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1 Introduction
Quantum dots can be used to confine single electrons as discussed by M. Wegewijs in the lecture
”Spin and Transport in Quantum Dots”. The quantum computing concepts based on quantum
dots can be subdivided in two main branches: optical concepts and electrical concepts. In most
of the optical concepts, the two level system representing the quantum bit (qubit) consists of
exciton states. These are manipulated using polarized light. In electrical concepts, the spin
states of electrons are used as qubit and manipulation can be done all-electrically.
This contribution will concentrate on spin states of electrons for quantum information focusing
on the most important electrical concept known as ”Loss-DiVincenzo proposal” [1]. It has been
shown experimentally for this proposal that all of the ”DiVincenzo criteria” (for a general intro-
duction into Quantum Computing see lecture ”Fundamental Concepts of Quantum Information
Processing” by T. Schäpers) can be met as we shall see in the following.

2 The ”Loss-DiVincenzo” proposal
A few years after the first implementation of the CNOT quantum gate using hyperfine and
vibrational states of a 9Be+ ion in an ion trap as qubits [2], a row of proposals for a solid state
quantum computer appeared, based on cooper pairs [3], nuclear spins in silicon [4], and last but
not least electron spins in GaAs quantum dots [1]. Daniel Loss and David DiVincenzo proposed
a quantum computer based upon existing semiconductor technology.

Fig. 1: Scheme of the Loss-DiVincenzo proposal.The top gates are used to form quantum dots
as well as to tune the interaction between them. An AC magnetic field is used to manipulate
the electron spins. Back gates can draw the electrons into a layer with different g-factor, thus
changing their resonance frequency.

The scheme of this proposal is depicted in Figure 1. A two dimensional electron gas (2DEG)
is formed by a GaAs/GaAlAs heterostructure. Voltages applied to electric top-gates are used to
deplete certain regions of the 2DEG in such a way that a quantum dot with only a single electron
inside remains. In a magnetic field B0 = (0, 0, Bz) the otherwise degenerate Zeeman states | ↑〉,
| ↓〉 split up with energy difference EZee = gµB~B0, with Landé factor g = −0.44 for GaAs
and µB the Bohr magneton, and form the two level system used as a qubit. Initialization can
be achieved by allowing the electron spins to reach their thermodynamic ground state at low
temperature T, with |EZee| À kBT (with Boltzmann constant kB). However, this is a very slow
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process, because the relaxation rate from an exited spin state to the ground state has to be small
in order not to loose the information of the qubit. We will see later that also a scheme for fast
initialization exists.
The qubit states can be manipulated with an ac magnetic field applied perpendicular to B0 just
as in electron spin resonance (ESR). This ac magnetic field can be generated by passing an ac
current through a wire close to the quantum dots. In order to be able to carry out single qubit
rotations, the resonance frequency of the manipulated spin needs to differ from the resonance
frequency of the spins in the other quantum dots. This can be achieved by a B0 gradient along
the chain of quantum dots or by g factor engineering. For the latter, the electron is pulled into a
layer with a high g-factor by applying a voltage on a local back-gate. Thus, the energy splitting
between the spin states and therefore the resonance condition is changed.
The Hamiltonian used for gate operations in a system with N qubits is

H(t) =
N∑
i

gi(t)Bi(t)Si +
N∑

i<j

Jij(t)Si(t)Sj, (1)

with qubit sites i, j. The first term describes the single qubit gates as discussed above with
B(t) = B0(t) + Bac. The second term describes two qubit gates, with the exchange interaction
Jij used for the qubit coupling. Only adjacent qubits need to be coupled, since information can
be passed through the qubit chain with the SWAP gate. The coupling between two neighbor-
ing qubits, i.e. the potential barrier between two adjacent quantum dots, can be controlled by
voltages applied to the top-gates. Therefore, the ”Loss-DiVincenzo” proposal is in principle
scalable. Since GaAs quantum dots have been extensively studied and the spins can be initial-
ized in their ground state, the first two DiVincenzo criteria are fulfilled. In this lecture we will
see that the other criteria, namely the qubit read-out, a universal set of quantum gates and long
decoherence times are met as well.

3 Read-out of a single electron spin
In this section we will see how the electron spin state in a quantum dot can be measured. Two
read-out schemes exist, one for a single quantum dot with | ↑〉, | ↓〉 as qubit states, and one with
the singlet |S〉 and the triplet |T0〉 state of a two-electron quantum dot as qubit. Both schemes
have in common that the spin state is first converted into a charge state, which is then detected
by the current through an adjacent quantum point contact (QPC). In this way, the measurement
is decoupled from the qubit system and the back action of the read-out on the qubit state is
minimized.
Before we look at the two schemes in more detail, we will briefly discuss the QPC detection. A
QPC is a one-dimensional constriction in the 2DEG formed by top-gates (see inset Fig.2). Top-
gate voltages or other potentials close by define how many electrons can pass the constriction
at the same time, i.e. the number of available transport channels.
The conductance of a QPC shows a step-like behavior depending on the voltage applied to the
top-gates as shown in Fig.2. Transport channels are opened one by one, while the applied gate
voltage becomes more positive. Without external magnetic field the step hight is 2e2/h, since
the two spin states of an electron are degenerate. If this degeneracy is lifted by applying an
external magnetic field, additional steps appear at multiples of e2/h [5].
In close proximity to a quantum dot, a QPC can be used as noninvasive voltage probe [6] that
detects the number of electrons on the quantum dot. The QPC is operated in the middle between
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Fig. 2: Stepwise increase of the QPC conductance at T = 0.6 K with changing top-gate voltage
(from reference [5]). Inset: An example for a quantum point contact structure (adapted from
http://pages.unibas.ch/phys-meso/Pictures/pictures.html).

two current plateaus in order to obtain maximum sensitivity towards adding an electron to the
quantum dot or removing it. Today this technique has been extended on double quantum dots
measuring small signals of photon-assisted tunneling [7] and spin blockade [8].

3.1 Single shot read-out

In order to demonstrate the single shot read-out of a single electron spin, a quantum dot with
a QPC next to it was fabricated as shown in Fig.3a. It is important that the gate R is closed
completely, so that the current to the drain of the QPC is not influenced by a current through the
dot. The QPC is adjusted to its working point with the gate Q. Tunneling events occur between
the reservoir and the dot with rate Γ depending on the tunneling barrier influenced by gate L.

