוי גור		CR1_2	T_2 : 28.7 $\mu { m s}$	T_2 : 43.3 $\mu { m s}$	T_2 : 89.9 $\mu { m s}$	T_2 : 63.2 $\mu { m s}$	T_2 : 90.4 $\mu { m s}$
	비골	(Q_3) (Q_1)	e_g^{12} : $\overline{4.48 imes10^{-2}}$	e_g : $2.2 imes 10^{-3}$	e_g : $2.3 imes 10^{-3}$	e_g : $4.8 imes10^{-3}$	e_g : $2.9 imes 10^{-3}$	e_g : $3.1 imes 10^{-3}$
			cr3_2 e_g^{32} : $4.92 imes 10^{-2}$	e_r : $1.9 imes 10^{-2}$	e_r : $7.4 imes 10^{-2}$	e_r : $2.8 imes 10^{-2}$	e_r : $1.9 imes 10^{-2}$	e_r : $4.7 imes 10^{-2}$
Fridge Temper 0.020489 Kelv			CR3_4 $e_g^{34}: 3.54 imes 10^{-2}$					
			CR4_2 e_{*}^{42} : $4.05 imes10^{-2}$					

MEASURING THE SINGLET STATE

Measuring the singlet state

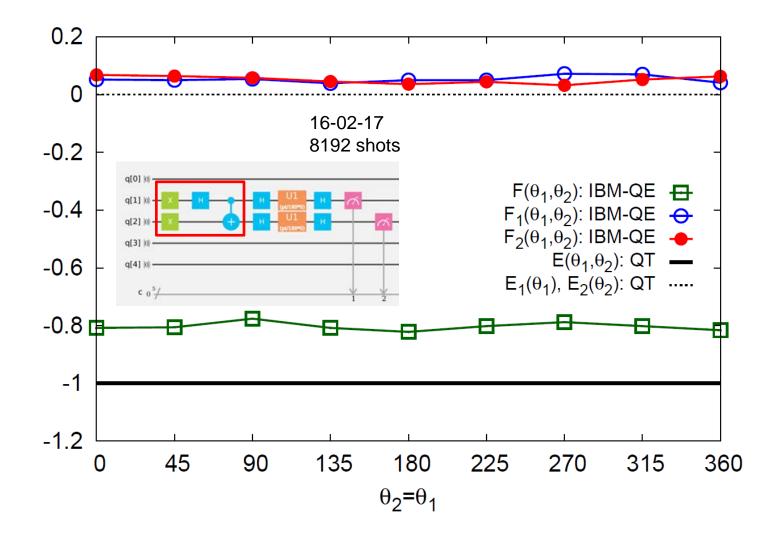
According to quantum theory:

The singlet state $|\psi\rangle = (|01\rangle - |10\rangle)/\sqrt{2}$ is fully determined by


$$\underline{E_i(\mathbf{a}_i)} = \langle \psi | \boldsymbol{\sigma}_i \cdot \mathbf{a}_i | \psi \rangle = \langle \psi | \boldsymbol{\sigma}_i | \psi \rangle \cdot \mathbf{a}_i = \mathbf{0}, \quad i = 1, 2$$

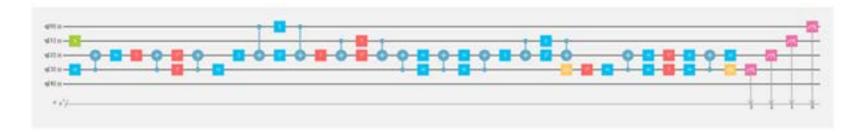
$$E(\mathbf{a}_1,\mathbf{a}_2) = \langle \psi | \boldsymbol{\sigma}_1 \cdot \mathbf{a}_1 \boldsymbol{\sigma}_2 \cdot \mathbf{a}_2 | \psi \rangle = \mathbf{a}_1 \cdot \langle \psi | \boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2 | \psi \rangle \cdot \mathbf{a}_2 = -\mathbf{a}_1 \cdot \mathbf{a}_2$$

