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Introduction

Electronic properties of crystals derive from the symmetries of their periodic lattice as much
as the properties of the constituent atoms. If the crystal size in any direction is comparable
to the electron wavelength, its properties become strongly affected by quantum confinement.
Advances in growth techniques of semiconductor crystals that exhibit quantum confinement
(sometimes called nanostructures) have lead to many discoveries and facilitated technological
developments over past decades. Quantum integer and fractional Hall effects, Bose-Einstein
condensation of excitons are examples of phenomena observed in two dimensional systems (in
which quantisation affects only one direction). Quantised conductance and Coulomb blockade
are examples of the phenomena observed in one- and zero dimensional systems, respectively.
Most modern (opto)electronic devices that you find in computers, mobile phones etc make use
of semiconductor nanostructures.

There are however limits to scaling down the sizes of standard semiconductors (Si,GaAs, InP
etc) since their surfaces have dangling bonds which start interfering with the properties derived
from their band structure even when their nanostructures are encapsulated in heterostructures.1.
With the discovery of graphene it became clear that isolated monolayers can be used as an
ultimate two dimensional (2D) system. This is possible because layered materials are composed
of monolayers bonded with each other with van der Waals forces to form bulk crystals. Not only
does it mean that it is easy to isolate the monolayer but even more importantly there are no
dangling bonds in the monolayer. A number of different monolayer materials have been studied
since the emergence of graphene a couple of decades ago and many exhibit unique properties
that may lead to development of devices with new functionalities.

WSe2 monolayer is an example of semiconducting 2D material with fascinating optoelec-
tronic properties. It has been chosen for this exercise due to its rich physics and as well suited
example to give you an insight into optical spectroscopy as a method to study materials of
any dimensionality. This text gives you a background to the physics addressed in the exercise.
The first section summarises the relevant basic properties of semiconductors and introduces the
terminology and conventions used in later sections. WSe2 monolayer crystal, electronic and
optical band structure are introduced in the second section. Before discussing what one can
expect from the photoluminescence and reflectance spectroscopy of WSe2 monolayer in section
4, optical selection rules that govern the processes of photon absorption and emission are sum-
marised in section 3. Feel free to skip sections that you are familiar with such as section 1
or 5 or the general part of section 3. If something catches your interest you will find a list of
suggested further reading at the end of this text. Footnotes that you find in the text serve as a
reminder of more basic concepts or contain information beyond what you need for the exercise.

1 Semiconductors - background

Figure 1 shows a Brillouin zone of a GaAs that crystallizes in a zinc blende structure. GaAs
is chosen here due to its known optoelectronic properties. The band structure of GaAs along
k−directions defined in figure 1 is shown in a figure 2. One can see that electrons in the
semiconductor can occupy states with energies below some energy Ev (a valence band edge)

1A heterostructure is a crystal composed of layers of different materials or compositions which have very similar
lattice constant. They are selected to have different band gaps and confine electrons in the space protecting them
from surfaces
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Figure 1: A Brillouin zone of zinc-blende crystal structure. Figure adapted from [1]

or above some energy Ec (a conduction band edge). The valence and conduction bands are
separated by a band of forbidden for an electron energies, a so called band gap of a width:
Eg = Ec − Ev. The band gap must be at most a few eV for a material to be classified as a
semiconductor rather than an insulator although this is more a guide than a strict definition.
For example, a zero-temperature band gap of the best known semiconductors, Si and GaAs, are
1.17 eV and 1.52eV, respectively. The band gaps of all semiconductors decrease by at most 10%
with heating them to the room temperature. The band structure of GaAs, shown in figure 2a
has the minimum energy of conduction band and maximum energy of the valence band at the
same point Γ of the Brillouin zone. This makes GaAs a direct band gap semiconductor because
electrons can be transferred across the band gap directly by photon absorption / emission
without involvement of phonons. This will be elaborated on later in this text. Details of the
band structure of the GaAs near Γ point are shown in figure 2b; the states in this range of
k−vectors are responsible for most optical and many electronic properties of GaAs. Si is an
example of indirect band gap semiconductor, in which minimum energy of conduction band and
maximum energy of the valence band occur at different points of the Brillouin zone. Optical
transitions across the band gap need to be assisted by phonon emission or absorption.

For any semiconductor, an occupation of the conduction and valence band with electrons
and its electrochemical potential are determined by the density of electronic states in the rele-
vant bands and Fermi-Dirac distribution 2 taking into consideration charge neutrality. At zero
temperature, Fermi-Dirac distribution is a step function. In this case, a monocrystalline semi-
conductor, which contain no impurities or defects except the thermodynamically unavoidable
ones, a so called intrinsic semiconductor, has the valence band fully occupied with electrons and
the conduction band completely empty; its Fermi level is located in the middle of the band gap.
At higher temperatures, some electrons are present in the conduction band. Charge neutrality
requires that the number of electrons in the conduction matches the number of vacant states in
the valence band. This is shown in figure 3a for GaAs at room temperature. One can see that
electrons can be found above the band gap (1.42 eV) in the conduction band with probability

2According to Fermi-Dirac distribution, an average number of electrons, ni, that occupy an energy state Ei

is given by ni = (e
−(Ei−µ)
kBT + 1)−1, where µ is the electrochemical potential, kB is the Boltzman constant and

T is the temperature. The electrochemical potential is a generalization of the Fermi level that includes external
electrical potentials that can be introduced for example by applying voltages to the semiconductor sample. In
the absence of those, µ is simply the Fermi level.
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a) b)

Figure 2: a) Band structure of GaAs in the crystal structure of zinc-blende. b) Band structure near the
Γ point at energies close to the band gap. Conventionally, the energy of the valence band edge is set to
0 eV.Figures adapted from [1]

decreasing with electron energy. Similarly one can find that probability of finding an empty
state in the valence band (located at Ev = 0 eV) decreases for lower energies.

This symmetry in the behaviour of electrons in the conduction band and empty states in the
valence band lead to the introduction of a concept of a hole. The hole is a quasi-particle formed
in the valence band by a removal of an electron. In order to use the concept of the hole one
has to be able to define its wave function, energy, charge and spin etc. - in short the quantities
that determine their properties in semiconductors. Since the properties of crystals are derived
from those of electrons on the atomic orbitals of the component atoms, electron wave functions
and other parameters are know from the theoretical calculations (and experimental data). It
is intuitive3 that the hole behaves as a particle of the charge +e, where −e if the charge of
the electron. The spin up or down of a hole, denoted as ⇑ or ⇓ is opposite to the spin of the
removed electron, ↓ or ↑. In other words, a hole with spin up, ⇑(⇓) is obtained by removing
an electron with spin ↓(↑). The wave function of a hole in the valence band, |uh〉, is a complex
conjugate of the wave function of the electron in the valence band, |uv〉: |uh〉 = |uv〉∗. Setting
the valence band edge energy to zero let us express the energy of the hole as Eh(k) = −Ev(k).
A decreasing energy of an electron is an increasing energy of holes.