200 nm RL

Q

P

a) b)

source

re
s
e
rv

o
ir

drain

G

IQPC

Fig. 3: (a) Gate structure for a single quantum dot formed by gates R and L with adjacent QPC
between Q and R. The potential barrier on the right is very high and tunneling between the dot
and the reservoir occurs through the left barrier with rate Γ. (b) Tunneling events of a quantum
dot measured trough the current of a QPC for different potentials on P. The dot is empty (high
current) most of the time for the top trace while it is occupied (low current) most of the time for
the bottom trace. When the electrochemical potential of the dot is aligned with the Fermi level
of the reservoir, the electron tunnels back an forth. All images adapted from ref. [9].
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Since the read-out of a spin state is done via charge detection, we should first know how fast the
charge state can be measured. This has been shown in ref. [9]. There, the quantum dot is set near
to its N = 0 to N = 1 transition using gate P to tune the dot potential. The electron can then
spontaneously tunnel back and forth between the dot and the reservoir, and the QPC current
should exhibit a random telegraph signal (RTS) as shown in Fig.3b. The time the electron
spends in the dot, i.e. when ∆IQPC is in the low state, strongly depends on the position of
the dot potential relative to the Fermi level of the leads. The current through the QPC was
IQPC ≈ 30 nA with a bias voltage of Vbias = 1 mV, in agreement with the conductance of the
QPC at its working point GQPC = e2/h ≈ (30kΩ)−1. The shortest steps that clearly reached
above the noise level were about 8µs long. Tunnel events occuring on a shorter timescale will
be lost in the current noise of the QPC. Therefore, the spin-energy relaxation time T1, i.e. the
time after which a spin has flipped from its exited | ↓〉 state back to the ground state | ↑〉, of the
spin in the quantum dot has to be much longer than 8µs. Otherwise the information stored in
the qubit would be lost before it was even measured.
The single-spin-single-shot read-out was first demonstrated in the group of L. Kouwenhoven at
TU Delft [10]. To detect the spin state of an electron, first a magnetic field B0 has to be applied
so that the degeneracy of the Zeeman states is lifted. In order to tune the dot potential quickly,
voltage pulses with lengths of a few 100 ns are applied to gate P (Fig.3a). Figure 4 shows the
pulse scheme used for the single spin read-out as well as the response of the QPC.
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Fig. 4: (a) Scheme of the single shot read-out. On the top the voltage levels applied as pulses
on gate P (Fig.3a) are shown. The difference in the QPC current during the different stages
is shown on the bottom along with the tunnel events. The signal during the read-out depends
on the spin state (circle). In the case of ”spin down”, to additional tunnel events take place
and the signal follow the dotted line. (b) Single shot measurements of a spin state. The top
graph shows the trace of the QPC current for the ”spin up” situation, where no tunneling
events are measured during the read-out time tread. On the bottom, the ”spin down” case is
depicted. During tread, the threshold value of the QPC current (red line) is crossed indicating
two additional tunneling events. The time tdetect is the time it takes for a ”spin down” electron
to tunnel out of the dot and thus related to the rate Γ↓ All figures adapted from [10].

At the beginning the quantum dot potential is set to a low value, so that any remaining electron is
pushed out of the dot. Then, a positive voltage pulse is applied to put both spin states below the
Fermi level of the lead. The current of the QPC is changing as well, since it couples capacitively
to the gate P as well. As soon as either a spin-up or a spin-down electron from the reservoir
tunnels into the dot, the current of the QPC drops due the extra charge in the vicinity. The time



X5.6 Carola Meyer

one has to wait for an electron to enter is directly connected to the tunneling rate Γ = Γ↓ + Γ↑,
which can be influenced by gate L (Fig.3b).
The spin to charge conversion is done in the third part of the pulse pattern. The potential of
the dot is changed such that the spin-up ground state remains below the Fermi level of the lead,
while the excited spin-down state lies above it. No tunneling events will happen in the first case
(see Fig.4b, top), because the dot is in coulomb blockade. However, in the latter case, first the
spin-down electron will tunnel out before the ground state is filled again with a spin-up electron
from the lead. Therefore, two tunneling events will occur during the read-out time tread (Fig.4b,
bottom). Before a new cycle can be started, the potential of the dot is tuned so that both spin
states are above the Fermi level and held there until the spin-up electron now occupying the dot
has tunneled out.
In order to measure the relaxation time T1, the spin-down fraction is recorded for different
waiting times twait. During this time, a spin-down electron can relax to the ground state. The
longer this time, the smaller the spin-down fraction will be, following an exponential decay as
shown in Fig.5a. Fitting the data to α+C exp(−twait/T1) decay, a relaxation time of T1 ≈ 0.55
ms is obtained at B0 = 10 T. This is almost two orders of magnitude longer than the time
needed for the fast detection and the response of the QPC is thus quick enough.
Nevertheless, there is a finite probability α that a signal is measured during tread although a
spin-up electron was in the dot, for instance due to thermally activated tunneling or electrical
noise (”dark counts”). This probability can be extracted directly from the T1 measurement. It
is simply the saturation value of the exponential decay. Unfortunately, a similar evaluation is
not possible for the opposite case that occurs with probability β; the QPC current stays below
the threshold although a spin-down electron was in the dot. The correlation between these
probabilities is shown in the inset of Fig.5a.
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Fig. 5: (a) T1 relaxation measured with the single shot read-out. The probabilities for measur-
ing a spin-up as a spin-down and vice versa are depicted in the inset. (b) Their values depend
on the threshold set in the measurement (see Fig.4). The vertical red line marks the threshold
value with the highest visibility. Adapted from [10].