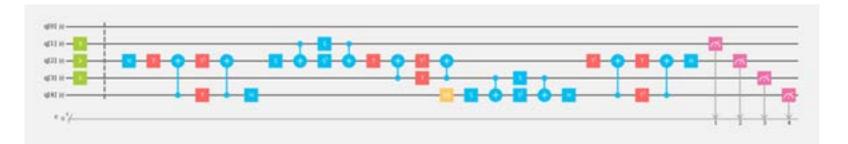
We choose $\mathbf{a}_i = (0, -\sin \theta_i, \cos \theta_i)$ so $-\mathbf{a}_1 \cdot \mathbf{a}_2 = -\cos(\theta_2 - \theta_1)$



Measuring the singlet state

Measuring the singlet state




Measuring the singlet state: Conclusions

- For this extremely simple system
 - Qualitatively: The results show the features expected from quantum theory
 - Quantitatively:
 - $E_i(\mathbf{a}_i) \neq 0$, i = 1,2
 - $E(a_1, a_2)$: cosine with reduced amplitude

Error ≠ statistical error

2+2 QUBIT ADDER

S.J. Devitt, Performing quantum computing experiments in the cloud, Phys. Rev. A94, 032329 (2016) + Supplementary Information

T.G. Draper, Addition on a quantum computer, arXiv:quant-ph/0008033 (2000)

2+2 qubit adder

Modulo-4 addition of two two-bit integers

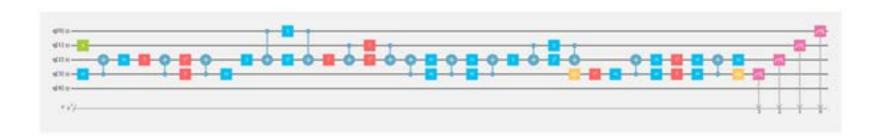
+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

2+2 qubit adder

- How to judge the outcome?
 - Rule: the state with the largest frequency is regarded as the result of the computation
 - Compare to the output states and their probability from quantum theory

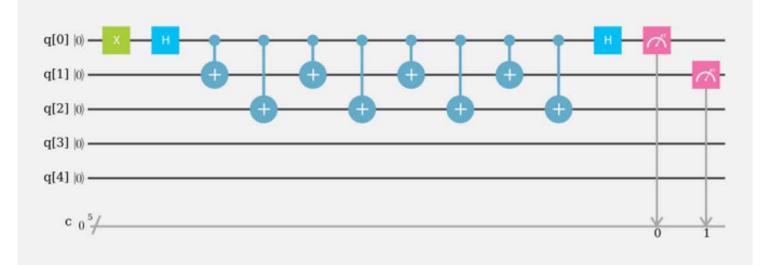
 $Correct \ output \ state(s) \ based \ on \ largest \ frequency$

Wrong output state based on largest frequency


Operation $ Q_0Q_1\rangle + \frac{ Q_2Q_3\rangle}{ Q_3Q_2Q_0Q_1\rangle}$	Output QT <i>state</i> > (prob.)	Output IBM-QE <i>state</i> > (freq.) Date, # shots = 8192
2 + 1 = 3	$ 1_{3}1_{2}0_{1}1_{0} angle$ (1.000)	$\begin{array}{c} \mathbf{1_{3}1_{2}0_{1}1_{0}}\rangle \text{ (0.275) ; } 0_{3}0_{2}0_{1}1_{0}\rangle \text{ (0.160)} \\ \text{22-01-2017} \end{array}$

Operation $ Q_1Q_3\rangle$ + $\frac{ Q_2Q_4\rangle}{ Q_2Q_4Q_1Q_3\rangle}$	Output QT <i>state</i> > (prob.)	Output IBM-QE <i>state</i> > (freq.) Date, # shots = 8192
2 + 1 = 3	1 ₄ 0 ₃ 1 ₂ 1 ₁ ⟩ (1.000)	$\begin{array}{c} 1_4 0_3 0_2 1_1 \rangle \text{ (0.342) ; } 1_4 0_3 1_2 1_1 \rangle \text{ (0.341)} \\ \text{25-01-2017} \end{array}$
	•	