Figure 3 captures the feature of semiconductors that differentiates it from metals and insu-
lators: a strong dependence of the electron and hole concentration on a very small change of
the crystal’s electrochemical potential (see footnote 2). In figure 3b and 3c, the electrochemical
potential has been shifted by 50 meV from the level found in unperturbed intrinsic GaAs at
300K (figure 3a. These changes of less than ±4% of the band gap cause an order of magnitude
increase in the concentration of electrons or holes, which can conduct electrical current. There
are many ways in which one can shift the electrochemical potentials, among them the ones al-
ready mentioned: applying voltage, building heterostructures. The simplest but very powerful

3If one applied an electric field to a semiconductors, electrons will drift towards the more positive potential,
which will result in the hole drifting in the opposite direction.
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a) b) c)

Figure 3: Electron and hole concentration per unit energy for a) intrinsic b) n-type c) p-type GaAs at
300K. Red,vertical line shows the position of the Fermi level.

method relies on the introduction of certain impurities in their crystal lattice. Even very small
levels of impurities, as low as one impurity atom per 109 host atoms can lead to measurable
changes of semiconductor properties. At these levels, the crystal structure is not damaged or
even distorted; the impurities simply introduce additional energy levels in the band structure
from figure 2. Impurities which affect the properties of the host semiconductor are called dopant
atoms, or dopants. The impurities of interest are the ones that introduce energy levels in the
band gap of the semiconductor, near (within a few kBT ) from the conduction or valence band
as they are able to shift the Fermi level and thus the concentration of charge carriers (collective
name for electrons and holes). This feature of semiconductors (combined with the technologies
to introduce the impurities locally) is one of the key reasons that we have transistors, lasers
and other electronic and optoelectronic devices.

Let’s consider the case of an atom containing one extra valence electron that replaces an
atom of the host semiconductor. This could be P atom in Si or Si atom replacing Ga atom
in GaAs. If the energy of this extra electron on the dopant atom is close to, but below the
conduction band edge Ec (on the scale of the thermal energy)4, it can be thermally excited
into the conduction band (the dopant can be ionised). An electron in the conduction band is
delocalized which means that it can move in the crystal upon some stimulus. The motion of
an electron in the conduction band can be described using similar equations as the motion of
an electron in vacuum by replacing the mass of free electron, m0, with an effective mass of an
electron in the conduction band defined as me(k) = 1

h̄2
1

δ2Ec/δk2 , where k is an electron wave

vector at which the mass is calculated. This substitution of me for m0 takes into account for the
effect of the periodic potential of the lattice atoms on an electron’s motion and only external
forces need to be considered. me is a function of the crystal momentum k, but near Ec, energy
is a quadratic function of k, which means that me is constant.

Even when only a small fraction of atoms of a semiconductor is replaced by dopants and
a fraction of them is ionised, the Fermi level shifts towards the impurity energy level and the
likelihood of the electron being excited to the conduction band is even higher. Dopants which
supply delocalized electrons to the conduction band are called shallow donors, donor-doped
semiconductors are referred to as n-doped. It is thus clear that the case depicted in the figure
3b refers to the n-doped semiconductor. One finds that most electronic properties of n-doped
semiconductors can be explained simply by considering the electrons in the conduction band

4Note that since an impurity level is completely localized in real space, it is fully delocalized in the k-space.
It is a flat line in the dispersion relation as the one in figure2
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from the donor doping and the occupancy states of the donors.
Similarly, dopant atoms which have one less valence electron that atoms of the host semi-

conductor can trap electrons from the valence band. Again the condition is that the energy level
of the electron on the impurity level is just above the valence band edge to allow for thermal
excitation of the electron from the valence band (or the hole from the impurity). Such dopants
are called acceptors, and semiconductors doped with acceptors are referred to as p-doped. Trap-
ping of electrons on the acceptor level leaves delocalized holes in the valence band and most
electronic properties of p-doped semiconductors can be explained simply by considering these
holes and occupancy of acceptors. In the analogy to electrons, the hole mass can be defines as
mh(k) = 1

h̄2
1

δ2Eh/δk2 , where k is a hole wave vector. Irrespective of the doping, optical properties

of semiconductors depend on both conduction and valence bands and the dopants.
Free (delocalized) charge carriers in materials interact with each other. For example electron-

electron (or hole-hole) interactions can impact the electrical and heat transport in the semi-
conductors 5. Similarly, an electron in the conduction band and a hole in the valence band are
attracted to each other and if brought close enough, they will be bound by Coulomb interac-
tions into a so called exciton: a quasi-particle with zero electric charge, spin of zero or one and
a reduces mass, µ∗ = memh/(me + mh). As a consequence of having no charge, excitons in
the first approximation are not accelerated by electric field. With their integer spin, they are
bosons. An exciton can be thought of as a hydrogen atom in the semiconductor represented
by its relative dielectric constant, ε. It can occupy only discrete states, indexed by the shell
number, n, with the binding energies of:

Eb,n = − µ∗e4

32π2ε0εh̄
2 ×

1

n2
= −R

∗

n2
(1.1)

where R∗ a Rydberg constant. The energy of the exciton in its n-excited state is therefore lower
than the total energy of the pair of free electron and hole by Eb,n. The lowest energy of the
electron-hole pair is Eg, so the energy of the exciton is EX = Eg − Eb,n.

Binding energy of excitons depends on the dielectric constant of the host material. Semi-
conductor such as Si, GaAs and related ones have high dielectric constants and binding energies
of excitons are low. As the results, excitonic effects are observed only at the cryogenic temper-
atures. At higher temperatures they dissociate into free electron-hole pairs.6

In a further analogy to hydrogen atom, one can calculate the separation between the prob-
ability densities of the electron and the hole. For the excitonic ground state, n = 1 it is give
as:

ΨX(r) =
1

√
πa

3/2
0

e
− r
a0 (1.2)

where a0 = 4πεε0h̄
2

µ∗e2 is a Bohr radius and a measure of the extend of the exciton wave function.

If the exciton is generated in a (nano)crystal of the size(s) comparable with a0, the confinement
will affect its energy.

