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We report an in situ thermochemical treatment that significantly increases the macroscopic

electrical conductivity of insulating yttria-stabilized zirconia (YSZ) (001) single-crystalline

substrates. We demonstrate the high-quality surface crystalline structure of the resulting

“conductive” cYSZ (001) by low- and high-energy electron diffraction. Soft- and hard X-ray

photoemission spectroscopy measurements reveal a sizable reduction of Zr cations to a metallic

state and their homogeneous distribution within the cYSZ. We discuss the correlation between

the microscopic chemical processes leading to the increased macroscopic metallicity. Finally, the

heteroepitaxial growth of a functional magnetic oxide model system, ultrathin EuO on cYSZ

(001), was demonstrated. cYSZ (001) thereby enables both high quality oxide heteroepitaxy and

the advanced sample characterization by high electron-fluence characterization techniques. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4863803]

The cubic oxide yttria-stabilized zirconia (YSZ) is an

established model system for spintronics research, in particu-

lar, for the heteroepitaxial integration with the ferromagnetic

oxide EuO.1,2 Ultrathin EuO has the unique property to filter

electron currents according to their spin orientation by a

highly effective spin-dependent tunneling process.3–6 Due to

the perfect lattice match of (aYSZ � aEuO)/aEuO ¼ �0.43%2

and high thermodynamic stability, YSZ (001) is an ideal sub-

strate for studying the structural, chemical, and magnetic

properties of ultrathin EuO tunnel barriers with outstanding

single-crystalline quality.

On the experimental side, the synthesis of high quality

single-crystalline EuO films on YSZ (001) is conducted by

reactive molecular beam epitaxy (MBE) techniques.2,7,8 A

throughout characterization of the EuO/YSZ (001) model

system, however, is hampered by the electrically insulating

properties of pristine YSZ due to its large band gap of

Egap � 4:9 eV.9–11 Thus, a variety of characterization techni-

ques based on a high electron fluence—such as electron dif-

fraction or microscopy, or photoemission spectroscopy—are

not applicable at/below room temperature due to charging

effects. An advanced characterization of the EuO/YSZ (001)

model system or other YSZ (001)-based oxide heterostruc-

tures therefore requires to increase the macroscopic electrical

conductivity of YSZ (001), while maintaining the single-

crystalline surface structure in order to allow for the heteroe-

pitaxial growth of oxide multilayers.

Regarding its thermoelectrical properties, YSZ is a com-

bined electronic and ionic conductor at elevated tempera-

tures above 500 �C.12 At room temperature, however, a high

density of donors states— e.g., from metallic dopants—must

be induced in order to form electronic donor states around

EF and enable electron hopping transport.13 Two

mechanisms may be considered for the generation of a mac-

roscopic conductivity in YSZ at room temperature:14 (i) The

creation of oxygen vacancies V••
O from neutral oxide sites

1
2

ZrO2ð Þ �!ox: vac 1
2

O2 þ n � V••
O þ n � 2e� and (ii) the substitu-

tion of Zr by Y ions in order to generate free electrons,

Zr4þ �!subst:
Y3þ þ e�.

In this study, we present at thermochemical treatment that

significantly increases the macroscopic electrical conductivity

of otherwise insulating YSZ (001) by the creation of oxygen

vacancies n � V••
O and demonstrate a sizeable metallic reduction

of Zr cations. The surface crystalline structure of the resulting

“conductive” YSZ (cYSZ) thereby remains basically unaf-

fected, whereas the chemical reduction of Zr oxidation states

was identified by soft- and hard X-ray photoemission spectros-

copy ((HAX-)PES). Moreover, ultrathin EuO magnetic oxide

films were epitaxially integrated with cYSZ (001) and prove

the single-crystalline quality by reflection high-energy electron

diffraction (RHEED) intensity oscillations and low-energy elec-

tron diffraction (LEED). The employed characterization techni-

ques are based on a high electron fluence and thus require a

sizable sample conductivity, as is provided by thermochemi-

cally treated cYSZ (001).