Operation $ Q_0Q_1\rangle + \frac{ Q_2Q_3\rangle}{ Q_3Q_2Q_0Q_1\rangle}$	Output QT <i>state</i> ⟩ (prob.)	Output IBM-QE <i>state</i> > (freq.) Date, # shots = 8192
0 + 0 = 0 1 + 0 = 1	$ 0_{3}0_{2}0_{1}0_{0} angle$; $ 0_{3}1_{2}1_{1}0_{0} angle$ (0.500)	$\begin{array}{c} 0_{3}0_{2}0_{1}0_{0}\rangle \ \textbf{(0.354)} \ \textbf{;} \ 0_{3}1_{2}1_{1}0_{0}\rangle \ \textbf{(0.311)} \\ 1_{3}0_{2}0_{1}0_{0}\rangle \ \textbf{(0.066)} \ \textbf{;} \ 0_{3}1_{2}0_{1}0_{0}\rangle \ \textbf{(0.062)} \\ \textbf{17-01-2017} \end{array}$
1 + 0 = 1 1 + 3 = 0	$ 0_{3}1_{2}1_{1}0_{0} angle$; $ 0_{3}0_{2}1_{1}0_{0} angle$ (0.500)	$\begin{array}{c} 0_{3}1_{2}1_{1}0_{0}\rangle \ \textbf{(0.314) ; } 0_{3}0_{2}1_{1}0_{0}\rangle \ \textbf{(0.262)} \\ 1_{3}1_{2}1_{1}0_{0}\rangle \ \textbf{(0.098) ; } 1_{3}0_{2}1_{1}0_{0}\rangle \ \textbf{(0.085)} \\ \text{17-01-2017} \end{array}$
$ \begin{array}{r} 1+0 = 1 \\ 1+3 = 0 \\ 3+0 = 3 \\ 3+3 = 2 \end{array} $	$\begin{array}{c} 0_{3}1_{2}1_{1}0_{0}\rangle \ ; \ 1_{3}1_{2}1_{1}1_{0}\rangle \ \textbf{(0.250)} \\ 0_{3}0_{2}1_{1}0_{0}\rangle \ ; \ 1_{3}0_{2}1_{1}1_{0}\rangle \ \textbf{(0.250)} \end{array}$	$\begin{array}{c} 0_{3}1_{2}1_{1}0_{0}\rangle \text{ (0.185) ; } 1_{3}1_{2}1_{1}1_{0}\rangle \text{ (0.152)} \\ 0_{3}0_{2}1_{1}0_{0}\rangle \text{ (0.147) ; } 1_{3}0_{2}1_{1}1_{0}\rangle \text{ (0.097)} \\ \text{17-01-2017} \end{array}$



2+2 qubit adder: Conclusions

- The rule "largest frequency → result" gave the correct answer with exceptions
- The frequencies deviate strongly from the probability given by quantum theory
- The results and their frequencies vary strongly between different device calibrations

Error ≠ statistical error

IDENTITY OPERATIONS

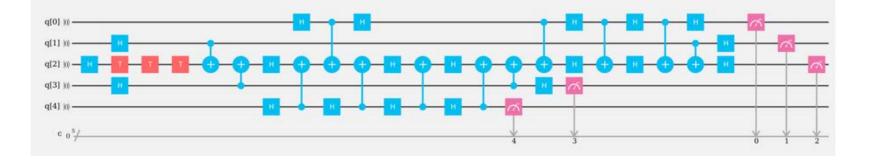
H. De Raedt, K. Michielsen, A.H. Hams, S. Miyashita and K. Saito, Quantum Spin Dynamics as a Model for Quantum Computer Operation, Eur. Phys. J. B 27, 15 - 28 (2002) Correct output state based on largest frequency