Two processes contribute to β which can be analyzed separately. First, a spin-down electron can
relax to the spin-up state before the electron tunnels out with probability β1 = 1/(1 + T1Γ↓).
Γ↓ can be obtained from a histogram of the detection time tdetect (see Fig.4b for definition).
In ref. [10] its value was found to be Γ−1

↓ ≈ 0.11 ms yielding β1 ≈ 0.17. Second, if the
spin-down electron is replaced within 8µs with a spin-up electron the resulting QPC step may
be too small to detect. The probability β2 of this event depends on the value of the threshold
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(red line in Fig.4b). It can be measured reversing the pulse sequence [10]. The empty levels
are tuned to the read-out postition (4a). At the beginning of this pulse, a | ↑〉 should tunnel
into the dot raising the QPC current above the threshold. The probability β2 is obtained from
the fraction of traces where this step is missed. The result is shown as 1 − β2 in Fig.5 as well
as the threshold dependence of α and 1 − β, the total spin-down fidelity is given by 1 − β ≈
(1− β1)(1− β2) + (αβ1).
The so-called visibility is a very important number for quantum computing, since it is a measure
for the probability of a correct qubit measurement. For the single spin read-out discussed here,
the visibility is

V = 1− α− β. (2)

The red line in Fig.5b marks the threshold value at which this expression has its maximum
(α ≈ 0.07, β1 ≈ 0.17 and β2 ≈ 0.15). Therefore, the fidelity for the spin-down and the spin-up
state is (1 − β) ∼ 0.72 and (1 − α) ∼ 0.93, respectively [10]. The visibility of the single shot
measurement, however, is only 65%, i.e. the chance to get a wrong result is 35%. Of course, this
would be inacceptable for a computer, but for a proof of concept this is a good result, especially
when compared to other implementations. Repeating the same calculation several times can
already improve the accuracy. Lowering the electron temperature (smaller α) and a faster QPC
measurement (smaller β) will increase the visibility as well.
However, this read-out method suffers from other disadvantages. It is very sensitive to fluctua-
tions of the electrostatic potential, the Zeeman splitting has to be much larger than the thermal
energy, and high frequency noise can spoil the read-out due to photon-assisted tunneling, i.e.
when the ground state electron absorbs a microwave photon and gains enough energy to tunnel
out of the dot into the reservoir.

3.2 Singlet-Triplet read-out
This method circumvents the problems of the single shot read-out described before and is de-
scribed in ref. [11]. It discriminates between singlet |S〉 and triplet |T 〉 states of a quantum
dot and is therefore used as read-out for a two-electron quantum dot. Thus, the quantum dot is
tuned near to its N = 1 to N = 2 transition. The device geometry is similar to the structure in
Fig.3a.
The pulse sequence used for the read-out and relaxation time measurement is shown in Fig.6a.
First, the dot potential is tuned, so that the N = 1 to N = 2 transition is above the Fermi level
of the reservoir for both, the ground state |S〉 as well as the excited state |T 〉. The quantum dot
now contains one electron. Then, a pulse is applied and both states are pulled below the Fermi
level. After some time, an electron tunnels into the dot with ΓT for the triplet state and ΓS for
the singlet state. The electron tunnels out in the last step again with the rate corresponding to
its state.
For the spin to charge conversion, which is implemented with this step, it is required that the
tunneling rate of the triplet is much larger than the rate of the singlet (ΓT À ΓS). The tunneling
of an electron from the singlet state with ΓS = 2.5 kHz is slow enough to be measured. As long
as the dot remains occupied with two electrons, the current of the QPC will be below the starting
value. Only after one electron has left, the level will be at the value corresponding to N = 1
electrons in the dot. The tunneling of the triplet state, however, happens too fast to be detected
(ΓT ∼ 100 kHz) and the current of the QPC current reaches the original value right after the end
of the voltage pulse. A low pass filter of 20 kHz added to the electronic measurement assures
that the tunneling from the triplet state is not detected.
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Fig. 6: (a) Pulse sequence for the Singlet-Triplet read-out. The thicknes of an arrow depicts
the tunnel rate. During the detection time τdetect the QPC current drops only, if the state is a
singlet. (b) Visibility depending on the ratio of the tunneling rates and the relaxation time for
ΓS = 2.5 kHz. Adapted from ref. [11].

The visibility V as defined in equation (2) of this read-out depends on the tunneling rates ΓT

and ΓS , the relaxation rate T1, the time τ at which the number of electrons is measured. The
probabilities α and β (for definition see Fig.6) are

α = 1− e−ΓS ·τ (3)

β =
(1/T1)e

−ΓS ·τ + (ΓS − ΓT )e−(ΓS+1/T1)·τ

ΓS + 1/T1 − ΓT

. (4)

With (3) and (4) inserted in (2), the visibility depending on the ratio of the tunnel rates and the
relaxation rate is shown in Fig.6b. For values of the visibility V = 65% and of the relaxation
time T1 = 0.5 ms as from the experiment in the previous section the ratio of the tunnel rates
needed is ΓT /ΓS = 10 (marked by the red dot in Fig.6b).
The relaxation time can be obtained by measuring the triplet fraction for different waiting times
as done in ref. [11]. The parameters α and β can be extracted from the same measurement
(see Fig.7). The maximum visibility is 81% for optimized threshold (∆IQPC = −0.4 nA) and
time τdetect = 70µs (blue dot in Fig.6). The relaxation time obtained in this experiment was
T1 = 2.58 ms for B = 0.02 T. This is much longer than the relaxation time measured before at
B = 10 T and a first indication that T1 depends on the magnetic field, which we will discuss in
more detail later.
The visibility reached with the read-out methods presented here might seem to be low. For a
working quantum computer this is true, but still there are ways for improvement, e. g., lowering
the electron temperature will reduce the ”dark counts” α and a faster charge detection will
reduce β [10]. A higher ΓT /ΓS ratio will yield a larger visibility for the singlet-triplet read-
out. The visibility reached so far, however, is already sufficient for first demonstrations of qubit
gates and for a proof of concept we can assume the read-out DiVincezo criterium to be fulfilled.

4 Manipulation of electron spins
After learning that gate pulses can be used to quickly tune the states of a quantum dot, it is
easy to understand how a fast initialization can be done. A magnetic field is applied, so that the
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Fig. 7: Measurement of the |T 〉 → |S〉 relaxation time [11]. The probabilities α and β as
defined in Fig.6b can be obtained as shown on the right.

spin states are split by the Zeeman energy. First, both levels are pulsed above the Fermi level
of the leads and the dot is emptied. Then, the levels are pulled down so that the spin-up level
is below the Fermi level but the spin-down state is still above the Fermi level. After a time τ
related to the tunneling rate, the spin-up level will be filled. The number of electrons in the dot
is measured with a QPC. Now we know our initial state to be | ↑〉 and we can start to manipulate
the spin state either by single qubit operations, i.e. single spin rotation using the first term of the
Hamiltonian in equation (1), or by interaction between two qubits, using the exchange coupling
J(t) of the second term, thus implementing a two-qubit gate like the

√
SWAP .