In order to generate “conductive” cYSZ (001) sub-

strates—with a significantly smaller resistivity q compared

to pristine YSZ (001) substrates—we developed an in situ
process consisting of successive annealing and electron bom-

bardment steps. We start from commercial single-crystalline

10%-yttria-substituted ZrO2 crystals (YSZ), which are

cleaned by isopropanol, introduced into UHV and annealed

at TS¼ 600 �C. Next, those YSZ (001) substrates are bom-

barded by high-kinetic energy electrons emitted from a tung-

sten filament,15 which are accelerated by a voltage of

U¼ 1000 V from 5 mm distance onto the YSZ substrate’s

back side, as schematically depicted in Fig. 1(a). Thea)Electronic mail: mart.mueller@fz-juelich.de
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electron emission current is regulated to not exceed

�20 mA. This hot electron bombardment is persistently

applied for 2 h at an elevated substrate temperature of

TS¼ 400 �C. In a successive annealing step, the YSZ tem-

plates are kept at TS¼ 700 �C under UHV without electron

bombardment for 3 h. Structural investigations of the cYSZ

(001) front side have been performed using in situ RHEED,

LEED and ex situ X-ray reflection (XRR) techniques.

We performed a depth-dependent chemical analysis

using (HAX)PES by either Al Ka X-rays (h�¼ 1.5 keV) or

hard X-ray synchrotron radiation (h�¼ 4 keV) at PETRA III

(P09).17 Whereas the information depth of XPS is limited to

the surface region of only few Å, the use of hard X-rays pro-

vides a bulk-like information depth of up to 20 nm.16

Photoelectrons were either collected in normal emission ge-

ometry a¼ 0� with a maximum escape depth k� / k cos a, or

under an off-normal emission angle a¼ 45� in order to

enhance the surface-sensitivity. For a quantitative evaluation

of the PES spectra, we subtracted Tougaard backgrounds and

fitted by convoluted Gaussian–Lorenzian peak shapes.

In order to investigate e-beam treated cYSZ (001) as

substrates for oxide heteroepitaxy, ultrathin films of the

magnetic oxide EuO were grown by reactive MBE under

UHV conditions. Stoichiometric EuO was synthesized by

applying the Eu distillation condition at elevated substrate

temperature.2,7,18 First, we start the Eu metal deposition, im-

mediately followed by a meticulous regulation of an oxygen

supply in the 10�9 millibar regime. The samples are (finally)

capped with 4 nm Si for air-protection.

In Fig. 1(b), we compare a YSZ (001) substrate before

and after the in situ conductivity treatment and observe its

color changing from transparent (YSZ) to black (cYSZ).

This effect is a clear indication for a modification of the

material’s macroscopic electrical conductivity, with metallic

donor states located in the optical band gap acting as multiple

absorption channels for visible light. We probed the macro-

scopic electrical resistivity q of the substrates by two-terminal

measurements and extracted averages of qYSZ � 350 MX m

vs. qcYSZ ¼ 32:7 6 3 MX m. Thus, we reduced the electrical

resistivity of YSZ by �90% by the in situ electron bombard-

ment under high voltage.

Next, we investigate the surface crystalline structure of

the cYSZ (001) sample front side, which is a crucial parame-

ter for its use as substrate for oxide heteroepitaxy. In Fig. 1(c),

LEED and RHEED experiments on pristine YSZ (001) show

large charging effects, which make a structural analysis

impossible. Only by increasing the substrate temperature to

TS¼ 400 �C, the fcc (001) lattice planes become qualitatively

observable by RHEED. For the conductivity-treated cYSZ

(001) substrates, in contrast, the surface crystalline structure

can be easily monitored by both LEED and RHEED

(Figs. 1(c) and 1(d)), even at room temperature. The experi-

mental cYSZ (001) lattice parameter is determined as

acYSZ¼ 5.14 Å in an fcc structure, unchanged from the YSZ

reference value. We can therefore conclude, that the surface

crystalline quality of the cYSZ (001) front-side remains basi-

cally unaffected by our e-beam conductivity treatment.

In a further step, we aim at correlating the change of the

YSZ macroscopic electrical conductivity with the micro-

scopic electronic properties. Any induced metallicity will be

directly reflected by a valence change in the cationic constit-

uents of YSZ. Indeed, photoemission experiments (XPS and

HAXPES) of pristine and “conductive” YSZ samples reveal

a significant change in the oxidation state of Zr cations

FIG. 1. (a) In situ e-beam treatment from the back side generates “conductive” cYSZ while protecting the polished surface. (b) Pristine and cYSZ samples.