Wrong output state based on largest frequency

Operation	Input	Output QT <i>state</i> ⟩ (prob.)	Output IBM-QE <i>state</i> > (freq.) Date, # shots = 8192
(C ₀₁) ⁸	0 ₁ 0 ₀ >	0 ₁ 0 ₀) (1.000)	$ 0_1 0_0\rangle$ (0.661); $ 1_1 0_0\rangle$ (0.299) 16-01-2017
			$ 0_10_0\rangle$ (0.700); $ 1_10_0\rangle$ (0.198) 18-01-2017
q[2] II			$ 0_10_0\rangle$ (0.642) ; $ 1_10_0\rangle$ (0.289) 19-01-2017
c 0 %			$ 0_10_0\rangle$ (0.580) ; $ 1_10_0\rangle$ (0.335) 23-01-2017
			$ 0_10_0\rangle$ (0.628) ; $ 1_10_0\rangle$ (0.256) 23-01-2017
(C ₃₄) ⁸	0 ₄ 0 ₃ >	0 ₄ 0 ₃) (1.000)	 1₄0₃⟩ (0.512) ; 0 ₄ 0 ₃ ⟩ (0.372) 15-01-2017
			1₄0₃⟩ (0.567) ; 0 ₄ 0 ₃ ⟩ (0.318) 16-01-2017
q(0) ;;			 1₄0₃⟩ (0.548) ; 0 ₄ 0 ₃ ⟩ (0.363) 18-01-2017
			 1₄0₃⟩ (0.616) ; 0 ₄ 0 ₃ ⟩ (0.275) 19-01-2017
			$ 1_40_3\rangle$ (0.590) ; $ 0_40_3\rangle$ (0.323) 22-01-2017
			 1₄0₃⟩ (0.618) ; 0 ₄ 0 ₃ ⟩ (0.321) 23-01-2017
(C ₃₄) ⁸	0 ₄ 1 ₃ >	0 ₄ 1 ₃) (1.000)	$ 0_4 1_3\rangle$ (0.794) ; $ 0_4 0_3\rangle$ (0.084) 16-01-2017
d0 k) d1 k) d2 ⊨			$ 0_4 1_3\rangle$ (0.797) ; $ 0_4 0_3\rangle$ (0.088) 18-01-2017
			$ 0_41_3\rangle$ (0.853) ; $ 0_40_3\rangle$ (0.077) 23-01-2017
° 0 ³ /3 4			0 ₄ 1 ₃ ⟩ (0.849) ; 0 ₄ 0 ₃ ⟩ (0.068) 23-01-2017

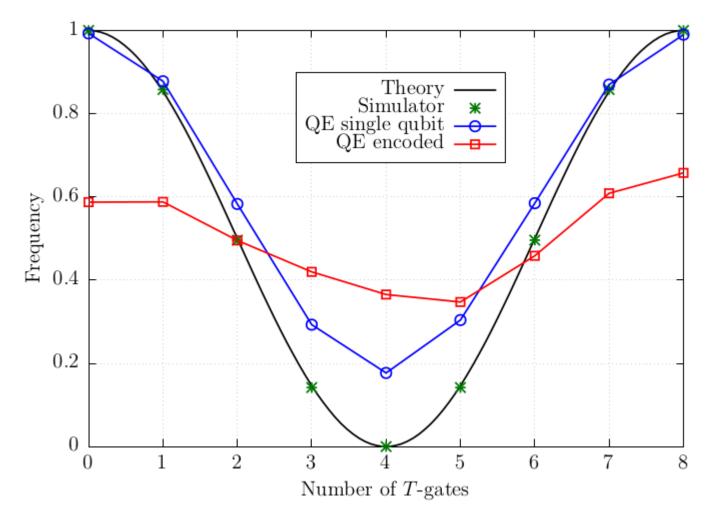
Correct output state based on largest frequency