4.1 Single spin rotation

The state of an electron spin can be manipulated by electron spin resonance (ESR). If the spin
is irradiated with an AC magnetic field B1 with the same frequency as the Larmor frequency
of the spin, i. e. the frequency of the Zeeman splitting, the spin will rotate. The angle of the
rotation depends on the amplitude and duration of the B1 pulse. This angle determines what
kind of single spin gate is done, e.g., π (or 180◦) corresponds to a spin-flip if the input was an
eigenstate or, more generally speaking, it is a NOT gate. For more details about spin resonance,
see the lecture ”Donors for Quantum Information Processing” of M. Brandt or as an example
for a textbook ref. [12].
In order to manipulate the electron spin in a quantum dot, an AC magnetic field of at least about
1 mT has to be coupled locally to the dot. This is much more easily said than done, since the
electron temperature has to be kept very low (∼ 100 mK) and high frequency irradiation always
leads to dissipation of energy. The AC magnetic field is created by an AC current through a wire
close to the quantum dot (see Fig.8a), with a dissipation of 10µW for B1 = 1 mT and 250µW
for B1 = 5 mT, respectively. This requires a cooling power for the dilution refrigerator of about
300µW at 100 mK.
An ESR experiment could be done as follows. The spin is initialized in its ground state | ↑〉
in coulomb blockade while the level for the excited spin state | ↓〉 is split off by the Zeeman
energy EZee and aligned between the Fermi levels of the leads (Fig.8b). In a second step, the
AC magnetic field is applied, changing the spin state. Thus, the coulomb blockade is lifted
and an additional current peak appears at higher gate voltage (Fig.8c,d). However, many other
processes can lift the coulomb blockade as well. A current will flow independently of the ro-
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Fig. 8: (a) Quantum dot structure with a strip line close by that creates an AC magnetic field.
(b)-(d) Scheme for an ESR experiment. (e)-(f)The current due to ESR can be completely covered
by photon-assisted tunneling.

tation of the spin in the quantum dot, if the spins of the electrons in the leads have the same
resonance frequency as the spin of the electron in the dot, or if heat dissipation smears out the
state occupation at the Fermi level of the leads. Photon-assisted tunneling is another process
that can totally mask the desired signal, which is due to ESR. In this process, the electron in
coulomb blockade absorbs a photon and can tunnel directly to the drain (Fig.8e), thus lifting
the coulomb blockade for transport through the excited spin state (Fig.8f). This is due to high
frequency electric fields which cannot be totally suppressed. The influence of all these pro-
cesses can be cancelled or at least reduced if both spin levels are pulled deep into the coulomb
blockade regime by a voltage pulse. The Zeeman splitting has to be much smaller than the
energy difference between the upper spin level and the Fermi level of the leads. The spin is ma-
nipulated and afterwards the electrochemical potential of the dot is pulsed back to its original
position and the spin orientation is detected by either of the methods described in section 3.
The same concept can be used in a double quantum dot system with one electron in each dot
(see Fig.9a). Since the exchange coupling J is very small in this configuration, the electrons
can be treated as if they were separated. In this case, spin blockade as described in the lecture
”Spins and Transport through quantum dots” by M. Wegewijs can be used for initialization and
read-out of the system. The double dot is prepared in spin blockade, i.e. the spins in the two
dots are parallel. Then, the electrochemical potential of the left dot is tuned to be deep below
the transport window. An AC magnetic field rotates the spin and the electrochemical potential
is raised to its former level. If the spin state has been rotated to form a singlet with the electron
in the right dot, the spin blockade is lifted and a current flows. This sequence has to be repeated
many times to get enough statistics. The Rabi oscillation of this experiment by Koppens et al.
[13] is shown in Fig.9b. They could be observed up to pulse lengths of 1 µs, giving a lower
bound for the decoherence time T2 in this system.
One should note that the read-out scheme applied in this experiment is only sensitive to parity
(parallel or antiparallel spin) and not a singlet-triplet read-out. Due to the nuclear field in GaAs,
the triplet |T0〉 and the singlet |S〉 are mixed and a |T0〉 state will be transformed into |S〉 lifting
the spin blockade. Without external magnetic field, |T+〉 and |T−〉 are also mixed, and no spin-
blockade can be measured.

4.2 The
√

SWAP operation

With regard to the requirement of a universal set of quantum gates for a quantum computer, we
have seen that single qubit rotations can be done. In addition to the single spin rotations only the
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Fig. 9: (a) Scheme of the pulse sequence for the manipulation and read-out in a double quantum
dot. (b) Rabi oscillations observed experimentally (markers) and calculated (solid lines) for
different magnetic fields B1. The stronger the field, the faster is the spin rotation. Taken from
ref. [13].

CNOT gate is needed to form such a universal set. This was shown in ref. [14] and is discussed
in more detail in the lecture ”Fundamental Concepts of Quantum Information Processing” by
T. Schäpers. On the other hand, as shown in ref. [1], the CNOT gate itself can be constructed
from single spin rotations and the

√
SWAP operation with

UCNOT = ei(π/2)S1
z e−i(π/2)S2

z

√
USWAP ei(π)S1

z

√
USWAP . (5)

Be aware that the operations have to be applied from right to left and that they do not necessarily
commute. The single spin rotations of the two spins i = 1, 2 by an angle θ about the axis
a = x, y, z are realized by ei(θ)Si

a , with the Pauli spin matrices Sa. The SWAP operation
exchanges the information between two qubits, i.e. | ↑↓〉 is converted into | ↓↑〉 while | ↑↑〉 and
| ↓↓〉 do not change. With the basis




| ↑↑〉
| ↑↓〉
| ↓↑〉
| ↓↓〉


 =̂




|00〉
|01〉
|10〉
|11〉


 and USWAP =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


 (6)

√
USWAP =




1 0 0 0

0 0.5 + 0.5i 0.5− 0.5i 0

0 0.5− 0.5i 0.5 + 0.5i 0

0 0 0 1


 . (7)