Let’s consider an exciton in GaAs with the energy: EX,n = Eg − Eb,n . It is composed of
an electron from a Γ point in the conduction band and a hole from the Γ point of the valence

5Coulomb blockade is the simplest and striking example of such interactions.
6This is why Si and GaAs based solar cells have such high efficiencies: at high temperatures light creates free

electron-hole pairs that can be separated by applying voltages.
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Figure 4: An exciton dispersion relation for excitons in GaAs. Since mh = 0.47m0 and me = 0.063m0,
the reduced mass of excitons, µ∗, is very close to the mass of an electron and the energy of excitons and
electrons have very similar dependence on the momentum. Figure adapted from [1]

band (see figure 2). The resulting exciton has zero momentum. It can acquire kinetic energy
and its total energy is related to the momentum according to the following dispersion relation:

EX,n(k − kX) = EX +
h̄2(k − kX)2

2M
(1.3)

In GaAs, exciton reduced and total mass, µ∗ and M = me +mh, near minimum energy are
constant but in general they are functions of the momentum. Here kX = 0, as the exciton is in Γ
valley but it does not have to be the case. Excitons formed from electrons in L valley and holes
in Γ valley may not be longed lived but can be generated. In this case the dispersion relation
would have its minimum at k of the L valley (since k in the Γ valley is zero). A dispersion
relation for Γ valley excitons in GaAs is shown in Figure 4.

Since excitons are often generated by optical excitation, there are two ways of viewing
interactions of light with semiconductors. If the Coulomb interactions are weak and can be
treated as a perturbation, one can consider interactions of light with electrons and holes and
include Coulomb interactions as an energy correction. Alternatively, interaction of light with
excitons can be considered and then exciton dispersion relations used. Very often even when
the Coulomb interactions are strong, qualitative understanding of the main optical transitions
can be gained from considering free electron-hole pairs.

2 Crystal and band structure of monolayer WSe2

Graphene, a monolayer of graphite, is the simplest and best known 2D material. It is a single
sheet of covalently bonded carbon atoms arranged in a hexagonal lattice. The interest in
graphene has its origin in its unique properties. Unlike graphite, graphene is a semimetal with
unusual linear dispersion near the Fermi level (so called Dirac cone). This qualitative difference
between the properties of graphite and graphene has triggered an interest in other monolayer
materials.
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Figure 5: Arrangement of atoms in 1H phase of the WSe2 monolayer in a) across-section, b) a plan
view, with blue balls representing tungsten atoms and yellow, selenium. Note that in the plan view there
are two atoms of Se on top of each other. Atom positions and the centre of a hexagon, marked as h are
centres of rotational symmetry of the structure around z-axis. c) First Brillouin zone of WSe2 monolayer
with directions for the calculations of the dispersion relations to follow marked in green. Blue arrows
mark unit vectors in the k− space.

Monolayer materials can be obtained from any, also compound materials, in which mono-
layers of atoms are bonded by van der Waals forces. In the case of compound materials, the
monolayer can be composed of several sheets of atoms, with saturated covalent of ionic bonds
between the atoms. WSe2 and more generally transition metal dichalcogenides (TMDCs) with
the composition MX2 where M= Mo or W and X=S, Se or Te, are examples of layered compound
materials. Their monolayers contains three sheets of atoms. The central sheet is composed of
metal atoms in a hexagonal lattice. A metal layer is embedded between two sheets of chalcogen
atoms, also in hexagonal lattices. Metal-chalcogen bonds are polar and form electric dipoles.
Depending on the relative shift of the chalcogen and metal layers, TMDCs monolayers are either
metals (1T crystal phase) or semiconductors (in 1H crystal phase).

Since the properties of crystals are determined in a large degree by their symmetry, let’s look
at the symmetry of the 1H WSe2 monolayer, depicted in figures 5a and 5b. The cross sectional
view shows a mirror symmetry with the sheet of metal atoms being the plane of symmetry. The
asymmetric arrangement of Se atoms around W atom means that it lacks inversion symmetry.
Figure 5b shows threefold rotational symmetry with the rotation centre on M or X atoms or at
the centre of the hexagon (point h in the figure). This combination of symmetries is responsible
for some of the remarkable properties of the monolayer TMDCs that will be observed in this
exercise.

The first Brillouin corresponding to 1H crystal is shown in figure 5c. The six K-points of
the hexagonal Brillouin zone are split into two groups of alternating K and −K points as a
result of metal atoms occupying two non-equivalent locations in the metal sheet lattice.7

A band structure of WSe2 calculated without spin-orbit interactions is shown in Figure 6a.
The conduction and the valence band edges are both located at the corners of the first Brillouin
zone, at K and −K points of the reciprocal space. This means that WSe2 monolayer is a
direct band gap semiconductor unlike multilayer WSe2 (or even bilayers) which is an indirect
semiconductor.

The conduction band edge electronic states are derived predominantly from dz2 orbitals of
the tungsten atoms. The valence band edge electronic states are derived predominantly from

7As in the case of graphene, metal lattice has to be split into two sublattices in order to be able to construct
1H structure by periodic translation of the atom positions. These sub-lattices correspond to K or −K points.



2 CRYSTAL AND BAND STRUCTURE OF MONOLAYER WSE2 8

-8

-6

-4

-2

 0

 2

 4

M KΓ Γ

E 
- E

F (
eV

)

a)

-8

-6

-4

-2

 0

 2

 4

M KΓ Γ

E 
- E

F (
eV

)

b)

Figure 6: Band structure of WSe2 a) without b) with spin orbit interactions, both calculated using
ab-initio methods. Courtesy of Stefan Rost.
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Figure 7: a) Band structure of WSe2 at energies close to the band gap. (Courtesy of Stefan Rost.) b)
Schematic diagram of the spin-resolved band structure near K/−K points.

the dx2+y2,xy orbitals of the metal atoms. In the first approximation, the small admixture of
p-states of chalcogen atoms can be neglected. The basis wave functions are then |φc〉 = |dz2〉
and |φv〉 = 1/

√
2(
∣∣dx2+y2

〉
+ iτ |dxy〉) where τ = ±1 is the valley index corresponding to the

K/−K valleys, respectively. The valley index is one of the quantum numbers that describe the
state of an electron (or a hole). Unlike other quantum numbers it is the same for both particles.
This band structure can be summarised in the following Hamiltonian:

Ĥ0 = at (τ σ̂xkx + σ̂yky) +
∆

2
σ̂z (2.1)

where a is the lattice constant of 1H WSe2, t is the hopping integral (related to the coupling
between atomic sites), kx,y are the electron wave vectors, σ̂x,y,z - the Pauli matrices, ∆ is the
band gap.8 The calculated single particle band gap of WSe2 monolayer is 2.2 eV and varies
between 2.1 eV and 2.4 eV for other TMDCs monolayers, all of which are direct band gap

8In the previous section the value of the band gap was denoted by Eg as conventionally used in semiconductor
physics. Here, a symbol ∆ is used as typically used in Hamiltonians of two hybridizing states. The two different
symbols refer to the same quantity.
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semiconductors.
The presence of massive metal atoms in the structure translates into very strong spin-orbit

interactions, λL · S, which must be included in the full Hamiltonian:

Ĥ = Ĥ0 − λτ
σ̂z − 1

2
ŝz (2.2)

where 2λ is the spin splitting of the valence band at K/−K point, ŝz is the spin Pauli vector.
The band structure of the WSe2 with spin-orbit interactions included is shown in figure 6b. The
most noticeable change introduced by spin-orbit interactions is the removed spin degeneracy
of the valence band at K and −K points. The spin up and down valence band subbands are
separated by 400 meV (and between 200 meV and 400meV for other TMDCs), energy large
enough that even at room temperature only one spin-split subband with lower energy can be
occupied by holes. Non-equivalence of the K and −K points of the Brillouin zone extends to
the spin resolved states: the lowest hole energy subband at K point is occupied by a spin-down
hole (⇓) and at −K point by a hole with spin up (⇑).9 This property of TMDCs is referred to
as spin-valley locking.