(c) and (d) Characterization by LEED and RHEED. LEED (green) is only observable on cYSZ.

FIG. 2. Electronic structure analysis of the Zr 3d doublet in cYSZ by (a) soft

X-ray PES and (b) HAXPES. In (b), depth-sensitive scans reveal a sizeable

and homogeneous distribution of reduced, metallic Zr0 spectral weight.
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(Fig. 2). We compare the Zr 3d photoemission doublet of YSZ

before and after the electron treatment: While in the pristine

YSZ, we identify only the fully oxidized Zr4þ valence state as

expected for ZrO2 (Fig. 2(a)), in cYSZ a metallic fraction of

31.2% Zr0 fully and 9.8% Zr2þ partially reduced Zr cations

are determined by a peak fitting analysis (Fig. 2(b)). We fur-

thermore conducted a depth-dependent HAXPES experiment

with varying photoelectron emission angle (a¼ 0� and 45�).
The Zr 3d spectra in Fig. 2(b) clearly confirm a homogeneous

Zr0/Zr4þ distribution within the cYSZ substrate for the acces-

sible probing depth of up to �20 nm. In that, the (HAX)PES

results clearly demonstrate that a homogenously distributed

metallic fraction of �31% metallic Zr0 can be created in YSZ

single-crystals by our in situ conductivity treatment.

The mechanism leading to this large fraction of Zr0 states

in cYSZ may be explained by the creation of oxygen vacancies

according to mechanism (i) 1
2

ZrO2ð Þ �!ox:vac 1
2

O2 þ n � V••
Oþ

n � 2e�. As schematically depicted in Fig. 3, two oxygen

vacancies V••
O per Zr0 site may serve as donors for four elec-

trons, where n¼ 1 leads to a partial reduction to Zr2þ and

n¼ 2 to a reduction to metallic Zr0. The back color and macro-

scopic conductivity of cYSZ samples thus mainly arises from

Zr electronic donor states at room temperature, rather than

from mobile oxygen ions as, e.g., present in heated YSZ.13

We finally show the high-quality oxide heteroepitaxy of the

magnetic oxide EuO on cYSZ (001) templates. During the

growth of an ultrathin EuO film, we observe RHEED intensity

oscillations of the specular spot in Fig. 4(a), indicative for a

layer-by-layer growth mechanism. By analyzing the XRR

Kiessig fringes (not shown), we identify four net planes of EuO

(dEuO� 1.1 nm). Both XRR fringes and RHEED pattern indi-

cate that the roughness of the ultrathin EuO layer is below

0.5 nm. Furthermore, the magnetization curve of 1 nm ultrathin

single-crystalline EuO/cYSZ (Fig. 4(b)) shows the expected 2nd

order transition with a reduced Curie temperature as expected

for ultrathin EuO. This example of the EuO/cYSZ (001) model

system clearly demonstrates that cYSZ (001) serves as a

high-quality single-crystalline template for oxide heteroepitaxy.

In summary, we successfully developed an in situ ther-

mochemical treatment which induces a sizable and

homogeneous metallic conductivity in YSZ (001), as quanti-

fied by soft- and hard X-ray photoemission spectroscopy. At

the same time, the surface crystalline structure remains basi-

cally unaffected, and ultrathin EuO films can be synthesized

on cYSZ (100) with single crystalline quality as indicated by

RHEED intensity oscillations. In that, the presented in situ
conductivity treatment of YSZ (001) opens up a pathway for

the application of various high electron-fluence characteriza-

tion techniques, such as HAXPES, RHEED, and LEED, in

any YSZ (001)-based functional oxide heterostructure.
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FIG. 3. Schematic illustration of the chemical reduction of Zr cations leading to

a macroscopic electronic conductivity in e-beam-treated YSZ (001) substrates.

FIG. 4. (a) RHEED intensity oscillations indicate layer-by-layer EuO heteroe-

pitaxy on cYSZ(001). The reciprocal space pattern (inset) shows the fcc surface

structure. (b) Magnetization vs. temperature of ultrathin EuO (1 nm)/cYSZ.
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