Starting in the product base, i. e. exchange coupling J → 0, USWAP should exchange the spin
information between the two qubits (| ↑↓〉 → | ↓↑〉). The product base can be expressed as
coherent superposition of |S〉 and |T0〉:

| ↑↓〉 = (| ↑↓〉 − | ↓↑〉+ | ↑↓〉+ | ↓↑〉)/2 = (|S〉+ |T0〉)/
√

2 (8)

Now the exchange coupling J is switched on for a time tswap and with

∫ tswap

0

J(t)/~ dt = π (9)

equation (8) is transformed into
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(|S〉+ e−iπ|T0〉)/
√

2 = (|S〉 − |T0〉)/
√

2 = (| ↑↓〉 − | ↓↑〉 − | ↑↓〉 − | ↓↑〉)/2 = −| ↓↑〉 (10)

This is the state that was supposed to be reached, and the exchange coupling is switched of
again. Note that there the final state has the wrong sign, but this corresponds to a ”global
phase” factor (φ = π), which can be ignored [15]. The beauty of this approach is that in order to
implement a

√
SWAP , the exchange coupling is simply turned off after the time tswap/2 [16].

This procedure has been successfully implemented by Petta et. al [17], and in the following we
shall see how it has been done.

e<0

e>0

e=0

(a) (b)

Fig. 10: (a) Double quantum dot structure with a QPC next to the right gate. The state of the
double quantum dot is detected by the current through the QPC (b). The occupation of the dot
is denoted by (m,n), with m (n) the number of electrons in left (right) dot. It can be tuned by
voltages VL, VR applied to the gates L and R. The figures are adapted from [17].

Since a two qubit gate is to be done, a double quantum dot system as in Fig.10a has to be used.
The occupation of the double dot is controlled by the voltages on the left (L) gate VL and right
(R) gate VR, respectively, with the so-called ”detuning” ε ∝ (VR − VL). The gate T, which
tunes the tunnel barrier between the two dots, is set to a value that gives a very weak the tunnel
coupling. Therefore, the exchange interaction is very small (J → 0) if the double dot is deep
in the regime where each dot is occupied with one electron (1,1). A QPC next to the right
dot serves as charge detector. It is tuned to be most sensitive in the regime, where either two
electrons are in the right dot and the left dot is empty (0,2) for positive detuning, or where one
electron occupies each dot (1,1) for negative detuning (see Fig.10b). The exchange coupling J
is tuned with ε along the line in Fig.10b and is negligibly small for ε < −2 mV.
Before the SWAP operation can be done, the two qubit system has to be initialized in the
| ↑↓〉 state. This is done in three steps as depicted in Fig.11a-c. The system is prepared in
the (0,2) singlet state |S〉 (Fig.11a). It cannot be in a |T0〉, since this state is split off by the
exchange coupling, which is large for positive detuning ε. Now, ε is changed to a negative
value, thus separating the two electrons. They still form a singlet state, since they were in an
eigenstate before. If there was no other interaction present, the electrons would remain in this
state forever. However, besides the external magnetic field B0 = 100 mT, which is the same
for both quantum dots, a nuclear magnetic field BN is present as well. This field mixes the |S〉
and the |T0〉 state. This mixing is different for the two spins since BN is different for the two



Quantum computing with quantum dots X5.13

dots. Since they are no longer coupled to each other, the spins dephase on a time scale of about
τmix ≈ 20 ns (Fig.11b) [17].

(a)

e>0e>0 e<0 e<0

singlet
preparation

singlet
separation

product state
initialization

measurement

(d)(b) (c)

(e)

Fig. 11: (a) Preparation of the double quantum dot in the (0,2) singlet state. (b) When the singlet
is separated swiftly, the |S〉 state dephases. (c) If the separation is done slowly compared to the
nuclear mixing time, the system is initialized in a product state. (d) The qubit state is measured
by projection into the |S〉 - |T0〉 base of the system. The (0,2) occupation can be reached
only if the electrons form a singlet. The qubit state before the measurement can be deduced
from the singlet probability. (e) Level scheme close to the (1,1)-to(0,2) transition depending
on the detuning. For large negative detuning, the |S〉 and |T0〉 states mix (blue background).
At detuning of about ε ≈ −1.2 mV the |T0〉 starts to split of from the |S〉 state due to finite
exchange coupling. The |S〉 mixes with |T+〉 at about ε ≈ 0.5 mV indicated by the green line.
All triplet states are much higher in energy than the singlet (0,2). The figures are adapted from
[17].

If the transition towards negative detuning is done on a much larger timescale (τA ≈ 1 µs) than
this nuclear mixing time the spins still interact during the transition. This is called ”adiabatic
passage” and leads to a state with maximum mixing between |S〉 and |T0〉 (both have the same
probability amplitude). The phase is fixed and the spins form a product state as in eq. (8) and
in Fig.11c. After some time the state is projected by tuning back to ε > 0. If the state did not
develop, it will be projected back to |S〉 Fig.11d. However, if it evolved to | ↓↑〉 the system will
now form a |T0〉 state. Then the electron of the left dot cannot tunnel onto the right dot, because
the |T0〉 for the (0,2) configuration is too high in energy (Fig.11e).
The implementation of the SWAP gate is shown in Fig.12a. The two outer Bloch spheres show
the preparation and measurement of the spin states at positive detuning ε. Equations (8)-(10)
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are represented by the three central Bloch spheres. In order to initialize the two qubit system in
the | ↑↓〉, ε is quickly tuned below −0.5 mV to prevent mixing between the |S〉 and |T+〉 state
due to the nuclear magnetic field (green lines in Fig.11e and 12a). Then ε is slowly ramped
down further to provide the adiabatic passage necessary for the initialization.

(a)

(d)

(b) (c)

Fig. 12: (a) Scheme for the SWAP gate (b) Singlet probability PS for different detunings
during the exchange coupling and for different interaction times τE (c) Oscillations of the spin
system during exchange coupling at different detuning marked as dashed lines in (b). (d) The
oscillations are faster for weaker tunnel barrier (less negative voltage applied on gate T). The
figures are adapted from [17].