Spin-orbit interactions also split the conduction band, as seen in figure 7. Even though
dz2 orbital has zero magnetic moment, second order spin-orbit interactions involving earlier
neglected p orbitals of the chalcogen atoms split the conduction band at K / −K points by up
to a few tens of meV. In WSe2, the spin splitting of the conduction band is about 30 meV and
thus of the order of kT at room temperature.10

In MoSe2, the ordering of the spin states in the conduction band is opposite to the one
in WSe2 and this seemingly small difference has very strong implications for their interactions
with light.

2.1 Excitons in 2D, the case of WSe2 monolayer

The binding energy of excitons confined in two dimensions is given as:

Eb,n = − µ∗e4

32π2ε0εh̄
2 ×

1

(n− 0.5)2
= − R∗

(n− 0.5)2
(2.3)

The energy of the 2D exciton in its lowest energy state (n = 1) is four times larger than
the one of the 3D exciton in the medium of the same dielectric constant. Considering that
the exciton’s electrostatic field extends in all three dimensions, the effective dielectric constant
depends strongly on the material in which the monolayer is embedded. If the monolayer is
suspended in vacuum (air), the dielectric constant is small giving even larger enhancement of
the binding energy compared with the bulk semiconductors. The measured binding energies
of excitons in TMDCs monolayers are of the order of 500 meV, much higher than kT so the
excitonic effects are important even at room temperature.

The orbital wave function of the excitonic n = 1 state is:

ΨX(r) =

√
2

π

2

a0
e
− 2r
a0 (2.4)

9Again, one has to remember that spin of a hole is opposite to the spin of an electron.
10To put it in a perspective, this is the same as spin-splitting of the valence band of GaAs (2b. The valence

band spin splitting is always larger than the conduction band spin splitting.
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Figure 8: Dispersion relation of excitonic states. Labels show the electron and hole spin- and valley-
indices that contribute to these states. Only n=1 excitonic states are shown.

where a0 = 4πεε0h̄
2

µ∗e2 is a Bohr radius of the exciton and a measure of the extend of the exciton
wave function in the 2D plane. It is of the order of 2 nm for TMDC monolayers. This is much
smaller than the Bohr radius in e.g. GaAs (20 nm) but it still extends over many unit cells of
the lattice meaning that excitons in the TMDC are considered to be delocalized.

Considering the band structure of WSe2 monolayer in figure 7, one can see that a number
of different excitons can be formed with a hole in the lowest energy state. A hole in K valley
with spin down (⇓) can bind an electron with a spin up, (↑) or down, (↓) from either K or
−K valley. This means that excitons have so called fine structure. It is thus often useful
to label the excitonic states as Xβ

α , where α (β) gives the valley and spin indices of the hole

(electron). Accordingly, the four excitons can be labelled, X
K/−K↑/↓
K⇓ . Each of the excitons can

have kinetic energy which results in the exciton dispersion relation depicted in figure 8. Both

X
K↑/↓
K⇓ occupy Γ valley but are split in energy and have different masses inherited from the

properties of electrons in the different subbands. X
−K↑/↓
K⇓ on the other hand occupy K valley.

The weak screening of Coulomb interactions which results in these high exciton binding
energies in the 2D materials means that even larger charge complexes can be observed in the
TMDC monolayers. For example, in the n- or p-doped 2D system, an exciton binds an extra
electron or hole to form a three-particle complex called a trion. Pauli exclusion principle limits
the number of trion configurations requiring that two electrons in the negatively charged trion,
X−, or holes in the positively charged trion, X+, have to be in a different quantum state. For the
electrons and holes in their lowest energy states, it means different valley or/and spin -indices.
The binding energies of trions are of the order of 25 - 30 meV in the TMDC monolayers. Two
excitons can also bind each other to form a biexciton, X + X = XX, an exciton-negatively
charged trion bound complex is called a charged biexciton, X + X− = XX−. Note, that just
like excitons and trions, these complexes (some of which have only a few meV binding energies)
can have different spin and momentum configurations.

3 Spontaneous recombination and optical selection rules

Light can exchange energy with electrons through the processes of absorption and radiative
recombination. Both processes are widely used to get insight into electronic properties of ma-
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terials. Light absorption in semiconductors has found its applications in variety of light sensors
(most familiar perhaps being CCDs) or solar cells. Radiative recombination of electrically
injected electrons and holes in direct band gap semiconductors lead to development of light
emitting diodes and lasers. The former make use of spontaneous recombination while stimu-
lated radiative recombination produces lasing in diode lasers. Radiative recombination is also
a process behind single photon or entangled photon (or other non-classical light) sources and
as such is an active field of research.

Absorption of a photon causes a transfer of an electron from an initial state in the valence
band (or any lower energy state) to the final state in the conduction band (or any higher energy
state) with the energy difference between the two states. Radiative recombination of an electron
and a hole is a process opposite to absorption with the energy difference between the two states
emitted as a photon. Quantum mechanical analysis of spontaneous radiative recombination
(and absorption) starts from considering probability W1−>2 of electron transition between two
levels, |1 > and |2 > as given by the Fermi golden rule:

W1−>2 =
2π

h̄
|M12|2 g(h̄ω) (3.1)

where M12 is the matrix element for the transition and g(h̄ω) is the density of final states.
[4] Depending on the system in which the transition takes place, the density of states can
refer to photon or/and electronic density of states. Qualitative understanding of the radiative
recombination processes can be gained by looking at the transition matrix element, which
depends on the wave functions of electrons in the initial |1 > and final |2 > states:

M12 = 〈ψ2|Hi|ψ1〉 =

∫
ψ∗2(r)Hi(r)ψ1(r)d3r (3.2)

Light interacts with matter via its electromagnetic field. In the presence of electromagnetic
field with the vector field A, the momentum operator of an electron, p̂, becomes p̂ = −ih̄∇−
eA. Expanding the terms of the momentum operator in the Schrödinger equation gives the
interaction Hamiltonian as:

Ĥi =
e

m
A · P̂ (3.3)

P̂ = −ih̄∇ is a canonical momentum operator. Normally, the strongest interaction of electrons
with light is a dipole interaction with the electric field of the light.11 Other interactions, both
with magnetic field and higher order interactions with electric field can therefore be neglected.
Now, M12 can be calculated by substituting Hi into equation 3.2:

M12 ∝ 〈ψ2|A · P̂ |ψ1〉 = A 〈ψ2|P̂ |ψ1〉 (3.4)

For the transition to be possible, this matrix element has to be non-zero. This requires
that wave functions of the initial and final states, φ1(r) and φ2(r), must be of different parity
(operating with P̂ = −ih̄∇ means differentiating ψ1). This leads to the first selection rule:
optical transition requires a change of parity of the electron wave function. For example, it is
possible for a photon to be absorbed by an electron on an atomic s-orbital and be transferred
to p-orbital but not to another s-orbital.