Wrong output state based on largest frequency

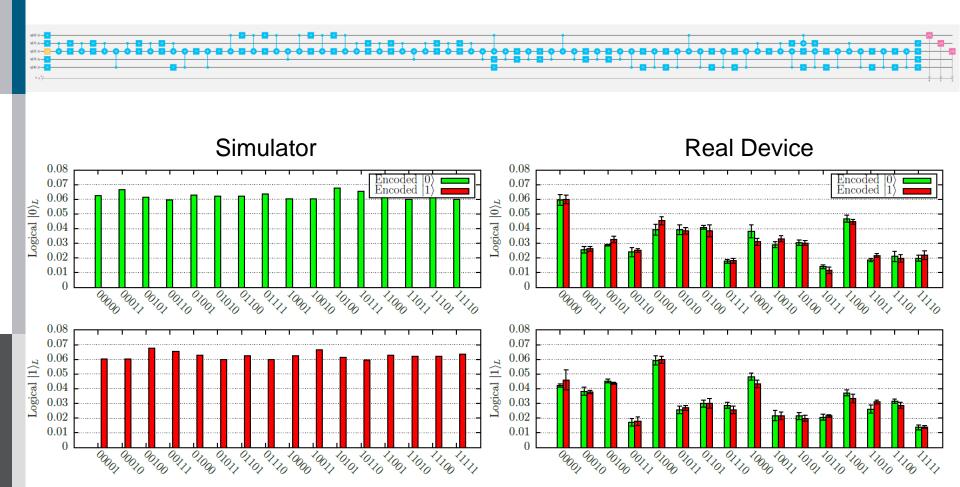

Operation	Input	Output QT <i>state</i> ⟩ (prob.)	Output IBM-QE <i>state</i> > (freq.) Date, # shots = 8192
$(C_{02}C_{12})^2(C_{02})^2(C_{12})^2(C_{02}C_{12})^2$	1 ₂ 1 ₁ 1 ₀ >	$ 1_{2}1_{1}1_{0} angle$ (1.000)	$ \begin{array}{c} \mathbf{1_2} \mathbf{1_1} \mathbf{1_0} \rangle \ \textbf{(0.355)} \ ; \ \mathbf{1_2} \mathbf{1_1} \mathbf{0_0} \rangle \ \textbf{(0.304)} \\ 10\text{-}01\text{-}2017 \end{array} \rangle$
			$ 0_{2}1_{1}1_{0}\rangle$ (0.262); $ 1_{2}1_{1}1_{0}\rangle$ (0.238) 12-01-2017
			$ 0_{2}1_{1}1_{0}\rangle$ (0.250) ; $ 1_{2}1_{1}1_{0}\rangle$ (0.237) 20-01-2017
			$ 0_{2}1_{1}1_{0}\rangle$ (0.374) ; $ 0_{2}1_{1}0_{0}\rangle$ (0.151) 27-01-2017
			$ 0_2 1_1 1_0\rangle$ (0.347) ; $ 0_2 0_1 1_0\rangle$ (0.164) 27-01-2017
			$ 0_2 1_1 1_0\rangle$ (0.368) ; $ 0_2 0_1 1_0\rangle$ (0.161) 27-01-2017
			$ 0_2 1_1 1_0\rangle$ (0.358) ; $ 0_2 0_1 1_0\rangle$ (0.166) 27-01-2017
$ \begin{array}{c} H_0 H_1 X_0 X_1 (C_{02} C_{12})^2 (C_{02})^2 (C_{12})^2 \\ (C_{02} C_{12})^2 H_0 H_1 \end{array} $	1 ₂ 1 ₁ 1 ₀ >	$ 1_{2}1_{1}1_{0} angle$ (1.000)	$ \mathbf{1_2 1_1 1_0}\rangle$ (0.304) ; $ \mathbf{0_2 1_1 1_0}\rangle$ (0.157) 05-05-2016
			$ 1_{2}1_{1}1_{0}\rangle$ (0.298) ; $ 0_{2}1_{1}1_{0}\rangle$ (0.192) 09-11-2016
			$ 1_{2}1_{1}1_{0}\rangle$ (0.223) ; $ 1_{2}1_{1}0_{0}\rangle$ (0.156) 20-11-2016
			$ 0_2 1_1 1_0\rangle$ (0.202) ; $ 0_2 0_1 0_0\rangle$ (0.170) 27-01-2016
			$ 0_2 1_1 1_0\rangle$ (0.232) ; $ 0_2 0_1 0_0\rangle$ (0.154) 27-01-2016

Identity operations: Conclusions

- Very simple, scalable but sensitive quantum algorithms to validate the operation of quantum computer devices
- The outcome is sometimes correct, sometimes wrong
- Results seem to be systematic
 - Similar results for different device calibrations
- Results that were correct on the old device (< Jan. 11, 2017) turn out to be incorrect on the new device (≥ Jan. 11, 2017)



ERROR CORRECTION


Error correction ("distance-two surface code")

S.J. Devitt, Performing quantum computing experiments in the cloud, Phys. Rev. A94, 032329 (2016) + Supplementary Information

Error correction ("distance-three 5-qubit code")

R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Perfect quantum error correcting code, Phys. Rev. Lett. 77, 198 (1996)

Error correction: Conclusions

- The device can be used to test small error correction codes
- Error correction makes the outcome worse
- The encoding results obtained with the IBM-QE device are completely different from those given by quantum theory

Summary

- Very simple algorithms have been used to test the IBM-QE from a user perspective
- In some cases we could observe qualitative agreement with quantum theory for qubit systems
- Errors cannot be identified by the user and they cannot be attributed to the specified gate errors
- There are strong differences between calibrations
- The current device does not qualify as a computer
- A theoretician can perform laboratory experiments

THANK YOU