The detuning is then set to a level where the exchange coupling is larger or at least of the order
of the nuclear field strength. Depending on ε and on the exchange time τE the system is rotated
by an angle of θ = J(ε)τE/~. The angle of rotation θ is measured by the singlet probability (see
Fig.12 b-d). A full SWAP is applied for θ = π, 3π, 5π . . . and the singlet probability reaches
a minimum. The oscillations show that also rotations of θ = 1

2
π, 3

2
π, 5

2
π . . . can be done which

execute a
√

SWAP .
Combined with the single qubit rotations described in the previous section, a universal set of
quantum gates is available for the quantum dot implementation of a quantum computer. Note
that using ESR the single qubit phase gates in equation (5) cannot be carried out directly but
have to be constructed form qubit rotations about the x-axis and y-axis [18].

5 Relaxation mechanisms
The fastest

√
SWAP that could be done in [17] took t = 180 ps. This seems to be quite fast,

but is it fast enough to fulfill the last DiVincenzo criterion on our list? The time it takes for a
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gate has to be much shorter than the decoherence time T2. In order to be able to apply error
correction, at least 104 operations have to be done within T2. The timescales and origins of spin
relaxation in GaAs quantum dots will be discussed in this section.

5.1 Spin-energy relaxation

The flip of an exited spin state back to its ground state (| ↓〉 → | ↑〉) due to coupling with the
phonon bath is called spin-energy relaxation or longitudinal relaxation and usually labeled T1.
For a spin qubit the result of such a process is a complete loss of information. It can be caused
by modulation of the g-factor anisotropy due to vibrations of the crystal lattice or by relativistic
coupling between the electron spin and the electric field of an emitted phonon. However, it
turns out that the contributions of these direct processes to the spin energy relaxation are much
smaller compared to the relaxation caused by the mixing of spin and orbital states due to spin-
orbit (SO) interaction [19, 20].

+

+

x DE
Zee

Fig. 13: Without external magnetic field and in the absence of SO coupling, the spin states
up and down are degenerate. They split by the Zeeman energy if a magnetic field is applied.
Relaxation is not possible, because the direct contributions are very small and phonon coupling
is prohibited. A small admixture of different spin and orbital states due to SO interaction allows
phonon coupling.

The SO Hamiltonian HSO can be derived from the Dirac equation (see lecture ”Electronic states
in solids” by G. Bihlmayer). It consists of terms of the form px,yσx,y. Since the stationary states
in a quantum dot are bound states with 〈px〉 = 〈py〉 = 0 due to the strong confinement in z,
HSO cannot couple different spin states of the same orbital d of the dot and

〈d ↓ |HSO|d ↑〉 ∝ 〈d|px, y|d〉〈↓ |σx,y| ↑〉 = 0. (11)

However, states that differ in both, the spin part as well as the orbital part, can be coupled [19].
If the Zeeman splitting is much smaller than the orbital splitting, the new eigenstates can be
obtained from perturbation theory [21]

|d ↑〉∗ = |d ↑〉+
∑

d′ 6=d

〈d′ ↓ |HSO|d ↑〉
Ed − Ed′ −∆EZee

|d′ ↓〉 (12)

|d ↓〉∗ = |d ↓〉+
∑

d′ 6=d

〈d′ ↑ |HSO|d ↓〉
Ed − Ed′ + ∆EZee

|d′ ↑〉 (13)
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These new eigenstates (shown in Fig.13) can couple to electric fields. This leads to spin re-
laxation, but it also enables manipulation of the spin states by high frequency electric fields
[22].
Relaxation between these new eigenstates can be of extrinsic origin, e.g., due to fluctuations of
gate potentials or background charges. These and the influence of other noise sources can be
kept small with a careful design of the device and turn out to be much less important compared
to electric field fluctuations due to phonons. These can have two different origins. First, inho-
mogeneous deformations of the crystal lattice alter the band gap in space causing fluctuations
of the electric field. Second, in polar crystals such as GaAs they can be caused by homogeneous
strain due to the piezoelectric effect. It has been shown experimentally by studying spontaneous
phonon emission that 2D and 3D piezoelectric phonons play an important role in GaAs double
quantum dots [23].
The transition (relaxation) rate between the states |d ↓〉∗ and |d ↑〉∗ is given by Fermi’s golden
rule

1

T1

= Γ =
2π

~
∑

d

|∗〈d ↑ |He,ph|d ↓〉∗|2D(∆E∗
Zee) (14)

with the renormalized Zeeman splitting ∆E∗
Zee, the phonon density of states D(E) at energy E

and the electron-phonon coupling Hamiltonian He,ph (ref. [21])

H~qj
e,ph = M~qje

i~q~r(b†~qj + b~qj) (15)

with electric field strength M~qj of phonon branch j (one longitudinal acoustic, two transversal
acoustic) and with wave vector ~q at position ~r of the electron. b†~qj and b~qj are the phonon
creation and annihilation operators. In the following we discuss the energy dependence of Γ
and therefore the influence of an external magnetic field.
(i) First of all, we have to consider the phonon density of states in eq. (14). Spin-flip energies
are much smaller than the energies of optical phonons and only (bulk) acoustic phonons are
considered. Since they follow a linear dispersion relation, the phonon density of states increases
quadratically with energy:

D(∆EZee) ∝ ∆E2
Zee (16)

(ii) The electric field strength of a phonon M~qj scales as 1/
√

q for piezoelectric phonons and as√
q for deformation potential phonons with wavenumber q. In GaAs, the effect of piezoelectric

phonons dominates at energies below ≈ 0.6 meV [21]. At sufficiently small energies

M~qj ∝ 1/
√

q ∝ 1/
√

∆EZee (17)

Since (15) enters (14) quadratically, this adds as a factor of 1/∆EZee.
(iii) Substituting eqs. (12), (13) and (15) into eq. (14), a matrix element 〈d ↑ |ei~q~r|d′ ↑〉 is
obtained describing how efficiently different orbitals are coupled by phonons. This matrix ele-
ment vanishes for phonon wavelengths much shorter than the dot size ldot, because the electron-
phonon interaction is averaged out. The spin relaxation is fastest when the phonon wavelength
is comparable to ldot. For phonon wavelengths much larger than ldot, the dot potential shifts
uniformly up and down and different orbitals are no longer coupled efficiently. The phonon
wavelength is hcph/Eph and with the speed of sound in GaAs cph ∼ 4000 m/s this yields a
phonon wavelength λph ≈ 16 nm for a phonon energy Eph = 1 meV. The Zeeman splitting and
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therefore the phonon energy contributing to relaxation stays below ∆EZee < 200 µeV up to a
magnetic field of B0 = 8 T. Thus, λph À ldot and the matrix element scales with

〈d ↑ |ei~q~r|d′ ↑〉 ∝ q ∝ ∆EZee (18)

This enters eq. (14) quadratically, adding a factor of ∆E2
Zee.