11Another, often found form of the dipole interactions Hamiltonian is Ĥi = −d · Eo, where d is the electric
dipole of the transition and E0 is the electric field of the photon.
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Apart from energy, photons carry spin angular momentum along the propagation direction.
Left /right handed circularly polarized photons (1/

√
2(σ+/σ−)) carry spin angular momenta

of h̄/ − h̄.12 Light beams whose state can be expresses as |σ+〉 ± i |σ−〉 in some coordinate
system are linearly polarized and carry no angular momentum. Conservation of total angular
momentum leads to the next selection rule: the total angular momentum of an electron has to
change by one or 0 (in units of h̄) for a transition to occur. In the absence of spin-orbit mixing
of electronic bands, in electric dipole interactions approximation, the spin of electrons has to be
conserved - there are no magnetic or pseudo-magnetic fields that could interact with the spin.

The above derived selection rules are valid for electric dipole interactions between light and
matter (not limited to semiconductors but also for atoms, molecules of single electrons). They
can be different for other types of interactions which we are not addressing here.

Implicitly assumed, and common for all types of interactions, are the energy and momentum
conservation rules. Since momentum carried by a photon (= Eph/h̄c) is very small compared
with the possible momenta of electrons in crystals, h̄k, optical transitions practically do not
change momentum of an electron; optical transitions are referred to as ”vertical’ in the k −
E space. It is however possible that emission of a photon is accompanied by emission of
phonons. In this case, since the momenta of phonons and electrons are comparable, radiative
recombination between different k-states is also possible. In direct band gap semiconductors,
such multi-particle transitions are typically weaker than direct, vertical transitions.

The time between the photon absorption and spontaneous radiative recombination of the
electron and the hole is random and therefore described by Poisson statistics. The probability
that an electron - hole pair will not recombine radiatively before time, t, is then equal:

P (t) = P (0)e
− t
τ0 (3.5)

where τ0 is the average time before recombination, so called radiative lifetime of the electron.
This temporal distribution means that the energy of a photon that is going to be emitted is
expressed by a Lorentzian function:

S(ω) =
1

π

1
2γ

(ω − ω0)2 + (1
2γ)2

(3.6)

where h̄ω0 is the energy of emitted photon and γ = 1/(2πτ0) is a so called lifetime broadening
of the line.

This section analysed a transition of an electron between two discrete levels such as found
in atoms or on isolated defects in crystals or in very small crystals. In typical crystals several
different transitions are possible for a given energy/polarization of the photon and broadening
of the states has to also be considered. This difference is captured mostly in the density of final
states entering Fermi golden rule. The selection rules are however generic and are therefore
a useful tool to determine electronic properties of mateirals. Detailed analysis of spontaneous
recombination and properties of light relevant for absorption/spontaneous recombination pro-
cesses can be found in references [1,2].

12Momentum operators entering equations for matrix element for σ+/σ− photons are P̂
+

= P̂ x + P̂ y /

P̂
−

= P̂ x − P̂ y.
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3.1 Optical selection rules for WSe2 monolayer

In this section we will apply the considerations from the last section to the optical transitions in
WSe2 monolayers ignoring Coulomb interactions between electrons and holes. Figure 9 shows
the dispersion relation near the bottom of the conduction band and the top of the valence band
around K and −K points for electrons and holes with both spin directions. Also shown are all
possible optical transitions involving photons propagating normal to the monolayer which are
discussed in this and the next sections.

Energy conservation requires that only photons with energy above semiconductor band gap
can be emitted following radiative recombination from intrinsic WSe2 monolayer. For photon
energies close to the band gap, momentum conservation limits the number of possible optical
transitions to so called intravelley transitions in either K or in −K valley. In other words
electrons in K(−K) valley recombine with holes in K(−K) valley. There are four possible
transitions to consider for each valley. Here we will limit the discussion to the transitions in the
K valley; the conclusions can be adapted for the −K valley taking into account that the two
are linked by time-reversal symmetry.

While we do not know the exact wave functions of the states involves in the optical tran-
sitions, we do know their symmetries at the K-point (a great description of the relationship
between symmetry and conservation laws leading to selection rules can be found in reference
[3]). The conduction band wave function, |ψc〉 has the symmetry of dz2 orbitals while the valence
band electron wave function, |ψv〉 of dx2+y2 ± idxy orbitals of W atoms. The wave functions
can be separated into parts with a threefold rotational symmetry upon rotation around the axis
normal to the 2D plane (z-direction) and a translational symmetry of the Bloch wave function
(ψ((r +R) = ψ(r), with R - lattice vector). Both parts can contribute to the orbital angular
momentum. Operation of rotation around the centre of the orbital, C3, results in the phase
factor of e−i

2mπ
3 added to the state wave function.13 The index m takes value of 0 for the dz2

orbital, ±2 for dx2+y2 ± idxy hybridized orbitals. If the centre of rotation is placed on the metal
atom, Bloch wave function is invariant upon C3 operation and does not contribute to the total
orbital angular momentum.14

Operating with C3 on the momentum operator of the circularly polarized photons, P̂
±

introduces a phase of ei
2mπ

3 with m = ±1 for σ+/− photons respectively and m = 0 for linearly
polarized light.

We can now use the symmetry of |ψc〉, |ψv〉 and P̂
±

to see how the matrix element M12

(equation 3.4) for radiative recombination between conduction band and valence band states
with an emission of left/right handed polarized photon will transform upon two rotations that
cancel each other C−1

3 C3:

〈ψv|P̂
±|ψc〉 = 〈ψv|C−1

3 C3P̂
±
C−1

3 C3|ψc〉

=
〈
ψvC

−1
3

∣∣C3P̂
±
C−1

3

∣∣C3ψc
〉

= e−i
2π
3

(mv−mc) 〈ψv|C3P̂
±
C−1

3 |ψc〉

= e−i
2π
3

(mv−mc∓1) 〈ψv|P̂
±|ψc〉

13Infinitesimal rotation around z-axis is given by (1 − i
h̄

∆Θz · L where z · L is a projection of the angular
momentum on z axis, m.