(iv) Without finite Zeeman splitting, the various terms obtained by expanding eq. (14) using
eqs. (12) and (13) cancel out [20], which is known as ”van Vleck”-cancellation. It is due to
the fact that the spin-orbit interaction obeys time-reversal symmetry. The SO induced rotation
during half a cycle of the electric field oscillation is reversed in the second half. Thus, no net
rotation takes place. Applying an external field B0 breaks the time-reversal symmetry, because
the SO interaction is of the same direction as B0 for one half of the cycle, while it is opposite
for the other half. This leads to a B2

0 dependence of the relaxation rate [20] and

ΓZee ∝ ∆E2
Zee. (19)

Taking the contributions of eqs. (16), (17), (18) and (19) together with (15) and (14), the
relaxation rate 1/T1 is proportional to B5

0 since Γ ∝ ∆E2
Zee · ∆E−1

Zee · ∆E2
Zee · ∆E2

Zee =
∆E5

Zee. For temperatures T À gµBB0/kB the finite phonon occupation Nph leads to stimulated
emission. It is accounted for by multiplying (14) with a factor 1+Nph. The phonon occupation
is given by the Bose-Einstein distribution. Therefore, Nph ∝ kBT/∆EZee, and the relaxation
rate is expected to follow a B4

0 dependence. This has been observed experimentally in [24]
where relaxation times up to T1 = 1 s have been observed as shown in Fig.14. The same
publication demonstrates the influence of the confinement on the SO interaction and thus on the
relaxation time by changing the size of the quantum dot.

(s
)

-1

B(T)
1 2 3 4 5 6 7

G

10
0

10
1

10
2

10
3

E =2.3 meVy

E =2.8 meVy

Fig. 14: Spin-energy relaxation rates for two different confinement potentials. The markers are
data points, the solid lines a fit with theory showing the expected B4

0 dependence. The data set
for weaker confinement (yellow) and thus smaller SO interaction shows smaller rates. Adapted
from ref. [24].

Besides the SO coupling there is another mechanism leading to spin-energy relaxation. Near
zero field the electron spins and nuclear spins can flip-flop due to the hyperfine interaction. The
electron spin evolves about the nuclear field but the nuclei also evolve around the electron spin.
The field experienced by the nuclei leads to a shift of their resonance frequencies in nuclear
magnetic resonance (NMR), the so-called Knight shift [25]. Since it is averaged over many
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nuclei it can be taken as scalar and its strength is Ak ≈ 10 µs−1 [21]. The Hamiltonian of the
hyperfine interaction is

HHF =
N∑

k

Ik
←→
AkS =

N∑

k

AkIkS =
N∑

k

Ak(I
+
k S− + I−k S+2Iz

kSz)/2 (20)

for N nuclei in the quantum dot, with S± and I± the raising and lowering operators of the
electron spin and the nuclear spin, respectively. Typically, N ≈ 106 in a GaAs lateral quantum
dot. This leads to electron nuclear spin flip-flops and thus electron spin relaxation on a timescale
of 10 µs. The energy difference between nuclear spins and electron spins grows rapidly with
B0 and flip-flops are prohibited. The SO interaction remains as the only active spin-energy
relaxation mechanism at high magnetic fields.

5.2 Dephasing and decoherence
The spin-energy relaxation is due to SO coupling alone for B0 > 0. If this were true as well
for the phase relaxation or decoherence time T2 (also called ”transversal” spin relaxation), then
we would have T2 = 2T1 [26]. Unfortunately, this is not the case. Phase relaxation does not
necessarily depend on energy and fluctuations of the nuclear spins lead to decoherence of the
electron spin via the hyperfine coupling. In the following we will analyze this process in more
detail.
Electron spins experience a magnetic field due to the hyperfine coupling, which is called the
Overhauser field. With eq. (20) and (

∑N
k Ak

~Ik)~S = gµB
~BN

~S it is

~BN =
N∑

k

Ak
~Ik/gµB (21)

and of random, unknown value. Thus, the electron spin evolves in an unknown way. For fully
polarized nuclear spins BN,max = 5 T in GaAs [27]. Under experimental conditions only a small
average polarization with Boltzmann statistics adds to the external field. Statistical fluctuations
of the N ≈ 106 nuclei of the quantum dot around this average, for spin 1/2 similar to N coin
tosses, lead to a root mean square value of the magnetic field of Brms = BN,max/

√
N ≈ 5 mT,

which has been confirmed experimentally [28].
The electron spin precesses about a magnetic field given by ~Btot = ~B0 + ~BN . The z-component
of ~BN changes the precession frequency. For Bz

N = 1 mT the precession rate is increased by
∆ν = gµBBz

N/h = 6 MHz and the electron spin picks up an extra phase of 180◦ within 83 ns
[21]. The influence of the other components Bx,y

N depends on their strength compared to B0.
The precession axis will be close to the x,y-plane for Bx,y

N À B0. In an experiment typical
values are B0 = 1 T and Bx

N ∼ 1 mT and thus, Bx,y
N ¿ B0. The precession frequency changes

by ∆ν ≈ gµBB2
N/2B0 = 3 kHz causing an extra phase of 180◦ after 166 ms. The precession

axis is changed by arctan (BN/B0) and therefore tilted by≈ 0.06◦. In most of the experiments
B0 ≥ 100 mT and only Bz

N is of relevance.
If Bz

N were constant and known, its influence would not be a source of decoherence. However,
BN is fluctuating, for instance due to dynamic nuclear polarization or flip-flops of two nuclear
spins with different hyperfine coupling Ak. The electron spin will pick up a random phase
depending on the value of the nuclear field. For a nuclear field that is randomly drawn from
a Gaussian distribution of nuclear fields with the standard deviation of σ =

√〈(Bz
N)2〉 (see

Fig.15a), the decay of the coherence will take the form exp [−t2/(T ∗
2 )2] with (after ref. [29])
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T ∗
2 =

~
√

2

gµB

√〈(Bz
N)2〉 . (22)

The dephasing time T ∗
2 will be 37 ns for a nuclear field of Bz

N = 1 mT. In the experiment
reported in ref. [17] and shown schematically in Fig.15b, T ∗

2 = 10 ns has been measured for the
dephasing between a separated |S〉 and a |T0〉 state corresponding to a field of Bz

N = 2.3 mT.
Note that the dephasing time T ∗

2 can be much shorter than the decoherence time T2. The effect
of the nuclear field can be compensated if it assumes an unknown but constant value during the
experiment, i.e. if the timescale of the fluctuations is very long compared to the timescale of
the experiment (see p. 5.2).