14Centre of rotation can be also placed on a chalcogen atom or the central point of a hexagon of the lattice
(see figure 7b. In these cases, the rotation operation will lead to different phase factors but the same selection
rules.
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Figure 9: a) Direct optical transitions in the monolayer WSe2 for light propagating normal to the mono-
layer. b) Phonon-assisted transitions from momentum dark states (only the lowest energy transitions
shown for clarity) c)-d) Equivalent transitions for MoSe2.
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For the transition to be possible, the phase factor has to be equal to one because the
operation should not introduce any changes, we only multiplied P̂± by one. This means that
(mv−mc+1) mod 3 = 0. This condition is true for σ+ but not for σ− photons for the transition
between conduction and valence bands in the K valley, so only left handed polarized photons
can be emitted, absorbed in K-valley. Since mv = −2 in −K valley, optical transitions can be
mediated with right handed polarized photons but not with left handed polarized photons.

Spin conservation limits the number of possible transitions in each valley to the ones with
electron spin up ↑ (↓) and hole spin down ⇓ (⇑). The energy of the two photons for these
transitions differ by over 300 meV in WSe2, so the transitions can be isolated from each other.

For the lowest energy transition, the above derived and depicted in figure 9 selection rules
mean that polarization of light can be used to optically select a specific valley in WSe2. Since val-
ley and spin indices are coupled for the states addressed in the transitions, one finds that photon
polarization is locked to the valley and spin of the electron it can interact with. This remarkable
property renders WSe2 (TMDCs) monolayers unique for spin- and valley-optoelectronics.

From this point on we will limit the discussion to the transitions involving only the lowest
energy subband of holes. Following very similar analysis as above, one can show that optical
transitions between the lowest electron energy subband of the −K (K) conduction band and the
lowest hole energy subband in the valence band satisfy all the selection rules except the conser-
vation of momentum. The momentum can be conserved if the optical transition is accompanied
by an emission of a phonon.15 This is shown in figure 9b. Since conduction band states have
zero angular momentum, the polarization of photons depends on the valley-state of the hole
and this means that recombination of an electron from −K (K) valley with hole in K (−K)
valley generates a photon with left (right) handed circular polarization. The phonons which
can facilitate the transition carry not only momentum but also an energy of about 30 meV so
photons emitted from this phonon assisted process have lower energy (longer wavelength) than
those that would be emitted in the direct transitions.

3.2 Many body effects in optical selection rules for WSe2

The discussion above considered independent electrons and holes rather than excitons. We
know, however, that excitonic effects are very strong and cannot be ignored. Luckily, it turns out
that the selection rules derived in the previous section are not changed for the excitons: excitons
in the K valley can recombine emitting left handed polarized photons and excitons in the −K
valley, right handed polarized photons. The energy of the emitted photons is EX = Eg − Eb,1,
as discussed in section 2.3. Optical transitions involving excitons are shown graphically in figure
10a. The lowest energy exciton in dark, the bright exciton of the lower energy is known as an
A-exciton, the one of the higher energy as a B-exciton.

Superimposed on the dispersion relation in the figure 10a is the dispersion relation of light,
a so called light cone. Only excitons within this cone can emit photons directly (with no

phonons involved in the process). Excitons in the K valley, e.g. X−K↑K⇓ are momentum dark,
they are located outsize the light cone. Having the lowest energy, the K valley may have a
large population of excitons generated by phonon scattering of optically excited bright excitons
(process labelled γΓ−K in the figure) or by electrical injection of charge carriers. As discussed in
the previous section, such a momentum dark exciton can emit a photon with the simultaneous

15In phonon assisted transitions, selection rules have to be applied to both photons and phonons. This is
beyond this exercise, but for completeness, we should add that the phonon mediating this optical transition
needs to be fully symmetric (carry zero angular momentum) for the process to be possible.
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n=2::
n=∞

Figure 10: a) Selection rules for the optical transitions for the excitons. The ground state corresponds
to no excitation. Excitons can occupy different valleys and they will interact with photons with corre-
sponding polarization. Emission/absorption of a phonon, γK,−K , accompanies recombination of photons
from the K-valley excitons. Light grey area marks a light cone: photons with a given momentum will
have energy in the shaded area. b) Higher energy levels of excitons, here shown for the A-excitons,
obey the same selection rules as the lowest energy state one provided that they are have the same shell
symmetry (in analogy to atoms referred to as s-, p- etc). The energy of the photons changes with the
shell number.

emission of a phonon, (γK,−K in the figure). The energy of emitted photons is lowered by the
phonon energy.

The final configuration of an exciton, XK↓
K⇓ is spin forbidden, which means that spin would

not be conserved in the optical transitions with photons with momentum normal to the mono-
layer plane.

Typically, only the A-excitons are observed in the photoluminescence spectra and also in
the case of low energy reflectance spectra. Therefore only A-excitons will be considered from
now on.

Figure 11 shows a dispersion relation for trions. The ground state of the trion is a hole or
an electron; the mass of the trion is the weighed average of the three component particles. In a
p-doped WSe2 monolayer an absorption of a σ+ photon generates a XK↑

K⇓,−K⇑ trion. This is the

only possibility as the A-exciton XK↑
K⇓ can only bind a hole from −K valley (see lower panel in

figure 11a. Although there are two possible recombination paths for XK↑
K⇓,−K⇑ (see figure 10),

the direct (intravalley) recombination is much more likely:∣∣∣XK↑
K⇓,−K⇑

〉
=
∣∣σ+, h−K⇑

〉
We can see that due to the spin conservation, the photon emitted from a positive trion has

a polarization entangled with the spin of the remaining hole.16

16We can also see that the energy of the trion can now be distributed between the emitted photon and the
remaining hole. While momentum conservation limits how much energy the hole will retain, it is clear that
this sharing will cause broadening of the photon energy distribution with the lower energy tail in the otherwise
Lorentzian distribution.
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a)∣∣∣↑K ,⇓K ,⇑−K
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∣∣∣⇑−K

〉

b)∣∣∣↑K , ↑−K ,⇓K

〉

∣∣∣↑−K

〉

c)
|↑K , ↓K ,⇓K〉

|↓K〉

K -K K -K K -K

Figure 11: a) Positively charged bright trion and two negatively charged bright trion configurations
with an extra electron in b) the opposite and c) the same valley. Top row shows the excitonic states.
Only trions formed with a bright exciton interacting with σ+ photons are shown. Bottom row shows the
valley occupancy of electrons and holes. Notice that the bright exciton in a) and c) can easily convert
into a dark exciton with the electron in the top subband of K valley being scattered into the bottom
subband of -K valley.