(a) (b)

Fig. 15: (a) One electron interacts with a single nuclear spin (top) or many nuclear spins with
a Gaussian field distribution (bottom). (b) Dephasing between a separated |S〉 and a |T0〉 state
due to different random value of Bz

N at the site of each electron. Taken from ref. [17].

The timescales of the nuclear field fluctuations depend on the interactions of the nuclei. The two
most important mechanisms in this respect are the electron-nuclear hyperfine interaction [30]
and the magnetic dipole interaction between the nuclei [31]. The first we already discussed in
connection with the spin-energy relaxation of the electrons. Eq. (20) is only effective at B0 = 0
for the electron spins. It is also most effective for nuclear spins under this condition. But the
hyperfine interaction can affect Bz

N indirectly via virtual nuclear electron flip-flops between one
nucleus and the electron and the electron and another nucleus. This does not affect the electron
spin but leads to a flip-flop between two nuclei m and n, which changes Bz

N if Am 6= An. As
discussed in section 5.1 for the electrons, the nuclei change on a 10 µs timescale due to the
Knight shift. At large magnetic fields B0 this process will be suppressed.
In a strong external magnetic field, only the secular part of the magnetic dipole interaction
Hamiltonian HD has to be considered and

HD ∝ ~Im · ~In − 3Iz
mIz

n = Ix
mIx

n + Iy
mIy

n − 2Iz
mIz

n = (I+
mI−n + I−mI+

n − 4Iz
mIz

n)/2 . (23)

The terms with the nuclear spin ladder operators I± vanish for coupling between different iso-
topes at high fields. Since the effective magnetic dipole interaction between neighboring nuclei
in GaAs is about (100 µs−1) [32], Bx,y

N change on the same timescale given by Iz
mIz

n in eq. (23).
The flip-flop terms affect Bz

N but they can be strongly suppressed if |Am − An| is larger than
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the coupling between two nuclei. Thus, Bz
N may evolve more slowly compared to the 100 µs

timescale for the dipolar interaction alone.
All in all, the relevant interactions lead to moderate time scales of tnuc = 10 − 100 µs for the
fluctuations of the nuclear magnetic field BN . At high B0, the timescale for fluctuations of Bz

N

is expected to be much longer. However, this has not yet been confirmed experimentally.
For spin evolution times smaller than tnuc, the influence of the fluctuations can be refocused
in a Hahn echo experiment as shown in Fig.16. After a dephasing time τS , a rotation by θ =
J(ε)τE/~ = π around the z-axis of the Bloch sphere is carried out. Then the spins keep evolving
in the same direction as they did before the π-pulse, so that now they evolve back towards |S〉.
They reach their starting state after τS′ = τS . If there is a loss of signal, it is due to random
fluctuations during τS′ + τS + τE . The spin coherence in such an experiment Techo decays with
exp(−t3/tnucT

∗2
2 ) [33]. Taking T ∗

2 = 10 ns and tnuc = 10 µs, this leads to Techo = 1 µs. This is
indeed the timescale obtained from the experiment in Fig.16.

(c)

(a)

(b)

Fig. 16: (a) The Hahn echo pulse sequence as described in the text. All transistions are done
with rapid adiabatic passage so that the qubit stays all the time in the singlet-triplet base and
does not change to the product base. (b) Singlet probability PS as a function of detuning and
interaction time τE at fixed dephasing and rephasing time. The rotation angle around the z-axis
leads to an oscillation of PS with θ = J(ε)τE/~. (c) Decay of the echo amplitude. All figures
adapted from ref. [17].

6 Summary and outlook
In this lecture we have given an introduction to quantum computing with electron spins in
semiconductor quantum dots as qubits. We have shown that the qubit state can be measured with
an accuracy up to 81%. Single qubit rotations can be carried out using ESR locally coupled to
the quantum dot. Two qubit gates can be performed by tuning the exchange interaction between
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two electrons in neighboring quantum dots. In particular, the
√

SWAP operation has been
introduced as a universal quantum gate. Last but not least, the origins and timescales of spin-
energy relaxation and spin decoherence were discussed. The spin-energy relaxation time can
be as long as T1 = 1 s, depending strongly on the magnetic field B0 and on the spin-orbit
interaction. Decoherence occurs due to fluctuations of the nuclear magnetic field. Its lower
bound is found so far to be T2 ≈ 1.2 µs. Within this time, a fast

√
SWAP of 180ps can be

carried out almost 7000 times. Thus, the decoherence time seems to be sufficiently long and all
DiVincenzo criteria are fulfilled.
Why then do we not already have a quantum computer? First of all, the universal gate is the
CNOT and composed of two

√
SWAP and three single spin rotations (see eq. 5). With

today’s technique the latter alone take about 600 ns. They could be performed faster using a
stronger B1 field for the manipulation. However, this also increases the coupling of the electric
field eventually masking the ESR effect. Materials with a larger g-factor would provide better
coupling to the magnetic field and for g ∼ 2 also the SO interaction would be small. The
latter would improve the spin-energy relaxation time as well. The dephasing time itself should
increase significantly in materials with less or without nuclear spins. Currently investigated as
alternatives which could provide these properties are for instance quantum dots in SiGe 2DEGs
or in carbon nanotubes.
Compared to the yet too short decoherence time, other limitations seem to be minor challenges.
The visibility of the read-out still needs to be improved and also a gate geometry which would be
scalable to hundreds or thousands of qubits needs to be developed. Although the semiconductor
quantum dots remain a promising implementation for a solid state quantum computer, still a lot
of work is to be done.
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