Small spin splitting of the conduction band results in a rich fine structure of the negatively
charged trions in n-doped WSe2. Two examples of bright X−s are shown in the figure 11b
and 11c. Radiative recombination of these trions generates photons with polarizations defined
by the valley index of the hole. There is a small but measurable difference (a few meV) in
the energy of these two trions that is a result of different Coulomb and exchange energies. In
addition, there is a difference in the probability of radiative recombination. The trion in the
configuration from figure 11b is in its lowest energy state and it can only decay by radiative
recombination. The trion in figure 11c can lower its energy by emitting a phonon that would
scatter the electron from the state |K ↑〉 into the state |−K ↑〉. The resulting trion XK↓,−K↑

K⇓
is

momentum dark.
As discussed above, Coulomb interactions responsible for binding of excitons and trions

do not affect the selection rules.17 However interactions between them can lead to emis-
sion/absorption of photons with properties that cannot be understood by solely applying optical
selection rules to basis states.

In the simplest example let us consider what happens if WSe2 monolayer is excited with

17Coulomb interactions do not affect the selection rules but they do affect the overlap of electron and hole wave
functions entering the equation for matrix element, M12. The separation between free electrons and holes will
vary randomly (and with no bounds) from one free pair of carriers to another since they move independently. On
the other hand, an exciton has a specific Bohr radius and the deviations of the electron-hole separation between
excitons are small. This difference demonstrates the limitation of considering only the symmetries of the system
rather than the wave functions.
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Figure 12: Superposition of intravalley spin-dark excitons (here schematically indicated by the grey
ellipses) interacts with z-polarized light.

horizontally polarized light, |H〉 = 1√
2
(|σ+〉 + |σ−〉)18, a coherent superposition of two beams

with opposite circular polarizations. It turns out that as a consequence of photon polarization -
valley - spin locking for A-excitons, |H〉 polarized light interacts with a coherent superposition
of the A-excitons in K and −K valleys:

|XK,−K〉 =
1√
2

(∣∣∣XK↑
K⇓

〉
+
∣∣∣X−K↓−K⇑

〉)
It means that excitation of a WSe2 monolayer with linearly polarized light at time zero

will generate a coherent superposition of the valley-spin excitons. In the absence of magnetic
fields or impurities, of spin or valley selective scattering, or other sources of decoherence, the
energy of the two excitons is the same and this state as the whole acquires a phase, |XK,−K(t)〉 =
e−iExt |XK,−K(0)〉 but does not dephase. Radiative recombination from |XK,−K(t)〉 will generate
an |H〉 polarized photon. This phenomenon is referred to as valley-coherence.19 Let me remark,
that in contrast to excitons, no valley coherence can be observed from the recombination of trions
because of the spin-photon polarization entanglement on recombination. Linear polarization
cannot not observed in the photon emission spectra of bright trions.

It turns out that z−polarized light (linearly polarized with out of the plane electric field

vector) can be absorbed at the energy of spin forbidden excitons, XK↓
K⇓ ( X−K↑−K⇑). A detailed

discussion of interactions leading to this phenomenon is beyond the scope of the exercise and
can be found in reference [6]. Here it suffices to say that using a mirror symmetry argument one
can see that if light propagating in the plane of the monolayer was to interact with excitons, its
polarization would have to have a mirror symmetry making a z-polarization the only option.
As there is no reason why only one of the two excitons was to allow the interaction but not the
other, z−polarized light must interact with a superposition of the two spin forbidden excitons. It

18By choosing a specific linear polarization we have not lost generality because the polarization is defined in
an arbitrary coordinate system.

19The observed photon generated valley coherence led to a proposal that XK↑
K⇓ and XK↓

−K⇑ can be used as valley-
qubit for quantum computation. However, short lifetimes of excitons limit the time for operations performed on
the qubit rendering the proposal impractical.
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does interact with 1/
√

(2)(XK↓
K⇓+X−K↑−K⇑) schematically shown in figure 12 enables by spin-orbit

interactions with higher hole energy bands.
Biexcitons, XX = X +X can be found in the WSe2 monolayer at high density of excitons.

They can form in different valley and spin configurations. In two of those configurations, XX
formed from two bright A-excitons in the two valleys, can recombine producing a cascade of
photons:∣∣∣XK↑,−K↓

K⇓,−K⇑

〉
=>

∣∣∣XK↑
K⇓, σ

−
r

〉
=>

∣∣σ+
b , σ

−
r

〉
or

|XX〉 =>
∣∣∣XK↑

K⇓, X
−K↓
−K⇑

〉
=>

∣∣∣σ+
r , X

−K↓
−K⇑

〉
=>

∣∣σ+
r , σ

−
b

〉
The subscript r indicates that the first photon of the cascade will recombine with the energy
lower than the second exciton (whose energy is marked with the subscript b) by the biexciton
binding energy. The two excitons of the pair have different polarizations. This means that the
two photons are entangled in energy and polarization. In other configurations, at least one of
the excitons is momentum dark.

Similar analysis can be performed for a charged biexciton, XX− = X +X−. In all possible
configurations of the charged biexciton, at least one exciton is bright. When two excitons are
bright, one way in which a charged biexciton with an extra electron in the K valley can recom-
bine is:∣∣∣XX−K↓〉 => XK↑,K↓

K⇓ + σ+
r => σ−t + σ+

r + eK↓

The two photons have different energies, the second of the trion, the first energy lower than
that of the trion by the binding energy of the complex.

4 Optical spectroscopy

The band gap of WSe2 and other TMDCs monolayer lies in the range of optical photons energy
(visible or near infrared light) so optical spectroscopy is a natural way to study them. In this
exercise, photoluminescence and reflectance spectroscopies are performed to gain insight into
the properties of excitons and other complexes made of electrons and holes in WSe2. The next
two sections will introduce the general idea behind the techniques, detailed description of the
experiments is enclosed in the separate instructions.

4.1 Photoluminescence

Luminescence is a name for emission of photons from the radiative recombination of electron -
hole pairs or excitons that follows external excitation. Different methods can be used to generate
the excited states. For example, in electroluminescence charge carriers are injected electrically
into a region of recombination, while energetic electrons are used in cathodoluminescence.

Photoluminescence relies on generation of excited electrons by absorption of light with lasers
being the most common source of light. The energy of the photons in the excitation beam
typically exceeds the energy of the recombining excitons (see figure 13) . This means that photon
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(generation, t=0)(recombination, t>1ps)

(thermalization, t<10s fs)

Figure 13: Absorption of a photon with energy, h̄ωb, generates an exciton of the same energy and
momentum k 6= 0. Rapid emission of phonons (t < 10s fs) removes excess energy from the exciton and
it is transferred to the lowest energy state at k = 0. After this process, the exciton has the temperature
of the crystal lattice hence the process is called thermalization. In the absence of fast non-radiative
recombination the exciton will recombine radiatively. The average radiative recombination time depends
on the system (material , dimensionality) and is of the order of a few ps in WSe2 monolayer.

absorption generates so called hot excitons (having non-zero kinetic energy). The excess energy
is distributed between electrons and holes in the conduction and valence bands, respectively
to maintain zero momentum change. These hot carriers undergo rapid thermalisation with the
lattice, meaning that they dissipate the kinetic energy by phonon emission to reach the bottom
of the conduction and valence bands. Typically, thermalisation occurs within a few to tens of
fs although it can be longer if energy states are quantised. This rapid thermalisation is the
reason why it is often sufficient to consider radiative recombination between the bottom of the
conduction band and the top of the valence band.

Measurements of the properties (energy, polarization, wave vector) of the light emitted
during radiative recombination that follows thermalisation gives an insight into the optical
transitions in the measured system. The measurements are performed mostly at cryogenic
temperatures, preferably liquid helium temperature (∼ 4.2K) to reduce the phonon population
and thermal broadening of energy levels. Measurements at low temperatures also help reducing
other, non-radiative, recombination channels that would reduce the intensity of the measured
signal.

Figure 14 shows an example of a spectrum of MoSe2. It consist of two broadened lines of
emission. In a perfect case the lines of emission from excitons would have Lorentzian shape (see
equation 3.6) and Lorentzian with a tail at low energy from trions recombination. However,
the recombining species are often influenced by their environment and lines acquire in lower or
higher degree a character of a Gaussian curve. The lines can also be superimposed on a non-
zero background caused by defects or spurious signals. Identification of the lines requires that
additional variable is introduced in the measurement. This can be a modulation of the excitation
beam or perturbation of the system under study. For example, by measuring the intensity of
PL as a function of the excitation intensity, one can distinguish excitons from biexcitons. In the
first case one expects a linear dependence of PL on excitation intensity; in the latter, quadratic.
This type of measurement provides even more information. While we only discussed a radiative
recombination, excitons or excited electron - hole pairs can dissipate their energy as phonons.
They can also be removed from the sample as an electrical current. This happens in solar cells:
as soon as high enough voltage is applied to the solar cell, photogenerated electrons / holes
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Figure 14: a) PL and b) reflectance spectra of MoSe2 monolayer with identified emission/absorption
lines from X and X−. Note that reflectance signal is weak so it is plotted as its derivative. The simple
spectra of MoSe2 reflect the fact that the lowest exciton energy state is bright.

are removed from the semiconductor into the contacts, there is no photoluminescence signal.20

Such non-radiative recombination channels will cause deviation of the measured PL excitation
power dependence from the expected value.

Temperature dependent photoluminescence can be used to measure the change of semicon-
ductor band gap with the temperature. It can also measure activation energies of electrons
and holes localized on dopants, impurities, defects or excitons trapped in dark states. It can
provide further insight into non-radiative recombination processes, many of which are thermally
activated.

One can change the electrochemical potential in the measured semiconductor by incorpo-
rating it in a metal-oxide-semiconductor device. Application of a voltage to the metal (called
a gate) changes the electrochemical potential of the grounded semiconductor and the concen-
tration of electrons and holes in the sample via capacitive coupling. PL spectra acquires from
a semiconductor with varied background charge levels will have different ratios of exciton and
trion line intensities helping to distinguish them.

An application of a magnetic field to the samples causes Zeeman splitting of electronic states
and gives information about their magnetic moments. It can also rotate spins or mix states,
leading to changes in optical selection rules.

In the final example, excitation by using very short laser pulses, mush shorter than the
recombination rate of excited states, can be used to measure this recombination rate. In such
measurements, histograms of photon detection times are acquired and fitted with appropriate
models. If electrons lose their energy only by radiative recombination, the measured histogram
follows an exponential curve given by equation 3.5. In the presence of other decay mechanisms
(electron trapping on defects, non-radiative recombination, electrical current), the measured
curve may still be exponential but the measured decay rate, ktot is a sum of decay rates of all
relevant decay processes. Most generally, the decay curves can be non-exponential.

In this exercise, we will use spectrally resolved photoluminescence in order to determine the

20Since we earlier learnt that excitons do not respond to electric field, the remark here is needed. Materials in
which electron - hole pairs are bound into excitons can also be used for solar cells. In this case to extract the
excitons as an electric current, sharp potential changes are introduced (e.g. junctions between two materials)
which break apart the excitons.
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energies of various electron-hole complexes in WSe2 that decay by emission of photons. We will
then analyse their properties and compare with the optical selection rules to identify them.

4.2 Reflectance

While the photoluminescence gives insight into the lowest energy optical transitions, reflectance
can be used to get insight into the higher energy transitions as it monitors the process of carrier
generation in figure 13, a process occurring before carrier thermalization.

The reflectance spectra of a material are related to its complex dielectric function, ε(ω),
which is derived by considering all possible optical transitions involving photons of the energy
hω. The imaginary part of the dielectric function, ε′′(ω), is linked to the absorption of photons
by the material. The real part, ε′(ω), is related to ε′′(ω) by Kramers−Kronig relations.

The relationship between reflectance and the dielectric function becomes clear when rewrit-
ing ε(ω) as (n(ω)+ iκ(ω))2 where n(ω) is the refractive index of material and κ(ω) its extinction
coefficient (and measure of absorbance). Reflection of light on an interface between two media
is related to their refractive indices by Fresnel equations. Reflection of light at the interface
between a non-absorbing (e.g. air) and absorbing medium (e.g. semiconductor above the band
gap) carries information about the absorption on the latter.

Reflectance spectra of solids tend to be smoothly varying functions of the photon energies
with superimposed lines at the energies where absorption is particularly strong. Bright exci-
tons, having large oscillator strengths, are very efficient photon absorbers and their reflectance
spectra follow the equation 3.6. Often, a comparison of the reflectance and the photolumines-
cence spectra is used to get insight into electron energy relaxation processes and into oscillator
strengths of optical transitions. Optical transitions from states with low oscillator strength can
be observed in PL spectra as long as there is a large population of excitons occupying these
states. This can certainly be the case if the lowest excited state of electrons is ”dark” (it is the
case in WSe2 as you will see in the exercise). These states do not however contribute to the
absorption spectra. Comparing the PL and reflectance spectra in figure 14, we see that two
lines are present in both of them and do therefore originate from states with large oscillator
strengths, from bright states.

As expressed by equations 1.1 and 2.3 for 3D and 2D materials, bright exctions can be
thought of as hydrogen atoms with a multiple shells of different energies. Reflectance spec-
troscopy can be used to reveal these states and gain further insight into the electronic structure
of materials. Plotting the exciton energy as a function of the shell number n can reveal di-
mensionality of the system (n−2 vs. (n − 1/2)−2 relationship). It can also be extrapolated to
measure the single particle band gap, Eg.

Typically, reflectance spectra are measured at 4.2K to avoid thermal broadening of the
energy states even for materials such as WSe2. Limiting the angle of incidence of light to close
to normal is also required to avoid spectral broadening. Under such conditions, one commonly
observes both excitons and trions in TMDCs. As in PL, variations in the excitation light and
external perturbations can be used to get deeper insight into the observed optical transitions.
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